Sample records for n-methyltransferse interactions gene

  1. Carbon: Nitrogen Interaction Regulates Expression of Genes Involved in N-Uptake and Assimilation in Brassica juncea L.

    PubMed Central

    Goel, Parul; Bhuria, Monika; Kaushal, Mamta

    2016-01-01

    In plants, several cellular and metabolic pathways interact with each other to regulate processes that are vital for their growth and development. Carbon (C) and Nitrogen (N) are two main nutrients for plants and coordination of C and N pathways is an important factor for maintaining plant growth and development. In the present work, influence of nitrogen and sucrose (C source) on growth parameters and expression of genes involved in nitrogen transport and assimilatory pathways was studied in B. juncea seedlings. For this, B. juncea seedlings were treated with four combinations of C and N source viz., N source alone (-Suc+N), C source alone (+Suc-N), with N and C source (+Suc+N) or without N and C source (-Suc-N). Cotyledon size and shoot length were found to be increased in seedlings, when nitrogen alone was present in the medium. Distinct expression pattern of genes in both, root and shoot tissues was observed in response to exogenously supplied N and C. The presence or depletion of nitrogen alone in the medium leads to severe up- or down-regulation of key genes involved in N-uptake and transport (BjNRT1.1, BjNRT1.8) in root tissue and genes involved in nitrate reduction (BjNR1 and BjNR2) in shoot tissue. Moreover, expression of several genes, like BjAMT1.2, BjAMT2 and BjPK in root and two genes BjAMT2 and BjGS1.1 in shoot were found to be regulated only when C source was present in the medium. Majority of genes were found to respond in root and shoot tissues, when both C and N source were present in the medium, thus reflecting their importance as a signal in regulating expression of genes involved in N-uptake and assimilation. The present work provides insight into the regulation of genes of N-uptake and assimilatory pathway in B. juncea by interaction of both carbon and nitrogen. PMID:27637072

  2. Gene-Gene and Gene-Environment Interactions in Ulcerative Colitis

    PubMed Central

    Wang, Ming-Hsi; Fiocchi, Claudio; Zhu, Xiaofeng; Ripke, Stephan; Kamboh, M. Ilyas; Rebert, Nancy; Duerr, Richard H.; Achkar, Jean-Paul

    2014-01-01

    Genome-wide association studies (GWAS) have identified at least 133 ulcerative colitis (UC) associated loci. The role of genetic factors in clinical practice is not clearly defined. The relevance of genetic variants to disease pathogenesis is still uncertain because of not characterized gene-gene and gene-environment interactions. We examined the predictive value of combining the 133 UC risk loci with genetic interactions in an ongoing inflammatory bowel disease (IBD) GWAS. The Wellcome Trust Case-Control Consortium (WTCCC) IBD GWAS was used as a replication cohort. We applied logic regression (LR), a novel adaptive regression methodology, to search for high order interactions. Exploratory genotype correlations with UC sub-phenotypes (extent of disease, need of surgery, age of onset, extra-intestinal manifestations and primary sclerosing cholangitis (PSC)) were conducted. The combination of 133 UC loci yielded good UC risk predictability (area under the curve [AUC] of 0.86). A higher cumulative allele score predicted higher UC risk. Through LR, several lines of evidence for genetic interactions were identified and successfully replicated in the WTCCC cohort. The genetic interactions combined with the gene-smoking interaction significantly improved predictability in the model (AUC, from 0.86 to 0.89, P=3.26E-05). Explained UC variance increased from 37% to 42% after adding the interaction terms. A within case analysis found suggested genetic association with PSC. Our study demonstrates that the LR methodology allows the identification and replication of high order genetic interactions in UC GWAS datasets. UC risk can be predicted by a 133 loci and improved by adding gene-gene and gene-environment interactions. PMID:24241240

  3. Machine Learning for Detecting Gene-Gene Interactions

    PubMed Central

    McKinney, Brett A.; Reif, David M.; Ritchie, Marylyn D.; Moore, Jason H.

    2011-01-01

    Complex interactions among genes and environmental factors are known to play a role in common human disease aetiology. There is a growing body of evidence to suggest that complex interactions are ‘the norm’ and, rather than amounting to a small perturbation to classical Mendelian genetics, interactions may be the predominant effect. Traditional statistical methods are not well suited for detecting such interactions, especially when the data are high dimensional (many attributes or independent variables) or when interactions occur between more than two polymorphisms. In this review, we discuss machine-learning models and algorithms for identifying and characterising susceptibility genes in common, complex, multifactorial human diseases. We focus on the following machine-learning methods that have been used to detect gene-gene interactions: neural networks, cellular automata, random forests, and multifactor dimensionality reduction. We conclude with some ideas about how these methods and others can be integrated into a comprehensive and flexible framework for data mining and knowledge discovery in human genetics. PMID:16722772

  4. Gene-based interaction analysis shows GABAergic genes interacting with parenting in adolescent depressive symptoms.

    PubMed

    Van Assche, Evelien; Moons, Tim; Cinar, Ozan; Viechtbauer, Wolfgang; Oldehinkel, Albertine J; Van Leeuwen, Karla; Verschueren, Karine; Colpin, Hilde; Lambrechts, Diether; Van den Noortgate, Wim; Goossens, Luc; Claes, Stephan; van Winkel, Ruud

    2017-12-01

    Most gene-environment interaction studies (G × E) have focused on single candidate genes. This approach is criticized for its expectations of large effect sizes and occurrence of spurious results. We describe an approach that accounts for the polygenic nature of most psychiatric phenotypes and reduces the risk of false-positive findings. We apply this method focusing on the role of perceived parental support, psychological control, and harsh punishment in depressive symptoms in adolescence. Analyses were conducted on 982 adolescents of Caucasian origin (M age (SD) = 13.78 (.94) years) genotyped for 4,947 SNPs in 263 genes, selected based on a literature survey. The Leuven Adolescent Perceived Parenting Scale (LAPPS) and the Parental Behavior Scale (PBS) were used to assess perceived parental psychological control, harsh punishment, and support. The Center for Epidemiologic Studies Depression Scale (CES-D) was the outcome. We used gene-based testing taking into account linkage disequilibrium to identify genes containing SNPs exhibiting an interaction with environmental factors yielding a p-value per single gene. Significant results at the corrected p-value of p < 1.90 × 10 -4 were examined in an independent replication sample of Dutch adolescents (N = 1354). Two genes showed evidence for interaction with perceived support: GABRR1 (p = 4.62 × 10 -5 ) and GABRR2 (p = 9.05 × 10 -6 ). No genes interacted significantly with psychological control or harsh punishment. Gene-based analysis was unable to confirm the interaction of GABRR1 or GABRR2 with support in the replication sample. However, for GABRR2, but not GABRR1, the correlation of the estimates between the two datasets was significant (r (46) = .32; p = .027) and a gene-based analysis of the combined datasets supported GABRR2 × support interaction (p = 1.63 × 10 -4 ). We present a gene-based method for gene-environment interactions in a polygenic context and show that genes

  5. Development and application of an interaction network ontology for literature mining of vaccine-associated gene-gene interactions.

    PubMed

    Hur, Junguk; Özgür, Arzucan; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Literature mining of gene-gene interactions has been enhanced by ontology-based name classifications. However, in biomedical literature mining, interaction keywords have not been carefully studied and used beyond a collection of keywords. In this study, we report the development of a new Interaction Network Ontology (INO) that classifies >800 interaction keywords and incorporates interaction terms from the PSI Molecular Interactions (PSI-MI) and Gene Ontology (GO). Using INO-based literature mining results, a modified Fisher's exact test was established to analyze significantly over- and under-represented enriched gene-gene interaction types within a specific area. Such a strategy was applied to study the vaccine-mediated gene-gene interactions using all PubMed abstracts. The Vaccine Ontology (VO) and INO were used to support the retrieval of vaccine terms and interaction keywords from the literature. INO is aligned with the Basic Formal Ontology (BFO) and imports terms from 10 other existing ontologies. Current INO includes 540 terms. In terms of interaction-related terms, INO imports and aligns PSI-MI and GO interaction terms and includes over 100 newly generated ontology terms with 'INO_' prefix. A new annotation property, 'has literature mining keywords', was generated to allow the listing of different keywords mapping to the interaction types in INO. Using all PubMed documents published as of 12/31/2013, approximately 266,000 vaccine-associated documents were identified, and a total of 6,116 gene-pairs were associated with at least one INO term. Out of 78 INO interaction terms associated with at least five gene-pairs of the vaccine-associated sub-network, 14 terms were significantly over-represented (i.e., more frequently used) and 17 under-represented based on our modified Fisher's exact test. These over-represented and under-represented terms share some common top-level terms but are distinct at the bottom levels of the INO hierarchy. The analysis of these

  6. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  7. Allelic-based gene-gene interaction associated with quantitative traits.

    PubMed

    Jung, Jeesun; Sun, Bin; Kwon, Deukwoo; Koller, Daniel L; Foroud, Tatiana M

    2009-05-01

    Recent studies have shown that quantitative phenotypes may be influenced not only by multiple single nucleotide polymorphisms (SNPs) within a gene but also by the interaction between SNPs at unlinked genes. We propose a new statistical approach that can detect gene-gene interactions at the allelic level which contribute to the phenotypic variation in a quantitative trait. By testing for the association of allelic combinations at multiple unlinked loci with a quantitative trait, we can detect the SNP allelic interaction whether or not it can be detected as a main effect. Our proposed method assigns a score to unrelated subjects according to their allelic combination inferred from observed genotypes at two or more unlinked SNPs, and then tests for the association of the allelic score with a quantitative trait. To investigate the statistical properties of the proposed method, we performed a simulation study to estimate type I error rates and power and demonstrated that this allelic approach achieves greater power than the more commonly used genotypic approach to test for gene-gene interaction. As an example, the proposed method was applied to data obtained as part of a candidate gene study of sodium retention by the kidney. We found that this method detects an interaction between the calcium-sensing receptor gene (CaSR), the chloride channel gene (CLCNKB) and the Na, K, 2Cl cotransporter gene (CLC12A1) that contributes to variation in diastolic blood pressure.

  8. A Nonlinear Model for Gene-Based Gene-Environment Interaction.

    PubMed

    Sa, Jian; Liu, Xu; He, Tao; Liu, Guifen; Cui, Yuehua

    2016-06-04

    A vast amount of literature has confirmed the role of gene-environment (G×E) interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects) are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR) model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction.

  9. A Critical Look at Entropy-Based Gene-Gene Interaction Measures.

    PubMed

    Lee, Woojoo; Sjölander, Arvid; Pawitan, Yudi

    2016-07-01

    Several entropy-based measures for detecting gene-gene interaction have been proposed recently. It has been argued that the entropy-based measures are preferred because entropy can better capture the nonlinear relationships between genotypes and traits, so they can be useful to detect gene-gene interactions for complex diseases. These suggested measures look reasonable at intuitive level, but so far there has been no detailed characterization of the interactions captured by them. Here we study analytically the properties of some entropy-based measures for detecting gene-gene interactions in detail. The relationship between interactions captured by the entropy-based measures and those of logistic regression models is clarified. In general we find that the entropy-based measures can suffer from a lack of specificity in terms of target parameters, i.e., they can detect uninteresting signals as interactions. Numerical studies are carried out to confirm theoretical findings. © 2016 WILEY PERIODICALS, INC.

  10. HIT'nDRIVE: patient-specific multidriver gene prioritization for precision oncology

    PubMed Central

    Hodzic, Ermin; Sauerwald, Thomas; Dao, Phuong; Wang, Kendric; Yeung, Jake; Anderson, Shawn; Vandin, Fabio; Haffari, Gholamreza; Collins, Colin C.; Sahinalp, S. Cenk

    2017-01-01

    Prioritizing molecular alterations that act as drivers of cancer remains a crucial bottleneck in therapeutic development. Here we introduce HIT'nDRIVE, a computational method that integrates genomic and transcriptomic data to identify a set of patient-specific, sequence-altered genes, with sufficient collective influence over dysregulated transcripts. HIT'nDRIVE aims to solve the “random walk facility location” (RWFL) problem in a gene (or protein) interaction network, which differs from the standard facility location problem by its use of an alternative distance measure: “multihitting time,” the expected length of the shortest random walk from any one of the set of sequence-altered genes to an expression-altered target gene. When applied to 2200 tumors from four major cancer types, HIT'nDRIVE revealed many potentially clinically actionable driver genes. We also demonstrated that it is possible to perform accurate phenotype prediction for tumor samples by only using HIT'nDRIVE-seeded driver gene modules from gene interaction networks. In addition, we identified a number of breast cancer subtype-specific driver modules that are associated with patients’ survival outcome. Furthermore, HIT'nDRIVE, when applied to a large panel of pan-cancer cell lines, accurately predicted drug efficacy using the driver genes and their seeded gene modules. Overall, HIT'nDRIVE may help clinicians contextualize massive multiomics data in therapeutic decision making, enabling widespread implementation of precision oncology. PMID:28768687

  11. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter.

    PubMed

    Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor

    2013-07-01

    The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.

  12. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review.

    PubMed

    Minelli, Cosetta; Wei, Igor; Sagoo, Gurdeep; Jarvis, Debbie; Shaheen, Seif; Burney, Peter

    2011-03-15

    Susceptibility to the respiratory effects of air pollution varies between individuals. Although some evidence suggests higher susceptibility for subjects carrying variants of antioxidant genes, findings from gene-pollution interaction studies conflict in terms of the presence and direction of interactions. The authors conducted a systematic review on antioxidant gene-pollution interactions which included 15 studies, with 12 supporting the presence of interactions. For the glutathione S-transferase M1 gene (GSTM1) (n=10 studies), only 1 study found interaction with the null genotype alone, although 5 observed interactions when GSTM1 was evaluated jointly with other genes (mainly NAD(P)H dehydrogenase [quinone] 1 (NQO1)). All studies on the glutathione S-transferase P1 (GSTP1) Ile105Val polymorphism (n=11) provided some evidence of interaction, but findings conflicted in terms of risk allele. Results were negative for glutathione S-transferase T1 (GSTT1) (n=3) and positive for heme oxygenase 1 (HMOX-1) (n=2). Meta-analysis could not be performed because there were insufficient data available for any specific gene-pollutant-outcome combination. Overall the evidence supports the presence of gene-pollution interactions, although which pollutant interacts with which gene is unclear. However, issues regarding multiple testing, selective reporting, and publication bias raise the possibility of false-positive findings. Larger studies with greater accuracy of pollution assessment and improved quality of conduct and reporting are required. © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved.

  13. Gene network biological validity based on gene-gene interaction relevance.

    PubMed

    Gómez-Vela, Francisco; Díaz-Díaz, Norberto

    2014-01-01

    In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.

  14. Simple F Test Reveals Gene-Gene Interactions in Case-Control Studies

    PubMed Central

    Chen, Guanjie; Yuan, Ao; Zhou, Jie; Bentley, Amy R.; Adeyemo, Adebowale; Rotimi, Charles N.

    2012-01-01

    Missing heritability is still a challenge for Genome Wide Association Studies (GWAS). Gene-gene interactions may partially explain this residual genetic influence and contribute broadly to complex disease. To analyze the gene-gene interactions in case-control studies of complex disease, we propose a simple, non-parametric method that utilizes the F-statistic. This approach consists of three steps. First, we examine the joint distribution of a pair of SNPs in cases and controls separately. Second, an F-test is used to evaluate the ratio of dependence in cases to that of controls. Finally, results are adjusted for multiple tests. This method was used to evaluate gene-gene interactions that are associated with risk of Type 2 Diabetes among African Americans in the Howard University Family Study. We identified 18 gene-gene interactions (P < 0.0001). Compared with the commonly-used logistical regression method, we demonstrate that the F-ratio test is an efficient approach to measuring gene-gene interactions, especially for studies with limited sample size. PMID:22837643

  15. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of Phytochrome B

    PubMed Central

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; Borba, Ana Rita; Lourenço, Tiago; Abreu, Isabel A.; Ouwerkerk, Pieter B.F.; Quail, Peter H.; Oliveira, M. Margarida; Saibo, Nelson J. M.

    2016-01-01

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein-DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressor activity observed in the transactivation assays using Arabidopsis protoplasts. In addition, we showed that OsPIF14 is indeed a Phytochrome Interacting Factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. All together, these results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses. PMID:26732823

  16. Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    DOE PAGES

    Cordeiro, André M.; Figueiredo, Duarte D.; Tepperman, James; ...

    2015-12-28

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a yeast one-hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bind to hexameric E-box (CANNTG) or N-box (CACG(A/C)G) motifs, depending on transcriptional activity. We have shown that OsPIF14 binds to the OsDREB1B promoter through two N-boxes and that the flanking regions of the hexameric core are essential for protein–DNA interaction and stability. We also showed that OsPIF14 down-regulates OsDREB1B gene expression in rice protoplasts, corroborating the OsPIF14 repressormore » activity observed in the transactivation assays using Arabidopsis protoplasts. Additionally, we showed that OsPIF14 is indeed a phytochrome interacting factor, which preferentially binds to the active form (Pfr) of rice phytochrome B. This raises the possibility that OsPIF14 activity might be modulated by light. However, we did not observe any regulation of the OsDREB1B gene expression by light under control conditions. Moreover, OsPIF14 gene expression was shown to be modulated by different treatments, such as drought, salt, cold and ABA. Interestingly, OsPIF14 showed also a specific cold-induced alternative splicing. Our results suggest the possibility that OsPIF14 is involved in cross-talk between light and stress signaling through interaction with the OsDREB1B promoter. Finally, although in the absence of stress, OsDREB1B gene expression was not regulated by light, given previous reports, it remains possible that OsPIF14 has a role in light modulation of stress responses.« less

  17. Why study gene-environment interactions?

    USDA-ARS?s Scientific Manuscript database

    PURPOSE OF REVIEW: We examine the reasons for investigating gene-environment interactions and address recent reports evaluating interactions between genes and environmental modulators in relation to cardiovascular disease and its common risk factors. RECENT FINDINGS: Studies focusing on smoking, phy...

  18. Gene function prediction with gene interaction networks: a context graph kernel approach.

    PubMed

    Li, Xin; Chen, Hsinchun; Li, Jiexun; Zhang, Zhu

    2010-01-01

    Predicting gene functions is a challenge for biologists in the postgenomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.

  19. Gene-environment interaction and suicidal behavior.

    PubMed

    Roy, Alec; Sarchiopone, Marco; Carli, Vladimir

    2009-07-01

    Studies have increasingly shown that gene-environment interactions are important in psychiatry. Suicidal behavior is a major public health problem. Suicide is generally considered to be a multi-determined act involving various areas of proximal and distal risk. Genetic risk factors are estimated to account for approximately 30% to 40% of the variance in suicidal behavior. In this article, the authors review relevant studies concerning the interaction between the serotonin transporter gene and environmental variables as a model of gene-environment interactions that may have an impact on suicidal behavior. The findings reviewed here suggest that there may be meaningful interactions between distal and proximal suicide risk factors that may amplify the risk of suicidal behavior. Future studies of suicidal behavior should examine both genetic and environmental variables and examine for gene-environment interactions.

  20. Gene-environment interactions in mental disorders

    PubMed Central

    Tsuang, Ming T; Bar, Jessica L; Stone, William S; Faraone, Stephen V

    2004-01-01

    Research clearly shows that both nature and nurture play important roles in the genesis of psychopathology. In this paper, we focus on 'gene-environment interaction' in mental disorders, using genetic control of sensitivity to the environment as our definition of that term. We begin with an examination of methodological issues involving gene-environment interactions, with examples concerning psychiatric and neurological conditions. Then we review the interactions in psychiatric disorders using twin, adoption and association designs. Finally, we consider gene-environment interactions in selected neurodevelopmental disorders (autism and schizophrenia). PMID:16633461

  1. Environmental confounding in gene-environment interaction studies.

    PubMed

    Vanderweele, Tyler J; Ko, Yi-An; Mukherjee, Bhramar

    2013-07-01

    We show that, in the presence of uncontrolled environmental confounding, joint tests for the presence of a main genetic effect and gene-environment interaction will be biased if the genetic and environmental factors are correlated, even if there is no effect of either the genetic factor or the environmental factor on the disease. When environmental confounding is ignored, such tests will in fact reject the joint null of no genetic effect with a probability that tends to 1 as the sample size increases. This problem with the joint test vanishes under gene-environment independence, but it still persists if estimating the gene-environment interaction parameter itself is of interest. Uncontrolled environmental confounding will bias estimates of gene-environment interaction parameters even under gene-environment independence, but it will not do so if the unmeasured confounding variable itself does not interact with the genetic factor. Under gene-environment independence, if the interaction parameter without controlling for the environmental confounder is nonzero, then there is gene-environment interaction either between the genetic factor and the environmental factor of interest or between the genetic factor and the unmeasured environmental confounder. We evaluate several recently proposed joint tests in a simulation study and discuss the implications of these results for the conduct of gene-environment interaction studies.

  2. Testing Gene-Gene Interactions in the Case-Parents Design

    PubMed Central

    Yu, Zhaoxia

    2011-01-01

    The case-parents design has been widely used to detect genetic associations as it can prevent spurious association that could occur in population-based designs. When examining the effect of an individual genetic locus on a disease, logistic regressions developed by conditioning on parental genotypes provide complete protection from spurious association caused by population stratification. However, when testing gene-gene interactions, it is unknown whether conditional logistic regressions are still robust. Here we evaluate the robustness and efficiency of several gene-gene interaction tests that are derived from conditional logistic regressions. We found that in the presence of SNP genotype correlation due to population stratification or linkage disequilibrium, tests with incorrectly specified main-genetic-effect models can lead to inflated type I error rates. We also found that a test with fully flexible main genetic effects always maintains correct test size and its robustness can be achieved with negligible sacrifice of its power. When testing gene-gene interactions is the focus, the test allowing fully flexible main effects is recommended to be used. PMID:21778736

  3. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment.

    PubMed

    Wang, Zhaoxi; Claus Henn, Birgit; Wang, Chaolong; Wei, Yongyue; Su, Li; Sun, Ryan; Chen, Han; Wagner, Peter J; Lu, Quan; Lin, Xihong; Wright, Robert; Bellinger, David; Kile, Molly; Mazumdar, Maitreyi; Tellez-Rojo, Martha Maria; Schnaas, Lourdes; Christiani, David C

    2017-07-28

    Neurodevelopment is a complex process involving both genetic and environmental factors. Prenatal exposure to lead (Pb) has been associated with lower performance on neurodevelopmental tests. Adverse neurodevelopmental outcomes are more frequent and/or more severe when toxic exposures interact with genetic susceptibility. To explore possible loci associated with increased susceptibility to prenatal Pb exposure, we performed a genome-wide gene-environment interaction study (GWIS) in young children from Mexico (n = 390) and Bangladesh (n = 497). Prenatal Pb exposure was estimated by cord blood Pb concentration. Neurodevelopment was assessed using the Bayley Scales of Infant Development. We identified a locus on chromosome 8, containing UNC5D, and demonstrated evidence of its genome-wide significance with mental composite scores (rs9642758, p meta  = 4.35 × 10 -6 ). Within this locus, the joint effects of two independent single nucleotide polymorphisms (SNPs, rs9642758 and rs10503970) had a p-value of 4.38 × 10 -9 for mental composite scores. Correlating GWIS results with in vitro transcriptomic profiles identified one common gene, SLC1A5, which is involved in synaptic function, neuronal development, and excitotoxicity. Further analysis revealed interconnected interactions that formed a large network of 52 genes enriched with oxidative stress genes and neurodevelopmental genes. Our findings suggest that certain genetic polymorphisms within/near genes relevant to neurodevelopment might modify the toxic effects of Pb exposure via oxidative stress.

  4. Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss.

    PubMed

    Su, Mei-Tsz; Lin, Sheng-Hsiang; Chen, Yi-Chi; Kuo, Pao-Lin

    2014-06-01

    Both vascular endothelial growth factor A (VEGFA) and endocrine gland-derived vascular endothelial growth factor (EG-VEGF) systems play major roles in angiogenesis. A body of evidence suggests VEGFs regulate critical processes during pregnancy and have been associated with recurrent pregnancy loss (RPL). However, little information is available regarding the interaction of these two major major angiogenesis-related systems in early human pregnancy. This study was conducted to investigate the association of gene polymorphisms and gene-gene interaction among genes in VEGFA and EG-VEGF systems and idiopathic RPL. A total of 98 women with history of idiopathic RPL and 142 controls were included, and 5 functional SNPs selected from VEGFA, KDR, EG-VEGF (PROK1), PROKR1 and PROKR2 were genotyped. We used multifactor dimensionality reduction (MDR) analysis to choose a best model and evaluate gene-gene interactions. Ingenuity pathways analysis (IPA) was introduced to explore possible complex interactions. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL (P<0.01). The MDR test revealed that the KDR (Q472H) polymorphism was the best loci to be associated with RPL (P=0.02). IPA revealed EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3 signaling pathways. Two receptor gene polymorphisms [KDR (Q472H) and PROKR2 (V331M)] were significantly associated with idiopathic RPL. EG-VEGF and VEGFA systems shared several canonical signaling pathways that may contribute to gene-gene interactions, including the Akt, IL-8, EGFR, MAPK, SRC, VHL, HIF-1A and STAT3.

  5. From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants.

    PubMed

    Kaufmann, Kerstin; Chen, Dijun

    2017-01-01

    Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.

  6. Choline Metabolites: Gene by Diet Interactions

    PubMed Central

    Smallwood, Tangi; Allayee, Hooman; Bennett, Brian J.

    2015-01-01

    Purpose of review This review highlights recent advances in our understanding of the interactions between genetic polymorphisms in genes that metabolize choline and the dietary requirements of choline and how these interactions relate to human health and disease. Recent findings The importance of choline as an essential nutrient has been well established but our appreciation of the interaction between our underlying genetic architecture and dietary choline requirements is only beginning. It has been shown in both human and animal studies that choline deficiencies contribute to diseases such as non-alcoholic fatty liver disease and various neurodegenerative diseases. An adequate supply of dietary choline is important for optimum development, highlighted by the increased maternal requirements during fetal development and in breast-fed infants. We discuss recent studies investigating variants in PEMT and MTHFR1 that are associated with a variety of birth defects. In addition to genetic interactions, we discuss several recent studies that uncover changes in fetal global methylation patterns in response to maternal dietary choline intake that result in changes in gene expression in the offspring. In contrast to the developmental role of adequate choline, there is now an appreciation of the role choline has in cardiovascular disease through the gut microbiota-mediated metabolite trimethylamine N-oxide. This pathway highlights some of our understanding of how the microbiome affects nutrient processing and bioavailability. Finally, in order to better characterize the genetic architecture regulating choline requirements, we discuss recent results focused on identifying polymorphisms that regulate choline and its derivative products. Summary Here we discuss recent studies that have advanced our understanding of how specific alleles in key choline metabolism genes are related to dietary choline requirements and human disease. PMID:26655287

  7. Gene-Diet Interactions in Childhood Obesity

    PubMed Central

    Garver, William S

    2011-01-01

    Childhood overweight and obesity have reached epidemic proportions worldwide, and the increase in weight-associated co-morbidities including premature type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease will soon become major healthcare and economic problems. A number of studies now indicate that the childhood obesity epidemic which has emerged during the past 30 years is a complex multi-factorial disease resulting from interaction of susceptibility genes with an obesogenic environment. This review will focus on gene-diet interactions suspected of having a prominent role in promoting childhood obesity. In particular, the specific genes that will be presented (FTO, MC4R, and NPC1) have recently been associated with childhood obesity through a genome-wide association study (GWAS) and were shown to interact with nutritional components to increase weight gain. Although a fourth gene (APOA2) has not yet been associated with childhood obesity, this review will also present information on what now represents the best characterized gene-diet interaction in promoting weight gain. PMID:22043166

  8. Gene-nutrient interactions on the phosphoenolpyruvate carboxykinase influence insulin sensitivity in metabolic syndrome subjects.

    PubMed

    Perez-Martinez, Pablo; Garcia-Rios, Antonio; Delgado-Lista, Javier; Gjelstad, Ingrid M F; Gibney, James; Kieć-Wilk, Beata; Camargo, Antonio; Helal, Olfa; Karlström, Brita; Blaak, Ellen E; Hall, Wendy; Risérus, Ulf; Dembińska-Kieć, Aldona; Defoort, Catherine; Saris, Wim H M; Lovegrove, Julie A; Drevon, Christian A; Roche, Helen M; Lopez-Miranda, Jose

    2013-08-01

    Genetic background may interact with habitual dietary fat composition, and affect development of the metabolic syndrome (MetS). The phosphoenolpyruvate carboxykinase gene (PCK1) plays a significant role regulating glucose metabolism, and fatty acids are key metabolic regulators, which interact with transcription factors and influence glucose metabolism. We explored genetic variability at the PCK1 gene locus in relation to degree of insulin resistance and plasma fatty acid levels in MetS subjects. Moreover, we analyzed the PCK1 gene expression in the adipose tissue of a subgroup of MetS subjects according to the PCK1 genetic variants. Insulin sensitivity, insulin secretion, glucose effectiveness, plasma concentrations of C-peptide, fatty acid composition and three PCK1 tag-single nucleotide polymorphisms (SNPs) were determined in 443 MetS participants in the LIPGENE cohort. The rs2179706 SNP interacted with plasma concentration of n - 3 polyunsaturated fatty acids (n - 3 PUFA), which were significantly associated with plasma concentrations of fasting insulin, peptide C, and HOMA-IR. Among subjects with n - 3 PUFA levels above the population median, carriers of the C/C genotype exhibited lower plasma concentrations of fasting insulin (P = 0.036) and HOMA-IR (P = 0.019) as compared with C/C carriers with n - 3 PUFA below the median. Moreover, homozygous C/C subjects with n - 3 PUFA levels above the median showed lower plasma concentrations of peptide C as compared to individuals with the T-allele (P = 0.006). Subjects carrying the T-allele showed a lower gene PCK1 expression as compared with carriers of the C/C genotype (P = 0.015). The PCK1 rs2179706 polymorphism interacts with plasma concentration of n - 3 PUFA levels modulating insulin resistance in MetS subjects. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Apolipoprotein C-III, n-3 polyunsaturated fatty acids, and "insulin-resistant" T-455C APOC3 gene polymorphism in heart disease patients: example of gene-diet interaction.

    PubMed

    Olivieri, Oliviero; Martinelli, Nicola; Sandri, Marco; Bassi, Antonella; Guarini, Patrizia; Trabetti, Elisabetta; Pizzolo, Francesca; Girelli, Domenico; Friso, Simonetta; Pignatti, Pier Franco; Corrocher, Roberto

    2005-02-01

    Apolipoprotein C-III (apo C-III) is a marker of cardiovascular disease risk associated with triglyceride (TG)-rich lipoproteins. The T-455C polymorphism in the insulin-responsive element of the APOC3 gene influences TG and apo C-III concentrations. Long-chain n-3 polyunsaturated fatty acids (PUFAs) contained in fish have well-known apo C-III-lowering properties. We investigated the possibility of an interactive effect between the APOC3 gene variant and erythrocyte n-3 PUFAs, suitable markers of dietary intake of fatty acids, on apo C-III concentrations in a population of 848 heart disease patients who had coronary angiography. In the population as a whole, apo C-III concentrations were significantly inversely correlated with total erythrocyte PUFAs, but the correlation was not significant when only -455CC homozygous individuals were taken into account. In the total population and in subgroups with the -455TT and -455CT genotypes, the relative proportions of individuals presenting with increased apo C-III (i.e., above the 75th percentile value calculated on the entire population after exclusion of individuals taking lipids-lowering medications) decreased progressively as the n-3 PUFA and docosahexaenoic acid concentrations increased. The opposite situation was observed in the homozygous -455CC subgroup, in whom increasing erythrocyte n-3 PUFA and docosahexaenoic acid concentrations were associated with higher proportions of individuals with high apo C-III. A formal interactive effect between genotype and n-3 PUFAs was confirmed even after adjustment for possible confounding variables [age, sex, body mass index, smoking, coronary artery disease (CAD)/CAD-free status, or use of lipid-lowering medications] by logistic models. Patients homozygous for the -455C APOC3 variant are poorly responsive to the apo C-III-lowering effects of n-3 PUFAs.

  10. The role of gene-gene interaction in the prediction of criminal behavior.

    PubMed

    Boutwell, Brian B; Menard, Scott; Barnes, J C; Beaver, Kevin M; Armstrong, Todd A; Boisvert, Danielle

    2014-04-01

    A host of research has examined the possibility that environmental risk factors might condition the influence of genes on various outcomes. Less research, however, has been aimed at exploring the possibility that genetic factors might interact to impact the emergence of human traits. Even fewer studies exist examining the interaction of genes in the prediction of behavioral outcomes. The current study expands this body of research by testing the interaction between genes involved in neural transmission. Our findings suggest that certain dopamine genes interact to increase the odds of criminogenic outcomes in a national sample of Americans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gene-gene and gene-environment interactions: new insights into the prevention, detection and management of coronary artery disease.

    PubMed

    Lanktree, Matthew B; Hegele, Robert A

    2009-02-26

    Despite the recent success of genome-wide association studies (GWASs) in identifying loci consistently associated with coronary artery disease (CAD), a large proportion of the genetic components of CAD and its metabolic risk factors, including plasma lipids, type 2 diabetes and body mass index, remain unattributed. Gene-gene and gene-environment interactions might produce a meaningful improvement in quantification of the genetic determinants of CAD. Testing for gene-gene and gene-environment interactions is thus a new frontier for large-scale GWASs of CAD. There are several anecdotal examples of monogenic susceptibility to CAD in which the phenotype was worsened by an adverse environment. In addition, small-scale candidate gene association studies with functional hypotheses have identified gene-environment interactions. For future evaluation of gene-gene and gene-environment interactions to achieve the same success as the single gene associations reported in recent GWASs, it will be important to pre-specify agreed standards of study design and statistical power, environmental exposure measurement, phenomic characterization and analytical strategies. Here we discuss these issues, particularly in relation to the investigation and potential clinical utility of gene-gene and gene-environment interactions in CAD.

  12. A deeper look at two concepts of measuring gene-gene interactions: logistic regression and interaction information revisited.

    PubMed

    Mielniczuk, Jan; Teisseyre, Paweł

    2018-03-01

    Detection of gene-gene interactions is one of the most important challenges in genome-wide case-control studies. Besides traditional logistic regression analysis, recently the entropy-based methods attracted a significant attention. Among entropy-based methods, interaction information is one of the most promising measures having many desirable properties. Although both logistic regression and interaction information have been used in several genome-wide association studies, the relationship between them has not been thoroughly investigated theoretically. The present paper attempts to fill this gap. We show that although certain connections between the two methods exist, in general they refer two different concepts of dependence and looking for interactions in those two senses leads to different approaches to interaction detection. We introduce ordering between interaction measures and specify conditions for independent and dependent genes under which interaction information is more discriminative measure than logistic regression. Moreover, we show that for so-called perfect distributions those measures are equivalent. The numerical experiments illustrate the theoretical findings indicating that interaction information and its modified version are more universal tools for detecting various types of interaction than logistic regression and linkage disequilibrium measures. © 2017 WILEY PERIODICALS, INC.

  13. Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases.

    PubMed

    Berger, Seth I; Posner, Jeremy M; Ma'ayan, Avi

    2007-10-04

    In recent years, mammalian protein-protein interaction network databases have been developed. The interactions in these databases are either extracted manually from low-throughput experimental biomedical research literature, extracted automatically from literature using techniques such as natural language processing (NLP), generated experimentally using high-throughput methods such as yeast-2-hybrid screens, or interactions are predicted using an assortment of computational approaches. Genes or proteins identified as significantly changing in proteomic experiments, or identified as susceptibility disease genes in genomic studies, can be placed in the context of protein interaction networks in order to assign these genes and proteins to pathways and protein complexes. Genes2Networks is a software system that integrates the content of ten mammalian interaction network datasets. Filtering techniques to prune low-confidence interactions were implemented. Genes2Networks is delivered as a web-based service using AJAX. The system can be used to extract relevant subnetworks created from "seed" lists of human Entrez gene symbols. The output includes a dynamic linkable three color web-based network map, with a statistical analysis report that identifies significant intermediate nodes used to connect the seed list. Genes2Networks is powerful web-based software that can help experimental biologists to interpret lists of genes and proteins such as those commonly produced through genomic and proteomic experiments, as well as lists of genes and proteins associated with disease processes. This system can be used to find relationships between genes and proteins from seed lists, and predict additional genes or proteins that may play key roles in common pathways or protein complexes.

  14. Computational analysis of gene-gene interactions using multifactor dimensionality reduction.

    PubMed

    Moore, Jason H

    2004-11-01

    Understanding the relationship between DNA sequence variations and biologic traits is expected to improve the diagnosis, prevention and treatment of common human diseases. Success in characterizing genetic architecture will depend on our ability to address nonlinearities in the genotype-to-phenotype mapping relationship as a result of gene-gene interactions, or epistasis. This review addresses the challenges associated with the detection and characterization of epistasis. A novel strategy known as multifactor dimensionality reduction that was specifically designed for the identification of multilocus genetic effects is presented. Several case studies that demonstrate the detection of gene-gene interactions in common diseases such as atrial fibrillation, Type II diabetes and essential hypertension are also discussed.

  15. Gene-gene and gene-environment interactions defining lipid-related traits.

    PubMed

    Ordovás, José M; Robertson, Ruairi; Cléirigh, Ellen Ní

    2011-04-01

    Steps towards reducing chronic disease progression are continuously being taken through the form of genomic research. Studies over the last year have highlighted more and more polymorphisms, pathways and interactions responsible for metabolic disorders such as cardiovascular disease, obesity and dyslipidemia. Many of these chronic illnesses can be partially blamed by altered lipid metabolism, combined with individual genetic components. Critical evaluation and comparison of these recent studies is essential in order to comprehend the results, conclusions and future prospects in the field of genomics as a whole. Recent literature elucidates significant gene--diet and gene--environment interactions resulting in altered lipid metabolism, inflammation and other metabolic imbalances leading to cardiovascular disease and obesity. Epigenetic and epistatic interactions are now becoming more significantly associated with such disorders, as genomic research digs deeper into the complex nature of genetic individuality and heritability. The vast array of data collected from genome-wide association studies must now be empowered and explored through more complex interaction studies, using standardized methods and larger sample sizes. In doing so the etiology of chronic disease progression will be further understood.

  16. Diet-Gene Interactions and PUFA Metabolism: A Potential Contributor to Health Disparities and Human Diseases

    PubMed Central

    Chilton, Floyd H.; Murphy, Robert C.; Wilson, Bryan A.; Sergeant, Susan; Ainsworth, Hannah; Seeds, Michael C.; Mathias, Rasika A.

    2014-01-01

    The “modern western” diet (MWD) has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6) 18 carbon (C18), polyunsaturated fatty acid (PUFA) linoleic acid (LA; 18:2n-6), with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS) cluster) that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD). Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA), CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations. PMID:24853887

  17. Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature

    PubMed Central

    Vazquez-Martin, Alejandro; Anatskaya, Olga V.; Giuliani, Alessandro; Erenpreisa, Jekaterina; Huang, Sui; Salmina, Kristine; Inashkina, Inna; Huna, Anda; Nikolsky, Nikolai N.; Vinogradov, Alexander E.

    2016-01-01

    The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer. PMID:27655693

  18. A Partial Least Square Approach for Modeling Gene-gene and Gene-environment Interactions When Multiple Markers Are Genotyped

    PubMed Central

    Wang, Tao; Ho, Gloria; Ye, Kenny; Strickler, Howard; Elston, Robert C.

    2008-01-01

    Genetic association studies achieve an unprecedented level of resolution in mapping disease genes by genotyping dense SNPs in a gene region. Meanwhile, these studies require new powerful statistical tools that can optimally handle a large amount of information provided by genotype data. A question that arises is how to model interactions between two genes. Simply modeling all possible interactions between the SNPs in two gene regions is not desirable because a greatly increased number of degrees of freedom can be involved in the test statistic. We introduce an approach to reduce the genotype dimension in modeling interactions. The genotype compression of this approach is built upon the information on both the trait and the cross-locus gametic disequilibrium between SNPs in two interacting genes, in such a way as to parsimoniously model the interactions without loss of useful information in the process of dimension reduction. As a result, it improves power to detect association in the presence of gene-gene interactions. This approach can be similarly applied for modeling gene-environment interactions. We compare this method with other approaches: the corresponding test without modeling any interaction, that based on a saturated interaction model, that based on principal component analysis, and that based on Tukey’s 1-df model. Our simulations suggest that this new approach has superior power to that of the other methods. In an application to endometrial cancer case-control data from the Women’s Health Initiative (WHI), this approach detected AKT1 and AKT2 as being significantly associated with endometrial cancer susceptibility by taking into account their interactions with BMI. PMID:18615621

  19. A partial least-square approach for modeling gene-gene and gene-environment interactions when multiple markers are genotyped.

    PubMed

    Wang, Tao; Ho, Gloria; Ye, Kenny; Strickler, Howard; Elston, Robert C

    2009-01-01

    Genetic association studies achieve an unprecedented level of resolution in mapping disease genes by genotyping dense single nucleotype polymorphisms (SNPs) in a gene region. Meanwhile, these studies require new powerful statistical tools that can optimally handle a large amount of information provided by genotype data. A question that arises is how to model interactions between two genes. Simply modeling all possible interactions between the SNPs in two gene regions is not desirable because a greatly increased number of degrees of freedom can be involved in the test statistic. We introduce an approach to reduce the genotype dimension in modeling interactions. The genotype compression of this approach is built upon the information on both the trait and the cross-locus gametic disequilibrium between SNPs in two interacting genes, in such a way as to parsimoniously model the interactions without loss of useful information in the process of dimension reduction. As a result, it improves power to detect association in the presence of gene-gene interactions. This approach can be similarly applied for modeling gene-environment interactions. We compare this method with other approaches, the corresponding test without modeling any interaction, that based on a saturated interaction model, that based on principal component analysis, and that based on Tukey's one-degree-of-freedom model. Our simulations suggest that this new approach has superior power to that of the other methods. In an application to endometrial cancer case-control data from the Women's Health Initiative, this approach detected AKT1 and AKT2 as being significantly associated with endometrial cancer susceptibility by taking into account their interactions with body mass index.

  20. Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions.

    PubMed

    Chatterjee, Nilanjan; Kalaylioglu, Zeynep; Moslehi, Roxana; Peters, Ulrike; Wacholder, Sholom

    2006-12-01

    In modern genetic epidemiology studies, the association between the disease and a genomic region, such as a candidate gene, is often investigated using multiple SNPs. We propose a multilocus test of genetic association that can account for genetic effects that might be modified by variants in other genes or by environmental factors. We consider use of the venerable and parsimonious Tukey's 1-degree-of-freedom model of interaction, which is natural when individual SNPs within a gene are associated with disease through a common biological mechanism; in contrast, many standard regression models are designed as if each SNP has unique functional significance. On the basis of Tukey's model, we propose a novel but computationally simple generalized test of association that can simultaneously capture both the main effects of the variants within a genomic region and their interactions with the variants in another region or with an environmental exposure. We compared performance of our method with that of two standard tests of association, one ignoring gene-gene/gene-environment interactions and the other based on a saturated model of interactions. We demonstrate major power advantages of our method both in analysis of data from a case-control study of the association between colorectal adenoma and DNA variants in the NAT2 genomic region, which are well known to be related to a common biological phenotype, and under different models of gene-gene interactions with use of simulated data.

  1. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    PubMed

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  2. An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae.

    PubMed

    Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard

    2005-02-16

    In S. cerevisiae the beta-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with CHS3 indicate expanded

  3. An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae

    PubMed Central

    Lesage, Guillaume; Shapiro, Jesse; Specht, Charles A; Sdicu, Anne-Marie; Ménard, Patrice; Hussein, Shamiza; Tong, Amy Hin Yan; Boone, Charles; Bussey, Howard

    2005-01-01

    Background In S. cerevisiae the β-1,4-linked N-acetylglucosamine polymer, chitin, is synthesized by a family of 3 specialized but interacting chitin synthases encoded by CHS1, CHS2 and CHS3. Chs2p makes chitin in the primary septum, while Chs3p makes chitin in the lateral cell wall and in the bud neck, and can partially compensate for the lack of Chs2p. Chs3p requires a pathway of Bni4p, Chs4p, Chs5p, Chs6p and Chs7p for its localization and activity. Chs1p is thought to have a septum repair function after cell separation. To further explore interactions in the chitin synthase family and to find processes buffering chitin synthesis, we compiled a genetic interaction network of genes showing synthetic interactions with CHS1, CHS3 and genes involved in Chs3p localization and function and made a phenotypic analysis of their mutants. Results Using deletion mutants in CHS1, CHS3, CHS4, CHS5, CHS6, CHS7 and BNI4 in a synthetic genetic array analysis we assembled a network of 316 interactions among 163 genes. The interaction network with CHS3, CHS4, CHS5, CHS6, CHS7 or BNI4 forms a dense neighborhood, with many genes functioning in cell wall assembly or polarized secretion. Chitin levels were altered in 54 of the mutants in individually deleted genes, indicating a functional relationship between them and chitin synthesis. 32 of these mutants triggered the chitin stress response, with elevated chitin levels and a dependence on CHS3. A large fraction of the CHS1-interaction set was distinct from that of the CHS3 network, indicating broad roles for Chs1p in buffering both Chs2p function and more global cell wall robustness. Conclusion Based on their interaction patterns and chitin levels we group interacting mutants into functional categories. Genes interacting with CHS3 are involved in the amelioration of cell wall defects and in septum or bud neck chitin synthesis, and we newly assign a number of genes to these functions. Our genetic analysis of genes not interacting with

  4. Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests.

    PubMed

    Yu, Zhaoxia; Demetriou, Michael; Gillen, Daniel L

    2015-09-01

    Despite the successful discovery of hundreds of variants for complex human traits using genome-wide association studies, the degree to which genes and environmental risk factors jointly affect disease risk is largely unknown. One obstacle toward this goal is that the computational effort required for testing gene-gene and gene-environment interactions is enormous. As a result, numerous computationally efficient tests were recently proposed. However, the validity of these methods often relies on unrealistic assumptions such as additive main effects, main effects at only one variable, no linkage disequilibrium between the two single-nucleotide polymorphisms (SNPs) in a pair or gene-environment independence. Here, we derive closed-form and consistent estimates for interaction parameters and propose to use Wald tests for testing interactions. The Wald tests are asymptotically equivalent to the likelihood ratio tests (LRTs), largely considered to be the gold standard tests but generally too computationally demanding for genome-wide interaction analysis. Simulation studies show that the proposed Wald tests have very similar performances with the LRTs but are much more computationally efficient. Applying the proposed tests to a genome-wide study of multiple sclerosis, we identify interactions within the major histocompatibility complex region. In this application, we find that (1) focusing on pairs where both SNPs are marginally significant leads to more significant interactions when compared to focusing on pairs where at least one SNP is marginally significant; and (2) parsimonious parameterization of interaction effects might decrease, rather than increase, statistical power. © 2015 WILEY PERIODICALS, INC.

  5. Influence of smoking status and intensity on discovery of blood pressure loci through gene-smoking interactions

    PubMed Central

    Fuentes, Lisa de las; Schwander, Karen; Cupples, L. Adrienne; Rao, D. C.

    2015-01-01

    Background Genetic variation accounts for approximately 30% of blood pressure (BP) variability but most of that variability hasn't been attributed to specific variants. Interactions between genes and BP-associated factors may explain some ‘missing heritability.’ Cigarette smoking increases BP after short-term exposure and decreases BP with longer exposure. Gene-smoking interactions have discovered novel BP loci, but the contribution of smoking status and intensity to gene discovery is unknown. Methods We analyzed gene-smoking intensity interactions for association with systolic BP (SBP) in three subgroups from the Framingham Heart Study: current smokers only (N = 1,057), current and former smokers (‘ever smokers’, N = 3,374), and all subjects (N = 6,710). We used three smoking intensity variables defined at cutoffs of 10, 15, and 20 cigarettes per day (CPD). We evaluated the 1 degree-of-freedom (df) interaction and 2df joint test using generalized estimating equations. Results Analysis of current smokers using a CPD cutoff of 10 produced two loci associated with SBP. The rs9399633 minor allele was associated with increased SBP (5 mmHg) in heavy smokers (CPD>10) but decreased SBP (7 mmHg) in light smokers (CPD≤10). The rs11717948 minor allele was associated with decreased SBP (8 mmHg) in light smokers but decreased SBP (2 mmHg) in heavy smokers. Across all nine analyses, 19 additional loci reached p < 1×10−6. Discussion Analysis of current smokers may have the highest power to detect gene-smoking interactions, despite the reduced sample size. Associations of loci near SASH1 and KLHL6/KLHL24 with SBP may be modulated by tobacco smoking. PMID:25940791

  6. Influence of Smoking Status and Intensity on Discovery of Blood Pressure Loci Through Gene-Smoking Interactions.

    PubMed

    Basson, Jacob; Sung, Yun Ju; Fuentes, Lisa de Las; Schwander, Karen; Cupples, L Adrienne; Rao, D C

    2015-09-01

    Genetic variation accounts for approximately 30% of blood pressure (BP) variability but most of that variability has not been attributed to specific variants. Interactions between genes and BP-associated factors may explain some "missing heritability." Cigarette smoking increases BP after short-term exposure and decreases BP with longer exposure. Gene-smoking interactions have discovered novel BP loci, but the contribution of smoking status and intensity to gene discovery is unknown. We analyzed gene-smoking intensity interactions for association with systolic BP (SBP) in three subgroups from the Framingham Heart Study: current smokers only (N = 1,057), current and former smokers ("ever smokers," N = 3,374), and all subjects (N = 6,710). We used three smoking intensity variables defined at cutoffs of 10, 15, and 20 cigarettes per day (CPD). We evaluated the 1 degree-of-freedom (df) interaction and 2df joint test using generalized estimating equations. Analysis of current smokers using a CPD cutoff of 10 produced two loci associated with SBP. The rs9399633 minor allele was associated with increased SBP (5 mmHg) in heavy smokers (CPD > 10) but decreased SBP (7 mmHg) in light smokers (CPD ≤ 10). The rs11717948 minor allele was associated with decreased SBP (8 mmHg) in light smokers but decreased SBP (2 mmHg) in heavy smokers. Across all nine analyses, 19 additional loci reached P < 1 × 10(-6). Analysis of current smokers may have the highest power to detect gene-smoking interactions, despite the reduced sample size. Associations of loci near SASH1 and KLHL6/KLHL24 with SBP may be modulated by tobacco smoking. © 2015 WILEY PERIODICALS, INC.

  7. Systematic Search for Gene-Gene Interaction Effect on Prostate Cancer Risk

    DTIC Science & Technology

    2013-07-01

    Systematic Search for Gene-Gene Interaction 5a. CONTRACT NUMBER Effect on Prostate Cancer Risk 5b. GRANT NUMBER W81XWH-09-1-0488 5c. PROGRAM...Supported by this grant ) 1. Tao S, Wang Z, Feng J, Hsu FC, Jin G, Kin ST, Zhang Z, Gronberg H, Zheng, SL, Isaacs WB, XU J, Sun J. A Genome-Wide Search for...order interactions among estrogen- metabolism genes in sporadic breast cancer. Am J Hum Genet, 69, 138-47. 48. Marchini, J., Donnelly, P. and Cardon

  8. A kernel regression approach to gene-gene interaction detection for case-control studies.

    PubMed

    Larson, Nicholas B; Schaid, Daniel J

    2013-11-01

    Gene-gene interactions are increasingly being addressed as a potentially important contributor to the variability of complex traits. Consequently, attentions have moved beyond single locus analysis of association to more complex genetic models. Although several single-marker approaches toward interaction analysis have been developed, such methods suffer from very high testing dimensionality and do not take advantage of existing information, notably the definition of genes as functional units. Here, we propose a comprehensive family of gene-level score tests for identifying genetic elements of disease risk, in particular pairwise gene-gene interactions. Using kernel machine methods, we devise score-based variance component tests under a generalized linear mixed model framework. We conducted simulations based upon coalescent genetic models to evaluate the performance of our approach under a variety of disease models. These simulations indicate that our methods are generally higher powered than alternative gene-level approaches and at worst competitive with exhaustive SNP-level (where SNP is single-nucleotide polymorphism) analyses. Furthermore, we observe that simulated epistatic effects resulted in significant marginal testing results for the involved genes regardless of whether or not true main effects were present. We detail the benefits of our methods and discuss potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control study design. © 2013 WILEY PERIODICALS, INC.

  9. Gene-environment interactions in the aetiology of systemic lupus erythematosus.

    PubMed

    Jönsen, Andreas; Bengtsson, Anders A; Nived, Ola; Truedsson, Lennart; Sturfelt, Gunnar

    2007-12-01

    Systemic lupus erythematosus (SLE) is a disease that displays a multitude of symptoms and a vast array of autoantibodies. The disease course may vary substantially between patients. The current understanding of SLE aetiology includes environmental factors acting on a genetically prone individual during an undetermined time period resulting in autoimmunity and finally surpassing that individual's disease threshold. Genetic differences and environmental factors may interact specifically in the pathogenetic processes and may influence disease development and modify the disease course. Identification of these factors and their interactions in the pathogenesis of SLE is vital in understanding the disease and may contribute to identify new treatment targets and perhaps also aid in disease prevention. However, there are several problems that need to be overcome, such as the protracted time frame of environmental influence, time dependent epigenetic alterations and the possibility that different pathogenetic pathways may result in a similar disease phenotype. This is mirrored by the relatively few studies that suggest specific gene-environment interactions. These include an association between SLE diagnosis and glutation S-transferase gene variants combined with occupational sun exposure as well as variants of the N-acetyl transferase gene in combination with either aromatic amine exposure or hydralazine. With increased knowledge on SLE pathogenesis, the role of environmental factors and their genetic interactions may be further elucidated.

  10. Gene by Environment Interaction and Resilience: Effects of Child Maltreatment and Serotonin, Corticotropin Releasing Hormone, Dopamine, and Oxytocin Genes

    PubMed Central

    Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multi-component index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes, 5-HTTLPR, CRHR1, DRD4 -521C/T, and OXTR, were investigated. In a series of ANCOVAs, child maltreatment demonstrated a strong negative main effect on children’s resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences. PMID:22559122

  11. A Combinatorial Approach to Detecting Gene-Gene and Gene-Environment Interactions in Family Studies

    PubMed Central

    Lou, Xiang-Yang; Chen, Guo-Bo; Yan, Lei; Ma, Jennie Z.; Mangold, Jamie E.; Zhu, Jun; Elston, Robert C.; Li, Ming D.

    2008-01-01

    Widespread multifactor interactions present a significant challenge in determining risk factors of complex diseases. Several combinatorial approaches, such as the multifactor dimensionality reduction (MDR) method, have emerged as a promising tool for better detecting gene-gene (G × G) and gene-environment (G × E) interactions. We recently developed a general combinatorial approach, namely the generalized multifactor dimensionality reduction (GMDR) method, which can entertain both qualitative and quantitative phenotypes and allows for both discrete and continuous covariates to detect G × G and G × E interactions in a sample of unrelated individuals. In this article, we report the development of an algorithm that can be used to study G × G and G × E interactions for family-based designs, called pedigree-based GMDR (PGMDR). Compared to the available method, our proposed method has several major improvements, including allowing for covariate adjustments and being applicable to arbitrary phenotypes, arbitrary pedigree structures, and arbitrary patterns of missing marker genotypes. Our Monte Carlo simulations provide evidence that the PGMDR method is superior in performance to identify epistatic loci compared to the MDR-pedigree disequilibrium test (PDT). Finally, we applied our proposed approach to a genetic data set on tobacco dependence and found a significant interaction between two taste receptor genes (i.e., TAS2R16 and TAS2R38) in affecting nicotine dependence. PMID:18834969

  12. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes

    PubMed Central

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-01-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression. PMID:22434878

  13. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes.

    PubMed

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-07-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression.

  14. Interactions between collagen gene variants and risk of anterior cruciate ligament rupture.

    PubMed

    O'Connell, Kevin; Knight, Hayley; Ficek, Krzysztof; Leonska-Duniec, Agata; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Stepien-Slodkowska, Marta; O'Cuinneagain, Dion; van der Merwe, Willem; Posthumus, Michael; Cieszczyk, Pawel; Collins, Malcolm

    2015-01-01

    The COL5A1 and COL12A1 variants are independently associated with modulating the risk of anterior cruciate ligament (ACL) rupture in females. The objective of this study was to further investigate if COL3A1 and COL6A1 variants independently, as well as, collagen gene-gene interactions, modulate ACL rupture risk. Three hundred and thirty-three South African (SA, n = 242) and Polish (PL, n = 91) participants with diagnosed ACL ruptures and 378 controls (235 SA and 143 PL) were recruited. Participants were genotyped for COL3A1 rs1800255 G/A, COL5A1 rs12722 (T/C), COL6A1 rs35796750 (T/C) and COL12A1 rs970547 (A/G). No significant associations were identified between COL6A1 rs35796750 and COL3A1 rs1800255 genotypes and risk of ACL rupture in the SA cohort. The COL3A1 AA genotype was, however, significantly (p = 0.036) over-represented in the PL ACL group (9.9%, n = 9) when compared to the PL control (CON) group (2.8%, n = 4). Although there were genotype distribution differences between the SA and PL cohorts, the T+A-inferred pseudo-haplotype constructed from COL5A1 and COL12A1 was significantly over-represented in the female ACL group when compared to the female CON group within the SA (T+A ACL 50.5%, T+A CON 38.1%, p = 0.022), PL (T+A ACL 56.3%, T+A CON 36.3%, p = 0.029) and combined (T+A ACL 51.8%, T+A CON 37.5%, p = 0.004) cohorts. In conclusion, the novel main finding of this study was a significant interaction between the COL5A1 rs12722 T/C and COL12A1 rs970547 A/G variants and risk of ACL injury. These results highlight the importance of investigating gene-gene interactions in the aetiology of ACL ruptures in multiple independent cohorts.

  15. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit.

    PubMed

    Pendergrass, Sarah A; Verma, Shefali S; Holzinger, Emily R; Moore, Carrie B; Wallace, John; Dudek, Scott M; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; McCarty, Catherine A; Ritchie, Marylyn D

    2013-01-01

    Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10(-4) associated with cataract status. Our results show these approaches enable advanced searches for epistasis

  16. Ontology-based literature mining of E. coli vaccine-associated gene interaction networks.

    PubMed

    Hur, Junguk; Özgür, Arzucan; He, Yongqun

    2017-03-14

    Pathogenic Escherichia coli infections cause various diseases in humans and many animal species. However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections. To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli vaccine-associated gene interaction networks. In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO, INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics (i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and interaction types. Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created. From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction types are indirect in that the two genes participated in the specified interaction process in a required but indirect process. Our centrality analysis of

  17. Gene-environment interaction on neural mechanisms of orthographic processing in Chinese children

    PubMed Central

    Su, Mengmeng; Wang, Jiuju; Maurer, Urs; Zhang, Yuping; Li, Jun; McBride-Chang, Catherine; Tardif, Twila; Liu, Youyi; Shu, Hua

    2015-01-01

    The ability to process and identify visual words requires efficient orthographic processing of print, consisting of letters in alphabetic languages or characters in Chinese. The N170 is a robust neural marker for orthographic processes. Both genetic and environmental factors, such as home literacy, have been shown to influence orthographic processing at the behavioral level, but their relative contributions and interactions are not well understood. The present study aimed to reveal possible gene-by-environment interactions on orthographic processing at the behavioral and neural level in a normal children sample. Sixty 12 year old Chinese children from a 10-year longitudinal sample underwent an implicit visual-word color decision task on real words and stroke combinations. The ERP analysis focused on the increase of the occipito-temporal N170 to words compared to stroke combinations. The genetic analysis focused on two SNPs (rs1419228, rs1091047) in the gene DCDC2 based on previous findings linking these 2 SNPs to orthographic coding. Home literacy was measured previously as the number of children's books at home, when the children were at the age of 3. Relative to stroke combinations, real words evoked greater N170 in bilateral posterior brain regions. A significant interaction between rs1091047 and home literacy was observed on the changes of N170 comparing real words to stroke combinations in the left hemisphere. Particularly, children carrying the major allele “G” showed a similar N170 effect irrespective of their environment, while children carrying the minor allele “C” showed a smaller N170 effect in low home-literacy environment than those in good environment. PMID:26294811

  18. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes

    PubMed Central

    Dodds, Peter N.; Lawrence, Gregory J.; Catanzariti, Ann-Maree; Teh, Trazel; Wang, Ching-I. A.; Ayliffe, Michael A.; Kobe, Bostjan; Ellis, Jeffrey G.

    2006-01-01

    Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R–Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrL567 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvrL567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R–Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R–Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant–pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes. PMID:16731621

  19. Gene essentiality and the topology of protein interaction networks

    PubMed Central

    Coulomb, Stéphane; Bauer, Michel; Bernard, Denis; Marsolier-Kergoat, Marie-Claude

    2005-01-01

    The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology. PMID:16087428

  20. Chemical-Gene Interactions from ToxCast Bioactivity Data ...

    EPA Pesticide Factsheets

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. To evaluate the information gained from the ToxCast project, a ToxCast bioactivity network was created comprising ToxCast chemical-gene interactions based on assay data and compared to a chemical-gene association network from literature. The literature network was compiled from PubMed articles, excluding ToxCast publications, mapped to genes and chemicals. Genes were identified by curated associations available from NCBI while chemicals were identified by PubChem submissions. The frequencies of chemical-gene associations from the literature network were log-scaled and then compared to the ToxCast bioactivity network. In total, 140 times more chemical-gene associations were present in the ToxCast network in comparison to the literature-derived network highlighting the vast increase in chemical-gene interactions putatively elucidated by the ToxCast research program. There were 165 associations found in the literature network that were reproduced by ToxCast bioactivity data, and 336 associations in the literature network were not reproduced by the ToxCast bioactivity network. The literature network relies on the assumption that chemical-gene associations represent a true chemical-gene inte

  1. Gene-Environment Interactions in Cardiovascular Disease

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2011-01-01

    Background Historically, models to describe disease were exclusively nature-based or nurture-based. Current theoretical models for complex conditions such as cardiovascular disease acknowledge the importance of both biologic and non-biologic contributors to disease. A critical feature is the occurrence of interactions between numerous risk factors for disease. The interaction between genetic (i.e. biologic, nature) and environmental (i.e. non-biologic, nurture) causes of disease is an important mechanism for understanding both the etiology and public health impact of cardiovascular disease. Objectives The purpose of this paper is to describe theoretical underpinnings of gene-environment interactions, models of interaction, methods for studying gene-environment interactions, and the related concept of interactions between epigenetic mechanisms and the environment. Discussion Advances in methods for measurement of genetic predictors of disease have enabled an increasingly comprehensive understanding of the causes of disease. In order to fully describe the effects of genetic predictors of disease, it is necessary to place genetic predictors within the context of known environmental risk factors. The additive or multiplicative effect of the interaction between genetic and environmental risk factors is often greater than the contribution of either risk factor alone. PMID:21684212

  2. The REP2 Repeats of the Genome of Neisseria meningitidis Are Associated with Genes Coordinately Regulated during Bacterial Cell Interaction

    PubMed Central

    Morelle, Sandrine; Carbonnelle, Etienne; Nassif, Xavier

    2003-01-01

    Interaction with host cells is essential in meningococcal pathogenesis especially at the blood-brain barrier. This step is likely to involve a common regulatory pathway allowing coordinate regulation of genes necessary for the interaction with endothelial cells. The analysis of the genomic sequence of Neisseria meningitidis Z2491 revealed the presence of many repeats. One of these, designated REP2, contains a −24/−12 type promoter and a ribosome binding site 5 to 13 bp before an ATG. In addition most of these REP2 sequences are located immediately upstream of an ORF. Among these REP2-associated genes are pilC1 and crgA, described as being involved in steps essential for the interaction of N. meningitidis with host cells. Furthermore, the REP2 sequences located upstream of pilC1 and crgA correspond to the previously identified promoters known to be induced during the initial localized adhesion of N. meningitidis with human cells. This characteristic led us to hypothesize that at least some of the REP2-associated genes were upregulated under the same circumstances as pilC1 and crgA. Quantitative PCR in real time demonstrated that the expression of 14 out of 16 REP2-associated genes were upregulated during the initial localized adhesion of N. meningitidis. Taken together, these data suggest that these repeats control a set of genes necessary for the efficient interaction of this pathogen with host cells. Subsequent mutational analysis was performed to address the role of these genes during meningococcus-cell interaction. PMID:12670987

  3. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat.

    PubMed

    Liu, Zhaohui; Zurn, Jason D; Kariyawasam, Gayan; Faris, Justin D; Shi, Gongjun; Hansen, Jana; Rasmussen, Jack B; Acevedo, Maricelis

    2017-06-01

    Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.

  4. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes?

    PubMed

    Vázquez-Rosas-Landa, Mirna; Ponce-Soto, Gabriel Yaxal; Eguiarte, Luis E; Souza, V

    2017-07-31

    Bacteria have numerous strategies to interact with themselves and with their environment, but genes associated with these interactions are usually cataloged as pathogenic. To understand the role that these genes have not only in pathogenesis but also in bacterial interactions, we compared the genomes of eight bacteria from human-impacted environments with those of free-living bacteria from the Cuatro Ciénegas Basin (CCB), a relatively pristine oligotrophic site. Fifty-one genomes from CCB bacteria, including Pseudomonas, Vibrio, Photobacterium and Aeromonas, were analyzed. We found that the CCB strains had several virulence-related genes, 15 of which were common to all strains and were related to flagella and chemotaxis. We also identified the presence of Type III and VI secretion systems, which leads us to propose that these systems play an important role in interactions among bacterial communities beyond pathogenesis. None of the CCB strains had pathogenicity islands, despite having genes associated with antibiotics. Integrons were rare, while CRISPR elements were common. The idea that pathogenicity-related genes in many cases form part of a wider strategy used by bacteria to interact with other organisms could help us to understand the role of pathogenicity-related elements in an ecological and evolutionary framework leading toward a more inclusive One Health concept. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes.

    PubMed

    De Feyter, R; Yang, Y; Gabriel, D W

    1993-01-01

    Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high

  6. Gene-Based Testing of Interactions in Association Studies of Quantitative Traits

    PubMed Central

    Ma, Li; Clark, Andrew G.; Keinan, Alon

    2013-01-01

    Various methods have been developed for identifying gene–gene interactions in genome-wide association studies (GWAS). However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene–gene interaction (GGG) tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein–protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies. PMID:23468652

  7. Systematic Search for Gene-Gene Interaction Effect on Prostate Cancer Risk

    DTIC Science & Technology

    2011-07-01

    PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a...identify SNPs in the genome that interact to have stronger effects on PCa risk in the CGEMS GWAS data, 2 ) confirm the gene-gene interaction effect on PCa...for pairs of SNPs implicated in Aim 2 among the remaining 1,893 cases and 781 controls in CAPS, and 4) fine map the genomic regions where SNPs have

  8. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions

    PubMed Central

    Nayak, Renuka R.; Kearns, Michael; Spielman, Richard S.; Cheung, Vivian G.

    2009-01-01

    Genes interact in networks to orchestrate cellular processes. Analysis of these networks provides insights into gene interactions and functions. Here, we took advantage of normal variation in human gene expression to infer gene networks, which we constructed using correlations in expression levels of more than 8.5 million gene pairs in immortalized B cells from three independent samples. The resulting networks allowed us to identify biological processes and gene functions. Among the biological pathways, we found processes such as translation and glycolysis that co-occur in the same subnetworks. We predicted the functions of poorly characterized genes, including CHCHD2 and TMEM111, and provided experimental evidence that TMEM111 is part of the endoplasmic reticulum-associated secretory pathway. We also found that IFIH1, a susceptibility gene of type 1 diabetes, interacts with YES1, which plays a role in glucose transport. Furthermore, genes that predispose to the same diseases are clustered nonrandomly in the coexpression network, suggesting that networks can provide candidate genes that influence disease susceptibility. Therefore, our analysis of gene coexpression networks offers information on the role of human genes in normal and disease processes. PMID:19797678

  9. A vitamin D pathway gene-gene interaction affects low-density lipoprotein cholesterol levels.

    PubMed

    Grave, Nathália; Tovo-Rodrigues, Luciana; da Silveira, Janaína; Rovaris, Diego Luiz; Dal Bosco, Simone Morelo; Contini, Verônica; Genro, Júlia Pasqualini

    2016-12-01

    Much evidence suggests an association between vitamin D deficiency and chronic diseases such as obesity and dyslipidemia. Although genetic factors play an important role in the etiology of these diseases, only a few studies have investigated the relationship between vitamin D-related genes and anthropometric and lipid profiles. The aim of this study was to investigate the association of three vitamin D-related genes with anthropometric and lipid parameters in 542 adult individuals. We analyzed the rs2228570 polymorphism in the vitamin D receptor gene (VDR), rs2134095 in the retinoid X receptor gamma gene (RXRG) and rs7041 in the vitamin D-binding protein gene (GC). Polymorphisms were genotyped by TaqMan allelic discrimination. Gene-gene interactions were evaluated by the general linear model. The functionality of the polymorphisms was investigated using the following predictors and databases: SIFT (Sorting Intolerant from Tolerant), PolyPhen-2 (Polymorphism Phenotyping v2) and Human Splicing Finder 3. We identified a significant effect of the interaction between RXRG (rs2134095) and GC (rs7041) on low-density lipoprotein cholesterol (LDL-c) levels (P=.005). Furthermore, our in silico analysis suggested a functional role for both variants in the regulation of the gene products. Our results suggest that the vitamin D-related genes RXRG and GC affect LDL-c levels. These findings are in agreement with other studies that consistently associate vitamin D and lipid profile. Together, our results corroborate the idea that analyzing gene-gene interaction would be helpful to clarify the genetic component of lipid profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The influence of nutrigenetics on the lipid profile: interaction between genes and dietary habits.

    PubMed

    de Andrade, Fabiana M; Bulhões, Andréa C; Maluf, Sharbel W; Schuch, Jaqueline B; Voigt, Francine; Lucatelli, Juliana F; Barros, Alessandra C; Hutz, Mara H

    2010-04-01

    Nutrigenetics is a new field with few studies in Latin America. Our aim is to investigate the way in which different genes related to the lipid profile influence the response to specific dietary habits. Eight polymorphisms on seven genes were investigated in a sample (n = 567) from Porto Alegre, RS, Brazil. All the volunteers completed a food diary that was then assessed and classified into nine food groups. A number of nutrigenetic interactions were detected primarily related to the apolipoprotein E (apoE) gene. For example, frequent consumption of foods rich in polyunsaturated fat resulted in the beneficial effect of increasing HDL-C only in individuals who were not carriers of the E*4 allele of the APOE gene, whereas variations in eating habits of E*4 carriers did not affect their HDL-C (P = 0.018). Our data demonstrate for the first time nutrigenetic interactions in a Brazilian population.

  11. Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions

    PubMed Central

    2013-01-01

    Background Recently, one of the greatest challenges in genome-wide association studies is to detect gene-gene and/or gene-environment interactions for common complex human diseases. Ritchie et al. (2001) proposed multifactor dimensionality reduction (MDR) method for interaction analysis. MDR is a combinatorial approach to reduce multi-locus genotypes into high-risk and low-risk groups. Although MDR has been widely used for case-control studies with binary phenotypes, several extensions have been proposed. One of these methods, a generalized MDR (GMDR) proposed by Lou et al. (2007), allows adjusting for covariates and applying to both dichotomous and continuous phenotypes. GMDR uses the residual score of a generalized linear model of phenotypes to assign either high-risk or low-risk group, while MDR uses the ratio of cases to controls. Methods In this study, we propose multivariate GMDR, an extension of GMDR for multivariate phenotypes. Jointly analysing correlated multivariate phenotypes may have more power to detect susceptible genes and gene-gene interactions. We construct generalized estimating equations (GEE) with multivariate phenotypes to extend generalized linear models. Using the score vectors from GEE we discriminate high-risk from low-risk groups. We applied the multivariate GMDR method to the blood pressure data of the 7,546 subjects from the Korean Association Resource study: systolic blood pressure (SBP) and diastolic blood pressure (DBP). We compare the results of multivariate GMDR for SBP and DBP to the results from separate univariate GMDR for SBP and DBP, respectively. We also applied the multivariate GMDR method to the repeatedly measured hypertension status from 5,466 subjects and compared its result with those of univariate GMDR at each time point. Results Results from the univariate GMDR and multivariate GMDR in two-locus model with both blood pressures and hypertension phenotypes indicate best combinations of SNPs whose interaction has

  12. Gene Polymorphism Association with Type 2 Diabetes and Related Gene-Gene and Gene-Environment Interactions in a Uyghur Population

    PubMed Central

    Xiao, Shan; Zeng, Xiaoyun; Fan, Yong; Su, Yinxia; Ma, Qi; Zhu, Jun; Yao, Hua

    2016-01-01

    Background We investigated the association between 8 single-nucleotide polymorphisms (SNPs) at 3 genetic loci (CDKAL1, CDKN2A/2B and FTO) with type 2 diabetes (T2D) in a Uyghur population. Material/Methods A case-control study of 879 Uyghur patients with T2D and 895 non-diabetic Uyghur controls was conducted at the Hospital of Xinjiang Medical University between 2010 and 2013. Eight SNPs in CDKAL1, CDKN2A/2B and FTO were analyzed using Sequenom MassARRAY®SNP genotyping. Factors associated with T2D were assessed by logistic regression analyses. Gene-gene and gene-environment interactions were analyzed by generalized multifactor dimensionality reduction. Results Genotype distributions of rs10811661 (CDKN2A/2B), rs7195539, rs8050136, and rs9939609 (FTO) and allele frequencies of rs8050136 and rs9939609 differed significantly between diabetes and control groups (all P<0.05). While rs10811661, rs8050136, and rs9939609 were eliminated after adjusting for covariates (P>0.05), rs7195539 distribution differed significantly in co-dominant and dominant models (P<0.05). In gene-gene interaction analysis, after adjusting for covariates the two-locus rs10811661-rs7195539 interaction model had a cross-validation consistency of 10/10 and the highest balanced accuracy of 0.5483 (P=0.014). In gene-environment interaction analysis, the 3-locus interaction model TG-HDL-family history of diabetes had a cross-validation consistency of 10/10 and the highest balanced accuracy of 0.7072 (P<0.001). The 4-locus interaction model, rs7195539-TG-HDL-family history of diabetes had a cross-validation consistency of 8/10 (P<0.001). Conclusions Polymorphisms in CDKN2A/2B and FTO, but not CDKAL1, may be associated with T2D, and alleles rs8050136 and rs9939609 are likely risk alleles for T2D in this population. There were potential interactions among CDKN2A/2B (rs10811661) – FTO (rs7195539) or FTO (rs7195539)-TG-HDL-family history of diabetes in the pathogenesis of T2D in a Uyghur population. PMID

  13. Evidence for gene-gene epistatic interactions among susceptibility loci for systemic lupus erythematosus.

    PubMed

    Hughes, Travis; Adler, Adam; Kelly, Jennifer A; Kaufman, Kenneth M; Williams, Adrienne H; Langefeld, Carl D; Brown, Elizabeth E; Alarcón, Graciela S; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Boackle, Susan A; Stevens, Anne M; Reveille, John D; Sanchez, Elena; Martín, Javier; Niewold, Timothy B; Vilá, Luis M; Scofield, R Hal; Gilkeson, Gary S; Gaffney, Patrick M; Criswell, Lindsey A; Moser, Kathy L; Merrill, Joan T; Jacob, Chaim O; Tsao, Betty P; James, Judith A; Vyse, Timothy J; Alarcón-Riquelme, Marta E; Harley, John B; Richardson, Bruce C; Sawalha, Amr H

    2012-02-01

    Several confirmed genetic susceptibility loci for lupus have been described. To date, no clear evidence for genetic epistasis in lupus has been established. The aim of this study was to test for gene-gene interactions in a number of known lupus susceptibility loci. Eighteen single-nucleotide polymorphisms tagging independent and confirmed lupus susceptibility loci were genotyped in a set of 4,248 patients with lupus and 3,818 normal healthy control subjects of European descent. Epistasis was tested by a 2-step approach using both parametric and nonparametric methods. The false discovery rate (FDR) method was used to correct for multiple testing. We detected and confirmed gene-gene interactions between the HLA region and CTLA4, IRF5, and ITGAM and between PDCD1 and IL21 in patients with lupus. The most significant interaction detected by parametric analysis was between rs3131379 in the HLA region and rs231775 in CTLA4 (interaction odds ratio 1.19, Z = 3.95, P = 7.8 × 10(-5) [FDR ≤0.05], P for multifactor dimensionality reduction = 5.9 × 10(-45)). Importantly, our data suggest that in patients with lupus, the presence of the HLA lupus risk alleles in rs1270942 and rs3131379 increases the odds of also carrying the lupus risk allele in IRF5 (rs2070197) by 17% and 16%, respectively (P = 0.0028 and P = 0.0047, respectively). We provide evidence for gene-gene epistasis in systemic lupus erythematosus. These findings support a role for genetic interaction contributing to the complexity of lupus heritability. Copyright © 2012 by the American College of Rheumatology.

  14. How Gene-Environment Interaction Affects Children's Anxious and Fearful Behavior. Science Briefs

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2007

    2007-01-01

    "Science Briefs" summarize the findings and implications of a recent study in basic science or clinical research. This brief reports on the study "Evidence for a Gene-Environment Interaction in Predicting Behavioral Inhibition in Middle Childhood" (N. A. Fox, K E. Nichols, H. A. Henderson, K. Rubin, L. Schmidt, D. Hamer, M. Ernst, and D. S.…

  15. Identification of Human Disease Genes from Interactome Network Using Graphlet Interaction

    PubMed Central

    Yang, Lun; Wei, Dong-Qing; Qi, Ying-Xin; Jiang, Zong-Lai

    2014-01-01

    Identifying genes related to human diseases, such as cancer and cardiovascular disease, etc., is an important task in biomedical research because of its applications in disease diagnosis and treatment. Interactome networks, especially protein-protein interaction networks, had been used to disease genes identification based on the hypothesis that strong candidate genes tend to closely relate to each other in some kinds of measure on the network. We proposed a new measure to analyze the relationship between network nodes which was called graphlet interaction. The graphlet interaction contained 28 different isomers. The results showed that the numbers of the graphlet interaction isomers between disease genes in interactome networks were significantly larger than random picked genes, while graphlet signatures were not. Then, we designed a new type of score, based on the network properties, to identify disease genes using graphlet interaction. The genes with higher scores were more likely to be disease genes, and all candidate genes were ranked according to their scores. Then the approach was evaluated by leave-one-out cross-validation. The precision of the current approach achieved 90% at about 10% recall, which was apparently higher than the previous three predominant algorithms, random walk, Endeavour and neighborhood based method. Finally, the approach was applied to predict new disease genes related to 4 common diseases, most of which were identified by other independent experimental researches. In conclusion, we demonstrate that the graphlet interaction is an effective tool to analyze the network properties of disease genes, and the scores calculated by graphlet interaction is more precise in identifying disease genes. PMID:24465923

  16. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    PubMed

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (p<0.0083). Seven SNPs in the MTHFR gene were associated with homocysteine levels at an α-level of 0.05, but the associations did not persist after Bonferroni correction. These SNPs did not show interactions with lead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Topology association analysis in weighted protein interaction network for gene prioritization

    NASA Astrophysics Data System (ADS)

    Wu, Shunyao; Shao, Fengjing; Zhang, Qi; Ji, Jun; Xu, Shaojie; Sun, Rencheng; Sun, Gengxin; Du, Xiangjun; Sui, Yi

    2016-11-01

    Although lots of algorithms for disease gene prediction have been proposed, the weights of edges are rarely taken into account. In this paper, the strengths of topology associations between disease and essential genes are analyzed in weighted protein interaction network. Empirical analysis demonstrates that compared to other genes, disease genes are weakly connected with essential genes in protein interaction network. Based on this finding, a novel global distance measurement for gene prioritization with weighted protein interaction network is proposed in this paper. Positive and negative flow is allocated to disease and essential genes, respectively. Additionally network propagation model is extended for weighted network. Experimental results on 110 diseases verify the effectiveness and potential of the proposed measurement. Moreover, weak links play more important role than strong links for gene prioritization, which is meaningful to deeply understand protein interaction network.

  18. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  19. Interaction of childhood urbanicity and variation in dopamine genes alters adult prefrontal function as measured by functional magnetic resonance imaging (fMRI).

    PubMed

    Reed, Jessica L; D'Ambrosio, Enrico; Marenco, Stefano; Ursini, Gianluca; Zheutlin, Amanda B; Blasi, Giuseppe; Spencer, Barbara E; Romano, Raffaella; Hochheiser, Jesse; Reifman, Ann; Sturm, Justin; Berman, Karen F; Bertolino, Alessandro; Weinberger, Daniel R; Callicott, Joseph H

    2018-01-01

    Brain phenotypes showing environmental influence may help clarify unexplained associations between urban exposure and psychiatric risk. Heritable prefrontal fMRI activation during working memory (WM) is such a phenotype. We hypothesized that urban upbringing (childhood urbanicity) would alter this phenotype and interact with dopamine genes that regulate prefrontal function during WM. Further, dopamine has been hypothesized to mediate urban-associated factors like social stress. WM-related prefrontal function was tested for main effects of urbanicity, main effects of three dopamine genes-catechol-O-methyltransferase (COMT), dopamine receptor D1 (DRD1), and dopamine receptor D2 (DRD2)-and, importantly, dopamine gene-by-urbanicity interactions. For COMT, three independent human samples were recruited (total n = 487). We also studied 253 subjects genotyped for DRD1 and DRD2. 3T fMRI activation during the N-back WM task was the dependent variable, while childhood urbanicity, dopamine genotype, and urbanicity-dopamine interactions were independent variables. Main effects of dopamine genes and of urbanicity were found. Individuals raised in an urban environment showed altered prefrontal activation relative to those raised in rural or town settings. For each gene, dopamine genotype-by-urbanicity interactions were shown in prefrontal cortex-COMT replicated twice in two independent samples. An urban childhood upbringing altered prefrontal function and interacted with each gene to alter genotype-phenotype relationships. Gene-environment interactions between multiple dopamine genes and urban upbringing suggest that neural effects of developmental environmental exposure could mediate, at least partially, increased risk for psychiatric illness in urban environments via dopamine genes expressed into adulthood.

  20. Genome-wide assessment of gene-by-smoking interactions in COPD.

    PubMed

    Park, Boram; Koo, So-My; An, Jaehoon; Lee, MoonGyu; Kang, Hae Yeon; Qiao, Dandi; Cho, Michael H; Sung, Joohon; Silverman, Edwin K; Yang, Hyeon-Jong; Won, Sungho

    2018-06-18

    Cigarette smoke exposure is a major risk factor in chronic obstructive pulmonary disease (COPD) and its interactions with genetic variants could affect lung function. However, few gene-smoking interactions have been reported. In this report, we evaluated the effects of gene-smoking interactions on lung function using Korea Associated Resource (KARE) data with the spirometric variables-forced expiratory volume in 1 s (FEV 1 ). We found that variations in FEV 1 were different among smoking status. Thus, we considered a linear mixed model for association analysis under heteroscedasticity according to smoking status. We found a previously identified locus near SOX9 on chromosome 17 to be the most significant based on a joint test of the main and interaction effects of smoking. Smoking interactions were replicated with Gene-Environment of Interaction and phenotype (GENIE), Multi-Ethnic Study of Atherosclerosis-Lung (MESA-Lung), and COPDGene studies. We found that individuals with minor alleles, rs17765644, rs17178251, rs11870732, and rs4793541, tended to have lower FEV 1 values, and lung function decreased much faster with age for smokers. There have been very few reports to replicate a common variant gene-smoking interaction, and our results revealed that statistical models for gene-smoking interaction analyses should be carefully selected.

  1. HPA Axis Genes, and Their Interaction with Childhood Maltreatment, are Related to Cortisol Levels and Stress-Related Phenotypes.

    PubMed

    Gerritsen, Lotte; Milaneschi, Yuri; Vinkers, Christiaan H; van Hemert, Albert M; van Velzen, Laura; Schmaal, Lianne; Penninx, Brenda Wjh

    2017-11-01

    Stress responses are controlled by the hypothalamus pituitary adrenal (HPA)-axis and maladaptive stress responses are associated with the onset and maintenance of stress-related disorders such as major depressive disorder (MDD). Genes that play a role in the HPA-axis regulation may likely contribute to the relation between relevant neurobiological substrates and stress-related disorders. Therefore, we performed gene-wide analyses for 30 a priori literature-based genes involved in HPA-axis regulation in 2014 subjects (34% male; mean age: 42.5) to study the relations with lifetime MDD diagnosis, cortisol awakening response, and dexamethasone suppression test (DST) levels (subsample N=1472) and hippocampal and amygdala volume (3T MR images; subsample N=225). Additionally, gene by childhood maltreatment (CM) interactions were investigated. Gene-wide significant results were found for dexamethasone suppression (CYP11A1, CYP17A1, POU1F1, AKR1D1), hippocampal volume (CYP17A1, CYP11A1, HSD3B2, PROP1, AVPRA1, SRD5A1), amygdala volume (POMC, CRH, HSD3B2), and lifetime MDD diagnosis (FKBP5 and CRH), all permutation p-values<0.05. Interactions with CM were found for several genes; the strongest interactions were found for NR3C2, where the minor allele of SNP rs17581262 was related to smaller hippocampal volume, smaller amygdala volume, higher DST levels, and higher odds of MDD diagnosis only in participants with CM. As hypothesized, several HPA-axis genes are associated with stress-related endophenotypes including cortisol response and reduced brain volumes. Furthermore, we found a pleiotropic interaction between CM and the mineralocorticoid receptor gene, suggesting that this gene plays an important moderating role in stress and stress-related disorders.

  2. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    PubMed

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  3. Gene-gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China.

    PubMed

    Qian, Qiu-Jin; Yang, Li; Wang, Yu-Feng; Zhang, Hao-Bo; Guan, Li-Li; Chen, Yun; Ji, Ning; Liu, Lu; Faraone, S V

    2010-05-01

    The catechol-O-methyltransferase (COMT) gene contains a functional polymorphism (Val158Met) affecting the activity of the enzyme, and the monoamine oxidase A (MAOA) gene contains a VNTR polymorphism (MAOA-uVNTR) that affects the transcription of the gene. COMT and MAOA each contribute to the enzymatic degradation of dopamine and noradrenaline. Prefrontal cortical (PFC) function, which plays an important role in individual cognitive abilities, including intelligence, is modulated by dopamine. Since our previous association studies between attention deficit hyperactivity disorder (ADHD) and these two functional polymorphisms consistently showed the low activity alleles were preferentially transmitted to inattentive ADHD boys, the goal of the present study was to test the hypothesis that the interaction between COMT Val158Met and MAOA-uVNTR may affect the intelligence in a clinical sample of Chinese male ADHD subjects (n = 264). We found that the COMT x MAOA interaction significantly predicted full scale (FSIQ) and performance (PIQ) IQ scores (P = 0.039, 0.011); the MAOA-uVNTR significantly predicted FSIQ, PIQ and verbal IQ (VIQ) (P = 0.009, 0.019, 0.038); COMT Val158Met independently had no effect on any of the IQ scores. Only the COMT x MAOA interaction for PIQ remained significant after a Bonferroni correction. Among all combined genotypes, the valval-3R genotype predicted higher intelligence, (average 106.7 +/- 1.6, 95% C.I. 103.7-109.8 for FSIQ), and the valval-4R predicted lower intelligence (average 98.0 +/- 2.3, 95% C.I. 93.5-102.6 for FSIQ). These results suggest that there is an inverted U-shaped relationship between intelligence and dopaminergic activity in our sample. Our finding that gene-gene interaction between COMT and MAOA predicts the intelligence of ADHD boys in China is intriguing but requires replication in other samples.

  4. [Gene-gene interaction on central obesity in school-aged children in China].

    PubMed

    Fu, L W; Zhang, M X; Wu, L J; Gao, L W; Mi, J

    2017-07-10

    Objective: To investigate possible effect of 6 obesity-associated SNPs in contribution to central obesity and examine whether there is an interaction in the 6 SNPs in the cause of central obesity in school-aged children in China. Methods: A total of 3 502 school-aged children who were included in Beijing Child and Adolescent Metabolic Syndrome (BCAMS) Study were selected, and based on the age and sex specific waist circumference (WC) standards in the BCAMS study, 1 196 central obese cases and 2 306 controls were identified. Genomic DNA was extracted from peripheral blood white cells using the salt fractionation method. A total of 6 single nucleotide polymorphisms ( FTO rs9939609, MC4R rs17782313, BDNF rs6265, PCSK1 rs6235, SH2B1 rs4788102, and CSK rs1378942) were genotyped by TaqMan allelic discrimination assays with the GeneAmp 7900 sequence detection system (Applied Biosystems, Foster City, CA, USA). Logistic regression model was used to investigate the association between 6 SNPs and central obesity. Gene-gene interactions among 6 polymorphic loci were analyzed by using the Generalized Multifactor Dimensionality Reduction (GMDR) method, and then logistic regression model was constructed to confirm the best combination of loci identified in the GMDR. Results: After adjusting gender, age, Tanner stage, physical activity and family history of obesity, the FTO rs9939609-A, MC4R rs17782313-C and BDNF rs6265-G alleles were associated with central obesity under additive genetic model ( OR =1.24, 95 %CI : 1.06-1.45, P =0.008; OR =1.26, 95 %CI : 1.11-1.43, P =2.98×10(-4); OR =1.18, 95 % CI : 1.06-1.32, P =0.003). GMDR analysis showed a significant gene-gene interaction between MC4R rs17782313 and BDNF rs6265 ( P =0.001). The best two-locus combination showed the cross-validation consistency of 10/10 and testing accuracy of 0.539. This interaction showed the maximum consistency and minimum prediction error among all gene-gene interaction models evaluated. Moreover, the

  5. Incorporating gene-environment interaction in testing for association with rare genetic variants.

    PubMed

    Chen, Han; Meigs, James B; Dupuis, Josée

    2014-01-01

    The incorporation of gene-environment interactions could improve the ability to detect genetic associations with complex traits. For common genetic variants, single-marker interaction tests and joint tests of genetic main effects and gene-environment interaction have been well-established and used to identify novel association loci for complex diseases and continuous traits. For rare genetic variants, however, single-marker tests are severely underpowered due to the low minor allele frequency, and only a few gene-environment interaction tests have been developed. We aimed at developing powerful and computationally efficient tests for gene-environment interaction with rare variants. In this paper, we propose interaction and joint tests for testing gene-environment interaction of rare genetic variants. Our approach is a generalization of existing gene-environment interaction tests for multiple genetic variants under certain conditions. We show in our simulation studies that our interaction and joint tests have correct type I errors, and that the joint test is a powerful approach for testing genetic association, allowing for gene-environment interaction. We also illustrate our approach in a real data example from the Framingham Heart Study. Our approach can be applied to both binary and continuous traits, it is powerful and computationally efficient.

  6. Gene-Environment Interactions in Asthma: Genetic and Epigenetic Effects.

    PubMed

    Lee, Jong-Uk; Kim, Jeong Dong; Park, Choon-Sik

    2015-07-01

    Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.

  7. Shame and Guilt-Proneness in Adolescents: Gene-Environment Interactions.

    PubMed

    Szentágotai-Tătar, Aurora; Chiș, Adina; Vulturar, Romana; Dobrean, Anca; Cândea, Diana Mirela; Miu, Andrei C

    2015-01-01

    Rooted in people's preoccupation with how they are perceived and evaluated, shame and guilt are self-conscious emotions that play adaptive roles in social behavior, but can also contribute to psychopathology when dysregulated. Shame and guilt-proneness develop during childhood and adolescence, and are influenced by genetic and environmental factors that are little known to date. This study investigated the effects of early traumatic events and functional polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the serotonin transporter gene promoter (5-HTTLPR) on shame and guilt in adolescents. A sample of N = 271 healthy adolescents between 14 and 17 years of age filled in measures of early traumatic events and proneness to shame and guilt, and were genotyped for the BDNF Val66Met and 5-HTTLPR polymorphisms. Results of moderator analyses indicated that trauma intensity was positively associated with guilt-proneness only in carriers of the low-expressing Met allele of BDNF Val66Met. This is the first study that identifies a gene-environment interaction that significantly contributes to guilt proneness in adolescents, with potential implications for developmental psychopathology.

  8. Specification, testing, and interpretation of gene-by-measured-environment interaction models in the presence of gene-environment correlation

    PubMed Central

    Rathouz, Paul J.; Van Hulle, Carol A.; Lee Rodgers, Joseph; Waldman, Irwin D.; Lahey, Benjamin B.

    2009-01-01

    Purcell (2002) proposed a bivariate biometric model for testing and quantifying the interaction between latent genetic influences and measured environments in the presence of gene-environment correlation. Purcell’s model extends the Cholesky model to include gene-environment interaction. We examine a number of closely-related alternative models that do not involve gene-environment interaction but which may fit the data as well Purcell’s model. Because failure to consider these alternatives could lead to spurious detection of gene-environment interaction, we propose alternative models for testing gene-environment interaction in the presence of gene-environment correlation, including one based on the correlated factors model. In addition, we note mathematical errors in the calculation of effect size via variance components in Purcell’s model. We propose a statistical method for deriving and interpreting variance decompositions that are true to the fitted model. PMID:18293078

  9. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes.

    PubMed

    Lin, Eugene; Pei, Dee; Huang, Yi-Jen; Hsieh, Chang-Hsun; Wu, Lawrence Shih-Hsin

    2009-08-01

    Recent studies indicate that obesity may play a key role in modulating genetic predispositions to type 2 diabetes (T2D). This study examines the main effects of both single-locus and multilocus interactions among genetic variants in Taiwanese obese and nonobese individuals to test the hypothesis that obesity-related genes may contribute to the etiology of T2D independently and/or through such complex interactions. We genotyped 11 single nucleotide polymorphisms for 10 obesity candidate genes including adrenergic beta-2-receptor surface, adrenergic beta-3-receptor surface, angiotensinogen, fat mass and obesity associated gene, guanine nucleotide binding protein beta polypeptide 3 (GNB3), interleukin 6 receptor, proprotein convertase subtilisin/kexin type 1 (PCSK1), uncoupling protein 1, uncoupling protein 2, and uncoupling protein 3. There were 389 patients diagnosed with T2D and 186 age- and sex-matched controls. Single-locus analyses showed significant main effects of the GNB3 and PCSK1 genes on the risk of T2D among the nonobese group (p = 0.002 and 0.047, respectively). Further, interactions involving GNB3 and PCSK1 were suggested among the nonobese population using the generalized multifactor dimensionality reduction method (p = 0.001). In addition, interactions among angiotensinogen, fat mass and obesity associated gene, GNB3, and uncoupling protein 3 genes were found in a significant four-locus generalized multifactor dimensionality reduction model among the obese population (p = 0.001). The results suggest that the single nucleotide polymorphisms from the obesity candidate genes may contribute to the risk of T2D independently and/or in an interactive manner according to the presence or absence of obesity.

  10. You've gotta be lucky: Coverage and the elusive gene-gene interaction.

    PubMed

    Reimherr, Matthew; Nicolae, Dan L

    2011-01-01

    Genome-wide association studies (GWAS) have led to a large number of single-SNP association findings, but there has been, so far, no investigation resulting in the discovery of a replicable gene-gene interaction. In this paper, we examine some of the possible explanations for the lack of findings, and argue that coverage of causal variation not only has a large effect on the loss in power, but that the effect is larger than in the single-SNP analyses. We show that the product of linkage disequilibrium measures, r², between causal and tested SNPs offers a good approximation to the loss in efficiency as defined by the ratio of sample sizes that lead to similar power. We also demonstrate that, in addition to the huge search space, the loss in power due to coverage when using commercially available platforms makes the search for gene-gene interactions daunting. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.

  11. Virus-Plus-Susceptibility Gene Interaction Determines Crohn’s Disease Gene Atg16L1 Phenotypes in Intestine

    PubMed Central

    Cadwell, Ken; Patel, Khushbu K.; Maloney, Nicole S.; Liu, Ta-Chiang; Ng, Aylwin C.Y.; Storer, Chad E.; Head, Richard D.; Xavier, Ramnik; Stappenbeck, Thaddeus S.; Virgin, Herbert W.

    2010-01-01

    SUMMARY It is unclear why disease occurs in only a small proportion of persons carrying common risk alleles of disease susceptibility genes. Here we demonstrate that an interaction between a specific virus infection and a mutation in the Crohn’s disease susceptibility gene Atg16L1 induces intestinal pathologies in mice. This virus-plus-susceptibility gene interaction generated abnormalities in granule packaging and unique patterns of gene expression in Paneth cells. Further, the response to injury induced by the toxic substance dextran sodium sulfate was fundamentally altered to include pathologies resembling aspects of Crohn’s disease. These pathologies triggered by virus-plus-susceptibility gene interaction were dependent on TNFα and IFNγ and were prevented by treatment with broad spectrum antibiotics. Thus, we provide a specific example of how a virus-plus-susceptibility gene interaction can, in combination with additional environmental factors and commensal bacteria, determine the phenotype of hosts carrying common risk alleles for inflammatory disease. PMID:20602997

  12. Genotype-based association models of complex diseases to detect gene-gene and gene-environment interactions.

    PubMed

    Lobach, Iryna; Fan, Ruzong; Manga, Prashiela

    A central problem in genetic epidemiology is to identify and rank genetic markers involved in a disease. Complex diseases, such as cancer, hypertension, diabetes, are thought to be caused by an interaction of a panel of genetic factors, that can be identified by markers, which modulate environmental factors. Moreover, the effect of each genetic marker may be small. Hence, the association signal may be missed unless a large sample is considered, or a priori biomedical data are used. Recent advances generated a vast variety of a priori information, including linkage maps and information about gene regulatory dependence assembled into curated pathway databases. We propose a genotype-based approach that takes into account linkage disequilibrium (LD) information between genetic markers that are in moderate LD while modeling gene-gene and gene-environment interactions. A major advantage of our method is that the observed genetic information enters a model directly thus eliminating the need to estimate haplotype-phase. Our approach results in an algorithm that is inexpensive computationally and does not suffer from bias induced by haplotype-phase ambiguity. We investigated our model in a series of simulation experiments and demonstrated that the proposed approach results in estimates that are nearly unbiased and have small variability. We applied our method to the analysis of data from a melanoma case-control study and investigated interaction between a set of pigmentation genes and environmental factors defined by age and gender. Furthermore, an application of our method is demonstrated using a study of Alcohol Dependence.

  13. Analysis of Multiple Association Studies Provides Evidence of an Expression QTL Hub in Gene-Gene Interaction Network Affecting HDL Cholesterol Levels

    PubMed Central

    Ma, Li; Ballantyne, Christie; Brautbar, Ariel; Keinan, Alon

    2014-01-01

    Epistasis has been suggested to underlie part of the missing heritability in genome-wide association studies. In this study, we first report an analysis of gene-gene interactions affecting HDL cholesterol (HDL-C) levels in a candidate gene study of 2,091 individuals with mixed dyslipidemia from a clinical trial. Two additional studies, the Atherosclerosis Risk in Communities study (ARIC; n = 9,713) and the Multi-Ethnic Study of Atherosclerosis (MESA; n = 2,685), were considered for replication. We identified a gene-gene interaction between rs1532085 and rs12980554 (P = 7.1×10−7) in their effect on HDL-C levels, which is significant after Bonferroni correction (P c = 0.017) for the number of SNP pairs tested. The interaction successfully replicated in the ARIC study (P = 7.0×10−4; P c = 0.02). Rs1532085, an expression QTL (eQTL) of LIPC, is one of the two SNPs involved in another, well-replicated gene-gene interaction underlying HDL-C levels. To further investigate the role of this eQTL SNP in gene-gene interactions affecting HDL-C, we tested in the ARIC study for interaction between this SNP and any other SNP genome-wide. We found the eQTL to be involved in a few suggestive interactions, one of which significantly replicated in MESA. Importantly, these gene-gene interactions, involving only rs1532085, explain an additional 1.4% variation of HDL-C, on top of the 0.65% explained by rs1532085 alone. LIPC plays a key role in the lipid metabolism pathway and it, and rs1532085 in particular, has been associated with HDL-C and other lipid levels. Collectively, we discovered several novel gene-gene interactions, all involving an eQTL of LIPC, thus suggesting a hub role of LIPC in the gene-gene interaction network that regulates HDL-C levels, which in turn raises the hypothesis that LIPC's contribution is largely via interactions with other lipid metabolism related genes. PMID:24651390

  14. Assessment of Gene-by-Sex Interaction Effect on Bone Mineral Density

    PubMed Central

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M.; Amin, Najaf; Evangelou, Evangelos; Li, Guo; Minster, Ryan L.; Carless, Melanie A.; Kammerer, Candace M.; Oei, Ling; Zhou, Yanhua; Alonso, Nerea; Dailiana, Zoe; Eriksson, Joel; García-Giralt, Natalia; Giroux, Sylvie; Husted, Lise Bjerre; Khusainova, Rita I.; Koromila, Theodora; Kung, Annie WaiChee; Lewis, Joshua R.; Masi, Laura; Mencej-Bedrac, Simona; Nogues, Xavier; Patel, Millan S.; Prezelj, Janez; Richards, J Brent; Sham, Pak Chung; Spector, Timothy; Vandenput, Liesbeth; Xiao, Su-Mei; Zheng, Hou-Feng; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Frost, Morten; Goltzman, David; González-Macías, Jesús; Karlsson, Magnus; Khusnutdinova, Elza K.; Kollia, Panagoula; Langdahl, Bente Lomholt; Ljunggren, Östen; Lorentzon, Mattias; Marc, Janja; Mellström, Dan; Ohlsson, Claes; Olmos, José M.; Ralston, Stuart H.; Riancho, José A.; Rousseau, François; Urreizti, Roser; Van Hul, Wim; Zarrabeitia, María T.; Castano-Betancourt, Martha; Demissie, Serkalem; Grundberg, Elin; Herrera, Lizbeth; Kwan, Tony; Medina-Gómez, Carolina; Pastinen, Tomi; Sigurdsson, Gunnar; Thorleifsson, Gudmar; vanMeurs, Joyce B.J.; Blangero, John; Hofman, Albert; Liu, Yongmei; Mitchell, Braxton D.; O’Connell, Jeffrey R.; Oostra, Ben A.; Rotter, Jerome I; Stefansson, Kari; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Thorsteinsdottir, Unnur; Tylavsky, Frances A.; Uitterlinden, Andre; Cauley, Jane A.; Harris, Tamara B.; Ioannidis, John P.A.; Psaty, Bruce M.; Robbins, John A; Zillikens, M. Carola; vanDuijn, Cornelia M.; Prince, Richard L.; Karasik, David; Rivadeneira, Fernando; Kiel, Douglas P.; Cupples, L. Adrienne; Hsu, Yi-Hsiang

    2012-01-01

    Background Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed eQTL analysis and bioinformatics network analysis. Methods We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS-) and femoral neck (FN-) BMD, in 25,353 individuals from eight cohorts. In a second stage, we followed up the 12 top SNPs (P<1×10−5) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. Results We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 & p-value = 3.0×10−5; female effect = −0.007 & p-value=3.3×10−2) and eleven suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (P<5×10−8) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Conclusion Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found influencing BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. PMID:22692763

  15. Interacting Genes Required for Pharyngeal Excitation by Motor Neuron Mc in Caenorhabditis Elegans

    PubMed Central

    Raizen, D. M.; Lee, RYN.; Avery, L.

    1995-01-01

    We studied the control of pharyngeal excitation in Caenorhabditis elegans. By laser ablating subsets of the pharyngeal nervous system, we found that the MC neuron type is necessary and probably sufficient for rapid pharyngeal pumping. Electropharyngeograms showed that MC transmits excitatory postsynaptic potentials, suggesting that MC acts as a neurogenic pacemaker for pharyngeal pumping. Mutations in genes required for acetylcholine (ACh) release and an antagonist of the nicotinic ACh receptor (nAChR) reduced pumping rates, suggesting that a nAChR is required for MC transmission. To identify genes required for MC neurotransmission, we screened for mutations that cause slow pumping but no other defects. Mutations in two genes, eat-2 and eat-18, eliminated MC neurotransmission. A gain-of-function eat-18 mutation, ad820sd, and a putative loss-of-function eat-18 mutation, ad1110, both reduced the excitation of pharyngeal muscle in response to the nAChR agonists nicotine and carbachol, suggesting that eat-18 is required for the function of a pharyngeal nAChR. Fourteen recessive mutations in eat-2 fell into five complementation classes. We found allele-specific genetic interactions between eat-2 and eat-18 that correlated with complementation classes of eat-2. We propose that eat-18 and eat-2 function in a multisubunit protein complex involved in the function of a pharyngeal nAChR. PMID:8601480

  16. Coordinated Rates of Evolution between Interacting Plastid and Nuclear Genes in Geraniaceae

    PubMed Central

    Zhang, Jin; Ruhlman, Tracey A.; Sabir, Jamal; Blazier, J. Chris; Jansen, Robert K.

    2015-01-01

    Although gene coevolution has been widely observed within individuals and between different organisms, rarely has this phenomenon been investigated within a phylogenetic framework. The Geraniaceae is an attractive system in which to study plastid-nuclear genome coevolution due to the highly elevated evolutionary rates in plastid genomes. In plants, the plastid-encoded RNA polymerase (PEP) is a protein complex composed of subunits encoded by both plastid (rpoA, rpoB, rpoC1, and rpoC2) and nuclear genes (sig1-6). We used transcriptome and genomic data for 27 species of Geraniales in a systematic evaluation of coevolution between genes encoding subunits of the PEP holoenzyme. We detected strong correlations of dN (nonsynonymous substitutions) but not dS (synonymous substitutions) within rpoB/sig1 and rpoC2/sig2, but not for other plastid/nuclear gene pairs, and identified the correlation of dN/dS ratio between rpoB/C1/C2 and sig1/5/6, rpoC1/C2 and sig2, and rpoB/C2 and sig3 genes. Correlated rates between interacting plastid and nuclear sequences across the Geraniales could result from plastid-nuclear genome coevolution. Analyses of coevolved amino acid positions suggest that structurally mediated coevolution is not the major driver of plastid-nuclear coevolution. The detection of strong correlation of evolutionary rates between SIG and RNAP genes suggests a plausible explanation for plastome-genome incompatibility in Geraniaceae. PMID:25724640

  17. Interaction between the Sbcc Gene of Escherichia Coli and the Gam Gene of Phage λ

    PubMed Central

    Kulkarni, S. K.; Stahl, F. W.

    1989-01-01

    gam mutants of phage λ carrying long palindromes fail to form plaques on wild-type Escherichia coli but do grow on strains that are mutant in the sbcC gene. gam(+) λ carrying the same palindrome grow on both hosts and on a host deleted for the recB, C and D genes. These results suggest that the Gam protein of λ, known to interact also with E. coli's recBCD protein, can interact with the product of the sbcC gene. PMID:2531105

  18. A Penalized Robust Method for Identifying Gene-Environment Interactions

    PubMed Central

    Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Xie, Yang; Ma, Shuangge

    2015-01-01

    In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model mis-specification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications. PMID:24616063

  19. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database.

    PubMed

    Cotto, Kelsy C; Wagner, Alex H; Feng, Yang-Yang; Kiwala, Susanna; Coffman, Adam C; Spies, Gregory; Wollam, Alex; Spies, Nicholas C; Griffith, Obi L; Griffith, Malachi

    2018-01-04

    The drug-gene interaction database (DGIdb, www.dgidb.org) consolidates, organizes and presents drug-gene interactions and gene druggability information from papers, databases and web resources. DGIdb normalizes content from 30 disparate sources and allows for user-friendly advanced browsing, searching and filtering for ease of access through an intuitive web user interface, application programming interface (API) and public cloud-based server image. DGIdb v3.0 represents a major update of the database. Nine of the previously included 24 sources were updated. Six new resources were added, bringing the total number of sources to 30. These updates and additions of sources have cumulatively resulted in 56 309 interaction claims. This has also substantially expanded the comprehensive catalogue of druggable genes and anti-neoplastic drug-gene interactions included in the DGIdb. Along with these content updates, v3.0 has received a major overhaul of its codebase, including an updated user interface, preset interaction search filters, consolidation of interaction information into interaction groups, greatly improved search response times and upgrading the underlying web application framework. In addition, the expanded API features new endpoints which allow users to extract more detailed information about queried drugs, genes and drug-gene interactions, including listings of PubMed IDs, interaction type and other interaction metadata.

  20. Exploring Plant Co-Expression and Gene-Gene Interactions with CORNET 3.0.

    PubMed

    Van Bel, Michiel; Coppens, Frederik

    2017-01-01

    Selecting and filtering a reference expression and interaction dataset when studying specific pathways and regulatory interactions can be a very time-consuming and error-prone task. In order to reduce the duplicated efforts required to amass such datasets, we have created the CORNET (CORrelation NETworks) platform which allows for easy access to a wide variety of data types: coexpression data, protein-protein interactions, regulatory interactions, and functional annotations. The CORNET platform outputs its results in either text format or through the Cytoscape framework, which is automatically launched by the CORNET website.CORNET 3.0 is the third iteration of the web platform designed for the user exploration of the coexpression space of plant genomes, with a focus on the model species Arabidopsis thaliana. Here we describe the platform: the tools, data, and best practices when using the platform. We indicate how the platform can be used to infer networks from a set of input genes, such as upregulated genes from an expression experiment. By exploring the network, new target and regulator genes can be discovered, allowing for follow-up experiments and more in-depth study. We also indicate how to avoid common pitfalls when evaluating the networks and how to avoid over interpretation of the results.All CORNET versions are available at http://bioinformatics.psb.ugent.be/cornet/ .

  1. A combination test for detection of gene-environment interaction in cohort studies.

    PubMed

    Coombes, Brandon; Basu, Saonli; McGue, Matt

    2017-07-01

    Identifying gene-environment (G-E) interactions can contribute to a better understanding of disease etiology, which may help researchers develop disease prevention strategies and interventions. One big criticism of studying G-E interaction is the lack of power due to sample size. Studies often restrict the interaction search to the top few hundred hits from a genome-wide association study or focus on potential candidate genes. In this paper, we test interactions between a candidate gene and an environmental factor to improve power by analyzing multiple variants within a gene. We extend recently developed score statistic based genetic association testing approaches to the G-E interaction testing problem. We also propose tests for interaction using gene-based summary measures that pool variants together. Although it has recently been shown that these summary measures can be biased and may lead to inflated type I error, we show that under several realistic scenarios, we can still provide valid tests of interaction. These tests use significantly less degrees of freedom and thus can have much higher power to detect interaction. Additionally, we demonstrate that the iSeq-aSum-min test, which combines a gene-based summary measure test, iSeq-aSum-G, and an interaction-based summary measure test, iSeq-aSum-I, provides a powerful alternative to test G-E interaction. We demonstrate the performance of these approaches using simulation studies and illustrate their performance to study interaction between the SNPs in several candidate genes and family climate environment on alcohol consumption using the Minnesota Center for Twin and Family Research dataset. © 2017 WILEY PERIODICALS, INC.

  2. Shame and Guilt-Proneness in Adolescents: Gene-Environment Interactions

    PubMed Central

    Szentágotai-Tătar, Aurora; Chiș, Adina; Vulturar, Romana; Dobrean, Anca; Cândea, Diana Mirela; Miu, Andrei C.

    2015-01-01

    Rooted in people’s preoccupation with how they are perceived and evaluated, shame and guilt are self-conscious emotions that play adaptive roles in social behavior, but can also contribute to psychopathology when dysregulated. Shame and guilt-proneness develop during childhood and adolescence, and are influenced by genetic and environmental factors that are little known to date. This study investigated the effects of early traumatic events and functional polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the serotonin transporter gene promoter (5-HTTLPR) on shame and guilt in adolescents. A sample of N = 271 healthy adolescents between 14 and 17 years of age filled in measures of early traumatic events and proneness to shame and guilt, and were genotyped for the BDNF Val66Met and 5-HTTLPR polymorphisms. Results of moderator analyses indicated that trauma intensity was positively associated with guilt-proneness only in carriers of the low-expressing Met allele of BDNF Val66Met. This is the first study that identifies a gene-environment interaction that significantly contributes to guilt proneness in adolescents, with potential implications for developmental psychopathology. PMID:26230319

  3. GSNO Reductase and β2 Adrenergic Receptor Gene-gene Interaction: Bronchodilator Responsiveness to Albuterol

    PubMed Central

    Choudhry, Shweta; Que, Loretta G.; Yang, Zhonghui; Liu, Limin; Eng, Celeste; Kim, Sung O.; Kumar, Gunjan; Thyne, Shannon; Chapela, Rocio; Rodriguez-Santana, Jose R.; Rodriguez-Cintron, William; Avila, Pedro C.; Stamler, Jonathan S.; Burchard, Esteban G.

    2010-01-01

    Background Short-acting inhaled β2-agonists such as albuterol are used for bronchodilation and are the mainstay of asthma treatment worldwide. There is significant variation in bronchodilator responsiveness to albuterol not only between individuals but also across racial/ethnic groups. The β2-adrenergic receptor (β2AR) is the target for β2-agonist drugs. The enzyme S-nitrosoglutathione reductase (GSNOR), which regulates levels of the endogenous bronchodilator S-nitrosoglutathione, has been shown to modulate the response to β2-agonists. Objective We hypothesized that there are pharmacogenetic interactions between GSNOR and β2AR gene variants which are associated with variable response to albuterol. Methods We performed family-based analyses to test for association between GSNOR gene variants and asthma and related phenotypes in 609 Puerto Rican and Mexican families with asthma. In addition, we tested these subjects for pharmacogenetic interaction between GSNOR and β2AR gene variants and responsiveness to albuterol using linear regression. Cell transfection experiments were performed to test the potential effect of the GSNOR gene variants. Results Among Puerto Ricans, several GSNOR SNPs and a haplotype in the 3′UTR were significantly associated with increased risk for asthma and lower bronchodilator responsiveness (p = 0.04 to 0.007). The GSNOR risk haplotype affects expression of GSNOR mRNA and protein, suggesting a gain of function. Furthermore, gene-gene interaction analysis provided evidence of pharmacogenetic interaction between GSNOR and β2AR gene variants and the response to albuterol in Puerto Rican (p = 0.03), Mexican (p = 0.15) and combined Puerto Rican and Mexican asthmatics (p = 0.003). Specifically, GSNOR+17059*β2AR+46 genotype combinations (TG+GG*AG and TG+GG*GG) were associated with lower bronchodilator response. Conclusion Genotyping of GSNOR and β2AR genes may be a useful in identifying Latino subjects, who might benefit from adjuvant

  4. Assessment of gene-by-sex interaction effect on bone mineral density.

    PubMed

    Liu, Ching-Ti; Estrada, Karol; Yerges-Armstrong, Laura M; Amin, Najaf; Evangelou, Evangelos; Li, Guo; Minster, Ryan L; Carless, Melanie A; Kammerer, Candace M; Oei, Ling; Zhou, Yanhua; Alonso, Nerea; Dailiana, Zoe; Eriksson, Joel; García-Giralt, Natalia; Giroux, Sylvie; Husted, Lise Bjerre; Khusainova, Rita I; Koromila, Theodora; Kung, Annie Waichee; Lewis, Joshua R; Masi, Laura; Mencej-Bedrac, Simona; Nogues, Xavier; Patel, Millan S; Prezelj, Janez; Richards, J Brent; Sham, Pak Chung; Spector, Timothy; Vandenput, Liesbeth; Xiao, Su-Mei; Zheng, Hou-Feng; Zhu, Kun; Balcells, Susana; Brandi, Maria Luisa; Frost, Morten; Goltzman, David; González-Macías, Jesús; Karlsson, Magnus; Khusnutdinova, Elza K; Kollia, Panagoula; Langdahl, Bente Lomholt; Ljunggren, Osten; Lorentzon, Mattias; Marc, Janja; Mellström, Dan; Ohlsson, Claes; Olmos, José M; Ralston, Stuart H; Riancho, José A; Rousseau, François; Urreizti, Roser; Van Hul, Wim; Zarrabeitia, María T; Castano-Betancourt, Martha; Demissie, Serkalem; Grundberg, Elin; Herrera, Lizbeth; Kwan, Tony; Medina-Gómez, Carolina; Pastinen, Tomi; Sigurdsson, Gunnar; Thorleifsson, Gudmar; Vanmeurs, Joyce Bj; Blangero, John; Hofman, Albert; Liu, Yongmei; Mitchell, Braxton D; O'Connell, Jeffrey R; Oostra, Ben A; Rotter, Jerome I; Stefansson, Kari; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Thorsteinsdottir, Unnur; Tylavsky, Frances A; Uitterlinden, Andre; Cauley, Jane A; Harris, Tamara B; Ioannidis, John Pa; Psaty, Bruce M; Robbins, John A; Zillikens, M Carola; Vanduijn, Cornelia M; Prince, Richard L; Karasik, David; Rivadeneira, Fernando; Kiel, Douglas P; Cupples, L Adrienne; Hsu, Yi-Hsiang

    2012-10-01

    Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p < 1 × 10(-5) ) in an additional set of 24,763 individuals. Gene-by-sex interaction and sex-specific effects were examined in these 12 SNPs. We detected one novel genome-wide significant interaction associated with LS-BMD at the Chr3p26.1-p25.1 locus, near the GRM7 gene (male effect = 0.02 and p = 3.0 × 10(-5) ; female effect = -0.007 and p = 3.3 × 10(-2) ), and 11 suggestive loci associated with either FN- or LS-BMD in discovery cohorts. However, there was no evidence for genome-wide significant (p < 5 × 10(-8) ) gene-by-sex interaction in the joint analysis of discovery and replication cohorts. Despite the large collaborative effort, no genome-wide significant evidence for gene-by-sex interaction was found to influence BMD variation in this screen of autosomal markers. If they exist, gene-by-sex interactions for BMD probably have weak effects, accounting for less than 0.08% of the variation in these traits per implicated SNP. © 2012 American Society for Bone and Mineral Research. Copyright © 2012 American Society for Bone and Mineral Research.

  5. Association of methylenetetrahydrofolate reductase gene-gene interaction and haplotype with susceptibility to acute lymphoblastic leukemia in Chinese children.

    PubMed

    Xia, Xiaojun; Duan, Yun; Cui, Jie; Jiang, Junfeng; Lin, Li; Peng, Xiaojuan; Wang, YuHong; Guo, Bingtao; Liu, Shouhai; Lei, Xudong

    2017-08-01

    The aim of this study was to investigate the association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and additional gene-gene interaction with acute lymphoblastic leukemia (ALL) risk. Logistic regression was performed to investigate the association between two single nucleotide polymorphisms (SNPs) within MTHFR gene and ALL risk and additional gene-gene interaction between rs1801133 and rs1801131. The minor allele of rs1801133 and rs1801131 is associated with decreased ALL risk, OR (95% CI) were 0.61 (0.38-0.89), and 0.68 (0.50-0.96), respectively. We also found a significantly interaction between the two SNPs, participants with rs1801133 - CT or TT and rs1801131 - AC or CC genotype have the lowest ALL risk, compared with participants with rs1801133 - CC and rs1801131 - AA genotype, OR (95% CI) was 0.32 (0.12-0.63). We did not find any haplotype between the rs1801133 and rs1801131 associated with ALL risk. rs1801133 and rs1801131 within MTHFR gene and their interaction were both associated with ALL risk in Chinese children.

  6. Gene-environment interactions in atherosclerosis.

    PubMed

    Hegele, R A

    1991-06-01

    It is becoming clear that genetic and environmental factors can interact to varying degrees in a given individual. In some cases, genetically determined resistance to CAD (eg, genetic hyperalpha- or hypobetalipoproteinemia), or genetically determined susceptibility to CAD (eg, high Lp[a] levels) may not be significantly modulated by a prudent lifestyle. Estimates of the prevalence in the general population of these genetic extremes average around 5% (4). In the remaining 95% of cases, nature and nurture interact. For example, a genetic flaw that is usually expressed phenotypically as premature death due to CAD (eg, some cases of FH) can be ameliorated by a prudent diet. There is little doubt that an individual's responsiveness to environmental factors can be determined by many different genes. The exact candidate genes and the nature of most of the genetic changes affecting response to diet still need to be determined. Once identified, they may one day form the basis for early diagnosis of metabolic problems and individually tailored diet and drug treatment programs.

  7. GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.

    PubMed

    Yung, Ling Sing; Yang, Can; Wan, Xiang; Yu, Weichuan

    2011-05-01

    Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions. We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card. GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

  8. Identification of fever and vaccine-associated gene interaction networks using ontology-based literature mining

    PubMed Central

    2012-01-01

    Background Fever is one of the most common adverse events of vaccines. The detailed mechanisms of fever and vaccine-associated gene interaction networks are not fully understood. In the present study, we employed a genome-wide, Centrality and Ontology-based Network Discovery using Literature data (CONDL) approach to analyse the genes and gene interaction networks associated with fever or vaccine-related fever responses. Results Over 170,000 fever-related articles from PubMed abstracts and titles were retrieved and analysed at the sentence level using natural language processing techniques to identify genes and vaccines (including 186 Vaccine Ontology terms) as well as their interactions. This resulted in a generic fever network consisting of 403 genes and 577 gene interactions. A vaccine-specific fever sub-network consisting of 29 genes and 28 gene interactions was extracted from articles that are related to both fever and vaccines. In addition, gene-vaccine interactions were identified. Vaccines (including 4 specific vaccine names) were found to directly interact with 26 genes. Gene set enrichment analysis was performed using the genes in the generated interaction networks. Moreover, the genes in these networks were prioritized using network centrality metrics. Making scientific discoveries and generating new hypotheses were possible by using network centrality and gene set enrichment analyses. For example, our study found that the genes in the generic fever network were more enriched in cell death and responses to wounding, and the vaccine sub-network had more gene enrichment in leukocyte activation and phosphorylation regulation. The most central genes in the vaccine-specific fever network are predicted to be highly relevant to vaccine-induced fever, whereas genes that are central only in the generic fever network are likely to be highly relevant to generic fever responses. Interestingly, no Toll-like receptors (TLRs) were found in the gene-vaccine interaction

  9. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  10. Robustness of meta-analyses in finding gene × environment interactions

    PubMed Central

    Shi, Gang; Nehorai, Arye

    2017-01-01

    Meta-analyses that synthesize statistical evidence across studies have become important analytical tools for genetic studies. Inspired by the success of genome-wide association studies of the genetic main effect, researchers are searching for gene × environment interactions. Confounders are routinely included in the genome-wide gene × environment interaction analysis as covariates; however, this does not control for any confounding effects on the results if covariate × environment interactions are present. We carried out simulation studies to evaluate the robustness to the covariate × environment confounder for meta-regression and joint meta-analysis, which are two commonly used meta-analysis methods for testing the gene × environment interaction or the genetic main effect and interaction jointly. Here we show that meta-regression is robust to the covariate × environment confounder while joint meta-analysis is subject to the confounding effect with inflated type I error rates. Given vast sample sizes employed in genome-wide gene × environment interaction studies, non-significant covariate × environment interactions at the study level could substantially elevate the type I error rate at the consortium level. When covariate × environment confounders are present, type I errors can be controlled in joint meta-analysis by including the covariate × environment terms in the analysis at the study level. Alternatively, meta-regression can be applied, which is robust to potential covariate × environment confounders. PMID:28362796

  11. Behavioral science and the study of gene-nutrition and gene-physical activity interactions in obesity research.

    PubMed

    Faith, Myles S

    2008-12-01

    This report summarizes emerging opportunities for behavioral science to help advance the field of gene-environment and gene-behavior interactions, based on presentations at The National Cancer Institute (NCI) Workshop, "Gene-Nutrition and Gene-Physical Activity Interactions in the Etiology of Obesity." Three opportunities are highlighted: (i) designing potent behavioral "challenges" in experiments, (ii) determining viable behavioral phenotypes for genetics studies, and (iii) identifying specific measures of the environment or environmental exposures. Additional points are underscored, including the need to incorporate novel findings from neuroimaging studies regarding motivation and drive for eating and physical activity. Advances in behavioral science theory and methods can play an important role in advancing understanding of gene-brain-behavior relationships in obesity onset.

  12. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  13. Gene-Gene-Environment Interactions of Serotonin Transporter, Monoamine Oxidase A and Childhood Maltreatment Predict Aggressive Behavior in Chinese Adolescents

    PubMed Central

    Zhang, Yun; Ming, Qing-sen; Yi, Jin-yao; Wang, Xiang; Chai, Qiao-lian; Yao, Shu-qiao

    2017-01-01

    Gene-environment interactions that moderate aggressive behavior have been identified independently in the serotonin transporter (5-HTT) gene and monoamine oxidase A gene (MAOA). The aim of the present study was to investigate epistasis interactions between MAOA-variable number tandem repeat (VNTR), 5-HTTlinked polymorphism (LPR) and child abuse and the effects of these on aggressive tendencies in a group of otherwise healthy adolescents. A group of 546 Chinese male adolescents completed the Child Trauma Questionnaire and Youth self-report of the Child Behavior Checklist. Buccal cells were collected for DNA analysis. The effects of childhood abuse, MAOA-VNTR, 5-HTTLPR genotypes and their interactive gene-gene-environmental effects on aggressive behavior were analyzed using a linear regression model. The effect of child maltreatment was significant, and a three-way interaction among MAOA-VNTR, 5-HTTLPR and sexual abuse (SA) relating to aggressive behaviors was identified. Chinese male adolescents with high expression of the MAOA-VNTR allele and 5-HTTLPR “SS” genotype exhibited the highest aggression tendencies with an increase in SA during childhood. The findings reported support aggression being a complex behavior involving the synergistic effects of gene-gene-environment interactions. PMID:28203149

  14. Interaction between serotonin transporter and serotonin receptor 1 B genes polymorphisms may be associated with antisocial alcoholism.

    PubMed

    Wang, Tzu-Yun; Lee, Sheng-Yu; Chen, Shiou-Lan; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsien; Huang, San-Yuan; Tzeng, Nian-Sheng; Wang, Chen-Lin; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Lu, Ru-Band

    2012-07-11

    Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism's heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n=120) and antisocial non-alcoholism (AS-N-ALC) group (n=153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan's Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism.

  15. Antioxidant Defense Enzyme Genes and Asthma Susceptibility: Gender-Specific Effects and Heterogeneity in Gene-Gene Interactions between Pathogenetic Variants of the Disease

    PubMed Central

    Polonikov, Alexey V.; Ivanov, Vladimir P.; Bogomazov, Alexey D.; Freidin, Maxim B.; Illig, Thomas; Solodilova, Maria A.

    2014-01-01

    Oxidative stress resulting from an increased amount of reactive oxygen species and an imbalance between oxidants and antioxidants plays an important role in the pathogenesis of asthma. The present study tested the hypothesis that genetic susceptibility to allergic and nonallergic variants of asthma is determined by complex interactions between genes encoding antioxidant defense enzymes (ADE). We carried out a comprehensive analysis of the associations between adult asthma and 46 single nucleotide polymorphisms of 34 ADE genes and 12 other candidate genes of asthma in Russian population using set association analysis and multifactor dimensionality reduction approaches. We found for the first time epistatic interactions between ADE genes underlying asthma susceptibility and the genetic heterogeneity between allergic and nonallergic variants of the disease. We identified GSR (glutathione reductase) and PON2 (paraoxonase 2) as novel candidate genes for asthma susceptibility. We observed gender-specific effects of ADE genes on the risk of asthma. The results of the study demonstrate complexity and diversity of interactions between genes involved in oxidative stress underlying susceptibility to allergic and nonallergic asthma. PMID:24895604

  16. Leveraging Gene-Environment Interactions and Endotypes for Asthma Gene Discovery

    PubMed Central

    Bønnelykke, Klaus; Ober, Carole

    2016-01-01

    Asthma is a heterogeneous clinical syndrome that includes subtypes of disease with different underlying causes and disease mechanisms. Asthma is caused by a complex interaction between genes and environmental exposures; early-life exposures in particular play an important role. Asthma is also heritable, and a number of susceptibility variants have been discovered in genome-wide association studies, although the known risk alleles explain only a small proportion of the heritability. In this review, we present evidence supporting the hypothesis that focusing on more specific asthma phenotypes, such as childhood asthma with severe exacerbations, and on relevant exposures that are involved in gene-environment interactions (GEIs), such as rhinovirus infections, will improve detection of asthma genes and our understanding of the underlying mechanisms. We will discuss the challenges of considering GEIs and the advantages of studying responses to asthma-associated exposures in clinical birth cohorts, as well as in cell models of GEIs, to dissect the context-specific nature of genotypic risks, to prioritize variants in genome-wide association studies, and to identify pathways involved in pathogenesis in subgroups of patients. We propose that such approaches, in spite of their many challenges, present great opportunities for better understanding of asthma pathogenesis and heterogeneity and, ultimately, for improving prevention and treatment of disease. PMID:26947980

  17. Coordinated rates of evolution between interacting plastid and nuclear genes in Geraniaceae.

    PubMed

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal; Blazier, J Chris; Jansen, Robert K

    2015-03-01

    Although gene coevolution has been widely observed within individuals and between different organisms, rarely has this phenomenon been investigated within a phylogenetic framework. The Geraniaceae is an attractive system in which to study plastid-nuclear genome coevolution due to the highly elevated evolutionary rates in plastid genomes. In plants, the plastid-encoded RNA polymerase (PEP) is a protein complex composed of subunits encoded by both plastid (rpoA, rpoB, rpoC1, and rpoC2) and nuclear genes (sig1-6). We used transcriptome and genomic data for 27 species of Geraniales in a systematic evaluation of coevolution between genes encoding subunits of the PEP holoenzyme. We detected strong correlations of dN (nonsynonymous substitutions) but not dS (synonymous substitutions) within rpoB/sig1 and rpoC2/sig2, but not for other plastid/nuclear gene pairs, and identified the correlation of dN/dS ratio between rpoB/C1/C2 and sig1/5/6, rpoC1/C2 and sig2, and rpoB/C2 and sig3 genes. Correlated rates between interacting plastid and nuclear sequences across the Geraniales could result from plastid-nuclear genome coevolution. Analyses of coevolved amino acid positions suggest that structurally mediated coevolution is not the major driver of plastid-nuclear coevolution. The detection of strong correlation of evolutionary rates between SIG and RNAP genes suggests a plausible explanation for plastome-genome incompatibility in Geraniaceae. © 2015 American Society of Plant Biologists. All rights reserved.

  18. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  19. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  20. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    ERIC Educational Resources Information Center

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  1. Single gene and gene interaction effects on fertilization and embryonic survival rates in cattle.

    PubMed

    Khatib, H; Huang, W; Wang, X; Tran, A H; Bindrim, A B; Schutzkus, V; Monson, R L; Yandell, B S

    2009-05-01

    Decrease in fertility and conception rates is a major cause of economic loss and cow culling in dairy herds. Conception rate is the product of fertilization rate and embryonic survival rate. Identification of genetic factors that cause the death of embryos is the first step in eliminating this problem from the population and thereby increasing reproductive efficiency. A candidate pathway approach was used to identify candidate genes affecting fertilization and embryo survival rates using an in vitro fertilization experimental system. A total of 7,413 in vitro fertilizations were performed using oocytes from 504 ovaries and semen samples from 10 different bulls. Fertilization rate was calculated as the number of cleaved embryos 48 h postfertilization out of the total number of oocytes exposed to sperm. Survival rate of embryos was calculated as the number of blastocysts on d 7 of development out of the number of total embryos cultured. All ovaries were genotyped for 8 genes in the POU1F1 signaling pathway. Single-gene analysis revealed significant associations of GHR, PRLR, STAT5A, and UTMP with survival rate and of POU1F1, GHR, STAT5A, and OPN with fertilization rate. To further characterize the contribution of the entire integrated POU1F1 pathway to fertilization and early embryonic survival, a model selection procedure was applied. Comparisons among the different models showed that interactions between adjacent genes in the pathway revealed a significant contribution to the variation in fertility traits compared with other models that analyzed only bull information or only genes without interactions. Moreover, some genes that were not significant in the single-gene analysis showed significant effects in the interaction analysis. Thus, we propose that single genes as well as an entire pathway can be used in selection programs to improve reproduction performance in dairy cattle.

  2. Learning Petri net models of non-linear gene interactions.

    PubMed

    Mayo, Michael

    2005-10-01

    Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or "explanation" of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene-gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene-gene interactions recently reported in the literature.

  3. Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence.

    PubMed

    Liu, Gang; Mukherjee, Bhramar; Lee, Seunggeun; Lee, Alice W; Wu, Anna H; Bandera, Elisa V; Jensen, Allan; Rossing, Mary Anne; Moysich, Kirsten B; Chang-Claude, Jenny; Doherty, Jennifer A; Gentry-Maharaj, Aleksandra; Kiemeney, Lambertus; Gayther, Simon A; Modugno, Francesmary; Massuger, Leon; Goode, Ellen L; Fridley, Brooke L; Terry, Kathryn L; Cramer, Daniel W; Ramus, Susan J; Anton-Culver, Hoda; Ziogas, Argyrios; Tyrer, Jonathan P; Schildkraut, Joellen M; Kjaer, Susanne K; Webb, Penelope M; Ness, Roberta B; Menon, Usha; Berchuck, Andrew; Pharoah, Paul D; Risch, Harvey; Pearce, Celeste Leigh

    2018-02-01

    There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances statistical power for testing multiplicative interaction in case-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated type I error in the corresponding tests can occur. In this paper, we extend the empirical Bayes (EB) approach previously developed for multiplicative interaction, which trades off between bias and efficiency in a data-adaptive way, to the additive scale. An EB estimator of the relative excess risk due to interaction is derived, and the corresponding Wald test is proposed with a general regression setting under a retrospective likelihood framework. We study the impact of gene-environment association on the resultant test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides a gain in power compared with the standard logistic regression analysis and better control of type I error when compared with the analysis assuming gene-environment independence. We illustrate the methods with data from the Ovarian Cancer Association Consortium. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Three Approaches to Modeling Gene-Environment Interactions in Longitudinal Family Data: Gene-Smoking Interactions in Blood Pressure.

    PubMed

    Basson, Jacob; Sung, Yun Ju; de Las Fuentes, Lisa; Schwander, Karen L; Vazquez, Ana; Rao, Dabeeru C

    2016-01-01

    Blood pressure (BP) has been shown to be substantially heritable, yet identified genetic variants explain only a small fraction of the heritability. Gene-smoking interactions have detected novel BP loci in cross-sectional family data. Longitudinal family data are available and have additional promise to identify BP loci. However, this type of data presents unique analysis challenges. Although several methods for analyzing longitudinal family data are available, which method is the most appropriate and under what conditions has not been fully studied. Using data from three clinic visits from the Framingham Heart Study, we performed association analysis accounting for gene-smoking interactions in BP at 31,203 markers on chromosome 22. We evaluated three different modeling frameworks: generalized estimating equations (GEE), hierarchical linear modeling, and pedigree-based mixed modeling. The three models performed somewhat comparably, with multiple overlaps in the most strongly associated loci from each model. Loci with the greatest significance were more strongly supported in the longitudinal analyses than in any of the component single-visit analyses. The pedigree-based mixed model was more conservative, with less inflation in the variant main effect and greater deflation in the gene-smoking interactions. The GEE, but not the other two models, resulted in substantial inflation in the tail of the distribution when variants with minor allele frequency <1% were included in the analysis. The choice of analysis method should depend on the model and the structure and complexity of the familial and longitudinal data. © 2015 WILEY PERIODICALS, INC.

  5. Testing for gene-environment interaction under exposure misspecification.

    PubMed

    Sun, Ryan; Carroll, Raymond J; Christiani, David C; Lin, Xihong

    2017-11-09

    Complex interplay between genetic and environmental factors characterizes the etiology of many diseases. Modeling gene-environment (GxE) interactions is often challenged by the unknown functional form of the environment term in the true data-generating mechanism. We study the impact of misspecification of the environmental exposure effect on inference for the GxE interaction term in linear and logistic regression models. We first examine the asymptotic bias of the GxE interaction regression coefficient, allowing for confounders as well as arbitrary misspecification of the exposure and confounder effects. For linear regression, we show that under gene-environment independence and some confounder-dependent conditions, when the environment effect is misspecified, the regression coefficient of the GxE interaction can be unbiased. However, inference on the GxE interaction is still often incorrect. In logistic regression, we show that the regression coefficient is generally biased if the genetic factor is associated with the outcome directly or indirectly. Further, we show that the standard robust sandwich variance estimator for the GxE interaction does not perform well in practical GxE studies, and we provide an alternative testing procedure that has better finite sample properties. © 2017, The International Biometric Society.

  6. Gene-by-Socioeconomic Status Interaction on School Readiness

    PubMed Central

    Rhemtulla, Mijke; Tucker-Drob, Elliot M.

    2017-01-01

    In previous work with a nationally representative sample of over 1,400 monozygotic and dizygotic twins born in the United States, Tucker-Drob, Rhemtulla, Harden, Turkheimer, and Fask (2011; Psychological Science, 22, 125–133) uncovered a gene × environment interaction on scores on the Bayley Short Form test of mental ability at 2 years of age—higher socioeconomic status (SES) was associated not only with higher mental ability, but also with larger genetic contributions to individual differences in mental ability. The current study examined gene × SES interactions in mathematics skill and reading skill at 4 years of age (preschool age) in the same sample of twins, and further examined whether interactions detected at 4 years could be attributed to the persistence of the interaction previously observed at 2 years. For early mathematics skill but not early reading skill, genetic influences were more pronounced at higher levels of SES. This interaction was not accounted for by the interaction observed at 2 years. These findings indicate that SES moderates the etiological influences on certain cognitive functions at multiple stages of child development. PMID:22350185

  7. Learning contextual gene set interaction networks of cancer with condition specificity

    PubMed Central

    2013-01-01

    Background Identifying similarities and differences in the molecular constitutions of various types of cancer is one of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions, including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to decipher the molecular origin of the cancer. In recent years, many studies reported methods to uncover heterogeneous depictions of complex cancers, which are often categorized into different subtypes. The challenge is to identify diverse molecular contexts within a cancer, to relate them to different subtypes, and to learn underlying molecular interactions specific to molecular contexts so that we can recommend context-specific treatment to patients. Results In this study, we describe a novel method to discern molecular interactions specific to certain molecular contexts. Unlike conventional approaches to build modular networks of individual genes, our focus is to identify cancer-generic and subtype-specific interactions between contextual gene sets, of which each gene set share coherent transcriptional patterns across a subset of samples, termed contextual gene set. We then apply a novel formulation for quantitating the effect of the samples from each subtype on the calculated strength of interactions observed. Two cancer data sets were analyzed to support the validity of condition-specificity of identified interactions. When compared to an existing approach, the proposed method was much more sensitive in identifying condition-specific interactions even in heterogeneous data set. The results also revealed that network components specific to different types of cancer are related to different biological functions than cancer-generic network components. We found not only the results that are consistent with previous studies, but also new hypotheses on the biological mechanisms specific to certain cancer types that warrant further

  8. A novel approach to simulate gene-environment interactions in complex diseases.

    PubMed

    Amato, Roberto; Pinelli, Michele; D'Andrea, Daniel; Miele, Gennaro; Nicodemi, Mario; Raiconi, Giancarlo; Cocozza, Sergio

    2010-01-05

    Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge

  9. Implication of Genes for the N-Methyl-D-Aspartate (NMDA) Receptor in Substance Addictions.

    PubMed

    Chen, Jiali; Ma, Yunlong; Fan, Rongli; Yang, Zhongli; Li, Ming D

    2018-02-10

    Drug dependence is a chronic brain disease with harmful consequences for both individual users and society. Glutamate is a primary excitatory neurotransmitter in the brain, and both in vivo and in vitro experiments have implicated N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor, as an element in various types of addiction. Recent findings from genetics-based approaches such as genome-wide linkage, candidate gene association, genome-wide association (GWA), and next-generation sequencing have demonstrated the significant association of NMDA receptor subunit genes such as GluN3A, GluN2B, and GluN2A with various addiction-related phenotypes. Of these genes, GluN3A has been the most studied, and it has been revealed to play crucial roles in the etiology of addictions. In this communication, we provide an updated view of the genetic effects of NMDA receptor subunit genes and their functions in the etiology of addictions based on the findings from investigation of both common and rare variants as well as SNP-SNP interactions. To better understand the molecular mechanisms underlying addiction-related behaviors and to promote the development of specific medicines for the prevention and treatment of addictions, current efforts aim not only to identify more causal variants in NMDA receptor subunits by using large independent samples but also to reveal the molecular functions of these variants in addictions.

  10. New Face for Chromatin-Related Mesenchymal Modulator: n-CHD9 Localizes to Nucleoli and Interacts With Ribosomal Genes.

    PubMed

    Salomon-Kent, Ronit; Marom, Ronit; John, Sam; Dundr, Miroslav; Schiltz, Louis R; Gutierrez, Jose; Workman, Jerry; Benayahu, Dafna; Hager, Gordon L

    2015-09-01

    Mesenchymal stem cells' differentiation into several lineages is coordinated by a complex of transcription factors and co-regulators which bind to specific gene promoters. The Chromatin-Related Mesenchymal Modulator, CHD9 demonstrated in vitro its ability for remodeling activity to reposition nucleosomes in an ATP-dependent manner. Epigenetically, CHD9 binds with modified H3-(K9me2/3 and K27me3). Previously, we presented a role for CHD9 with RNA Polymerase II (Pol II)-dependent transcription of tissue specific genes. Far less is known about CHD9 function in RNA Polymerase I (Pol I) related transcription of the ribosomal locus that also drives specific cell fate. We here describe a new form, the nucleolar CHD9 (n-CHD9) that is dynamically associated with Pol I, fibrillarin, and upstream binding factor (UBF) in the nucleoli, as shown by imaging and molecular approaches. Inhibitors of transcription disorganized the nucleolar compartment of transcription sites where rDNA is actively transcribed. Collectively, these findings link n-CHD9 with RNA pol I transcription in fibrillar centers. Using chromatin immunoprecipitation (ChIP) and tilling arrays (ChIP- chip), we find an association of n-CHD9 with Pol I related to rRNA biogenesis. Our new findings support the role for CHD9 in chromatin regulation and association with rDNA genes, in addition to its already known function in transcription control of tissue specific genes. © 2015 Wiley Periodicals, Inc.

  11. Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease

    PubMed Central

    Hartman, John L.; Stisher, Chandler; Outlaw, Darryl A.; Guo, Jingyu; Shah, Najaf A.; Tian, Dehua; Santos, Sean M.; Rodgers, John W.; White, Richard A.

    2015-01-01

    The genome project increased appreciation of genetic complexity underlying disease phenotypes: many genes contribute each phenotype and each gene contributes multiple phenotypes. The aspiration of predicting common disease in individuals has evolved from seeking primary loci to marginal risk assignments based on many genes. Genetic interaction, defined as contributions to a phenotype that are dependent upon particular digenic allele combinations, could improve prediction of phenotype from complex genotype, but it is difficult to study in human populations. High throughput, systematic analysis of S. cerevisiae gene knockouts or knockdowns in the context of disease-relevant phenotypic perturbations provides a tractable experimental approach to derive gene interaction networks, in order to deduce by cross-species gene homology how phenotype is buffered against disease-risk genotypes. Yeast gene interaction network analysis to date has revealed biology more complex than previously imagined. This has motivated the development of more powerful yeast cell array phenotyping methods to globally model the role of gene interaction networks in modulating phenotypes (which we call yeast phenomic analysis). The article illustrates yeast phenomic technology, which is applied here to quantify gene X media interaction at higher resolution and supports use of a human-like media for future applications of yeast phenomics for modeling human disease. PMID:25668739

  12. Genetic Association and Gene-Gene Interaction Analyses in African American Dialysis Patients With Nondiabetic Nephropathy

    PubMed Central

    Bostrom, Meredith A.; Kao, W.H. Linda; Li, Man; Abboud, Hanna E.; Adler, Sharon G.; Iyengar, Sudha K.; Kimmel, Paul L.; Hanson, Robert L.; Nicholas, Susanne B.; Rasooly, Rebekah S.; Sedor, John R.; Coresh, Josef; Kohn, Orly F.; Leehey, David J.; Thornley-Brown, Denyse; Bottinger, Erwin P.; Lipkowitz, Michael S.; Meoni, Lucy A.; Klag, Michael J.; Lu, Lingyi; Hicks, Pamela J.; Langefeld, Carl D.; Parekh, Rulan S.; Bowden, Donald W.; Freedman, Barry I.

    2011-01-01

    Background African Americans (AAs) have increased susceptibility to non-diabetic nephropathy relative to European Americans. Study Design Follow-up of a pooled genome-wide association study (GWAS) in AA dialysis patients with nondiabetic nephropathy; novel gene-gene interaction analyses. Setting & Participants Wake Forest sample: 962 AA nondiabetic nephropathy cases; 931 non-nephropathy controls. Replication sample: 668 Family Investigation of Nephropathy and Diabetes (FIND) AA nondiabetic nephropathy cases; 804 non-nephropathy controls. Predictors Individual genotyping of top 1420 pooled GWAS-associated single nucleotide polymorphisms (SNPs) and 54 SNPs in six nephropathy susceptibility genes. Outcomes APOL1 genetic association and additional candidate susceptibility loci interacting with, or independently from, APOL1. Results The strongest GWAS associations included two non-coding APOL1 SNPs, rs2239785 (odds ratio [OR], 0.33; dominant; p = 5.9 × 10−24) and rs136148 (OR, 0.54; additive; p = 1.1 × 10−7) with replication in FIND (p = 5.0 × 10−21 and 1.9 × 10−05, respectively). Rs2239785 remained significantly associated after controlling for the APOL1 G1 and G2 coding variants. Additional top hits included a CFH SNP(OR from meta-analysis in above 3367 AA cases and controls, 0.81; additive; p = 6.8 × 10−4). The 1420 SNPs were tested for interaction with APOL1 G1 and G2 variants. Several interactive SNPs were detected, the most significant was rs16854341 in the podocin gene (NPHS2) (p = 0.0001). Limitations Non-pooled GWAS have not been performed in AA nondiabetic nephropathy. Conclusions This follow-up of a pooled GWAS provides additional and independent evidence that APOL1 variants contribute to nondiabetic nephropathy in AAs and identified additional associated and interactive non-diabetic nephropathy susceptibility genes. PMID:22119407

  13. GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.

    PubMed

    Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming

    2015-01-01

    The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.

  14. Gene-environment interactions in geriatric depression.

    PubMed

    Lotrich, Francis E

    2011-06-01

    In older adults, several environmental challenges can potentially trigger the onset of an episode of major depression. Vulnerability to these challenges can be influenced by genetics. There is accumulating evidence for an interaction between stress and a serotonin transporter polymorphism, though there is also heterogeneity among studies. Other relevant genes include those encoding for the neuroendocrine stress axis, growth factors, and other monoaminergic systems. Each of these may interact with either predisposing traumas in early childhood or precipitating events later in life. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Polymorphism at the TNF-alpha gene interacts with Mediterranean diet to influence triglyceride metabolism and inflammation status in metabolic syndrome patients: From the CORDIOPREV clinical trial.

    PubMed

    Gomez-Delgado, Francisco; Alcala-Diaz, Juan Francisco; Garcia-Rios, Antonio; Delgado-Lista, Javier; Ortiz-Morales, Ana; Rangel-Zuñiga, Oriol; Tinahones, Francisco Jose; Gonzalez-Guardia, Lorena; Malagon, Maria M; Bellido-Muñoz, Enrique; Ordovas, Jose M; Perez-Jimenez, Francisco; Lopez-Miranda, Jose; Perez-Martinez, Pablo

    2014-07-01

    To examine whether the consumption of a Mediterranean diet (MedDiet), compared with a low-fat diet, interacts with two single nucleotide polymorphisms at the tumor necrosis factor alpha gene (rs1800629, rs1799964) in order to improve triglycerides (TG), glycemic control, and inflammation markers. Genotyping, biochemical measurements, dietary intervention, and oral fat load test meal were determined in 507 metabolic syndrome (MetS) patients selected from all the subjects included in CORDIOPREV clinical trial (n = 1002). At baseline, G/G subjects (n = 408) at the rs1800629 polymorphism, showed higher fasting and postprandial TG (p = 0.003 and p = 0.025, respectively), and high sensitivity C-reactive protein (hsCRP) (p = 0.003) plasma concentrations than carriers of the minor A-allele (G/A + A/A) (n = 99). After 12 months of MedDiet, baseline differences between genotypes disappeared. The decrease in TG and hsCRP was statistically significant in G/G subjects (n = 203) compared with carriers of the minor A-allele (p = 0.005 and p = 0.034, respectively) (n = 48). No other gene-diet interactions were observed in either diet. These results suggest that the rs1800629 at the tumor necrosis factor alpha gene interacts with MedDiet to influence TG metabolism and inflammation status in MetS subjects. Understanding the role of gene-diet interactions may be the best strategy for personalized treatment of MetS. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gene expression profiling of Escherichia coli in response to interactions with the lettuce rhizosphere.

    PubMed

    Hou, Z; Fink, R C; Black, E P; Sugawara, M; Zhang, Z; Diez-Gonzalez, F; Sadowsky, M J

    2012-11-01

    The objective of this study was to examine transcriptional changes in Escherichia coli when the bacterium was growing in the lettuce rhizoshpere. A combination of microarray analyses, colonization assays and confocal microscopy was used to gain a more complete understanding of bacterial genes involved in the colonization and growth of E. coli K12 in the lettuce root rhizosphere using a novel hydroponic assay system. After 3 days of interaction with lettuce roots, E. coli genes involved in protein synthesis, stress responses and attachment were up-regulated. Mutants in curli production (crl, csgA) and flagella synthesis (fliN) had a reduced capacity to attach to roots as determined by bacterial counts and by confocal laser scanning microscopy. This study indicates that E. coli K12 has the capability to colonize lettuce roots by using attachment genes and can readily adapt to the rhizosphere of lettuce plants. Results of this study show curli production and biofilm modulation genes are important for rhizosphere colonization and may provide useful targets to disrupt this process. Further studies using pathogenic strains will provide additional information about lettuce-E. coli interactions. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  17. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids: the DiOGenes study.

    PubMed

    Brahe, Lena K; Ängquist, Lars; Larsen, Lesli H; Vimaleswaran, Karani S; Hager, Jörg; Viguerie, Nathalie; Loos, Ruth J F; Handjieva-Darlenska, Teodora; Jebb, Susan A; Hlavaty, Petr; Larsen, Thomas M; Martinez, J Alfredo; Papadaki, Angeliki; Pfeiffer, Andreas F H; van Baak, Marleen A; Sørensen, Thorkild I A; Holst, Claus; Langin, Dominique; Astrup, Arne; Saris, Wim H M

    2013-09-14

    Blood lipid response to a given dietary intervention could be determined by the effect of diet, gene variants or gene-diet interactions. The objective of the present study was to investigate whether variants in presumed nutrient-sensitive genes involved in lipid metabolism modified lipid profile after weight loss and in response to a given diet, among overweight European adults participating in the Diet Obesity and Genes study. By multiple linear regressions, 240 SNPs in twenty-four candidate genes were investigated for SNP main and SNP-diet interaction effects on total cholesterol, LDL-cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect) ,and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP-dietary protein interaction effect on TAG was identified for lipin 1 (LPIN1) rs4315495, with a decrease in TAG of 20.26 mmol/l per A-allele/protein unit (95% CI 20.38, 20.14, P=0.000043). In conclusion, we investigated SNP-diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration.

  18. Synergistic interactions of biotic and abiotic environmental stressors on gene expression.

    PubMed

    Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E

    2015-03-01

    Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors.

  19. Genome-wide gene–gene interaction analysis for next-generation sequencing

    PubMed Central

    Zhao, Jinying; Zhu, Yun; Xiong, Momiao

    2016-01-01

    The critical barrier in interaction analysis for next-generation sequencing (NGS) data is that the traditional pairwise interaction analysis that is suitable for common variants is difficult to apply to rare variants because of their prohibitive computational time, large number of tests and low power. The great challenges for successful detection of interactions with NGS data are (1) the demands in the paradigm of changes in interaction analysis; (2) severe multiple testing; and (3) heavy computations. To meet these challenges, we shift the paradigm of interaction analysis between two SNPs to interaction analysis between two genomic regions. In other words, we take a gene as a unit of analysis and use functional data analysis techniques as dimensional reduction tools to develop a novel statistic to collectively test interaction between all possible pairs of SNPs within two genome regions. By intensive simulations, we demonstrate that the functional logistic regression for interaction analysis has the correct type 1 error rates and higher power to detect interaction than the currently used methods. The proposed method was applied to a coronary artery disease dataset from the Wellcome Trust Case Control Consortium (WTCCC) study and the Framingham Heart Study (FHS) dataset, and the early-onset myocardial infarction (EOMI) exome sequence datasets with European origin from the NHLBI's Exome Sequencing Project. We discovered that 6 of 27 pairs of significantly interacted genes in the FHS were replicated in the independent WTCCC study and 24 pairs of significantly interacted genes after applying Bonferroni correction in the EOMI study. PMID:26173972

  20. [From stone-craved genes to Michelangelo: significance and different aspects of gene-environment interaction].

    PubMed

    Lazary, Judit

    2017-12-01

    Although genetic studies have improved a lot in recent years, without clinical relevance sometimes their significance is devalued. Reviewing the major milestones of psychogenomics it can be seen that break-through success is just a question of time. Investigations of direct effect of genetic variants on phenotypes have not yielded positive findings. However, an important step was taken by adapting the gene-environment interaction model. In this model genetic vulnerability stepped into the place of "stone craved" pathology. Further progress happened when studies of environmental factors were combined with genetic function (epigenetics). This model provided the possibility for investigation of therapeutic interventions as environmental factors and it was proven that effective treatments exert a modifying effect on gene expression. Moreover, recent developments focus on therapeutic manipulation of gene function (e.g. chemogenetics). Instead of "stone craved" genes up-to-date dynamically interacting gene function became the basis of psychogenomics in which correction of the expression is a potential therapeutic tool. Keeping in mind these trends and developments, there is no doubt that genetics will be a fundamental part of daily clinical routine in the future.

  1. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks

    PubMed Central

    Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways. PMID:29049295

  2. Inferring gene and protein interactions using PubMed citations and consensus Bayesian networks.

    PubMed

    Deeter, Anthony; Dalman, Mark; Haddad, Joseph; Duan, Zhong-Hui

    2017-01-01

    The PubMed database offers an extensive set of publication data that can be useful, yet inherently complex to use without automated computational techniques. Data repositories such as the Genomic Data Commons (GDC) and the Gene Expression Omnibus (GEO) offer experimental data storage and retrieval as well as curated gene expression profiles. Genetic interaction databases, including Reactome and Ingenuity Pathway Analysis, offer pathway and experiment data analysis using data curated from these publications and data repositories. We have created a method to generate and analyze consensus networks, inferring potential gene interactions, using large numbers of Bayesian networks generated by data mining publications in the PubMed database. Through the concept of network resolution, these consensus networks can be tailored to represent possible genetic interactions. We designed a set of experiments to confirm that our method is stable across variation in both sample and topological input sizes. Using gene product interactions from the KEGG pathway database and data mining PubMed publication abstracts, we verify that regardless of the network resolution or the inferred consensus network, our method is capable of inferring meaningful gene interactions through consensus Bayesian network generation with multiple, randomized topological orderings. Our method can not only confirm the existence of currently accepted interactions, but has the potential to hypothesize new ones as well. We show our method confirms the existence of known gene interactions such as JAK-STAT-PI3K-AKT-mTOR, infers novel gene interactions such as RAS- Bcl-2 and RAS-AKT, and found significant pathway-pathway interactions between the JAK-STAT signaling and Cardiac Muscle Contraction KEGG pathways.

  3. Complex interactions amongst N-cadherin, DLAR, and Liprin-α regulate Drosophila photoreceptor axon targeting

    PubMed Central

    Prakash, Saurabh; Maclendon, Helen; Dubreuil, Catherine I.; Ghose, Aurnab; Hwa, Jennifer; Dennehy, Kelly A.; Tomalty, Katharine M.H.; Clark, Kelsey; Van Vactor, David; Clandinin, Thomas R.

    2009-01-01

    The formation of stable adhesive contacts between pre- and post-synaptic neurons represents the initial step in synapse assembly. The cell adhesion molecule N-cadherin, the receptor tyrosine phosphatase DLAR, and the scaffolding molecule Liprin-α play critical, evolutionarily conserved roles in this process. However, how these proteins signal to the growth cone, and are themselves regulated, remains poorly understood. Using Drosophila photoreceptors (R cells) as a model, we evaluate genetic and physical interactions among these three proteins. We demonstrate that DLAR function in this context is independent of phosphatase activity, but requires interactions mediated by its intracellular domain. Genetic studies reveal both positive and, surprisingly, inhibitory interactions amongst all three genes. These observations are corroborated by biochemical studies demonstrating that DLAR physically associates via its phosphatase domain with N-cadherin in Drosophila embryos. Together, these data demonstrate that N-cadherin, DLAR, and Liprin-α function in a complex to regulate adhesive interactions between pre- and post-synaptic cells, and provide a novel mechanism for controlling the activity of liprin-α in the developing growth cone. PMID:19766621

  4. Genes involved in host-parasite interactions can be revealed by their correlated expression.

    PubMed

    Reid, Adam James; Berriman, Matthew

    2013-02-01

    Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host-parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.

  5. The Impact of Gene-Environment Dependence and Misclassification in Genetic Association Studies Incorporating Gene-Environment Interactions

    PubMed Central

    Lindström, Sara; Yen, Yu-Chun; Spiegelman, Donna; Kraft, Peter

    2009-01-01

    The possibility of gene-environment interaction can be exploited to identify genetic variants associated with disease using a joint test of genetic main effect and gene-environment interaction. We consider how exposure misclassification and dependence between the true exposure E and the tested genetic variant G affect this joint test in absolute terms and relative to three other tests: the marginal test (G), the standard test for multiplicative gene-environment interaction (GE), and the case-only test for interaction (GE-CO). All tests can have inflated Type I error rate when E and G are correlated in the underlying population. For the GE and G-GE tests this inflation is only noticeable when the gene-environment dependence is unusually strong; the inflation can be large for the GE-CO test even for modest correlation. The joint G-GE test has greater power than the GE test generally, and greater power than the G test when there is no genetic main effect and the measurement error is small to moderate. The joint G-GE test is an attractive test for assessing genetic association when there is limited knowledge about casual mechanisms a priori, even in the presence of misclassification in environmental exposure measurement and correlation between exposure and genetic variants. PMID:19521099

  6. Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium.

    PubMed

    Hohman, Timothy J; Bush, William S; Jiang, Lan; Brown-Gentry, Kristin D; Torstenson, Eric S; Dudek, Scott M; Mukherjee, Shubhabrata; Naj, Adam; Kunkle, Brian W; Ritchie, Marylyn D; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard; Farrer, Lindsay A; Pericak-Vance, Margaret A; Haines, Jonathan L; Thornton-Wells, Tricia A

    2016-02-01

    Late-onset Alzheimer disease (AD) has a complex genetic etiology, involving locus heterogeneity, polygenic inheritance, and gene-gene interactions; however, the investigation of interactions in recent genome-wide association studies has been limited. We used a biological knowledge-driven approach to evaluate gene-gene interactions for consistency across 13 data sets from the Alzheimer Disease Genetics Consortium. Fifteen single nucleotide polymorphism (SNP)-SNP pairs within 3 gene-gene combinations were identified: SIRT1 × ABCB1, PSAP × PEBP4, and GRIN2B × ADRA1A. In addition, we extend a previously identified interaction from an endophenotype analysis between RYR3 × CACNA1C. Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an epigenetic analysis of AD. The observed interactions in this article highlight ways in which genotypic variation related to disease may depend on the genetic context in which it occurs. Further, our results highlight the utility of evaluating genetic interactions to explain additional variance in AD risk and identify novel molecular mechanisms of AD pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data

    PubMed Central

    McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.

    2013-01-01

    Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main

  8. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks.

    PubMed

    Ficklin, Stephen P; Luo, Feng; Feltus, F Alex

    2010-09-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes.

  9. Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus.

    PubMed Central

    Kalos, M; Zissler, J

    1990-01-01

    The prokaryote Myxococcus xanthus is a model for cell interactions important in multicellular behavior. We used the transposon TnphoA to specifically identify genes for cell-surface factors involved in cell interactions. From a library of 10,700 insertions of TnphoA, we isolated 36 that produced alkaline phosphatase activity. Three TnphoA insertions tagged cell motility genes, called cgl, which control the adventurous movement of cells. The products of the tagged cgl genes could function in trans upon other cells and were localized primarily in the cell envelope and extracellular space, consistent with TnphoA tagging genes for extracellular factors controlling motility. Images PMID:2172982

  10. Melanopsin gene variations interact with season to predict sleep onset and chronotype.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Franzen, Peter L; Hasler, Brant P; Wood-Vasey, W Michael; Nimgaonkar, Vishwajit L; Miller, Megan A; Kepreos, Kyle M; Ferrell, Robert E; Manuck, Stephen B

    2012-10-01

    The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are associated with differences in sleep-wake behavior among those not suffering from a mood disorder, the authors tested associations between melanopsin gene polymorphisms and self-reported sleep timing (sleep onset and wake time) in a community sample (N = 234) of non-Hispanic Caucasian participants (age 30-54 yrs) with no history of psychological, neurological, or sleep disorders. The authors also tested the effect of melanopsin variations on differences in preferred sleep and activity timing (i.e., chronotype), which may reflect differences in circadian phase, sleep homeostasis, or both. Daylength on the day of assessment was measured and included in analyses. DNA samples were genotyped for melanopsin gene polymorphisms using fluorescence polarization. P10L genotype interacted with daylength to predict self-reported sleep onset (interaction p < .05). Specifically, sleep onset among those with the TT genotype was later in the day when individuals were assessed on longer days and earlier in the day on shorter days, whereas individuals in the other genotype groups (i.e., CC and CT) did not show this interaction effect. P10L genotype also interacted in an analogous way with daylength to predict self-reported morningness (interaction p < .05). These results suggest that the P10L TT genotype interacts with daylength to predispose individuals to vary in sleep onset and chronotype as a function of daylength, whereas other genotypes at P10L do not seem to have effects that vary by

  11. Insulators form gene loops by interacting with promoters in Drosophila.

    PubMed

    Erokhin, Maksim; Davydova, Anna; Kyrchanova, Olga; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2011-09-01

    Chromatin insulators are regulatory elements involved in the modulation of enhancer-promoter communication. The 1A2 and Wari insulators are located immediately downstream of the Drosophila yellow and white genes, respectively. Using an assay based on the yeast GAL4 activator, we have found that both insulators are able to interact with their target promoters in transgenic lines, forming gene loops. The existence of an insulator-promoter loop is confirmed by the fact that insulator proteins could be detected on the promoter only in the presence of an insulator in the transgene. The upstream promoter regions, which are required for long-distance stimulation by enhancers, are not essential for promoter-insulator interactions. Both insulators support basal activity of the yellow and white promoters in eyes. Thus, the ability of insulators to interact with promoters might play an important role in the regulation of basal gene transcription.

  12. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show gene-diet interactions.

    PubMed

    Fernández-Real, J M; Corella, D; Goumidi, L; Mercader, J M; Valdés, S; Rojo Martínez, G; Ortega, F; Martinez-Larrad, M-T; Gómez-Zumaquero, J M; Salas-Salvadó, J; Martinez González, M A; Covas, M I; Botas, P; Delgado, E; Cottel, D; Ferrieres, J; Amouyel, P; Ricart, W; Ros, E; Meirhaeghe, A; Serrano-Rios, M; Soriguer, F; Estruch, R

    2013-11-01

    Thyroid hormone receptor-beta resistance has been associated with metabolic traits. THRA gene sequencing of an obese woman (index case) who presented as empirical thyroid hormone receptor-α (THRA) resistance, disclosed a polymorphism (rs12939700) in a critical region involved in TRα alternative processing. THRA gene variants were evaluated in three independent europid populations (i) in two population cohorts at baseline (n=3417 and n=2265), 6 years later (n=2139) and (ii) in 4734 high cardiovascular risk subjects (HCVR, PREDIMED trial). The minor allele of the index case polymorphism (rs12939700), despite having a very low frequency (4%), was significantly associated with higher body mass index (BMI) (P=0.042) in HCVR subjects. A more frequent THRA polymorphism (rs1568400) was associated with higher BMI in subjects from the population (P=0.00008 and P=0.05) after adjusting for several confounders. Rs1568400 was also strongly associated with fasting triglycerides (P dominant=3.99 × 10(-5)). In the same sample, 6 years later, age and sex-adjusted risk of developing obesity was significantly increased in GG homozygotes (odds ratio 2.93 (95% confidence interval, 1.05-6.95)). In contrast, no association between rs1568400 and BMI was observed in HCVR subjects, in whom obesity was highly prevalent. This might be explained by the presence of an interaction (P <0.001) among the rs1568400 variant, BMI and saturated fat intake. Only when saturated fat intake was high (>24.5 g d(-1)), GG carriers showed a significantly higher BMI than A carriers after controlling for energy intake and physical activity. THRA gene polymorphisms are associated with obesity development. This is a novel observation linking the THRA locus to metabolic phenotypes.

  13. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  14. Gene-Environment Interactions in Schizophrenia: Review of Epidemiological Findings and Future Directions

    PubMed Central

    van Os, Jim; Rutten, Bart PF; Poulton, Richie

    2008-01-01

    Concern is building about high rates of schizophrenia in large cities, and among immigrants, cannabis users, and traumatized individuals, some of which likely reflects the causal influence of environmental exposures. This, in combination with very slow progress in the area of molecular genetics, has generated interest in more complicated models of schizophrenia etiology that explicitly posit gene-environment interactions (EU-GEI. European Network of Schizophrenia Networks for the Study of Gene Environment Interactions. Schizophrenia aetiology: do gene-environment interactions hold the key? [published online ahead of print April 25, 2008] Schizophr Res; S0920-9964(08) 00170–9). Although findings of epidemiological gene-environment interaction (G × E) studies are suggestive of widespread gene-environment interactions in the etiology of schizophrenia, numerous challenges remain. For example, attempts to identify gene-environment interactions cannot be equated with molecular genetic studies with a few putative environmental variables “thrown in”: G × E is a multidisciplinary exercise involving epidemiology, psychology, psychiatry, neuroscience, neuroimaging, pharmacology, biostatistics, and genetics. Epidemiological G × E studies using indirect measures of genetic risk in genetically sensitive designs have the advantage that they are able to model the net, albeit nonspecific, genetic load. In studies using direct molecular measures of genetic variation, a hypothesis-driven approach postulating synergistic effects between genes and environment impacting on a final common pathway, such as “sensitization” of mesolimbic dopamine neurotransmission, while simplistic, may provide initial focus and protection against the numerous false-positive and false-negative results that these investigations engender. Experimental ecogenetic approaches with randomized assignment may help to overcome some of the limitations of observational studies and allow for the additional

  15. Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models

    PubMed Central

    Marr, Julia; Bock, Gavin; Desbonnet, Lieve; Waddington, John

    2016-01-01

    The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia. PMID:27725886

  16. Spicing Up the N Gene: F. O. Holmes and Tobacco mosaic virus Resistance in Capsicum and Nicotiana Plants.

    PubMed

    Scholthof, Karen-Beth G

    2017-02-01

    One of the seminal events in plant pathology was the discovery by Francis O. Holmes that necrotic local lesions induced on certain species of Nicotiana following rub-inoculation of Tobacco mosaic virus (TMV) was due to a specific interaction involving a dominant host gene (N). From this, Holmes had an idea that if the N gene from N. glutinosa was introgressed into susceptible tobacco, the greatly reduced titer of TMV would, by extension, prevent subsequent infection of tomato and pepper plants by field workers whose hands were contaminated with TMV from their use of chewing and smoking tobacco. The ultimate outcome has many surprising twists and turns, including Holmes' failure to obtain fertile crosses of N. glutinosa × N. tabacum after 3 years of intensive work. Progress was made with N. digluta, a rare amphidiploid that was readily crossed with N. tabacum. And, importantly, the first demonstration by Holmes of the utility of interspecies hybridization for virus resistance was made with Capsicum (pepper) species with the identification of the L gene in Tabasco pepper, that he introgressed into commercial bell pepper varieties. Holmes' findings are important as they predate Flor's gene-for-gene hypothesis, show the use of interspecies hybridization for control of plant pathogens, and the use of the local lesion as a bioassay to monitor resistance events in crop plants.

  17. Gene-diet interaction of a common FADS1 variant with marine polyunsaturated fatty acids for fatty acid composition in plasma and erythrocytes among men.

    PubMed

    Takkunen, Markus J; de Mello, Vanessa D; Schwab, Ursula S; Kuusisto, Johanna; Vaittinen, Maija; Ågren, Jyrki J; Laakso, Markku; Pihlajamäki, Jussi; Uusitupa, Matti I J

    2016-02-01

    Limited information exists on how the relationship between dietary intake of fat and fatty acids in erythrocytes and plasma is modulated by polymorphisms in the FADS gene cluster. We examined gene-diet interaction of total marine PUFA intake with a known gene encoding Δ-5 desaturase enzyme (FADS1) variant (rs174550) for fatty acids in erythrocyte membranes and plasma phospholipids (PL), cholesteryl esters (CE), and triglycerides (TG). In this cross-sectional study, fatty acid compositions were measured using GC, and total intake of polyunsaturated fat from fish and fish oil was estimated using a food frequency questionnaire in a subsample (n = 962) of the Metabolic Syndrome in Men Study. We found nominally significant gene-diet interactions for eicosapentaenoic acid (EPA, 20:5n-3) in erythrocytes (pinteraction = 0.032) and for EPA in plasma PL (pinteraction = 0.062), CE (pinteraction = 0.035), and TG (pinteraction = 0.035), as well as for docosapentaenoic acid (22:5n-3) in PL (pinteraction = 0.007). After excluding omega-3 supplement users, we found a significant gene-diet interaction for EPA in erythrocytes (pinteraction < 0.003). In a separate cohort of the Kuopio Obesity Surgery Study, the same locus was strongly associated with hepatic mRNA expression of FADS1 (p = 1.5 × 10(-10) ). FADS1 variants may modulate the relationship between marine fatty acid intake and circulating levels of long-chain omega-3 fatty acids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. GeneWiz browser: An Interactive Tool for Visualizing Sequenced Chromosomes.

    PubMed

    Hallin, Peter F; Stærfeldt, Hans-Henrik; Rotenberg, Eva; Binnewies, Tim T; Benham, Craig J; Ussery, David W

    2009-09-25

    We present an interactive web application for visualizing genomic data of prokaryotic chromosomes. The tool (GeneWiz browser) allows users to carry out various analyses such as mapping alignments of homologous genes to other genomes, mapping of short sequencing reads to a reference chromosome, and calculating DNA properties such as curvature or stacking energy along the chromosome. The GeneWiz browser produces an interactive graphic that enables zooming from a global scale down to single nucleotides, without changing the size of the plot. Its ability to disproportionally zoom provides optimal readability and increased functionality compared to other browsers. The tool allows the user to select the display of various genomic features, color setting and data ranges. Custom numerical data can be added to the plot allowing, for example, visualization of gene expression and regulation data. Further, standard atlases are pre-generated for all prokaryotic genomes available in GenBank, providing a fast overview of all available genomes, including recently deposited genome sequences. The tool is available online from http://www.cbs.dtu.dk/services/gwBrowser. Supplemental material including interactive atlases is available online at http://www.cbs.dtu.dk/services/gwBrowser/suppl/.

  19. Measured Gene-by-Environment Interaction in Relation to Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nigg, Joel; Nikolas, Molly; Burt, S. Alexandra

    2010-01-01

    Objective: To summarize and evaluate the state of knowledge regarding the role of measured gene-by-environment interactions in relation to attention-deficit/hyperactivity disorder. Method: A selective review of methodologic issues was followed by a systematic search for relevant articles on measured gene-by-environment interactions; the search…

  20. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction

    PubMed Central

    Gunasekara, Chathura; Zhang, Kui; Deng, Wenping; Brown, Laura

    2018-01-01

    Abstract Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks were calculated and ranked. We showed that the TFs with higher frequencies were usually genuine pathway regulators upon evaluating multiple pathways in plants, animals and yeast. Comparison of TGMI with several other algorithms demonstrated its higher accuracy. Therefore, TGMI will be a valuable tool that can help biologists to identify regulators of metabolic pathways and biological processes from the exploded high-throughput gene expression data in public repositories. PMID:29579312

  1. ToxCast Data Expands Universe of Chemical-Gene Interactions (SOT)

    EPA Science Inventory

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets. Thi...

  2. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development.

    PubMed

    Hu, Yun; Liang, Wanqi; Yin, Changsong; Yang, Xuelian; Ping, Baozhe; Li, Anxue; Jia, Ru; Chen, Mingjiao; Luo, Zhijing; Cai, Qiang; Zhao, Xiangxiang; Zhang, Dabing; Yuan, Zheng

    2015-09-01

    During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  3. Detecting regulatory gene-environment interactions with unmeasured environmental factors.

    PubMed

    Fusi, Nicoló; Lippert, Christoph; Borgwardt, Karsten; Lawrence, Neil D; Stegle, Oliver

    2013-06-01

    Genomic studies have revealed a substantial heritable component of the transcriptional state of the cell. To fully understand the genetic regulation of gene expression variability, it is important to study the effect of genotype in the context of external factors such as alternative environmental conditions. In model systems, explicit environmental perturbations have been considered for this purpose, allowing to directly test for environment-specific genetic effects. However, such experiments are limited to species that can be profiled in controlled environments, hampering their use in important systems such as human. Moreover, even in seemingly tightly regulated experimental conditions, subtle environmental perturbations cannot be ruled out, and hence unknown environmental influences are frequent. Here, we propose a model-based approach to simultaneously infer unmeasured environmental factors from gene expression profiles and use them in genetic analyses, identifying environment-specific associations between polymorphic loci and individual gene expression traits. In extensive simulation studies, we show that our method is able to accurately reconstruct environmental factors and their interactions with genotype in a variety of settings. We further illustrate the use of our model in a real-world dataset in which one environmental factor has been explicitly experimentally controlled. Our method is able to accurately reconstruct the true underlying environmental factor even if it is not given as an input, allowing to detect genuine genotype-environment interactions. In addition to the known environmental factor, we find unmeasured factors involved in novel genotype-environment interactions. Our results suggest that interactions with both known and unknown environmental factors significantly contribute to gene expression variability. and implementation: Software available at http://pmbio.github.io/envGPLVM/. Supplementary data are available at Bioinformatics online.

  4. Key genes and pathways in measles and their interaction with environmental chemicals

    PubMed Central

    Zhang, Rongqiang; Jiang, Hualin; Li, Fengying; Su, Ning; Ding, Yi; Mao, Xiang; Ren, Dan; Wang, Jing

    2018-01-01

    The aim of the present study was to explore key genes that may have a role in the pathology of measles virus infection and to clarify the interaction networks between environmental factors and differentially expressed genes (DEGs). After screening the database of the Gene Expression Omnibus of the National Center for Biotechnology Information, the dataset GSE5808 was downloaded and analyzed. A global normalization method was performed to minimize data inconsistencies and heterogeneity. DEGs during different stages of measles virus infection were explored using R software (v3.4.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed using Cytoscape 3.4.0 software. A protein-protein interaction (PPI) network of the DEGs was obtained from the STRING database v9.05. A total of 43 DEGs were obtained from four analyzed sample groups, including 10 highly expressed genes and 33 genes with decreased expression. The most enriched pathways based on KEGG analysis were fatty acid elongation, cytokine-cytokine receptor interaction and RNA degradation. The genes mentioned in the PPI network were mainly associated with protein binding and chemokine activity. A total of 219 chemicals were identified that may, jointly or on their own, interact with the 6 DEGs between the control group and patients with measles (at hospital entry), including benzo(a)pyrene (BaP) and tetrachlorodibenzodioxin (TCDD). In conclusion, the present study revealed that chemokines and environmental chemicals, e.g. BaP and TCDD, may affect the development of measles. PMID:29805511

  5. Key genes and pathways in measles and their interaction with environmental chemicals.

    PubMed

    Zhang, Rongqiang; Jiang, Hualin; Li, Fengying; Su, Ning; Ding, Yi; Mao, Xiang; Ren, Dan; Wang, Jing

    2018-06-01

    The aim of the present study was to explore key genes that may have a role in the pathology of measles virus infection and to clarify the interaction networks between environmental factors and differentially expressed genes (DEGs). After screening the database of the Gene Expression Omnibus of the National Center for Biotechnology Information, the dataset GSE5808 was downloaded and analyzed. A global normalization method was performed to minimize data inconsistencies and heterogeneity. DEGs during different stages of measles virus infection were explored using R software (v3.4.0). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed using Cytoscape 3.4.0 software. A protein-protein interaction (PPI) network of the DEGs was obtained from the STRING database v9.05. A total of 43 DEGs were obtained from four analyzed sample groups, including 10 highly expressed genes and 33 genes with decreased expression. The most enriched pathways based on KEGG analysis were fatty acid elongation, cytokine-cytokine receptor interaction and RNA degradation. The genes mentioned in the PPI network were mainly associated with protein binding and chemokine activity. A total of 219 chemicals were identified that may, jointly or on their own, interact with the 6 DEGs between the control group and patients with measles (at hospital entry), including benzo(a)pyrene (BaP) and tetrachlorodibenzodioxin (TCDD). In conclusion, the present study revealed that chemokines and environmental chemicals, e.g. BaP and TCDD, may affect the development of measles.

  6. A gene-environment interaction analysis of plasma selenium with prevalent and incident diabetes: The Hortega study.

    PubMed

    Galan-Chilet, Inmaculada; Grau-Perez, Maria; De Marco, Griselda; Guallar, Eliseo; Martin-Escudero, Juan Carlos; Dominguez-Lucas, Alejandro; Gonzalez-Manzano, Isabel; Lopez-Izquierdo, Raul; Briongos-Figuero, Laisa Socorro; Redon, Josep; Chaves, Felipe Javier; Tellez-Plaza, Maria

    2017-08-01

    Selenium and single-nucleotide-polymorphisms in selenoprotein genes have been associated to diabetes. However, the interaction of selenium with genetic variation in diabetes and oxidative stress-related genes has not been evaluated as a potential determinant of diabetes risk. We evaluated the cross-sectional and prospective associations of plasma selenium concentrations with type 2 diabetes, and the interaction of selenium concentrations with genetic variation in candidate polymorphisms, in a representative sample of 1452 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.2µg/L. 120 participants had diabetes at baseline. Among diabetes-free participants who were not lost during the follow-up (N=1234), 75 developed diabetes over time. The multivariable adjusted odds ratios (95% confidence interval) for diabetes prevalence comparing the second and third to the first tertiles of plasma selenium levels were 1.80 (1.03, 3.14) and 1.97 (1.14, 3.41), respectively. The corresponding hazard ratios (95% CI) for diabetes incidence were 1.76 (0.96, 3.22) and 1.80 (0.98, 3.31), respectively. In addition, we observed significant interactions between selenium and polymorphisms in PPARGC1A, and in genes encoding mitochondrial proteins, such as BCS1L and SDHA, and suggestive interactions of selenium with other genes related to selenoproteins and redox metabolism. Plasma selenium was positively associated with prevalent and incident diabetes. While the statistical interactions of selenium with polymorphisms involved in regulation of redox and insulin signaling pathways provide biological plausibility to the positive associations of selenium with diabetes, further research is needed to elucidate the causal pathways underlying these associations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Oxytocin receptor gene (OXTR) in relation to loneliness in adolescence: interactions with sex, parental support, and DRD2 and 5-HTTLPR genotypes.

    PubMed

    van Roekel, Eeske; Verhagen, Maaike; Engels, Rutger C M E; Goossens, Luc; Scholte, Ron H J

    2013-10-01

    Recent research has shown that loneliness, a common problem in adolescence, may have a genetic basis. The evidence, though, was limited mostly to serotonin-related and dopamine-related genes. In the present study, we focused on the oxytocin receptor gene (OXTR). Associations were examined in a longitudinal study spanning five annual waves (N=307). The relations between OXTR and loneliness were examined, as well as interactions between OXTR and sex, parental support, 5-HTTLPR genotype, and DRD2 genotype. Using Latent Growth Curve Modeling, the OXTR genotype was not directly related to loneliness. An OXTR×sex interaction was found. Girls showed a steeper decline in loneliness when they had an A allele compared with girls who were homozygous for the G allele. In addition, a gene-gene interaction or epistasis was observed. Both boys and girls who had at least one A1 allele for the DRD2 gene and also had the GG genotype for the OXTR gene showed stable levels of loneliness over time. The present study is the first to show that the GG genotype for the OXTR gene is linked to the development of loneliness in adolescence and that this association is moderated by participants' sex and their genotype for a dopamine-related gene.

  8. Entropy Based Genetic Association Tests and Gene-Gene Interaction Tests

    PubMed Central

    de Andrade, Mariza; Wang, Xin

    2011-01-01

    In the past few years, several entropy-based tests have been proposed for testing either single SNP association or gene-gene interaction. These tests are mainly based on Shannon entropy and have higher statistical power when compared to standard χ2 tests. In this paper, we extend some of these tests using a more generalized entropy definition, Rényi entropy, where Shannon entropy is a special case of order 1. The order λ (>0) of Rényi entropy weights the events (genotype/haplotype) according to their probabilities (frequencies). Higher λ places more emphasis on higher probability events while smaller λ (close to 0) tends to assign weights more equally. Thus, by properly choosing the λ, one can potentially increase the power of the tests or the p-value level of significance. We conducted simulation as well as real data analyses to assess the impact of the order λ and the performance of these generalized tests. The results showed that for dominant model the order 2 test was more powerful and for multiplicative model the order 1 or 2 had similar power. The analyses indicate that the choice of λ depends on the underlying genetic model and Shannon entropy is not necessarily the most powerful entropy measure for constructing genetic association or interaction tests. PMID:23089811

  9. Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion.

    PubMed

    Babaei, Sepideh; Hulsman, Marc; Reinders, Marcel; de Ridder, Jeroen

    2013-01-23

    Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the protein-protein interaction network. To this end, we introduce a multi-scale diffusion kernel and apply it to a large collection of murine retroviral insertional mutagenesis data. The diffusion strength plays the role of scale parameter, determining the size of the network neighborhood that is taken into account. As a result, in addition to detecting genes with frequent mutations in their genomic vicinity, we find genes that harbor frequent mutations in their interaction network context. We identify densely connected components of known and putatively novel cancer genes and demonstrate that they are strongly enriched for cancer related pathways across the diffusion scales. Moreover, the mutations in the clusters exhibit a significant pattern of mutual exclusion, supporting the conjecture that such genes are functionally linked. Using multi-scale diffusion kernel, various infrequently mutated genes are found to harbor significant numbers of mutations in their interaction network neighborhood. Many of them are well-known cancer genes. The results demonstrate the importance of defining recurrent mutations while taking into account the interaction network context. Importantly, the putative cancer genes and networks detected in this study are found to be significant at different diffusion scales, confirming the necessity of a multi-scale analysis.

  10. pGenN, a gene normalization tool for plant genes and proteins in scientific literature.

    PubMed

    Ding, Ruoyao; Arighi, Cecilia N; Lee, Jung-Youn; Wu, Cathy H; Vijay-Shanker, K

    2015-01-01

    Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/).

  11. Disentangling Gene-Environment Correlations and Interactions on Adolescent Depressive Symptoms

    ERIC Educational Resources Information Center

    Lau, Jennifer Y. F.; Eley, Thalia C.

    2008-01-01

    Background: Genetic risks for depression may be expressed through greater exposure towards environmental stressors (gene-environment correlation, rGE) and increased susceptibility to these stressors (gene-environment interaction, G x E). While these effects are often studied independently, evidence supports their co-occurrence on depression.…

  12. The Rice Tungro Bacilliform Virus Gene II Product Interacts with the Coat Protein Domain of the Viral Gene III Polyprotein

    PubMed Central

    Herzog, Etienne; Guerra-Peraza, Orlene; Hohn, Thomas

    2000-01-01

    Rice tungro bacilliform virus (RTBV) is a plant pararetrovirus whose DNA genome contains four genes encoding three proteins and a large polyprotein. The function of most of the viral proteins is still unknown. To investigate the role of the gene II product (P2), we searched for interactions between this protein and other RTBV proteins. P2 was shown to interact with the coat protein (CP) domain of the viral gene III polyprotein (P3) both in the yeast two-hybrid system and in vitro. Domains involved in the P2-CP association have been identified and mapped on both proteins. To determine the importance of this interaction for viral multiplication, the infectivity of RTBV gene II mutants was investigated by agroinoculation of rice plants. The results showed that virus viability correlates with the ability of P2 to interact with the CP domain of P3. This study suggests that P2 could participate in RTBV capsid assembly. PMID:10666237

  13. Gender specific gene-environment interactions on laboratory-assessed aggression.

    PubMed

    Verona, Edelyn; Joiner, Thomas E; Johnson, Frank; Bender, Theodore W

    2006-01-01

    We examined gene-environment interactive effects on aggressive behavior among men and women genotyped (short versus long alleles) for the serotonin transporter gene. Aggressive behavior was indexed via a laboratory paradigm that measured the intensity and duration of shocks delivered to a putative "employee". Half of the participants were exposed to a physical stressor during the procedure (stress) and half were not (no-stress). Participants' physiological responses were gauged via acoustic startle eyeblink reactions (startle reactivity). Results were that men with the homozygous short (s/s) genotype showed increased aggression only under stress, whereas women and men carrying the long allele did not show differences in aggression in stress versus no-stress. However, although stress exposure produced increases in startle reactivity, there were no genotype or gender differences in physiology. These results replicate longitudinal research findings confirming the interactive effects of genes and environment on behavioral reactivity and on the development of externalizing psychopathological syndromes, at least in men.

  14. Operating Characteristics of Statistical Methods for Detecting Gene-by-Measured Environment Interaction in the Presence of Gene-Environment Correlation under Violations of Distributional Assumptions.

    PubMed

    Van Hulle, Carol A; Rathouz, Paul J

    2015-02-01

    Accurately identifying interactions between genetic vulnerabilities and environmental factors is of critical importance for genetic research on health and behavior. In the previous work of Van Hulle et al. (Behavior Genetics, Vol. 43, 2013, pp. 71-84), we explored the operating characteristics for a set of biometric (e.g., twin) models of Rathouz et al. (Behavior Genetics, Vol. 38, 2008, pp. 301-315), for testing gene-by-measured environment interaction (GxM) in the presence of gene-by-measured environment correlation (rGM) where data followed the assumed distributional structure. Here we explore the effects that violating distributional assumptions have on the operating characteristics of these same models even when structural model assumptions are correct. We simulated N = 2,000 replicates of n = 1,000 twin pairs under a number of conditions. Non-normality was imposed on either the putative moderator or on the ultimate outcome by ordinalizing or censoring the data. We examined the empirical Type I error rates and compared Bayesian information criterion (BIC) values. In general, non-normality in the putative moderator had little impact on the Type I error rates or BIC comparisons. In contrast, non-normality in the outcome was often mistaken for or masked GxM, especially when the outcome data were censored.

  15. The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli.

    PubMed

    Côté, Jean-Philippe; French, Shawn; Gehrke, Sebastian S; MacNair, Craig R; Mangat, Chand S; Bharat, Amrita; Brown, Eric D

    2016-11-22

    Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions. Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100 genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutrient stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo To better understand the genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82 nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interactions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were between nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient synthesis and to further characterize genes of unknown function in E. coli Moreover, understanding of bacterial growth under nutrient stress could aid in the development of novel antibiotic discovery platforms. With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably better represent nutrient availability during an infection than rich

  16. pGenN, a Gene Normalization Tool for Plant Genes and Proteins in Scientific Literature

    PubMed Central

    Ding, Ruoyao; Arighi, Cecilia N.; Lee, Jung-Youn; Wu, Cathy H.; Vijay-Shanker, K.

    2015-01-01

    Background Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. Methods In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. Results We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/). PMID:26258475

  17. Direct interaction between the tobacco mosaic virus helicase domain and the ATP-bound resistance protein, N factor during the hypersensitive response in tobacco plants.

    PubMed

    Ueda, Hirokazu; Yamaguchi, Yube; Sano, Hiroshi

    2006-05-01

    Plants cope with pathogens with distinct mechanisms. One example is a gene-for-gene system, in which plants recognize the pathogen molecule by specified protein(s), this being called the R factor. However, mechanisms of interaction between proteins from the host and the pathogen are not completely understood. Here, we analyzed the mode of interaction between the N factor, a tobacco R factor, and the helicase domain (p50) of tobacco mosaic virus (TMV). To this end, domain dissected proteins were prepared and subjected to Agroinfiltration into intact leaves, followed by yeast two hybrid and pull-down assays. The results pointed to three novel features. First, the N factor was found to directly bind to the p50 of TMV, second, ATP was pre-requisite for this interaction, with formation of an ATP/N factor complex, and third, the N factor was shown to possess ATPase activity, which is enhanced by the p50. Moreover, we found that intra- and/or inter-molecular interactions take place in the N factor molecule. This interaction required ATP, and was disrupted by the p50. Based on these results, we propose a following model for the TMV recognition mechanism in tobacco plants. The N factor forms a complex with ATP, to which the helicase domain interacts, and enhances ATP hydrolysis. The resulting ADP/N factor complex then changes its conformation, thereby facilitating further interaction with the down-stream signaling factor(s). This model is consistent with the idea of 'protein machine'.

  18. Axonal guidance signaling pathway interacting with smoking in modifying the risk of pancreatic cancer: a gene- and pathway-based interaction analysis of GWAS data.

    PubMed

    Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolph; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui

    2014-05-01

    Cigarette smoking is the best established modifiable risk factor for pancreatic cancer. Genetic factors that underlie smoking-related pancreatic cancer have previously not been examined at the genome-wide level. Taking advantage of the existing Genome-wide association study (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study in 2028 cases and 2109 controls to examine gene-smoking interactions at pathway/gene/single nucleotide polymorphism (SNP) level. Using the likelihood ratio test nested in logistic regression models and ingenuity pathway analysis (IPA), we examined 172 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 3 manually curated gene sets, 3 nicotine dependency gene ontology pathways, 17 912 genes and 468 114 SNPs. None of the individual pathway/gene/SNP showed significant interaction with smoking after adjusting for multiple comparisons. Six KEGG pathways showed nominal interactions (P < 0.05) with smoking, and the top two are the pancreatic secretion and salivary secretion pathways (major contributing genes: RAB8A, PLCB and CTRB1). Nine genes, i.e. ZBED2, EXO1, PSG2, SLC36A1, CLSTN1, MTHFSD, FAT2, IL10RB and ATXN2 had P interaction < 0.0005. Five intergenic region SNPs and two SNPs of the EVC and KCNIP4 genes had P interaction < 0.00003. In IPA analysis of genes with nominal interactions with smoking, axonal guidance signaling $$\\left(P=2.12\\times 1{0}^{-7}\\right)$$ and α-adrenergic signaling $$\\left(P=2.52\\times 1{0}^{-5}\\right)$$ genes were significantly overrepresented canonical pathways. Genes contributing to the axon guidance signaling pathway included the SLIT/ROBO signaling genes that were frequently altered in pancreatic cancer. These observations need to be confirmed in additional data set. Once confirmed, it will open a new avenue to unveiling the etiology of smoking-associated pancreatic cancer.

  19. Boosting for detection of gene-environment interactions.

    PubMed

    Pashova, H; LeBlanc, M; Kooperberg, C

    2013-01-30

    In genetic association studies, it is typically thought that genetic variants and environmental variables jointly will explain more of the inheritance of a phenotype than either of these two components separately. Traditional methods to identify gene-environment interactions typically consider only one measured environmental variable at a time. However, in practice, multiple environmental factors may each be imprecise surrogates for the underlying physiological process that actually interacts with the genetic factors. In this paper, we develop a variant of L(2) boosting that is specifically designed to identify combinations of environmental variables that jointly modify the effect of a gene on a phenotype. Because the effect modifiers might have a small signal compared with the main effects, working in a space that is orthogonal to the main predictors allows us to focus on the interaction space. In a simulation study that investigates some plausible underlying model assumptions, our method outperforms the least absolute shrinkage and selection and Akaike Information Criterion and Bayesian Information Criterion model selection procedures as having the lowest test error. In an example for the Women's Health Initiative-Population Architecture using Genomics and Epidemiology study, the dedicated boosting method was able to pick out two single-nucleotide polymorphisms for which effect modification appears present. The performance was evaluated on an independent test set, and the results are promising. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Activation of dynamin I gene expression by Sp1 and Sp3 is required for neuronal differentiation of N1E-115 cells.

    PubMed

    Yoo, Jiyun; Jeong, Moon-Jin; Kwon, Byoung-Mog; Hur, Man-Wook; Park, Young-Mee; Han, Mi Young

    2002-04-05

    Dynamin I is a key molecule required for the recycling of synaptic vesicles in neurons, and it has been known that dynamin I gene expression is induced during neuronal differentiation. Our previous studies established that neuronal restriction of dynamin I gene expression is controlled by Sp1 and nuclear factor-kappaB-like element-1. Here, using a series of deletion constructs and site-directed mutation, we found that transcription of dynamin I gene during neuronal differentiation of N1E-115 cells is controlled primarily by the Sp1 element located between -13 to -4 bp of the dynamin I promoter. Gel shift analysis demonstrated that in addition to Sp1, Sp3 could interact with this Sp1 element. The requirement for Sp family transcription factors in dynamin I gene expression was confirmed by using mithramycin, an inhibitor of Sp1/Sp3 binding. Mithramycin repressed dynamin I gene expression and resulted in blocking of neuronal differentiation of N1E-115 cells. The localization of the dynamin I protein was also restricted in the peripheral region of the nucleus by the mithramycin treatment. Thus, all of our results suggest that induction of dynamin I gene expression during N1E-115 cell differentiation is modulated by Sp1/Sp3 interactions with the dynamin I promoter, and its expression is important for neuronal differentiation of the N1E-115 cells.

  1. DNMT1-interacting RNAs block gene specific DNA methylation

    PubMed Central

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.

    2013-01-01

    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  2. Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation.

    PubMed

    Nakao, Hajime

    2015-09-01

    In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Protein-protein interaction network of gene expression in the hydrocortisone-treated keloid.

    PubMed

    Chen, Rui; Zhang, Zhiliang; Xue, Zhujia; Wang, Lin; Fu, Mingang; Lu, Yi; Bai, Ling; Zhang, Ping; Fan, Zhihong

    2015-01-01

    In order to explore the molecular mechanism of hydrocortisone in keloid tissue, the gene expression profiles of keloid samples treated with hydrocortisone were subjected to bioinformatics analysis. Firstly, the gene expression profiles (GSE7890) of five samples of keloid treated with hydrocortisone and five untreated keloid samples were downloaded from the Gene Expression Omnibus (GEO) database. Secondly, data were preprocessed using packages in R language and differentially expressed genes (DEGs) were screened using a significance analysis of microarrays (SAM) protocol. Thirdly, the DEGs were subjected to gene ontology (GO) function and KEGG pathway enrichment analysis. Finally, the interactions of DEGs in samples of keloid treated with hydrocortisone were explored in a human protein-protein interaction (PPI) network, and sub-modules of the DEGs interaction network were analyzed using Cytoscape software. Based on the analysis, 572 DEGs in the hydrocortisone-treated samples were screened; most of these were involved in the signal transduction and cell cycle. Furthermore, three critical genes in the module, including COL1A1, NID1, and PRELP, were screened in the PPI network analysis. These findings enhance understanding of the pathogenesis of the keloid and provide references for keloid therapy. © 2015 The International Society of Dermatology.

  4. Linkage and association analysis of obesity traits reveals novel loci and interactions with dietary n-3 fatty acids in an Alaska Native (Yup’ik) population

    PubMed Central

    Vaughan, Laura Kelly; Wiener, Howard W.; Aslibekyan, Stella; Allison, David B.; Havel, Peter J.; Stanhope, Kimber L.; O’Brien, Diane M.; Hopkins, Scarlett E.; Lemas, Dominick J.; Boyer, Bert B.; Tiwari, Hemant K.

    2015-01-01

    Objective To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup’ik people. Material and Methods We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. Results We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). Conclusions This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup’ik people. PMID:25772781

  5. Linkage and association analysis of obesity traits reveals novel loci and interactions with dietary n-3 fatty acids in an Alaska Native (Yup'ik) population.

    PubMed

    Vaughan, Laura Kelly; Wiener, Howard W; Aslibekyan, Stella; Allison, David B; Havel, Peter J; Stanhope, Kimber L; O'Brien, Diane M; Hopkins, Scarlett E; Lemas, Dominick J; Boyer, Bert B; Tiwari, Hemant K

    2015-06-01

    To identify novel genetic markers of obesity-related traits and to identify gene-diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup'ik people. We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study. We conducted a genome-wide SNP linkage scan and targeted association analysis, fitting additional models to investigate putative gene-diet interactions. Finally, we performed bioinformatic analysis to uncover likely candidate genes within the identified linkage peaks. We observed evidence of linkage for all obesity-related traits, replicating previous results and identifying novel regions of interest for adiponectin (10q26.13-2) and thigh circumference (8q21.11-13). Bioinformatic analysis revealed DOCK1, PTPRE (10q26.13-2) and FABP4 (8q21.11-13) as putative candidate genes in the newly identified regions. Targeted SNP analysis under the linkage peaks identified associations between three SNPs and obesity-related traits: rs1007750 on chromosome 8 and thigh circumference (P=0.0005), rs878953 on chromosome 5 and thigh skinfold (P=0.0004), and rs1596854 on chromosome 11 for waist circumference (P=0.0003). Finally, we showed that n-3 PUFA modified the association between obesity related traits and two additional variants (rs2048417 on chromosome 3 for adiponectin, P for interaction=0.0006 and rs730414 on chromosome 11 for percentage body fat, P for interaction=0.0004). This study presents evidence of novel genomic regions and gene-diet interactions that may contribute to the pathophysiology of obesity-related traits among Yup'ik people. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial.

    PubMed

    Ouellette, Catherine; Rudkowska, Iwona; Lemieux, Simone; Lamarche, Benoit; Couture, Patrick; Vohl, Marie-Claude

    2014-05-24

    Omega-3 (n-3) polyunsaturated fatty acid (PUFA) consumption increases low-density lipoprotein (LDL) cholesterol (C) concentrations and particle size. Studies showed that individuals with large, buoyant LDL particles have decreased risk of cardiovascular diseases. However, a large inter-individual variability is observed in LDL particle size. Genetic factors may explain the variability of LDL-C concentrations and particle size after an n-3 PUFA supplementation. The monoglyceride lipase (MGLL) enzyme, encoded by the MGLL gene, plays an important role in lipid metabolism, especially lipoprotein metabolism. The aim of this study was to investigate if polymorphisms (SNPs) of the MGLL gene influence the variability of LDL-C and LDL particle size in response to an n-3 PUFA supplementation. 210 subjects completed the study. They consumed 5 g/d of a fish oil supplement (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosaexaenoic acid) during 6 weeks. Plasma lipids were measured before and after the supplementation period and 18 SNPs of the MGLL gene, covering 100% of common genetic variations (minor allele frequency ≥0.05), have been genotyped using TaqMan technology (Life Technologies Inc., Burlington, ON, CA). Following the n-3 PUFA supplementation, 55% of subjects increased their LDL-C levels. In a model including the supplementation, genotype and supplementation*genotype effects, gene-diet interaction effects on LDL-C concentrations (rs782440, rs6776142, rs555183, rs6780384, rs6787155 and rs1466571) and LDL particle size (rs9877819 and rs13076593) were observed for the MGLL gene SNPs (p < 0.05). SNPs within the MGLL gene may modulate plasma LDL-C levels and particle size following an n-3 PUFA supplementation. This trial was registered at clinicaltrials.gov as NCT01343342.

  7. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis.

    PubMed

    Groten, Karin; Pahari, Nabin T; Xu, Shuqing; Miloradovic van Doorn, Maja; Baldwin, Ian T

    2015-01-01

    Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large

  8. Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms?

    PubMed

    Ma, Qiang; Huang, Hui; Sun, Long; Zhou, Tong; Zhu, Jingyuan; Cheng, Xuemin; Duan, Lijv; Li, Zhiyuan; Cui, Liuxin; Ba, Yue

    2017-12-01

    The occurrence of endemic fluorosis is derived from high fluoride levels in drinking water and industrial fumes or dust. Reproductive disruption is also a major harm caused by fluoride exposure besides dental and skeletal lesions. However, few studies focus on the mechanism of fluoride exposure on male reproductive function, especially the possible interaction of fluoride exposure and gene polymorphism on male reproductive hormones. Therefore, we conducted a cross-sectional study in rural areas of Henan province in China to explore the interaction between the estrogen receptor alpha (ERα) gene and fluoride exposure on reproductive hormone levels in male farmers living in the endemic fluorosis villages. The results showed that fluoride exposure significantly increased the serum level of estradiol in the hypothalamic-pituitary-testicular (HPT) axis in male farmers. Moreover, the observations indicated that fluoride exposure and genetic markers had an interaction on serum concentration of follicle-stimulating hormone and estradiol, and the interaction among different loci of the ERα gene could impact the serum testosterone level. Findings in the present work suggest that chronic fluoride exposure in drinking water could modulate the levels of reproductive hormones in males living in endemic fluorosis areas, and the interaction between fluoride exposure and ERα polymorphisms might affect the serum levels of hormones in the HPT axis in male farmers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Gene-gene interactions of CYP2A6 and MAOA polymorphisms on smoking behavior in Chinese male population.

    PubMed

    Tang, Xun; Guo, Song; Sun, Hongqiang; Song, Xuemei; Jiang, Zuonin; Sheng, Lixiang; Zhou, Dongfeng; Hu, Yonghua; Chen, Dafang

    2009-05-01

    Nicotine is the major psychoactive ingredient in tobacco, and is responsible for dependence through the nicotine-stimulated reward pathway mediated by the central dopaminergic system. Consequently, genetic polymorphisms in both nicotine metabolism and dopamine catabolism genes may influence smoking behavior, and interact with each other resulting in risk modulation. In this study, we investigated the association and multilocus gene-gene interactions of cytochrome P450 2A6 (CYP2A6), dopamine beta-hydroxylase (DBH), catechol O-methyl transferase (COMT), and monoamine oxidase A (MAOA) polymorphisms with smoking behavior in a community-based Chinese male population. The polymorphisms were genotyped in 203 current smokers, 66 former smokers, and 102 never smokers. Multivariate logistic regression models and the multifactor dimensionality reduction method were used to analyze the association and multilocus gene-gene interactions. Statistically significant trends were shown for increased risk of smoking initiation in participants with CYP2A6*1B/CYP2A6*1B genotypes compared with those with CYP2A6*1A/CYP2A6*1A genotypes [odds ratio (OR)=3.5, 95% confidence interval (CI)= 1.5-8.1], and participants with CYP2A6*1/CYP2A6*1 genotypes were at higher risk of smoking initiation (OR=2.4, 95% CI=1.2-4.5) and smoking persistence (OR=4.0, 95% CI=1.5-10.3) than those who have CYP2A6*4C genotypes. Moreover, the best model involved a gene-gene interaction between MAOA and CYP2A6 was characterized by the multifactor dimensionality reduction method (64.11% accuracy, P<0.001), and indicated that carriers of the combined 1460 T/O genotype for MAOA EcoRV and CYP2A6*1/CYP2A6*1 genotypes were at higher risk of smoking (OR=15.4, 95% CI=4.5-52.5). These findings suggested a substantial influence of CYP2A6 polymorphism as well as the interaction with MAOA resulting in risk modulation on smoking behavior in Chinese male population.

  10. Two-Way Gene Interaction From Microarray Data Based on Correlation Methods.

    PubMed

    Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh

    2016-06-01

    Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman's rank correlation coefficient and Blomqvist's measure, and compared them with Pearson's correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson's correlation, Spearman's rank correlation, and Blomqvist's coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist's coefficient was not confirmed by visual methods. Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data.

  11. Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct.

    PubMed

    Li, Sherly X; Imamura, Fumiaki; Ye, Zheng; Schulze, Matthias B; Zheng, Jusheng; Ardanaz, Eva; Arriola, Larraitz; Boeing, Heiner; Dow, Courtney; Fagherazzi, Guy; Franks, Paul W; Agudo, Antonio; Grioni, Sara; Kaaks, Rudolf; Katzke, Verena A; Key, Timothy J; Khaw, Kay Tee; Mancini, Francesca R; Navarro, Carmen; Nilsson, Peter M; Onland-Moret, N Charlotte; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J Ramón; Rolandsson, Olov; Sacerdote, Carlotta; Sánchez, María-José; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke Mw; Tjonneland, Anne; Tumino, Rosario; Sharp, Stephen J; Riboli, Elio; Langenberg, Claudia; Scott, Robert A; Forouhi, Nita G; Wareham, Nicholas J

    2017-07-01

    Background: Gene-diet interactions have been reported to contribute to the development of type 2 diabetes (T2D). However, to our knowledge, few examples have been consistently replicated to date. Objective: We aimed to identify existing evidence for gene-macronutrient interactions and T2D and to examine the reported interactions in a large-scale study. Design: We systematically reviewed studies reporting gene-macronutrient interactions and T2D. We searched the MEDLINE, Human Genome Epidemiology Network, and WHO International Clinical Trials Registry Platform electronic databases to identify studies published up to October 2015. Eligibility criteria included assessment of macronutrient quantity (e.g., total carbohydrate) or indicators of quality (e.g., dietary fiber) by use of self-report or objective biomarkers of intake. Interactions identified in the review were subsequently examined in the EPIC (European Prospective Investigation into Cancer)-InterAct case-cohort study ( n = 21,148, with 9403 T2D cases; 8 European countries). Prentice-weighted Cox regression was used to estimate country-specific HRs, 95% CIs, and P -interaction values, which were then pooled by random-effects meta-analysis. A primary model was fitted by using the same covariates as reported in the published studies, and a second model adjusted for additional covariates and estimated the effects of isocaloric macronutrient substitution. Results: Thirteen observational studies met the eligibility criteria ( n < 1700 cases). Eight unique interactions were reported to be significant between macronutrients [carbohydrate, fat, saturated fat, dietary fiber, and glycemic load derived from self-report of dietary intake and circulating n-3 (ω-3) polyunsaturated fatty acids] and genetic variants in or near transcription factor 7-like 2 ( TCF7L2 ), gastric inhibitory polypeptide receptor ( GIPR ), caveolin 2 ( CAV2 ), and peptidase D ( PEPD ) ( P -interaction < 0.05). We found no evidence of interaction

  12. A Comparative Study on Multifactor Dimensionality Reduction Methods for Detecting Gene-Gene Interactions with the Survival Phenotype

    PubMed Central

    Lee, Seungyeoun; Kim, Yongkang; Kwon, Min-Seok; Park, Taesung

    2015-01-01

    Genome-wide association studies (GWAS) have extensively analyzed single SNP effects on a wide variety of common and complex diseases and found many genetic variants associated with diseases. However, there is still a large portion of the genetic variants left unexplained. This missing heritability problem might be due to the analytical strategy that limits analyses to only single SNPs. One of possible approaches to the missing heritability problem is to consider identifying multi-SNP effects or gene-gene interactions. The multifactor dimensionality reduction method has been widely used to detect gene-gene interactions based on the constructive induction by classifying high-dimensional genotype combinations into one-dimensional variable with two attributes of high risk and low risk for the case-control study. Many modifications of MDR have been proposed and also extended to the survival phenotype. In this study, we propose several extensions of MDR for the survival phenotype and compare the proposed extensions with earlier MDR through comprehensive simulation studies. PMID:26339630

  13. Functional modules by relating protein interaction networks and gene expression.

    PubMed

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  14. Functional modules by relating protein interaction networks and gene expression

    PubMed Central

    Tornow, Sabine; Mewes, H. W.

    2003-01-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317

  15. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor.

    PubMed

    Faucheux, M; Roignant, J-Y; Netter, S; Charollais, J; Antoniewski, C; Théodore, L

    2003-02-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.

  16. batman Interacts with Polycomb and trithorax Group Genes and Encodes a BTB/POZ Protein That Is Included in a Complex Containing GAGA Factor

    PubMed Central

    Faucheux, M.; Roignant, J.-Y.; Netter, S.; Charollais, J.; Antoniewski, C.; Théodore, L.

    2003-01-01

    Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes. PMID:12556479

  17. Genes-environment interactions in obesity- and diabetes-associated pancreatic cancer: a GWAS data analysis.

    PubMed

    Tang, Hongwei; Wei, Peng; Duell, Eric J; Risch, Harvey A; Olson, Sara H; Bueno-de-Mesquita, H Bas; Gallinger, Steven; Holly, Elizabeth A; Petersen, Gloria M; Bracci, Paige M; McWilliams, Robert R; Jenab, Mazda; Riboli, Elio; Tjønneland, Anne; Boutron-Ruault, Marie Christine; Kaaks, Rudolf; Trichopoulos, Dimitrios; Panico, Salvatore; Sund, Malin; Peeters, Petra H M; Khaw, Kay-Tee; Amos, Christopher I; Li, Donghui

    2014-01-01

    Obesity and diabetes are potentially alterable risk factors for pancreatic cancer. Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have previously not been examined at the genome-wide level. Using genome-wide association studies (GWAS) genotype and risk factor data from the Pancreatic Cancer Case Control Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-obesity and gene-diabetes interactions in relation to pancreatic cancer risk by using the likelihood-ratio test nested in logistic regression models and Ingenuity Pathway Analysis (IPA). After adjusting for multiple comparisons, a significant interaction of the chemokine signaling pathway with obesity (P = 3.29 × 10(-6)) and a near significant interaction of calcium signaling pathway with diabetes (P = 1.57 × 10(-4)) in modifying the risk of pancreatic cancer were observed. These findings were supported by results from IPA analysis of the top genes with nominal interactions. The major contributing genes to the two top pathways include GNGT2, RELA, TIAM1, and GNAS. None of the individual genes or single-nucleotide polymorphism (SNP) except one SNP remained significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene showed an interaction with diabetes (P = 7.91 × 10(-7)) at a false discovery rate of 6%. Genetic variations in inflammatory response and insulin resistance may affect the risk of obesity- and diabetes-related pancreatic cancer. These observations should be replicated in additional large datasets. A gene-environment interaction analysis may provide new insights into the genetic susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer.

  18. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat

    USDA-ARS?s Scientific Manuscript database

    Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with corresponding host sensitivity (S) genes in an inv...

  19. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status

    PubMed Central

    Karlsson, Torgny; Ek, Weronica E.

    2017-01-01

    Previous genome-wide association studies (GWAS) have identified hundreds of genetic loci to be associated with body mass index (BMI) and risk of obesity. Genetic effects can differ between individuals depending on lifestyle or environmental factors due to gene-environment interactions. In this study, we examine gene-environment interactions in 362,496 unrelated participants with Caucasian ancestry from the UK Biobank resource. A total of 94 BMI-associated SNPs, selected from a previous GWAS on BMI, were used to construct weighted genetic scores for BMI (GSBMI). Linear regression modeling was used to estimate the effect of gene-environment interactions on BMI for 131 lifestyle factors related to: dietary habits, smoking and alcohol consumption, physical activity, socioeconomic status, mental health, sleeping patterns, as well as female-specific factors such as menopause and childbirth. In total, 15 lifestyle factors were observed to interact with GSBMI, of which alcohol intake frequency, usual walking pace, and Townsend deprivation index, a measure of socioeconomic status, were all highly significant (p = 1.45*10−29, p = 3.83*10−26, p = 4.66*10−11, respectively). Interestingly, the frequency of alcohol consumption, rather than the total weekly amount resulted in a significant interaction. The FTO locus was the strongest single locus interacting with any of the lifestyle factors. However, 13 significant interactions were also observed after omitting the FTO locus from the genetic score. Our analyses indicate that many lifestyle factors modify the genetic effects on BMI with some groups of individuals having more than double the effect of the genetic score. However, the underlying causal mechanisms of gene-environmental interactions are difficult to deduce from cross-sectional data alone and controlled experiments are required to fully characterise the causal factors. PMID:28873402

  20. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls—antagonistic effects between opioid and serotonin-related genes

    PubMed Central

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-01-01

    Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362

  1. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes.

    PubMed

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-07-01

    Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.

  2. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  3. Genetic interaction analysis of point mutations enables interrogation of gene function at a residue-level resolution

    PubMed Central

    Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.

    2014-01-01

    We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270

  4. A Novel Test for Gene-Ancestry Interactions in Genome-Wide Association Data

    PubMed Central

    Dunlop, Malcolm G.; Houlston, Richard S.; Tomlinson, Ian P.; Holmes, Chris C.

    2012-01-01

    Genome-wide association study (GWAS) data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into “ancestry groups” and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions. PMID:23236349

  5. Discovering disease-associated genes in weighted protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Cai, Meng; Stanley, H. Eugene

    2018-04-01

    Although there have been many network-based attempts to discover disease-associated genes, most of them have not taken edge weight - which quantifies their relative strength - into consideration. We use connection weights in a protein-protein interaction (PPI) network to locate disease-related genes. We analyze the topological properties of both weighted and unweighted PPI networks and design an improved random forest classifier to distinguish disease genes from non-disease genes. We use a cross-validation test to confirm that weighted networks are better able to discover disease-associated genes than unweighted networks, which indicates that including link weight in the analysis of network properties provides a better model of complex genotype-phenotype associations.

  6. Bayesian logistic regression in detection of gene-steroid interaction for cancer at PDLIM5 locus.

    PubMed

    Wang, Ke-Sheng; Owusu, Daniel; Pan, Yue; Xie, Changchun

    2016-06-01

    The PDZ and LIM domain 5 (PDLIM5) gene may play a role in cancer, bipolar disorder, major depression, alcohol dependence and schizophrenia; however, little is known about the interaction effect of steroid and PDLIM5 gene on cancer. This study examined 47 single-nucleotide polymorphisms (SNPs) within the PDLIM5 gene in the Marshfield sample with 716 cancer patients (any diagnosed cancer, excluding minor skin cancer) and 2848 noncancer controls. Multiple logistic regression model in PLINK software was used to examine the association of each SNP with cancer. Bayesian logistic regression in PROC GENMOD in SAS statistical software, ver. 9.4 was used to detect gene- steroid interactions influencing cancer. Single marker analysis using PLINK identified 12 SNPs associated with cancer (P< 0.05); especially, SNP rs6532496 revealed the strongest association with cancer (P = 6.84 × 10⁻³); while the next best signal was rs951613 (P = 7.46 × 10⁻³). Classic logistic regression in PROC GENMOD showed that both rs6532496 and rs951613 revealed strong gene-steroid interaction effects (OR=2.18, 95% CI=1.31-3.63 with P = 2.9 × 10⁻³ for rs6532496 and OR=2.07, 95% CI=1.24-3.45 with P = 5.43 × 10⁻³ for rs951613, respectively). Results from Bayesian logistic regression showed stronger interaction effects (OR=2.26, 95% CI=1.2-3.38 for rs6532496 and OR=2.14, 95% CI=1.14-3.2 for rs951613, respectively). All the 12 SNPs associated with cancer revealed significant gene-steroid interaction effects (P < 0.05); whereas 13 SNPs showed gene-steroid interaction effects without main effect on cancer. SNP rs4634230 revealed the strongest gene-steroid interaction effect (OR=2.49, 95% CI=1.5-4.13 with P = 4.0 × 10⁻⁴ based on the classic logistic regression and OR=2.59, 95% CI=1.4-3.97 from Bayesian logistic regression; respectively). This study provides evidence of common genetic variants within the PDLIM5 gene and interactions between PLDIM5 gene polymorphisms and steroid use

  7. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation.

    PubMed

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-08-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA.

  8. Association between Polymorphisms in the Fatty Acid Desaturase Gene Cluster and the Plasma Triacylglycerol Response to an n-3 PUFA Supplementation

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Paradis, Ann-Marie; Thifault, Elisabeth; Garneau, Véronique; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2012-01-01

    Eicosapentaenoic and docosahexaenoic acids have been reported to have a variety of beneficial effects on cardiovascular disease risk factors. However, a large inter-individual variability in the plasma lipid response to an omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation is observed in different studies. Genetic variations may influence plasma lipid responsiveness. The aim of the present study was to examine the effects of a supplementation with n-3 PUFA on the plasma lipid profile in relation to the presence of single-nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster. A total of 208 subjects from Quebec City area were supplemented with 3 g/day of n-3 PUFA, during six weeks. In a statistical model including the effect of the genotype, the supplementation and the genotype by supplementation interaction, SNP rs174546 was significantly associated (p = 0.02) with plasma triglyceride (TG) levels, pre- and post-supplementation. The n-3 supplementation had an independent effect on plasma TG levels and no significant genotype by supplementation interaction effects were observed. In summary, our data support the notion that the FADS gene cluster is a major determinant of plasma TG levels. SNP rs174546 may be an important SNP associated with plasma TG levels and FADS1 gene expression independently of a nutritional intervention with n-3 PUFA. PMID:23016130

  9. PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification.

    PubMed

    Vadigepalli, Rajanikanth; Chakravarthula, Praveen; Zak, Daniel E; Schwaber, James S; Gonye, Gregory E

    2003-01-01

    We have developed a bioinformatics tool named PAINT that automates the promoter analysis of a given set of genes for the presence of transcription factor binding sites. Based on coincidence of regulatory sites, this tool produces an interaction matrix that represents a candidate transcriptional regulatory network. This tool currently consists of (1) a database of promoter sequences of known or predicted genes in the Ensembl annotated mouse genome database, (2) various modules that can retrieve and process the promoter sequences for binding sites of known transcription factors, and (3) modules for visualization and analysis of the resulting set of candidate network connections. This information provides a substantially pruned list of genes and transcription factors that can be examined in detail in further experimental studies on gene regulation. Also, the candidate network can be incorporated into network identification methods in the form of constraints on feasible structures in order to render the algorithms tractable for large-scale systems. The tool can also produce output in various formats suitable for use in external visualization and analysis software. In this manuscript, PAINT is demonstrated in two case studies involving analysis of differentially regulated genes chosen from two microarray data sets. The first set is from a neuroblastoma N1E-115 cell differentiation experiment, and the second set is from neuroblastoma N1E-115 cells at different time intervals following exposure to neuropeptide angiotensin II. PAINT is available for use as an agent in BioSPICE simulation and analysis framework (www.biospice.org), and can also be accessed via a WWW interface at www.dbi.tju.edu/dbi/tools/paint/.

  10. Interaction of SNP in the CRP gene and plasma fatty acid profile in inflammatory pattern: A cross-sectional population-based study.

    PubMed

    Oki, Erica; Norde, Marina M; Carioca, Antônio A F; Ikeda, Renata E; Souza, José M P; Castro, Inar A; Marchioni, Dirce M L; Fisberg, Regina M; Rogero, Marcelo M

    2016-01-01

    To assess the interaction of three single nucleotide polymorphisms in the C-reactive protein (CRP) gene and plasma fatty acid (FA) levels in modulating inflammatory profile. A total of 262 subjects, aged >19 y and <60 y, participated in a cross-sectional, population-based study performed in Brazil. Three single nucleotide polymorphisms (rs1205, rs1417938, and rs2808630) spanning the CRP gene were genotyped. Eleven plasma inflammatory biomarkers and plasma FA profile were determined. Cluster analysis was performed to stratify individuals based on eleven inflammatory biomarkers into two groups: an inflammatory (INF) and a noninflammatory group. The INF cluster had higher age, waist circumference, systolic blood pressure, and diastolic blood pressure; higher levels of triacylglycerol, high-sensitivity CRP, tumor necrosis factor-α, interleukin (IL)-8, IL-6, IL-1β, IL-12, IL-10, soluble monocyte chemoattractant protein-1, soluble intercellular adhesion molecule-1, C16:0, polyunsaturated fatty acid, and omega (n)-6 polyunsaturated fatty acid; and greater C20:4n-6, C18:1/18:0, and C20:4/20:3 ratios than the noninflammatory group. Statistically significant gene-plasma C16:1n-7 interaction was detected for rs1417938 (P = 0.047). Those with a dominant homozygous rs2808630 had a lower risk of belonging to the INF group with the upper 50th percentile of C20:4n-6, n-3 highly unsaturated FA, and C20:4/20:3 ratio. Regarding rs1205, A allele carriers had lower risk of being in the INF group when C20:5n-3 and n-3 highly unsaturated FA levels were greater than the median. The INF group exhibited changes in metabolic parameters that predispose this group to chronic disease, where polymorphisms in the CRP gene modulated the risk of being in the INF group depending on individual plasma fatty acid and lipid profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Activation-dependent intrachromosomal interactions formed by the TNF gene promoter and two distal enhancers

    PubMed Central

    Tsytsykova, Alla V.; Rajsbaum, Ricardo; Falvo, James V.; Ligeiro, Filipa; Neely, Simon R.; Goldfeld, Anne E.

    2007-01-01

    Here we provide a mechanism for specific, efficient transcription of the TNF gene and, potentially, other genes residing within multigene loci. We identify and characterize highly conserved noncoding elements flanking the TNF gene, which undergo activation-dependent intrachromosomal interactions. These elements, hypersensitive site (HSS)−9 and HSS+3 (9 kb upstream and 3 kb downstream of the TNF gene, respectively), contain DNase I hypersensitive sites in naive, T helper 1, and T helper 2 primary T cells. Both HSS-9 and HSS+3 inducibly associate with acetylated histones, indicative of chromatin remodeling, bind the transcription factor nuclear factor of activated T cells (NFAT)p in vitro and in vivo, and function as enhancers of NFAT-dependent transactivation mediated by the TNF promoter. Using the chromosome conformation capture assay, we demonstrate that upon T cell activation intrachromosomal looping occurs in the TNF locus. HSS-9 and HSS+3 each associate with the TNF promoter and with each other, circularizing the TNF gene and bringing NFAT-containing nucleoprotein complexes into close proximity. TNF gene regulation thus reveals a mode of intrachromosomal interaction that combines a looped gene topology with interactions between enhancers and a gene promoter. PMID:17940009

  12. Two-Way Gene Interaction From Microarray Data Based on Correlation Methods

    PubMed Central

    Alavi Majd, Hamid; Talebi, Atefeh; Gilany, Kambiz; Khayyer, Nasibeh

    2016-01-01

    Background Gene networks have generated a massive explosion in the development of high-throughput techniques for monitoring various aspects of gene activity. Networks offer a natural way to model interactions between genes, and extracting gene network information from high-throughput genomic data is an important and difficult task. Objectives The purpose of this study is to construct a two-way gene network based on parametric and nonparametric correlation coefficients. The first step in constructing a Gene Co-expression Network is to score all pairs of gene vectors. The second step is to select a score threshold and connect all gene pairs whose scores exceed this value. Materials and Methods In the foundation-application study, we constructed two-way gene networks using nonparametric methods, such as Spearman’s rank correlation coefficient and Blomqvist’s measure, and compared them with Pearson’s correlation coefficient. We surveyed six genes of venous thrombosis disease, made a matrix entry representing the score for the corresponding gene pair, and obtained two-way interactions using Pearson’s correlation, Spearman’s rank correlation, and Blomqvist’s coefficient. Finally, these methods were compared with Cytoscape, based on BIND, and Gene Ontology, based on molecular function visual methods; R software version 3.2 and Bioconductor were used to perform these methods. Results Based on the Pearson and Spearman correlations, the results were the same and were confirmed by Cytoscape and GO visual methods; however, Blomqvist’s coefficient was not confirmed by visual methods. Conclusions Some results of the correlation coefficients are not the same with visualization. The reason may be due to the small number of data. PMID:27621916

  13. No Association Between Variant N-acetyltransferase Genes, Cigarette Smoking and Prostate Cancer Susceptibility Among Men of African Descent

    PubMed Central

    Kidd, La Creis Renee; VanCleave, Tiva T.; Doll, Mark A.; Srivastava, Daya S.; Thacker, Brandon; Komolafe, Oyeyemi; Pihur, Vasyl; Brock, Guy N.; Hein, David W.

    2011-01-01

    Objective We evaluated the individual and combination effects of NAT1, NAT2 and tobacco smoking in a case-control study of 219 incident prostate cancer (PCa) cases and 555 disease-free men. Methods Allelic discriminations for 15 NAT1 and NAT2 loci were detected in germ-line DNA samples using Taqman polymerase chain reaction (PCR) assays. Single gene, gene-gene and gene-smoking interactions were analyzed using logistic regression models and multi-factor dimensionality reduction (MDR) adjusted for age and subpopulation stratification. MDR involves a rigorous algorithm that has ample statistical power to assess and visualize gene-gene and gene-environment interactions using relatively small samples sizes (i.e., 200 cases and 200 controls). Results Despite the relatively high prevalence of NAT1*10/*10 (40.1%), NAT2 slow (30.6%), and NAT2 very slow acetylator genotypes (10.1%) among our study participants, these putative risk factors did not individually or jointly increase PCa risk among all subjects or a subset analysis restricted to tobacco smokers. Conclusion Our data do not support the use of N-acetyltransferase genetic susceptibilities as PCa risk factors among men of African descent; however, subsequent studies in larger sample populations are needed to confirm this finding. PMID:21709725

  14. Life events and borderline personality features: the influence of gene-environment interaction and gene-environment correlation.

    PubMed

    Distel, M A; Middeldorp, C M; Trull, T J; Derom, C A; Willemsen, G; Boomsma, D I

    2011-04-01

    Traumatic life events are generally more common in patients with borderline personality disorder (BPD) than in non-patients or patients with other personality disorders. This study investigates whether exposure to life events moderates the genetic architecture of BPD features. As the presence of genotype-environment correlation (rGE) can lead to spurious findings of genotype-environment interaction (G × E), we also test whether BPD features increase the likelihood of exposure to life events. The extent to which an individual is at risk to develop BPD was assessed with the Personality Assessment Inventory - Borderline features scale (PAI-BOR). Life events under study were a divorce/break-up, traffic accident, violent assault, sexual assault, robbery and job loss. Data were available for 5083 twins and 1285 non-twin siblings. Gene-environment interaction and correlation were assessed by using structural equation modelling (SEM) and the co-twin control design. There was evidence for both gene-environment interaction and correlation. Additive genetic influences on BPD features interacted with the exposure to sexual assault, with genetic variance being lower in exposed individuals. In individuals who had experienced a divorce/break-up, violent assault, sexual assault or job loss, environmental variance for BPD features was higher, leading to a lower heritability of BPD features in exposed individuals. Gene-environment correlation was present for some life events. The genes that influence BPD features thus also increased the likelihood of being exposed to certain life events. To our knowledge, this study is the first to test the joint effect of genetic and environmental influences and the exposure to life events on BPD features in the general population. Our results indicate the importance of both genetic vulnerability and life events.

  15. Gene-nutrient interaction markedly influences yeast chronological lifespan.

    PubMed

    Smith, Daniel L; Maharrey, Crystal H; Carey, Christopher R; White, Richard A; Hartman, John L

    2016-12-15

    limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene-nutrient interaction. There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between genetic and nutrient

  16. Gene-Nutrient Interaction Markedly Influences Yeast Chronological Lifespan

    PubMed Central

    Smith, Daniel L.; Maharrey, Crystal H.; Carey, Christopher R.; White, Richard A.; Hartman, John L.

    2016-01-01

    remained very limited. To test the hypothesis that different parental strain auxotrophic requirements or media formulations employed by the respective genome-wide screens might contribute to the lack of concordance, different CLS assay conditions were assessed in combination with strains having different ploidy and auxotrophic requirements (all relevant to differences in the way the three genome-wide CLS screens were performed). This limited but systematic analysis of CLS with respect to auxotrophy, ploidy, and media revealed several instances of gene × nutrient interaction. Conclusions There is surprisingly little overlap between the results of three independently performed genome-wide screens of CLS in S. cerevisiae. However, differences in strain genetic background (ploidy and specific auxotrophic requirements) were present, as well as different media and experimental conditions (e.g., aeration and pooled vs. individual culturing), which, along with stochastic effects such as genetic drift or selection of secondary mutations that suppress the loss of function from gene deletion, could in theory account for some of the lack of consensus between results. Considering the lack of overlap in CLS phenotypes among the set of genes reported by all three screens, and the results of a CLS experiment that systematically tested (incorporating extensive controls) for interactions between variables existing between the screens, we propose that discrepancies can be reconciled through deeper understanding of the influence of cell intrinsic factors such as auxotrophic requirements ploidy status, extrinsic factors such as media composition and aeration, as well as interactions that may occur between them, for example as a result of different pooling vs. individually aging cultures. Such factors may have a more significant impact on CLS outcomes than previously realized. Future studies that systematically account for these contextual factors, and can thus clarify the interactions between

  17. 5C analysis of the Epidermal Differentiation Complex locus reveals distinct chromatin interaction networks between gene-rich and gene-poor TADs in skin epithelial cells

    PubMed Central

    Malashchuk, Igor; Lajoie, Brian R.; Mardaryev, Andrei N.; Gdula, Michal R.; Sharov, Andrey A.; Kohwi-Shigematsu, Terumi; Fessing, Michael Y.

    2017-01-01

    Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and

  18. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    PubMed

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  19. Testing in semiparametric models with interaction, with applications to gene-environment interactions.

    PubMed

    Maity, Arnab; Carroll, Raymond J; Mammen, Enno; Chatterjee, Nilanjan

    2009-01-01

    Motivated from the problem of testing for genetic effects on complex traits in the presence of gene-environment interaction, we develop score tests in general semiparametric regression problems that involves Tukey style 1 degree-of-freedom form of interaction between parametrically and non-parametrically modelled covariates. We find that the score test in this type of model, as recently developed by Chatterjee and co-workers in the fully parametric setting, is biased and requires undersmoothing to be valid in the presence of non-parametric components. Moreover, in the presence of repeated outcomes, the asymptotic distribution of the score test depends on the estimation of functions which are defined as solutions of integral equations, making implementation difficult and computationally taxing. We develop profiled score statistics which are unbiased and asymptotically efficient and can be performed by using standard bandwidth selection methods. In addition, to overcome the difficulty of solving functional equations, we give easy interpretations of the target functions, which in turn allow us to develop estimation procedures that can be easily implemented by using standard computational methods. We present simulation studies to evaluate type I error and power of the method proposed compared with a naive test that does not consider interaction. Finally, we illustrate our methodology by analysing data from a case-control study of colorectal adenoma that was designed to investigate the association between colorectal adenoma and the candidate gene NAT2 in relation to smoking history.

  20. Gene environment interaction studies in depression and suicidal behavior: An update.

    PubMed

    Mandelli, Laura; Serretti, Alessandro

    2013-12-01

    Increasing evidence supports the involvement of both heritable and environmental risk factors in major depression (MD) and suicidal behavior (SB). Studies investigating gene-environment interaction (G × E) may be useful for elucidating the role of biological mechanisms in the risk for mental disorders. In the present paper, we review the literature regarding the interaction between genes modulating brain functions and stressful life events in the etiology of MD and SB and discuss their potential added benefit compared to genetic studies only. Within the context of G × E investigation, thus far, only a few reliable results have been obtained, although some genes have consistently shown interactive effects with environmental risk in MD and, to a lesser extent, in SB. Further investigation is required to disentangle the direct and mediated effects that are common or specific to MD and SB. Since traditional G × E studies overall suffer from important methodological limitations, further effort is required to develop novel methodological strategies with an interdisciplinary approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns

    PubMed Central

    Lezon, Timothy R.; Banavar, Jayanth R.; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V.

    2006-01-01

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. PMID:17138668

  2. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns.

    PubMed

    Lezon, Timothy R; Banavar, Jayanth R; Cieplak, Marek; Maritan, Amos; Fedoroff, Nina V

    2006-12-12

    We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.

  3. Combinatorial interaction between CCM pathway genes precipitates hemorrhagic stroke.

    PubMed

    Gore, Aniket V; Lampugnani, Maria Grazia; Dye, Louis; Dejana, Elisabetta; Weinstein, Brant M

    2008-01-01

    Intracranial hemorrhage (ICH) is a particularly severe form of stroke whose etiology remains poorly understood, with a highly variable appearance and onset of the disease (Felbor et al., 2006; Frizzell, 2005; Lucas et al., 2003). In humans, mutations in any one of three CCM genes causes an autosomal dominant genetic ICH disorder characterized by cerebral cavernous malformations (CCM). Recent evidence highlighting multiple interactions between the three CCM gene products and other proteins regulating endothelial junctional integrity suggests that minor deficits in these other proteins could potentially predispose to, or help to initiate, CCM, and that combinations of otherwise silent genetic deficits in both the CCM and interacting proteins might explain some of the variability in penetrance and expressivity of human ICH disorders. Here, we test this idea by combined knockdown of CCM pathway genes in zebrafish. Reducing the function of rap1b, which encodes a Ras GTPase effector protein for CCM1/Krit1, disrupts endothelial junctions in vivo and in vitro, showing it is a crucial player in the CCM pathway. Importantly, a minor reduction of Rap1b in combination with similar reductions in the products of other CCM pathway genes results in a high incidence of ICH. These findings support the idea that minor polygenic deficits in the CCM pathway can strongly synergize to initiate ICH.

  4. Long-Range Chromosome Interactions Mediated by Cohesin Shape Circadian Gene Expression

    PubMed Central

    Xu, Yichi; Guo, Weimin; Li, Ping; Zhang, Yan; Zhao, Meng; Fan, Zenghua; Zhao, Zhihu; Yan, Jun

    2016-01-01

    Mammalian circadian rhythm is established by the negative feedback loops consisting of a set of clock genes, which lead to the circadian expression of thousands of downstream genes in vivo. As genome-wide transcription is organized under the high-order chromosome structure, it is largely uncharted how circadian gene expression is influenced by chromosome architecture. We focus on the function of chromatin structure proteins cohesin as well as CTCF (CCCTC-binding factor) in circadian rhythm. Using circular chromosome conformation capture sequencing, we systematically examined the interacting loci of a Bmal1-bound super-enhancer upstream of a clock gene Nr1d1 in mouse liver. These interactions are largely stable in the circadian cycle and cohesin binding sites are enriched in the interactome. Global analysis showed that cohesin-CTCF co-binding sites tend to insulate the phases of circadian oscillating genes while cohesin-non-CTCF sites are associated with high circadian rhythmicity of transcription. A model integrating the effects of cohesin and CTCF markedly improved the mechanistic understanding of circadian gene expression. Further experiments in cohesin knockout cells demonstrated that cohesin is required at least in part for driving the circadian gene expression by facilitating the enhancer-promoter looping. This study provided a novel insight into the relationship between circadian transcriptome and the high-order chromosome structure. PMID:27135601

  5. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    PubMed

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach

  6. Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies

    PubMed Central

    Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Ågren, Åsa; Engberg, Elisabeth; Hu, Frank B.; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W.

    2014-01-01

    Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics. PMID:25396097

  7. Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies.

    PubMed

    Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Agren, Asa; Engberg, Elisabeth; Hu, Frank B; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W

    2014-12-01

    Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics.

  8. Antisocial Peer Affiliation and Externalizing Disorders: Evidence for Gene × Environment × Development Interaction

    PubMed Central

    Samek, Diana R.; Hicks, Brian M.; Keyes, Margaret A.; Iacono, William G.; McGue, Matt

    2016-01-01

    Gene × environment interaction contributes to externalizing disorders in adolescence, but little is known about whether such effects are long-lasting or present in adulthood. We examined gene-environment interplay in the concurrent and prospective associations between antisocial peer affiliation and externalizing disorders (antisocial behavior and substance use disorders) at ages 17, 20, 24, and 29. The sample included 1,382 same-sex twin pairs participating in the Minnesota Twin Family Study. We detected a gene × environment interaction at age 17, such that additive genetic influences on antisocial behavior and substance use disorders were greater in the context of greater antisocial peer affiliation. This gene × environment interaction was not present for antisocial behavior symptoms after age 17, but was for substance use disorder symptoms through age 29 (though effect sizes were largest at age 17). Results suggest adolescence is a critical period for the development of externalizing disorders wherein exposure to greater environmental adversity is associated with a greater expression of genetic risk. This form of gene × environment interaction may persist through young adulthood for substance use disorders, but is limited to adolescence for antisocial behavior. PMID:27580681

  9. Antisocial peer affiliation and externalizing disorders: Evidence for Gene × Environment × Development interaction.

    PubMed

    Samek, Diana R; Hicks, Brian M; Keyes, Margaret A; Iacono, William G; McGue, Matt

    2017-02-01

    Gene × Environment interaction contributes to externalizing disorders in childhood and adolescence, but little is known about whether such effects are long lasting or present in adulthood. We examined gene-environment interplay in the concurrent and prospective associations between antisocial peer affiliation and externalizing disorders (antisocial behavior and substance use disorders) at ages 17, 20, 24, and 29. The sample included 1,382 same-sex twin pairs participating in the Minnesota Twin Family Study. We detected a Gene × Environment interaction at age 17, such that additive genetic influences on antisocial behavior and substance use disorders were greater in the context of greater antisocial peer affiliation. This Gene × Environment interaction was not present for antisocial behavior symptoms after age 17, but it was for substance use disorder symptoms through age 29 (though effect sizes were largest at age 17). The results suggest adolescence is a critical period for the development of externalizing disorders wherein exposure to greater environmental adversity is associated with a greater expression of genetic risk. This form of Gene × Environment interaction may persist through young adulthood for substance use disorders, but it appears to be limited to adolescence for antisocial behavior.

  10. Refining the Candidate Environment: Interpersonal Stress, the Serotonin Transporter Polymorphism, and Gene-Environment Interactions in Major Depression.

    PubMed

    Vrshek-Schallhorn, Suzanne; Mineka, Susan; Zinbarg, Richard E; Craske, Michelle G; Griffith, James W; Sutton, Jonathan; Redei, Eva E; Wolitzky-Taylor, Kate; Hammen, Constance; Adam, Emma K

    2014-05-01

    Meta-analytic evidence supports a gene-environment (G×E) interaction between life stress and the serotonin transporter polymorphism (5-HTTLPR) on depression, but few studies have examined factors that influence detection of this effect, despite years of inconsistent results. We propose that the "candidate environment" (akin to a candidate gene) is key. Theory and evidence implicate major stressful life events (SLEs)-particularly major interpersonal SLEs-as well as chronic family stress. Participants ( N = 400) from the Youth Emotion Project (which began with 627 high school juniors oversampled for high neuroticism) completed up to five annual diagnostic and life stress interviews and provided DNA samples. A significant G×E effect for major SLEs and S -carrier genotype was accounted for significantly by major interpersonal SLEs but not significantly by major non-interpersonal SLEs. S -carrier genotype and chronic family stress also significantly interacted. Identifying such candidate environments may facilitate future G×E research in depression and psychopathology more broadly.

  11. Interactions between Urinary 4-tert-Octylphenol Levels and Metabolism Enzyme Gene Variants on Idiopathic Male Infertility

    PubMed Central

    Xu, Bin; Tang, Rong; Chen, Xiaojiao; Du, Guizhen; Lu, Chuncheng; Meeker, John D.; Zhou, Zuomin; Xia, Yankai; Wang, Xinru

    2013-01-01

    Octylphenol (OP) and Trichlorophenol (TCP) act as endocrine disruptors and have effects on male reproductive function. We studied the interactions between 4-tert-Octylphenol (4-t-OP), 4-n- Octylphenol (4-n-OP), 2,3,4-Trichlorophenol (2,3,4-TCP), 2,4,5-Trichlorophenol (2,4,5-TCP) urinary exposure levels and polymorphisms in selected xenobiotic metabolism enzyme genes among 589 idiopathic male infertile patients and 396 controls in a Han-Chinese population. Ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to measure alkylphenols and chlorophenols in urine. Polymorphisms were genotyped using the SNPstream platform and the Taqman method. Among four phenols that were detected, we found that only exposure to 4-t-OP increased the risk of male infertility (P trend = 1.70×10−7). The strongest interaction was between 4-t-OP and rs4918758 in CYP2C9 (P inter = 6.05×10−7). It presented a significant monotonic increase in risk estimates for male infertility with increasing 4-t-OP exposure levels among men with TC/CC genotype (low level compared with non-exposed, odds ratio (OR) = 2.26, 95% confidence intervals (CI) = 1.06, 4.83; high level compared with non-exposed, OR = 9.22, 95% CI = 2.78, 30.59), but no associations observed among men with TT genotype. We also found interactions between 4-t-OP and rs4986894 in CYP2C19, and between rs1048943 in CYP1A1, on male infertile risk (P inter = 8.09×10−7, P inter = 3.73×10−4, respectively).We observed notable interactions between 4-t-OP exposure and metabolism enzyme gene polymorphisms on idiopathic infertility in Han-Chinese men. PMID:23555028

  12. Genome-nuclear lamina interactions and gene regulation.

    PubMed

    Kind, Jop; van Steensel, Bas

    2010-06-01

    The nuclear lamina, a filamentous protein network that coats the inner nuclear membrane, has long been thought to interact with specific genomic loci and regulate their expression. Molecular mapping studies have now identified large genomic domains that are in contact with the lamina. Genes in these domains are typically repressed, and artificial tethering experiments indicate that the lamina can actively contribute to this repression. Furthermore, the lamina indirectly controls gene expression in the nuclear interior by sequestration of certain transcription factors. A variety of DNA-binding and chromatin proteins may anchor specific loci to the lamina, while histone-modifying enzymes partly mediate the local repressive effect of the lamina. Experimental tools are now available to begin to unravel the underlying molecular mechanisms. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Functional Interactions of Major Rice Blast Resistance Genes Pi-ta with Pi-b and Minor Blast Resistance QTLs

    USDA-ARS?s Scientific Manuscript database

    Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait locus (QTLs) were in...

  14. Gene x Environment Interactions in Reading Disability and Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Pennington, Bruce F.; McGrath, Lauren M.; Rosenberg, Jenni; Barnard, Holly; Smith, Shelley D.; Willcutt, Erik G.; Friend, Angela; DeFries, John C.; Olson, Richard K.

    2009-01-01

    This article examines Gene x Environment (G x E) interactions in two comorbid developmental disorders--reading disability (RD) and attention-deficit/hyperactivity disorder (ADHD)--as a window on broader issues on G x E interactions in developmental psychology. The authors first briefly review types of G x E interactions, methods for detecting…

  15. Thyroid nodules, polymorphic variants in DNA repair and RET-related genes, and interaction with ionizing radiation exposure from nuclear tests in Kazakhstan

    PubMed Central

    Sigurdson, Alice J.; Land, Charles E.; Bhatti, Parveen; Pineda, Marbin; Brenner, Alina; Carr, Zhanat; Gusev, Boris I.; Zhumadilov, Zhaxibay; Simon, Steven L.; Bouville, Andre; Rutter, Joni L.; Ron, Elaine; Struewing, Jeffery P.

    2010-01-01

    Risk factors for thyroid cancer remain largely unknown except for ionizing radiation exposure during childhood and a history of benign thyroid nodules. Because thyroid nodules are more common than thyroid cancers and are associated with thyroid cancer risk, we evaluated several polymorphisms potentially relevant to thyroid tumors and assessed interaction with ionizing radiation exposure to the thyroid gland. Thyroid nodules were detected in 1998 by ultrasound screening of 2997 persons who lived near the Semipalatinsk nuclear test site in Kazakhstan when they were children (1949-62). Cases with thyroid nodules (n=907) were frequency matched (1:1) to those without nodules by ethnicity (Kazakh or Russian), gender, and age at screening. Thyroid gland radiation doses were estimated from fallout deposition patterns, residence history, and diet. We analyzed 23 polymorphisms in 13 genes and assessed interaction with ionizing radiation exposure using likelihood ratio tests (LRT). Elevated thyroid nodule risks were associated with the minor alleles of RET S836S (rs1800862, p = 0.03) and GFRA1 -193C>G (rs not assigned, p = 0.05) and decreased risk with XRCC1 R194W (rs1799782, p-trend = 0.03) and TGFB1 T263I (rs1800472, p = 0.009). Similar patterns of association were observed for a small number of papillary thyroid cancers (n=25). Ionizing radiation exposure to the thyroid gland was associated with significantly increased risk of thyroid nodules (age and gender adjusted excess odds ratio/Gy = 0.30, 95% confidence interval 0.05-0.56), with evidence for interaction by genotype found for XRCC1 R194W (LRT p value = 0.02). Polymorphisms in RET signaling, DNA repair, and proliferation genes may be related to risk of thyroid nodules, consistent with some previous reports on thyroid cancer. Borderline support for gene-radiation interaction was found for a variant in XRCC1, a key base excision repair protein. Other pathways, such as genes in double strand break repair, apoptosis, and

  16. SnoN co-repressor binds and represses smad7 gene promoter.

    PubMed

    Briones-Orta, Marco A; Sosa-Garrocho, Marcela; Moreno-Alvarez, Paola; Fonseca-Sánchez, Miguel A; Macías-Silva, Marina

    2006-03-17

    SnoN and Ski oncoproteins are co-repressors for Smad proteins and repress TGF-beta-responsive gene expression. The smad7 gene is a TGF-beta target induced by Smad signaling, and its promoter contains the Smad-binding element (SBE) required for a positive regulation by the TGF-beta/Smad pathway. SnoN and Ski co-repressors also bind SBE but regulate negatively smad7 gene. Ski along with Smad4 binds and represses the smad7 promoter, whereas the repression mechanism by SnoN is not clear. Ski and SnoN overexpression inhibits smad7 reporter expression induced through TGF-beta signaling. Using chromatin immunoprecipitation assays, we found that SnoN binds smad7 promoter at the basal condition, whereas after a short TGF-beta treatment for 15-30 min SnoN is downregulated and no longer bound smad7 promoter. Interestingly, after a prolonged TGF-beta treatment SnoN is upregulated and returns to its position on the smad7 promoter, functioning probably as a negative feedback control. Thus, SnoN also seems to regulate negatively the TGF-beta-responsive smad7 gene by binding and repressing its promoter in a similar way to Ski.

  17. The Association of Multiple Interacting Genes with Specific Phenotypes in Rice Using Gene Coexpression Networks1[C][W][OA

    PubMed Central

    Ficklin, Stephen P.; Luo, Feng; Feltus, F. Alex

    2010-01-01

    Discovering gene sets underlying the expression of a given phenotype is of great importance, as many phenotypes are the result of complex gene-gene interactions. Gene coexpression networks, built using a set of microarray samples as input, can help elucidate tightly coexpressed gene sets (modules) that are mixed with genes of known and unknown function. Functional enrichment analysis of modules further subdivides the coexpressed gene set into cofunctional gene clusters that may coexist in the module with other functionally related gene clusters. In this study, 45 coexpressed gene modules and 76 cofunctional gene clusters were discovered for rice (Oryza sativa) using a global, knowledge-independent paradigm and the combination of two network construction methodologies. Some clusters were enriched for previously characterized mutant phenotypes, providing evidence for specific gene sets (and their annotated molecular functions) that underlie specific phenotypes. PMID:20668062

  18. Mutual regulatory interactions of the trunk gap genes during blastoderm patterning in the hemipteran Oncopeltus fasciatus.

    PubMed

    Ben-David, Jonathan; Chipman, Ariel D

    2010-10-01

    The early embryo of the milkweed bug, Oncopeltus fasciatus, appears as a single cell layer - the embryonic blastoderm - covering the entire egg. It is at this blastoderm stage that morphological domains are first determined, long before the appearance of overt segmentation. Central to the process of patterning the blastoderm into distinct domains are a group of transcription factors known as gap genes. In Drosophila melanogaster these genes form a network of interactions, and maintain sharp expression boundaries through strong mutual repression. Their restricted expression domains define specific areas along the entire body. We have studied the expression domains of the four trunk gap gene homologues in O. fasciatus and have determined their interactions through dsRNA gene knockdown experiments, followed by expression analyses. While the blastoderm in O. fasciatus includes only the first six segments of the embryo, the expression domains of the gap genes within these segments are broadly similar to those in Drosophila where the blastoderm includes all 15 segments. However, the interactions between the gap genes are surprisingly different from those in Drosophila, and mutual repression between the genes seems to play a much less significant role. This suggests that the well-studied interaction pattern in Drosophila is evolutionarily derived, and has evolved from a less strongly interacting network. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Genetics of Addiction: Future Focus on Gene × Environment Interaction?

    PubMed

    Vink, Jacqueline M

    2016-09-01

    The heritability of substance use is moderate to high. Successful efforts to find genetic variants associated with substance use (smoking, alcohol, cannabis) have been undertaken by large consortia. However, the proportion of phenotypic variance explained by the identified genetic variants is small. Interestingly, there is overlap between the genetic variants that influence different substances. Moreover, there are sets of "substance-specific" genes and sets of genes contributing to a "vulnerability for addictive behavior" in general. It is important to recognize that genes alone do not determine addiction phenotypes: Environmental factors such as parental monitoring, peer pressure, or socioeconomic status also play an important role. Despite a rich epidemiologic literature focused on the social determinants of substance use, few studies have examined the moderation of genetic influences like gene-environment (G × E) interactions. Understanding this balance may hold the key to understanding the individual differences in substance use, abuse, and addictive behavior. Recommendations for future research are described in this commentary and include increasing the power of G × E studies by using state-of-the-art methods such as polygenic risk scores instead of single genetic variants and taking genetic overlap between substances into account. Future genetic studies should also investigate environmental risk factors for addictive behavior more extensively to unravel the interaction between nature and nurture. Focusing on G × E interactions not only will give insight into the underlying biological mechanism but will also characterize subgroups (based on environmental factors) at high risk for addictive behaviors. With this information, we could bridge the gap between fundamental research and applications for society.

  20. The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia.

    PubMed

    Lin, Zheng; Su, Yousong; Zhang, Chengfang; Xing, Mengjuan; Ding, Wenhua; Liao, Liwei; Guan, Yangtai; Li, Zezhi; Cui, Donghong

    2013-01-01

    The association between BDNF gene functional Val66Met polymorphism rs6265 and the schizophrenia is far from being consistent. In addition to the heterogeneous in schizophrenia per se leading to the inconsistent results, the interaction among multi-genes is probably playing the main role in the pathogenesis of schizophrenia, but not a single gene. Neurotrophic tyrosine kinase receptor 2 (NTRK2) is the high-affinity receptor of BDNF, and was reported to be associated with mood disorders, though no literature reported the association with schizophrenia. Thus, in the present study, total 402 patients with paranoid schizophrenia (the most common subtype of schizophrenia) and matched 406 healthy controls were recruited to investigate the role of rs6265 in BDNF, three polymorphisms in NTRK2 gene (rs1387923, rs2769605 and rs1565445) and their interaction in the susceptibility to paranoid schizophrenia in a Chinese Han population. We did not observe significant differences in allele and genotype frequencies between patients and healthy controls for all four polymorphisms separately. The haplotype analysis also showed no association between haplotype of NTRK2 genes (rs1387923, rs2769605, and rs1565445) and paranoid schizophrenia. However, we found the association between the interaction of BDNF and NTRK2 with paranoid schizophrenia by using the MDR method followed by conventional statistical analysis. The best gene-gene interaction model was a three-locus model (BDNF rs6265, NTRK2 rs1387923 and NTRK2 rs2769605), in which one low-risk and three high-risk four-locus genotype combinations were identified. Our findings implied that single polymorphism of rs6265 rs1387923, rs2769605, and rs1565445 in BDNF and NTRK2 were not associated with the development of paranoid schizophrenia in a Han population, however, the interaction of BDNF and NTRK2 genes polymorphisms (BDNF-rs6265, NTRK2-rs1387923 and NTRK2-rs2769605) may be involved in the susceptibility to paranoid schizophrenia.

  1. The Interaction of BDNF and NTRK2 Gene Increases the Susceptibility of Paranoid Schizophrenia

    PubMed Central

    Zhang, Chengfang; Xing, Mengjuan; Ding, Wenhua; Liao, Liwei; Guan, Yangtai; Li, Zezhi; Cui, Donghong

    2013-01-01

    The association between BDNF gene functional Val66Met polymorphism rs6265 and the schizophrenia is far from being consistent. In addition to the heterogeneous in schizophrenia per se leading to the inconsistent results, the interaction among multi-genes is probably playing the main role in the pathogenesis of schizophrenia, but not a single gene. Neurotrophic tyrosine kinase receptor 2 (NTRK2) is the high-affinity receptor of BDNF, and was reported to be associated with mood disorders, though no literature reported the association with schizophrenia. Thus, in the present study, total 402 patients with paranoid schizophrenia (the most common subtype of schizophrenia) and matched 406 healthy controls were recruited to investigate the role of rs6265 in BDNF, three polymorphisms in NTRK2 gene (rs1387923, rs2769605 and rs1565445) and their interaction in the susceptibility to paranoid schizophrenia in a Chinese Han population. We did not observe significant differences in allele and genotype frequencies between patients and healthy controls for all four polymorphisms separately. The haplotype analysis also showed no association between haplotype of NTRK2 genes (rs1387923, rs2769605, and rs1565445) and paranoid schizophrenia. However, we found the association between the interaction of BDNF and NTRK2 with paranoid schizophrenia by using the MDR method followed by conventional statistical analysis. The best gene-gene interaction model was a three-locus model (BDNF rs6265, NTRK2 rs1387923 and NTRK2 rs2769605), in which one low-risk and three high-risk four-locus genotype combinations were identified. Our findings implied that single polymorphism of rs6265 rs1387923, rs2769605, and rs1565445 in BDNF and NTRK2 were not associated with the development of paranoid schizophrenia in a Han population, however, the interaction of BDNF and NTRK2 genes polymorphisms (BDNF-rs6265, NTRK2-rs1387923 and NTRK2-rs2769605) may be involved in the susceptibility to paranoid schizophrenia

  2. Finding gene-environment interactions for phobias.

    PubMed

    Gregory, Alice M; Lau, Jennifer Y F; Eley, Thalia C

    2008-03-01

    Phobias are common disorders causing a great deal of suffering. Studies of gene-environment interaction (G x E) have revealed much about the complex processes underlying the development of various psychiatric disorders but have told us little about phobias. This article describes what is already known about genetic and environmental influences upon phobias and suggests how this information can be used to optimise the chances of discovering G x Es for phobias. In addition to the careful conceptualisation of new studies, it is suggested that data already collected should be re-analysed in light of increased understanding of processes influencing phobias.

  3. Polymorphisms in genes involved in fatty acid β-oxidation interact with dietary fat intakes to modulate the plasma TG response to a fish oil supplementation.

    PubMed

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-03-18

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9-2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation.

  4. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    PubMed Central

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  5. Clustering gene expression data based on predicted differential effects of GV interaction.

    PubMed

    Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu

    2005-02-01

    Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.

  6. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    PubMed

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. Copyright © 2013 Wiley Periodicals, Inc.

  7. Genetic variant in the IGF2BP2 gene may interact with fetal malnutrition to affect glucose metabolism.

    PubMed

    van Hoek, Mandy; Langendonk, Janneke G; de Rooij, Susanne R; Sijbrands, Eric J G; Roseboom, Tessa J

    2009-06-01

    Fetal malnutrition may predispose to type 2 diabetes through gene programming and developmental changes. Previous studies showed that these effects may be modulated by genetic variation. Genome-wide association studies discovered and replicated a number of type 2 diabetes-associated genes. We investigated the effects of such well-studied polymorphisms and their interactions with fetal malnutrition on type 2 diabetes risk and related phenotypes in the Dutch Famine Birth Cohort. The rs7754840 (CDKAL1), rs10811661 (CDKN2AB), rs1111875 (HHEX), rs4402960 (IGF2BP2), rs5219 (KCNJ11), rs13266634 (SLC30A8), and rs7903146 (TCF7L2) polymorphisms were genotyped in 772 participants of the Dutch Famine Birth Cohort Study (n = 328 exposed, n = 444 unexposed). Logistic and linear regression models served to analyze their interactions with prenatal exposure to famine on type 2 diabetes, impaired glucose tolerance (IGT), and area under the curves (AUCs) for glucose and insulin during oral glucose tolerance testing (OGTT). In the total population, the TCF7L2 and IGF2BP2 variants most strongly associated with increased risk for type 2 diabetes/IGT and increased AUC for glucose, while the CDKAL1 polymorphism associated with decreased AUC for insulin. The IGF2BP2 polymorphism showed an interaction with prenatal exposure to famine on AUC for glucose (beta = -9.2 [95% CI -16.2 to -2.1], P = 0.009). The IGF2BP2 variant showed a nominal interaction with exposure to famine in utero, decreasing OGTT AUCs for glucose. This may provide a clue that modulation of the consequences of fetal environment depends on an individual's genetic background.

  8. Gene-environment interaction and male reproductive function

    PubMed Central

    Axelsson, Jonatan; Bonde, Jens Peter; Giwercman, Yvonne L.; Rylander, Lars; Giwercman, Aleksander

    2010-01-01

    As genetic factors can hardly explain the changes taking place during short time spans, environmental and lifestyle-related factors have been suggested as the causes of time-related deterioration of male reproductive function. However, considering the strong heterogeneity of male fecundity between and within populations, genetic variants might be important determinants of the individual susceptibility to the adverse effects of environment or lifestyle. Although the possible mechanisms of such interplay in relation to the reproductive system are largely unknown, some recent studies have indicated that specific genotypes may confer a larger risk of male reproductive disorders following certain exposures. This paper presents a critical review of animal and human evidence on how genes may modify environmental effects on male reproductive function. Some examples have been found that support this mechanism, but the number of studies is still limited. This type of interaction studies may improve our understanding of normal physiology and help us to identify the risk factors to male reproductive malfunction. We also shortly discuss other aspects of gene-environment interaction specifically associated with the issue of reproduction, namely environmental and lifestyle factors as the cause of sperm DNA damage. It remains to be investigated to what extent such genetic changes, by natural conception or through the use of assisted reproductive techniques, are transmitted to the next generation, thereby causing increased morbidity in the offspring. PMID:20348940

  9. Genes Interacting with Occupational Exposures to Low Molecular Weight Agents and Irritants on Adult-Onset Asthma in Three European Studies

    PubMed Central

    Rava, Marta; Ahmed, Ismail; Kogevinas, Manolis; Le Moual, Nicole; Bouzigon, Emmanuelle; Curjuric, Ivan; Dizier, Marie-Hélène; Dumas, Orianne; Gonzalez, Juan R.; Imboden, Medea; Mehta, Amar J.; Tubert-Bitter, Pascale; Zock, Jan-Paul; Jarvis, Deborah; Probst-Hensch, Nicole M.; Demenais, Florence; Nadif, Rachel

    2016-01-01

    in adult asthma by interaction with occupational exposure. These genes play a role in the NF-κB pathway, which is involved in inflammation. Citation: Rava M, Ahmed I, Kogevinas M, Le Moual N, Bouzigon E, Curjuric I, Dizier MH, Dumas O, Gonzalez JR, Imboden M, Mehta AJ, Tubert-Bitter P, Zock JP, Jarvis D, Probst-Hensch NM, Demenais F, Nadif R. 2017. Genes interacting with occupational exposures to low molecular weight agents and irritants on adult-onset asthma in three European studies. Environ Health Perspect 125:207–214; http://dx.doi.org/10.1289/EHP376 PMID:27504716

  10. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks.

    PubMed

    Lin, Wen-Hsien; Liu, Wei-Chung; Hwang, Ming-Jing

    2009-03-11

    Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein interaction networks for different tissue types using two gene expression datasets and one protein-protein interaction database. We then calculated three network indices of topological importance, the degree, closeness, and betweenness centralities, to measure the network position of proteins encoded by house-keeping and tissue-specific genes, and quantified their local connectivity structure. Compared to a random selection of proteins, house-keeping gene-encoded proteins tended to have a greater number of directly interacting neighbors and occupy network positions in several shortest paths of interaction between protein pairs, whereas tissue-specific gene-encoded proteins did not. In addition, house-keeping gene-encoded proteins tended to connect with other house-keeping gene-encoded proteins in all tissue types, whereas tissue-specific gene-encoded proteins also tended to connect with other tissue-specific gene-encoded proteins, but only in approximately half of the tissue types examined. Our analysis showed that house-keeping gene-encoded proteins tend to occupy important network positions, while those encoded by tissue-specific genes do not. The biological implications of our findings were discussed and we proposed a hypothesis regarding how cells organize their protein tools in protein-protein interaction networks. Our results led us to speculate that house-keeping gene-encoded proteins might form a core in human protein-protein interaction networks, while clusters of tissue-specific gene

  11. Gene and environment interaction: is the differential susceptibility hypothesis relevant for obesity?

    PubMed Central

    Dalle Molle, Roberta; Fatemi, Hajar; Dagher, Alain; Levitan, Robert D.; Silveira, Patricia P.; Dubé, Laurette

    2017-01-01

    The differential susceptibility model states that a given genetic variant is associated with an increased risk of pathology in negative environments but greater than average resilience in enriched ones. While this theory was first implemented in psychiatric-genetic research, it may also help us to unravel the complex ways that genes and environments interact to influence feeding behavior and obesity. We reviewed evidence on gene vs. environment interactions that influence obesity development, aiming to support the applicability of the differential susceptibility model for this condition, and propose that various environmental “layers” relevant for human development should be considered when bearing the differential susceptibility model in mind. Mother-child relationship, socioeconomic status and individual's response are important modifiers of BMI and food intake when interacting with gene variants, “for better and for worse”. While only a few studies to date have investigated obesity outcomes using this approach, we propose that the differential susceptibility hypothesis is in fact highly applicable to the study of genetic and environmental influences on feeding behavior and obesity risk. PMID:28024828

  12. Expression of a DNA Replication Gene Cluster in Bacteriophage T4: Genetic Linkage and the Control of Gene Product Interactions

    PubMed Central

    Gerald, W. L.; Karam, J. D.

    1984-01-01

    The results of this study bear on the relationship between genetic linkage and control of interactions between the protein products of different cistrons. In T4 bacteriophage, genes 45 and 44 encode essential components of the phage DNA replication multiprotein complex. T4 gene 45 maps directly upstream of gene 44 relative to the overall direction of reading of this region of the phage chromosome, but it is not known whether these two genes are cotranscribed. It has been shown that a nonsense lesion of T4 gene 45 exerts a cis-dominant inhibitory effect on growth of a missense mutant of gene 44 but not on growth of phage carrying the wild-type gene 44 allele. In previous work, we confirmed these observations on polarity of the gene 45 mutation but detected no polar effects by this lesion on synthesis of either mutant or wild-type gene 44 protein. In the present study, we demonstrate that mRNA for gene 44 protein is separable by gel electrophoresis from gene 45-protein-encoding mRNA. That is, the two proteins are not synthesized from one polycistronic message, and the cis-dominant inhibitory effect of the gene 45 mutation on gene 44 function is probably expressed at a posttranslational stage. We propose that close genetic linkage, whether or not it provides shared transcriptional and translational regulatory signals for certain clusters of functionally related cistrons, may determine the intracellular compartmentalization for synthesis of proteins encoded by these clusters. In prokaryotes, such linkage-dependent compartmentation may minimize the diffusion distances between gene products that are synthesized at low levels and are destined to interact. PMID:6745641

  13. Association of SNPs in dopamine and serotonin pathway genes and their interacting genes with temperament traits in Charolais cows.

    PubMed

    Garza-Brenner, E; Sifuentes-Rincón, A M; Randel, R D; Paredes-Sánchez, F A; Parra-Bracamonte, G M; Arellano Vera, W; Rodríguez Almeida, F A; Segura Cabrera, A

    2017-08-01

    Cattle temperament is a complex trait, and molecular studies aimed at defining this trait are scarce. We used an interaction networks approach to identify new genes (interacting genes) and to estimate their effects and those of 19 dopamine- and serotonin-related genes on the temperament traits of Charolais cattle. The genes proopiomelanocortin (POMC), neuropeptide Y (NPY), solute carrier family 18, member 2 (SLC18A2) and FBJ murine osteosarcoma viral oncogene homologue (FOSFBJ) were identified as new candidates. Their potential to be associated with temperament was estimated according to their reported biological activities, which included interactions with neural activity, receptor function, targeting or synthesis of neurotransmitters and association with behaviour. Pen score (PS) and exit velocity (EV) measures were determined from 412 Charolais cows to calculate their temperament score (TS). Based on the TS, calm (n = 55; TS, 1.09 ± 0.33) and temperamental (n = 58; TS, 2.27 ± 0.639) cows were selected and genotyped using a 248 single-nucleotide variation (SNV) panel. Of the 248 variations in the panel, only 151 were confirmed to be polymorphic (single-nucleotide polymorphisms; SNPs) in the tested population. Single-marker association analyses between genotypes and temperament measures (EV, PS and/or TS) indicated significant associations of six SNPs from four candidate genes. The markers rs109576799 and rs43696138, located in the DRD3 and HTR2A genes, respectively, were significantly associated with both EV and TS traits. Four markers, rs110365063 and rs137756569 from the POMC gene and rs110365063 and rs135155082 located in SLC18A2 and DRD2, respectively, were associated with PS. The variant rs110365063 located in bovine SLC18A2 causes a change in the amino acid sequence from Ala to Thr. Further studies are needed to confirm the association of genetic profile with cattle temperament; however, our study represents important progress in

  14. Rice-arsenate interactions in hydroponics: a three-gene model for tolerance.

    PubMed

    Norton, Gareth J; Nigar, Meher; Williams, Paul N; Dasgupta, Tapash; Meharg, Andrew A; Price, Adam H

    2008-01-01

    In this study, the genetic mapping of the tolerance of root growth to 13.3 muM arsenate [As(V)] using the BalaxAzucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice.

  15. Rice–arsenate interactions in hydroponics: a three-gene model for tolerance

    PubMed Central

    Norton, Gareth J.; Nigar, Meher; Dasgupta, Tapash; Meharg, Andrew A.; Price, Adam H.

    2008-01-01

    In this study, the genetic mapping of the tolerance of root growth to 13.3 μM arsenate [As(V)] using the Bala×Azucena population is improved, and candidate genes for further study are identified. A remarkable three-gene model of tolerance is advanced, which appears to involve epistatic interaction between three major genes, two on chromosome 6 and one on chromosome 10. Any combination of two of these genes inherited from the tolerant parent leads to the plant having tolerance. Lists of potential positional candidate genes are presented. These are then refined using whole genome transcriptomics data and bioinformatics. Physiological evidence is also provided that genes related to phosphate transport are unlikely to be behind the genetic loci conferring tolerance. These results offer testable hypotheses for genes related to As(V) tolerance that might offer strategies for mitigating arsenic (As) accumulation in consumed rice. PMID:18453529

  16. Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions.

    PubMed

    Tuller, Tamir; Atar, Shimshi; Ruppin, Eytan; Gurevich, Michael; Achiron, Anat

    2011-09-15

    Multiple sclerosis (MS) is a central nervous system autoimmune inflammatory T-cell-mediated disease with a relapsing-remitting course in the majority of patients. In this study, we performed a high-resolution systems biology analysis of gene expression and physical interactions in MS relapse and remission. To this end, we integrated 164 large-scale measurements of gene expression in peripheral blood mononuclear cells of MS patients in relapse or remission and healthy subjects, with large-scale information about the physical interactions between these genes obtained from public databases. These data were analyzed with a variety of computational methods. We find that there is a clear and significant global network-level signal that is related to the changes in gene expression of MS patients in comparison to healthy subjects. However, despite the clear differences in the clinical symptoms of MS patients in relapse versus remission, the network level signal is weaker when comparing patients in these two stages of the disease. This result suggests that most of the genes have relatively similar expression levels in the two stages of the disease. In accordance with previous studies, we found that the pathways related to regulation of cell death, chemotaxis and inflammatory response are differentially expressed in the disease in comparison to healthy subjects, while pathways related to cell adhesion, cell migration and cell-cell signaling are activated in relapse in comparison to remission. However, the current study includes a detailed report of the exact set of genes involved in these pathways and the interactions between them. For example, we found that the genes TP53 and IL1 are 'network-hub' that interacts with many of the differentially expressed genes in MS patients versus healthy subjects, and the epidermal growth factor receptor is a 'network-hub' in the case of MS patients with relapse versus remission. The statistical approaches employed in this study enabled us

  17. Emotional eating in adolescents: a gene (SLC6A4/5-HTT) - depressive feelings interaction analysis.

    PubMed

    van Strien, Tatjana; van der Zwaluw, Carmen S; Engels, Rutger C M E

    2010-11-01

    Eating in response to distress--i.e. emotional eating--is highly prevalent in (female) adults with binge eating, but has only a very low prevalence in young children. The present study addresses the emergence of emotional eating in adolescence in relation to depressive feelings. Because a reduction of food intake is considered the biologically natural response to distress, we tested whether the a-typical stress-response of emotional eating develops in interaction with genetic vulnerability. We hypothesized that the short allele of the 5-HTTLPR polymorphism in the serotonin transporter gene, which is associated with lower serotonin activity, would moderate the relation between depressive feelings and the increase in emotional eating, particularly in females. A sample of Dutch families with two adolescents was included in a longitudinal study with a four-year follow-up. A moderator effect of 5-HTTLPR genotype on the relation between depressive feelings and the increase in emotional eating was found in both sexes in the youngest siblings (n = 286). In the older siblings (n = 298), this specific moderator effect was only found in the girls. Younger adolescents and older adolescent girls showed a higher increase in emotional eating if they carried the 5-HTTLPR short allele. This is the first study that found support for a gene × depressive feelings interaction on emergence of emotional eating in (female) adolescents. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Consortium analysis of gene and gene-folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    PubMed Central

    Kelemen, Linda E.; Terry, Kathryn L.; Goodman, Marc T.; Webb, Penelope M.; Bandera, Elisa V.; McGuire, Valerie; Rossing, Mary Anne; Wang, Qinggang; Dicks, Ed; Tyrer, Jonathan P.; Song, Honglin; Kupryjanczyk, Jolanta; Dansonka-Mieszkowska, Agnieszka; Plisiecka-Halasa, Joanna; Timorek, Agnieszka; Menon, Usha; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Ramus, Susan J.; Narod, Steven A.; Risch, Harvey A.; McLaughlin, John R.; Siddiqui, Nadeem; Glasspool, Rosalind; Paul, James; Carty, Karen; Gronwald, Jacek; Lubiński, Jan; Jakubowska, Anna; Cybulski, Cezary; Kiemeney, Lambertus A.; Massuger, Leon F. A. G.; van Altena, Anne M.; Aben, Katja K. H.; Olson, Sara H.; Orlow, Irene; Cramer, Daniel W.; Levine, Douglas A.; Bisogna, Maria; Giles, Graham G.; Southey, Melissa C.; Bruinsma, Fiona; Kjær, Susanne Krüger; Høgdall, Estrid; Jensen, Allan; Høgdall, Claus K.; Lundvall, Lene; Engelholm, Svend-Aage; Heitz, Florian; du Bois, Andreas; Harter, Philipp; Schwaab, Ira; Butzow, Ralf; Nevanlinna, Heli; Pelttari, Liisa M.; Leminen, Arto; Thompson, Pamela J.; Lurie, Galina; Wilkens, Lynne R.; Lambrechts, Diether; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Beesley, Jonathan; Fasching, Peter A.; Beckmann, Matthias W.; Hein, Alexander; Ekici, Arif B.; Doherty, Jennifer A.; Wu, Anna H.; Pearce, Celeste L.; Pike, Malcolm C.; Stram, Daniel; Chang-Claude, Jenny; Rudolph, Anja; Dörk, Thilo; Dürst, Matthias; Hillemanns, Peter; Runnebaum, Ingo B.; Bogdanova, Natalia; Antonenkova, Natalia; Odunsi, Kunle; Edwards, Robert P.; Kelley, Joseph L.; Modugno, Francesmary; Ness, Roberta B.; Karlan, Beth Y.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Fridley, Brooke L.; Vierkant, Robert A.; Cunningham, Julie M.; Wu, Xifeng; Lu, Karen; Liang, Dong; Hildebrandt, Michelle A.T.; Weber, Rachel Palmieri; Iversen, Edwin S.; Tworoger, Shelley S.; Poole, Elizabeth M.; Salvesen, Helga B.; Krakstad, Camilla; Bjorge, Line; Tangen, Ingvild L.; Pejovic, Tanja; Bean, Yukie; Kellar, Melissa; Wentzensen, Nicolas; Brinton, Louise A.; Lissowska, Jolanta; Garcia-Closas, Montserrat; Campbell, Ian G.; Eccles, Diana; Whittemore, Alice S.; Sieh, Weiva; Rothstein, Joseph H.; Anton-Culver, Hoda; Ziogas, Argyrios; Phelan, Catherine M.; Moysich, Kirsten B.; Goode, Ellen L.; Schildkraut, Joellen M.; Berchuck, Andrew; Pharoah, Paul D.P.; Sellers, Thomas A.; Brooks-Wilson, Angela; Cook, Linda S.; Le, Nhu D.

    2014-01-01

    Scope We re-evaluated previously reported associations between variants in pathways of one-carbon (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. Methods and Results Odds ratios (OR) for 446 genetic variants were estimated among 13,410 OC cases and 22,635 controls and among 2,281 cases and 3,444 controls with folate information. Following multiple testing correction, the most significant main effect associations were for DPYD variants rs11587873 (OR=0.92, P=6x10−5) and rs828054 (OR=1.06, P=1x10−4). Thirteen variants in the pyrimidine metabolism genes, DPYD, DPYS, PPAT and TYMS, also interacted significantly with folate in a multi-variant analysis (corrected P=9.9x10−6) but collectively explained only 0.2% of OC risk. Although no other associations were significant after multiple testing correction, variants in SHMT1 in one-carbon transfer, previously reported with OC, suggested lower risk at higher folate (Pinteraction=0.03-0.006). Conclusions Variation in pyrimidine metabolism genes, particularly DPYD, which was previously reported to be associated with OC, may influence risk; however, stratification by folate intake is unlikely to modify disease risk appreciably in these women. SHMT1 SNP-byfolate interactions are plausible but require further validation. Polymorphisms in selected genes in purine metabolism were not associated with OC. PMID:25066213

  19. Clock genes × stress × reward interactions in alcohol and substance use disorders.

    PubMed

    Perreau-Lenz, Stéphanie; Spanagel, Rainer

    2015-06-01

    Adverse life events and highly stressful environments have deleterious consequences for mental health. Those environmental factors can potentiate alcohol and drug abuse in vulnerable individuals carrying specific genetic risk factors, hence producing the final risk for alcohol- and substance-use disorders development. The nature of these genes remains to be fully determined, but studies indicate their direct or indirect relation to the stress hypothalamo-pituitary-adrenal (HPA) axis and/or reward systems. Over the past decade, clock genes have been revealed to be key-players in influencing acute and chronic alcohol/drug effects. In parallel, the influence of chronic stress and stressful life events in promoting alcohol and substance use and abuse has been demonstrated. Furthermore, the reciprocal interaction of clock genes with various HPA-axis components, as well as the evidence for an implication of clock genes in stress-induced alcohol abuse, have led to the idea that clock genes, and Period genes in particular, may represent key genetic factors to consider when examining gene × environment interaction in the etiology of addiction. The aim of the present review is to summarize findings linking clock genes, stress, and alcohol and substance abuse, and to propose potential underlying neurobiological mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis.

    PubMed

    van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther

    2011-01-01

    Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).

  1. Gene-environment interaction between adiponectin gene polymorphisms and environmental factors on the risk of diabetic retinopathy.

    PubMed

    Li, Yuan; Wu, Qun Hong; Jiao, Ming Li; Fan, Xiao Hong; Hu, Quan; Hao, Yan Hua; Liu, Ruo Hong; Zhang, Wei; Cui, Yu; Han, Li Yuan

    2015-01-01

    To evaluate whether the adiponectin gene is associated with diabetic retinopathy (DR) risk and interaction with environmental factors modifies the DR risk, and to investigate the relationship between serum adiponectin levels and DR. Four adiponectin polymorphisms were evaluated in 372 DR cases and 145 controls. Differences in environmental factors between cases and controls were evaluated by unconditional logistic regression analysis. The model-free multifactor dimensionality reduction method and traditional multiple regression models were applied to explore interactions between the polymorphisms and environmental factors. Using the Bonferroni method, we found no significant associations between four adiponectin polymorphisms and DR susceptibility. Multivariate logistic regression found that physical activity played a protective role in the progress of DR, whereas family history of diabetes (odds ratio 1.75) and insulin therapy (odds ratio 1.78) were associated with an increased risk for DR. The interaction between the C-11377 G (rs266729) polymorphism and insulin therapy might be associated with DR risk. Family history of diabetes combined with insulin therapy also increased the risk of DR. No adiponectin gene polymorphisms influenced the serum adiponectin levels. Serum adiponectin levels did not differ between the DR group and non-DR group. No significant association was identified between four adiponectin polymorphisms and DR susceptibility after stringent Bonferroni correction. The interaction between C-11377G (rs266729) polymorphism and insulin therapy, as well as the interaction between family history of diabetes and insulin therapy, might be associated with DR susceptibility.

  2. Modeling Gene-Environment Interactions With Quasi-Natural Experiments.

    PubMed

    Schmitz, Lauren; Conley, Dalton

    2017-02-01

    This overview develops new empirical models that can effectively document Gene × Environment (G×E) interactions in observational data. Current G×E studies are often unable to support causal inference because they use endogenous measures of the environment or fail to adequately address the nonrandom distribution of genes across environments, confounding estimates. Comprehensive measures of genetic variation are incorporated into quasi-natural experimental designs to exploit exogenous environmental shocks or isolate variation in environmental exposure to avoid potential confounders. In addition, we offer insights from population genetics that improve upon extant approaches to address problems from population stratification. Together, these tools offer a powerful way forward for G×E research on the origin and development of social inequality across the life course. © 2015 Wiley Periodicals, Inc.

  3. APOE Modulates the Correlation Between Triglycerides, Cholesterol, and CHD Through Pleiotropy, and Gene-by-Gene Interactions

    PubMed Central

    Maxwell, Taylor J.; Ballantyne, Christie M.; Cheverud, James M.; Guild, Cameron S.; Ndumele, Chiadi E.; Boerwinkle, Eric

    2013-01-01

    Relationship loci (rQTL) exist when the correlation between multiple traits varies by genotype. rQTL often occur due to gene-by-gene (G × G) or gene-by-environmental interactions, making them a powerful tool for detecting G × G. Here we present an empirical analysis of apolipoprotein E (APOE) with respect to lipid traits and incident CHD leading to the discovery of loci that interact with APOE to affect these traits. We found that the relationship between total cholesterol (TC) and triglycerides (ln TG) varies by APOE isoform genotype in African-American (AA) and European-American (EA) populations. The e2 allele is associated with strong correlation between ln TG and TC while the e4 allele leads to little or no correlation. This led to a priori hypotheses that APOE genotypes affect the relationship of TC and/or ln TG with incident CHD. We found that APOE*TC was significant (P = 0.016) for AA but not EA while APOE*ln TG was significant for EA (P = 0.027) but not AA. In both cases, e2e2 and e2e3 had strong relationships between TC and ln TG with CHD while e2e4 and e4e4 results in little or no relationship between TC and ln TG with CHD. Using ARIC GWAS data, scans for loci that significantly interact with APOE produced four loci for African Americans (one CHD, one TC, and two HDL). These interactions contribute to the rQTL pattern. rQTL are a powerful tool to identify loci that modify the relationship between risk factors and disease and substantially increase statistical power for detecting G × G. PMID:24097412

  4. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6.

    PubMed

    Bahar, Muh Akbar; Setiawan, Didik; Hak, Eelko; Wilffert, Bob

    2017-05-01

    Currently, most guidelines on drug-drug interaction (DDI) neither consider the potential effect of genetic polymorphism in the strength of the interaction nor do they account for the complex interaction caused by the combination of DDI and drug-gene interaction (DGI) where there are multiple biotransformation pathways, which is referred to as drug-drug-gene interaction (DDGI). In this systematic review, we report the impact of pharmacogenetics on DDI and DDGI in which three major drug-metabolizing enzymes - CYP2C9, CYP2C19 and CYP2D6 - are central. We observed that several DDI and DDGI are highly gene-dependent, leading to a different magnitude of interaction. Precision drug therapy should take pharmacogenetics into account when drug interactions in clinical practice are expected.

  5. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  6. Gene-Diet Interaction and Precision Nutrition in Obesity

    PubMed Central

    Heianza, Yoriko; Qi, Lu

    2017-01-01

    The rapid rise of obesity during the past decades has coincided with a profound shift of our living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may have interacted with such an obesogenic environment in determining the obesity epidemic. Growing studies have found that changes in adiposity and metabolic response to low-calorie weight loss diets might be modified by genetic variants related to obesity, metabolic status and preference to nutrients. This review summarized data from recent studies of gene-diet interactions, and discussed integration of research of metabolomics and gut microbiome, as well as potential application of the findings in precision nutrition. PMID:28387720

  7. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute

  8. Dynamic changes in the interchromosomal interaction of early histone gene loci during development of sea urchin.

    PubMed

    Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki

    2017-12-15

    The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the sea urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in sea urchin). There are two non-allelic early histone gene loci per sea urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal interactions were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these interactions were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal interactions may contribute to the efficient synthesis of early histone mRNA during the morula stage of sea urchin development. © 2017. Published by The Company of Biologists Ltd.

  9. Gene Environment Interactions and Predictors of Colorectal Cancer in Family-Based, Multi-Ethnic Groups.

    PubMed

    Shiao, S Pamela K; Grayson, James; Yu, Chong Ho; Wasek, Brandi; Bottiglieri, Teodoro

    2018-02-16

    For the personalization of polygenic/omics-based health care, the purpose of this study was to examine the gene-environment interactions and predictors of colorectal cancer (CRC) by including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and Black). We used three phases of data analytics, including exploratory, family-based analyses adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, and generalized regression models for predictive modeling with a machine learning validation procedure to validate the results for enhanced prediction and reproducibility. The results revealed that despite the family members sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than the family controls ( p < 0.05), on MTHFR C677T , MTR A2756G , MTRR A66G, and DHFR 19 bp except MTHFR A1298C. Four racial groups presented different polymorphism rates for four genes (all p < 0.05) except MTHFR A1298C. Following the ensemble method, the most influential factors were identified, and the best predictive models were generated by using the generalized regression models, with Akaike's information criterion and leave-one-out cross validation methods. Body mass index (BMI) and gender were consistent predictors of CRC for both models when individual genes versus total polymorphism counts were used, and alcohol use was interactive with BMI status. Body mass index status was also interactive with both gender and MTHFR C677T gene polymorphism, and the exposure to environmental pollutants was an additional predictor. These results point to the important roles of environmental and modifiable factors in relation to gene-environment interactions in the prevention of CRC.

  10. NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology.

    PubMed

    Wei, Qing; Khan, Ishita K; Ding, Ziyun; Yerneni, Satwica; Kihara, Daisuke

    2017-03-20

    The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions. To understand relationship and similarity between GO annotations of genes, it is important to have a convenient pipeline that quantifies and visualizes the GO function analyses in a systematic fashion. NaviGO is a web-based tool for interactive visualization, retrieval, and computation of functional similarity and associations of GO terms and genes. Similarity of GO terms and gene functions is quantified with six different scores including protein-protein interaction and context based association scores we have developed in our previous works. Interactive navigation of the GO function space provides intuitive and effective real-time visualization of functional groupings of GO terms and genes as well as statistical analysis of enriched functions. We developed NaviGO, which visualizes and analyses functional similarity and associations of GO terms and genes. The NaviGO webserver is freely available at: http://kiharalab.org/web/navigo .

  11. Association between the APOA2 promoter polymorphism and body-weight in Mediterranean and Asian populations. Replication of a gene-saturated fat interaction

    PubMed Central

    Corella, Dolores; Tai, E Shyong; Sorlí, Jose V; Kai Chew, Suok; Coltell, Oscar; Sotos-Prieto, Mercedes; García-Rios, Antonio; Estruch, Ramón; Ordovas, Jose M.

    2010-01-01

    Objective The APOA2 gene has been associated with obesity and insulin resistance (IR) in animal and human studies with controversial results. We have reported an APOA2-saturated fat interaction determining body mass index (BMI) and obesity in American populations. This work aims to extend our findings to European and Asian populations. Methods Cross-sectional study in 4602 subjects from 2 independent populations: A high cardiovascular risk Mediterranean population (n=907 men and women; aged 67+/−6 years) and a multiethnic Asian population (n=2506 Chinese, n=605 Malays and n=494 Asian Indians; aged 39+/−12 years), participating in a Singapore National Health Survey. Anthropometric, clinical, biochemical, lifestyle and dietary variables were determined. Homeostasis model assessment of IR (HOMA-IR) was used in Asians. We analyzed gene-diet interactions between the APOA2 −265T>C polymorphism and saturated fat intake (=22 g/d) on anthropometric measures and IR. Results Frequency of CC subjects differed among populations (1%–15%). We confirmed a recessive effect of the APOA2 polymorphism, and replicated the APOA2–saturated fat interaction on body-weight. In Mediterranean individuals, the CC genotype was associated with a 6.8% greater BMI in those consuming a high (P=0.018), but not a low (P=0.316) saturated fat diet. Likewise, the CC genotype was significantly associated with higher obesity prevalence in Chinese and Asian Indians only with a high-saturated fat intake (P=0.036). We also found a significant APOA2-saturated fat interaction in determining IR in Chinese and Asian Indians (P=0.026). Conclusion The influence of the APOA2 −265T>C polymorphism on body-weight-related measures was modulated by saturated fat in Mediterranean and Asian populations. PMID:20975728

  12. Association between the APOA2 promoter polymorphism and body weight in Mediterranean and Asian populations: replication of a gene-saturated fat interaction.

    PubMed

    Corella, D; Tai, E S; Sorlí, J V; Chew, S K; Coltell, O; Sotos-Prieto, M; García-Rios, A; Estruch, R; Ordovas, J M

    2011-05-01

    The APOA2 gene has been associated with obesity and insulin resistance (IR) in animal and human studies with controversial results. We have reported an APOA2-saturated fat interaction determining body mass index (BMI) and obesity in American populations. This work aims to extend our findings to European and Asian populations. Cross-sectional study in 4602 subjects from two independent populations: a high-cardiovascular risk Mediterranean population (n = 907 men and women; aged 67 ± 6 years) and a multiethnic Asian population (n = 2506 Chinese, n = 605 Malays and n = 494 Asian Indians; aged 39 ± 12 years) participating in a Singapore National Health Survey. Anthropometric, clinical, biochemical, lifestyle and dietary variables were determined. Homeostasis model assessment of insulin resistance was used in Asians. We analyzed gene-diet interactions between the APOA2 -265T>C polymorphism and saturated fat intake (interaction on body weight. In Mediterranean individuals, the CC genotype was associated with a 6.8% greater BMI in those consuming a high (P = 0.018), but not a low (P = 0.316) saturated fat diet. Likewise, the CC genotype was significantly associated with higher obesity prevalence in Chinese and Asian Indians only, with a high-saturated fat intake (P = 0.036). We also found a significant APOA2-saturated fat interaction in determining IR in Chinese and Asian Indians (P = 0.026). The influence of the APOA2 -265T>C polymorphism on body-weight-related measures was modulated by saturated fat in Mediterranean and Asian populations.

  13. Gene-Environment Interactions in Cancer Epidemiology: A National Cancer Institute Think Tank Report

    PubMed Central

    Hutter, Carolyn M.; Mechanic, Leah E.; Chatterjee, Nilanjan; Kraft, Peter; Gillander, Elizabeth M.

    2014-01-01

    Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified hundreds of common (minor allele frequency [MAF]>0.05) and less common (0.01genes and environment, including gene-environment interactions, into epidemiologic studies of cancer. To help address these questions, and to better inform research priorities and allocation of resources, the National Cancer Institute sponsored a “Gene-Environment Think Tank” on January 10th–011th, 2012. The objective of the Think Tank was to facilitate discussions on: 1) the state of the science; 2) the goals of gene-environment interaction studies in cancer epidemiology; and 3) opportunities for developing novel study designs and analysis tools. This report summarizes the Think Tank discussion, with a focus on contemporary approaches to the analysis of gene-environment interactions. Selecting the appropriate methods requires first identifying the relevant scientific question and rationale, with an important distinction made between analyses aiming to characterize the joint effects of putative or established genetic and environmental factors and analyses aiming to discover novel risk factors or novel interaction effects. Other discussion items include measurement error, statistical power, significance and replication. Additional designs, exposure assessments, and analytical approaches need to be considered as we move from the current small number of success stories to a fuller understanding of the interplay of genetic and environmental factors. PMID:24123198

  14. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    NASA Astrophysics Data System (ADS)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ NN coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ NN correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N NN N and Λ N NN N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N NN N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N NN N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  15. Examining Gene-Environment Interactions in Comorbid Depressive and Disruptive Behavior Disorders using a Bayesian Approach

    PubMed Central

    Adrian, Molly; Kiff, Cara; Glazner, Chris; Kohen, Ruth; Tracy, Julia Helen; Zhou, Chuan; McCauley, Elizabeth; Stoep, Ann Vander

    2015-01-01

    Objective The objective of this study was to apply a Bayesian statistical analytic approach that minimizes multiple testing problems to explore the combined effects of chronic low familial support and variants in 12 candidate genes on risk for a common and debilitating childhood mental health condition. Method Bayesian mixture modeling was used to examine gene by environment interactions among genetic variants and environmental factors (family support) associated in previous studies with the occurrence of comorbid depression and disruptive behavior disorders youth, using a sample of 255 children. Results One main effects, variants in the oxytocin receptor (OXTR, rs53576) was associated with increased risk for comorbid disorders. Two significant gene x environment and one signification gene x gene interaction emerged. Variants in the nicotinic acetylcholine receptor α5 subunit (CHRNA5, rs16969968) and in the glucocorticoid receptor chaperone protein FK506 binding protein 5 (FKBP5, rs4713902) interacted with chronic low family support in association with child mental health status. One gene x gene interaction, 5-HTTLPR variant of the serotonin transporter (SERT/SLC6A4) in combination with μ opioid receptor (OPRM1, rs1799971) was associated with comorbid depression and conduct problems. Conclusions Results indicate that Bayesian modeling is a feasible strategy for conducting behavioral genetics research. This approach, combined with an optimized genetic selection strategy (Vrieze, Iacono, & McGue, 2012), revealed genetic variants involved in stress regulation ( FKBP5, SERTxOPMR), social bonding (OXTR), and nicotine responsivity (CHRNA5) in predicting comorbid status. PMID:26228411

  16. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  17. Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression

    PubMed Central

    Liang, Jinsong; Bai, Yaohui; Men, Yujie; Qu, Jiuhui

    2017-01-01

    Manganese (Mn) is an important metal in geochemical cycles. Some microorganisms can oxidize Mn(II) to Mn oxides, which can, in turn, affect the global cycles of other elements by strong sorption and oxidation effects. Microbe–microbe interactions have important roles in a number of biological processes. However, how microbial interactions affect Mn(II) oxidation still remains unknown. Here, we investigated the interactions between two bacteria (Arthrobacter sp. and Sphingopyxis sp.) in a co-culture, which exhibited Mn(II)-oxidizing activity, although neither were able to oxidize Mn(II) in isolation. We demonstrated that the Mn(II)-oxidizing activity in co-culture was most likely induced via contact-dependent interactions. The expressed Mn(II)-oxidizing protein in the co-culture was purified and identified as a bilirubin oxidase belonging to strain Arthrobacter. Full sequencing of the bilirubin oxidase-encoding gene (boxA) was performed. The Mn(II)-oxidizing protein and the transcripts of boxA were detected in the co-culture, but not in either of the isolated cultures. This indicate that boxA was silent in Arthrobacter monoculture, and was activated in response to presence of Sphingopyxis in the co-culture. Further, transcriptomic analysis by RNA-Seq, extracellular superoxide detection and cell density quantification by flow cytometry indicate induction of boxA gene expression in Arthrobacter was co-incident with a stress response triggered by co-cultivation with Sphingopyxis. Our findings suggest the potential roles of microbial physiological responses to stress induced by other microbes in Mn(II) oxidation and extracellular superoxide production. PMID:27518809

  18. Gene-Diet Interactions in Type 2 Diabetes: The Chicken and Egg Debate

    PubMed Central

    Ortega, Ángeles; Berná, Genoveva; Rojas, Anabel; Martín, Franz; Soria, Bernat

    2017-01-01

    Consistent evidence from both experimental and human studies indicates that Type 2 diabetes mellitus (T2DM) is a complex disease resulting from the interaction of genetic, epigenetic, environmental, and lifestyle factors. Nutrients and dietary patterns are important environmental factors to consider in the prevention, development and treatment of this disease. Nutritional genomics focuses on the interaction between bioactive food components and the genome and includes studies of nutrigenetics, nutrigenomics and epigenetic modifications caused by nutrients. There is evidence supporting the existence of nutrient-gene and T2DM interactions coming from animal studies and family-based intervention studies. Moreover, many case-control, cohort, cross-sectional cohort studies and clinical trials have identified relationships between individual genetic load, diet and T2DM. Some of these studies were on a large scale. In addition, studies with animal models and human observational studies, in different countries over periods of time, support a causative relationship between adverse nutritional conditions during in utero development, persistent epigenetic changes and T2DM. This review provides comprehensive information on the current state of nutrient-gene interactions and their role in T2DM pathogenesis, the relationship between individual genetic load and diet, and the importance of epigenetic factors in influencing gene expression and defining the individual risk of T2DM. PMID:28574454

  19. Representing virus-host interactions and other multi-organism processes in the Gene Ontology.

    PubMed

    Foulger, R E; Osumi-Sutherland, D; McIntosh, B K; Hulo, C; Masson, P; Poux, S; Le Mercier, P; Lomax, J

    2015-07-28

    The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.

  20. Genotype by watering regime interaction in cultivated tomato: lessons from linkage mapping and gene expression.

    PubMed

    Albert, Elise; Gricourt, Justine; Bertin, Nadia; Bonnefoi, Julien; Pateyron, Stéphanie; Tamby, Jean-Philippe; Bitton, Frédérique; Causse, Mathilde

    2016-02-01

    In tomato, genotype by watering interaction resulted from genotype re-ranking more than scale changes. Interactive QTLs according to watering regime were detected. Differentially expressed genes were identified in some intervals. As a result of climate change, drought will increasingly limit crop production in the future. Studying genotype by watering regime interactions is necessary to improve plant adaptation to low water availability. In cultivated tomato (Solanum lycopersicum L.), extensively grown in dry areas, well-mastered water deficits can stimulate metabolite production, increasing plant defenses and concentration of compounds involved in fruit quality, at the same time. However, few tomato Quantitative Trait Loci (QTLs) and genes involved in response to drought are identified or only in wild species. In this study, we phenotyped a population of 119 recombinant inbred lines derived from a cross between a cherry tomato and a large fruit tomato, grown in greenhouse under two watering regimes, in two locations. A large genetic variability was measured for 19 plant and fruit traits, under the two watering treatments. Highly significant genotype by watering regime interactions were detected and resulted from re-ranking more than scale changes. The population was genotyped for 679 SNP markers to develop a genetic map. In total, 56 QTLs were identified among which 11 were interactive between watering regimes. These later mainly exhibited antagonist effects according to watering treatment. Variation in gene expression in leaves of parental accessions revealed 2259 differentially expressed genes, among which candidate genes presenting sequence polymorphisms were identified under two main interactive QTLs. Our results provide knowledge about the genetic control of genotype by watering regime interactions in cultivated tomato and the possible use of deficit irrigation to improve tomato quality.

  1. The impact of the metabotropic glutamate receptor and other gene family interaction networks on autism

    PubMed Central

    Hadley, Dexter; Wu, Zhi-liang; Kao, Charlly; Kini, Akshata; Mohamed-Hadley, Alisha; Thomas, Kelly; Vazquez, Lyam; Qiu, Haijun; Mentch, Frank; Pellegrino, Renata; Kim, Cecilia; Connolly, John; Pinto, Dalila; Merikangas, Alison; Klei, Lambertus; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pagnamenta, Alistair T.; Oliveira, Bárbara; Magalhaes, Tiago R.; Gilbert, John; Duketis, Eftichia; De Jonge, Maretha V.; Cuccaro, Michael; Correia, Catarina T.; Conroy, Judith; Conceição, Inês C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wallace, Simon; Engeland, Herman van; Soorya, Latha; Rogé, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Jacob, Suma; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Café, Cátia; Brennan, Sean; Bourgeron, Thomas; Bolton, Patrick F.; Bölte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anagnostou, Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Almeida, Joana; Café, Cátia; Mouga, Susana; Correia, Catarina; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.; Glessner, Joseph; Hakonarson, Hakon

    2014-01-01

    Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E−09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E−23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E−04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions. PMID:24927284

  2. Interaction between Serotonin Transporter and Serotonin Receptor 1 B genes polymorphisms may be associated with antisocial alcoholism

    PubMed Central

    2012-01-01

    Background Several studies have hypothesized that genes regulating the components of the serotonin system, including serotonin transporter (5-HTTLPR) and serotonin 1 B receptor (5-HT1B), may be associated with alcoholism, but their results are contradictory because of alcoholism’s heterogeneity. Therefore, we examined whether the 5-HTTLPR gene and 5-HT1B gene G861C polymorphism are susceptibility factors for a specific subtype of alcoholism, antisocial alcoholism in Han Chinese in Taiwan. Methods We recruited 273 Han Chinese male inmates with antisocial personality disorder (ASPD) [antisocial alcoholism (AS-ALC) group (n = 120) and antisocial non-alcoholism (AS-N-ALC) group (n = 153)] and 191 healthy male controls from the community. Genotyping was done using PCR-RFLP. Results There were no significant differences in the genotypic frequency of the 5-HT1B G861C polymorphism between the 3 groups. Although AS-ALC group members more frequently carried the 5-HTTLPR S/S, S/LG, and LG/LG genotypes than controls, the difference became non-significant after controlling for the covarying effects of age. However, the 5-HTTLPR S/S, S/LG, and LG/LG genotypes may have interacted with the 5-HT1B G861C C/C polymorphism and increased the risk of becoming antisocial alcoholism. Conclusion Our study suggests that neither the 5-HTTLPR gene nor the 5-HT1B G861C polymorphism alone is a risk factor for antisocial alcoholism in Taiwan’s Han Chinese population, but that the interaction between both genes may increase susceptibility to antisocial alcoholism. PMID:22550993

  3. Microarray analysis of differential gene expression elicited in Trametes versicolor during interspecific mycelial interactions.

    PubMed

    Eyre, Catherine; Muftah, Wafa; Hiscox, Jennifer; Hunt, Julie; Kille, Peter; Boddy, Lynne; Rogers, Hilary J

    2010-08-01

    Trametes versicolor is an important white rot fungus of both industrial and ecological interest. Saprotrophic basidiomycetes are the major decomposition agents in woodland ecosystems, and rarely form monospecific populations, therefore interspecific mycelial interactions continually occur. Interactions have different outcomes including replacement of one species by the other or deadlock. We have made subtractive cDNA libraries to enrich for genes that are expressed when T. versicolor interacts with another saprotrophic basidiomycete, Stereum gausapatum, an interaction that results in the replacement of the latter. Expressed sequence tags (ESTs) (1920) were used for microarray analysis, and their expression compared during interaction with three different fungi: S. gausapatum (replaced by T. versicolor), Bjerkandera adusta (deadlock) and Hypholoma fasciculare (replaced T. versicolor). Expression of significantly more probes changed in the interaction between T. versicolor and S. gausapatum or B. adusta compared to H. fasciculare, suggesting a relationship between interaction outcome and changes in gene expression. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Associations between Methylated Metabolites of Arsenic and Selenium in Urine of Pregnant Bangladeshi Women and Interactions between the Main Genes Involved.

    PubMed

    Skröder, Helena; Engström, Karin; Kuehnelt, Doris; Kippler, Maria; Francesconi, Kevin; Nermell, Barbro; Tofail, Fahmida; Broberg, Karin; Vahter, Marie

    2018-02-01

    It has been proposed that interactions between selenium and arsenic in the body may affect their kinetics and toxicity. However, it is unknown how the elements influence each other in humans. We aimed to investigate potential interactions in the methylation of selenium and arsenic. Urinary selenium (U-Se) and arsenic (U-As) were measured using inductively coupled plasma mass spectrometry (ICPMS) in samples collected from pregnant women ( n =226) in rural Bangladesh at gestational weeks (GW) 8, 14, 19, and 30. Urinary concentrations of trimethyl selenonium ion (TMSe) were measured by HPLC-vapor generation-ICPMS, as were inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA). Methylation efficiency was assessed based on relative amounts (%) of arsenic and selenium metabolites in urine. Genotyping for the main arsenite and selenium methyltransferases, AS3MT and INMT, was performed using TaqMan probes or Sequenom. Multivariable-adjusted linear regression analyses indicated that %TMSe (at GW8) was positively associated with %MMA (β=1.3, 95% CI: 0.56, 2.0) and U-As, and inversely associated with %DMA and U-Se in producers of TMSe ( INMT rs6970396 AG+AA, n =74), who had a wide range of urinary TMSe (12-42%). Also, %TMSe decreased in parallel to %MMA during pregnancy, especially in the first trimester (-0.58 %TMSe per gestational week). We found a gene-gene interaction for %MMA ( p -interaction=0.076 for haplotype 1). In analysis stratified by INMT genotype, the association between %MMA and both AS3MT haplotypes 1 and 3 was stronger in women with the INMT GG (TMSe nonproducers, 5th-95th percentile: 0.2-2%TMSe) vs. AG+AA genotype. Our findings for Bangladeshi women suggest a positive association between urinary %MMA and %TMSe. Genes involved in the methylation of selenium and arsenic may interact on associations with urinary %MMA. https://doi.org/10.1289/EHP1912.

  5. Genetic Variant in the IGF2BP2 Gene May Interact With Fetal Malnutrition to Affect Glucose Metabolism

    PubMed Central

    van Hoek, Mandy; Langendonk, Janneke G.; de Rooij, Susanne R.; Sijbrands, Eric J.G.; Roseboom, Tessa J.

    2009-01-01

    OBJECTIVE Fetal malnutrition may predispose to type 2 diabetes through gene programming and developmental changes. Previous studies showed that these effects may be modulated by genetic variation. Genome-wide association studies discovered and replicated a number of type 2 diabetes–associated genes. We investigated the effects of such well-studied polymorphisms and their interactions with fetal malnutrition on type 2 diabetes risk and related phenotypes in the Dutch Famine Birth Cohort. RESEARCH DESIGN AND METHODS The rs7754840 (CDKAL1), rs10811661 (CDKN2AB), rs1111875 (HHEX), rs4402960 (IGF2BP2), rs5219 (KCNJ11), rs13266634 (SLC30A8), and rs7903146 (TCF7L2) polymorphisms were genotyped in 772 participants of the Dutch Famine Birth Cohort Study (n = 328 exposed, n = 444 unexposed). Logistic and linear regression models served to analyze their interactions with prenatal exposure to famine on type 2 diabetes, impaired glucose tolerance (IGT), and area under the curves (AUCs) for glucose and insulin during oral glucose tolerance testing (OGTT). RESULTS In the total population, the TCF7L2 and IGF2BP2 variants most strongly associated with increased risk for type 2 diabetes/IGT and increased AUC for glucose, while the CDKAL1 polymorphism associated with decreased AUC for insulin. The IGF2BP2 polymorphism showed an interaction with prenatal exposure to famine on AUC for glucose (β = −9.2 [95% CI −16.2 to −2.1], P = 0.009). CONCLUSIONS The IGF2BP2 variant showed a nominal interaction with exposure to famine in utero, decreasing OGTT AUCs for glucose. This may provide a clue that modulation of the consequences of fetal environment depends on an individual's genetic background. PMID:19258437

  6. Interactions in the microbiome: communities of organisms and communities of genes

    PubMed Central

    Boon, Eva; Meehan, Conor J; Whidden, Chris; Wong, Dennis H-J; Langille, Morgan GI; Beiko, Robert G

    2014-01-01

    A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term ‘community’ is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of ‘Who is there?’ and ‘What are they doing?’ to the mechanistically driven question of ‘How will they respond?’ PMID:23909933

  7. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction

    PubMed Central

    Mensch, Julián; Lavagnino, Nicolás; Carreira, Valeria Paula; Massaldi, Ana; Hasson, Esteban; Fanara, Juan José

    2008-01-01

    Background Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait. Results We analyzed 179 co-isogenic single P[GT1]-element insertion lines of Drosophila melanogaster to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes Merlin and Karl showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic P-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes. Conclusion We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in Drosophila. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during

  8. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    PubMed

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  9. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    PubMed Central

    2011-01-01

    Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/. PMID:21615923

  10. A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility

    PubMed Central

    Gui, Jiang; Andrew, Angeline S.; Andrews, Peter; Nelson, Heather M.; Kelsey, Karl T.; Karagas, Margaret R.; Moore, Jason H.

    2010-01-01

    A central goal of human genetics is to identify and characterize susceptibility genes for common complex human diseases. An important challenge in this endeavor is the modeling of gene-gene interaction or epistasis that can result in non-additivity of genetic effects. The multifactor dimensionality reduction (MDR) method was developed as machine learning alternative to parametric logistic regression for detecting interactions in absence of significant marginal effects. The goal of MDR is to reduce the dimensionality inherent in modeling combinations of polymorphisms using a computational approach called constructive induction. Here, we propose a Robust Multifactor Dimensionality Reduction (RMDR) method that performs constructive induction using a Fisher’s Exact Test rather than a predetermined threshold. The advantage of this approach is that only those genotype combinations that are determined to be statistically significant are considered in the MDR analysis. We use two simulation studies to demonstrate that this approach will increase the success rate of MDR when there are only a few genotype combinations that are significantly associated with case-control status. We show that there is no loss of success rate when this is not the case. We then apply the RMDR method to the detection of gene-gene interactions in genotype data from a population-based study of bladder cancer in New Hampshire. PMID:21091664

  11. The case-only test for gene-environment interaction is not uniformly powerful: an empirical example

    PubMed Central

    Wu, Chen; Chang, Jiang; Ma, Baoshan; Miao, Xiaoping; Zhou, Yifeng; Liu, Yu; Li, Yun; Wu, Tangchun; Hu, Zhibin; Shen, Hongbing; Jia, Weihua; Zeng, Yixin; Lin, Dongxin; Kraft, Peter

    2016-01-01

    The case-only test has been proposed as a more powerful approach to detect gene-environment (G×E) interactions. This approach assumes that the genetic and environmental factors are independent. While it is well known that Type I error rate will increase if this assumption is violated, it is less widely appreciated that gene-environment correlation can also lead to power loss. We illustrate this phenomenon by comparing the performance of the case-only test to other approaches to detect G×E interactions in a genome-wide association study of esophageal squamous carcinoma (ESCC) in Chinese populations. Some of these approaches do not use information on the correlation between exposure and genotype (standard logistic regression), while others seek to use this information in a robust fashion to boost power without increasing Type I error (two-step, empirical Bayes and cocktail methods). G×E interactions were identified involving drinking status and two regions containing genes in the alcohol metabolism pathway, 4q23 and 12q24. Although the case-only test yielded the most significant tests of G×E interaction in the 4q23 region, the case-only test failed to identify significant interactions in the 12q24 region which were readily identified using other approaches. The low power of the case-only test in the 12q24 region is likely due to the strong inverse association between the SNPs in this region and drinking status. This example underscores the need to consider multiple approaches to detect gene-environment interactions, as different tests are more or less sensitive to different alternative hypotheses and violations of the gene-environment independence assumption. PMID:23595356

  12. Rice phytochrome-interacting factor protein OsPIFff14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    USDA-ARS?s Scientific Manuscript database

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bi...

  13. Confirmatory and Competitive Evaluation of Alternative Gene-Environment Interaction Hypotheses

    ERIC Educational Resources Information Center

    Belsky, Jay; Pluess, Michael; Widaman, Keith F.

    2013-01-01

    Background: Most gene-environment interaction (GXE) research, though based on clear, vulnerability-oriented hypotheses, is carried out using exploratory rather than hypothesis-informed statistical tests, limiting power and making formal evaluation of competing GXE propositions difficult. Method: We present and illustrate a new regression technique…

  14. NFI Transcription Factors Interact with FOXA1 to Regulate Prostate-Specific Gene Expression

    PubMed Central

    Elliott, Amicia D.; DeGraff, David J.; Anderson, Philip D.; Anumanthan, Govindaraj; Yamashita, Hironobu; Sun, Qian; Friedman, David B.; Hachey, David L.; Yu, Xiuping; Sheehan, Jonathan H.; Ahn, Jung-Mo; Raj, Ganesh V.; Piston, David W.; Gronostajski, Richard M.; Matusik, Robert J.

    2014-01-01

    Androgen receptor (AR) action throughout prostate development and in maintenance of the prostatic epithelium is partly controlled by interactions between AR and forkhead box (FOX) transcription factors, particularly FOXA1. We sought to identity additional FOXA1 binding partners that may mediate prostate-specific gene expression. Here we identify the nuclear factor I (NFI) family of transcription factors as novel FOXA1 binding proteins. All four family members (NFIA, NFIB, NFIC, and NFIX) can interact with FOXA1, and knockdown studies in androgen-dependent LNCaP cells determined that modulating expression of NFI family members results in changes in AR target gene expression. This effect is probably mediated by binding of NFI family members to AR target gene promoters, because chromatin immunoprecipitation (ChIP) studies found that NFIB bound to the prostate-specific antigen enhancer. Förster resonance energy transfer studies revealed that FOXA1 is capable of bringing AR and NFIX into proximity, indicating that FOXA1 facilitates the AR and NFI interaction by bridging the complex. To determine the extent to which NFI family members regulate AR/FOXA1 target genes, motif analysis of publicly available data for ChIP followed by sequencing was undertaken. This analysis revealed that 34.4% of peaks bound by AR and FOXA1 contain NFI binding sites. Validation of 8 of these peaks by ChIP revealed that NFI family members can bind 6 of these predicted genomic elements, and 4 of the 8 associated genes undergo gene expression changes as a result of individual NFI knockdown. These observations suggest that NFI regulation of FOXA1/AR action is a frequent event, with individual family members playing distinct roles in AR target gene expression. PMID:24801505

  15. Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes

    PubMed Central

    Németh, Attila; Guibert, Sylvain; Tiwari, Vijay Kumar; Ohlsson, Rolf; Längst, Gernot

    2008-01-01

    Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes. PMID:18354495

  16. The Interaction of TXNIP and AFq1 Genes Increases the Susceptibility of Schizophrenia.

    PubMed

    Su, Yousong; Ding, Wenhua; Xing, Mengjuan; Qi, Dake; Li, Zezhi; Cui, Donghong

    2017-08-01

    Although previous studies showed the reduced risk of cancer in patients with schizophrenia, whether patients with schizophrenia possess genetic factors that also contribute to tumor suppressor is still unknown. In the present study, based on our previous microarray data, we focused on the tumor suppressor genes TXNIP and AF1q, which differentially expressed in patients with schizophrenia. A total of 413 patients and 578 healthy controls were recruited. We found no significant differences in genotype, allele, or haplotype frequencies at the selected five single nucleotide polymorphisms (SNPs) (rs2236566 and rs7211 in TXNIP gene; rs10749659, rs2140709, and rs3738481 in AF1q gene) between patients with schizophrenia and controls. However, we found the association between the interaction of TXNIP and AF1q with schizophrenia by using the MDR method followed by traditional statistical analysis. The best gene-gene interaction model identified was a three-locus model TXNIP (rs2236566, rs7211)-AF1q (rs2140709). After traditional statistical analysis, we found the high-risk genotype combination was rs2236566 (GG)-rs7211(CC)-rs2140709(CC) (OR = 1.35 [1.03-1.76]). The low-risk genotype combination was rs2236566 (GT)-rs7211(CC)-rs2140709(CC) (OR = 0.67 [0.49-0.91]). Our finding suggested statistically significant role of interaction of TXNIP and AF1q polymorphisms (TXNIP-rs2236566, TXNIP-rs7211, and AF1q-rs2769605) in schizophrenia susceptibility.

  17. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks.

    PubMed

    Li, Min; Li, Qi; Ganegoda, Gamage Upeksha; Wang, JianXin; Wu, FangXiang; Pan, Yi

    2014-11-01

    Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.

  18. Autism risk factors: genes, environment, and gene-environment interactions

    PubMed Central

    Chaste, Pauline; Leboyer, Marion

    2012-01-01

    The aim of this review is to summarize the key findings from genetic and epidemiological research, which show that autism is a complex disorder resulting from the combination of genetic and environmental factors. Remarkable advances in the knowledge of genetic causes of autism have resulted from the great efforts made in the field of genetics. The identification of specific alleles contributing to the autism spectrum has supplied important pieces for the autism puzzle. However, many questions remain unanswered, and new questions are raised by recent results. Moreover, given the amount of evidence supporting a significant contribution of environmental factors to autism risk, it is now clear that the search for environmental factors should be reinforced. One aspect of this search that has been neglected so far is the study of interactions between genes and environmental factors. PMID:23226953

  19. Gene-Environment Interactions in Genome-Wide Association Studies: Current Approaches and New Directions

    ERIC Educational Resources Information Center

    Winham, Stacey J.; Biernacka, Joanna M.

    2013-01-01

    Background: Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized…

  20. Protein Interaction Networks Reveal Novel Autism Risk Genes within GWAS Statistical Noise

    PubMed Central

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M.

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical “noise” that warrant further analysis for causal variants. PMID:25409314

  1. Protein interaction networks reveal novel autism risk genes within GWAS statistical noise.

    PubMed

    Correia, Catarina; Oliveira, Guiomar; Vicente, Astrid M

    2014-01-01

    Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the identification of common risk variants, consistent with the notion that variants with small individual effects cannot be detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies, we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis showed that autism-associated proteins at higher than conventional levels of significance (P<0.1) directly interact more than random expectation and are involved in a limited number of interconnected biological processes, indicating that they are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets. Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes previously hidden within GWAS statistical "noise" that warrant further analysis for causal variants.

  2. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication

    PubMed Central

    Korithoski, Bryan; Kolaczkowski, Oralia; Mukherjee, Krishanu; Kola, Reema; Earl, Chandra; Kolaczkowski, Bryan

    2015-01-01

    The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that—in the absence of ubiquitin—it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways. PMID:26356745

  3. Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene x gender interaction.

    PubMed

    Wang, Ke-Sheng; Wang, Liang; Liu, Xuefeng; Zeng, Min

    2013-12-01

    The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes.We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such as triglycerides). We examined genetic associations of 117 single-nucleotide polymorphisms (SNPs) within the HS6ST3 gene with obesity and triglycerides using two Caucasian samples: the Marshfield sample (1442 obesity cases and 2122 controls), and the Health aging and body composition (Health ABC) sample (305 cases and 1336 controls). Logistic regression analysis of obesity as a binary trait and linear regression analysis of triglycerides as a continuous trait, adjusted for age and sex, were performed using PLINK. Single marker analysis showed that six SNPs in the Marshfield sample and one SNP in the Health ABC sample were associated with obesity (P < 0.05). SNP rs535812 revealed a stronger association with obesity in meta-analysis of these two samples (P = 0.0105). The T-A haplotype from rs878950 and rs9525149 revealed significant association with obesity in the Marshfield sample (P = 0.012). Moreover, nine SNPs showed associations with triglycerides in the Marshfield sample (P < 0.05) and the best signal was rs1927796 (P = 0.00858). In addition, rs7331762 showed a strong gene x gender interaction (P = 0.00956) for obesity while rs1927796 showed a strong gene x gender interaction (P = 0.000625) for triglycerides in the Marshfield sample. These findings contribute new insights into the pathogenesis of obesity and triglycerides and demonstrate the importance of gender differences in the aetiology.

  4. Sleep Duration and Depressive Symptoms: A Gene-Environment Interaction

    PubMed Central

    Watson, Nathaniel F.; Harden, Kathryn Paige; Buchwald, Dedra; Vitiello, Michael V.; Pack, Allan I.; Strachan, Eric; Goldberg, Jack

    2014-01-01

    Objective: We used quantitative genetic models to assess whether sleep duration modifies genetic and environmental influences on depressive symptoms. Method: Participants were 1,788 adult twins from 894 same-sex twin pairs (192 male and 412 female monozygotic [MZ] pairs, and 81 male and 209 female dizygotic [DZ] pairs] from the University of Washington Twin Registry. Participants self-reported habitual sleep duration and depressive symptoms. Data were analyzed using quantitative genetic interaction models, which allowed the magnitude of additive genetic, shared environmental, and non-shared environmental influences on depressive symptoms to vary with sleep duration. Results: Within MZ twin pairs, the twin who reported longer sleep duration reported fewer depressive symptoms (ec = -0.17, SE = 0.06, P < 0.05). There was a significant gene × sleep duration interaction effect on depressive symptoms (a'c = 0.23, SE = 0.08, P < 0.05), with the interaction occurring on genetic influences that are common to both sleep duration and depressive symptoms. Among individuals with sleep duration within the normal range (7-8.9 h/night), the total heritability (h2) of depressive symptoms was approximately 27%. However, among individuals with sleep duration within the low (< 7 h/night) or high (≥ 9 h/night) range, increased genetic influence on depressive symptoms was observed, particularly at sleep duration extremes (5 h/night: h2 = 53%; 10 h/night: h2 = 49%). Conclusion: Genetic contributions to depressive symptoms increase at both short and long sleep durations. Citation: Watson NF; Harden KP; Buchwald D; Vitiello MV; Pack AI; Stachan E; Goldberg J. Sleep duration and depressive symptoms: a gene-environment interaction. SLEEP 2014;37(2):351-358. PMID:24497663

  5. Brain galanin system genes interact with life stresses in depression-related phenotypes

    PubMed Central

    Juhasz, Gabriella; Hullam, Gabor; Eszlari, Nora; Gonda, Xenia; Antal, Peter; Anderson, Ian Muir; Hökfelt, Tomas G. M.; Deakin, J. F. William; Bagdy, Gyorgy

    2014-01-01

    Galanin is a stress-inducible neuropeptide and cotransmitter in serotonin and norepinephrine neurons with a possible role in stress-related disorders. Here we report that variants in genes for galanin (GAL) and its receptors (GALR1, GALR2, GALR3), despite their disparate genomic loci, conferred increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events in a European white population cohort totaling 2,361 from Manchester, United Kingdom and Budapest, Hungary. Bayesian multivariate analysis revealed a greater relevance of galanin system genes in highly stressed subjects compared with subjects with moderate or low life stress. Using the same method, the effect of the galanin system genes was stronger than the effect of the well-studied 5-HTTLPR polymorphism in the serotonin transporter gene (SLC6A4). Conventional multivariate analysis using general linear models demonstrated that interaction of galanin system genes with life stressors explained more variance (1.7%, P = 0.005) than the life stress-only model. This effect replicated in independent analysis of the Manchester and Budapest subpopulations, and in males and females. The results suggest that the galanin pathway plays an important role in the pathogenesis of depression in humans by increasing the vulnerability to early and recent psychosocial stress. Correcting abnormal galanin function in depression could prove to be a novel target for drug development. The findings further emphasize the importance of modeling environmental interaction in finding new genes for depression. PMID:24706871

  6. Theoretical study of the interaction of N/sub 2/ with water molecules. (H/sub 2/O)/sub n/:N/sub 2/, n = 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-03-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H/sub 2/O molecule with N/sub 2/. The potential energy surface for H/sub 2/O:N/sub 2/ is found to have a minimum corresponding to a HOH xxx N/sub 2/ structure with a weak (<2 kcal mol/sup -1/) hydrogen bond. A second, less stable, configuration corresponding to a H/sub 2/O xxx N/sub 2/ structure with N/sub 2/ bonded side on to the oxygen of H/sub 2/O was found to be either a minimum or a saddle point in the potential energy surface depending on themore » level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H/sub 2/O molecules with N/sub 2/. Two types of clusters, one containing only HOH xxx N/sub 2/ interactions and the other containing both HOH xxxN/sub 2/ and H/sub 2/O xxx N/sub 2/ interactions, were investigated for (N/sub 2/:(H/sub 2/O)/sub n/, n = 2--8).« less

  7. Prediction of the Ebola Virus Infection Related Human Genes Using Protein-Protein Interaction Network.

    PubMed

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuan-Ming; Zhang, Ning

    2017-01-01

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Attachment style and oxytocin receptor gene variation interact in influencing social anxiety.

    PubMed

    Notzon, S; Domschke, K; Holitschke, K; Ziegler, C; Arolt, V; Pauli, P; Reif, A; Deckert, J; Zwanzger, P

    2016-01-01

    Social anxiety has been suggested to be promoted by an insecure attachment style. Oxytocin is discussed as a mediator of trust and social bonding as well as a modulator of social anxiety. Applying a gene-environment (G × E) interaction approach, in the present pilot study the main and interactive effects of attachment styles and oxytocin receptor (OXTR) gene variation were probed in a combined risk factor model of social anxiety in healthy probands. Participants (N = 388; 219 females, 169 males; age 24.7 ± 4.7 years) were assessed for anxiety in social situations (Social Phobia and Anxiety Inventory) depending on attachment style (Adult Attachment Scale, AAS) and OXTR rs53576 A/G genotype. A less secure attachment style was significantly associated with higher social anxiety. This association was partly modulated by OXTR genotype, with a stronger negative influence of a less secure attachment style on social anxiety in A allele carriers as compared to GG homozygotes. The present pilot data point to a strong association of less secure attachment and social anxiety as well as to a gene-environment interaction effect of OXTR rs53576 genotype and attachment style on social anxiety possibly constituting a targetable combined risk marker of social anxiety disorder.

  9. Chemical-gene interaction networks and causal reasoning for ...

    EPA Pesticide Factsheets

    Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and biological effects data to evaluate risks associated with chemicals present in the environment. Here, we used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near the North Branch and Chisago wastewater treatment plants (WWTP) in the St. Croix River Basin, MN and WI. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data were also mapped to the assembly models to evaluate the likelihood of a chemical contributing to the observed biological responses using richness and concordance statistics. The prior knowledge approach was able predict the observed biological pathways impacted at one site but not the other. Atrazine was identified as a potential contributor to the observed gene expression responses at a location upstream of the North Branch WTTP. Four chemicals were identified as contributors to the observed biological responses at the effluent and downstream o

  10. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Silva, Sandra G; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Maria Amália S

    2014-10-20

    Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Interaction between ALDH2*1*1 and DRD2/ANKK1 TaqI A1A1 genes may be associated with antisocial personality disorder not co-morbid with alcoholism.

    PubMed

    Lu, Ru-Band; Lee, Jia-Fu; Huang, San-Yuan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Kuo, Po-Hsiu; Chen, Shiou-Lan; Chen, Shih-Heng; Chu, Chun-Hsien; Lin, Wei-Wen; Wu, Pei-Lin; Ko, Huei-Chen

    2012-09-01

    Previous studies on acetaldehyde dehydrogenase 2 (ALDH2) focused on drinking behavior or alcoholism because the ALDH2*2 allele protects against the risk of developing alcoholism. The mechanism provides that the ALDH2 gene's protective effect is also involved in dopamine metabolism. The interaction of the ALDH2 gene with neurotransmitters, such as dopamine, is suggested to be related to alcoholism. Because alcoholism is often co-morbid with antisocial personality disorder (ASPD), previous association studies on antisocial alcoholism cannot differentiate whether those genes relate to ASPD with alcoholism or ASPD only. This study examined the influence of the interaction effect of the ALDH2*1*1, *1*2 or *2*2 polymorphisms with the dopamine 2 receptor (DRD2) Taq I polymorphism on ASPD. Our 541 Han Chinese male participants were classified into three groups: antisocial alcoholism (ASPD co-morbid with alcohol dependence, antisocial ALC; n = 133), ASPD without alcoholism (ASPD not co-morbid with alcohol dependence, antisocial non-ALC; n = 164) and community controls (healthy volunteers from the community; n = 244). Compared with healthy controls, individuals with the DRD2 A1/A1 and the ALDH2*1/*1 genotypes were at a 5.39 times greater risk for antisocial non-ALC than were those with other genotypes. Our results suggest that the DRD2/ANKK1 and ALDH2 genes interacted in the antisocial non-ALC group; a connection neglected in previous studies caused by not separating antisocial ALC from ASPD. Our study made this distinction and showed that these two genes may be associated ASPD without co-morbid alcoholism. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  12. Interaction between LRP5 and periostin gene polymorphisms on serum periostin levels and cortical bone microstructure.

    PubMed

    Pepe, J; Bonnet, N; Herrmann, F R; Biver, E; Rizzoli, R; Chevalley, T; Ferrari, S L

    2018-02-01

    We investigated the interaction between periostin SNPs and the SNPs of the genes assumed to modulate serum periostin levels and bone microstructure in a cohort of postmenopausal women. We identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels and on radial cortical porosity. The purpose of this study is to investigate the interaction between periostin gene polymorphisms (SNPs) and other genes potentially responsible for modulating serum periostin levels and bone microstructure in a cohort of postmenopausal women. In 648 postmenopausal women from the Geneva Retirees Cohort, we analyzed 6 periostin SNPs and another 149 SNPs in 14 genes, namely BMP2, CTNNB1, ESR1, ESR2, LRP5, LRP6, PTH, SPTBN1, SOST, TGFb1, TNFRSF11A, TNFSF11, TNFRSF11B and WNT16. Volumetric BMD and bone microstructure were measured by high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Serum periostin levels were associated with radial cortical porosity, including after adjustment for age, BMI, and years since menopause (p = 0.036). Sixteen SNPs in the ESR1, LRP5, TNFRSF11A, SOST, SPTBN1, TNFRSF11B and TNFSF11 genes were associated with serum periostin levels (p range 0.03-0.001) whereas 26 SNPs in 9 genes were associated with cortical porosity at the radius and/or at the tibia. WNT 16 was the gene with the highest number of SNPs associated with both trabecular and cortical microstructure. The periostin SNP rs9547970 was also associated with cortical porosity (p = 0.04). In particular, SNPs in LRP5, ESR1 and near the TNFRSF11A gene were associated with both cortical porosity and serum periostin levels. Eventually, we identified an interaction between LRP5 SNP rs648438 and periostin SNP rs9547970 on serum periostin levels (interaction p = 0.01) and on radial cortical porosity (interaction p = 0.005). These results suggest that periostin expression is genetically modulated, particularly by polymorphisms

  13. Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer

    PubMed Central

    Ritchie, Marylyn D.; Hahn, Lance W.; Roodi, Nady; Bailey, L. Renee; Dupont, William D.; Parl, Fritz F.; Moore, Jason H.

    2001-01-01

    One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes and with environmental exposures. We introduce multifactor-dimensionality reduction (MDR) as a method for reducing the dimensionality of multilocus information, to improve the identification of polymorphism combinations associated with disease risk. The MDR method is nonparametric (i.e., no hypothesis about the value of a statistical parameter is made), is model-free (i.e., it assumes no particular inheritance model), and is directly applicable to case-control and discordant-sib-pair studies. Using simulated case-control data, we demonstrate that MDR has reasonable power to identify interactions among two or more loci in relatively small samples. When it was applied to a sporadic breast cancer case-control data set, in the absence of any statistically significant independent main effects, MDR identified a statistically significant high-order interaction among four polymorphisms from three different estrogen-metabolism genes. To our knowledge, this is the first report of a four-locus interaction associated with a common complex multifactorial disease. PMID:11404819

  14. Unconditional analyses can increase efficiency in assessing gene-environment interaction of the case-combined-control design.

    PubMed

    Goldstein, Alisa M; Dondon, Marie-Gabrielle; Andrieu, Nadine

    2006-08-01

    A design combining both related and unrelated controls, named the case-combined-control design, was recently proposed to increase the power for detecting gene-environment (GxE) interaction. Under a conditional analytic approach, the case-combined-control design appeared to be more efficient and feasible than a classical case-control study for detecting interaction involving rare events. We now propose an unconditional analytic strategy to further increase the power for detecting gene-environment (GxE) interactions. This strategy allows the estimation of GxE interaction and exposure (E) main effects under certain assumptions (e.g. no correlation in E between siblings and the same exposure frequency in both control groups). Only the genetic (G) main effect cannot be estimated because it is biased. Using simulations, we show that unconditional logistic regression analysis is often more efficient than conditional analysis for detecting GxE interaction, particularly for a rare gene and strong effects. The unconditional analysis is also at least as efficient as the conditional analysis when the gene is common and the main and joint effects of E and G are small. Under the required assumptions, the unconditional analysis retains more information than does the conditional analysis for which only discordant case-control pairs are informative leading to more precise estimates of the odds ratios.

  15. Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis.

    PubMed

    Canesi, Laura; Frenzilli, Giada; Balbi, Teresa; Bernardeschi, Margherita; Ciacci, Caterina; Corsolini, Simonetta; Della Torre, Camilla; Fabbri, Rita; Faleri, Claudia; Focardi, Silvano; Guidi, Patrizia; Kočan, Anton; Marcomini, Antonio; Mariottini, Michela; Nigro, Marco; Pozo-Gallardo, Karla; Rocco, Lucia; Scarcelli, Vittoria; Smerilli, Arianna; Corsi, Ilaria

    2014-08-01

    Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. The bivalve Mytilus sp, largely utilized as a sentinel for marine contamination, has been shown to represent a significant target for different types of NP, including n-TiO2, one of the most widespread in use. In this work, the possible interactive effects of n-TiO2 and 2,3,7,8-TCDD, chosen as models of NP and organic contaminant, respectively, were investigated in Mytilus galloprovincialis. In vitro experiments with n-TiO2 and TCDD, alone and in combination, were carried out in different conditions (concentrations and times of exposure), depending on the target (hemocytes, gill cells and biopsies) and the endpoint measured. Mussels were also exposed in vivo to n-TiO2 (100 μg L(-1)) or to TCDD (0.25 μg L(-1)), alone and in combination, for 96 h. A wide range of biomarkers, from molecular to tissue level, were measured: lysosomal membrane stability and phagocytosis in hemocytes, ATP-binding cassette efflux transporters in gills (gene transcription and efflux activity), several biomarkers of genotoxicity in gill and digestive cells (DNA damage, random amplified polymorphic DNA-RAPD changes), lysosomal biomarkers and transcription of selected genes in the digestive gland. The results demonstrate that n-TiO2 and TCDD can exert synergistic or antagonistic effects, depending on experimental condition, cell/tissue and type of measured response. Some of these interactions may result from a significant increase in TCDD accumulation in whole mussel organisms in the presence of n-TiO2, indicating a Trojan horse effect. The results represent the most extensive data obtained so far on the sub-lethal effects of NPs and organic contaminants in aquatic organisms. Moreover, these data extend the knowledge on the molecular and cellular targets of NPs in bivalves. Copyright © 2013 Elsevier B.V. All

  16. Impact of Maspin Polymorphism rs2289520 G/C and Its Interaction with Gene to Gene, Alcohol Consumption Increase Susceptibility to Oral Cancer Occurrence.

    PubMed

    Yang, Po-Yu; Miao, Nae-Fang; Lin, Chiao-Wen; Chou, Ying-Erh; Yang, Shun-Fa; Huang, Hui-Chuan; Chang, Hsiu-Ju; Tsai, Hsiu-Ting

    2016-01-01

    The purpose of this study was to identify gene polymorphisms of mammary serine protease inhibitor (Maspin) specific to patients with oral cancer susceptibility and clinicopathological status. Three single-nucleotide polymorphisms (SNPs) of the Maspin gene from 741 patients with oral cancer and 601 non-cancer controls were analyzed by real-time PCR. The participants with G/G homozygotes or with G/C heterozygotes of Maspin rs2289520 polymorphism had a 2.07-fold (p = 0.01) and a 2.01-fold (p = 0.02) risk of developing oral cancer compared to those with C/C homozygotes. Moreover, gene-gene interaction increased the risk of oral cancer susceptibility among subjects expose to oral cancer related risk factors, including areca, alcohol, and tobacco consumption. G allele of Maspin rs2289520 polymorphism may be a factor that increases the susceptibility to oral cancer. The interactions of gene to oral cancer-related environmental risk factors have a synergetic effect that can further enhance oral cancer development.

  17. NInteraction from High-Energy Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Morita, Kenji; Ohnishi, Akira; Hatsuda, Tetsuo

    We discuss possible observation of the Ninteraction from intensity correlation function in high energy heavy ion collisions. Recently a lattice QCD simulation by the HAL QCD collaboration predicts the existence of a N-Ω bound state in the 5S2 channel. We adopt the Ninteraction potential obtained by the lattice simulation and use it to calculate the N-Ω correlation function. We also study the variation of the correlation function with respect to the change of the binding energy and scattering parameters. Our result indicates that heavy ion collisions at RHIC and LHC may provide information on the possible existence of the N-Ω dibaryon.

  18. Evidence of the Red-Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions in Pneumocystis.

    PubMed

    Delaye, Luis; Ruiz-Ruiz, Susana; Calderon, Enrique; Tarazona, Sonia; Conesa, Ana; Moya, Andrés

    2018-06-01

    Pneumocystis species are ascomycete fungi adapted to live inside the lungs of mammals. These ascomycetes show extensive stenoxenism, meaning that each species of Pneumocystis infects a single species of host. Here, we study the effect exerted by natural selection on gene evolution in the genomes of three Pneumocystis species. We show that genes involved in host interaction evolve under positive selection. In the first place, we found strong evidence of episodic diversifying selection in Major surface glycoproteins (Msg). These proteins are located on the surface of Pneumocystis and are used for host attachment and probably for immune system evasion. Consistent with their function as antigens, most sites under diversifying selection in Msg code for residues with large relative surface accessibility areas. We also found evidence of positive selection in part of the cell machinery used to export Msg to the cell surface. Specifically, we found that genes participating in glycosylphosphatidylinositol (GPI) biosynthesis show an increased rate of nonsynonymous substitutions (dN) versus synonymous substitutions (dS). GPI is a molecule synthesized in the endoplasmic reticulum that is used to anchor proteins to membranes. We interpret the aforementioned findings as evidence of selective pressure exerted by the host immune system on Pneumocystis species, shaping the evolution of Msg and several proteins involved in GPI biosynthesis. We suggest that genome evolution in Pneumocystis is well described by the Red-Queen hypothesis whereby genes relevant for biotic interactions show accelerated rates of evolution.

  19. Short cell-penetrating peptides: a model of interactions with gene promoter sites.

    PubMed

    Khavinson, V Kh; Tarnovskaya, S I; Linkova, N S; Pronyaeva, V E; Shataeva, L K; Yakutseni, P P

    2013-01-01

    Analysis of the main parameters of molecular mechanics (number of hydrogen bonds, hydrophobic and electrostatic interactions, DNA-peptide complex minimization energy) provided the data to validate the previously proposed qualitative models of peptide-DNA interactions and to evaluate their quantitative characteristics. Based on these estimations, a three-dimensional model of Lys-Glu and Ala-Glu-Asp-Gly peptide interactions with DNA sites (GCAG and ATTTC) located in the promoter zones of genes encoding CD5, IL-2, MMP2, and Tram1 signal molecules.

  20. Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions

    PubMed Central

    Huo, Xiaona; Chen, Dan; He, Yonghua; Zhu, Wenting; Zhou, Wei; Zhang, Jun

    2015-01-01

    Background: Bisphenol-A (BPA) is widely used and ubiquitous in the environment. Animal studies indicate that BPA affects reproduction, however, the gene-environment interaction mechanism(s) involved in this association remains unclear. We performed a literature review to summarize the evidence on this topic. Methods: A comprehensive search was conducted in PubMed using as keywords BPA, gene, infertility and female reproduction. Full-text articles in both human and animals published in English prior to December 2014 were selected. Results: Evidence shows that BPA can interfere with endocrine function of hypothalamic-pituitary axis, such as by changing gonadotropin-releasing hormones (GnRH) secretion in hypothalamus and promoting pituitary proliferation. Such actions affect puberty, ovulation and may even result in infertility. Ovary, uterus and other reproductive organs are also targets of BPA. BPA exposure impairs the structure and functions of female reproductive system in different times of life cycle and may contribute to infertility. Both epidemiological and experimental evidences demonstrate that BPA affects reproduction-related gene expression and epigenetic modification that are closely associated with infertility. The detrimental effects on reproduction may be lifelong and transgenerational. Conclusions: Evidence on gene-environment interactions, especially from human studies, is still limited. Further research on this topic is warranted. PMID:26371021

  1. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis.

    PubMed

    Hintze, Stefan; Engelhardt, Maike; van Diepen, Laura; Witt, Eric; Schüller, Hans-Joachim

    2017-12-01

    Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2. © 2017 John Wiley & Sons Ltd.

  2. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    PubMed

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future

  3. Coordinating Regulation of Gene Expression in Cardiovascular Disease: Interactions between Chromatin Modifiers and Transcription Factors

    PubMed Central

    Bauer, Ashley J.; Martin, Kathleen A.

    2017-01-01

    Cardiovascular disease is a leading cause of death with increasing economic burden. The pathogenesis of cardiovascular diseases is complex, but can arise from genetic and/or environmental risk factors. This can lead to dysregulated gene expression in numerous cell types including cardiomyocytes, endothelial cells, vascular smooth muscle cells, and inflammatory cells. While initial studies addressed transcriptional control of gene expression, epigenetics has been increasingly appreciated to also play an important role in this process through alterations in chromatin structure and gene accessibility. Chromatin-modifying proteins including enzymes that modulate DNA methylation, histone methylation, and histone acetylation can influence gene expression in numerous ways. These chromatin modifiers and their marks can promote or prevent transcription factor recruitment to regulatory regions of genes through modifications to DNA, histones, or the transcription factors themselves. This review will focus on the emerging question of how epigenetic modifiers and transcription factors interact to coordinately regulate gene expression in cardiovascular disease. While most studies have addressed the roles of either epigenetic or transcriptional control, our understanding of the integration of these processes is only just beginning. Interrogating these interactions is challenging, and improved technical approaches will be needed to fully dissect the temporal and spatial relationships between transcription factors, chromatin modifiers, and gene expression in cardiovascular disease. We summarize the current state of the field and provide perspectives on limitations and future directions. Through studies of epigenetic and transcriptional interactions, we can advance our understanding of the basic mechanisms of cardiovascular disease pathogenesis to develop novel therapeutics. PMID:28428957

  4. Trends in gastrectomy and ADH1B and ALDH2 genotypes in Japanese alcoholic men and their gene-gastrectomy, gene-gene and gene-age interactions for risk of alcoholism.

    PubMed

    Yokoyama, Akira; Yokoyama, Tetsuji; Matsui, Toshifumi; Mizukami, Takeshi; Kimura, Mitsuru; Matsushita, Sachio; Higuchi, Susumu; Maruyama, Katsuya

    2013-01-01

    The life-time drinking profiles of Japanese alcoholics have shown that gastrectomy increases susceptibility to alcoholism. We investigated the trends in gastrectomy and alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) genotypes and their interactions in alcoholics. This survey was conducted on 4879 Japanese alcoholic men 40 years of age or older who underwent routine gastrointestinal endoscopic screening during the period 1996-2010. ADH1B/ALDH2 genotyping was performed in 3702 patients. A history of gastrectomy was found in 508 (10.4%) patients. The reason for the gastrectomy was peptic ulcer in 317 patients and gastric cancer in 187 patients. The frequency of gastrectomy had gradually decreased from 13.3% in 1996-2000 to 10.5% in 2001-2005 and to 7.8% in 2006-2010 (P < 0.0001). ADH1B*1/*1 was less frequent in the gastrectomy group than in the non-gastrectomy group (age-adjusted prevalence: 20.4 vs. 27.6%, P = 0.006). ALDH2 genotype distribution did not differ between the two groups. The frequency of inactive ALDH2*1/*2 heterozygotes increased slightly from 13.0% in 1996-2000 to 14.0% in 2001-2005 and to 15.4% in 2006-2010 (P < 0.08). Two alcoholism-susceptibility genotypes, ADH1B*1/*1 and ALDH2*1/*1, modestly but significantly tended not to occur in the same individual (P = 0.026). The frequency of ADH1B*1/*1 decreased with ascending age groups. The high frequency of history of gastrectomy suggested that gastrectomy is still a risk factor for alcoholism, although the percentage decreased during the period. The alcoholism-susceptibility genotype ADH1B*1/*1 was less frequent in the gastrectomy group, suggesting a competitive gene-gastrectomy interaction for alcoholism. A gene-gene interaction and gene-age interactions regarding the ADH1B genotype were observed.

  5. Integrative Analysis of GWASs, Human Protein Interaction, and Gene Expression Identified Gene Modules Associated With BMDs

    PubMed Central

    He, Hao; Zhang, Lei; Li, Jian; Wang, Yu-Ping; Zhang, Ji-Gang; Shen, Jie; Guo, Yan-Fang

    2014-01-01

    Context: To date, few systems genetics studies in the bone field have been performed. We designed our study from a systems-level perspective by integrating genome-wide association studies (GWASs), human protein-protein interaction (PPI) network, and gene expression to identify gene modules contributing to osteoporosis risk. Methods: First we searched for modules significantly enriched with bone mineral density (BMD)-associated genes in human PPI network by using 2 large meta-analysis GWAS datasets through a dense module search algorithm. One included 7 individual GWAS samples (Meta7). The other was from the Genetic Factors for Osteoporosis Consortium (GEFOS2). One was assigned as a discovery dataset and the other as an evaluation dataset, and vice versa. Results: In total, 42 modules and 129 modules were identified significantly in both Meta7 and GEFOS2 datasets for femoral neck and spine BMD, respectively. There were 3340 modules identified for hip BMD only in Meta7. As candidate modules, they were assessed for the biological relevance to BMD by gene set enrichment analysis in 2 expression profiles generated from circulating monocytes in subjects with low versus high BMD values. Interestingly, there were 2 modules significantly enriched in monocytes from the low BMD group in both gene expression datasets (nominal P value <.05). Two modules had 16 nonredundant genes. Functional enrichment analysis revealed that both modules were enriched for genes involved in Wnt receptor signaling and osteoblast differentiation. Conclusion: We highlighted 2 modules and novel genes playing important roles in the regulation of bone mass, providing important clues for therapeutic approaches for osteoporosis. PMID:25119315

  6. Gene by environment interactions influencing reading disability and the inattentive symptom dimension of attention deficit/hyperactivity disorder.

    PubMed

    Rosenberg, Jenni; Pennington, Bruce F; Willcutt, Erik G; Olson, Richard K

    2012-03-01

    Reading disability (RD) and attention deficit/hyperactivity disorder (ADHD) are comorbid and genetically correlated, especially the inattentive dimension of ADHD (ADHD-I). However, previous research indicates that RD and ADHD enter into opposite gene by environment (G × E) interactions. This study used behavioral genetic methods to replicate these opposite G × E interactions in a sample of same-sex monozygotic and dizygotic twin pairs from the Colorado Learning Disabilities Research Center (CLDRC; DeFries et al., 1997) and to test a genetic hypothesis for why these opposite interactions occur. We replicated opposite G × E interactions for RD (bioecological) and ADHD-I (diathesis-stress) with parental education in the same sample of participants. The genetic hypothesis for this opposite pattern of interactions is that only genes specific to each disorder enter into these opposite interactions, not the shared genes underlying their comorbidity. To test this hypothesis, we used single models with an exploratory three-way interaction, in which the G × E interactions for each disorder were moderated by comorbidity. Neither three-way interaction was significant. The heritability of RD did not vary as a function of parental education and ADHD-I. Similarly, the heritability of ADHD-I did not vary as a function of parental education and RD. We documented opposite G × E interactions in RD and ADHD-I in the same overall twin sample, but the explanation for this apparent paradox remains unclear. Examining specific genes and more specific environmental factors may help resolve the paradox. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  7. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    PubMed

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in

  8. GeneBuilder: interactive in silico prediction of gene structure.

    PubMed

    Milanesi, L; D'Angelo, D; Rogozin, I B

    1999-01-01

    Prediction of gene structure in newly sequenced DNA becomes very important in large genome sequencing projects. This problem is complicated due to the exon-intron structure of eukaryotic genes and because gene expression is regulated by many different short nucleotide domains. In order to be able to analyse the full gene structure in different organisms, it is necessary to combine information about potential functional signals (promoter region, splice sites, start and stop codons, 3' untranslated region) together with the statistical properties of coding sequences (coding potential), information about homologous proteins, ESTs and repeated elements. We have developed the GeneBuilder system which is based on prediction of functional signals and coding regions by different approaches in combination with similarity searches in proteins and EST databases. The potential gene structure models are obtained by using a dynamic programming method. The program permits the use of several parameters for gene structure prediction and refinement. During gene model construction, selecting different exon homology levels with a protein sequence selected from a list of homologous proteins can improve the accuracy of the gene structure prediction. In the case of low homology, GeneBuilder is still able to predict the gene structure. The GeneBuilder system has been tested by using the standard set (Burset and Guigo, Genomics, 34, 353-367, 1996) and the performances are: 0.89 sensitivity and 0.91 specificity at the nucleotide level. The total correlation coefficient is 0.88. The GeneBuilder system is implemented as a part of the WebGene a the URL: http://www.itba.mi. cnr.it/webgene and TRADAT (TRAncription Database and Analysis Tools) launcher URL: http://www.itba.mi.cnr.it/tradat.

  9. Gene-environment interaction between the oxytocin receptor (OXTR) gene and parenting behaviour on children's theory of mind.

    PubMed

    Wade, Mark; Hoffmann, Thomas J; Jenkins, Jennifer M

    2015-12-01

    Theory of mind (ToM) is the ability to interpret and understand human behaviour by representing the mental states of others. Like many human capacities, ToM is thought to develop through both complex biological and socialization mechanisms. However, no study has examined the joint effect of genetic and environmental influences on ToM. This study examined how variability in the oxytocin receptor gene (OXTR) and parenting behavior--two widely studied factors in ToM development-interacted to predict ToM in pre-school-aged children. Participants were 301 children who were part of an ongoing longitudinal birth cohort study. ToM was assessed at age 4.5 using a previously validated scale. Parenting was assessed through observations of mothers' cognitively sensitive behaviours. Using a family-based association design, it was suggestive that a particular variant (rs11131149) interacted with maternal cognitive sensitivity on children's ToM (P = 0.019). More copies of the major allele were associated with higher ToM as a function of increasing cognitive sensitivity. A sizeable 26% of the variability in ToM was accounted for by this interaction. This study provides the first empirical evidence of gene-environment interactions on ToM, supporting the notion that genetic factors may be modulated by potent environmental influences early in development. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Sleep Duration and Body Mass Index in Twins: A Gene-Environment Interaction

    PubMed Central

    Watson, Nathaniel F.; Harden, Kathryn Paige; Buchwald, Dedra; Vitiello, Michael V.; Pack, Allan I.; Weigle, David S.; Goldberg, Jack

    2012-01-01

    Study Objectives: To examine whether sleep duration modifies genetic and environmental influences on body mass index (BMI). Design: Genotype-environment interaction twin study. Setting: University of Washington Twin Registry. Patients or Participants: A population-based sample of US twins (1,088 pairs, 604 monozygotic, 484 dizygotic; 66% female; mean age = 36.6 yr, standard deviation (SD) = 15.9 yr). Interventions: N/A. Measurements and Results: Participants self-reported information on height, weight, and sleep. Mean BMI was calculated as 25.3 kg/m2 (SD = 5.4) and mean habitual sleep duration was 7.2 hr/night (SD = 1.2). Data were analyzed using biometric genetic interaction models. Overall the heritability of sleep duration was 34%. Longer sleep duration was associated with decreased BMI (P < 0.05). The heritability of BMI when sleep duration was < 7 hr (h2 = 70%) was more than twice as large as the heritability of BMI when sleep duration was ≥ 9 hr (h2 = 32%); this interaction was significant (P < 0.05). Conclusions: Shorter sleep duration is associated with increased BMI and increased genetic influences on BMI, suggesting that shorter sleep duration increases expression of genetic risks for high body weight. At the same time, longer sleep duration may suppress genetic influences on body weight. Future research aiming to identify specific genotypes for BMI may benefit by considering the moderating role of sleep duration. Citation: Watson NF; Harden KP; Buchwald D; Vitiello MV; Pack AI; Weigle DS; Goldberg J. Sleep duration and body mass index in twins: a gene-environment interaction. SLEEP 2012;35(5):597-603. PMID:22547885

  11. Microsatellite polymorphisms associated with human behavioural and psychological phenotypes including a gene-environment interaction.

    PubMed

    Bagshaw, Andrew T M; Horwood, L John; Fergusson, David M; Gemmell, Neil J; Kennedy, Martin A

    2017-02-03

    The genetic and environmental influences on human personality and behaviour are a complex matter of ongoing debate. Accumulating evidence indicates that short tandem repeats (STRs) in regulatory regions are good candidates to explain heritability not accessed by genome-wide association studies. We tested for associations between the genotypes of four selected repeats and 18 traits relating to personality, behaviour, cognitive ability and mental health in a well-studied longitudinal birth cohort (n = 458-589) using one way analysis of variance. The repeats were a highly conserved poly-AC microsatellite in the upstream promoter region of the T-box brain 1 (TBR1) gene and three previously studied STRs in the activating enhancer-binding protein 2-beta (AP2-β) and androgen receptor (AR) genes. Where significance was found we used multiple regression to assess the influence of confounding factors. Carriers of the shorter, most common, allele of the AR gene's GGN microsatellite polymorphism had fewer anxiety-related symptoms, which was consistent with previous studies, but in our study this was not significant following Bonferroni correction. No associations with two repeats in the AP2-β gene withstood this correction. A novel finding was that carriers of the minor allele of the TBR1 AC microsatellite were at higher risk of conduct problems in childhood at age 7-9 (p = 0.0007, which did pass Bonferroni correction). Including maternal smoking during pregnancy (MSDP) in models controlling for potentially confounding influences showed that an interaction between TBR1 genotype and MSDP was a significant predictor of conduct problems in childhood and adolescence (p < 0.001), and of self-reported criminal behaviour up to age 25 years (p ≤ 0.02). This interaction remained significant after controlling for possible confounders including maternal age at birth, socio-economic status and education, and offspring birth weight. The potential functional importance

  12. PREFACE: Physics approaches to protein interactions and gene regulation Physics approaches to protein interactions and gene regulation

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Panchenko, Anna R.; Przytycka, Teresa

    2011-06-01

    networks have been identified, including scale free distribution of the vertex degree, network motifs, and modularity, to name a few. These studies of network organization require the network to be as complete as possible, which given the limitations of experimental techniques is not currently the case. Therefore, experimental procedures for detecting biomolecular interactions should be complemented by computational approaches. The paper by Lees et al provides a review of computational methods, integrating multiple independent sources of data to infer physical and functional protein-protein interaction networks. One of the important aspects of protein interactions that should be accounted for in the prediction of protein interaction networks is that many proteins are composed of distinct domains. Protein domains may mediate protein interactions while proteins and their interaction networks may gain complexity through gene duplication and expansion of existing domain architectures via domain rearrangements. The latter mechanisms have been explored in detail in the paper by Cohen-Gihon et al. Protein-protein interactions are not the only component of the cell's interactome. Regulation of cell activity can be achieved at the level of transcription and involve a transcription factor—DNA binding which typically requires recognition of a specific DNA sequence motif. Chip-Chip and the more recent Chip-Seq technologies allow in vivo identification of DNA binding sites and, together with novel in vitro approaches, provide data necessary for deciphering the corresponding binding motifs. Such information, complemented by structures of protein-DNA complexes and knowledge of the differences in binding sites among homologs, opens the door to constructing predictive binding models. The paper by Persikov and Singh provides an example of such a model in the Cys2His2 zinc finger family. Recent studies have indicated that the presence of such binding motifs is, however, neither necessary

  13. C57BL/6N mutation in Cytoplasmic FMR interacting protein 2 regulates cocaine response

    PubMed Central

    Kumar, Vivek; Kim, Kyungin; Joseph, Chryshanthi; Kourrich, Saïd; Yoo, Seung Hee; Huang, Hung Chung; Vitaterna, Martha H.; de Villena, Fernando Pardo-Manuel; Churchill, Gary; Bonci, Antonello; Takahashi, Joseph S.

    2015-01-01

    The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a non-synonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMR interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2 and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine response phenotypes. We propose CYFIP2 is a key regulator of cocaine response in mammals and present a framework to utilize mouse substrains to discover novel genes and alleles regulating behavior. PMID:24357318

  14. STAT3 or USF2 Contributes to HIF Target Gene Specificity

    PubMed Central

    Pawlus, Matthew R.; Wang, Liyi; Murakami, Aya; Dai, Guanhai; Hu, Cheng-Jun

    2013-01-01

    The HIF1- and HIF2-mediated transcriptional responses play critical roles in solid tumor progression. Despite significant similarities, including their binding to promoters of both HIF1 and HIF2 target genes, HIF1 and HIF2 proteins activate unique subsets of target genes under hypoxia. The mechanism for HIF target gene specificity has remained unclear. Using siRNA or inhibitor, we previously reported that STAT3 or USF2 is specifically required for activation of endogenous HIF1 or HIF2 target genes. In this study, using reporter gene assays and chromatin immuno-precipitation, we find that STAT3 or USF2 exhibits specific binding to the promoters of HIF1 or HIF2 target genes respectively even when over-expressed. Functionally, HIF1α interacts with STAT3 to activate HIF1 target gene promoters in a HIF1α HLH/PAS and N-TAD dependent manner while HIF2α interacts with USF2 to activate HIF2 target gene promoters in a HIF2α N-TAD dependent manner. Physically, HIF1α HLH and PAS domains are required for its interaction with STAT3 while both N- and C-TADs of HIF2α are involved in physical interaction with USF2. Importantly, addition of functional USF2 binding sites into a HIF1 target gene promoter increases the basal activity of the promoter as well as its response to HIF2+USF2 activation while replacing HIF binding site with HBS from a HIF2 target gene does not change the specificity of the reporter gene. Importantly, RNA Pol II on HIF1 or HIF2 target genes is primarily associated with HIF1α or HIF2α in a STAT3 or USF2 dependent manner. Thus, we demonstrate here for the first time that HIF target gene specificity is achieved by HIF transcription partners that are required for HIF target gene activation, exhibit specific binding to the promoters of HIF1 or HIF2 target genes and selectively interact with HIF1α or HIF2α protein. PMID:23991099

  15. Intellectual Interest Mediates Gene-by-SES Interaction on Adolescent Academic Achievement

    PubMed Central

    Tucker-Drob, Elliot M.; Harden, K. Paige

    2011-01-01

    Recent studies have demonstrated that genetic influences on cognitive ability and academic achievement are larger for children raised in higher socioeconomic status (SES) homes. However, little work has been done to document the psychosocial processes that underlie this gene-by-environment interaction. One process may involve the conversion of intellectual interest into academic achievement. Analyses of data from 777 pairs of 17-year-old twins indicated that gene-by-SES effects on achievement scores can be accounted for by stronger influences of genes for intellectual interest on achievement at higher levels of SES. These findings are consistent with the hypothesis that higher SES affords greater opportunity for children to seek out and benefit from learning experiences that are congruent with their genetically influenced intellectual interests. PMID:22288554

  16. Evolution of Genes Involved in Gamete Interaction: Evidence for Positive Selection, Duplications and Losses in Vertebrates

    PubMed Central

    Callebaut, Isabelle; Laurin, Michel; Pascal, Géraldine; Poupon, Anne; Goudet, Ghylène; Monget, Philippe

    2012-01-01

    Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may participate in prezygotic species isolation [1], [2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been shown to evolve under positive selection [3], [4], suggesting a role of positive Darwinian selection on sperm-egg interaction. However, the genes involved in this biological function have not been systematically and exhaustively studied with an evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19 studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of reproductive barriers, for example by

  17. Protein-Protein Interaction Network and Gene Ontology

    NASA Astrophysics Data System (ADS)

    Choi, Yunkyu; Kim, Seok; Yi, Gwan-Su; Park, Jinah

    Evolution of computer technologies makes it possible to access a large amount and various kinds of biological data via internet such as DNA sequences, proteomics data and information discovered about them. It is expected that the combination of various data could help researchers find further knowledge about them. Roles of a visualization system are to invoke human abilities to integrate information and to recognize certain patterns in the data. Thus, when the various kinds of data are examined and analyzed manually, an effective visualization system is an essential part. One instance of these integrated visualizations can be combination of protein-protein interaction (PPI) data and Gene Ontology (GO) which could help enhance the analysis of PPI network. We introduce a simple but comprehensive visualization system that integrates GO and PPI data where GO and PPI graphs are visualized side-by-side and supports quick reference functions between them. Furthermore, the proposed system provides several interactive visualization methods for efficiently analyzing the PPI network and GO directedacyclic- graph such as context-based browsing and common ancestors finding.

  18. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    PubMed Central

    van Haaften, Gijs; Vastenhouw, Nadine L.; Nollen, Ellen A. A.; Plasterk, Ronald H. A.; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect the germ line against DNA double-strand breaks. Besides known DNA-repair proteins such as the C. elegans orthologs of TopBP1, RPA2, and RAD51, eight genes previously unassociated with a double-strand-break response were identified. Knockdown of these genes increased sensitivity to ionizing radiation and camptothecin and resulted in increased chromosomal nondisjunction. All genes have human orthologs that may play a role in human carcinogenesis. PMID:15326288

  19. Synthesis of bifunctional molecules containing [12]aneN3 and coumarin moieties as effective DNA condensation agents and new non-viral gene vectors.

    PubMed

    Yue, Pan; Zhang, Ying; Guo, Zhi-Fo; Cao, Ao-Cheng; Lu, Zhong-Lin; Zhai, Yong-Gong

    2015-04-21

    A series of bifunctional molecules with different combinations of macrocyclic polyamine [12]aneN3 and coumarin moieties, 4a/b and 5a/b, were synthesized by a two-step copper(I)-mediated alkyne–azide click reactions between 1,3,5-tris(azidomethyl)benzene and Boc-protected N-propynyl-[12]aneN3/7-propynyloxycoumarins. Agarose gel electrophoresis experiments indicated that bifunctional molecules 4b and 5b effectively induced complete plasmid DNA condensation at concentrations up to 40 μM. It was found that the structural variation had a major impact on the condensation behavior of these compounds. The electrostatic interaction involving the [12]aneN3 moiety can be compensated by the binding contribution of the coumarin units during the DNA condensation process. These two types of interaction showed different effects on the reversibility of DNA condensation. Results from studies using dynamic laser scattering, atomic force microscopy, and EB replacement assay further supported the above conclusion. Cytotoxicity assays on bifunctional compounds 4a/b and 5a/b indicated their low cytotoxicity. Results from cellular uptake and cell transfection experiments proved that bifunctional compounds 4b and 5b successfully served as non-viral gene vectors. Furthermore, methyl substituents attached to the coumarin unit (4b and 5b) greatly enhanced their DNA condensation capability and gene transfection. These bifunctional molecules, with the advantages of lower cytotoxicity, good water solubility, and potential structural modification, will have great potential for the development of new non-viral gene delivery agents.

  20. Gene-diet interactions and aging in C. elegans

    PubMed Central

    Yen, Chia An; Curran, Sean P.

    2016-01-01

    Diet is the most variable aspect of life history, as most individuals have a large diversity of food choices, varying in the type and amount that they ingest. In the short-term, diet can affect metabolism and energy levels. However, in the long run, the net deficiency or excess of calories from diet can influence the progression and severity of age-related diseases. An old and yet still debated question is: how do specific dietary choices impact health- and lifespan? It is clear that genetics can play a critical role — perhaps just as important as diet choices. For example, poor diet in combination with genetic susceptibility can lead to metabolic disorders, such as obesity and type 2 diabetes. Recent work in Caenorhabditis elegans has identified the existence of diet-gene pairs, where the consequence of mutating a specific gene is only realized on specific diets. Many core metabolic pathways are conserved from worm to human. Although only a handful of these diet-gene pairs has been characterized, there are potentially hundreds, if not thousands, of such interactions, which may explain the variability in the rates of aging in humans and the incidence and severity of age-related diseases. PMID:26924670

  1. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new

  2. N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings.

    PubMed

    Teaster, Neal D; Motes, Christy M; Tang, Yuhong; Wiant, William C; Cotter, Matthew Q; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J; Hasenstein, Karl H; Gonzalez, Gabriel; Blancaflor, Elison B; Chapman, Kent D

    2007-08-01

    N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites.

  3. Nutrient-gene interactions in early pregnancy: a vascular hypothesis.

    PubMed

    Steegers-Theunissen, R P M; Steegers, E A P

    2003-02-10

    It is hypothesized that the following periconceptional and early pregnancy nutrient-gene interactions link vascular-related reproductive complications and cardiovascular diseases in adulthood: (1) Maternal and paternal genetically controlled nutrient status affects the quality of gametes and fertilization capacity; (2) The embryonic genetic constitution, derived from both parents, and the maternal genetically controlled nutrient environment determine embryogenesis and fetal growth; (3) Trophoblast invasion of decidua and spiral arteries is driven by genes derived from both parents as well as by maternal nutritional factors; (4) Angiogenesis, vasculogenesis and vascular function are dependent on the genetic constitution of the embryo, derived from both parents, and the maternal genetically controlled nutritional environment.Early intra-uterine programming of vessels may concern the same (in)dependent determinants of vascular-related complications during pregnancy and cardiovascular diseases in later life.

  4. Rigorous tests of gene-environment interactions in a lab study of the oxytocin receptor gene (OXTR), alcohol exposure, and aggression.

    PubMed

    LoParo, Devon; Johansson, Ada; Walum, Hasse; Westberg, Lars; Santtila, Pekka; Waldman, Irwin

    2016-07-01

    Naturalistic studies of gene-environment interactions (G X E) have been plagued by several limitations, including difficulty isolating specific environmental risk factors from other correlated aspects of the environment, gene-environment correlation (rGE ), and the use of a single genetic variant to represent the influence of a gene. We present results from 235 Finnish young men in two lab studies of aggression and alcohol challenge that attempt to redress these limitations of the extant G X E literature. Specifically, we use a latent variable modeling approach in an attempt to more fully account for genetic variation across the oxytocin receptor gene (OXTR) and to robustly test its main effects on aggression and its interaction with alcohol exposure. We also modeled aggression as a latent variable comprising various indices, including the average and maximum levels of aggression, the earliest trial on which aggression was expressed, and the proportion of trials on which the minimum and maximum levels of aggression were expressed. The best fitting model for the genetic variation across OXTR included six factors derived from an exploratory factor analysis, roughly corresponding to six haplotype blocks. Aggression levels were higher on trials in which participants were administered alcohol, won, or were provoked. There was a significant main effect of OXTR on aggression across studies after controlling for covariates. The interaction of OXTR and alcohol was also significant across studies, such that OXTR had stronger effects on aggression in the alcohol administration condition. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. A Fast Multiple-Kernel Method With Applications to Detect Gene-Environment Interaction.

    PubMed

    Marceau, Rachel; Lu, Wenbin; Holloway, Shannon; Sale, Michèle M; Worrall, Bradford B; Williams, Stephen R; Hsu, Fang-Chi; Tzeng, Jung-Ying

    2015-09-01

    Kernel machine (KM) models are a powerful tool for exploring associations between sets of genetic variants and complex traits. Although most KM methods use a single kernel function to assess the marginal effect of a variable set, KM analyses involving multiple kernels have become increasingly popular. Multikernel analysis allows researchers to study more complex problems, such as assessing gene-gene or gene-environment interactions, incorporating variance-component based methods for population substructure into rare-variant association testing, and assessing the conditional effects of a variable set adjusting for other variable sets. The KM framework is robust, powerful, and provides efficient dimension reduction for multifactor analyses, but requires the estimation of high dimensional nuisance parameters. Traditional estimation techniques, including regularization and the "expectation-maximization (EM)" algorithm, have a large computational cost and are not scalable to large sample sizes needed for rare variant analysis. Therefore, under the context of gene-environment interaction, we propose a computationally efficient and statistically rigorous "fastKM" algorithm for multikernel analysis that is based on a low-rank approximation to the nuisance effect kernel matrices. Our algorithm is applicable to various trait types (e.g., continuous, binary, and survival traits) and can be implemented using any existing single-kernel analysis software. Through extensive simulation studies, we show that our algorithm has similar performance to an EM-based KM approach for quantitative traits while running much faster. We also apply our method to the Vitamin Intervention for Stroke Prevention (VISP) clinical trial, examining gene-by-vitamin effects on recurrent stroke risk and gene-by-age effects on change in homocysteine level. © 2015 WILEY PERIODICALS, INC.

  6. Epistatic interaction between the monoamine oxidase A and serotonin transporter genes in anorexia nervosa.

    PubMed

    Urwin, Ruth Elizabeth; Nunn, Kenneth Patrick

    2005-03-01

    The serotonin (5-HT) and norepinephrine (NE) systems are likely involved in the aetiology of anorexia nervosa (AN) as sufferers are premorbidly anxious. Specifically, we hypothesize that genes encoding proteins, which clear 5-HT and NE from the synapse, are prime candidates for affecting susceptibility to AN. Supporting our hypothesis, we earlier showed that the NE transporter (NET) and monoamine oxidase A (MAOA) genes appear to contribute additively to increased risk of developing restricting AN (AN-R). With regard to the MAOA gene, a sequence variant that increases MAOA activity and has suggested association with the anxiety condition, panic disorder was preferentially transmitted from parents to affected children. Here we provide evidence in support of interaction between the MAOA and serotonin transporter (SERT) genes in 114 AN nuclear families (patient with AN plus biological parents). A SERT gene genotype with no apparent individual effect on risk and known to be associated with anxiety is preferentially transmitted to children with AN (chi2 trend=9.457, 1 df, P=0.0021) and AN-R alone (chi2 trend=7.477, 1 df, P=0.0063) when the 'more active' MAOA gene variant is also transmitted. The increased risk of developing the disorder is up to eight times greater than the risk imposed by the MAOA gene variant alone--an example of synergistic epistatic interaction. If independently replicated, our findings to date suggest that we may have identified three genes affecting susceptibility to AN, particularly AN-R: the MAOA, SERT, and NET genes.

  7. (n, N) type maintenance policy for multi-component systems with failure interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoqi; Wu, Su; Li, Binfeng; Lee, Seungchul

    2015-04-01

    This paper studies maintenance policies for multi-component systems in which failure interactions and opportunistic maintenance (OM) involve. This maintenance problem can be formulated as a Markov decision process (MDP). However, since an action set and state space in MDP exponentially expand as the number of components increase, traditional approaches are computationally intractable. To deal with curse of dimensionality, we decompose such a multi-component system into mutually influential single-component systems. Each single-component system is formulated as an MDP with the objective of minimising its long-run average maintenance cost. Under some reasonable assumptions, we prove the existence of the optimal (n, N) type policy for a single-component system. An algorithm to obtain the optimal (n, N) type policy is also proposed. Based on the proposed algorithm, we develop an iterative approximation algorithm to obtain an acceptable maintenance policy for a multi-component system. Numerical examples find that failure interactions and OM pose significant effects on a maintenance policy.

  8. Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures.

    PubMed

    Wu, Cen; Jiang, Yu; Ren, Jie; Cui, Yuehua; Ma, Shuangge

    2018-02-10

    Identification of gene-environment (G × E) interactions associated with disease phenotypes has posed a great challenge in high-throughput cancer studies. The existing marginal identification methods have suffered from not being able to accommodate the joint effects of a large number of genetic variants, while some of the joint-effect methods have been limited by failing to respect the "main effects, interactions" hierarchy, by ignoring data contamination, and by using inefficient selection techniques under complex structural sparsity. In this article, we develop an effective penalization approach to identify important G × E interactions and main effects, which can account for the hierarchical structures of the 2 types of effects. Possible data contamination is accommodated by adopting the least absolute deviation loss function. The advantage of the proposed approach over the alternatives is convincingly demonstrated in both simulation and a case study on lung cancer prognosis with gene expression measurements and clinical covariates under the accelerated failure time model. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Identification of genes related to proliferative diabetic retinopathy through RWR algorithm based on protein-protein interaction network.

    PubMed

    Zhang, Jian; Suo, Yan; Liu, Min; Xu, Xun

    2018-06-01

    Proliferative diabetic retinopathy (PDR) is one of the most common complications of diabetes and can lead to blindness. Proteomic studies have provided insight into the pathogenesis of PDR and a series of PDR-related genes has been identified but are far from fully characterized because the experimental methods are expensive and time consuming. In our previous study, we successfully identified 35 candidate PDR-related genes through the shortest-path algorithm. In the current study, we developed a computational method using the random walk with restart (RWR) algorithm and the protein-protein interaction (PPI) network to identify potential PDR-related genes. After some possible genes were obtained by the RWR algorithm, a three-stage filtration strategy, which includes the permutation test, interaction test and enrichment test, was applied to exclude potential false positives caused by the structure of PPI network, the poor interaction strength, and the limited similarity on gene ontology (GO) terms and biological pathways. As a result, 36 candidate genes were discovered by the method which was different from the 35 genes reported in our previous study. A literature review showed that 21 of these 36 genes are supported by previous experiments. These findings suggest the robustness and complementary effects of both our efforts using different computational methods, thus providing an alternative method to study PDR pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice.

    PubMed

    Kang, Eun Yong; Han, Buhm; Furlotte, Nicholas; Joo, Jong Wha J; Shih, Diana; Davis, Richard C; Lusis, Aldons J; Eskin, Eleazar

    2014-01-01

    Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta

  11. Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice

    PubMed Central

    Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar

    2014-01-01

    Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta

  12. Identification of susceptible genes for complex chronic diseases based on disease risk functional SNPs and interaction networks.

    PubMed

    Li, Wan; Zhu, Lina; Huang, Hao; He, Yuehan; Lv, Junjie; Li, Weimin; Chen, Lina; He, Weiming

    2017-10-01

    Complex chronic diseases are caused by the effects of genetic and environmental factors. Single nucleotide polymorphisms (SNPs), one common type of genetic variations, played vital roles in diseases. We hypothesized that disease risk functional SNPs in coding regions and protein interaction network modules were more likely to contribute to the identification of disease susceptible genes for complex chronic diseases. This could help to further reveal the pathogenesis of complex chronic diseases. Disease risk SNPs were first recognized from public SNP data for coronary heart disease (CHD), hypertension (HT) and type 2 diabetes (T2D). SNPs in coding regions that were classified into nonsense and missense by integrating several SNP functional annotation databases were treated as functional SNPs. Then, regions significantly associated with each disease were screened using random permutations for disease risk functional SNPs. Corresponding to these regions, 155, 169 and 173 potential disease susceptible genes were identified for CHD, HT and T2D, respectively. A disease-related gene product interaction network in environmental context was constructed for interacting gene products of both disease genes and potential disease susceptible genes for these diseases. After functional enrichment analysis for disease associated modules, 5 CHD susceptible genes, 7 HT susceptible genes and 3 T2D susceptible genes were finally identified, some of which had pleiotropic effects. Most of these genes were verified to be related to these diseases in literature. This was similar for disease genes identified from another method proposed by Lee et al. from a different aspect. This research could provide novel perspectives for diagnosis and treatment of complex chronic diseases and susceptible genes identification for other diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Interaction between the RGS6 gene and psychosocial stress on obesity-related traits.

    PubMed

    Kim, Hyun-Jin; Min, Jin-Young; Min, Kyoung-Bok

    2017-03-31

    Obesity is a major risk factor for chronic diseases and arises from the interactions between environmental factors and multiple genes. Psychosocial stress may affect the risk for obesity, modifying food intake and choice. A recent study suggested regulator of G-protein signaling 6 (RGS6) as a novel candidate gene for obesity in terms of reward-related feeding under stress. In this study, we tried to verify the unidentified connection between RGS6 and human obesity with psychosocial stress in a Korean population. A total of 1,462 adult subjects, who participated in the Korean Association Resource cohort project, were included for this analysis. Obesity-related traits including waist circumference, body mass index, and visceral adipose tissue were recorded. A total of 4 intronic SNPs for the RGS6 gene were used for this study. We found that interactions between SNP rs2239219 and psychosocial stress are significantly associated with abdominal obesity (p = 0.007). As risk allele of this SNP increased, prevalence of abdominal obesity under high-stress conditions gradually increased (p = 0.013). However, we found no SNPs-by-stress interaction effect on other adiposity phenotypes. This study suggests that RGS6 is closely linked to stress-induced abdominal obesity in Korean adults.

  14. Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3

    NASA Astrophysics Data System (ADS)

    Adhikari, C. M.; Debierre, V.; Jentschura, U. D.

    2017-09-01

    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.

  15. To Control False Positives in Gene-Gene Interaction Analysis: Two Novel Conditional Entropy-Based Approaches

    PubMed Central

    Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng

    2013-01-01

    Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984

  16. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial.

    PubMed

    Tremblay, Bénédicte L; Cormier, Hubert; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2015-02-21

    Fish oil-derived long-chain omega-3 (n-3) polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduce plasma triglyceride (TG) levels. Genetic factors such as single-nucleotide polymorphisms (SNPs) found in genes involved in metabolic pathways of n-3 PUFA could be responsible for well-recognized heterogeneity in plasma TG response to n-3 PUFA supplementation. Previous studies have shown that genes in the glycerophospholipid metabolism such as phospholipase A2 (PLA2) group II, IV, and VI, demonstrate changes in their expression levels in peripheral blood mononuclear cells (PBMCs) after n-3 PUFA supplementation. A total of 208 subjects consumed 3 g/day of n-3 PUFA for 6 weeks. Plasma lipids were measured before and after the supplementation period. Five SNPs in PLA2G2A, six in PLA2G2C, eight in PLA2G2D, six in PLA2G2F, 22 in PLA2G4A, five in PLA2G6, and nine in PLA2G7 were genotyped. The MIXED Procedure for repeated measures adjusted for age, sex, BMI, and energy intake was used in order to test whether the genotype, supplementation or interaction (genotype by supplementation) were associated with plasma TG levels. The n-3 PUFA supplementation had an independent effect on plasma TG levels. Genotype effects on plasma TG levels were observed for rs2301475 in PLA2G2C, rs818571 in PLA2G2F, and rs1569480 in PLA2G4A. Genotype x supplementation interaction effects on plasma TG levels were observed for rs1805018 in PLA2G7 as well as for rs10752979, rs10737277, rs7540602, and rs3820185 in PLA2G4A. These results suggest that, SNPs in PLA2 genes may influence plasma TG levels during a supplementation with n-3 PUFA. This trial was registered at clinicaltrials.gov as NCT01343342.

  17. Plastid–Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae

    PubMed Central

    Weng, Mao-Lun; Ruhlman, Tracey A.; Jansen, Robert K.

    2016-01-01

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. PMID:27190001

  18. Gene silencing activity of siRNA polyplexes based on thiolated N,N,N-trimethylated chitosan.

    PubMed

    Varkouhi, Amir K; Verheul, Rolf J; Schiffelers, Raymond M; Lammers, Twan; Storm, Gert; Hennink, Wim E

    2010-12-15

    N,N,N-Trimethylated chitosan (TMC) is a biodegradable polymer emerging as a promising nonviral vector for nucleic acid and protein delivery. In the present study, we investigated whether the introduction of thiol groups in TMC enhances the extracellular stability of the complexes based on this polymer and promotes the intracellular release of siRNA. The gene silencing activity and the cellular cytotoxicity of polyplexes based on thiolated TMC were compared with those based on the nonthiolated counterpart and the regularly used lipidic transfection agent Lipofectamine. Incubation of H1299 human lung cancer cells expressing firefly luciferase with siRNA/thiolated TMC polyplexes resulted in 60-80% gene silencing activity, whereas complexes based on nonthiolated TMC showed less silencing (40%). The silencing activity of the complexes based on Lipofectamine 2000 was about 60-70%. Importantly, the TMC-SH polyplexes retained their silencing activity in the presence of hyaluronic acid, while nonthiolated TMC polyplexes hardly showed any silencing activity, demonstrating their stability against competing anionic macromolecules. Under the experimental conditions tested, the cytotoxicity of the thiolated and nonthiolated siRNA complexes was lower than those based on Lipofectamine. Given the good extracellular stability and good silencing activity, it is concluded that polyplexes based on TMC-SH are attractive systems for further in vivo evaluations.

  19. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins.

    PubMed

    Zamiri, Bita; Reddy, Kaalak; Macgregor, Robert B; Pearson, Christopher E

    2014-02-21

    Certain DNA and RNA sequences can form G-quadruplexes, which can affect genetic instability, promoter activity, RNA splicing, RNA stability, and neurite mRNA localization. Amyotrophic lateral sclerosis and frontotemporal dementia can be caused by expansion of a (GGGGCC)n repeat in the C9orf72 gene. Mutant r(GGGGCC)n- and r(GGCCCC)n-containing transcripts aggregate in nuclear foci, possibly sequestering repeat-binding proteins such as ASF/SF2 and hnRNPA1, suggesting a toxic RNA pathogenesis, as occurs in myotonic dystrophy. Furthermore, the C9orf72 repeat RNA was recently demonstrated to undergo the noncanonical repeat-associated non-AUG translation (RAN translation) into pathologic dipeptide repeats in patient brains, a process that is thought to depend upon RNA structure. We previously demonstrated that the r(GGGGCC)n RNA forms repeat tract length-dependent G-quadruplex structures that bind the ASF/SF2 protein. Here we show that the cationic porphyrin (5,10,15,20-tetra(N-methyl-4-pyridyl) porphyrin (TMPyP4)), which can bind some G-quadruplex-forming sequences, can bind and distort the G-quadruplex formed by r(GGGGCC)8, and this ablates the interaction of either hnRNPA1 or ASF/SF2 with the repeat. These findings provide proof of concept that nucleic acid binding small molecules, such as TMPyP4, can distort the secondary structure of the C9orf72 repeat, which may beneficially disrupt protein interactions, which may ablate either protein sequestration and/or RAN translation into potentially toxic dipeptides. Disruption of secondary structure formation of the C9orf72 RNA repeats may be a viable therapeutic avenue, as well as a means to test the role of RNA structure upon RAN translation.

  20. PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions

    PubMed Central

    Dalio, Ronaldo J. D.; Magalhães, Diogo M.; Rodrigues, Carolina M.; Arena, Gabriella D.; Oliveira, Tiago S.; Souza-Neto, Reinaldo R.; Picchi, Simone C.; Martins, Paula M. M.; Santos, Paulo J. C.; Maximo, Heros J.; Pacheco, Inaiara S.; De Souza, Alessandra A.

    2017-01-01

    Abstract Background Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant–pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. Scope This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot. PMID:28065920

  1. ExAtlas: An interactive online tool for meta-analysis of gene expression data.

    PubMed

    Sharov, Alexei A; Schlessinger, David; Ko, Minoru S H

    2015-12-01

    We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users' own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher's methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein-protein interaction) are pre-loaded and can be used for functional annotations.

  2. Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt.

    PubMed

    Mosaad, Zienab; Arafa, Abdelsatar; Hussein, Hussein A; Shalaby, Mohamed A

    2017-06-01

    The low pathogenic avian influenza (LPAI) H9N2 subtype has become the most prevalent and widespread in many Asian and Middle Eastern countries. It causes an enzootic situation in commercial poultry and known as a potential facilitator virus that can be transmitted to human from birds. The neuraminidase (NA) gene plays an important role the release and spread of the virus from infected cells and throughout the bird. The complete nucleotide sequences of the NA gene of seven H9N2 viruses collected from apparent healthy chicken and quail flocks in Egypt during 2014-2015, were amplified and sequenced. The phylogenetic relationships were investigated and all viruses were belonging to the A/Q/HK/G1/97 strain (G1-like). There were no insertions or deletions or shortening in NA stalk regions when compared to Y280-lineage and the human H9N2 isolates. No obvious changes NA interactions with antiviral drugs. We found that the Egyptian H9N2 viruses have seven glycosylation sites like the most recorded H9N2 viruses in the country, except A/Q/Egypt/14864V/2014 virus which has only six. The NA has four amino acid substitutions distributed in different parts of the hemadsorbing site. The most characteristic substitutions in this site were S372A and W403R these substitutions were a distinctive feature resembling to human H9N2, H2N2 and H3N2 viruses but differs from the other avian influenza viruses. These Special features of surface glycoproteins of LPAI-H9N2 viruses refer to the tendency for enhanced introductions into humans and ensuring the importance of poultry in the transfer influenza viruses.

  3. Cardiometabolic risk factors are influenced by Stearoyl-CoA Desaturase (SCD) -1 gene polymorphisms and n-3 polyunsaturated fatty acid supplementation.

    PubMed

    Rudkowska, Iwona; Julien, Pierre; Couture, Patrick; Lemieux, Simone; Tchernof, André; Barbier, Olivier; Vohl, Marie-Claude

    2014-05-01

    To determine if single nucleotide polymorphisms (SNPs) in stearoyl-CoA desaturase (SCD)-1 gene that encodes a key enzyme for fatty acid metabolism are associated with the response of cardiometabolic risk factors to n-3 PUFA supplementation. Two hundred and ten subjects completed a 2-week run-in period followed by 6-week supplementation with 5 g of fish oil (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosahexaenoic acid). Risk factors were measured pre and post n-3 supplementation. Fatty acid composition of plasma phospholipids was analyzed by GC and the desaturase indices SCD16 (16:1n-7/16:0) and SCD18 (18:1n-9/18:0) were calculated. Genotyping of eight SNPs of the SCD1 gene was performed. N-3 PUFA supplementation decreased plasma triglycerides, as well as SCD16 and SCD18 indices, but increased fasting plasma glucose concentrations. SNPs in SCD1-modified cardiometabolic risk factors pre and post n-3 PUFA supplementation: triglyceride (rs508384, p = 0.0086), IL6 (rs3071, p = 0.0485), C-reactive protein (rs3829160, p = 0.0489), and SCD18 indices (rs2234970, p = 0.0337). A significant interaction effect between the SNP and n-3 PUFA supplementation was also observed for fasting plasma glucose levels (rs508384, p = 0.0262). These results suggest that cardiometabolic risk factors are modulated by genetic variations in the SCD1 gene alone or in combination with n-3 PUFA supplementation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways

    PubMed Central

    Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel

    2013-01-01

    It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101

  5. N-myc Downstream-Regulated Gene 1 Is Mutated in Hereditary Motor and Sensory Neuropathy–Lom

    PubMed Central

    Kalaydjieva, Luba; Gresham, David; Gooding, Rebecca; Heather, Lisa; Baas, Frank; de Jonge, Rosalein; Blechschmidt, Karin; Angelicheva, Dora; Chandler, David; Worsley, Penelope; Rosenthal, Andre; King, Rosalind H. M.; Thomas, P. K.

    2000-01-01

    Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy–Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival. PMID:10831399

  6. Genetic and Physical Interaction of the B-Cell SLE-Associated Genes BANK1 and BLK

    PubMed Central

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M.; Wojcik, Jerome; Kozyrev, Sergey V.; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R.; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A.; Merrill, Joan T.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Moser, Kathy; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A.; D’Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B.; Gaffney, Patrick; Martin, Javier; Guthridge, Joel M.; Alarcón-Riquelme, Marta E.

    2012-01-01

    Objectives Altered signaling in B-cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signaling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterize the role of BANK1 and BLK in SLE, we performed a genetic interaction analysis hypothesizing that genetic interactions could reveal functional pathways relevant to disease pathogenesis. Methods We Used the method GPAT16 to analyze the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localization, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Results Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from Northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, we tested the possibility that BANK1 and BLK could also show a protein-protein interaction. We demonstrated co-immunoprecipitation and co-localization of BLK and BANK1. In a Daudi cell line and primary naïve B-cells the endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. Conclusions Here, we show a genetic interaction between BANK1 and BLK, and demonstrate that these molecules interact physically. Our results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signaling pathway. PMID:21978998

  7. NRIP enhances HPV gene expression via interaction with either GR or E2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Szu-Wei; Lu, Pei-Yu; Guo, Jih-Huong

    We previously identified a gene, nuclear receptor-interaction protein (NRIP), which functions as a transcription cofactor in glucocorticoid receptor (GR) and human papillomavirus E2 (HPV E2)-driven gene expression. Here, we comprehensively evaluated the role of NRIP in HPV-16 gene expression. NRIP acts as a transcription cofactor to enhance GR-regulated HPV-16 gene expression in the presence of hormone. NRIP also can form complex with E2 that caused NRIP-induced HPV gene expression via E2-binding sites in a hormone-independent manner. Furthermore, NRIP can associate with GR and E2 to form tri-protein complex to activate HPV gene expression via GRE, not the E2-binding site, inmore » a hormone-dependent manner. These results indicate that NRIP and GR are viral E2-binding proteins and that NRIP regulates HPV gene expression via GRE and/or E2 binding site in the HPV promoter in a hormone-dependent or independent manner, respectively.« less

  8. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    DTIC Science & Technology

    2010-07-28

    expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes

  9. Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli.

    PubMed Central

    Aono, R; Negishi, T; Nakajima, H

    1994-01-01

    A variety of genes are involved in determining the level of organic solvent tolerance of Escherichia coli K-12. Gene ostA is one of the genes contributing to the level of organic solvent tolerance. This gene was cloned from an n-hexane-tolerant strain of E. coli, JA300. A JA300-based n-hexane-sensitive strain, OST4251, was converted to the n-hexane-tolerant phenotype by transformation with DNA containing the ostA gene derived from JA300. Thus, the cloned ostA gene complemented the n-hexane-sensitive phenotype of OST4251. Images PMID:7811102

  10. Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?

    PubMed

    Simonds, Naoko I; Ghazarian, Armen A; Pimentel, Camilla B; Schully, Sheri D; Ellison, Gary L; Gillanders, Elizabeth M; Mechanic, Leah E

    2016-07-01

    Risk of cancer is determined by a complex interplay of genetic and environmental factors. Although the study of gene-environment interactions (G×E) has been an active area of research, little is reported about the known findings in the literature. To examine the state of the science in G×E research in cancer, we performed a systematic review of published literature using gene-environment or pharmacogenomic flags from two curated databases of genetic association studies, the Human Genome Epidemiology (HuGE) literature finder and Cancer Genome-Wide Association and Meta Analyses Database (CancerGAMAdb), from January 1, 2001, to January 31, 2011. A supplemental search using HuGE was conducted for articles published from February 1, 2011, to April 11, 2013. A 25% sample of the supplemental publications was reviewed. A total of 3,019 articles were identified in the original search. From these articles, 243 articles were determined to be relevant based on inclusion criteria (more than 3,500 interactions). From the supplemental search (1,400 articles identified), 29 additional relevant articles (1,370 interactions) were included. The majority of publications in both searches examined G×E in colon, rectal, or colorectal; breast; or lung cancer. Specific interactions examined most frequently included environmental factors categorized as energy balance (e.g., body mass index, diet), exogenous (e.g., oral contraceptives) and endogenous hormones (e.g., menopausal status), chemical environment (e.g., grilled meats), and lifestyle (e.g., smoking, alcohol intake). In both searches, the majority of interactions examined were using loci from candidate genes studies and none of the studies were genome-wide interaction studies (GEWIS). The most commonly reported measure was the interaction P-value, of which a sizable number of P-values were considered statistically significant (i.e., <0.05). In addition, the magnitude of interactions reported was modest. Observations of published

  11. Review of the Gene-Environment Interaction Literature in Cancer: What do we know?

    PubMed Central

    Simonds, Naoko I.; Ghazarian, Armen A.; Pimentel, Camilla B.; Schully, Sheri D.; Ellison, Gary L.; Gillanders, Elizabeth M.; Mechanic, Leah E.

    2016-01-01

    Background Risk of cancer is determined by a complex interplay of genetic and environmental factors. Although the study of gene-environment (GxE) interactions has been an active area of research, little is reported about the known findings in the literature. Methods To examine the state of the science in GxE research in cancer, we performed a systematic review of published literature using gene-environment or pharmacogenomic flags from two curated databases of genetic association studies, the Human Genome Epidemiology (HuGE) literature finder and Cancer Genome-Wide Association and Meta Analyses Database (CancerGAMAdb), from January 1, 2001, to January 31, 2011. A supplemental search using HuGE was conducted for articles published February 1, 2011, to April 11, 2013. A 25% sample of the supplemental publications was reviewed. Results A total of 3,019 articles were identified in the original search. From these articles, 243 articles were determined to be relevant based on inclusion criteria (more than 3,500 interactions). From the supplemental search (1,400 articles identified), 29 additional relevant articles (1,370 interactions) were included. The majority of publications in both searches examined GxE in colon, rectal, or colorectal cancer types; breast; or lung cancer. Specific interactions examined most frequently included environmental factors categorized as energy balance (e.g., body mass index (BMI), diet), exogenous (e.g., oral contraceptives) and endogenous hormones (e.g., menopausal status), chemical environment (e.g., grilled meats), and lifestyle (e.g., smoking, alcohol intake). In both searches, the majority of interactions examined were using loci from candidate genes studies and none of the studies were genome-wide interaction studies (GEWIS). The most commonly reported measure was the interaction p-value, of which a sizable number of p-values were considered statistically significant (i.e., < 0.05). In addition, the magnitudes of interactions reported

  12. Functional and bioinformatics analysis of an exopolysaccharide-related gene (epsN) from Lactobacillus kefiranofaciens ZW3.

    PubMed

    Wang, Jingrui; Tang, Wei; Zheng, Yongna; Xing, Zhuqing; Wang, Yanping

    2016-09-01

    A novel lactic acid bacteria strain Lactobacillus kefiranofaciens ZW3 exhibited the characteristics of high production of exopolysaccharide (EPS). The epsN gene, located in the eps gene cluster of this strain, is associated with EPS biosynthesis. Bioinformatics analysis of this gene was performed. The conserved domain analysis showed that the EpsN protein contained MATE-Wzx-like domains. Then the epsN gene was amplified to construct the recombinant expression vector pMG36e-epsN. The results showed that the EPS yields of the recombinants were significantly improved. By determining the yields of EPS and intracellular polysaccharide, it was considered that epsN gene could play its Wzx flippase role in the EPS biosynthesis. This is the first time to prove the effect of EpsN on L. kefiranofaciens EPS biosynthesis and further prove its functional property.

  13. Nitrogen Cycle Evaluation (NiCE) Chip for the Simultaneous Analysis of Multiple N-Cycle Associated Genes.

    PubMed

    Oshiki, Mamoru; Segawa, Takahiro; Ishii, Satoshi

    2018-02-02

    Various microorganisms play key roles in the Nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR-amplicon sequencing of the N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible in the N transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive especially when we analyze multiple samples and try to detect N cycle functional genes present at relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named as N cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine abundance and diversity of N cycle functional genes in wastewater samples. Although non-specific amplification was detected on the NiCE chip, this could be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples. Importance. We report a novel approach, namely Nitrogen Cycle Evaluation (NiCE) chip by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess diversities of the N cycle functional genes. The NiCE chip technology is applicable to analyze the temporal dynamics of the N cycle gene

  14. Childhood temperament: passive gene-environment correlation, gene-environment interaction, and the hidden importance of the family environment.

    PubMed

    Lemery-Chalfant, Kathryn; Kao, Karen; Swann, Gregory; Goldsmith, H Hill

    2013-02-01

    Biological parents pass on genotypes to their children, as well as provide home environments that correlate with their genotypes; thus, the association between the home environment and children's temperament can be genetically (i.e., passive gene-environment correlation) or environmentally mediated. Furthermore, family environments may suppress or facilitate the heritability of children's temperament (i.e., gene-environment interaction). The sample comprised 807 twin pairs (mean age = 7.93 years) from the longitudinal Wisconsin Twin Project. Important passive gene-environment correlations emerged, such that home environments were less chaotic for children with high effortful control, and this association was genetically mediated. Children with high extraversion/surgency experienced more chaotic home environments, and this correlation was also genetically mediated. In addition, heritability of children's temperament was moderated by home environments, such that effortful control and extraversion/surgency were more heritable in chaotic homes, and negative affectivity was more heritable under crowded or unsafe home conditions. Modeling multiple types of gene-environment interplay uncovered the complex role of genetic factors and the hidden importance of the family environment for children's temperament and development more generally.

  15. Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma genes Online)

    PubMed Central

    Hsu, Chun-Nan; Lai, Jin-Mei; Liu, Chia-Hung; Tseng, Huei-Hun; Lin, Chih-Yun; Lin, Kuan-Ting; Yeh, Hsu-Hua; Sung, Ting-Yi; Hsu, Wen-Lian; Su, Li-Jen; Lee, Sheng-An; Chen, Chang-Han; Lee, Gen-Cher; Lee, DT; Shiue, Yow-Ling; Yeh, Chang-Wei; Chang, Chao-Hui; Kao, Cheng-Yan; Huang, Chi-Ying F

    2007-01-01

    Background The significant advances in microarray and proteomics analyses have resulted in an exponential increase in potential new targets and have promised to shed light on the identification of disease markers and cellular pathways. We aim to collect and decipher the HCC-related genes at the systems level. Results Here, we build an integrative platform, the Encyclopedia of Hepatocellular Carcinoma genes Online, dubbed EHCO , to systematically collect, organize and compare the pileup of unsorted HCC-related studies by using natural language processing and softbots. Among the eight gene set collections, ranging across PubMed, SAGE, microarray, and proteomics data, there are 2,906 genes in total; however, more than 77% genes are only included once, suggesting that tremendous efforts need to be exerted to characterize the relationship between HCC and these genes. Of these HCC inventories, protein binding represents the largest proportion (~25%) from Gene Ontology analysis. In fact, many differentially expressed gene sets in EHCO could form interaction networks (e.g. HBV-associated HCC network) by using available human protein-protein interaction datasets. To further highlight the potential new targets in the inferred network from EHCO, we combine comparative genomics and interactomics approaches to analyze 120 evolutionary conserved and overexpressed genes in HCC. 47 out of 120 queries can form a highly interactive network with 18 queries serving as hubs. Conclusion This architectural map may represent the first step toward the attempt to decipher the hepatocarcinogenesis at the systems level. Targeting hubs and/or disruption of the network formation might reveal novel strategy for HCC treatment. PMID:17326819

  16. Functional Interactions between Major Rice Blast Resistance Genes, Pi-ta and Pi-b, and Minor Blast Resistance QTL.

    PubMed

    Chen, Xinglong; Jia, Yulin; Jia, Melissa H; Pinson, Shannon; Wang, Xueyan; Wu, Bo Ming

    2018-04-16

    Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait loci (QTL) were investigated in a recombinant inbred line (RIL) population comprising of 243 RILs from a 'Cybonnet' (CYBT)×'Saber' (SB) cross. CYBT has the R gene Pi-ta and SB has Pi-b. Ten differential isolates of four Magnaporthe oryzae races (IB-1, IB-17, IB-49, and IE-1K) were used to evaluate disease reactions of the 243 RILs under greenhouse conditions. Five resistance QTL were mapped on chromosomes 2, 3, 8, 9, and 12 with a linkage map of 179 single nucleotide polymorphism (SNP) markers. Among them, qBR12 (Q1), was mapped at the Pi-ta locus and accounted for 45.41% of phenotypic variation while qBR2 (Q2) was located at the Pi-b locus and accounted for24.81%of disease reactions. An additive-by-additive epistatic interaction between Q1 (Pi-ta) and Q2 (Pi-b) was detected; they can enhance the disease resistance by an additive 0.93 using the 0 to 9 standard phenotyping method. These results suggest that Pi-ta interacts synergistically with Pi-b.

  17. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    PubMed

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  18. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms.

    PubMed

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-05

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  19. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    NASA Astrophysics Data System (ADS)

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials.

  20. Asymmetric interaction of point defects and heterophase interfaces in ZrN/TaN multilayered nanofilms

    PubMed Central

    Lao, Yuanxia; Hu, Shuanglin; Shi, Yunlong; Deng, Yu; Wang, Fei; Du, Hao; Zhang, Haibing; Wang, Yuan

    2017-01-01

    Materials with a high density of heterophase interfaces, which are capable of absorbing and annihilating radiation-induced point defects, can exhibit a superior radiation tolerance. In this paper, we investigated the interaction behaviors of point defects and heterophase interfaces by implanting helium atoms into the ZrN/TaN multilayered nanofilms. It was found that the point defect-interface interaction on the two sides of the ZrN/TaN interface was asymmetric, likely due to the difference in the vacancy formation energies of ZrN and TaN. The helium bubbles could migrate from the ZrN layers into the TaN layers through the heterophase interfaces, resulting in a better crystallinity of the ZrN layers and a complete amorphization of the TaN layers. The findings provided some clues to the fundamental behaviors of point defects near the heterophase interfaces, which make us re-examine the design rules of advanced radiation-tolerant materials. PMID:28053307

  1. A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans

    PubMed Central

    Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.

    2018-01-01

    Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088

  2. Genetic Variation at the N-acetyltransferase (NAT) Genes in Global Populations

    EPA Science Inventory

    Functional variability at the N-acetyltransferase (NAT) genes is associated with adverse drug reactions and cancer susceptibility in humans. Previous studies of small sets of ethnic groups have indicated that the NAT genes have high levels of amino acid variation that differ in f...

  3. m6A-Driver: Identifying Context-Specific mRNA m6A Methylation-Driven Gene Interaction Networks

    PubMed Central

    Zhang, Song-Yao; Zhang, Shao-Wu; Liu, Lian; Huang, Yufei

    2016-01-01

    As the most prevalent mammalian mRNA epigenetic modification, N6-methyladenosine (m6A) has been shown to possess important post-transcriptional regulatory functions. However, the regulatory mechanisms and functional circuits of m6A are still largely elusive. To help unveil the regulatory circuitry mediated by mRNA m6A methylation, we develop here m6A-Driver, an algorithm for predicting m6A-driven genes and associated networks, whose functional interactions are likely to be actively modulated by m6A methylation under a specific condition. Specifically, m6A-Driver integrates the PPI network and the predicted differential m6A methylation sites from methylated RNA immunoprecipitation sequencing (MeRIP-Seq) data using a Random Walk with Restart (RWR) algorithm and then builds a consensus m6A-driven network of m6A-driven genes. To evaluate the performance, we applied m6A-Driver to build the context-specific m6A-driven networks for 4 known m6A (de)methylases, i.e., FTO, METTL3, METTL14 and WTAP. Our results suggest that m6A-Driver can robustly and efficiently identify m6A-driven genes that are functionally more enriched and associated with higher degree of differential expression than differential m6A methylated genes. Pathway analysis of the constructed context-specific m6A-driven gene networks further revealed the regulatory circuitry underlying the dynamic interplays between the methyltransferases and demethylase at the epitranscriptomic layer of gene regulation. PMID:28027310

  4. Influence of intron length on interaction characters between post-spliced intron and its CDS in ribosomal protein genes

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoqing; Li, Hong; Bao, Tonglaga; Ying, Zhiqiang

    2012-09-01

    Many experiment evidences showed that sequence structures of introns and intron loss/gain can influence gene expression, but current mechanisms did not refer to the functions of post-spliced introns directly. We propose that postspliced introns play their functions in gene expression by interacting with their mRNA sequences and the interaction is characterized by the matched segments between introns and their CDS. In this study, we investigated the interaction characters with length series by improved Smith-Waterman local alignment software for the ribosomal protein genes in C. elegans and D. melanogaster. Our results showed that RF values of five intron groups are significantly high in the central non-conserved region and very low in 5'-end and 3'-end splicing region. It is interesting that the number of the optimal matched regions gradually increases with intron length. Distributions of the optimal matched regions are different for five intron groups. Our study revealed that there are more interaction regions between longer introns and their CDS than shorter, and it provides a positive pattern for regulating the gene expression.

  5. Gene-diet interaction effects on BMI levels in the Singapore Chinese population.

    PubMed

    Chang, Xuling; Dorajoo, Rajkumar; Sun, Ye; Han, Yi; Wang, Ling; Khor, Chiea-Chuen; Sim, Xueling; Tai, E-Shyong; Liu, Jianjun; Yuan, Jian-Min; Koh, Woon-Puay; van Dam, Rob M; Friedlander, Yechiel; Heng, Chew-Kiat

    2018-02-24

    Recent genome-wide association studies (GWAS) have identified 97 body-mass index (BMI) associated loci. We aimed to evaluate if dietary intake modifies BMI associations at these loci in the Singapore Chinese population. We utilized GWAS information from six data subsets from two adult Chinese population (N = 7817). Seventy-eight genotyped or imputed index BMI single nucleotide polymorphisms (SNPs) that passed quality control procedures were available in all datasets. Alternative Healthy Eating Index (AHEI)-2010 score and ten nutrient variables were evaluated. Linear regression analyses between z score transformed BMI (Z-BMI) and dietary factors were performed. Interaction analyses were performed by introducing the interaction term (diet x SNP) in the same regression model. Analysis was carried out in each cohort individually and subsequently meta-analyzed using the inverse-variance weighted method. Analyses were also evaluated with a weighted gene-risk score (wGRS) contructed by BMI index SNPs from recent large-scale GWAS studies. Nominal associations between Z-BMI and AHEI-2010 and some dietary factors were identified (P = 0.047-0.010). The BMI wGRS was robustly associated with Z-BMI (P = 1.55 × 10 - 15 ) but not with any dietary variables. Dietary variables did not significantly interact with the wGRS to modify BMI associations. When interaction analyses were repeated using individual SNPs, a significant association between cholesterol intake and rs4740619 (CCDC171) was identified (β = 0.077, adjP interaction  = 0.043). The CCDC171 gene locus may interact with cholesterol intake to increase BMI in the Singaporean Chinese population, however most known obesity risk loci were not associated with dietary intake and did not interact with diet to modify BMI levels.

  6. Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes

    PubMed Central

    Xie, Jian-Bo; Du, Zhenglin; Bai, Lanqing; Tian, Changfu; Zhang, Yunzhi; Xie, Jiu-Yan; Wang, Tianshu; Liu, Xiaomeng; Chen, Xi; Cheng, Qi; Chen, Sanfeng; Li, Jilun

    2014-01-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation. PMID:24651173

  7. Optical model potential analysis of n ¯ A and n A interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    In this study, we use a momentum-dependent optical model potential to analyze the annihilation cross sections of the antineutronmore » $$\\overline{n}$$ on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta p lab ≲ 500 MeV / c . We obtain a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A 612, 346 (1997)] and of Astrua et al. [Nucl. Phys. A 697, 209 (2002)] which exhibit an interesting dependence of the cross sections on p lab as well as on the target mass number A. We also obtain the neutron (n) nonelastic reaction cross sections for the same targets. Comparing the $nA$ reaction cross sections σ$$nA\\atop{rec}$$ to the $$\\overline{n}A$$ annihilation cross sections σ $$\\overline{n}A$$ ann, we find that σ $$\\overline{n}A$$ ann is significantly larger than σ$$nA\\atop{rec}$$, that is, theσ $$\\overline{n}A$$ ann / σ$$nA\\atop{rec}$$ cross section ratio lies between the values of about 1.5 to 4.0 in the momentum region where comparison is possible. The dependence of the $$\\overline{n}$$ annihilation cross section on the projectile charge is also examined in comparison with the antiproton $$\\overline{p}$$. Here we predict the $$\\overline{p}A$$ annihilation cross section on the simplest assumption that both $$\\overline{p}A$$ and $$\\overline{n}A$$ interactions have the same nuclear part of the optical potential but differ only in the electrostatic Coulomb interaction. Finally, deviation from a such simple model extrapolation in measurements will provide new information on the difference between $$\\overline{n}A$$ and $$\\overline{p}A$$ potentials.« less

  8. Optical model potential analysis of n ¯ A and n A interactions

    DOE PAGES

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2018-05-25

    In this study, we use a momentum-dependent optical model potential to analyze the annihilation cross sections of the antineutronmore » $$\\overline{n}$$ on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta p lab ≲ 500 MeV / c . We obtain a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A 612, 346 (1997)] and of Astrua et al. [Nucl. Phys. A 697, 209 (2002)] which exhibit an interesting dependence of the cross sections on p lab as well as on the target mass number A. We also obtain the neutron (n) nonelastic reaction cross sections for the same targets. Comparing the $nA$ reaction cross sections σ$$nA\\atop{rec}$$ to the $$\\overline{n}A$$ annihilation cross sections σ $$\\overline{n}A$$ ann, we find that σ $$\\overline{n}A$$ ann is significantly larger than σ$$nA\\atop{rec}$$, that is, theσ $$\\overline{n}A$$ ann / σ$$nA\\atop{rec}$$ cross section ratio lies between the values of about 1.5 to 4.0 in the momentum region where comparison is possible. The dependence of the $$\\overline{n}$$ annihilation cross section on the projectile charge is also examined in comparison with the antiproton $$\\overline{p}$$. Here we predict the $$\\overline{p}A$$ annihilation cross section on the simplest assumption that both $$\\overline{p}A$$ and $$\\overline{n}A$$ interactions have the same nuclear part of the optical potential but differ only in the electrostatic Coulomb interaction. Finally, deviation from a such simple model extrapolation in measurements will provide new information on the difference between $$\\overline{n}A$$ and $$\\overline{p}A$$ potentials.« less

  9. Discovery of new candidate genes related to brain development using protein interaction information.

    PubMed

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.

  10. Identification of Genes That Interact With Drosophila liquid facets

    PubMed Central

    Eun, Suk Ho; Lea, Kristi; Overstreet, Erin; Stevens, Samuel; Lee, Ji-Hoon; Fischer, Janice A.

    2007-01-01

    We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling. PMID:17179082

  11. Interaction-stabilized steady states in the driven O (N ) model

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Sondhi, S. L.

    2016-05-01

    We study periodically driven bosonic scalar field theories in the infinite N limit. It is well known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has nontrivial correlations and is synchronized with the drive. The O (N ) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.

  12. Robust and Comprehensive Analysis of 20 Osteoporosis Candidate Genes by Very High-Density Single-Nucleotide Polymorphism Screen Among 405 White Nuclear Families Identified Significant Association and Gene–Gene Interaction

    PubMed Central

    Xiong, Dong-Hai; Shen, Hui; Zhao, Lan-Juan; Xiao, Peng; Yang, Tie-Lin; Guo, Yan; Wang, Wei; Guo, Yan-Fang; Liu, Yong-Jun; Recker, Robert R; Deng, Hong-Wen

    2007-01-01

    Many “novel” osteoporosis candidate genes have been proposed in recent years. To advance our knowledge of their roles in osteoporosis, we screened 20 such genes using a set of high-density SNPs in a large family-based study. Our efforts led to the prioritization of those osteoporosis genes and the detection of gene–gene interactions. Introduction We performed large-scale family-based association analyses of 20 novel osteoporosis candidate genes using 277 single nucleotide polymorphisms (SNPs) for the quantitative trait BMD variation and the qualitative trait osteoporosis (OP) at three clinically important skeletal sites: spine, hip, and ultradistal radius (UD). Materials and Methods One thousand eight hundred seventy-three subjects from 405 white nuclear families were genotyped and analyzed with an average density of one SNP per 4 kb across the 20 genes. We conducted association analyses by SNP- and haplotype-based family-based association test (FBAT) and performed gene–gene interaction analyses using multianalytic approaches such as multifactor-dimensionality reduction (MDR) and conditional logistic regression. Results and Conclusions We detected four genes (DBP, LRP5, CYP17, and RANK) that showed highly suggestive associations (10,000-permutation derived empirical global p ≤ 0.01) with spine BMD/OP; four genes (CYP19, RANK, RANKL, and CYP17) highly suggestive for hip BMD/OP; and four genes (CYP19, BMP2, RANK, and TNFR2) highly suggestive for UD BMD/OP. The associations between BMP2 with UD BMD and those between RANK with OP at the spine, hip, and UD also met the experiment-wide stringent criterion (empirical global p ≤ 0.0007). Sex-stratified analyses further showed that some of the significant associations in the total sample were driven by either male or female subjects. In addition, we identified and validated a two-locus gene–gene interaction model involving GCR and ESR2, for which prior biological evidence exists. Our results suggested the

  13. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000.

    PubMed

    Lundgren, Benjamin R; Connolly, Morgan P; Choudhary, Pratibha; Brookins-Little, Tiffany S; Chatterjee, Snigdha; Raina, Ramesh; Nomura, Christopher T

    2015-01-01

    The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.

  14. Gene by cognition interaction on stress-induced attention bias for food: Effects of 5-HTTLPR and ruminative thinking.

    PubMed

    Schepers, Robbie; Markus, C Rob

    2017-09-01

    Stress is often found to increase the preference and intake of high caloric foods. This effect is known as emotional eating and is influenced by cognitive as well as biological stress vulnerabilities. An S-allele of the 5-HTTLPR gene has been linked to decreased (brain) serotonin efficiency, leading to decreased stress resilience and increased risks for negative affect and eating related disturbances. Recently it has been proposed that a cognitive ruminative thinking style can further exacerbate the effect of this gene by prolonging the already increased stress response, thereby potentially increasing the risk of compensating by overeating high palatable foods. This study was aimed at investigating whether there is an increased risk for emotional eating in high ruminative S/S-allele carriers reflected by an increased attention bias for high caloric foods during stress. From a large (N=827) DNA database, participants (N=100) were selected based on genotype (S/S or L/L) and ruminative thinking style and performed an eye-tracking visual food-picture probe task before and after acute stress exposure. A significant Genotype x Rumination x Stress-interaction was found on attention bias for savory food; indicating that a stress-induced attention bias for specifically high-caloric foods is moderated by a gene x cognitive risk factor. Both a genetic (5-HTTLPR) and cognitive (ruminative thinking) stress vulnerability may mutually increase the risk for stress-related abnormal eating patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. MAOA genotype, social exclusion and aggression: an experimental test of a gene-environment interaction.

    PubMed

    Gallardo-Pujol, D; Andrés-Pueyo, A; Maydeu-Olivares, A

    2013-02-01

    In 2002, Caspi and colleagues provided the first epidemiological evidence that genotype may moderate individuals' responses to environmental determinants. However, in a correlational study great care must be taken to ensure the proper estimation of the causal relationship. Here, a randomized experiment was performed to test the hypothesis that the MAOA gene promoter polymorphism (MAOA-LPR) interacts with environmental adversity in determining aggressive behavior using laboratory analogs of real-life conditions. A sample of 57 Caucasian male students of Catalan and Spanish origin was recruited at the University of Barcelona. Ostracism, or social exclusion, was induced as environmental adversity using the Cyberball software. Laboratory aggression was assessed with the Point Subtraction Aggression Paradigm (PSAP), which was used as an analog of antisocial behavior. We also measured aggressiveness by means of the reduced version of the Aggression Questionnaire. The MAOA-LPR polymorphism showed a significant effect on the number of aggressive responses in the PSAP (F(1,53) = 4.63, P = 0.03, partial η(2) = 0.08), as well as social exclusion (F(1,53) = 8.03, P = 0.01, partial η(2) = 0.13). Most notably, however, we found that the MAOA-LPR polymorphism interacts significantly with social exclusion in order to provoke aggressive behavior (F(1,53) = 4.42, P = 0.04, partial η(2) = 0.08), remarkably, the low-activity allele of the MAOA-LPR polymorphism carriers in the ostracized group show significantly higher aggression scores than the rest. Our results support the notion that gene-environment interactions can be successfully reproduced within a laboratory using analogs and an appropriate design. We provide guidelines to test gene-environment interactions hypotheses under controlled, experimental settings. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  16. Chemical-Gene Interactions from ToxCast Bioactivity Data Expands Universe of Literature Network-Based Associations (SOT)

    EPA Science Inventory

    Characterizing the effects of chemicals in biological systems is often summarized by chemical-gene interactions, which have sparse coverage in the literature. The ToxCast chemical screening program has produced bioactivity data for nearly 2000 chemicals and over 450 gene targets....

  17. Differential Gene Expression in Pycnoporus coccineus during Interspecific Mycelial Interactions with Different Competitors

    PubMed Central

    Levasseur, Anthony; Record, Eric

    2013-01-01

    Fungi compete against each other for environmental resources. These interspecific combative interactions encompass a wide range of mechanisms. In this study, we highlight the ability of the white-rot fungus Pycnoporus coccineus to quickly overgrow or replace a wide range of competitor fungi, including the gray-mold fungus Botrytis cinerea and the brown-rot fungus Coniophora puteana. To gain a better understanding of the mechanisms deployed by P. coccineus to compete against other fungi and to assess whether common pathways are used to interact with different competitors, differential gene expression in P. coccineus during cocultivation was assessed by transcriptome sequencing and confirmed by quantitative reverse transcription-PCR analysis of a set of 15 representative genes. Compared with the pure culture, 1,343 transcripts were differentially expressed in the interaction with C. puteana and 4,253 were differentially expressed in the interaction with B. cinerea, but only 197 transcripts were overexpressed in both interactions. Overall, the results suggest that a broad array of functions is necessary for P. coccineus to replace its competitors and that different responses are elicited by the two competitors, although a portion of the mechanism is common to both. However, the functions elicited by the expression of specific transcripts appear to converge toward a limited set of roles, including detoxification of secondary metabolites. PMID:23974131

  18. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    PubMed

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via

  19. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.

    PubMed

    Weng, Mao-Lun; Ruhlman, Tracey A; Jansen, Robert K

    2016-06-27

    Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid-nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system.

    PubMed

    Salser, S J; Loer, C M; Kenyon, C

    1993-09-01

    Intricate patterns of overlapping HOM-C gene expression along the A/P axis have been observed in many organisms; however, the significance of these patterns in establishing the ultimate fates of individual cells is not well understood. We have examined the expression of the Caenorhabditis elegans Antennapedia homolog mab-5 and its role in specifying cell fates in the posterior of the ventral nerve cord. We find that the pattern of fates specified by mab-5 not only depends on mab-5 expression but also on post-translational interactions with the neighboring HOM-C gene lin-39 and a second, inferred gene activity. Where mab-5 expression overlaps with lin-39 activity, they can interact in two different ways depending on the cell type: They can either effectively neutralize one another where they are both expressed or lin-39 can predominate over mab-5. As observed for Antennapedia in Drosophila, expression of mab-5 itself is repressed by the next most posterior HOM-C gene, egl-5. Thus, a surprising diversity in HOM-C regulatory mechanisms exists within a small set of cells even in a simple organism.

  1. Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report.

    PubMed

    Hutter, Carolyn M; Mechanic, Leah E; Chatterjee, Nilanjan; Kraft, Peter; Gillanders, Elizabeth M

    2013-11-01

    Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified hundreds of common (minor allele frequency [MAF] > 0.05) and less common (0.01 < MAF < 0.05) genetic variants associated with cancer. The marginal effects of most of these variants have been small (odds ratios: 1.1-1.4). There remain unanswered questions on how best to incorporate the joint effects of genes and environment, including gene-environment (G × E) interactions, into epidemiologic studies of cancer. To help address these questions, and to better inform research priorities and allocation of resources, the National Cancer Institute sponsored a "Gene-Environment Think Tank" on January 10-11, 2012. The objective of the Think Tank was to facilitate discussions on (1) the state of the science, (2) the goals of G × E interaction studies in cancer epidemiology, and (3) opportunities for developing novel study designs and analysis tools. This report summarizes the Think Tank discussion, with a focus on contemporary approaches to the analysis of G × E interactions. Selecting the appropriate methods requires first identifying the relevant scientific question and rationale, with an important distinction made between analyses aiming to characterize the joint effects of putative or established genetic and environmental factors and analyses aiming to discover novel risk factors or novel interaction effects. Other discussion items include measurement error, statistical power, significance, and replication. Additional designs, exposure assessments, and analytical approaches need to be considered as we move from the current small number of success stories to a fuller understanding of the interplay of genetic and environmental factors. © 2013 WILEY PERIODICALS, INC.

  2. Diversification of transcription factor-DNA interactions and the evolution of gene regulatory networks.

    PubMed

    Rogers, Julia M; Bulyk, Martha L

    2018-04-25

    Sequence-specific transcription factors (TFs) bind short DNA sequences in the genome to regulate the expression of target genes. In the last decade, numerous technical advances have enabled the determination of the DNA-binding specificities of many of these factors. Large-scale screens of many TFs enabled the creation of databases of TF DNA-binding specificities, typically represented as position weight matrices (PWMs). Although great progress has been made in determining and predicting binding specificities systematically, there are still many surprises to be found when studying a particular TF's interactions with DNA in detail. Paralogous TFs' binding specificities can differ in subtle ways, in a manner that is not immediately apparent from looking at their PWMs. These differences affect gene regulatory outputs and enable TFs to rewire transcriptional networks over evolutionary time. This review discusses recent observations made in the study of TF-DNA interactions that highlight the importance of continued in-depth analysis of TF-DNA interactions and their inherent complexity. This article is categorized under: Biological Mechanisms > Regulatory Biology. © 2018 Wiley Periodicals, Inc.

  3. DeSigN: connecting gene expression with therapeutics for drug repurposing and development.

    PubMed

    Lee, Bernard Kok Bang; Tiong, Kai Hung; Chang, Jit Kang; Liew, Chee Sun; Abdul Rahman, Zainal Ariff; Tan, Aik Choon; Khang, Tsung Fei; Cheong, Sok Ching

    2017-01-25

    The drug discovery and development pipeline is a long and arduous process that inevitably hampers rapid drug development. Therefore, strategies to improve the efficiency of drug development are urgently needed to enable effective drugs to enter the clinic. Precision medicine has demonstrated that genetic features of cancer cells can be used for predicting drug response, and emerging evidence suggest that gene-drug connections could be predicted more accurately by exploring the cumulative effects of many genes simultaneously. We developed DeSigN, a web-based tool for predicting drug efficacy against cancer cell lines using gene expression patterns. The algorithm correlates phenotype-specific gene signatures derived from differentially expressed genes with pre-defined gene expression profiles associated with drug response data (IC 50 ) from 140 drugs. DeSigN successfully predicted the right drug sensitivity outcome in four published GEO studies. Additionally, it predicted bosutinib, a Src/Abl kinase inhibitor, as a sensitive inhibitor for oral squamous cell carcinoma (OSCC) cell lines. In vitro validation of bosutinib in OSCC cell lines demonstrated that indeed, these cell lines were sensitive to bosutinib with IC 50 of 0.8-1.2 μM. As further confirmation, we demonstrated experimentally that bosutinib has anti-proliferative activity in OSCC cell lines, demonstrating that DeSigN was able to robustly predict drug that could be beneficial for tumour control. DeSigN is a robust method that is useful for the identification of candidate drugs using an input gene signature obtained from gene expression analysis. This user-friendly platform could be used to identify drugs with unanticipated efficacy against cancer cell lines of interest, and therefore could be used for the repurposing of drugs, thus improving the efficiency of drug development.

  4. The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo.

    PubMed

    Mrkusich, Eli M; Flanagan, Dustin J; Whitington, Paul M

    2011-10-01

    The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  5. Enhancing the gene-environment interaction framework through a quasi-experimental research design: evidence from differential responses to September 11.

    PubMed

    Fletcher, Jason M

    2014-01-01

    This article uses a gene-environment interaction framework to examine the differential responses to an objective external stressor based on genetic variation in the production of depressive symptoms. This article advances the literature by utilizing a quasi-experimental environmental exposure design, as well as a regression discontinuity design, to control for seasonal trends, which limit the potential for gene-environment correlation and allow stronger causal claims. Replications are attempted for two prominent genes (5-HTT and MAOA), and three additional genes are explored (DRD2, DRD4, and DAT1). This article provides evidence of a main effect of 9/11 on reports of feelings of sadness and fails to replicate a common finding of interaction using 5-HTT but does show support for interaction with MAOA in men. It also provides new evidence that variation in the DRD4 gene modifies an individual's response to the exposure, with individuals with no 7-repeats found to have a muted response.

  6. Gene-environment interaction in problematic substance use: interaction between DRD4 and insecure attachments.

    PubMed

    Olsson, Craig A; Moyzis, Robert K; Williamson, Elizabeth; Ellis, Justine A; Parkinson-Bates, Mandy; Patton, George C; Dwyer, Terry; Romaniuk, Helena; Moore, Elya E

    2013-07-01

    To investigate the combined effect of an exon III variable number tandem repeat in the dopamine receptor gene (DRD4) and insecure attachment style on risk for tobacco, cannabis and alcohol use problems in young adulthood. It was hypothesized that (1) individuals with 5, 6, 7 or 8 repeats (labelled 7R+) would be at increased risk for problematic drug use, and (2) risk for drug use would be further increased in individuals with 7R+ repeats who also have a history of insecure parent-child attachment relations. Data were drawn from the Victorian Adolescent Health Cohort Study, an eight-wave longitudinal study of adolescent and young adult development. DRD4 genotypes were available for 839 participants. Risk attributable to the combined effects of 7R+ genotype and insecure attachments was evaluated within a sufficient causes framework under the assumptions of additive interaction using a two-by-four table format with a common reference group. 7R+ alleles were associated with higher tobacco, cannabis and alcohol use (binging). Insecure attachments were associated with higher tobacco and cannabis use but lower alcohol use. For tobacco, there was evidence of interaction for anxious but not avoidant attachments. For cannabis, there was evidence of interaction for both anxious and avoidant attachments, although the interaction for anxious attachments was more substantial. There is no evidence of interaction for binge drinking. Results are consistent with a generic reward deficit hypothesis of drug addiction for which the 7R+ disposition may play a role. Interaction between 7R+ alleles and attachment insecurity may intensify risk for problematic tobacco and cannabis use. © 2011 Murdoch Childrens Research Institute.

  7. The Omics Dashboard for interactive exploration of gene-expression data

    PubMed Central

    Paley, Suzanne; Parker, Karen; Spaulding, Aaron; Tomb, Jean-Francois; O’Maille, Paul

    2017-01-01

    Abstract The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X–Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli. PMID:29040755

  8. Vulnerability or Sensitivity to the Environment? Methodological Issues, Trends, and Recommendations in Gene-Environment Interactions Research in Human Behavior.

    PubMed

    Leighton, Caroline; Botto, Alberto; Silva, Jaime R; Jiménez, Juan Pablo; Luyten, Patrick

    2017-01-01

    Research on the potential role of gene-environment interactions (GxE) in explaining vulnerability to psychopathology in humans has witnessed a shift from a diathesis-stress perspective to differential susceptibility approaches. This paper critically reviews methodological issues and trends in this body of research. Databases were screened for studies of GxE in the prediction of personality traits, behavior, and mental health disorders in humans published between January 2002 and January 2015. In total, 315 papers were included. Results showed that 34 candidate genes have been included in GxE studies. Independent of the type of environment studied (early or recent life events, positive or negative environments), about 67-83% of studies have reported significant GxE interactions, which is consistent with a social susceptibility model. The percentage of positive results does not seem to differ depending on the gene studied, although publication bias might be involved. However, the number of positive findings differs depending on the population studied (i.e., young adults vs. older adults). Methodological considerations limit the ability to draw strong conclusions, particularly as almost 90% ( n  = 283/315) of published papers are based on samples from North America and Europe, and about 70% of published studies (219/315) are based on samples that were also used in other reports. At the same time, there are clear indications of methodological improvements over time, as is shown by a significant increase in longitudinal and experimental studies as well as in improved minimum genotyping. Recommendations for future research, such as minimum quality assessment of genes and environmental factors, specifying theoretical models guiding the study, and taking into account of cultural, ethnic, and lifetime perspectives, are formulated.

  9. Analysis of the aac(3)-VIa gene encoding a novel 3-N-acetyltransferase.

    PubMed Central

    Rather, P N; Mann, P A; Mierzwa, R; Hare, R S; Miller, G H; Shaw, K J

    1993-01-01

    Biochemical analysis (G. A. Papanicolaou, R. S. Hare, R. Mierzwa, and G. H. Miller, abstr. 152, Program Abstr. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989) demonstrated the presence of a novel 3-N-acetyltransferase in Enterobacter cloacae 88020217. This organism was resistant to gentamicin, and the MIC of 2'-N-ethylnetilmicin for it was fourfold lower than that of 6'-N-ethylnetilmicin, a resistance pattern which suggested 2'-acetylating activity. However, high-pressure liquid chromatography analysis demonstrated that the enzyme acetylated sisomicin in the 3 position. We have cloned the structural gene for this enzyme from a large (> 70-kb) conjugative plasmid present in E. cloacae. Subcloning experiments have localized the aac(3)-VIa gene to a 2.1-kb Sau3A fragment. The deduced AAC(3)-VIa protein showed 48% amino acid identity to the AAC(3)-IIa protein and 39% identity to the AAC(3)-VII protein. Examination of the 5'-flanking sequences demonstrated that the aac(3)-VIa gene was located 167 bp downstream of the aadA1 gene and was present in an integron. In addition, the aac(3)-VIa gene is also downstream of a 59-base element often seen in an integron environment. Primer extension analysis has identified a promoter for the aac(3)-VIa gene downstream of both the aadA1 gene and a 59-base element. Images PMID:8257126

  10. C-State: an interactive web app for simultaneous multi-gene visualization and comparative epigenetic pattern search.

    PubMed

    Sowpati, Divya Tej; Srivastava, Surabhi; Dhawan, Jyotsna; Mishra, Rakesh K

    2017-09-13

    Comparative epigenomic analysis across multiple genes presents a bottleneck for bench biologists working with NGS data. Despite the development of standardized peak analysis algorithms, the identification of novel epigenetic patterns and their visualization across gene subsets remains a challenge. We developed a fast and interactive web app, C-State (Chromatin-State), to query and plot chromatin landscapes across multiple loci and cell types. C-State has an interactive, JavaScript-based graphical user interface and runs locally in modern web browsers that are pre-installed on all computers, thus eliminating the need for cumbersome data transfer, pre-processing and prior programming knowledge. C-State is unique in its ability to extract and analyze multi-gene epigenetic information. It allows for powerful GUI-based pattern searching and visualization. We include a case study to demonstrate its potential for identifying user-defined epigenetic trends in context of gene expression profiles.

  11. GeneXplorer: an interactive web application for microarray data visualization and analysis.

    PubMed

    Rees, Christian A; Demeter, Janos; Matese, John C; Botstein, David; Sherlock, Gavin

    2004-10-01

    When publishing large-scale microarray datasets, it is of great value to create supplemental websites where either the full data, or selected subsets corresponding to figures within the paper, can be browsed. We set out to create a CGI application containing many of the features of some of the existing standalone software for the visualization of clustered microarray data. We present GeneXplorer, a web application for interactive microarray data visualization and analysis in a web environment. GeneXplorer allows users to browse a microarray dataset in an intuitive fashion. It provides simple access to microarray data over the Internet and uses only HTML and JavaScript to display graphic and annotation information. It provides radar and zoom views of the data, allows display of the nearest neighbors to a gene expression vector based on their Pearson correlations and provides the ability to search gene annotation fields. The software is released under the permissive MIT Open Source license, and the complete documentation and the entire source code are freely available for download from CPAN http://search.cpan.org/dist/Microarray-GeneXplorer/.

  12. Epistatic interactions between Fc (GM) and FcγR genes and the host control of human immunodeficiency virus replication.

    PubMed

    Deepe, Raymond N; Kistner-Griffin, Emily; Martin, Jeffrey N; Deeks, Steven G; Pandey, Janardan P

    2012-03-01

    Host genetic factors are thought to contribute to the interindividual differences in the control of human immunodeficiency virus (HIV) replication. The aim of the present investigation was to determine whether genes encoding GM and KM allotypes-genetic markers of immunoglobulin γ and κ chains, respectively-and those encoding Fcγ receptor (FcγR) IIa and IIIa are associated with the host control of HIV replication. A case-control design was employed among HIV-infected subjects, with a group that spontaneously controlled HIV replication ("controllers") as cases (n = 73) and those who did not control replication as controls (n = 100). Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism, direct DNA sequencing, and TaqMan genotyping assays. In Caucasian Americans, certain combinations of FcγR and GM genotypes were differentially distributed between controllers and noncontrollers. Among the noncarriers of the FcγRIIa arginine allele, GM21 noncarriers had over 7-fold greater odds of being controllers than the carriers of this allele (odds ratio [OR] = 7.47). These GM determinants also interacted with FcγRIIIa alleles. Among the carriers of the FcγRIIIa valine allele, GM21 noncarriers had over 3-fold greater odds of being controllers than the carriers of this allele (OR = 3.26). These results demonstrate epistatic interactions of genes on chromosomes 14 (GM) and 1 (FcγR) in influencing the control of HIV replication. Copyright © 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Childhood Temperament: Passive Gene-Environment Correlation, Gene-Environment Interaction, and the Hidden Importance of the Family Environment

    PubMed Central

    Lemery-Chalfant, Kathryn; Kao, Karen; Swann, Gregory; Goldsmith, H. Hill

    2013-01-01

    Biological parents pass on genotypes to their children, as well as provide home environments that correlate with their genotypes; thus, the association between the home environment and children's temperament can be genetically (i.e. passive gene-environment correlation) or environmentally mediated. Furthermore, family environments may suppress or facilitate the heritability of children's temperament (i.e. gene-environment interaction). The sample comprised 807 twin pairs (M age = 7.93 years) from the longitudinal Wisconsin Twin Project. Important passive gene-environment correlations emerged, such that home environments were less chaotic for children with high Effortful Control, and this association was genetically mediated. Children with high Extraversion/Surgency experienced more chaotic home environments, and this correlation was also genetically mediated. In addition, heritability of children's temperament was moderated by home environments, such that Effortful Control and Extraversion/Surgency were more heritable in chaotic homes, and Negative Affectivity was more heritable under crowded or unsafe home conditions. Modeling multiple types of gene-environment interplay uncovered the complex role of genetic factors and the hidden importance of the family environment for children's temperament and development more generally. PMID:23398752

  14. Interaction between Social/Psychosocial Factors and Genetic Variants on Body Mass Index: A Gene-Environment Interaction Analysis in a Longitudinal Setting.

    PubMed

    Zhao, Wei; Ware, Erin B; He, Zihuai; Kardia, Sharon L R; Faul, Jessica D; Smith, Jennifer A

    2017-09-29

    Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) ( p = 0.07).

  15. Interaction between Social/Psychosocial Factors and Genetic Variants on Body Mass Index: A Gene-Environment Interaction Analysis in a Longitudinal Setting

    PubMed Central

    Zhao, Wei; He, Zihuai; Kardia, Sharon L. R.; Faul, Jessica D.

    2017-01-01

    Obesity, which develops over time, is one of the leading causes of chronic diseases such as cardiovascular disease. However, hundreds of BMI (body mass index)-associated genetic loci identified through large-scale genome-wide association studies (GWAS) only explain about 2.7% of BMI variation. Most common human traits are believed to be influenced by both genetic and environmental factors. Past studies suggest a variety of environmental features that are associated with obesity, including socioeconomic status and psychosocial factors. This study combines both gene/regions and environmental factors to explore whether social/psychosocial factors (childhood and adult socioeconomic status, social support, anger, chronic burden, stressful life events, and depressive symptoms) modify the effect of sets of genetic variants on BMI in European American and African American participants in the Health and Retirement Study (HRS). In order to incorporate longitudinal phenotype data collected in the HRS and investigate entire sets of single nucleotide polymorphisms (SNPs) within gene/region simultaneously, we applied a novel set-based test for gene-environment interaction in longitudinal studies (LGEWIS). Childhood socioeconomic status (parental education) was found to modify the genetic effect in the gene/region around SNP rs9540493 on BMI in European Americans in the HRS. The most significant SNP (rs9540488) by childhood socioeconomic status interaction within the rs9540493 gene/region was suggestively replicated in the Multi-Ethnic Study of Atherosclerosis (MESA) (p = 0.07). PMID:28961216

  16. FLO11 Gene Is Involved in the Interaction of Flor Strains of Saccharomyces cerevisiae with a Biofilm-Promoting Synthetic Hexapeptide

    PubMed Central

    Bou Zeidan, Marc; Carmona, Lourdes

    2013-01-01

    Saccharomyces cerevisiae “flor” yeasts have the ability to form a buoyant biofilm at the air-liquid interface of wine. The formation of biofilm, also called velum, depends on FLO11 gene length and expression. FLO11 encodes a cell wall mucin-like glycoprotein with a highly O-glycosylated central domain and an N-terminal domain that mediates homotypic adhesion between cells. In the present study, we tested previously known antimicrobial peptides with different mechanisms of antimicrobial action for their effect on the viability and ability to form biofilm of S. cerevisiae flor strains. We found that PAF26, a synthetic tryptophan-rich cationic hexapeptide that belongs to the class of antimicrobial peptides with cell-penetrating properties, but not other antimicrobial peptides, enhanced biofilm formation without affecting cell viability in ethanol-rich medium. The PAF26 biofilm enhancement required a functional FLO11 but was not accompanied by increased FLO11 expression. Moreover, fluorescence microscopy and flow cytometry analyses showed that the PAF26 peptide binds flor yeast cells and that a flo11 gene knockout mutant lost the ability to bind PAF26 but not P113, a different cell-penetrating antifungal peptide, demonstrating that the FLO11 gene is selectively involved in the interaction of PAF26 with cells. Taken together, our data suggest that the cationic and hydrophobic PAF26 hexapeptide interacts with the hydrophobic and negatively charged cell wall, favoring Flo11p-mediated cell-to-cell adhesion and thus increasing biofilm biomass formation. The results are consistent with previous data that point to glycosylated mucin-like proteins at the fungal cell wall as potential interacting partners for antifungal peptides. PMID:23892742

  17. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    PubMed Central

    Brorsson, C.; Hansen, N. T.; Lage, K.; Bergholdt, R.; Brunak, S.; Pociot, F.

    2009-01-01

    Aim To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1 genes. Methods We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein–protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein modules were statistically evaluated using permutation. Results A total of 151 genes could be mapped to nodes within the protein interaction network and their interaction partners were identified. Five protein interaction modules reached statistical significance using this approach. The identified proteins are well known in the pathogenesis of T1D, but the modules also contain additional candidates that have been implicated in β-cell development and diabetic complications. Conclusions The extensive LD within the MHC region makes it important to develop new methods for analysing genotyping data for identification of additional risk genes for T1D. Combining genetic data with knowledge about functional pathways provides new insight into mechanisms underlying T1D. PMID:19143816

  18. The heritable basis of gene-environment interactions in cardiometabolic traits.

    PubMed

    Poveda, Alaitz; Chen, Yan; Brändström, Anders; Engberg, Elisabeth; Hallmans, Göran; Johansson, Ingegerd; Renström, Frida; Kurbasic, Azra; Franks, Paul W

    2017-03-01

    Little is known about the heritable basis of gene-environment interactions in humans. We therefore screened multiple cardiometabolic traits to assess the probability that they are influenced by genotype-environment interactions. Fourteen established environmental risk exposures and 11 cardiometabolic traits were analysed in the VIKING study, a cohort of 16,430 Swedish adults from 1682 extended pedigrees with available detailed genealogical, phenotypic and demographic information, using a maximum likelihood variance decomposition method in Sequential Oligogenic Linkage Analysis Routines software. All cardiometabolic traits had statistically significant heritability estimates, with narrow-sense heritabilities (h 2 ) ranging from 24% to 47%. Genotype-environment interactions were detected for age and sex (for the majority of traits), physical activity (for triacylglycerols, 2 h glucose and diastolic BP), smoking (for weight), alcohol intake (for weight, BMI and 2 h glucose) and diet pattern (for weight, BMI, glycaemic traits and systolic BP). Genotype-age interactions for weight and systolic BP, genotype-sex interactions for BMI and triacylglycerols and genotype-alcohol intake interactions for weight remained significant after multiple test correction. Age, sex and alcohol intake are likely to be major modifiers of genetic effects for a range of cardiometabolic traits. This information may prove valuable for studies that seek to identify specific loci that modify the effects of lifestyle in cardiometabolic disease.

  19. Intellectual Interest Mediates Gene x Socioeconomic Status Interaction on Adolescent Academic Achievement

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Harden, K. Paige

    2012-01-01

    Recent studies have demonstrated that genetic influences on cognitive ability and academic achievement are larger for children raised in higher socioeconomic status (SES) homes. However, little work has been done to document the psychosocial processes that underlie this Gene x Environment interaction. One process may involve the conversion of…

  20. Detection of gene-environment interactions in the presence of linkage disequilibrium and noise by using genetic risk scores with internal weights from elastic net regression.

    PubMed

    Hüls, Anke; Ickstadt, Katja; Schikowski, Tamara; Krämer, Ursula

    2017-06-12

    For the analysis of gene-environment (GxE) interactions commonly single nucleotide polymorphisms (SNPs) are used to characterize genetic susceptibility, an approach that mostly lacks power and has poor reproducibility. One promising approach to overcome this problem might be the use of weighted genetic risk scores (GRS), which are defined as weighted sums of risk alleles of gene variants. The gold-standard is to use external weights from published meta-analyses. In this study, we used internal weights from the marginal genetic effects of the SNPs estimated by a multivariate elastic net regression and thereby provided a method that can be used if there are no external weights available. We conducted a simulation study for the detection of GxE interactions and compared power and type I error of single SNPs analyses with Bonferroni correction and corresponding analysis with unweighted and our weighted GRS approach in scenarios with six risk SNPs and an increasing number of highly correlated (up to 210) and noise SNPs (up to 840). Applying weighted GRS increased the power enormously in comparison to the common single SNPs approach (e.g. 94.2% vs. 35.4%, respectively, to detect a weak interaction with an OR ≈ 1.04 for six uncorrelated risk SNPs and n = 700 with a well-controlled type I error). Furthermore, weighted GRS outperformed the unweighted GRS, in particular in the presence of SNPs without any effect on the phenotype (e.g. 90.1% vs. 43.9%, respectively, when 20 noise SNPs were added to the six risk SNPs). This outperforming of the weighted GRS was confirmed in a real data application on lung inflammation in the SALIA cohort (n = 402). However, in scenarios with a high number of noise SNPs (>200 vs. 6 risk SNPs), larger sample sizes are needed to avoid an increased type I error, whereas a high number of correlated SNPs can be handled even in small samples (e.g. n = 400). In conclusion, weighted GRS with weights from the marginal genetic effects of the

  1. MAOA interacts with the ALDH2 gene in anxiety-depression alcohol dependence.

    PubMed

    Lee, Sheng-Yu; Hahn, Cheng-Yi; Lee, Jia-Fu; Huang, San-Yuan; Chen, Shiou-Lan; Kuo, Po-Hsiu; Lee, I Hui; Yeh, Tzung Lieh; Yang, Yen Kuang; Chen, Shih-Heng; Ko, Huei-Chen; Lu, Ru-Band

    2010-07-01

    Alcohol dependence is usually comorbid with anxiety disorder, depressive disorder, or both; this comorbidity may increase drinking behavior. We previously hypothesized that anxiety-depressive alcohol dependence (ANX/DEP ALC) was a genetically specific subtype of alcohol dependence. ANX/DEP ALC may be related to dopamine and serotonin, which are catalyzed by monoamine oxidase A (MAOA) and acetaldehyde dehydrogenase 2 (ALDH2). The aim of this study was to determine whether the interaction between the MAOA and the ALDH2 genes is associated with ANX/DEP ALC. We recruited 383 Han Chinese men in Taiwan: 143 ANX/DEP ALC and 240 healthy controls. The diagnosis of ANX/DEP ALC (alcohol dependence with a past or current history of anxiety, depressive disorder, or both) was made using DSM-IV criteria. Genotypes of ALDH2 and MAOA-uVNTR (variable number of tandem repeat located upstream) were determined using PCR-RFLP. The ALDH2, but not the MAOA-uVNTR, polymorphism was associated with ANX/DEP ALC. After stratifying the MAOA-uVNTR polymorphism, we found a stronger association between the ALDH2*1/*2 and *2/*2 genotypes and the controls in the MAOA-uVNTR 4-repeat subgroup. Logistic regression significantly associated the interaction between ALDH2 and MAOA variants with ANX/DEP ALC. We conclude that the MAOA and ALDH2 genes interact in ANX/DEP ALC. Although the MAOA gene alone is not associated with ANX/DEP ALC, we hypothesize that different variants of MAOA-uVNTR polymorphisms modify the protective effects of the ALDH2*2 allele on ANX/DEP ALC in Han Chinese in Taiwan.

  2. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans.

    PubMed Central

    Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D

    1988-01-01

    beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077

  3. Intrinsic limits to gene regulation by global crosstalk

    NASA Astrophysics Data System (ADS)

    Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper

    Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).

  4. Beyond main effects of gene-sets: harsh parenting moderates the association between a dopamine gene-set and child externalizing behavior.

    PubMed

    Windhorst, Dafna A; Mileva-Seitz, Viara R; Rippe, Ralph C A; Tiemeier, Henning; Jaddoe, Vincent W V; Verhulst, Frank C; van IJzendoorn, Marinus H; Bakermans-Kranenburg, Marian J

    2016-08-01

    In a longitudinal cohort study, we investigated the interplay of harsh parenting and genetic variation across a set of functionally related dopamine genes, in association with children's externalizing behavior. This is one of the first studies to employ gene-based and gene-set approaches in tests of Gene by Environment (G × E) effects on complex behavior. This approach can offer an important alternative or complement to candidate gene and genome-wide environmental interaction (GWEI) studies in the search for genetic variation underlying individual differences in behavior. Genetic variants in 12 autosomal dopaminergic genes were available in an ethnically homogenous part of a population-based cohort. Harsh parenting was assessed with maternal (n = 1881) and paternal (n = 1710) reports at age 3. Externalizing behavior was assessed with the Child Behavior Checklist (CBCL) at age 5 (71 ± 3.7 months). We conducted gene-set analyses of the association between variation in dopaminergic genes and externalizing behavior, stratified for harsh parenting. The association was statistically significant or approached significance for children without harsh parenting experiences, but was absent in the group with harsh parenting. Similarly, significant associations between single genes and externalizing behavior were only found in the group without harsh parenting. Effect sizes in the groups with and without harsh parenting did not differ significantly. Gene-environment interaction tests were conducted for individual genetic variants, resulting in two significant interaction effects (rs1497023 and rs4922132) after correction for multiple testing. Our findings are suggestive of G × E interplay, with associations between dopamine genes and externalizing behavior present in children without harsh parenting, but not in children with harsh parenting experiences. Harsh parenting may overrule the role of genetic factors in externalizing behavior. Gene-based and gene

  5. Assessing the utility of gene co-expression stability in combination with correlation in the analysis of protein-protein interaction networks

    PubMed Central

    2011-01-01

    Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally

  6. Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions.

    PubMed

    Brunel, Joanna; Chopy, Damien; Dosnon, Marion; Bloyet, Louis-Marie; Devaux, Patricia; Urzua, Erica; Cattaneo, Roberto; Longhi, Sonia; Gerlier, Denis

    2014-09-01

    The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten

  7. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression.

    PubMed

    Dobon, Albor; Bunting, Daniel C E; Cabrera-Quio, Luis Enrique; Uauy, Cristobal; Saunders, Diane G O

    2016-05-20

    Understanding how plants and pathogens modulate gene expression during the host-pathogen interaction is key to uncovering the molecular mechanisms that regulate disease progression. Recent advances in sequencing technologies have provided new opportunities to decode the complexity of such interactions. In this study, we used an RNA-based sequencing approach (RNA-seq) to assess the global expression profiles of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici (PST) and its host during infection. We performed a detailed RNA-seq time-course for a susceptible and a resistant wheat host infected with PST. This study (i) defined the global gene expression profiles for PST and its wheat host, (ii) substantially improved the gene models for PST, (iii) evaluated the utility of several programmes for quantification of global gene expression for PST and wheat, and (iv) identified clusters of differentially expressed genes in the host and pathogen. By focusing on components of the defence response in susceptible and resistant hosts, we were able to visualise the effect of PST infection on the expression of various defence components and host immune receptors. Our data showed sequential, temporally coordinated activation and suppression of expression of a suite of immune-response regulators that varied between compatible and incompatible interactions. These findings provide the framework for a better understanding of how PST causes disease and support the idea that PST can suppress the expression of defence components in wheat to successfully colonize a susceptible host.

  8. Interacting TCP and NLP transcription factors control plant responses to nitrate availability.

    PubMed

    Guan, Peizhu; Ripoll, Juan-José; Wang, Renhou; Vuong, Lam; Bailey-Steinitz, Lindsay J; Ye, Dening; Crawford, Nigel M

    2017-02-28

    Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1 , and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G 2 /M cell-cycle marker gene, CYCB1;1 TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.

  9. Interactions of HIPPI, a molecular partner of Huntingtin interacting protein HIP1, with the specific motif present at the putative promoter sequence of the caspase-1, caspase-8 and caspase-10 genes.

    PubMed

    Majumder, P; Choudhury, A; Banerjee, M; Lahiri, A; Bhattacharyya, N P

    2007-08-01

    To investigate the mechanism of increased expression of caspase-1 caused by exogenous Hippi, observed earlier in HeLa and Neuro2A cells, in this work we identified a specific motif AAAGACATG (- 101 to - 93) at the caspase-1 gene upstream sequence where HIPPI could bind. Various mutations in this specific sequence compromised the interaction, showing the specificity of the interactions. In the luciferase reporter assay, when the reporter gene was driven by caspase-1 gene upstream sequences (- 151 to - 92) with the mutation G to T at position - 98, luciferase activity was decreased significantly in green fluorescent protein-Hippi-expressing HeLa cells in comparison to that obtained with the wild-type caspase-1 gene 60 bp upstream sequence, indicating the biological significance of such binding. It was observed that the C-terminal 'pseudo' death effector domain of HIPPI interacted with the 60 bp (- 151 to - 92) upstream sequence of the caspase-1 gene containing the motif. We further observed that expression of caspase-8 and caspase-10 was increased in green fluorescent protein-Hippi-expressing HeLa cells. In addition, HIPPI interacted in vitro with putative promoter sequences of these genes, containing a similar motif. In summary, we identified a novel function of HIPPI; it binds to specific upstream sequences of the caspase-1, caspase-8 and caspase-10 genes and alters the expression of the genes. This result showed the motif-specific interaction of HIPPI with DNA, and indicates that it could act as transcription regulator.

  10. Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice.

    PubMed

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2016-05-03

    Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica The effect of S24 is counteracted by an unlinked locus EFS Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS-S24-S35) for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK). We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK-S35 and EFS-S24 in indica-japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes. Copyright © 2016 Kubo et al.

  11. Pollen Killer Gene S35 Function Requires Interaction with an Activator That Maps Close to S24, Another Pollen Killer Gene in Rice

    PubMed Central

    Kubo, Takahiko; Yoshimura, Atsushi; Kurata, Nori

    2016-01-01

    Pollen killer genes disable noncarrier pollens, and are responsible for male sterility and segregation distortion in hybrid populations of distantly related plant species. The genetic networks and the molecular mechanisms underlying the pollen killer system remain largely unknown. Two pollen killer genes, S24 and S35, have been found in an intersubspecific cross of Oryza sativa ssp. indica and japonica. The effect of S24 is counteracted by an unlinked locus EFS. Additionally, S35 has been proposed to interact with S24 to induce pollen sterility. These genetic interactions are suggestive of a single S24-centric genetic pathway (EFS–S24–S35) for the pollen killer system. To examine this hypothetical genetic pathway, the S35 and the S24 regions were further characterized and genetically dissected in this study. Our results indicated that S35 causes pollen sterility independently of both the EFS and S24 genes, but is dependent on a novel gene close to the S24 locus, named incentive for killing pollen (INK). We confirmed the phenotypic effect of the INK gene separately from the S24 gene, and identified the INK locus within an interval of less than 0.6 Mb on rice chromosome 5. This study characterized the genetic effect of the two independent genetic pathways of INK–S35 and EFS–S24 in indica–japonica hybrid progeny. Our results provide clear evidence that hybrid male sterility in rice is caused by several pollen killer networks with multiple factors positively and negatively regulating pollen killer genes. PMID:27172610

  12. SLC6A1 gene involvement in susceptibility to attention-deficit/hyperactivity disorder: A case-control study and gene-environment interaction.

    PubMed

    Yuan, Fang-Fen; Gu, Xue; Huang, Xin; Zhong, Yan; Wu, Jing

    2017-07-03

    Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with an estimated heritability of approximately 76%. We conducted a case-control study to explore the role of the SLC6A1 gene in ADHD. The genotypes of eight variants were determined using Sequenom MassARRAY technology. The participants in the study were 302 children with ADHD and 411 controls. ADHD symptoms were assessed using the Conners Parent Symptom Questionnaire. In our study, rs2944366 was consistently shown to be associated with the ADHD risk in the dominant model (odds ratio [OR]=0.554, 95% confidence interval [CI]=0.404-0.760), and nominally associated with Hyperactive index score (P=0.027). In addition, rs1170695 has been found to be associated with the ADHD risk in the addictive model (OR=1.457, 95%CI=1.173-1.809), while rs9990174 was associated with the Hyperactive index score (P=0.010). Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactions of rs1170695 with blood lead (P mul =0.044) to modify the ADHD risk. Expression quantitative trait loci analysis suggested that these positive single nucleotide polymorphisms (SNPs) may mediate SLC6A1 gene expression. Therefore, our results suggest that selected SLC6A1 gene variants may have a significant effect on the ADHD risk. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions.

    PubMed

    Dalio, Ronaldo J D; Magalhães, Diogo M; Rodrigues, Carolina M; Arena, Gabriella D; Oliveira, Tiago S; Souza-Neto, Reinaldo R; Picchi, Simone C; Martins, Paula M M; Santos, Paulo J C; Maximo, Heros J; Pacheco, Inaiara S; De Souza, Alessandra A; Machado, Marcos A

    2017-03-01

    Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Imaging dynamic and selective low-complexity domain interactions that control gene transcription.

    PubMed

    Chong, Shasha; Dugast-Darzacq, Claire; Liu, Zhe; Dong, Peng; Dailey, Gina M; Cattoglio, Claudia; Heckert, Alec; Banala, Sambashiva; Lavis, Luke; Darzacq, Xavier; Tjian, Robert

    2018-06-21

    Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity domains (LCDs), but how they drive transactivation remains unclear. Here, live-cell single-molecule imaging reveals that TF-LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF-LCD hubs stabilize DNA binding, recruit RNA polymerase II (Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for novel drugs targeting gene regulatory interactions implicated in disease. Copyright © 2018, American Association for the Advancement of Science.

  15. Genetic and physical interaction of the B-cell systemic lupus erythematosus-associated genes BANK1 and BLK.

    PubMed

    Castillejo-López, Casimiro; Delgado-Vega, Angélica M; Wojcik, Jerome; Kozyrev, Sergey V; Thavathiru, Elangovan; Wu, Ying-Yu; Sánchez, Elena; Pöllmann, David; López-Egido, Juan R; Fineschi, Serena; Domínguez, Nicolás; Lu, Rufei; James, Judith A; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Moser, Kathy L; Gilkeson, Gary; Frostegård, Johan; Pons-Estel, Bernardo A; D'Alfonso, Sandra; Witte, Torsten; Callejas, José Luis; Harley, John B; Gaffney, Patrick M; Martin, Javier; Guthridge, Joel M; Alarcón-Riquelme, Marta E

    2012-01-01

    Altered signalling in B cells is a predominant feature of systemic lupus erythematosus (SLE). The genes BANK1 and BLK were recently described as associated with SLE. BANK1 codes for a B-cell-specific cytoplasmic protein involved in B-cell receptor signalling and BLK codes for an Src tyrosine kinase with important roles in B-cell development. To characterise the role of BANK1 and BLK in SLE, a genetic interaction analysis was performed hypothesising that genetic interactions could reveal functional pathways relevant to disease pathogenesis. The GPAT16 method was used to analyse the gene-gene interactions of BANK1 and BLK. Confocal microscopy was used to investigate co-localisation, and immunoprecipitation was used to verify the physical interaction of BANK1 and BLK. Epistatic interactions between BANK1 and BLK polymorphisms associated with SLE were observed in a discovery set of 279 patients and 515 controls from northern Europe. A meta-analysis with 4399 European individuals confirmed the genetic interactions between BANK1 and BLK. As BANK1 was identified as a binding partner of the Src tyrosine kinase LYN, the possibility that BANK1 and BLK could also show a protein-protein interaction was tested. The co-immunoprecipitation and co-localisation of BLK and BANK1 were demonstrated. In a Daudi cell line and primary naive B cells endogenous binding was enhanced upon B-cell receptor stimulation using anti-IgM antibodies. This study shows a genetic interaction between BANK1 and BLK, and demonstrates that these molecules interact physically. The results have important consequences for the understanding of SLE and other autoimmune diseases and identify a potential new signalling pathway.

  16. The Omics Dashboard for interactive exploration of gene-expression data.

    PubMed

    Paley, Suzanne; Parker, Karen; Spaulding, Aaron; Tomb, Jean-Francois; O'Maille, Paul; Karp, Peter D

    2017-12-01

    The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X-Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Gene-Gene Combination Effect and Interactions among ABCA1, APOA1, SR-B1, and CETP Polymorphisms for Serum High-Density Lipoprotein-Cholesterol in the Japanese Population

    PubMed Central

    Nakamura, Akihiko; Niimura, Hideshi; Kuwabara, Kazuyo; Takezaki, Toshiro; Morita, Emi; Wakai, Kenji; Hamajima, Nobuyuki; Nishida, Yuichiro; Turin, Tanvir Chowdhury; Suzuki, Sadao; Ohnaka, Keizo; Uemura, Hirokazu; Ozaki, Etsuko; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo

    2013-01-01

    Background/Objective Gene-gene interactions in the reverse cholesterol transport system for high-density lipoprotein-cholesterol (HDL-C) are poorly understood. The present study observed gene-gene combination effect and interactions between single nucleotide polymorphisms (SNPs) in ABCA1, APOA1, SR-B1, and CETP in serum HDL-C from a cross-sectional study in the Japanese population. Methods The study population comprised 1,535 men and 1,515 women aged 35–69 years who were enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. We selected 13 SNPs in the ABCA1, APOA1, CETP, and SR-B1 genes in the reverse cholesterol transport system. The effects of genetic and environmental factors were assessed using general linear and logistic regression models after adjusting for age, sex, and region. Principal Findings Alcohol consumption and daily activity were positively associated with HDL-C levels, whereas smoking had a negative relationship. The T allele of CETP, rs3764261, was correlated with higher HDL-C levels and had the highest coefficient (2.93 mg/dL/allele) among the 13 SNPs, which was statistically significant after applying the Bonferroni correction (p<0.001). Gene-gene combination analysis revealed that CETP rs3764261 was associated with high HDL-C levels with any combination of SNPs from ABCA1, APOA1, and SR-B1, although no gene-gene interaction was apparent. An increasing trend for serum HDL-C was also observed with an increasing number of alleles (p<0.001). Conclusions The present study identified a multiplier effect from a polymorphism in CETP with ABCA1, APOA1, and SR-B1, as well as a dose-dependence according to the number of alleles present. PMID:24376512

  18. Interaction between the Ur-4 and Ur-5 bean rust resistance genes

    USDA-ARS?s Scientific Manuscript database

    We aimed to use phenotypic and genetic markers to elucidate the interaction between the Ur-4 and Ur-5 genes for resistance to the rust pathogen of common bean. The resistant reaction of Ur-4 is characterized by necrotic spots (HR) with no sporulation. On the other hand, the resistant reaction of the...

  19. The Temporal Dynamics of Differential Gene Expression in Aspergillus fumigatus Interacting with Human Immature Dendritic Cells In Vitro

    PubMed Central

    Morton, Charles O.; Varga, John J.; Hornbach, Anke; Mezger, Markus; Sennefelder, Helga; Kneitz, Susanne; Kurzai, Oliver; Krappmann, Sven; Einsele, Hermann; Nierman, William C.; Rogers, Thomas R.; Loeffler, Juergen

    2011-01-01

    Dendritic cells (DC) are the most important antigen presenting cells and play a pivotal role in host immunity to infectious agents by acting as a bridge between the innate and adaptive immune systems. Monocyte-derived immature DCs (iDC) were infected with viable resting conidia of Aspergillus fumigatus (Af293) for 12 hours at an MOI of 5; cells were sampled every three hours. RNA was extracted from both organisms at each time point and hybridised to microarrays. iDC cell death increased at 6 h in the presence of A. fumigatus which coincided with fungal germ tube emergence; >80% of conidia were associated with iDC. Over the time course A. fumigatus differentially regulated 210 genes, FunCat analysis indicated significant up-regulation of genes involved in fermentation, drug transport, pathogenesis and response to oxidative stress. Genes related to cytotoxicity were differentially regulated but the gliotoxin biosynthesis genes were down regulated over the time course, while Aspf1 was up-regulated at 9 h and 12 h. There was an up-regulation of genes in the subtelomeric regions of the genome as the interaction progressed. The genes up-regulated by iDC in the presence of A. fumigatus indicated that they were producing a pro-inflammatory response which was consistent with previous transcriptome studies of iDC interacting with A. fumigatus germ tubes. This study shows that A. fumigatus adapts to phagocytosis by iDCs by utilising genes that allow it to survive the interaction rather than just up-regulation of specific virulence genes. PMID:21264256

  20. Gene-environment interaction in major depression: focus on experience-dependent biological systems.

    PubMed

    Lopizzo, Nicola; Bocchio Chiavetto, Luisella; Cattane, Nadia; Plazzotta, Giona; Tarazi, Frank I; Pariante, Carmine M; Riva, Marco A; Cattaneo, Annamaria

    2015-01-01

    Major depressive disorder (MDD) is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to lifelong risk for mental health outcomes. In this review, we will discuss how genetic variants (polymorphisms, SNPs) within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene × environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, we aim to underlie the role of genetic and epigenetic processes involved in stress- and neuroplasticity-related biological systems on the development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

  1. Validation of Reference Genes for Gene Expression Studies in Virus-Infected Nicotiana benthamiana Using Quantitative Real-Time PCR

    PubMed Central

    Han, Chenggui; Yu, Jialin; Li, Dawei; Zhang, Yongliang

    2012-01-01

    Nicotiana benthamiana is the most widely-used experimental host in plant virology. The recent release of the draft genome sequence for N. benthamiana consolidates its role as a model for plant–pathogen interactions. Quantitative real-time PCR (qPCR) is commonly employed for quantitative gene expression analysis. For valid qPCR analysis, accurate normalisation of gene expression against an appropriate internal control is required. Yet there has been little systematic investigation of reference gene stability in N. benthamiana under conditions of viral infections. In this study, the expression profiles of 16 commonly used housekeeping genes (GAPDH, 18S, EF1α, SAMD, L23, UK, PP2A, APR, UBI3, SAND, ACT, TUB, GBP, F-BOX, PPR and TIP41) were determined in N. benthamiana and those with acceptable expression levels were further selected for transcript stability analysis by qPCR of complementary DNA prepared from N. benthamiana leaf tissue infected with one of five RNA plant viruses (Tobacco necrosis virus A, Beet black scorch virus, Beet necrotic yellow vein virus, Barley stripe mosaic virus and Potato virus X). Gene stability was analysed in parallel by three commonly-used dedicated algorithms: geNorm, NormFinder and BestKeeper. Statistical analysis revealed that the PP2A, F-BOX and L23 genes were the most stable overall, and that the combination of these three genes was sufficient for accurate normalisation. In addition, the suitability of PP2A, F-BOX and L23 as reference genes was illustrated by expression-level analysis of AGO2 and RdR6 in virus-infected N. benthamiana leaves. This is the first study to systematically examine and evaluate the stability of different reference genes in N. benthamiana. Our results not only provide researchers studying these viruses a shortlist of potential housekeeping genes to use as normalisers for qPCR experiments, but should also guide the selection of appropriate reference genes for gene expression studies of N. benthamiana under

  2. MINER: exploratory analysis of gene interaction networks by machine learning from expression data.

    PubMed

    Kadupitige, Sidath Randeni; Leung, Kin Chun; Sellmeier, Julia; Sivieng, Jane; Catchpoole, Daniel R; Bain, Michael E; Gaëta, Bruno A

    2009-12-03

    The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no intervention from the user, or offer only simple correlation analysis to infer gene dependencies. We have developed MINER (Microarray Interactive Network Exploration and Representation), an application that combines multivariate non-linear tree learning of individual gene regulatory dependencies, visualisation of these dependencies as both trees and networks, and representation of known biological relationships based on common Gene Ontology annotations. MINER allows biologists to explore the dependencies influencing the expression of individual genes in a gene expression data set in the form of decision, model or regression trees, using their domain knowledge to guide the exploration and formulate hypotheses. Multiple trees can then be summarised in the form of a gene network diagram. MINER is being adopted by several of our collaborators and has already led to the discovery of a new significant regulatory relationship with subsequent experimental validation. Unlike most gene regulatory network inference methods, MINER allows the user to start from genes of interest and build the network gene-by-gene, incorporating domain expertise in the process. This approach has been used successfully with RNA microarray data but is applicable to other quantitative data produced by high-throughput technologies such as proteomics and "next generation" DNA sequencing.

  3. The Oxytocin Receptor Gene (OXTR) in Relation to State Levels of Loneliness in Adolescence: Evidence for Micro-Level Gene-Environment Interactions

    PubMed Central

    van Roekel, Eeske; Verhagen, Maaike; Scholte, Ron H. J.; Kleinjan, Marloes; Goossens, Luc; Engels, Rutger C. M. E.

    2013-01-01

    Previous research has shown that the rs53576 variant of the oxytocin receptor gene (OXTR) is associated with trait levels of loneliness, but results are inconsistent. The aim of the present study is to examine micro-level effects of the OXTR rs53576 variant on state levels of loneliness in early adolescents. In addition, gene-environment interactions are examined between this OXTR variant and positive and negative perceptions of company. Data were collected in 278 adolescents (58% girls), by means of the Experience Sampling Method (ESM). Sampling periods consisted of six days with nine assessments per day. A relation was found between the OXTR rs53576 variant and state loneliness, in girls only. Girls carrying an A allele had higher levels of state loneliness than girls carrying the GG genotype. In addition, adolescents with an A allele were more affected by negative perceptions of company than GG carriers, on weekend days only. No significant gene-environment interactions were found with positive company. Adolescents carrying an A allele were more susceptible to negative environments during weekend days than GG carriers. Our findings emphasize the importance of operationalizing the phenotype and the environment accurately. PMID:24223720

  4. The oxytocin receptor gene (OXTR) in relation to state levels of loneliness in adolescence: evidence for micro-level gene-environment interactions.

    PubMed

    van Roekel, Eeske; Verhagen, Maaike; Scholte, Ron H J; Kleinjan, Marloes; Goossens, Luc; Engels, Rutger C M E

    2013-01-01

    Previous research has shown that the rs53576 variant of the oxytocin receptor gene (OXTR) is associated with trait levels of loneliness, but results are inconsistent. The aim of the present study is to examine micro-level effects of the OXTR rs53576 variant on state levels of loneliness in early adolescents. In addition, gene-environment interactions are examined between this OXTR variant and positive and negative perceptions of company. Data were collected in 278 adolescents (58% girls), by means of the Experience Sampling Method (ESM). Sampling periods consisted of six days with nine assessments per day. A relation was found between the OXTR rs53576 variant and state loneliness, in girls only. Girls carrying an A allele had higher levels of state loneliness than girls carrying the GG genotype. In addition, adolescents with an A allele were more affected by negative perceptions of company than GG carriers, on weekend days only. No significant gene-environment interactions were found with positive company. Adolescents carrying an A allele were more susceptible to negative environments during weekend days than GG carriers. Our findings emphasize the importance of operationalizing the phenotype and the environment accurately.

  5. Gene-environment interactions linking air pollution and inflammation in Parkinson's disease.

    PubMed

    Lee, Pei-Chen; Raaschou-Nielsen, Ole; Lill, Christina M; Bertram, Lars; Sinsheimer, Janet S; Hansen, Johnni; Ritz, Beate

    2016-11-01

    Both air pollution exposure and systemic inflammation have been linked to Parkinson's disease (PD). In the PASIDA study, 408 incident cases of PD diagnosed in 2006-2009 and their 495 population controls were interviewed and provided DNA samples. Markers of long term traffic related air pollution measures were derived from geographic information systems (GIS)-based modeling. Furthermore, we genotyped functional polymorphisms in genes encoding proinflammatory cytokines, namely rs1800629 in TNFα (tumor necrosis factor alpha) and rs16944 in IL1B (interleukin-1β). In logistic regression models, long-term exposure to NO 2 increased PD risk overall (odds ratio (OR)=1.06 per 2.94μg/m 3 increase, 95% CI=1.00-1.13). The OR for PD in individuals with high NO 2 exposure (≧75th percentile) and the AA genotype of IL1B rs16944 was 3.10 (95% CI=1.14-8.38) compared with individuals with lower NO 2 exposure (<75th percentile) and the GG genotype. The interaction term was nominally significant on the multiplicative scale (p=0.01). We did not find significant gene-environment interactions with TNF rs1800629. Our finds may provide suggestive evidence that a combination of traffic-related air pollution and genetic variation in the proinflammatory cytokine gene IL1B contribute to risk of developing PD. However, as statistical evidence was only modest in this large sample we cannot rule out that these results represent a chance finding, and additional replication efforts are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Interaction between Calpain 5, Peroxisome proliferator-activated receptor-gamma and Peroxisome proliferator-activated receptor-delta genes: a polygenic approach to obesity

    PubMed Central

    Sáez, María E; Grilo, Antonio; Morón, Francisco J; Manzano, Luis; Martínez-Larrad, María T; González-Pérez, Antonio; Serrano-Hernando, Javier; Ruiz, Agustín; Ramírez-Lorca, Reposo; Serrano-Ríos, Manuel

    2008-01-01

    Context Obesity is a multifactorial disorder, that is, a disease determined by the combined effect of genes and environment. In this context, polygenic approaches are needed. Objective To investigate the possibility of the existence of a crosstalk between the CALPAIN 10 homologue CALPAIN 5 and nuclear receptors of the peroxisome proliferator-activated receptors family. Design Cross-sectional, genetic association study and gene-gene interaction analysis. Subjects The study sample comprise 1953 individuals, 725 obese (defined as body mass index ≥ 30) and 1228 non obese subjects. Results In the monogenic analysis, only the peroxisome proliferator-activated receptor delta (PPARD) gene was associated with obesity (OR = 1.43 [1.04–1.97], p = 0.027). In addition, we have found a significant interaction between CAPN5 and PPARD genes (p = 0.038) that reduces the risk for obesity in a 55%. Conclusion Our results suggest that CAPN5 and PPARD gene products may also interact in vivo. PMID:18657264

  7. Effect of occupational exposures on lung cancer susceptibility: a study of gene-environment interaction analysis.

    PubMed

    Malhotra, Jyoti; Sartori, Samantha; Brennan, Paul; Zaridze, David; Szeszenia-Dabrowska, Neonila; Świątkowska, Beata; Rudnai, Peter; Lissowska, Jolanta; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Gaborieau, Valerie; Stücker, Isabelle; Foretova, Lenka; Janout, Vladimir; Boffetta, Paolo

    2015-03-01

    Occupational exposures are known risk factors for lung cancer. Role of genetically determined host factors in occupational exposure-related lung cancer is unclear. We used genome-wide association (GWA) data from a case-control study conducted in 6 European countries from 1998 to 2002 to identify gene-occupation interactions and related pathways for lung cancer risk. GWA analysis was performed for each exposure using logistic regression and interaction term for genotypes, and exposure was included in this model. Both SNP-based and gene-based interaction P values were calculated. Pathway analysis was performed using three complementary methods, and analyses were adjusted for multiple comparisons. We analyzed 312,605 SNPs and occupational exposure to 70 agents from 1,802 lung cancer cases and 1,725 cancer-free controls. Mean age of study participants was 60.1 ± 9.1 years and 75% were male. Largest number of significant associations (P ≤ 1 × 10(-5)) at SNP level was demonstrated for nickel, brick dust, concrete dust, and cement dust, and for brick dust and cement dust at the gene-level (P ≤ 1 × 10(-4)). Approximately 14 occupational exposures showed significant gene-occupation interactions with pathways related to response to environmental information processing via signal transduction (P < 0.001 and FDR < 0.05). Other pathways that showed significant enrichment were related to immune processes and xenobiotic metabolism. Our findings suggest that pathways related to signal transduction, immune process, and xenobiotic metabolism may be involved in occupational exposure-related lung carcinogenesis. Our study exemplifies an integrative approach using pathway-based analysis to demonstrate the role of genetic variants in occupational exposure-related lung cancer susceptibility. Cancer Epidemiol Biomarkers Prev; 24(3); 570-9. ©2015 AACR. ©2015 American Association for Cancer Research.

  8. Optical model potential analysis of n ¯A and n A interactions

    NASA Astrophysics Data System (ADS)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2018-05-01

    We use a momentum-dependent optical model potential to analyze the annihilation cross sections of the antineutron n ¯ on C, Al, Fe, Cu, Ag, Sn, and Pb nuclei for projectile momenta plab ≲500 MeV /c . We obtain a good description of annihilation cross section data of Barbina et al. [Nucl. Phys. A 612, 346 (1997), 10.1016/S0375-9474(96)00331-4] and of Astrua et al. [Nucl. Phys. A 697, 209 (2002), 10.1016/S0375-9474(01)01252-0] which exhibit an interesting dependence of the cross sections on plab as well as on the target mass number A . We also obtain the neutron (n ) nonelastic reaction cross sections for the same targets. Comparing the n A reaction cross sections σrecn A to the n ¯A annihilation cross sections σannn ¯A, we find that σannn ¯A is significantly larger than σrecn A, that is, the σannn ¯A/σrecn A cross section ratio lies between the values of about 1.5 to 4.0 in the momentum region where comparison is possible. The dependence of the n ¯ annihilation cross section on the projectile charge is also examined in comparison with the antiproton p ¯. Here we predict the p ¯A annihilation cross section on the simplest assumption that both p ¯A and n ¯A interactions have the same nuclear part of the optical potential but differ only in the electrostatic Coulomb interaction. Deviation from a such simple model extrapolation in measurements will provide new information on the difference between n ¯A and p ¯A potentials.

  9. N-Acylethanolamine Metabolism Interacts with Abscisic Acid Signaling in Arabidopsis thaliana Seedlings[W][OA

    PubMed Central

    Teaster, Neal D.; Motes, Christy M.; Tang, Yuhong; Wiant, William C.; Cotter, Matthew Q.; Wang, Yuh-Shuh; Kilaru, Aruna; Venables, Barney J.; Hasenstein, Karl H.; Gonzalez, Gabriel; Blancaflor, Elison B.; Chapman, Kent D.

    2007-01-01

    N-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window. Combined application of low levels of ABA and NAE produced a more dramatic reduction in germination and growth than either compound alone. Transcript profiling and gene expression studies in NAE-treated seedlings revealed elevated transcripts for a number of ABA-responsive genes and genes typically enriched in desiccated seeds. The levels of ABI3 transcripts were inversely associated with NAE-modulated growth. Overexpression of the Arabidopsis NAE degrading enzyme fatty acid amide hydrolase resulted in seedlings that were hypersensitive to ABA, whereas the ABA-insensitive mutants, abi1-1, abi2-1, and abi3-1, exhibited reduced sensitivity to NAE. Collectively, our data indicate that an intact ABA signaling pathway is required for NAE action and that NAE may intersect the ABA pathway downstream from ABA. We propose that NAE metabolism interacts with ABA in the negative regulation of seedling development and that normal seedling establishment depends on the reduction of the endogenous levels of both metabolites. PMID:17766402

  10. MAOA, childhood maltreatment and antisocial behavior: Meta-analysis of a gene-environment interaction

    PubMed Central

    Byrd, Amy L.; Manuck, Stephen B.

    2013-01-01

    Background In a seminal study of gene-environment interaction, childhood maltreatment predicted antisocial behavior more strongly in males carrying an MAOA promoter variant of lesser, compared to higher, transcriptional efficiency. Many further investigations have been reported, including studies of other early environmental exposures and females. Here we report a meta-analysis of studies testing the interaction of MAOA genotype and childhood adversities on antisocial outcomes in predominantly non-clinical samples. Method Included were 27 peer-reviewed, English-language studies published through August, 2012, that contained indicators of maltreatment or “other” family (e.g., parenting, sociodemographic) hardships; MAOA genotype; indices of aggressive and antisocial behavior; and statistical test of genotype-environment interaction. Studies of forensic and exclusively clinical samples, clinical cohorts lacking proportionally matched controls, or outcomes non-specific for antisocial behavior were excluded. The Liptak-Stouffer weighted Z-test for meta-analysis was implemented to maximize study inclusion and calculated separately for male and female cohorts. Results Across 20 male cohorts, early adversity presaged antisocial outcomes more strongly for low, relative to high, activity MAOA genotype (P=.0044). Stratified analyses showed the interaction specific to maltreatment (P=.0000008) and robust to several sensitivity analyses. Across 11 female cohorts, MAOA did not interact with combined early life adversities, whereas maltreatment alone predicted antisocial behaviors preferentially, but weakly, in females of high activity MAOA genotype (P=.02). Conclusions We found common regulatory variation in MAOA to moderate effects of childhood maltreatment on male antisocial behaviors, confirming a sentinel finding in research on gene-environment interaction. An analogous, but less consistent, finding in females warrants further investigation. PMID:23786983

  11. MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction.

    PubMed

    Byrd, Amy L; Manuck, Stephen B

    2014-01-01

    In a seminal study of gene-environment interaction, childhood maltreatment predicted antisocial behavior more strongly in male subjects carrying an MAOA promoter variant of lesser, compared with higher, transcriptional efficiency. Many further investigations have been reported, including studies of other early environmental exposures and female subjects. Here, we report a meta-analysis of studies testing the interaction of MAOA genotype and childhood adversities on antisocial outcomes in predominantly nonclinical samples. Included were 27 peer-reviewed, English-language studies published through August, 2012, that contained indicators of maltreatment or other family (e.g., parenting, sociodemographic) hardships; MAOA genotype; indices of aggressive and antisocial behavior; and statistical test of genotype-environment interaction. Studies of forensic and exclusively clinical samples, clinical cohorts lacking proportionally matched control subjects, or outcomes nonspecific for antisocial behavior were excluded. The Liptak-Stouffer weighted Z-test for meta-analysis was implemented to maximize study inclusion and calculated separately for male and female cohorts. Across 20 male cohorts, early adversity presaged antisocial outcomes more strongly for low-activity, relative to high- activity, MAOA genotype (p = .0044). Stratified analyses showed the interaction specific to maltreatment (p = .00000082) and robust to several sensitivity analyses. Across 11 female cohorts, MAOA did not interact with combined early life adversities, whereas maltreatment alone predicted antisocial behaviors preferentially, but weakly, in female subjects of high-activity MAOA genotype (p = .02). We found common regulatory variation in MAOA to moderate effects of childhood maltreatment on male antisocial behaviors, confirming a sentinel finding in research on gene-environment interaction. An analogous, but less consistent, finding in female subjects warrants further investigation. Copyright

  12. A MAOA gene*cocaine severity interaction on impulsivity and neuropsychological measures of orbitofrontal dysfunction: preliminary results.

    PubMed

    Verdejo-García, Antonio; Albein-Urios, Natalia; Molina, Esther; Ching-López, Ana; Martínez-González, José M; Gutiérrez, Blanca

    2013-11-01

    Based on previous evidence of a MAOA gene*cocaine use interaction on orbitofrontal cortex volume attrition, we tested whether the MAOA low activity variant and cocaine use severity are interactively associated with impulsivity and behavioral indices of orbitofrontal dysfunction: emotion recognition and decision-making. 72 cocaine dependent individuals and 52 non-drug using controls (including healthy individuals and problem gamblers) were genotyped for the MAOA gene and tested using the UPPS-P Impulsive Behavior Scale, the Iowa Gambling Task and the Ekman's Facial Emotions Recognition Test. To test the main hypothesis, we conducted hierarchical multiple regression analyses including three sets of predictors: (1) age, (2) MAOA genotype and severity of cocaine use, and (3) the interaction between MAOA genotype and severity of cocaine use. UPPS-P, Ekman Test and Iowa Gambling Task's scores were the outcome measures. We computed the statistical significance of the prediction change yielded by each consecutive set, with 'a priori' interest in the MAOA*cocaine severity interaction. We found significant effects of the MAOA gene*cocaine use severity interaction on the emotion recognition scores and the UPPS-P's dimensions of Positive Urgency and Sensation Seeking: Low activity carriers with higher cocaine exposure had poorer emotion recognition and higher Positive Urgency and Sensation Seeking. Cocaine users carrying the MAOA low activity show a greater impact of cocaine use on impulsivity and behavioral measures of orbitofrontal cortex dysfunction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool

    PubMed Central

    2013-01-01

    Background System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Results Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Conclusions Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr. PMID:23586463

  14. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool.

    PubMed

    Chen, Edward Y; Tan, Christopher M; Kou, Yan; Duan, Qiaonan; Wang, Zichen; Meirelles, Gabriela Vaz; Clark, Neil R; Ma'ayan, Avi

    2013-04-15

    System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr.

  15. Reassortant swine influenza viruses isolated in Japan contain genes from pandemic A(H1N1) 2009.

    PubMed

    Kanehira, Katsushi; Takemae, Nobuhiro; Uchida, Yuko; Hikono, Hirokazu; Saito, Takehiko

    2014-06-01

    In 2013, three reassortant swine influenza viruses (SIVs)-two H1N2 and one H3N2-were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human-like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human-like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human-lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human-lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  16. Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia.

    PubMed

    McCarthy-Jones, Simon; Green, Melissa J; Scott, Rodney J; Tooney, Paul A; Cairns, Murray J; Wu, Jing Qin; Oldmeadow, Christopher; Carr, Vaughan

    2014-03-01

    The FOXP2 gene is involved in the development of speech and language. As some single nucleotide polymorphisms (SNPs) of FOXP2 have been found to be associated with auditory verbal hallucinations (AVHs) at trend levels, this study set out to undertake the first examination into whether interactions between candidate FOXP2 SNPs and environmental factors (specifically, child abuse) predict the likelihood of AVHs. Data on parental child abuse and FOXP2 SNPs previously linked to AVHs (rs1456031, rs2396753, rs2253478) were obtained from the Australian Schizophrenia Research Bank for people with schizophrenia-spectrum disorders, both with (n = 211) and without (n = 122) a lifetime history of AVHs. Genotypic frequencies did not differ between the two groups; however, logistic regression found that childhood parental emotional abuse (CPEA) interacted with rs1456031 to predict lifetime experience of AVH. CPEA was only associated with significantly higher levels of AVHs in people with CC genotypes (odds ratio = 4.25), yet in the absence of CPEA, people with TT genotypes had significantly higher levels of AVHs than people with CC genotypes (odds ratio = 4.90). This interaction was specific to auditory verbal hallucinations, and did not predict the likelihood of non-verbal auditory hallucinations. Our findings offer tentative evidence that FOXP2 may be a susceptibility gene for AVHs, influencing the probability people experience AVHs in the presence and absence of CPEA. However, these findings are in need of replication in a larger study that addresses the methodological limitations of the present investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Multiple interactions between maternally-activated signalling pathways control Xenopus nodal-related genes.

    PubMed

    Rex, Maria; Hilton, Emma; Old, Robert

    2002-03-01

    We have investigated the induction of the six Xenopus nodal-related genes, Xnr1-Xnr6, by maternal determinants. The beta-catenin pathway was modelled by stimulation using Xwnt8, activin-like signalling was modelled by activin, and VegT action was studied by overexpression in animal cap explants. Combinations of factors were examined, and previously unrecognised interactions were revealed in animal caps and whole embryos. For the induction of Xnr5 and Xnr6 in whole embryos, using a beta-catenin antisense morpholino oligonucleotide or a dominant negative XTcf3, we have demonstrated an absolute permissive requirement for the beta-catenin/Tcf pathway, in addition to the requirement for VegT action. In animal caps Xnr5 and Xnr6 are induced in response to VegT overexpression, and this induction is dependent upon the concomitant activation of the beta-catenin pathway that VegT initiates in animal caps. For the induction of Xnr3, VegT interacts negatively so as to inhibit the induction otherwise observed with wnt-signalling alone. The negative effect of VegT is not the result of a general inhibition of wnt-signalling, and does not result from an inhibition of wnt-induced siamois expression. A 294 bp proximal promoter fragment of the Xnr3 gene is sufficient to mediate the negative effect of VegT. Further experiments, employing cycloheximide to examine the dependence of Xnr gene expression upon proteins translated after the mid-blastula stage, demonstrated that Xnrs 4, 5 and 6 are 'primary' Xnr genes whose expression in the late blastula is solely dependent upon factors present before the mid-blastula stage.

  18. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    PubMed Central

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  19. Impact of interaction between the G870A and EFEMP1 gene polymorphism on glioma risk in Chinese Han population.

    PubMed

    Yang, Libin; Qu, Bo; Xia, Xun; Kuang, Yongqin; Li, Jian; Fan, Kexia; Guo, Heng; Zheng, Hui; Ma, Yuan

    2017-06-06

    To investigate the impact of CCND1 and EFEMP1 gene polymorphism, and additional their gene-gene interactions and haplotype within EFEMP1 gene on glioma risk based on Chinese population. Logistic regression was performed to investigate association between single-nucleotide polymorphisms (SNP) and glioma risk and generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene interaction. Glioma risks were higher in carriers of homozygous mutant of rs603965 within CCND1 gene, rs1346787 and rs3791679 in EFEMP1 gene than those with wild-type homozygotes, OR (95%CI) were 1.67 (1.23-2.02), 1.59 (1.25-2.01) and 1.42 (1.15-1.82), respectively. GMDR analysis indicated a significant two-locus model (p=0.0010) involving rs603965 within CCND1 gene and rs1346787 within EFEMP1 gene. Overall, the cross-validation consistency of the two- locus models was 10\\ 10, and the testing accuracy is 60.17%. Participants with rs603965 - GA or AA and rs1346787- AG or GG genotype have the highest glioma risk, compared to participants with rs603965 - GG and rs1346787- AA genotype, OR (95%CI) was 3.65 (1.81-5.22). We conducted haplotype analysis for rs1346787 and rs3791679, because D' value between rs1346787 and rs3791679 was more than 0.8. The most common haplotype was rs1346787 - A and rs3791679- G haplotype, the frequency of which was 0.4905 and 0.4428 in case and control group. Polymorphism in rs603965 within CCND1 gene and rs1346787 within EFEMP1 gene and its gene- gene interaction were associated with increased glioma risk.

  20. Protein annotation from protein interaction networks and Gene Ontology.

    PubMed

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Molecular characterization of Indian rabies virus isolates by partial sequencing of nucleoprotein (N) and phosphoprotein (P) genes.

    PubMed

    Reddy, G B Manjunatha; Singh, R; Singh, R P; Singh, K P; Gupta, P K; Mahadevan, Anita; Desai, Anita; Shankar, S K; Ramakrishnan, M A; Verma, Rishendra

    2011-08-01

    Rabies is endemic and an important zoonosis in India. There are very few reports available on molecular epidemiology of rabies virus of Indian origin. In this study to know the dynamics of rabies virus, a total of 41 rabies positive brain samples from dogs, cats, domestic animals, wildlife, and humans from 11 states were subjected to RT-PCR amplification of N gene between nucleotide N521-N1262 (742 bp) and P gene between nucleotide P239-P750 (512 bp). The N gene could be amplified from 30, while P gene from 41 samples, using specific sets of primers. The N gene-based phylogenetic analysis indicated that all Indian virus isolates are genetically closely related with a single cluster under arctic/arctic-like viruses. However, two distinct clusters were realized in P gene-based phylogeny viz., Rabies virus isolates of Punjab and Rabies virus isolates of remaining parts of India (other than Punjab). All the Indian rabies virus isolates were closely related to geography (>95% homology), but not to host species.

  2. Gene-Environment Interaction in Parkinson's Disease: Coffee, ADORA2A, and CYP1A2.

    PubMed

    Chuang, Yu-Hsuan; Lill, Christina M; Lee, Pei-Chen; Hansen, Johnni; Lassen, Christina F; Bertram, Lars; Greene, Naomi; Sinsheimer, Janet S; Ritz, Beate

    2016-01-01

    Drinking caffeinated coffee has been reported to provide protection against Parkinson's disease (PD). Caffeine is an adenosine A2A receptor (encoded by the gene ADORA2A) antagonist that increases dopaminergic neurotransmission and Cytochrome P450 1A2 (gene: CYP1A2) metabolizes caffeine; thus, gene polymorphisms in ADORA2A and CYP1A2 may influence the effect coffee consumption has on PD risk. In a population-based case-control study (PASIDA) in Denmark (1,556 PD patients and 1,606 birth year- and gender-matched controls), we assessed interactions between lifetime coffee consumption and 3 polymorphisms in ADORA2A and CYP1A2 for all subjects, and incident and prevalent PD cases separately using logistic regression models. We also conducted a meta-analysis combining our results with those from previous studies. We estimated statistically significant interactions for ADORA2A rs5760423 and heavy vs. light coffee consumption in incident (OR interaction = 0.66 [95% CI 0.46-0.94], p = 0.02) but not prevalent PD. We did not observe interactions for CYP1A2 rs762551 and rs2472304 in incident or prevalent PD. In meta-analyses, PD associations with daily coffee consumption were strongest among carriers of variant alleles in both ADORA2A and CYP1A2. We corroborated results from a previous report that described interactions between ADORA2A and CYP1A2 polymorphisms and coffee consumption. Our results also suggest that survivor bias may affect results of studies that enroll prevalent PD cases. © 2017 S. Karger AG, Basel.

  3. Genes, Parenting, Self-Control, and Criminal Behavior.

    PubMed

    Watts, Stephen J; McNulty, Thomas L

    2016-03-01

    Self-control has been found to predict a wide variety of criminal behaviors. In addition, studies have consistently shown that parenting is an important influence on both self-control and offending. However, few studies have examined the role that biological factors may play in moderating the relationship between parenting, self-control, and offending. Using a sample of adolescent males drawn from the National Longitudinal Study of Adolescent Health (N = 3,610), we explore whether variants of the monoamine oxidase A gene (MAOA) and the dopamine transporter (DAT1) gene interact with parenting to affect self-control and offending. Results reveal that parenting interacts with these genes to influence self-control and offending, and that the parenting-by-gene interaction effect on offending is mediated by self-control. The effects of parenting on self-control and offending are most pronounced for those who carry plasticity alleles for both MAOA and DAT1. Thus, MAOA and DAT1 may be implicated in offending because they increase the negative effects of parenting on self-control. Implications for theory are discussed. © The Author(s) 2014.

  4. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  5. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  6. Functional Logistic Regression Approach to Detecting Gene by Longitudinal Environmental Exposure Interaction in a Case-Control Study

    PubMed Central

    Wei, Peng; Tang, Hongwei; Li, Donghui

    2014-01-01

    Most complex human diseases are likely the consequence of the joint actions of genetic and environmental factors. Identification of gene-environment (GxE) interactions not only contributes to a better understanding of the disease mechanisms, but also improves disease risk prediction and targeted intervention. In contrast to the large number of genetic susceptibility loci discovered by genome-wide association studies, there have been very few successes in identifying GxE interactions which may be partly due to limited statistical power and inaccurately measured exposures. While existing statistical methods only consider interactions between genes and static environmental exposures, many environmental/lifestyle factors, such as air pollution and diet, change over time, and cannot be accurately captured at one measurement time point or by simply categorizing into static exposure categories. There is a dearth of statistical methods for detecting gene by time-varying environmental exposure interactions. Here we propose a powerful functional logistic regression (FLR) approach to model the time-varying effect of longitudinal environmental exposure and its interaction with genetic factors on disease risk. Capitalizing on the powerful functional data analysis framework, our proposed FLR model is capable of accommodating longitudinal exposures measured at irregular time points and contaminated by measurement errors, commonly encountered in observational studies. We use extensive simulations to show that the proposed method can control the Type I error and is more powerful than alternative ad hoc methods. We demonstrate the utility of this new method using data from a case-control study of pancreatic cancer to identify the windows of vulnerability of lifetime body mass index on the risk of pancreatic cancer as well as genes which may modify this association. PMID:25219575

  7. Structure and bonding in beta-HMX-characterization of a trans-annular N...N interaction.

    PubMed

    Zhurova, Elizabeth A; Zhurov, Vladimir V; Pinkerton, A Alan

    2007-11-14

    Chemical bonding in the beta-phase of the 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) crystal based on the experimental electron density obtained from X-ray diffraction data at 20 K, and solid state theoretical calculations, has been analyzed in terms of the quantum theory of atoms in molecules. Features of the intra- and intermolecular bond critical points and the oxygen atom lone-pair locations are discussed. An unusual N...N bonding interaction across the 8-membered ring has been discovered and characterized. Hydrogen bonding, O...O and O...C intermolecular interactions are reported. Atomic charges and features of the electrostatic potential are discussed.

  8. GENOME-WIDE GENE-SODIUM INTERACTION ANALYSES ON BLOOD PRESSURE: THE GENSALT STUDY

    PubMed Central

    Li, Changwei; He, Jiang; Chen, Jing; Zhao, Jinying; Gu, Dongfeng; Hixson, James E.; Rao, Dabeeru C.; Jaquish, Cashell E.; Gu, Charles C.; Chen, Jichun; Huang, Jianfeng; Chen, Shufeng; Kelly, Tanika N.

    2016-01-01

    We performed genome-wide analyses to identify genomic loci that interact with sodium to influence blood pressure (BP) using single marker (one and two degree-of-freedom joint tests) and gene-based tests among 1,876 Chinese participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. Among GenSalt participants, the average of three urine samples was used to estimate sodium excretion. Nine BP measurements were taken using a random-zero-sphygmomanometer. A total of 2.05 million SNPs were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P <1.00×10−4) from GenSalt were evaluated for replication among 775 Chinese participants of the Multi-ethnic Study of Atherosclerosis (MESA). SNP and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The one degree-of-freedom tests identified interactions for UST rs13211840 on diastolic BP (P=3.13×10−9). The two degree-of-freedom tests additionally identified associations for CLGN rs2567241 (P=3.90×10−12) and LOC105369882 rs11104632 (P=4.51×10−8) with systolic BP. The CLGN variant rs2567241 was also associated with diastolic BP (P=3.11×10−22) and mean arterial pressure (P= 2.86×10−15). Genome-wide gene-based analysis identified MKNK1 (P=6.70×10−7), C2orf80 (P<1.00×10−12), EPHA6 (P=2.88×10−7), SCOC-AS1 (P=4.35×10−14), SCOC (P=6.46×10−11), CLGN (P=3.68×10−13), MGAT4D (P=4.73×10−11), ARHGAP42 (P=<1.00×10−12), CASP4 (P=1.31×10−8), and LINC01478 (P=6.75×10−10) that were associated with at least one BP phenotype. In summary, we identified 8 novel and 1 previously reported BP loci through the examination of SNP and gene-based interactions with sodium. PMID:27271309

  9. Interactions Between Secondhand Smoke and Genes That Affect Cystic Fibrosis Lung Disease

    PubMed Central

    Collaco, J. Michael; Vanscoy, Lori; Bremer, Lindsay; McDougal, Kathryn; Blackman, Scott M.; Bowers, Amanda; Naughton, Kathleen; Jennings, Jacky; Ellen, Jonathan; Cutting, Garry R.

    2011-01-01

    Context Disease variation can be substantial even in conditions with a single gene etiology such as cystic fibrosis (CF). Simultaneously studying the effects of genes and environment may provide insight into the causes of variation. Objective To determine whether secondhand smoke exposure is associated with lung function and other outcomes in individuals with CF, whether socioeconomic status affects the relationship between secondhand smoke exposure and lung disease severity, and whether specific gene-environment interactions influence the effect of secondhand smoke exposure on lung function. Design, Setting, and Participants Retrospective assessment of lung function, stratified by environmental and genetic factors. Data were collected by the US Cystic Fibrosis Twin and Sibling Study with missing data supplemented by the Cystic Fibrosis Foundation Data Registry. All participants were diagnosed with CF, were recruited between October 2000 and October 2006, and were primarily from the United States. Main Outcome Measures Disease-specific cross-sectional and longitudinal measures of lung function. Results Of 812 participants with data on secondhand smoke in the home, 188 (23.2%) were exposed. Of 780 participants with data on active maternal smoking during gestation, 129 (16.5%) were exposed. Secondhand smoke exposure in the home was associated with significantly lower cross-sectional (9.8 percentile point decrease; P<.001) and longitudinal lung function (6.1 percentile point decrease; P=.007) compared with those not exposed. Regression analysis demonstrated that socioeconomic status did not confound the adverse effect of secondhand smoke exposure on lung function. Interaction between gene variants and secondhand smoke exposure resulted in significant percentile point decreases in lung function, namely in CFTR non-ΔF508 homozygotes (12.8 percentile point decrease; P=.001), TGFβ1-509 TT homozygotes (22.7 percentile point decrease; P=.006), and TGFβ1 codon 10 CC

  10. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    PubMed

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  11. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch.

    PubMed

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-08

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  12. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system.

  13. Diversity and interactions of microbial functional genes under differing environmental conditions: insights from a membrane bioreactor and an oxidation ditch

    PubMed Central

    Xia, Yu; Hu, Man; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong

    2016-01-01

    The effect of environmental conditions on the diversity and interactions of microbial communities has caused tremendous interest in microbial ecology. Here, we found that with identical influents but differing operational parameters (mainly mixed liquor suspended solid (MLSS) concentrations, solid retention time (SRT) and dissolved oxygen (DO) concentrations), two full-scale municipal wastewater treatment systems applying oxidation ditch (OD) and membrane bioreactor (MBR) processes harbored a majority of shared genes (87.2%) but had different overall functional gene structures as revealed by two datasets of 12-day time-series generated by a functional gene array-GeoChip 4.2. Association networks of core carbon, nitrogen and phosphorus cycling genes in each system based on random matrix theory (RMT) showed different topological properties and the MBR nodes showed an indication of higher connectivity. MLSS and DO were shown to be effective in shaping functional gene structures of the systems by statistical analyses. Higher MLSS concentrations resulting in decreased resource availability of the MBR system were thought to promote positive interactions of important functional genes. Together, these findings show the differences of functional potentials of some bioprocesses caused by differing environmental conditions and suggest that higher stress of resource limitation increased positive gene interactions in the MBR system. PMID:26743465

  14. Environmental and gene-environment interactions and risk of rheumatoid arthritis

    PubMed Central

    Karlson, Elizabeth W.; Deane, Kevin

    2012-01-01

    Multiple environmental factors including hormones, dietary factors, infections and exposure to tobacco smoke as well as gene-environment interactions have been associated with increased risk for rheumatoid arthritis (RA). Importantly, the growing understanding of the prolonged period prior to the first onset of symptoms of RA suggests that these environmental and genetic factors are likely acting to drive the development of RA-related autoimmunity long before the appearance of the first joint symptoms and clinical findings that are characteristic of RA. Herein we will review these factors and interactions, especially those that have been investigated in a prospective fashion prior to the symptomatic onset of RA. We will also discuss how these factors may be explored in future study to further the understanding of the pathogenesis of RA, and ultimately perhaps develop preventive measures for this disease. PMID:22819092

  15. Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice

    PubMed Central

    Bi, Yuhai; Xie, Qing; Zhang, Shuang; Li, Yun; Xiao, Haixia; Jin, Tao; Zheng, Weinan; Li, Jing; Jia, Xiaojuan; Sun, Lei; Liu, Jinhua; Qin, Chuan

    2014-01-01

    ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been

  16. Associations between oxytocin receptor gene (OXTR) polymorphisms and self-reported aggressive behavior and anger: Interactions with alcohol consumption.

    PubMed

    Johansson, Ada; Westberg, Lars; Sandnabba, Kenneth; Jern, Patrick; Salo, Benny; Santtila, Pekka

    2012-09-01

    Oxytocin has been implicated in the regulation of social as well as aggressive behaviors, and in a recent study we found that the effect of alcohol on aggressive behavior was moderated by the individual's genotype on an oxytocin receptor gene (OXTR) polymorphism (Johansson et al., 2012). In this study we wanted to deepen and expand the analysis by exploring associations between three (rs1488467, rs4564970, rs1042778) OXTR polymorphisms and aggressive behavior, trait anger as well as anger control in a population-based sample of Finnish men and women (N=3577) aged between 18 and 49 years (M=26.45 years, SD=5.02). A specific aim was to investigate if the polymorphisms would show interactive effects with alcohol consumption on aggressive behavior and trait anger, as well as to explore whether these polymorphisms affect differences in anger control between self-reported sober and intoxicated states. The results showed no main effects of the polymorphisms, however, three interactions between the polymorphisms and alcohol consumption were found. The effect of alcohol consumption on aggressive behavior was moderated by the genotype of the individual on the rs4564970 polymorphism, in line with previous results (Johansson et al., 2012). For trait anger, both the rs1488467 and the rs4564970 polymorphisms interacted with alcohol consumption. It appears that the region of the OXTR gene including both the rs4564970 and the rs1488467 polymorphisms may be involved in the regulation of the relationship between alcohol and aggressive behavior as well as between alcohol and the propensity to react to situations with elevated levels of anger. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects

    PubMed Central

    Marigorta, Urko M.; Gibson, Greg

    2014-01-01

    The switch to a modern lifestyle in recent decades has coincided with a rapid increase in prevalence of obesity and other diseases. These shifts in prevalence could be explained by the release of genetic susceptibility for disease in the form of gene-by-environment (GxE) interactions. Yet, the detection of interaction effects requires large sample sizes, little replication has been reported, and a few studies have demonstrated environmental effects only after summing the risk of GWAS alleles into genetic risk scores (GRSxE). We performed extensive simulations of a quantitative trait controlled by 2500 causal variants to inspect the feasibility to detect gene-by-environment interactions in the context of GWAS. The simulated individuals were assigned either to an ancestral or a modern setting that alters the phenotype by increasing the effect size by 1.05–2-fold at a varying fraction of perturbed SNPs (from 1 to 20%). We report two main results. First, for a wide range of realistic scenarios, highly significant GRSxE is detected despite the absence of individual genotype GxE evidence at the contributing loci. Second, an increase in phenotypic variance after environmental perturbation reduces the power to discover susceptibility variants by GWAS in mixed cohorts with individuals from both ancestral and modern environments. We conclude that a pervasive presence of gene-by-environment effects can remain hidden even though it contributes to the genetic architecture of complex traits. PMID:25101110

  18. CaSPIAN: A Causal Compressive Sensing Algorithm for Discovering Directed Interactions in Gene Networks

    PubMed Central

    Emad, Amin; Milenkovic, Olgica

    2014-01-01

    We introduce a novel algorithm for inference of causal gene interactions, termed CaSPIAN (Causal Subspace Pursuit for Inference and Analysis of Networks), which is based on coupling compressive sensing and Granger causality techniques. The core of the approach is to discover sparse linear dependencies between shifted time series of gene expressions using a sequential list-version of the subspace pursuit reconstruction algorithm and to estimate the direction of gene interactions via Granger-type elimination. The method is conceptually simple and computationally efficient, and it allows for dealing with noisy measurements. Its performance as a stand-alone platform without biological side-information was tested on simulated networks, on the synthetic IRMA network in Saccharomyces cerevisiae, and on data pertaining to the human HeLa cell network and the SOS network in E. coli. The results produced by CaSPIAN are compared to the results of several related algorithms, demonstrating significant improvements in inference accuracy of documented interactions. These findings highlight the importance of Granger causality techniques for reducing the number of false-positives, as well as the influence of noise and sampling period on the accuracy of the estimates. In addition, the performance of the method was tested in conjunction with biological side information of the form of sparse “scaffold networks”, to which new edges were added using available RNA-seq or microarray data. These biological priors aid in increasing the sensitivity and precision of the algorithm in the small sample regime. PMID:24622336

  19. Developmental programming: interaction between prenatal BPA and postnatal overfeeding on cardiac tissue gene expression in female sheep

    PubMed Central

    Koneva, LA; Vyas, AK; McEachin, RC; Puttabyatappa, M; H-S, Wang; Sartor, MA; Padmanabhan, V

    2017-01-01

    Epidemiologic studies and studies in rodents point to potential risks from developmental exposure to BPA on cardiometabolic diseases. Furthermore, it is becoming increasingly evident that the manifestation and severity of adverse outcomes is the result of interaction between developmental insults and the prevailing environment. Consistent with this premise, recent studies in sheep found prenatal BPA treatment prevented the adverse effects of postnatal obesity in inducing hypertension. The gene networks underlying these complex interactions are not known. mRNA-seq of myocardium was performed on four groups of four female sheep to assess the effects of prenatal BPA exposure, postnatal overfeeding and their interaction on gene transcription, pathway perturbations and functional effects. The effects of prenatal exposure to BPA, postnatal overfeeding, and prenatal BPA with postnatal overfeeding all resulted in transcriptional changes (85–141 significant differentially expressed genes). Although the effects of prenatal BPA and postnatal overfeeding did not involve dysregulation of many of the same genes, they affected a remarkably similar set of biological pathways. Furthermore, an additive or synergistic effect was not found in the combined treatment group, but rather prenatal BPA treatment led to a partial reversal of the effects of overfeeding alone. Many genes previously known to be affected by BPA and involved in obesity, hypertension, or heart disease were altered following these treatments, and AP-1, EGR1, and EGFR were key hubs affected by BPA and/or overfeeding. PMID:28079927

  20. Diet and gene interactions influence the skeletal response to polyunsaturated fatty acids

    PubMed Central

    Bonnet, Nicolas; Somm, Emmanuel; Rosen, Clifford J

    2014-01-01

    Diets rich in omega-3s have been thought to prevent both obesity and osteoporosis. However, conflicting findings are reported, probably as a result of gene by nutritional interactions. Peroxisome proliferator-activated receptor-gamma (PPARγ), is a nuclear receptor that improves insulin sensitivity but causes weight gain and bone loss. Fish oil is a natural agonist for PPARγ and thus may exert its actions through PPARγ pathway. We examined the role of PPARγ in body composition changes induced by a fish or safflower oil diet using two strains of C57BL6J (B6); i.e. B6.C3H-6T (6T) congenic mice created by backcrossing a small locus on Chr 6 from C3H carrying ‘gain of function’ polymorphisms in the Pparγ gene onto a B6 background, and C57BL6J mice. After 9 months of feeding both diets to female mice, body weight, percent fat and leptin levels were less in mice fed the fish oil vs those fed safflower oil, independent of genotype. At the skeletal level, fish oil preserved vertebral bone mineral density (BMD) and microstructure in B6 but not in 6T mice. Moreover, fish oil consumption was associated with an increase in bone marrow adiposity and a decrease in BMD, cortical thickness, ultimate force and plastic energy in femur of the 6T but not B6 mice. These effects paralleled an increase in adipogenic inflammatory and resorption markers in 6T but not B6. Thus, compared to safflower oil, fish oil (high ratio omega-3/-6) prevents weight gain, bone loss, and changes in trabecular microarchitecture in the spine with age. These beneficial effects are absent in mice with polymorphisms in the Pparγ gene (6T), supporting the tenet that the actions of n-3 fatty acids on bone microstructure are likely to be genotype dependent. Thus caution must be used in interpreting dietary intervention trials with skeletal endpoints in mice and in humans. PMID:25088402

  1. Interactions of 2.1 GeV/n He-4, C-12, N-14 and O-16 nuclei in emulsion

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.; Greiner, D. E.; Lindstrom, P. J.; Shwe, H.

    1975-01-01

    The interaction mean-free-path lengths for He-4, C-12, N-14 and O-16 nuclei at 2.1 GeV/n have been measured in nuclear emulsion detectors. The angular distributions of Z equals 1 and 2 secondaries from the interactions of C, N and O beams are determined, and the topology of projectile fragmentation of these ions is examined.

  2. The FOXO1 Gene-Obesity Interaction Increases the Risk of Type 2 Diabetes Mellitus in a Chinese Han Population.

    PubMed

    Gong, Lilin; Li, Rong; Ren, Wei; Wang, Zengchan; Wang, Zhihong; Yang, Maosheng; Zhang, Suhua

    2017-02-01

    Here, we aimed to study the effect of the forkhead box O1-insulin receptor substrate 2 (FOXO1-IRS2) gene interaction and the FOXO1 and IRS2 genes-environment interaction for the risk of type 2 diabetes mellitus (T2DM) in a Chinese Han population. We genotyped 7 polymorphism sites of FOXO1 gene and IRS2 gene in 780 unrelated Chinese Han people (474 cases of T2DM, 306 cases of healthy control). The risk of T2DM in individuals with AA genotype for rs7986407 and CC genotype for rs4581585 in FOXO1 gene was 2.092 and 2.57 times higher than that with GG genotype (odds ratio [OR] = 2.092; 95% confidence interval [CI] = 1.178-3.731; P = 0.011) and TT genotype (OR = 2.571; 95% CI = 1.404-4.695; P = 0.002), respectively. The risk of T2DM in individuals with GG genotype for Gly1057Asp in IRS2 gene was 1.42 times higher than that with AA genotype (OR = 1.422; 95% CI = 1.037-1.949; P = 0.029). The other 4 single nucleotide polymorphisms (SNPs) had no significant association with T2DM (P > 0.05). Multifactor dimensionality reduction (MDR) analysis showed that the interaction between SNPs rs7986407 and rs4325426 in FOXO1 gene and waist was the best model confirmed by interaction analysis, closely associating with T2DM. There was an increased risk for T2DM in the case of non-obesity with genotype combined AA/CC, AA/AC or AG/AA for rs7986407 and rs4325426, and obesity with genotype AA for rs7986407 or AA for rs4325426 (OR = 3.976; 95% CI = 1.156-13.675; P value from sign test [P(sign)] = 0.025; P value from permutation test [P(perm)] = 0.000-0.001). Together, this study indicates an association of FOXO1 and IRS2 gene polymorphisms with T2DM in Chinese Han population, supporting FOXO1-obesity interaction as a key factor for the risk of T2DM.

  3. DEIVA: a web application for interactive visual analysis of differential gene expression profiles.

    PubMed

    Harshbarger, Jayson; Kratz, Anton; Carninci, Piero

    2017-01-07

    Differential gene expression (DGE) analysis is a technique to identify statistically significant differences in RNA abundance for genes or arbitrary features between different biological states. The result of a DGE test is typically further analyzed using statistical software, spreadsheets or custom ad hoc algorithms. We identified a need for a web-based system to share DGE statistical test results, and locate and identify genes in DGE statistical test results with a very low barrier of entry. We have developed DEIVA, a free and open source, browser-based single page application (SPA) with a strong emphasis on being user friendly that enables locating and identifying single or multiple genes in an immediate, interactive, and intuitive manner. By design, DEIVA scales with very large numbers of users and datasets. Compared to existing software, DEIVA offers a unique combination of design decisions that enable inspection and analysis of DGE statistical test results with an emphasis on ease of use.

  4. No association between apolipoprotein E or N-acetyltransferase 2 gene polymorphisms and age-related hearing loss.

    PubMed

    Dawes, Piers; Platt, Hazel; Horan, Michael; Ollier, William; Munro, Kevin; Pendleton, Neil; Payton, Antony

    2015-01-01

    Age-related hearing loss has a genetic component, but there have been limited genetic studies in this field. Both N-acetyltransferase 2 and apolipoprotein E genes have previously been associated. However, these studies have either used small sample sizes, examined a limited number of polymorphisms, or have produced conflicting results. Here we use a haplotype tagging approach to determine association with age-related hearing loss and investigate epistasis between these two genes. Candidate gene association study of a continuous phenotype. We investigated haplotype tagging single nucleotide polymorphisms in the N-acetyltransferase 2 gene and the presence/absence of the apolipoprotein E ε4 allele for association with age-related hearing loss in a cohort of 265 Caucasian elderly volunteers from Greater Manchester, United Kingdom. Hearing phenotypes were generated using principal component analysis of the hearing threshold levels for the better ear (severity, slope, and concavity). Genotype data for the N-acetyltransferase 2 gene was obtained from existing genome-wide association study data from the Illumina 610-Quadv1 chip. Apolipoprotein E genotyping was performed using Sequenom technology. Linear regression analysis was performed using Plink and Stata software. No significant associations (P value, > 0.05) were observed between the N-acetyltransferase 2 or apolipoprotein E gene polymorphisms and any hearing factor. No significant association was observed for epistasis analysis of apolipoprotein E ε4 and the N-acetyltransferase 2 single nucleotide polymorphism rs1799930 (NAT2*6A). We found no evidence to support that either N-acetyltransferase 2 or apolipoprotein E gene polymorphisms are associated with age-related hearing loss in a cohort of 265 elderly volunteers. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Microarray-based gene expression analysis of strong seed dormancy in rice cv. N22 and less dormant mutant derivatives.

    PubMed

    Wu, Tao; Yang, Chunyan; Ding, Baoxu; Feng, Zhiming; Wang, Qian; He, Jun; Tong, Jianhua; Xiao, Langtao; Jiang, Ling; Wan, Jianmin

    2016-02-01

    Seed dormancy in rice is an important trait related to the pre-harvest sprouting resistance. In order to understand the molecular mechanisms of seed dormancy, gene expression was investigated by transcriptome analysis using seeds of the strongly dormant cultivar N22 and its less dormant mutants Q4359 and Q4646 at 24 days after heading (DAH). Microarray data revealed more differentially expressed genes in Q4359 than in Q4646 compared to N22. Most genes differing between Q4646 and N22 also differed between Q4359 and N22. GO analysis of genes differentially expressed in both Q4359 and Q4646 revealed that some genes such as those for starch biosynthesis were repressed, whereas metabolic genes such as those for carbohydrate metabolism were enhanced in Q4359 and Q4646 seeds relative to N22. Expression of some genes involved in cell redox homeostasis and chromatin remodeling differed significantly only between Q4359 and N22. The results suggested a close correlation between cell redox homeostasis, chromatin remodeling and seed dormancy. In addition, some genes involved in ABA signaling were down-regulated, and several genes involved in GA biosynthesis and signaling were up-regulated. These observations suggest that reduced seed dormancy in Q4359 was regulated by ABA-GA antagonism. A few differentially expressed genes were located in the regions containing qSdn-1 and qSdn-5 suggesting that they could be candidate genes underlying seed dormancy. Our work provides useful leads to further determine the underling mechanisms of seed dormancy and for cloning seed dormancy genes from N22. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Unlike type 2 diabetes, type 1 does not interact with the codon 54 polymorphism of the fatty acid binding protein 2 gene.

    PubMed

    Georgopoulos, Angeliki; Aras, Omer; Noutsou, Marina; Tsai, Michael Y

    2002-08-01

    In type 2 diabetes, the threonine (Thr) for alanine (Ala) codon 54 polymorphism of the fatty acid binding protein 2 gene is associated with elevated fasting and postprandial triglycerides and dyslipidemia when compared with the wild type (Ala-54/Ala-54). To assess whether this is the case in patients with type 1 diabetes, who usually do not manifest the metabolic syndrome, we screened 181 patients with similar glycemic control as the type 2 patients. Thirty percent were heterozygous, and 9% were homozygous for the polymorphism. Mean (+/-SEM) fasting plasma triglyceride levels in patients with the wild type (n = 84), those heterozygous for Ala-54/Thr-54 (n = 44), and those homozygous for the Thr-54 (n = 13) were 1.0 +/- 0.07, 1.1 +/- 0.17, and 1.2 +/- 0.23 mmol/liter, respectively. In addition, there were no differences in total, low-density lipoprotein, high-density lipoprotein, and non-high density lipoprotein cholesterol among the three groups. After a fat load, the postprandial area under the curve of triglyceride in plasma, chylomicrons, and very low-density lipoprotein were similar between the wild type (n = 18) and the Thr-54 homozygotes (n = 12). In conclusion, in contrast to type 2, type 1 diabetes does not interact with the codon 54 polymorphism of the fatty acid binding protein 2 gene to cause hypertriglyceridemia/dyslipidemia. Insulin resistance could account possibly for this difference.

  7. Gene-Environment Interactions across Development: Exploring DRD2 Genotype and Prenatal Smoking Effects on Self-Regulation

    ERIC Educational Resources Information Center

    Wiebe, Sandra A.; Espy, Kimberly Andrews; Stopp, Christian; Respass, Jennifer; Stewart, Peter; Jameson, Travis R.; Gilbert, David G.; Huggenvik, Jodi I.

    2009-01-01

    Genetic factors dynamically interact with both pre- and postnatal environmental influences to shape development. Considerable attention has been devoted to gene-environment interactions (G x E) on important outcomes (A. Caspi & T. E. Moffitt, 2006). It is also important to consider the possibility that these G x E effects may vary across…

  8. Associations and interactions between SNPs in the alcohol metabolizing genes and alcoholism phenotypes in European Americans.

    PubMed

    Sherva, Richard; Rice, John P; Neuman, Rosalind J; Rochberg, Nanette; Saccone, Nancy L; Bierut, Laura J

    2009-05-01

    Alcohol dependence is a major cause of morbidity and mortality worldwide and has a strong familial component. Several linkage and association studies have identified chromosomal regions and/or genes that affect alcohol consumption, notably in genes involved in the 2-stage pathway of alcohol metabolism. Here, we use multiple regression models to test for associations and interactions between 2 alcohol-related phenotypes and SNPs in 17 genes involved in alcohol metabolism in a sample of 1,588 European American subjects. The strongest evidence for association after correcting for multiple testing was between rs1229984, a nonsynonymous coding SNP in ADH1B, and DSM-IV symptom count (p = 0.0003). This SNP was also associated with maximum number of drinks in 24 hours (p = 0.0004). Each minor allele at this SNP predicts 45% fewer DSM-IV symptoms and 18% fewer max drinks. Another SNP in a splice site in ALDH1A1 (rs8187974) showed evidence for association with both phenotypes as well (p = 0.02 and 0.004, respectively), but neither association was significant after accounting for multiple testing. Minor alleles at this SNP predict greater alcohol consumption. In addition, pairwise interactions were observed between SNPs in several genes (p = 0.00002). We replicated the large effect of rs1229984 on alcohol behavior, and although not common (MAF = 4%), this polymorphism may be highly relevant from a public health perspective in European Americans. Another SNP, rs8187974, may also affect alcohol behavior but requires replication. Also, interactions between polymorphisms in genes involved in alcohol metabolism are likely determinants of the parameters that ultimately affect alcohol consumption.

  9. The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder: an explorative study.

    PubMed

    Lekman, Magnus; Hössjer, Ola; Andrews, Peter; Källberg, Henrik; Uvehag, Daniel; Charney, Dennis; Manji, Husseini; Rush, John A; McMahon, Francis J; Moore, Jason H; Kockum, Ingrid

    2014-01-01

    Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from β3) value = 4.99) the area under the curve (AUC) estimates were low (< 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (< 0.15). We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously

  10. Improving the Force Field Description of Tyrosine-Choline Cation-π Interactions: QM Investigation of Phenol-N(Me)4+ Interactions.

    PubMed

    Khan, Hanif M; Grauffel, Cédric; Broer, Ria; MacKerell, Alexander D; Havenith, Remco W A; Reuter, Nathalie

    2016-11-08

    Cation-π interactions between tyrosine amino acids and compounds containing N,N,N-trimethylethanolammonium (N(CH 3 ) 3 ) are involved in the recognition of histone tails by chromodomains and in the recognition of phosphatidylcholine (PC) phospholipids by membrane-binding proteins. Yet, the lack of explicit polarization or charge transfer effects in molecular mechanics force fields raises questions about the reliability of the representation of these interactions in biomolecular simulations. Here, we investigate the nature of phenol-tetramethylammonium (TMA) interactions using quantum mechanical (QM) calculations, which we also use to evaluate the accuracy of the additive CHARMM36 and Drude polarizable force fields in modeling tyrosine-choline interactions. We show that the potential energy surface (PES) obtained using SAPT2+/aug-cc-pVDZ compares well with the large basis-set CCSD(T) PES when TMA approaches the phenol ring perpendicularly. Furthermore, the SAPT energy decomposition reveals comparable contributions from electrostatics and dispersion in phenol-TMA interactions. We then compared the SAPT2+/aug-cc-pVDZ PES obtained along various approach directions to the corresponding PES obtained with CHARMM, and we show that the force field accurately reproduces the minimum distances while the interaction energies are underestimated. The use of the Drude polarizable force field significantly improves the interaction energies but decreases the agreement on distances at energy minima. The best agreement between force field and QM PES is obtained by modifying the Lennard-Jones terms for atom pairs involved in the phenol-TMA cation-π interactions. This is further shown to improve the correlation between the occupancy of tyrosine-choline cation-π interactions obtained from molecular dynamics simulations of a bilayer-bound bacterial phospholipase and experimental affinity data of the wild-type protein and selected mutants.

  11. Nutrient-gene interactions determine mitochondrial function: effect of dietary fat.

    PubMed

    Kim, M J; Berdanier, C D

    1998-02-01

    The effect on mitochondrial respiration of feeding hydrogenated coconut oil, corn oil, or menhaden oil (MO) to diabetes-prone BHE/cdb rats and normal Sprague Dawley (SD) rats was studied. Both fat source and strain affected the temperature dependence of succinate-supported respiration. The transition temperature was greater in BHE/cdb rats than in the SD rats. The efficiency of ATP synthesis as reflected by the ADP:O ratio was decreased in the BHE/cdb rats compared to SD rats, with the exception of the comparison made at 37 degrees C with the MO-fed rats; at this temperature, the ADP:O ratios were similar. The diet and strain differences suggest a dietary lipid-gene interaction with respect to the mobility of subunit 6 of the F1F0ATPase. This subunit has two errors in its gene: one that affects the proton channel and another that likely affects its mobility within the inner mitochondrial membrane.

  12. Exploring gene-culture interactions: insights from handedness, sexual selection and niche-construction case studies.

    PubMed

    Laland, Kevin N

    2008-11-12

    Genes and culture represent two streams of inheritance that for millions of years have flowed down the generations and interacted. Genetic propensities, expressed throughout development, influence what cultural organisms learn. Culturally transmitted information, expressed in behaviour and artefacts, spreads through populations, modifying selection acting back on populations. Drawing on three case studies, I will illustrate how this gene-culture coevolution has played a critical role in human evolution. These studies explore (i) the evolution of handedness, (ii) sexual selection with a culturally transmitted mating preference, and (iii) cultural niche construction and human evolution. These analyses shed light on how genes and culture shape each other, and on the significance of feedback mechanisms between biological and cultural processes.

  13. Arsenic-gene interactions and beta-cell function in the Strong Heart Family Study.

    PubMed

    Balakrishnan, Poojitha; Navas-Acien, Ana; Haack, Karin; Vaidya, Dhananjay; Umans, Jason G; Best, Lyle G; Goessler, Walter; Francesconi, Kevin A; Franceschini, Nora; North, Kari E; Cole, Shelley A; Voruganti, V Saroja; Gribble, Matthew O

    2018-06-01

    We explored arsenic-gene interactions influencing pancreatic beta-cell activity in the Strong Heart Family Study (SHFS). We considered 42 variants selected for associations with either beta-cell function (31 variants) or arsenic metabolism (11 variants) in the SHFS. Beta-cell function was calculated as homeostatic model - beta corrected for insulin resistance (cHOMA-B) by regressing homeostatic model - insulin resistance (HOMA-IR) on HOMA-B and adding mean HOMA-B. Arsenic exposure was dichotomized at the median of the sum of creatinine-corrected inorganic and organic arsenic species measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). Additive GxE models for cHOMA-B were adjusted for age and ancestry, and accounted for family relationships. Models were stratified by center (Arizona, Oklahoma, North Dakota and South Dakota) and meta-analyzed. The two interactions between higher vs. lower arsenic and SNPs for cHOMA-B that were nominally significant at P < 0.05 were with rs10738708 (SNP overall effect -3.91, P = 0.56; interaction effect with arsenic -31.14, P = 0.02) and rs4607517 (SNP overall effect +16.61, P = 0.03; interaction effect with arsenic +27.02, P = 0.03). The corresponding genes GCK and TUSC1 suggest oxidative stress and apoptosis as possible mechanisms for arsenic impacts on beta-cell function. No interactions were Bonferroni-significant (1.16 × 10 -3 ). Our findings are suggestive of oligogenic moderation of arsenic impacts on pancreatic β-cell endocrine function, but were not Bonferroni-significant. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Functional logistic regression approach to detecting gene by longitudinal environmental exposure interaction in a case-control study.

    PubMed

    Wei, Peng; Tang, Hongwei; Li, Donghui

    2014-11-01

    Most complex human diseases are likely the consequence of the joint actions of genetic and environmental factors. Identification of gene-environment (G × E) interactions not only contributes to a better understanding of the disease mechanisms, but also improves disease risk prediction and targeted intervention. In contrast to the large number of genetic susceptibility loci discovered by genome-wide association studies, there have been very few successes in identifying G × E interactions, which may be partly due to limited statistical power and inaccurately measured exposures. Although existing statistical methods only consider interactions between genes and static environmental exposures, many environmental/lifestyle factors, such as air pollution and diet, change over time, and cannot be accurately captured at one measurement time point or by simply categorizing into static exposure categories. There is a dearth of statistical methods for detecting gene by time-varying environmental exposure interactions. Here, we propose a powerful functional logistic regression (FLR) approach to model the time-varying effect of longitudinal environmental exposure and its interaction with genetic factors on disease risk. Capitalizing on the powerful functional data analysis framework, our proposed FLR model is capable of accommodating longitudinal exposures measured at irregular time points and contaminated by measurement errors, commonly encountered in observational studies. We use extensive simulations to show that the proposed method can control the Type I error and is more powerful than alternative ad hoc methods. We demonstrate the utility of this new method using data from a case-control study of pancreatic cancer to identify the windows of vulnerability of lifetime body mass index on the risk of pancreatic cancer as well as genes that may modify this association. © 2014 Wiley Periodicals, Inc.

  15. RNA-seq reveals differentially expressed genes of rice (Oryza sativa) spikelet in response to temperature interacting with nitrogen at meiosis stage.

    PubMed

    Yang, Jun; Chen, Xiaorong; Zhu, Changlan; Peng, Xiaosong; He, Xiaopeng; Fu, Junru; Ouyang, Linjuan; Bian, Jianmin; Hu, Lifang; Sun, Xiaotang; Xu, Jie; He, Haohua

    2015-11-17

    Rice (Oryza sativa) is one of the most important cereal crops, providing food for more than half of the world's population. However, grain yields are challenged by various abiotic stresses such as drought, fertilizer, heat, and their interaction. Rice at reproductive stage is much more sensitive to environmental temperatures, and little is known about molecular mechanisms of rice spikelet in response to high temperature interacting with nitrogen (N). Here we reported the transcriptional profiling analysis of rice spikelet at meiosis stage using RNA sequencing (RNA-seq) as an attempt to gain insights into molecular events associated with temperature and nitrogen. This study received four treatments: 1) NN: normal nitrogen level (165 kg ha(-1)) with natural temperature (30 °C); 2) HH: high nitrogen level (330 kg ha(-1)) with high temperature (37 °C); 3) NH: normal nitrogen level and high temperature; and 4) HN: high nitrogen level and natural temperature, respectively. The de novo assembly generated 52,553,536 clean reads aligned with 72,667 unigenes. About 10 M reads were identified from each treatment. In these differentially expressed genes (DEGs), we found 151 and 323 temperature-responsive DEGs in NN-vs-NH and HN-vs-HH, and 114 DEGs were co-expressed. Meanwhile, 203 and 144 nitrogen-responsive DEGs were focused in NN-vs-HN and NH-vs-HH, and 111 DEGs were co-expressed. The temperature-responsive genes were principally associated with calcium-dependent protein, cytochrome, flavonoid, heat shock protein, peroxidase, ubiquitin, and transcription factor while the nitrogen-responsive genes were mainly involved in glutamine synthetase, transcription factor, anthocyanin, amino acid transporter, leucine zipper protein, and hormone. It is noted that, rice spikelet fertility was significantly decreased under high temperature, but it was more reduced under higher nitrogen. Accordingly, numerous spikelet genes involved in pollen development, pollen tube growth, pollen

  16. Redox control of protein-DNA interactions: from molecular mechanisms to significance in signal transduction, gene expression, and DNA replication.

    PubMed

    Shlomai, Joseph

    2010-11-01

    Protein-DNA interactions play a key role in the regulation of major cellular metabolic pathways, including gene expression, genome replication, and genomic stability. They are mediated through the interactions of regulatory proteins with their specific DNA-binding sites at promoters, enhancers, and replication origins in the genome. Redox signaling regulates these protein-DNA interactions using reactive oxygen species and reactive nitrogen species that interact with cysteine residues at target proteins and their regulators. This review describes the redox-mediated regulation of several master regulators of gene expression that control the induction and suppression of hundreds of genes in the genome, regulating multiple metabolic pathways, which are involved in cell growth, development, differentiation, and survival, as well as in the function of the immune system and cellular response to intracellular and extracellular stimuli. It also discusses the role of redox signaling in protein-DNA interactions that regulate DNA replication. Specificity of redox regulation is discussed, as well as the mechanisms providing several levels of redox-mediated regulation, from direct control of DNA-binding domains through the indirect control, mediated by release of negative regulators, regulation of redox-sensitive protein kinases, intracellular trafficking, and chromatin remodeling.

  17. Moderate effects of apple juice consumption on obesity-related markers in obese men: impact of diet-gene interaction on body fat content.

    PubMed

    Barth, Stephan W; Koch, Tatiana C L; Watzl, Bernhard; Dietrich, Helmut; Will, Frank; Bub, Achim

    2012-10-01

    The effect of polyphenol-rich cloudy apple juice (CloA) consumption on plasma parameters related to the obesity phenotype and potential effects of interactions between CloA and allelic variants in obesity candidate genes were assessed in obese men. In this controlled, randomized, and parallel study, n = 68, non-smoking, non-diabetic men with a BMI ≥27 kg/m(2) received 750 mL/day CloA (802.5 mg polyphenols) or 750 mL/day control beverage (CB, isocaloric equivalent to CloA) for 4 weeks. Further, study participants were genotyped for single-nucleotide polymorphisms in PPARγ (rs1801282), UCP3 (rs1800849), IL-6 (rs1800795), FABP2 (rs1799883), INSIG2 (rs7566605), and PGC1 (rs8192678) genes. At the beginning and at the end of intervention plasma lipids, distinct adipokines and cytokines as well as anthropometric parameters were determined. CloA compared to CB had no significant effect on plasma lipids, plasma adipokine and cytokine levels, BMI, and waist circumference. However, CloA consumption significantly reduced percent body fat compared to CB (∆ % body fat: CloA: -1.0 ± 1.3 vs. CB: -0.2 ± 0.9, p < 0.05). The IL-6-174 G/C polymorphism showed an interaction with body fat reduction induced by CloA. Solely in C/C, but not in G/C or G/G variants, a significant reduction in body fat after 4 weeks of CloA intervention was detectable. The observed diet-gene interaction might be a first indication for the impact of individual genetic background on CloA-mediated bioactivity on obesity-associated comorbidities.

  18. Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression

    PubMed Central

    Tsang, Jennifer; Smith, Todd G.; Pereira, Lara E.

    2013-01-01

    Flagellar biogenesis in the gastric pathogen Helicobacter pylori involves a transcriptional hierarchy that utilizes all three sigma factors found in this bacterium (RpoD, RpoN and FliA). Transcription of the RpoN-dependent genes requires the sensor kinase FlgS and response regulator FlgR. It is thought that FlgS senses some cellular cue to regulate transcription of the RpoN-dependent flagellar genes, but this signal has yet to be identified. Previous studies showed that transcription of the RpoN-dependent genes is inhibited by mutations in flhA, which encodes a membrane-bound component of the flagellar protein export apparatus. We found that depending on the H. pylori strain used, insertion mutations in flhA had different effects on expression of RpoN-dependent genes. Mutations in flhA in H. pylori strains B128 and ATCC 43504 (the type strain) were generated by inserting a chloramphenicol resistance cassette so as to effectively eliminate expression of the gene (ΔflhA), or within the gene following codon 77 (designated flhA77) or codon 454 (designated flhA454), which could allow expression of truncated FlhA proteins. All three flhA mutations severely inhibited transcription of the RpoN-dependent genes flaB and flgE in H. pylori B128. In contrast, levels of flaB and flgE transcripts in H. pylori ATCC 43504 bearing either flhA77 or flhA454, but not ΔflhA, were ~60 % of wild-type levels. The FlhA454 variant was detected in membrane fractions prepared from H. pylori ATCC 43504 but not H. pylori B128, which may account for the phenotypic differences in the flhA mutations of the two strains. Taken together, these findings suggest that only the N-terminal region of FlhA is needed for transcription of the RpoN regulon. Interestingly, expression of an flaB′-′xylE reporter gene in H. pylori ATCC 43504 bearing the flhA77 allele was about eightfold higher than that of a strain with the wild-type allele, suggesting that expression of flaB is not only regulated at the

  19. Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene.

    PubMed

    Tan-Wong, Sue Mei; French, Juliet D; Proudfoot, Nicholas J; Brown, Melissa A

    2008-04-01

    The 85-kb breast cancer-associated gene BRCA1 is an established tumor suppressor gene, but its regulation is poorly understood. We demonstrate by gene conformation analysis in both human cell lines and mouse mammary tissue that gene loops are imposed on BRCA1 between the promoter, introns, and terminator region. Significantly, association between the BRCA1 promoter and terminator regions change upon estrogen stimulation and during lactational development. Loop formation is transcription-dependent, suggesting that transcriptional elongation plays an active role in BRCA1 loop formation. We show that the BRCA1 terminator region can suppress estrogen-induced transcription and so may regulate BRCA1 expression. Significantly, BRCA1 promoter and terminator interactions vary in different breast cancer cell lines, indicating that defects in BRCA1 chromatin structure may contribute to dysregulated expression of BRCA1 seen in breast tumors.

  20. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes.

    PubMed

    Nguyen, Khoa; Garcia, Alvaro; Sani, Marc-Antoine; Diaz, Dil; Dubey, Vikas; Clayton, Daniel; Dal Poggetto, Giovanni; Cornelius, Flemming; Payne, Richard J; Separovic, Frances; Khandelia, Himanshu; Clarke, Ronald J

    2018-06-01

    The Na + ,K + -ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na + and K + electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31 P and 2 H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations. Copyright © 2018 Elsevier B.V. All rights reserved.