Sample records for n-terminal amine group

  1. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    PubMed

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  2. Amine terminated bisaspartimide polymer

    NASA Technical Reports Server (NTRS)

    Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)

    1986-01-01

    Novel amine terminated bisaspartimides are prepared by a Michael-type reaction of an aromatic bismalteimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers cross-lined through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures, e.g., as lightweight laminates with graphite cloth, molding material prepregs, adhesives and insulating material.

  3. Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups

    NASA Astrophysics Data System (ADS)

    Bilić, Ante; Sanvito, Stefano

    2012-09-01

    Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction.

  4. Geometry dependence of electron donating or accepting abilities of amine groups in 4,4‧-disulfanediylbis(methylene)dithiazol-2-amine: Pyramidal versus planar

    NASA Astrophysics Data System (ADS)

    Karabıyık, Hasan; Kırılmış, Cumhur; Karabıyık, Hande

    2017-08-01

    The molecular and crystal structure of the title compound in which two thiazole-2-amine rings are linked to each other by disulfide bridge (sbnd Csbnd Ssbnd Ssbnd Csbnd) were studied by single-crystal X-ray diffraction, FT-IR, NMR spectroscopy, quantum chemical calculations and topological analyses on the electron density. A novel synthesis route for the compounds having symmetrical disulfide bridge is reported. The most important result regarding the compound is about electron donating or accepting properties of the terminal amine groups. Planar amine group acts as an electron-donating group, while pyramidal amine behaves as electron-accepting group. This inference was confirmed by scrutiny of crystallographic geometry and quantum chemical studies. To ascertain underlying reasons for this fact, intermolecular interactions (Nsbnd H⋯N type H-bonds and Csbnd H···π interactions) were studied. These interactions involving aromatic thiazole rings are verified by topological electron density and Hirshfeld surface analyses. Intermolecular interactions do not have an effect on the differentiation in electron donating or accepting ability of amine groups, because both amine groups are involved in Nsbnd H⋯N type H-bonds. In methodological sense, it has been understood that Ehrenfest forces acting on electron density are useful theoretical probe to analyze intra-molecular charge transfer processes.

  5. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    PubMed

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  6. Functional-Group-Tolerant, Silver-Catalyzed N-N Bond Formation by Nitrene Transfer to Amines.

    PubMed

    Maestre, Lourdes; Dorel, Ruth; Pablo, Óscar; Escofet, Imma; Sameera, W M C; Álvarez, Eleuterio; Maseras, Feliu; Díaz-Requejo, M Mar; Echavarren, Antonio M; Pérez, Pedro J

    2017-02-15

    Silver(I) promotes the highly chemoselective N-amidation of tertiary amines under catalytic conditions to form aminimides by nitrene transfer from PhI═NTs. Remarkably, this transformation proceeds in a selective manner in the presence of olefins and other functional groups without formation of the commonly observed aziridines or C-H insertion products. The methodology can be applied not only to rather simple tertiary amines but also to complex natural molecules such as brucine or quinine, where the products derived from N-N bond formation were exclusively formed. Theoretical mechanistic studies have shown that this selective N-amidation reaction proceeds through triplet silver nitrenes.

  7. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    PubMed Central

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  8. Several novel N-donor tridentate ligands formed in chemical studies of new fac-Re(CO)3 complexes relevant to fac-99mTc(CO)3 radiopharmaceuticals: attack of a terminal amine on coordinated acetonitrile.

    PubMed

    Perera, Theshini; Marzilli, Patricia A; Fronczek, Frank R; Marzilli, Luigi G

    2010-03-01

    To evaluate syntheses of fac-[Re(CO)(3)L](+) complexes in organic solvents, we treated fac-[Re(CO)(3)(CH(3)CN)(3)]PF(6)/BF(4) in acetonitrile with triamine ligands (L). When L had two primary or two tertiary terminal amine groups, the expected fac-[Re(CO)(3)L](+) complexes formed. In contrast, N,N-dimethyldiethylenetriamine (N,N-Me(2)dien) formed an unusual compound, fac-[Re(CO)(3)(DAE)]BF(4) {DAE = (Z)-N'-(2-(2-(dimethylamino)ethylamino)ethyl)acetimidamide = (Me(2)NCH(2)CH(2))NH(CH(2)CH(2)N=C(NH(2))Me)}. DAE is formed by addition of acetonitrile to the N,N-Me(2)dien terminal primary amine, converting this sp(3) nitrogen to an sp(2) nitrogen with a double bond to the original acetonitrile sp carbon. The three Ns bound to Re derive from N,N-Me(2)dien. The pathway to fac-[Re(CO)(3)(DAE)]BF(4) is suggested by a second unusual compound, fac-[Re(CO)(3)(MAE)]PF(6) {MAE = N-methyl-N-(2-(methyl-(2-(methylamino)ethyl)amino)ethyl)acetimidamide = MeN(H)-CH(2)CH(2)-N(Me)-CH(2)CH(2)-N(Me)-C(Me)=NH}, isolated after treating fac-[Re(CO)(3)(CH(3)CN)(3)]PF(6) with N,N',N''-trimethyldiethylenetriamine (N,N',N''-Me(3)dien). MAE chelates via a terminal and a central sp(3) N from N,N',N''-Me(3)dien and via one sp(2) NH in a C(Me)=NH group. This group is derived from acetonitrile by addition of the other N,N',N''-Me(3)dien terminal amine to the nitrile carbon. This addition creates an endocyclic NMe group within a seven-membered chelate ring. The structure and other properties of fac-[Re(CO)(3)(MAE)]PF(6) allow us to propose a reaction scheme for the formation of the unprecedented DAE ligand. The new compounds advance our understanding of the spectral and structural properties of Re analogues of (99m)Tc radiopharmaceuticals.

  9. Laminate comprising fibers embedded in cured amine terminated bis-imide

    NASA Technical Reports Server (NTRS)

    Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)

    1986-01-01

    Amine terminated bisaspartimides are prepared by a Michael type reaction of an aromatic bismaleimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers crosslinked through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures.

  10. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori.

    PubMed

    Hu, Heidi Q; Johnson, Ryan C; Merrell, D Scott; Maroney, Michael J

    2017-02-28

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.

  11. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Heidi Q.; Johnson, Ryan C.; Merrell, D. Scott

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant,more » L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA–UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.« less

  12. Protecting-group-free synthesis of amines: synthesis of primary amines from aldehydes via reductive amination.

    PubMed

    Dangerfield, Emma M; Plunkett, Catherine H; Win-Mason, Anna L; Stocker, Bridget L; Timmer, Mattie S M

    2010-08-20

    New methodology for the protecting-group-free synthesis of primary amines is presented. By optimizing the metal hydride/ammonia mediated reductive amination of aldehydes and hemiacetals, primary amines were selectively prepared with no or minimal formation of the usual secondary and tertiary amine byproduct. The methodology was performed on a range of functionalized aldehyde substrates, including in situ formed aldehydes from a Vasella reaction. These reductive amination conditions provide a valuable synthetic tool for the selective production of primary amines in fewer steps, in good yields, and without the use of protecting groups.

  13. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    PubMed

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  14. Hemoglobin binding of aromatic amines: molecular dosimetry and quantitative structure-activity relationships for N-oxidation.

    PubMed Central

    Sabbioni, G

    1993-01-01

    Aromatic amines are important intermediates in industrial manufacturing. N-Oxidation to N-hydroxyarylamines is a key step in determining the genotoxic properties of aromatic amines. N-Hydroxyarylamines can form adducts with DNA, with tissue proteins, and with the blood proteins albumin and hemoglobin in a dose-dependent manner. The determination of hemoglobin adducts is a useful tool for biomonitoring exposed populations. We have established the hemoglobin binding index (HBI) [(mmole compound/mole hemoglobin)/(mmole compound/kg body weight)] of several aromatic amines in female Wistar rats. Including the values from other researchers obtained in the same rat strain, the logarithm of hemoglobin binding (logHBI) was plotted against the following parameters: the sum of the Hammett constants(sigma sigma = sigma p + sigma m), pKa, logP (octanol/water), the half-wave oxidation potential (E1/2), and the electronic descriptors of the amines and their corresponding nitrenium ions obtained by semi-empirical calculations (MNDO, AMI, and PM3), such as atomic charge densities, energies of the highest occupied molecular orbit and lowest occupied molecular orbit and their coefficients, the bond order of C-N, the dipole moments, and the reaction enthalpy [MNDOHF, AM1HF or PM3HF = Hf(nitrenium) - Hf(amine)]. The correlation coefficients were determined from the plots of all parameters against log HBI for all amines by means of linear regression analysis. The amines were classified in three groups: group 1, all parasubstituted amines (maximum, n = 9); group 2, all amines with halogens (maximun, n = 11); and group 3, all amines with alkyl groups (maximum, n = 13).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8319626

  15. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  16. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  17. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  18. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  19. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  20. Morphology and properties of amine terminated poly(arylene ether ketone) and poly(arylene ether sulfone) modified epoxy resin systems

    NASA Technical Reports Server (NTRS)

    Cecere, J. A.; Mcgrath, J. E.; Hedrick, J. L.

    1986-01-01

    Epoxy resin networks cured with DDS were modified by incorporating tough ductile thermoplastics such as the amine terminated polyether sulfones and amine terminated polyether ketones. Both linear copolymers were able to significantly improve the fracture toughness values at the 15 and 30 weight percent concentrations examined. These improvements in fracture toughness were achieved without any significant change in the flexural modulus.

  1. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method

    PubMed Central

    Huang, Junfeng; Qin, Hongqiang; Sun, Zhen; Huang, Guang; Mao, Jiawei; Cheng, Kai; Zhang, Zhang; Wan, Hao; Yao, Yating; Dong, Jing; Zhu, Jun; Wang, Fangjun; Ye, Mingliang; Zou, Hanfa

    2015-01-01

    Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome. PMID:25959593

  2. 40 CFR 721.7285 - Amines, N-cocoalkyltrimethylenedi-, citrates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, N-cocoalkyltrimethylenedi... Specific Chemical Substances § 721.7285 Amines, N-cocoalkyltrimethylenedi-, citrates. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as amines, N...

  3. 40 CFR 721.7286 - Amines, N-tallowalkyltripropylenetetra-, citrates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, N-tallowalkyltripropylenetetra... Specific Chemical Substances § 721.7286 Amines, N-tallowalkyltripropylenetetra-, citrates. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as amines, N...

  4. 40 CFR 721.7285 - Amines, N-cocoalkyltrimethylenedi-, citrates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, N-cocoalkyltrimethylenedi... Specific Chemical Substances § 721.7285 Amines, N-cocoalkyltrimethylenedi-, citrates. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as amines, N...

  5. 40 CFR 721.7286 - Amines, N-tallowalkyltripropylenetetra-, citrates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, N-tallowalkyltripropylenetetra... Specific Chemical Substances § 721.7286 Amines, N-tallowalkyltripropylenetetra-, citrates. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as amines, N...

  6. Atomistic computer simulations on multi-loaded PAMAM dendrimers: a comparison of amine- and hydroxyl-terminated dendrimers

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-12-01

    Poly(amidoamine) (PAMAM) dendrimers have been extensively studied as delivery vectors in biomedical applications. A limited number of molecular dynamics (MD) simulation studies have investigated the effect of surface chemistry on therapeutic molecules loading, with the aim of providing insights for biocompatibility improvement and increase in drug loading capacity of PAMAM dendrimers. In this work, fully atomistic MD simulations were employed to study the association of 5-Fluorouracil (5-FU) with amine (NH2)- and hydroxyl (OH)-terminated PAMAM dendrimers of generations 3 and 4 (G3 and G4). MD results show a 1:12, 1:1, 1:27, and 1:4 stoichiometry, respectively, for G3NH2-FU, G3OH-FU, G4NH2-FU, and G4OH-FU complexes, which is in good agreement with the isothermal titration calorimetry results. The results obtained showed that NH2-terminated dendrimers assume segmented open structures with large cavities and more drug molecules can encapsulate inside the dendritic cavities of amine terminated dendrimers. However, OH-terminated have a densely packed structure and therefore, 5-FU drug molecules are more stable to locate close to the surface of the dendrimers. Intermolecular hydrogen bonding analysis showed that 5-FU drug molecules have more tendency to form hydrogen bonds with terminal monomers of OH-terminated dendrimers, while in NH2-terminated these occur both in the inner region and the surface. Furthermore, MM-PBSA analysis revealed that van der Waals and electrostatic energies are both important to stabilize the complexes. We found that drug molecules are distributed uniformly inside the amine and hydroxyl terminated dendrimers and therefore, both dendrimers are promising candidates as drug delivery systems for 5-FU drug molecules.

  7. Hydrophobic benzyl amines as supports for liquid-phase C-terminal amidated peptide synthesis: application to the preparation of ABT-510.

    PubMed

    Matsumoto, Emiko; Fujita, Yuko; Okada, Yohei; Kauppinen, Esko I; Kamiya, Hidehiro; Chiba, Kazuhiro

    2015-09-01

    C-terminal amidation is one of the most common modification of peptides and frequently found in bioactive peptides. However, the C-terminal modification must be creative, because current chemical synthetic techniques of peptides are dominated by the use of C-terminal protecting supports. Therefore, it must be carried out after the removal of such supports, complicating reaction work-up and product isolation. In this context, hydrophobic benzyl amines were successfully added to the growing toolbox of soluble tag-assisted liquid-phase peptide synthesis as supports, leading to the total synthesis of ABT-510 (2). Although an ethyl amide-forming type was used in the present work, different types of hydrophobic benzyl amines could also be simply designed and prepared through versatile reductive aminations in one step. The standard acidic treatment used in the final deprotection step for peptide synthesis gave the desired C-terminal secondary amidated peptide with no epimerization. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  8. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  9. Saturated amine oxides: Part 8. Hydroacridines: Part 27. Effects of N-oxidation and of N-quaternization on the 15N NMR chemical shifts of N-methylpiperidine-derived mono-, bi-, and tricycloaliphatic tertiary amines.

    PubMed

    Potmischil, Francisc; Duddeck, Helmut; Nicolescu, Alina; Deleanu, Calin

    2007-03-01

    The (15)N chemical shifts of 13 N-methylpiperidine-derived mono-, bi- and tricycloaliphatic tertiary amines, their methiodides and their N-epimeric pairs of N-oxides were measured, and the contributions of specific structural parameters to the chemical shifts were determined by multilinear regression analysis. Within the examined compounds, the effects of N-oxidation upon the (15)N chemical shifts of the amines vary from +56 ppm to +90 ppm (deshielding), of which approx. +67.7 ppm is due to the inductive effect of the incoming N(+)--O(-) oxygen atom, whereas the rest is due to the additive shift effects of the various C-alkyl substituents of the piperidine ring. The effects of quaternization vary from -3.1 ppm to +29.3 ppm, of which approx. +8.9 ppm is due to the inductive effect of the incoming N(+)--CH(3) methyl group, and the rest is due to the additive shift effects of the various C-alkyl substituents of the piperidine ring. The shift effects of the C-alkyl substituents in the amines, the N-oxides and the methiodides are discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors aremore » highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.« less

  11. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Guo; Chen, Honglin; Qin, Hangdao; Feng, Yujun

    2014-02-01

    To study the contribution of different nitrogen-containing functional groups to enhancement of phenol adsorption, the aminated activated carbons (AC) were characterized by N2 adsorption/desorption, XPS, Boehm titration, and pH drift method and tested for adsorption behaviors of phenol. Adsorption isotherm fitting revealed that the Langmuir model was preferred for the aminated ACs. The adsorption capacity per unit surface area (qm/SSABET) was linearly correlated with the amount of pyridinic and pyrrolic N, which suggested that these two functional groups played a critical role in phenol adsorption. The enhancement of adsorption capacity was attributed to the strengthened π-π dispersion between phenol and basal plane of AC by pyridinic, pyrrolic N. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was one of the rate-controlling steps in the adsorption process.

  12. A Catalytic, Brønsted Base Strategy for Intermolecular Allylic C—H Amination

    PubMed Central

    Reed, Sean A.; Mazzotti, Anthony R.; White, M. Christina

    2009-01-01

    A Brønsted base activation mode for oxidative, Pd(II)/sulfoxide catalyzed, intermolecular C—H allylic amination is reported. N,N-diisopropylethylamine was found to promote amination of unactivated terminal olefins, forming the corresponding linear allylic amine products with high levels of stereo-, regio-, and chemoselectivity. The predictable and high selectivity of this C—H oxidation method enables late-stage incorporation of nitrogen into advanced synthetic intermediates and natural products. PMID:19645492

  13. Diamines Containing Pendent Phenylethynyl Groups

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    1997-01-01

    Controlled molecular weight imide oligomers and co-oligomers containing pendent phenylethynyl groups (PEPIs) and endcapped with nonreactive or phenylethynyl groups have been prepared by the cyclodehydration of the precursor amide acid oligomers or co-oligomers containing pendent phenylethynyl groups and endcapped with nonreactive or phenylethynyl groups. The amine terminated amide acid oligomers or co-oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and diamine containing pendent phenylethynyl groups and subsequently endcapped with a phenylethynyl phthalic anhydride or monofunctional anhydride. The anhydride terminated amide acid oligomers and co-oligomers are prepared from the reaction of diamine(s) and diamine containing pendent phenylethynyl group(s) with an excess of dianhydride(s) and subsequently endcapped with a phenylethynyl amine or monofunctional amine. The polymerizations are carried out in polar aprotic solvents such as and N,N-dimethylacetamide under nitrogen at room temperature. The amide acid oligomers or co-oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. The polymers and copolymers prepared from these materials exhibit a unique and unexpected combination of properties that includes higher glass transition temperatures after curing and higher retention of neat resin, adhesive and carbon fiber reinforced mechanical properties at temperatures up to 204 C under wet conditions without sacrificing melt flow behavior and processability as compared to similar materials. These materials are useful as adhesives, coatings, films, moldings, and composite matrices.

  14. (Carbonato-κO,O')bis-(di-2-pyridyl-amine-κN,N')cobalt(III) bromide.

    PubMed

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-04-01

    In the title compound, [Co(CO(3))(C(10)H(9)N(3))(2)]Br, a distorted octa-hedral coordination of the Co(III) atom is completed by four N atoms of the two chelating di-2-pyridyl-amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl-amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C(2) symmetry, is connected to the bromide ion via an N-H⋯Br(-) hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N-H⋯O inter-actions about an inversion centre. A set of weaker C-H⋯O and C-H⋯Br(-) inter-actions connect the dimers into a three-dimensional network.

  15. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  16. Ketene reactions with tertiary amines.

    PubMed

    Allen, Annette D; Andraos, John; Tidwell, Thomas T; Vukovic, Sinisa

    2014-01-17

    Tertiary amines react rapidly and reversibly with arylketenes in acetonitrile forming observable zwitterions, and these undergo amine catalyzed dealkylation forming N,N-disubstituted amides. Reactions of N-methyldialkylamines show a strong preference for methyl group loss by displacement, as predicted by computational studies. Loss of ethyl groups in reactions with triethylamine also occur by displacement, but preferential loss of isopropyl groups in the phenylketene reaction with diisopropylethylamine evidently involves elimination. Quinuclidine rapidly forms long-lived zwitterions with arylketenes, providing a model for catalysis by cinchona and related alkaloids in stereoselective additions to ketenes.

  17. Green-Light-Sensitive BODIPY Photoprotecting Groups for Amines

    PubMed Central

    2018-01-01

    We describe a series of easily accessible, visible-light-sensitive (λ > 500 nm) BODIPY (boron-dipyrromethene)-based photoprotecting groups (PPGs) for primary and secondary amines, based on a carbamate linker. The caged compounds are stable under aqueous conditions for 24 h and can be efficiently uncaged in vitro with visible light (λ = 530 nm). These properties allow efficient photodeprotection of amines, rendering these novel PPGs potentially suitable for various applications, including the delivery of caged drugs and their remote activation. PMID:29369628

  18. Isomer-sensitive deboronation in reductive aminations of aryl boronic acids

    DOE PAGES

    Jones, Brad Howard; Wheeler, David R.; Wheeler, Jill S.; ...

    2015-09-05

    Deboronation is observed during the reductive amination of formylphenylboronic acid (FPBA) to the amine termini and side chains of peptides. This deboronation is sensitive to the isomerism of the boronic acid (BA), with ortho-FPBA yielding complete deboronation in the preparation of an N-terminally-modified dipeptide. The observed behavior is also clearly mediated by the chemical identity of the amine substrate. These results reveal a previously undocumented subtlety of BA functionalization and highlight the importance of thorough spectroscopic characterization in the preparation of peptide and small molecule BAs.

  19. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    PubMed Central

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-01-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960

  20. 5-Bromo-N-methyl­pyrimidin-2-amine

    PubMed Central

    Yang, Qi; Xu, Ning; Zhu, Kai; Lv, Xiaoping; Han, Ping-fang

    2012-01-01

    In the title mol­ecule, C5H6BrN3, the pyrimidine ring is essentially planar, with an r.m.s. deviation of 0.007 Å. The Br and N atoms substituted to the pyrimidine ring are coplanar with the ring [displacements = 0.032 (1) and 0.009 (5) Å, respectively], while the methyl C atom lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidine ring and the methyl­amine group of 4.5 (3)°. In the crystal, C—H⋯N, C—H⋯Br and N—H⋯N hydrogen bonds link the mol­ecules into a two-dimensional network in the (011) plane. PMID:22259398

  1. Diamond surface functionalization with biomimicry - Amine surface tether and thiol moiety for electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Sund, James B.; Causey, Corey P.; Wolter, Scott D.; Parker, Charles B.; Stoner, Brian R.; Toone, Eric J.; Glass, Jeffrey T.

    2014-05-01

    The surface of conducting diamond was functionalized with a terminal thiol group that is capable of binding and detecting nitrogen-oxygen species. The functionalization process employed multiple steps starting with doped diamond films grown by plasma enhanced chemical vapor deposition followed by hydrogen termination and photochemical attachment of a chemically protected amine alkene. The surface tether was deprotected to reveal the amine functionality, which enabled the tether to be extended with surface chemistry to add a terminal thiol moiety for electrochemical sensing applications. Each step of the process was validated using X-ray photoelectron spectroscopy analysis.

  2. Triazolylidene-Iridium Complexes with a Pendant Pyridyl Group for Cooperative Metal-Ligand Induced Catalytic Dehydrogenation of Amines.

    PubMed

    Valencia, Marta; Pereira, Ana; Müller-Bunz, Helge; Belderraín, Tomás R; Pérez, Pedro J; Albrecht, Martin

    2017-07-03

    Two iridium(III) complexes containing a C,N-bidentate pyridyl-triazolylidene ligand were prepared that are structurally very similar but differ in their pendant substituent. Whereas complex 1 contains a non-coordinating pyridyl unit, complex 2 has a phenyl group on the triazolylidene substituent. The presence of the basic pyridyl unit has distinct effects on the catalytic activity of the complex in the oxidative dehydrogenation of benzylic amines, inducing generally higher rates, higher selectivity towards formation of imines versus secondary amines, and notable quantities of tertiary amines when compared to the phenyl-functionalized analogue. The role of the pyridyl functionality has been elucidated from a set of stoichiometric experiments, which demonstrate hydrogen bonding between the pendant pyridyl unit and the amine protons of the substrate. Such N pyr ⋅⋅⋅H-N interactions are demonstrated by X-ray diffraction analysis, 1 H NMR, and IR spectroscopy, and suggest a pathway of substrate bond-activation that involves concerted substrate binding through the Lewis acidic iridium center and the Lewis basic pyridyl site appended to the triazolylidene ligand, in agreement with ligand-metal cooperative substrate activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sequential Metabolism of Secondary Alkyl Amines to Metabolic-Intermediate Complexes: Opposing Roles for the Secondary Hydroxylamine and Primary Amine Metabolites of Desipramine, (S)-Fluoxetine, and N-Desmethyldiltiazem

    PubMed Central

    Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.

    2010-01-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233

  4. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    PubMed

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  5. X-ray photoelectron spectroscopy characterization of gold nanoparticles functionalized with amine-terminated alkanethiols

    PubMed Central

    Techane, Sirnegeda D.; Gamble, Lara J.; Castner, David G.

    2011-01-01

    Gold nanoparticles (AuNPs) functionalized with a short chain amine-terminated alkanethiol (HS-(CH2)2NH2 or C2 NH2-thiol) are prepared via a direct synthesis method and then ligand-exchanged with a long chain amine-terminated alkanethiol (HS-(CH2)11NH2 or C11 NH2-thiol). Transmission electron microscopy analysis showed the AuNPs were relatively spherical with a median diameter of 24.2±4.3 nm. X-ray photoelectron spectroscopy was used to determine surface chemistry of the functionalized and purified AuNPs. The ligand-exchange process was monitored within the time range from 30 min to 61 days. By the fourth day of exchange all the C2 NH2-thiol molecules had been replaced by C11 NH2-thiol molecules. C11 NH2-thiol molecules continued to be incorporated into the C11 NH2 self-assembled monolayer between days 4 and 14 of ligand-exchange. As the length of the exchange time increased, the functionalized AuNPs became more stable against aggregation. The samples were purified by a centrifugation and resuspension method. The C2 NH2 covered AuNPs aggregated immediately when purification was attempted. The C11 NH2 covered AuNPs could be purified with minimal or no aggregation. Small amounts of unbound thiol (∼15%) and oxidized sulfur (∼20%) species were detected on the ligand-exchanged AuNPs. Some of the unbound thiol and all of the oxidized sulfur could be removed by treating the functionalized AuNPs with HCl. PMID:21974680

  6. Transition Metal Free C-N Bond Forming Dearomatizations and Aryl C-H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent.

    PubMed

    Farndon, Joshua J; Ma, Xiaofeng; Bower, John F

    2017-10-11

    We outline a simple protocol that accesses directly unprotected secondary amines by intramolecular C-N bond forming dearomatization or aryl C-H amination. The method is dependent on the generation of a potent electrophilic aminating agent released by in situ deprotection of O-Ts activated N-Boc hydroxylamines.

  7. Quantification of amine functional groups and their influence on OM/OC in the IMPROVE network

    NASA Astrophysics Data System (ADS)

    Kamruzzaman, Mohammed; Takahama, Satoshi; Dillner, Ann M.

    2018-01-01

    Recently, we developed a method using FT-IR spectroscopy coupled with partial least squares (PLS) regression to measure the four most abundant organic functional groups, aliphatic C-H, alcohol OH, carboxylic acid OH and carbonyl C=O, in atmospheric particulate matter. These functional groups are summed to estimate organic matter (OM) while the carbon from the functional groups is summed to estimate organic carbon (OC). With this method, OM and OM/OC can be estimated for each sample rather than relying on one assumed value to convert OC measurements to OM. This study continues the development of the FT-IR and PLS method for estimating OM and OM/OC by including the amine functional group. Amines are ubiquitous in the atmosphere and come from motor vehicle exhaust, animal husbandry, biomass burning, and vegetation among other sources. In this study, calibration standards for amines are produced by aerosolizing individual amine compounds and collecting them on PTFE filters using an IMPROVE sampler, thereby mimicking the filter media and collection geometry of ambient standards. The moles of amine functional group on each standard and a narrow range of amine-specific wavenumbers in the FT-IR spectra (wavenumber range 1 550-1 500 cm-1) are used to develop a PLS calibration model. The PLS model is validated using three methods: prediction of a set of laboratory standards not included in the model, a peak height analysis and a PLS model with a broader wavenumber range. The model is then applied to the ambient samples collected throughout 2013 from 16 IMPROVE sites in the USA. Urban sites have higher amine concentrations than most rural sites, but amine functional groups account for a lower fraction of OM at urban sites. Amine concentrations, contributions to OM and seasonality vary by site and sample. Amine has a small impact on the annual average OM/OC for urban sites, but for some rural sites including amine in the OM/OC calculations increased OM/OC by 0.1 or more.

  8. New Stable Cu(I) Catalyst Supported on Weakly Acidic Polyacrylate Resin for Green C-N Coupling: Synthesis of N-(Pyridin-4-yl)benzene Amines and N,N-Bis(pyridine-4-yl)benzene Amines.

    PubMed

    Kore, Nitin; Pazdera, Pavel

    2016-12-22

    A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.

  9. Fabrication and characterization of amine terminated poly(arylene ether sulfone) modified epoxy-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.

    1987-01-01

    Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.

  10. Phenylethynyl amine

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)

    1997-01-01

    Four phenylethynyl amine compounds--3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone--were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300.degree. C. to 400.degree. C. to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus and good high temperature properties. Adhesive panels, composites, films and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.

  11. Dual C-H functionalization of N-aryl amines: synthesis of polycyclic amines via an oxidative Povarov approach.

    PubMed

    Min, Chang; Sanchawala, Abbas; Seidel, Daniel

    2014-05-16

    Iminium ions generated in situ via copper(I) bromide catalyzed oxidation of N-aryl amines readily undergo [4 + 2] cycloadditions with a range of dienophiles. This method involves the functionalization of both a C(sp(3))-H and a C(sp(2))-H bond and enables the rapid construction of polycyclic amines under relatively mild conditions.

  12. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    PubMed

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  13. Electronic and steric influences of pendant amine groups on the protonation of molybdenum bis (dinitrogen) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labios, Liezel A.; Heiden, Zachariah M.; Mock, Michael T.

    2015-05-04

    The synthesis of a series of P EtP NRR' (P EtP NRR' = Et₂PCH₂CH₂P(CH₂NRR')₂, R = H, R' = Ph or 2,4-difluorophenyl; R = R' = Ph or iPr) diphosphine ligands containing mono- and disubstituted pendant amine groups, and the preparation of their corresponding molybdenum bis(dinitrogen) complexes trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') is described. In situ IR and multinuclear NMR spectroscopic studies monitoring the stepwise addition of (HOTf) to trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes in THF at -40 °C show that the electronic and steric properties of the R and R' groups of the pendant amines influence whether the complexes are protonated atmore » Mo, a pendant amine, a coordinated N2 ligand, or a combination of these sites. For example, complexes containing mono-aryl substituted pendant amines are protonated at Mo and pendant amine to generate mono- and dicationic Mo–H species. Protonation of the complex containing less basic diphenyl-substituted pendant amines exclusively generates a monocationic hydrazido (Mo(NNH₂)) product, indicating preferential protonation of an N₂ ligand. Addition of HOTf to the complex featuring more basic diisopropyl amines primarily produces a monocationic product protonated at a pendant amine site, as well as a trace amount of dicationic Mo(NNH₂) product that contain protonated pendant amines. In addition, trans-Mo(N₂)₂(PMePh₂)₂(depe) (depe = Et₂PCH₂CH₂PEt₂) without a pendant amine was synthesized and treated with HOTf, generating a monocationic Mo(NNH₂) product. Protonolysis experiments conducted on select complexes in the series afforded trace amounts of NH₄⁺. Computational analysis of the series of trans-Mo(N₂)₂(PMePh₂)₂(P EtP NRR') complexes provides further insight into the proton affinity values of the metal center, N₂ ligand, and pendant amine sites to rationalize the differing reactivity profiles. This research was supported as part of the Center for Molecular

  14. Dehydrogenation and dehalogenation of amines in MALDI-TOF MS investigated by isotopic labeling.

    PubMed

    Kang, Chuanqing; Zhou, Yihan; Du, Zhijun; Bian, Zheng; Wang, Jianwei; Qiu, Xuepeng; Gao, Lianxun; Sun, Yuequan

    2013-12-01

    Secondary and tertiary amines have been reported to form [M-H](+) that correspond to dehydrogenation in matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). In this investigation, we studied the dehydrogenation of amines in MALDI-TOF MS by isotopic labeling. Aliphatic amines were labeled with deuterium on the methylene of an N-benzyl group, which resulted in the formation of [M-D](+) and [M-H](+) ions by dedeuteration and dehydrogenation, respectively. This method revealed the proton that was removed. The spectra of most tertiary amines with an N-benzyl group showed high-intensity [M-D](+) and [M-H](+) ion peaks, whereas those of secondary amines showed low-intensity ion peaks. Ratios between the peak intensities of [M-D](+) and [M-H](+) greater than 1 suggested chemoselective dehydrogenation at the N-benzyl groups. The presence of an electron donor group on the N-benzyl groups enhanced the selectivity. The dehalogenation of amines with an N-(4-halobenzyl) group was also observed alongside dehydrogenation. The amino ions from dehalogenation can undergo second dehydrogenation. These results provide the first direct evidence about the position at which dehydrogenation of an amine occurs and the first example of dehalogenation of haloaromatic compounds in MALDI-TOF MS. These results should be helpful in the structural identification and elucidation of synthetic and natural molecules. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Selective reduction of N-oxides to amines: application to drug metabolism.

    PubMed

    Kulanthaivel, Palaniappan; Barbuch, Robert J; Davidson, Rita S; Yi, Ping; Rener, Gregory A; Mattiuz, Edward L; Hadden, Chad E; Goodwin, Lawrence A; Ehlhardt, William J

    2004-09-01

    Phase I oxidative metabolism of nitrogen-containing drug molecules to their corresponding N-oxides is a common occurrence. There are instances where liquid chromatography/tandem mass spectometry techniques are inadequate to distinguish this pathway from other oxidation processes, including C-hydroxylations and other heteroatom oxidations, such as sulfur to sulfoxide. Therefore, the purpose of the present study was to develop and optimize an efficient and practical chemical method to selectively convert N-oxides to their corresponding amines suitable for drug metabolism applications. Our results indicated that efficient conversion of N-oxides to amines could be achieved with TiCl(3) and poly(methylhydrosiloxane). Among them, we found TiCl(3) to be a facile and easy-to-use reagent, specifically applicable to drug metabolism. There are a few reports describing the use of TiCl(3) to reduce N-O bonds in drug metabolism studies, but this methodology has not been widely used. Our results indicated that TiCl(3) is nearly as efficient when the reductions were carried out in the presence of biological matrices, including plasma and urine. Finally, we have shown a number of examples where TiCl(3) can be successfully used to selectively reduce N-oxides in the presence of sulfoxides and other labile groups.

  16. Highly specific enrichment of N-glycoproteome through a nonreductive amination reaction using Fe3O4@SiO2-aniline nanoparticles.

    PubMed

    Zhang, Ying; Yu, Meng; Zhang, Cheng; Wang, Yali; Di, Yi; Wang, Changchun; Lu, Haojie

    2015-04-07

    A novel method based on the conjunction of aldehydes from oxidized glycopeptides to aniline groups on magnetic nanoparticles via nonreductive amination is reported for the highly selective enrichment of N-glycopeptides. For the first time, a nonreductive amination reaction has been introduced into N-glycoproteome extraction, and correspondingly a new type of aniline-functionalized nanoparticle has been designed and synthesized.

  17. Ruthenium-catalyzed regioselective allylic amination of 2,3,3-trifluoroallylic carbonates.

    PubMed

    Isobe, Shin-Ichi; Terasaki, Shou; Hanakawa, Taisyun; Mizuno, Shota; Kawatsura, Motoi

    2017-04-05

    We demonstrated the ruthenium-catalyzed allylic amination of 2,3,3-trifluoroallylic carbonates with several types of amines. The reactions proceeded with several types of amines, and succeeded in obtaining polyfluorinated terminal alkenes possessing branched allylic amines as a single regioisomer.

  18. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    PubMed

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  19. Chloridobis(ethyl­enediamine-κ2 N,N′)(n-pentyl­amine-κN)cobalt(III) dichloride monhydrate

    PubMed Central

    Anbalagan, K.; Tamilselvan, M.; Nirmala, S.; Sudha, L.

    2009-01-01

    The title complex, [CoCl(C5H13N)(C2H8N2)2]Cl2·H2O, comprises one chloridobis(ethyl­enediamine)(n-pentyl­amine)cobalt(III) cation, two chloride counter-anions and a water mol­ecule. The CoIII atom of the complex is hexa­coordinated by five N and one Cl atoms. The five N atoms are from two chelating ethyl­enediamine and one n-pentyl­amine ligands. Neighbouring cations and anions are connected by N—H⋯Cl and N—H⋯O hydrogen bonds to each other and also to the water mol­ecule. PMID:21582753

  20. Influence on wine biogenic amine composition of modifications to soil N availability and grapevine N by cover crops.

    PubMed

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; Cabrita, Maria João; García-Escudero, Enrique; Peregrina, Fernando

    2017-11-01

    Vineyard soil management can modify the nitrogen soil availability and, therefore, grape amino acid content. These compounds are precursors of biogenic amines, which have negative effects on wine quality and human health. The objective was to study whether the effect of conventional tillage and two cover crops (barley and clover) on grapevine nitrogen status could be related to wine biogenic amines. Over 4 years, soil NO 3 - -N, nitrogen content in leaf and wine biogenic amine concentration were determined. Barley reduced soil NO 3 - -N availability and clover increased it. In 2011, at bloom, nitrogen content decreased with barley treatment in both blade and petiole. In 2012, nitrogen content in both leaf tissues at bloom was greater with clover than with tillage and barley treatments. Also, total biogenic amines decreased in barley with respect to tillage and clover treatments. There were correlations between some individual and total biogenic amine concentrations with respect to nitrogen content in leaf tissues. Wine biogenic amine concentration can be affected by the grapevine nitrogen status, provoked by changes in the soil NO 3 - -N availability with both cover crop treatments. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Catalyst–Controlled C–O versus C–N Allylic Functionalization of Terminal Olefins

    PubMed Central

    Strambeanu, Iulia I.; White, M. Christina

    2014-01-01

    The divergent synthesis of syn-1, 2-aminoalcohol or syn-1,2-diamine precursors from a common terminal olefin has been accomplished using a combination of palladium(II) catalysis with Lewis acid co-catalysis. Palladium(II)/bis-sulfoxide catalysis with a silver triflate co-catalyst leads for the first time to anti-2-aminooxazolines (C—O) in good to excellent yields. Simple removal of the bis-sulfoxide ligand from this reaction results in a complete switch in reactivity to afford anti-imidazolidinone products (C—N) in good yields and excellent diastereoselectivities. Mechanistic studies suggest the divergent C—O versus C—N reactivity from a common ambident nucleophile arises due to a switch in mechanism from allylic C—H cleavage/functionalization to olefin isomerization/oxidative amination. PMID:23855956

  2. Aryl triolborates: novel reagent for copper-catalyzed N arylation of amines, anilines, and imidazoles.

    PubMed

    Yu, Xiao-Qiang; Yamamoto, Yasunori; Miyaura, Norio

    2008-09-01

    The N arylation of primary and secondary aliphatic amines, anilines, and imidazoles with novel potassium aryl triolborates was carried out in the presence of a reoxidant and a catalytic amount of Cu(OAc)(2) (10 mol %). Aryl triolborates were found to be better reagents than aryl boronic acids or potassium aryl trifluoroborates as the former achieved high yields under mild conditions. Coupling of primary and secondary aliphatic amines to give N-aryl amines in excellent yields was performed under oxygen atmosphere. The reactions of anilines and imidazoles to provide N-aryl anilines and N-aryl imidazoles in good yields proceeded smoothly when trimethylamine N-oxide was used as an oxidant.

  3. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling.

    PubMed

    Cecere, Giuseppe; König, Christian M; Alleva, Jennifer L; MacMillan, David W C

    2013-08-07

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated N-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Importantly, this photoinduced transformation allows direct and enantioselective access to α-amino aldehyde products that do not require postreaction manipulation.

  4. Amide or Amine: Determining the Origin of the 3300 cm−1 NH Mode in Protein SFG Spectra Using 15N Isotope Labels

    PubMed Central

    Weidner, Tobias; Breen, Nicholas F.; Drobny, Gary P.; Castner, David G.

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases a strong NH mode near 3300 cm−1 is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode we studied 15N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an α-helical secondary structure (LKα14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. 15N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm−1 on SiO2 and 13 cm−1 on CaF2. This clearly shows the 3300 cm−1 NH feature is associated with side chain NH stretches and not with backbone amide modes. PMID:19873996

  5. Amide or amine: determining the origin of the 3300 cm(-1) NH mode in protein SFG spectra using 15N isotope labels.

    PubMed

    Weidner, Tobias; Breen, Nicholas F; Drobny, Gary P; Castner, David G

    2009-11-26

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases, a strong NH mode near 3300 cm(-1) is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain, since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode, we studied (15)N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an alpha-helical secondary structure (LKalpha14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. (15)N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm(-1) on SiO(2) and 13 cm(-1) on CaF(2). This clearly shows the 3300 cm(-1) NH feature is associated with side chain NH stretches and not with backbone amide modes.

  6. Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2012-09-15

    The occurrence of 24 amines within a full scale drinking water treatment plant that used chlorinated agents as disinfectants was evaluated for the first time in this research. Prior to any treatment (raw water), aniline, 3-chloroaniline, 3,4-dichloroaniline and N-nitrosodimethylamine were detected at low levels (up to 18 ng/L) but their concentration increased ∼10 times after chloramination while 9 new amines were produced (4 aromatic amines and 5 N-nitrosamines). Within subsequent treatments, there were no significant changes in the amine levels, although the concentrations of 2-nitroaniline, N-nitrosodimethylamine and N-nitrosodiethylamine increased slightly within the distribution system. Eleven of the 24 amines studied were undetected either in the raw and in the treatment plant samples analysed. There is an important difference in the behaviour of the aromatic amines and N-nitrosamines with respect to water temperature and rainfall events. Amine concentrations were higher in winter due to low water temperatures, this effect being more noticeable for N-nitrosamines. Aromatic amines were detected at their highest concentrations (especially 3,4-dichloroaniline and 2-nitroaniline) in treated water after rainfall events. These results may be explained by the increase in the levels of amine precursors (pesticides and their degradation products) in raw water since the rainfall facilitated the transport of these compounds from soil which was previously contaminated as a result of intensive agricultural practices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans.

    PubMed

    Wuhrer, Manfred; Koeleman, Carolien A M; Deelder, André M

    2009-06-01

    Tandem mass spectrometry of glycans and glycoconjugates in protonated form is known to result in rearrangement reactions leading to internal residue loss. Here we studied the occurrence of hexose rearrangements in tandem mass spectrometry of N-glycopeptides and reductively aminated N-glycans by MALDI-TOF/TOF-MS/MS and ESI-ion trap-MS/MS. Fragmentation of proton adducts of oligomannosidic N-glycans of ribonuclease B that were labeled with 2-aminobenzamide and 2-aminobenzoic acid resulted in transfer of one to five hexose residues to the fluorescently tagged innermost N-acetylglucosamine. Glycopeptides from various biological sources with oligomannosidic glycans were likewise shown to undergo hexose rearrangement reactions, resulting in chitobiose cleavage products that have acquired one or two hexose moieties. Tryptic immunoglobulin G Fc-glycopeptides with biantennary N-glycans likewise showed hexose rearrangements resulting in hexose transfer to the peptide moiety retaining the innermost N-acetylglucosamine. Thus, as a general phenomenon, tandem mass spectrometry of reductively aminated glycans as well as glycopeptides may result in hexose rearrangements. This characteristic of glycopeptide MS/MS has to be considered when developing tools for de novo glycopeptide structural analysis.

  8. Impact behavior of f-silica and amine terminated polybutadiene co-acrylonitrile rubber modified novolac epoxy/Kevlar nanocomposites

    NASA Astrophysics Data System (ADS)

    Kavita, Pal, Vijayeta; Tiwari, R. K.

    2018-05-01

    In the present work, nano-fumed silica treated with 3-Glycidoxypropyl trimethoxy silane (f-silica) was used as a nanoreinforcement in the fabrication of amine terminated polybutadiene co-acrylonitrile rubber (ATBN) modified Kevlar/epoxy based nanocomposites. Nanocomposites with different f-silica loading (0, 0.5, 1.0 and 2.0 wt. %) and having same ATBN (10 wt. %) were made and characterized by Izod impact test for evaluating impact strength values. All the nanocomposites showed better impact strength than neat Kevlar/novolac epoxy based composite.

  9. Crystal structure of bis-[(phenyl-methanamine-κN)(phthalocyaninato-κ(4) N)zinc] phenyl-methan-amine tris-olvate.

    PubMed

    Shamsudin, Norzianah; Tan, Ai Ling; Wimmer, Franz L; Young, David J; Tiekink, Edward R T

    2015-09-01

    The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol-ecules and three benzyl-amine solvent mol-ecules. Each complex mol-ecule features a penta-coordinated Zn(2+) ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl-amine mol-ecule; it is the relative orientations of the latter that differentiate between the independent complex mol-ecules. The uncoordinated benzyl-amine mol-ecules display different conformations in the structure, with syn-Car-Car-Cm-N (ar = aromatic, m = methyl-ene) torsion angles spanning the range -28.7 (10) to 35.1 (14)°. In the crystal, N-H⋯N and N-H⋯π inter-actions lead to supra-molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl-amine mol-ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via π-π inter-actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.

  10. Amine templating effect absent in uranyl sulfates synthesized with 1,4-n-butyldiamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J., E-mail: ljouffret@nd.edu; Wylie, Ernest M.; Burns, Peter C.

    2013-01-15

    Two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3), were synthesized and their crystal structures determined. NDUS2 was obtained in highly acidic media heat-treated at 373 K and subsequently maintained at 278 K until crystals formed after two months. NDUS3 results from the degradation of NDUS2 over the course of a few days. NDUS2 and NDUS3 crystallize in the monoclinic space group P2{sub 1}/n, a=10.9075(4) A, b=10.4513(4) A, c=17.7881(7) A, {beta}=97.908(2) Degree-Sign , V=2008.52(13) A{sup 3}, Z=4, at 140 K and a=8.8570(4) A,more » b=7.3299(3) A, c=20.4260(9) A, {beta}=95.140(2) Degree-Sign , V=1320.74(10) A{sup 3}, Z=4, at 140 K, respectively. The compounds contain interlayer 1,4-n-butyldiammonium cations that charge-balance the anionic structural units. - Graphical abstract: Amine templating effect absent in uranyl sulfates synthesized with 1,4-diaminobutane, as shown by the synthesis of two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3). Highlights: Black-Right-Pointing-Pointer Two layered uranyl sulfates were synthesized. Black-Right-Pointing-Pointer Amine molecules are located in the interlayers of the compounds. Black-Right-Pointing-Pointer No templating effect of the amine was observed. Black-Right-Pointing-Pointer Amine molecules are only charge balancing cations in the structures.« less

  11. A Hydrazone-Based exo-Directing-Group Strategy for β C-H Oxidation of Aliphatic Amines.

    PubMed

    Huang, Zhongxing; Wang, Chengpeng; Dong, Guangbin

    2016-04-18

    Described is a new hydrazone-based exo-directing group (DG) strategy developed for the functionalization of unactivated primary β C-H bonds of aliphatic amines. Conveniently synthesized from protected primary amines, the hydrazone DGs are shown to site-selectively promote the β-acetoxylation and tosyloxylation via five-membered exo-palladacycles. Amines with a wide scope of skeletons and functional groups are tolerated. Moreover, the hydrazone DG can be readily removed, and a one-pot C-H acetoxylation/DG removal protocol was also discovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE PAGES

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.; ...

    2015-12-09

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  13. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russ, Boris; Robb, Maxwell J.; Popere, Bhooshan C.

    A scarcity of stable n-type doping strategies compatible with facile processing has been a major impediment to the advancement of organic electronic devices. Localizing dopants near the cores of conductive molecules can lead to improved efficacy of doping. We and others recently showed the effectiveness of tethering dopants covalently to an electron-deficient aromatic molecule using trimethylammonium functionalization with hydroxide counterions linked to a perylene diimide core by alkyl spacers. In this work, we demonstrate that, contrary to previous hypotheses, the main driver responsible for the highly effective doping observed in thin films is the formation of tethered tertiary amine moietiesmore » during thin film processing. Furthermore, we demonstrate that tethered tertiary amine groups are powerful and general n-doping motifs for the successful generation of free electron carriers in the solid-state, not only when coupled to the perylene diimide molecular core, but also when linked with other small molecule systems including naphthalene diimide, diketopyrrolopyrrole, and fullerene derivatives. Our findings help expand a promising molecular design strategy for future enhancements of n-type organic electronic materials.« less

  14. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia.

    PubMed

    Cui, Xinjiang; Dai, Xingchao; Deng, Youquan; Shi, Feng

    2013-03-11

    The N-alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N-alkyl amines. However, as a potentially clean and economic choice for N-alkyl amine synthesis, non-noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N-alkylation of ammonia or amines with alcohol or primary amines. N-alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N-heterocyclic compounds, and secondary amines could be N-alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one-pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bioconjugation of Oligodeoxynucleotides Carrying 1,4-Dicarbonyl Groups via Reductive Amination with Lysine Residues.

    PubMed

    Yang, Bo; Jinnouchi, Akiko; Usui, Kazuteru; Katayama, Tsutomu; Fujii, Masayuki; Suemune, Hiroshi; Aso, Mariko

    2015-08-19

    We evaluated the efficacy of bioconjugation of oligodeoxynucleotides (ODNs) containing 1,4-dicarbonyl groups, a C4'-oxidized abasic site (OAS), and a newly designed 2'-methoxy analogue, via reductive amination with lysine residues. Dicarbonyls, aldehyde and ketone at C1- and C4-positions of deoxyribose in the ring-opened form of OAS allowed efficient reaction with amines. Kinetic studies indicated that reductive amination of OAS-containing ODNs with a proximal amine on the complementary strand proceeded 10 times faster than the corresponding reaction of an ODN containing an abasic site with C1-aldehyde. Efficient reductive amination between the DNA-binding domain of Escherichia coli DnaA protein and ODNs carrying OAS in the DnaA-binding sequence proceeded at the lysine residue in proximity to the phosphate group at the 5'-position of the OAS, in contrast to unsuccessful conjugation with abasic site ODNs, even though they have similar aldehydes. Theoretical calculation indicated that the C1-aldehyde of OAS was more accessible to the target lysine than that of the abasic site. These results demonstrate the potential utility of cross-linking strategies that use dicarbonyl-containing ODNs for the study of protein-nucleic acid interactions. Conjugation with a lysine-containing peptide that lacked specific affinity for ODN was also successful, further highlighting the advantages of 1,4-dicarbonyls.

  16. Imide Oligomers Containing Pendent and Terminal Phenylethynyl Groups-2

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.

    1998-01-01

    As part of a program to develop high-performance/high-temperature structural resins for aeronautical applications, imide oligomers containing pendent and terminal phenylethynyl groups were prepared, characterized and the cured resins evaluated as composite matrices. The oligomers were prepared at a calculated number-average molecular weight of 5000 g/mol and contained 15-20 mol% pendent phenylethynyl groups. In previous work, an oligomer containing pendent and terminal phenylethynyl groups exhibited a high glass transition temperature (approximately 313 C), and laminates therefrom exhibited high compressive properties, but processability, fracture toughness, microcrack resistance and damage tolerance were less than desired. In an attempt to improve these deficiencies, modifications in the oligomeric backbone involving the incorporation of 1,3-bis(3-aminophenoxy)benzene were investigated as a means of improving processability and toughness without detracting from the high glass transition temperature and high compressive properties. The amide acid oligomeric solutions were prepared in N-methyl-2-pyrrolidinone and were subsequently processed into imide powder, thin films, adhesive tape and carbon fiber prepreg. Neat resin plaques were fabricated from imide powder by compression moulding. The maximum processing pressure was 1.4 MPa and the cure temperature ranged from 350 to 371 C for 1 h for the mouldings, adhesives, films and composites. The properties of the 1,3-bis(3-aniinophenoxy)benzene modified cured imide oligomers containing pendent and terminal phenylethynyl groups are compared with those of previously prepared oligomers containing pendent and terminal phenylethynyl groups of similar composition and molecular weight.

  17. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  18. Glycerol as a Building Block for Prochiral Aminoketone, N-Formamide, and N-Methyl Amine Synthesis.

    PubMed

    Dai, Xingchao; Rabeah, Jabor; Yuan, Hangkong; Brückner, Angelika; Cui, Xinjiang; Shi, Feng

    2016-11-23

    Prochiral aminoketones are key intermediates for the synthesis of optically active amino alcohols, and glycerol is one of the main biomass-based alcohols available in industry. In this work, glycerol was catalytically activated and purposefully converted with amines to generate highly valuable prochiral aminoketones, as well as N-formamides and N-methyl amines, over CuNiAlO x catalyst. The catalyst structure can be anticipated as nano-Ni species on or in CuAlO x via the formation of nano- Cu-Ni alloy particles. This concept may present a novel and valuable methodology for glycerol utilization. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Formation of N-alkylpyrroles via intermolecular redox amination.

    PubMed

    Pahadi, Nirmal K; Paley, Miranda; Jana, Ranjan; Waetzig, Shelli R; Tunge, Jon A

    2009-11-25

    A wide variety of aldehydes, ketones, and lactols undergo redox amination when allowed to react with 3-pyrroline in the presence of a mild Brønsted acid catalyst. This reaction utilizes the inherent reducing power of 3-pyrroline to perform the equivalent of a reductive amination to form alkyl pyrroles. In doing so, the reaction avoids stoichiometric reducing agents that are typically associated with reductive aminations. Moreover, the redox amination protocol allows access to alkyl pyrroles that cannot be made via standard reductive amination.

  20. Enzymes immobilized on amine-terminated ionic liquid-functionalized carbon nanotube for hydrogen peroxide determination.

    PubMed

    Liu, Xiuhui; Bu, Caihong; Nan, Zhihan; Zheng, Lichun; Qiu, Yu; Lu, Xiaoquan

    2013-02-15

    We report on a new approach for the electrochemical detection of hydrogen peroxide (H2O2) based on Cytochrome C (Cyt c) immobilized ionic liquid (IL)-functionalized multi-walled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE). Functionalization of multi-walled carbon nanotube with amine-terminated ionic liquid materials was characterized using fourier transform infrared spectroscopy (FTIR), UV-vis spectra, and electrochemical impedance spectroscopy (EIS), and the results showed that the covalent modification of MWCNTs with ILs exhibited a high surface area for enzyme immobilization and provided a good microenvironment for Cyt c to retain its bioelectrocatalytic activity toward H2O2. Amperometry was used to evaluate the catalytic activity of the cyt c towards H2O2. The proposed biosensor exhibited a wide linear response range nearly 4 orders of magnitude of H2O2 (4.0 × 10(-8)M-1.0 × 10(-4)M) with a good linearity (0.9980) and a low detection limit of 1.3 × 10(-8)M (based on S/N=3). Furthermore, the biosensor also displays some other excellent characteristics such as high selectivity, good reproducibility and long-term stability. Thus, the biosensor constructed in this study has great potential for detecting H2O2 in the complex biosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Sillica Gel-Amine from Geothermal Sludge

    NASA Astrophysics Data System (ADS)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  2. Novel highly luminescent amine-functionalized bridged silsesquioxanes

    NASA Astrophysics Data System (ADS)

    Pereira, Rui F. P.; Nunes, Sílvia C.; Toquer, Guillaume; Cardoso, Marita A.; Valente, Artur J. M.; Ferro, Marta C.; Silva, Maria M.; Carlos, Luís D.; Ferreira, Rute A. S.; de Zea Bermudez, Verónica

    2017-12-01

    Amine-functionalized bridged silsesquioxanes were synthesized from bis[(3-trimethoxysilyl)propyl] amine via a solvent-mediated route. BS-1 and BS-2 were obtained with neutral pH with sub- and stoichiometric amounts of water, respectively, and high tetrahydrofuran content. BS-3 was prepared with hyperstoichiometric water concentration, high tetrahydrofuran content and hydrochloric acid. BS-4 was synthesized with hyperstoichiometric water concentration, high ethanol content and sodium hydroxide. BS-1 and BS-2 were produced as transparent films, whereas BS-3 and BS-4 formed white powders. Face-to-face stacking of flat or folded lamellae yielded quasi-hydrophobic platelets with emission quantum yields of 0.05±0.01 (BS-1 and BS-2) or superhydrophilic onion-like nanoparticles with exciting emission quantum yields of 0.38±0.03 (BS-3) and 0.33±0.04 (BS-4), respectively. The latter two values are the largest ever reported for amine-functionalized siloxane-based hybrids lacking aromatic groups. Fast Grotthus proton hopping between =NH2+/=NH groups (BS-3) and =N-/=NH groups (BS-4), promoted by H+ and OH- ions, respectively, and aided by short amine-amine contacts provided by the onion-like morphology, account for this unique optical behavior.

  3. 40 CFR 721.642 - Amines, N-(C14-18 and C16-16 unsaturated alkyl)] dipropylene-tri-, tripropylenetetra-, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substances amines, N-(C14-18 and C16-18 unsaturated alkyl)] dipropylenetri-, (PMN P-94-1244... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, N-(C14-18 and C16-16... Amines, N-(C14-18 and C16-16 unsaturated alkyl)] dipropylene-tri-, tripropylenetetra-, and...

  4. 42 CFR 408.90 - Termination of group billing arrangement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Termination of group billing arrangement. 408.90... SERVICES MEDICARE PROGRAM PREMIUMS FOR SUPPLEMENTARY MEDICAL INSURANCE Direct Remittance: Group Payment § 408.90 Termination of group billing arrangement. (a) A group billing arrangement may be terminated...

  5. 42 CFR 408.90 - Termination of group billing arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Termination of group billing arrangement. 408.90... SERVICES MEDICARE PROGRAM PREMIUMS FOR SUPPLEMENTARY MEDICAL INSURANCE Direct Remittance: Group Payment § 408.90 Termination of group billing arrangement. (a) A group billing arrangement may be terminated...

  6. 42 CFR 408.90 - Termination of group billing arrangement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Termination of group billing arrangement. 408.90... SERVICES MEDICARE PROGRAM PREMIUMS FOR SUPPLEMENTARY MEDICAL INSURANCE Direct Remittance: Group Payment § 408.90 Termination of group billing arrangement. (a) A group billing arrangement may be terminated...

  7. Crystal structures of two mixed-valence copper cyanide complexes with N-methyl­ethylenedi­amine

    PubMed Central

    Sabatino, Alexander

    2017-01-01

    The crystal structures of two mixed-valence copper cyanide compounds involving N-methyl­ethylenedi­amine (meen), are described. In compound (I), poly[bis(μ3-cyanido-κ3 C:C:N)tris(μ2-cyanido-κ2 C:N)bis(N-methylethane-1,2-di­amine-κ2 N,N′)tricopper(I)copper(II)], [Cu4(CN)5(C3H10N2)2] or Cu4(CN)5meen2, cyanide groups link CuI atoms into a three-dimensional network containing open channels parallel to the b axis. In the network, two tetra­hedrally bound CuI atoms are bonded by the C atoms of two end-on bridging CN groups to form Cu2(CN)6 moieties with the Cu atoms in close contact at 2.560 (1) Å. Other trigonally bound CuI atoms link these units together to form the network. The CuII atoms, coordinated by two meen units, are covalently linked to the network via a cyanide bridge, and project into the open network channels. In the mol­ecular compound (II), [(N-methylethylenediamine-κ2 N,N′)copper(II)]-μ2-cyanido-κ2 C:N-[bis(cyanido-κC)copper(I)] monohydrate, [Cu2(CN)3(C3H10N2)2]·H2O or Cu2(CN)3meen2·H2O, a CN group connects a CuII atom coordinated by two meen groups with a trigonal–planar CuI atom coordinated by CN groups. The mol­ecules are linked into centrosymmetric dimers via hydrogen bonds to two water mol­ecules. In both compounds, the bridging cyanide between the CuII and CuI atoms has the N atom bonded to CuII and the C atom bonded to CuI, and the CuII atoms are in a square-pyramidal coordination. PMID:28217329

  8. N-formylation of amines via the aerobic oxidation of methanol over supported gold nanoparticles.

    PubMed

    Ishida, Tamao; Haruta, Masatake

    2009-01-01

    Dress code: formyl. Gold nanoparticles supported on NiO catalyze the one-pot N-formylation of amines with methanol and molecular oxygen to produce formamide at a selectivity of 90 %. This process generates methyl formate in situ, followed by reaction with amines.

  9. High performance N2O4/amine elements: Data dump covering. Task 1: Literature review

    NASA Technical Reports Server (NTRS)

    Hines, W. S.; Nurick, W. H.

    1974-01-01

    The phenomenon of reactive stream separation (RSS) in the N2O4/amine earth-storable propellant combinations is reviewed. Early theoretical models of RSS are presented, as are experimental combustion data under simulated rocket conditions. N2O4/amine combustion chemistry data is also provided. More recent work in the development of a comprehensive model is described.

  10. A catalytic role of surface silanol groups in CO2 capture on the amine-anchored silica support.

    PubMed

    Cho, Moses; Park, Joonho; Yavuz, Cafer T; Jung, Yousung

    2018-05-03

    A new mechanism of CO2 capture on the amine-functionalized silica support is demonstrated using density functional theory calculations, in which the silica surface not only acts as a support to anchor amines, but also can actively participate in the CO2 capture process through a facile proton transfer reaction with the amine groups. The surface-mediated proton transfer mechanism in forming a carbamate-ammonium product has lower kinetic barrier (8.1 kcal mol-1) than the generally accepted intermolecular mechanism (12.7 kcal mol-1) under dry conditions, and comparable to that of the water-assisted intermolecular mechanism (6.0 kcal mol-1) under humid conditions. These findings suggest that the CO2 adsorption on the amine-anchored silica surface would mostly occur via the rate-determining proton transfer step that is catalyzed by the surface silanol groups.

  11. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auperin,T.; Bolduc, G.; Baron, M.

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} ofmore » the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.« less

  12. Tailoring Enzyme-Like Activities of Gold Nanoclusters by Polymeric Tertiary Amines for Protecting Neurons Against Oxidative Stress.

    PubMed

    Liu, Ching-Ping; Wu, Te-Haw; Lin, Yu-Lung; Liu, Chia-Yeh; Wang, Sabrina; Lin, Shu-Yi

    2016-08-01

    The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions. Surprisingly, the methylated form of AuNCs-NH2 (i.e., MAuNCs-N(+) R3 , where R = H or CH3 ) results in a dramatic recovery of the intrinsic peroxidase-like activity while blocking most primary and tertiary amines (1°- and 3°-amines) of dendrimers to form quaternary ammonium ions (4°-amines). However, the hidden peroxidase-like activity is also found in hydroxyl-terminated dendrimer-encapsulated AuNCs (AuNCs-OH, inside backbone with 3°-amines), indicating that 3°-amines are dominant in mediating the peroxidase-like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°-amines on the surface of dendrimer-encapsulated AuNCs provides sufficient suppression of the critical mediator •OH for the peroxidase-like activity. Finally, it is demonstrated that AuNCs-NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Aromatic amine metabolism: immunochemical relationships of N-acetyltransferase and N,O-acyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, S.; Allaben, W.T.; King, C.M.

    1986-05-01

    Mutagenic and carcinogenic aromatic amines are acetylated in most organisms. Acetyl CoA and arylhydroxamic acids can serve as acetyl donors for N-Acetylation of amines to yield stable amides, or by O-acetylation of hydroxylamine derivatives to produce reactive metabolites that can react covalently with nucleic acid. Polyclonal antibodies against rat arylhydroxamic acid, N,O-acyltransferase (AHAT) have been compared for their abilities to react with this enzyme and the acetyl CoA-dependent N-acetyltransferase (NAT) of the rat, rabbit, hamster, mouse and human. Liver cytosols were treated with increasing quantities of antibodies from immune or control rabbits. Immune complexes were removed by treatment with proteinmore » A-Sepharose before assay of nucleic acid adduct formation by AHAT activation of N-hydroxy-2-acetylaminofluorene and the acetylation of 2-aminofluorene by NAT. Both rat activities, the AHAT of the hamster and the NAT of the mouse and human were removed by this treatment. No decrease in NAT activity of hamster, or of either rabbit cytosol activity was observed. Neither mouse nor human liver has appreciable AHAT activity. These data support the idea that AHAT and NAT of rat, AHAT of hamster and NAT of mouse and human liver are immunochemically related, but that NAT of the hamster is an immunochemically distinct peptide.« less

  14. Facile N-Arylation of Amines and Sulfonamides and O-Arylation of Phenols and Arenecarboxylic Acids

    PubMed Central

    Liu, Zhijian; Larock, Richard C.

    2008-01-01

    An efficient, transition-metal free procedure for the N-arylation of amines, sulfonamides and carbamates and O-arylation of phenols and carboxylic acids has been achieved by allowing these substrates to react with a variety of o-silylaryl triflates in the presence of CsF. Good to excellent yields of arylated products are obtained under very mild reaction conditions. This chemistry readily tolerates a variety of functional groups. PMID:16599619

  15. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.

    PubMed

    Suzuki, Ken; Watanabe, Tomonari; Murahashi, Shun-Ichi

    2013-03-15

    The oxidative transformation of primary amines to their corresponding oximes proceeds with high efficiency under molecular oxygen diluted with molecular nitrogen (O2/N2 = 7/93 v/v, 5 MPa) in the presence of the catalysts 1,1-diphenyl-2-picrylhydrazyl (DPPH) and tungusten oxide/alumina (WO3/Al2O3). The method is environmentally benign, because the reaction requires only molecular oxygen as the terminal oxidant and gives water as a side product. Various alicyclic amines and aliphatic amines can be converted to their corresponding oximes in excellent yields. It is noteworthy that the oxidative transformation of primary amines proceeds chemoselectively in the presence of other functional groups. The key step of the present oxidation is a fast electron transfer from the primary amine to DPPH followed by proton transfer to give the α-aminoalkyl radical intermediate, which undergoes reaction with molecular oxygen and hydrogen abstraction to give α-aminoalkyl hydroperoxide. Subsequent reaction of the peroxide with WO3/Al2O3 gives oximes. The aerobic oxidation of secondary amines gives the corresponding nitrones. Aerobic oxidative transformation of cyclohexylamines to cyclohexanone oximes is important as a method for industrial production of ε-caprolactam, a raw material for Nylon 6.

  16. Novel Cobalt(II) complexes containing N,N-di(2-picolyl)amine based ligands; Synthesis, characterization and application towards methyl methacrylate polymerisation

    NASA Astrophysics Data System (ADS)

    Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun

    2016-06-01

    The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).

  17. Copper-catalyzed three- five- or seven-component coupling reactions: the selective synthesis of cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)methylenediamines based on a Strecker-type synthesis.

    PubMed

    Sakai, Norio; Takahashi, Nobuaki; Inoda, Daiki; Ikeda, Reiko; Konakahara, Takeo

    2013-10-10

    We have demonstrated that a cooperative catalytic system comprised of CuCl and Cu(OTf)(2) could be used to effectively catalyse the three-, five- and seven-component coupling reactions of aliphatic or aromatic amines, formaldehyde, and trimethylsilyl cyanide (TMSCN), and selectively produce in good yields the corresponding cyanomethylamines, N,N-bis(cyanomethyl)amines and N,N'-bis(cyanomethyl)methylenediamines.

  18. Strain Release Amination

    PubMed Central

    Gianatassio, Ryan; Lopchuk, Justin M.; Wang, Jie; Pan, Chung-Mao; Malins, Lara R.; Prieto, Liher; Brandt, Thomas A.; Collins, Michael R.; Gallego, Gary M.; Sach, Neal W.; Spangler, Jillian E.; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S.

    2015-01-01

    To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C–C and C–N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late-stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation. PMID:26816372

  19. Palladium-catalysed anti-Markovnikov selective oxidative amination

    NASA Astrophysics Data System (ADS)

    Kohler, Daniel G.; Gockel, Samuel N.; Kennemur, Jennifer L.; Waller, Peter J.; Hull, Kami L.

    2018-03-01

    In recent years, the synthesis of amines and other nitrogen-containing motifs has been a major area of research in organic chemistry because they are widely represented in biologically active molecules. Current strategies rely on a multistep approach and require one reactant to be activated prior to the carbon-nitrogen bond formation. This leads to a reaction inefficiency and functional group intolerance. As such, a general approach to the synthesis of nitrogen-containing compounds from readily available and benign starting materials is highly desirable. Here we present a palladium-catalysed oxidative amination reaction in which the addition of the nitrogen occurs at the less-substituted carbon of a double bond, in what is known as anti-Markovnikov selectivity. Alkenes are shown to react with imides in the presence of a palladate catalyst to generate the terminal imide through trans-aminopalladation. Subsequently, olefin isomerization occurs to afford the thermodynamically favoured products. Both the scope of the transformation and mechanistic investigations are reported.

  20. Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines.

    PubMed

    Padhye, Lokesh; Wang, Pei; Karanfil, Tanju; Huang, Ching-Hua

    2010-06-01

    Activated carbon (AC) is the most common solid phase extraction material used for analysis of nitrosamines in water. It is also widely used for the removal of organics in water treatment and as a catalyst or catalyst support in some industrial applications. In this study, it was discovered that AC materials can catalyze transformation of secondary amines to yield trace levels of N-nitrosamines under ambient aerobic conditions. All 11 commercial ACs tested in the study formed nitrosamines from secondary amines. Among the different ACs, the N-nitrosodimethylamine (NDMA) yield at pH 7.5 ranged from 0.001% to 0.01% of initial amount of aqueous dimethylamine (DMA) concentration, but at 0.05-0.29% of the amount of adsorbed DMA by AC. Nitrosamine yield increased with higher pH and for higher molecular weight secondary amines, probably because of increased adsorption of amines. Presence of oxygen was a critical factor in the transformation of secondary amines, since ACs with adsorbed secondary amines dried under air for longer period of time exhibited significantly higher nitrosamine yields. The AC-catalyzed nitrosamine formation was also observed in surface water and wastewater effluent samples. Properties of AC play an important role in the nitrosamine yields. Preliminary evaluation indicated that nitrosamine formation was higher on reduced than oxidized AC surfaces. Overall, the study results show that selecting ACs and reaction conditions are important to minimize analytical errors and undesirable formation associated with nitrosamines in water samples.

  1. Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster

    PubMed Central

    Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich

    2009-01-01

    Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390

  2. Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.

    PubMed

    McCurry, Daniel L; Quay, Amanda N; Mitch, William A

    2016-02-02

    Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.

  3. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection.

    PubMed

    Chen, Hong-Jun; Zhang, Zhao-Hui; Cai, Rong; Chen, Xing; Liu, Yu-Nan; Rao, Wei; Yao, Shou-Zhuo

    2013-10-15

    In this work, an imprinted electrochemical sensor based on electrochemical reduced graphene covalently modified carbon electrode was developed for the determination of 4-nonylphenol (NP). An amine-terminated functional graphene oxide was covalently modified onto the electrode surface with diazonium salt reactions to improve the stability and reproducibility of the imprinted sensor. The electrochemical properties of each modified electrodes were investigated with differential pulse voltammetry (DPV). The electrochemical characteristic of the imprinted sensor was also investigated using electrochemical impedance spectroscopy (EIS) in detail. The response currents of the imprinted electrode exhibited a linear relationship toward 4-nonylphenol concentration ranging from 1.0 × 10(-11) to 1.0 × 10(-8) gm L(-1) with the detection limit of 3.5 × 10(-12) gm L(-1) (S/N=3). The fabricated electrochemical imprinted sensor was successfully applied to the detection of 4-nonylphenol in rain and lake water samples. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  4. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. {μ-2-[(3-Amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1:2κ(5)O(1),O(6):N,N',O(1)}{2-[(3-amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1κ(3)N,N',O(1)}-μ-azido-1:2κ(2)N:N-azido-2κN-methanol-2κO-dinickel(II).

    PubMed

    Ghaemi, Akbar; Rayati, Saeed; Fayyazi, Kazem; Ng, Seik Weng; Tiekink, Edward R T

    2012-08-01

    Two distinct coordination geometries are found in the binuclear title complex, [Ni(2)(C(13)H(19)N(2)O(2))(2)(N(3))(2)(CH(3)OH)], as one Schiff base ligand is penta-dentate, coordinating via the anti-cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth-oxy O atom. The Ni(II) atoms are linked by a μ(2)-oxide atom and one end of a μ(2)-azide ligand, forming an Ni(2)ON core. The coordination geometry for the Ni(II) atom coordinated by the tridentate ligand is completed by the meth-oxy O atom derived from the penta-dentate ligand, with the resulting N(3)O(3) donor set defining a fac octa-hedron. The second Ni(II) atom has its cis-octa-hedral N(4)O(2) coordination geometry completed by the imine N and amine N atoms of the penta-dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra-molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra-molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

  6. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    PubMed

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Metal and base free synthesis of primary amines via ipso amination of organoboronic acids mediated by [bis(trifluoroacetoxy)iodo]benzene (PIFA).

    PubMed

    Chatterjee, Nachiketa; Goswami, Avijit

    2015-08-07

    A metal and base free synthesis of primary amines has been developed at ambient temperature through ipso amination of diversely functionalized organoboronic acids, employing a combination of [bis(trifluoroacetoxy)iodo]benzene (PIFA)-N-bromosuccinimide (NBS) and methoxyamine hydrochloride as the aminating reagent. The amines were primarily obtained as their trifluoroacetate salts which on subsequent aqueous alkaline work up provided the corresponding free amines. The combination of PIFA-NBS is found to be the mildest choice compared to the commonly used strong bases (e.g. n-BuLi, Cs2CO3) for activating the aminating agent. The reaction is expected to proceed via activation of the aminating reagent followed by B-N 1,2-aryl migration.

  8. GC/MS determination of amines following exhaustive trifluoroacetylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, J.S.; Green, J.B.; McWilliams, T.B.

    An analytical method for trifluoroacetylation of aromatic amines and GC/MS of the resulting derivatives has been developed. The key feature of the method is its capability to differentiate d tertiary amines; since, using the conditions described in the report, most primary, secondary, an primary amines add two and secondary amines add one trifluoroacetyl group. In general, tertiary amines do not react. Since conventional trifluoroacetylation procedures introduce only a single trifluoroacetyl group into both primary and secondary aminess the procedure reported here improves GC/MS identification of the relatively large number of isomers of nitrogen compounds found in petroleum or similarly complexmore » mixtures. For example, using exhaustive trifluoroacetylation, it is possible to differentiate isomeric forms of C{sub 9}H{sub 11}N (e.g., cyclohexenopyridines, aminoindans, 1,2,3,4-tetrahydroquinoline and tetrahydroisoquinolines). Examples of the application of the method to petroleum and coal liquid products are provided. Because of the limited thermal stability of the derivatives of primary amines, the method is applicable only to distillates boiling below 370{degrees}C (700{degrees}F). To expedite utilization of the method by others, GC retention indices and relative GC/MS total ion current response factors for 102 trifluoroacetyl derivatives are included in the body of the report and their 70 ev mass spectra are reported in Appendix A.« less

  9. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    PubMed

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  10. Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride

    NASA Astrophysics Data System (ADS)

    Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David

    2018-06-01

    In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.

  11. Non-amine-based dopamine transporter (reuptake) inhibitors retain properties of amine-based progenitors.

    PubMed

    Madras, Bertha K; Fahey, Michele A; Miller, Gregory M; De La Garza, Richard; Goulet, Martin; Spealman, Roger D; Meltzer, Peter C; George, Susan R; O'Dowd, Brian F; Bonab, Ali A; Livni, Eli; Fischman, Alan J

    2003-10-31

    Without exception, therapeutic and addictive drugs that produce their primary effects by blocking monoamine transporters in brain contain an amine nitrogen in their structure. This fundamental canon of drug design was based on a prevailing premise that an amine nitrogen is required to mimic the structures of monoamine neurotransmitters and other natural products. Non-amines, a novel class of compounds that contain no amine nitrogen, block monoamine transporters in the nM range and display markedly high selectivity for monoamine transporters, but not for receptors. Non-amines retain the spectrum of biochemical and pharmacological properties characteristic of amine-bearing counterparts. These novel drugs compel a revision of current concepts of drug-monoamine transporter complex formation and open avenues for discovery of a new generation of therapeutic drugs.

  12. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    PubMed

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  13. Direct α-C-H bond functionalization of unprotected cyclic amines

    NASA Astrophysics Data System (ADS)

    Chen, Weijie; Ma, Longle; Paul, Anirudra; Seidel, Daniel

    2018-02-01

    Cyclic amines are ubiquitous core structures of bioactive natural products and pharmaceutical drugs. Although the site-selective abstraction of C-H bonds is an attractive strategy for preparing valuable functionalized amines from their readily available parent heterocycles, this approach has largely been limited to substrates that require protection of the amine nitrogen atom. In addition, most methods rely on transition metals and are incompatible with the presence of amine N-H bonds. Here we introduce a protecting-group-free approach for the α-functionalization of cyclic secondary amines. An operationally simple one-pot procedure generates products via a process that involves intermolecular hydride transfer to generate an imine intermediate that is subsequently captured by a nucleophile, such as an alkyl or aryl lithium compound. Reactions are regioselective and stereospecific and enable the rapid preparation of bioactive amines, as exemplified by the facile synthesis of anabasine and (-)-solenopsin A.

  14. The rate of charge tunneling is insensitive to polar terminal groups in self-assembled monolayers in Ag(TS)S(CH2)(n)M(CH2)(m)T//Ga2O3/EGaIn junctions.

    PubMed

    Yoon, Hyo Jae; Bowers, Carleen M; Baghbanzadeh, Mostafa; Whitesides, George M

    2014-01-08

    This paper describes a physical-organic study of the effect of uncharged, polar, functional groups on the rate of charge transport by tunneling across self-assembled monolayer (SAM)-based large-area junctions of the form Ag(TS)S(CH2)(n)M(CH2)(m)T//Ga2O3/EGaIn. Here Ag(TS) is a template-stripped silver substrate, -M- and -T are "middle" and "terminal" functional groups, and EGaIn is eutectic gallium-indium alloy. Twelve uncharged polar groups (-T = CN, CO2CH3, CF3, OCH3, N(CH3)2, CON(CH3)2, SCH3, SO2CH3, Br, P(O)(OEt)2, NHCOCH3, OSi(OCH3)3), having permanent dipole moments in the range 0.5 < μ < 4.5, were incorporated into the SAM. A comparison of the electrical characteristics of these junctions with those of junctions formed from n-alkanethiolates led to the conclusion that the rates of charge tunneling are insensitive to the replacement of terminal alkyl groups with the terminal polar groups in this set. The current densities measured in this work suggest that the tunneling decay parameter and injection current for SAMs terminated in nonpolar n-alkyl groups, and polar groups selected from common polar organic groups, are statistically indistinguishable.

  15. Amination of nitroazoles--a comparative study of structural and energetic properties.

    PubMed

    Zhao, Xiuxiu; Qi, Cai; Zhang, Lubo; Wang, Yuan; Li, Shenghua; Zhao, Fengqi; Pang, Siping

    2014-01-14

    In this work, 3-nitro-1H-1,2,4-triazole (1) and 3,5-dinitro-1H-pyrazole (2) were C-aminated and N-aminated using different amination agents, yielding their respective C-amino and N-amino products. All compounds were fully characterized by NMR (1H, 13C, 15N), IR spectroscopy, differential scanning calorimetry (DSC). X-ray crystallographic measurements were performed and delivered insight into structural characteristics as well as inter- and intramolecular interactions of the products. Their impact sensitivities were measured by using standard BAM fallhammer techniques and their explosive performances were computed using the EXPLO 5.05 program. A comparative study on the influence of those different amino substituents on the structural and energetic properties (such as density, stability, heat of formation, detonation performance) is presented. The results showed that the incorporation of an N-amino group into a nitroazole ring can improve nitrogen content, heat of formation and impact sensitivity, while the introduction of a C-amino group can enhance density, detonation velocity and pressure. The potential of N-amino and C-amino moieties for the design of next generation energetic materials is explored.

  16. Copper(II)-catalyzed oxidative N-nitrosation of secondary and tertiary amines with nitromethane under an oxygen atmosphere.

    PubMed

    Sakai, Norio; Sasaki, Minoru; Ogiwara, Yohei

    2015-07-25

    The combination of a catalytic amount of Cu(OTf)2 and less than a stoichiometric amount of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) under an O2 atmosphere effectively promoted the N-nitrosation of both secondary aromatic/aliphatic amines and tertiary aromatic amines with nitromethane (CH3NO2) leading to the preparation of N-nitrosamine derivatives.

  17. Tandem Carbocupration/Oxygenation of Terminal Alkynes

    PubMed Central

    Zhang, Donghui; Ready, Joseph M.

    2008-01-01

    A direct and general synthesis of α-branched aldehydes and their enol derivatives is described. Carbocupration of terminal alkynes and subsequent oxygenation with lithium tert-butyl peroxide generates a metallo-enolate. Trapping with various electrophiles provides α-branched aldehydes or stereo-defined trisubstituted enol esters or silyl ethers. The tandem carbocupration/oxygenation tolerates alkyl and silyl ethers, esters and tertiary amines. The reaction is effective with organocopper complexes derived from primary, secondary and tertiary Grignard reagents and from n-butyllithium. PMID:16321021

  18. Cu(I)-catalyzed transannulation of N-heteroaryl aldehydes or ketones with alkylamines via C(sp3)-H amination.

    PubMed

    Li, Mingyang; Xie, Ying; Ye, Yong; Zou, Yong; Jiang, Huanfeng; Zeng, Wei

    2014-12-05

    A copper(I)-catalyzed direct transannulation of N-heteroaryl aldehydes or ketones with alkylamines via Csp(3)-H amination has been achieved using molecular oxygen as a sole oxidant. N-Heteroarenes are employed as the amine source. This transformation provides a rapid and concise access to multifunctional imidazo[1,5-a]pyridines.

  19. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation.

    PubMed

    De Mey, Eveline; De Klerck, Katrijn; De Maere, Hannelore; Dewulf, Lore; Derdelinckx, Guy; Peeters, Marie-Christine; Fraeye, Ilse; Vander Heyden, Yvan; Paelinck, Hubert

    2014-02-01

    Regarding food borne intoxications, the accumulation of biogenic amines must be avoided in all kinds of food products. Moreover, biogenic amines can function as precursors for the formation of carcinogenic N-nitrosamines when nitrite is present. To estimate the food safety of the dry fermented sausages available on the Belgian market, a screening of the residual sodium nitrite and nitrate contents, biogenic amines and volatile N-nitrosamine concentrations was performed on 101 samples. The median concentrations of residual NaNO2 and NaNO3 were each individually lower than 20mg/kg. In general, the biogenic amine accumulation remained low at the end of shelf life. Only in one product the amounts of cadaverine and putrescine reached intoxicating levels. Concerning the occurrence of N-nitrosamines, only N-nitrosopiperidine and N-nitrosomorpholine were detected in a high number of samples (resp. 22% and 28%). No correlation between the presence of N-nitrosamines and the biogenic amines content was observed. Although the N-nitrosamines could not been linked to specific product categories, the occurrence of N-nitrosopiperidine could probably be attributed to the use of pepper. © 2013.

  20. The C- and N-Terminal Residues of Synthetic Heptapeptide Ion Channels Influence Transport Efficacy Through Phospholipid Bilayers

    PubMed Central

    Djedovič, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Weber, Michelle E.; Schlesinger, Paul H.; Gokel, George W.

    2008-01-01

    The synthetic peptide, R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR’, was shown to be selective for Cl- over K+ when R is n-octadecyl and R’ is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2° amides, or 3° amides. The compounds having varied N-terminal anchors and C-terminal benzyl groups are as follows: 1, R = n-propyl; 2, R = n-hexyl; 3, R = n-octyl; 4, R = n-decyl; 5, R = n-dodecyl; 6, R = n-tetradecyl; 7, R = n-hexadecyl; 8, R = n-octadecyl. Compounds 9-19 have R = n-octadecyl and C-terminal residues as follows: 9, OR’ = OCH2CH3; 10, OR’ = OCH(CH3)2; 11, OR’ = O(CH2)6CH3; 12, OR’ = OCH2-c-C6H11; 13, OR’ = O(CH2)9CH3; 14, OR’ = O (CH2)17CH3; 15, NR’2 = N[(CH2)6CH3]2; 16, NHR’ = NH(CH2)9CH3; 17, NR’2 = N[(CH2)9CH3]2; 18, NHR’ = NH(CH2)17CH3; 19, NR’2 = N[(CH2)17CH3]2. The highest anion transport activities were observed as follows. For the benzyl esters whose N-terminal residues were varied, i.e. 1-8, compound 3 was most active. For the C18 anchored esters 10-14, n-heptyl ester 11 was most active. For the C18 anchored, C-terminal amides 15-19, di-n-decylamide 17 was most active. It was concluded that both the C- and N-terminal anchors were important for channel function in the bilayer but that activity was lost unless only one of the two anchoring groups was dominant. PMID:19633728

  1. Crystal structure of bis-(benzyl-amine-κN)[5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinato-κ(4) N]iron(II) n-hexane monosolvate.

    PubMed

    Dhifaoui, Selma; Harhouri, Wafa; Bujacz, Anna; Nasri, Habib

    2016-01-01

    In the title compound, [Fe(II)(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [Fe(II)(TPP-Cl)(BzNH2)2]·n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinate and benzyl-amine ligands, respectively], the Fe(II) cation lies on an inversion centre and is octa-hedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzyl-amine ligand in the axial sites. The crystal structure also contains one inversion-symmetric n-hexane solvent mol-ecule per complex mol-ecule. The average Fe-Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N-H⋯Cl and C-H⋯Cl hydrogen-bonding inter-actions and by C-H⋯π inter-molecular inter-actions, leading to a three-dimensional network structure.

  2. High capacity immobilized amine sorbents

    DOEpatents

    Gray, McMahan L [Pittsburgh, PA; Champagne, Kenneth J [Fredericktown, PA; Soong, Yee [Monroeville, PA; Filburn, Thomas [Granby, CT

    2007-10-30

    A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

  3. (Carbonato-κ2 O,O′)bis­(di-2-pyridyl­amine-κ2 N,N′)cobalt(III) bromide

    PubMed Central

    Czapik, Agnieszka; Papadopoulos, Christos; Lalia-Kantouri, Maria; Gdaniec, Maria

    2011-01-01

    In the title compound, [Co(CO3)(C10H9N3)2]Br, a distorted octa­hedral coordination of the CoIII atom is completed by four N atoms of the two chelating di-2-pyridyl­amine ligands and two O atoms of the chelating carbonate anion. The di-2-pyridyl­amine ligands are nonplanar and the dihedral angles between the 2-pyridyl groups are 29.11 (9) and 37.15 (12)°. The coordination cation, which has approximate C 2 symmetry, is connected to the bromide ion via an N—H⋯Br− hydrogen bond. The ionic pair thus formed is further assembled into a dimer via N—H⋯O inter­actions about an inversion centre. A set of weaker C—H⋯O and C—H⋯Br− inter­actions connect the dimers into a three-dimensional network. PMID:21753946

  4. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles.

    PubMed

    Zhang, Ying; Kuang, Min; Zhang, Lijuan; Yang, Pengyuan; Lu, Haojie

    2013-06-04

    In light of the significance of glycosylation for wealthy biological events, it is important to prefractionate glycoproteins/glycopeptides from complex biological samples. Herein, we reported a novel protocol of solid-phase extraction of glycopeptides through a reductive amination reaction by employing the easily accessible 3-aminopropyltriethoxysilane (APTES)-functionalized magnetic nanoparticles. The amino groups from APTES, which were assembled onto the surface of the nanoparticles through a one-step silanization reaction, could conjugate with the aldehydes from oxidized glycopeptides and, therefore, completed the extraction. To the best of our knowledge, this is the first example of applying the reductive amination reaction into the isolation of glycopeptides. Due to the elimination of the desalting step, the detection limit of glycopeptides was improved by 2 orders of magnitude, compared to the traditional hydrazide chemistry-based solid phase extraction, while the extraction time was shortened to 4 h, suggesting the high sensitivity, specificity, and efficiency for the extraction of N-linked glycopeptides by this method. In the meantime, high selectivity toward glycoproteins was also observed in the separation of Ribonuclease B from the mixtures contaminated with bovine serum albumin. What's more, this technique required significantly less sample volume, as demonstrated in the successful mapping of glycosylation of human colorectal cancer serum with the sample volume as little as 5 μL. Because of all these attractive features, we believe that the innovative protocol proposed here will shed new light on the research of glycosylation profiling.

  5. Crystal structure and electrochemical properties of [Ni(bztmpen)(CH3CN)](BF4)2 {bztmpen is N-benzyl-N,N',N'-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}.

    PubMed

    Chen, Lin; Ren, Gan; Guo, Yakun; Sang, Ge

    2017-06-01

    The mononuclear nickel title complex (acetonitrile-κ N ){ N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}-nickel(II) bis-(tetra-fluor-ido-borate), [Ni(C 30 H 35 N 5 )(CH 3 CN)](BF 4 ) 2 , was prepared from the reaction of Ni(BF 4 ) 2 ·6H 2 O with N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine ( bztmpen ) in aceto-nitrile at room temperature. With an open site occupied by the aceto-nitrile mol-ecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octa-hedral coordination environment. Compared with analogues where the 6-methyl substituent is absent, the bond length around the Ni 2+ cation are evidently longer. Upon reductive dissociation of the acetro-nitrile mol-ecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at -1.50 and -1.80 V ( versus F c +/0 ) based on nickel. The F atoms of the two BF 4 - counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).

  6. Chemical Modeling for Predicting the Abundances of Certain Aldimines and Amines in Hot Cores

    NASA Astrophysics Data System (ADS)

    Sil, Milan; Gorai, Prasanta; Das, Ankan; Bhat, Bratati; Etim, Emmanuel E.; Chakrabarti, Sandip K.

    2018-02-01

    We consider six isomeric groups ({{CH}}3{{N}}, {{CH}}5{{N}}, {{{C}}}2{{{H}}}5{{N}}, {{{C}}}2{{{H}}}7{{N}}, {{{C}}}3{{{H}}}7{{N}}, and {{{C}}}3{{{H}}}9{{N}}) to review the presence of amines and aldimines within the interstellar medium (ISM). Each of these groups contains at least one aldimine or amine. Methanimine ({{CH}}2{NH}) from {{CH}}3{{N}} and methylamine ({{CH}}3{{NH}}2) from {{CH}}5{{N}} isomeric group were detected a few decades ago. Recently, the presence of ethanimine ({{CH}}3{CHNH}) from {{{C}}}2{{{H}}}5{{N}} isomeric group has been discovered in the ISM. This prompted us to investigate the possibility of detecting any aldimine or amine from the very next three isomeric groups in this sequence: {{{C}}}2{{{H}}}7{{N}}, {{{C}}}3{{{H}}}7{{N}}, and {{{C}}}3{{{H}}}9{{N}}. We employ high-level quantum chemical calculations to estimate accurate energies of all the species. According to enthalpies of formation, optimized energies, and expected intensity ratio, we found that ethylamine (precursor of glycine) from {{{C}}}2{{{H}}}7{{N}} isomeric group, (1Z)-1-propanimine from {{{C}}}3{{{H}}}7{{N}} isomeric group, and trimethylamine from {{{C}}}3{{{H}}}9{{N}} isomeric group are the most viable candidates for the future astronomical detection. Based on our quantum chemical calculations and from other approximations (from prevailing similar types of reactions), a complete set of reaction pathways to the synthesis of ethylamine and (1Z)-1-propanimine is prepared. Moreover, a large gas-grain chemical model is employed to study the presence of these species in the ISM. Our modeling results suggest that ethylamine and (1Z)-1-propanimine could efficiently be formed in hot-core regions and could be observed with present astronomical facilities. Radiative transfer modeling is also implemented to additionally aid their discovery in interstellar space.

  7. Pd-Catalyzed Acetoxylation of γ-C(sp3)-H Bonds of Amines Directed by a Removable Bts-Protecting Group.

    PubMed

    Zheng, Yong; Song, Weibin; Zhu, Yefu; Wei, Bole; Xuan, Lijiang

    2018-02-16

    Pd-catalyzed acetoxylation of γ-C(sp 3 )-H bonds directed by Bts-protected amines using inexpensive PhI(OAc) 2 as oxidant is reported. The Bts-protecting group is easily introduced and removed under mild conditions. This protocol provides an important strategy for the construction of γ-hydroxyl amine derivatives.

  8. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    PubMed

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  9. N-terminal nesprin-2 variants regulate β-catenin signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragmentmore » of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.« less

  10. Fate and transformation products of amine-terminated PAMAM dendrimers under ozonation and irradiation.

    PubMed

    Santiago-Morales, Javier; Rosal, Roberto; Hernando, María D; Ulaszewska, Maria M; García-Calvo, Eloy; Fernández-Alba, Amadeo R

    2014-02-15

    This article deals with the degradation of a third-generation (G3) poly(amidoamine) (PAMAM) dendrimer under ozonation and irradiation. The identification and quantification of G3 PAMAM dendrimer and its transformation products has been performed by liquid chromatography-electrospray ionization-hybrid quadrupole time-of-flight-mass spectrometry. The dendrimer was completely depleted by ozone in less than 1 min. The effect of ultraviolet irradiation was attributed to hydroxyl-mediated oxidation. The transformation products were attributed to the oxidation of amines, which resulted in highly oxidized structures with abundance of carboxylic acids, which started from the formation of amine oxide and the scission of the CN bond of the amide group. We studied the toxicity of treated mixtures for six different organisms: the acute toxicity for the bacterium Vibrio fischeri and the microcrustacean Daphnia magna, the multigenerational growth inhibition of the alga Pseudokirchneriella subcapitata, and the seed germination phytotoxicity of Licopersicon esculentum, Lactuca sativa and Lolium perenne. Ozonation and irradiation originated transformation products are more toxic than the parent dendrimer. The toxicity of the dendrimer for the green alga was linked to a strong increase of intracellular reactive oxygen species with intense lipid peroxidation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of bifunctional surfaces with tunable functional group pairs

    NASA Astrophysics Data System (ADS)

    Galloway, John M.; Kung, Mayfair; Kung, Harold H.

    2016-06-01

    Grafting of pairs of functional groups onto a silica surface was demonstrated by tethering both terminals of an organochlorosilane precursor molecule, Cl2(CH3)Si(CH2)4(CO)(OSi(i-Pr)2)(CH2)2Si(CH3)Cl2, that possess a cleavable silyl ester bond, onto a silica surface. Hydrolytic cleavage of the silyl ester bond of the grafted molecule resulted in the generation of organized pairs of carboxylic acid and organosilanol groups. This organosilanol moiety was easily transformed into other functional groups through condensation reactions to form, together with the neighboring acid group, pairs such as carboxylic acid/secondary amine, carboxylic acid/pyridine, and carboxylic acid/phosphine. In the case of carboxylic acid/amine pairing, there was evidence of the formation of amide. A sample grafted with amine-carboxylic acid pairs was three times more active (per free amine) than a sample without such pairs for the nitroaldol condensation of 4-nitrobenzaldehyde and nitromethane.

  12. Role of Amine Functionality for CO2 Chemisorption on Silica.

    PubMed

    Hahn, Maximilian W; Jelic, Jelena; Berger, Edith; Reuter, Karsten; Jentys, Andreas; Lercher, Johannes A

    2016-03-03

    The mechanism of CO2 adsorption on primary, secondary, and bibasic aminosilanes synthetically functionalized in porous SiO2 was qualitatively and quantitatively investigated by a combination of IR spectroscopy, thermogravimetry, and quantum mechanical modeling. The mode of CO2 adsorption depends particularly on the nature of the amine group and the spacing between the aminosilanes. Primary amines bonded CO2 preferentially through the formation of intermolecular ammonium carbamates, whereas CO2 was predominantly stabilized as carbamic acid, when interacting with secondary amines. Ammonium carbamate formation requires the transfer of the carbamic acid proton to a second primary amine group to form the ammonium ion and hence two (primary) amine groups are required to bind one CO2 molecule. The higher base strength of secondary amines enables the stabilization of carbamic acid, which is thereby hindered to interact further with nearby amine functions, because their association with Si-OH groups (either protonation or hydrogen bonding) does not allow further stabilization of carbamic acid as carbamate. Steric hindrance of the formation of intermolecular ammonium carbamates leads to higher uptake capacities for secondary amines functionalized in porous SiO2 at higher amine densities. In aminosilanes possessing a primary and a secondary amine group, the secondary amine group tends to be protonated by Si-OH groups and therefore does not substantially interact with CO2.

  13. Direct asymmetric N-specific reaction of nitrosobenzene with aldehydes catalyzed by a chiral primary amine-based organocatalyst.

    PubMed

    Qin, Long; Li, Lei; Yi, Lei; Da, Chao-Shan; Zhou, Yi-Feng

    2011-08-01

    Nitroso compounds have two reactive nitrogen and oxygen atoms. It is interesting and important to perform a nitrogen or oxygen selective reaction with interesting substrates. These atom specific reactions are crucial to specifically synthesis of specific compounds. An enantioselective N-specific reaction of nitrosobenzene with unmodified aldehydes was successfully achieved catalyzed first by a variety of primary amine-based organocatalysts with higher yield and enantioselectivity. The bulkier substituted groups of the organocatalyst and two hydrogen bonds from the organocatalyst and the oxygen atom of nitrosobenzene make the reaction preferentially N-specific and predominantly afford R products. Copyright © 2011 Wiley-Liss, Inc.

  14. Molecular structure, proton affinity and hydrogen bonds of (2-hydroxyethyl)amine-N-oxides: DFT, MP2 and FTIR study

    NASA Astrophysics Data System (ADS)

    Aksamentova, Tamara N.; Chipanina, Nina N.; Oznobikhina, Larisa P.; Adamovich, Sergei N.; Smirnov, Vladimir I.

    2018-01-01

    Tris- 1, bis- 2, and mono- 3 (2-hydroxyethyl)amine-N-oxides isomers, their protonated forms, and H-complexes with acids have been studied in gas phase and DMSO solution by the quantum chemical calculations using DFT and MP2 methods. It is found that the proton affinity of the endo isomers 1a-3a, exo isomers 1b-3b and epi isomer 1c depends on the number of the hydroxyethyl groups, steric factors and strengths of the intramolecular H-bonds OHṡṡṡON in 1a-3a and OHṡṡṡOH in 1b-3b. The peculiarities of formation of the hydrogen bonded and proton transfer complexes of tris(2-hydroxyethyl)amine-N-oxide with trifluoroacetic and 2-methylphenyloxyacetic acids are defined by 1 configuration, acid strength and solvent polarity. The structure of 1 and its complexes upon transition to solution was determined using FTIR spectroscopy.

  15. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines

    PubMed Central

    2011-01-01

    Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group, to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs and, thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review article, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and

  16. Highly porous organic polymers bearing tertiary amine group and their exceptionally high CO{sub 2} uptake capacities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Ruth; Bhaumik, Asim, E-mail: msab@iacs.res.in

    2015-02-15

    We report a very simple and unique strategy for synthesis of a tertiary amine functionalized high surface area porous organic polymer (POP) PDVTA-1 through the co-polymerization of monomers divinylbenzene (DVB) and triallylamine (TAA) under solvothermal reaction conditions. Two different PDVTA-1 samples have been synthesized by varying the molar ratio of the monomers. The porous polymeric materials have been thoroughly characterized by solid state {sup 13}C CP MAS-NMR, FT-IR and UV–vis spectroscopy, N{sub 2} sorption, HR TEM and FE SEM to understand its chemical environment, nanostructure, bonding, morphology and related surface properties. PDVTA-1 with higher amine content (DVB/TAA=4.0) showed exceptionally highmore » CO{sub 2} uptake capacity of 85.8 wt% (19.5 mmol g{sup −1}) at 273 K and 43.69 wt% (9.93 mmol g{sup −1}) at 298 K under 3 bar pressure, whereas relatively low amine loaded material (DVB/TAA=7.0) shows uptake capacity of 59.2 wt% (13.45 mmol g{sup −1}) at 273 K and 34.36 wt% (7.81 mmol g{sup −1}) at 298 K. Highly porous nanostructure together with very high surface area and basicity at the surface due to the presence of abundant basic tertiary amine N-sites in the framework of PDVTA-1 could be responsible for very high CO{sub 2} adsorption. - Graphical abstract: Exceptionally high CO2 uptake (85.8 wt % at 273 K) has been observed over a high surface area porous organic polymer PDVTA-1 synthesized through copolymerization of divinylbenzene and triallyl amine. - Highlights: • Designing the synthesis of a new N-rich cross-linked porous organic polymer PDVTA-1. • PDVTA-1 showed mesoporosity with very high surface area of 903 m{sup 2} g{sup −1}. • High surface area and presence of basic sites facilitates the CO{sub 2} uptake. • PDVTA-1 showed exceptionally high CO{sub 2} adsorption capacity of 85.8 wt% at 273 K, 3 bar pressure.« less

  17. Phenylethynyl terminated imide oligomers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)

    1994-01-01

    Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.

  18. Phenylethynyl terminated imide oligomers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)

    1995-01-01

    Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.

  19. A novel, colorimetric method for biogenic amine detection based on arylalkylamine N-acetyltransferase.

    PubMed

    Leng, Pei-Qiang; Zhao, Feng-Lan; Yin, Bin-Cheng; Ye, Bang-Ce

    2015-05-21

    We developed a novel colorimetric method for rapid detection of biogenic amines based on arylalkylamine N-acetyltransferase (aaNAT). The proposed method offers distinct advantages including simple handling, high speed, low cost, good sensitivity and selectivity.

  20. Loading and release of amine drugs by ion-exchange fibers: role of amine type.

    PubMed

    Gao, Yanan; Liu, Hongzhuo; Yuan, Jing; Yang, Yang; Che, Xin; Hou, Yanlong; Li, Sanming

    2014-04-01

    With more production and application of ion-exchange fibers (IEFs), it becomes necessary to understand the interaction between IEFs and amine compounds, an important group of organic drugs and structural components of large organic molecules in biological systems. However, so far few experimental studies have been conducted to systematically investigate the exchanging mechanism of amine compounds to IEFs. Therefore, 15 amine drugs were selected to investigate the effect of amine type on the loading and release of them from the related IEFs. Loading affinity of these drugs by IEFs decreased in the order of secondary, tertiary, and primary. The following items: basicity, aromaticity, molar volume, rotatability, and so on, were emphatically discussed to address the underlying mechanism of drug loading and releasing extent and rate of IEFs. It was evident that strong alkaline drugs strengthened the ionic bond between the amine groups and IEFs, and thus the loading affinity. These results will advance the understanding of the exchanging behavior of IEFs in the drug delivery system. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    PubMed

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  2. Impacts of Different Functional Groups on the Kinetic Rates of α-Amine Ketoximesilanes Hydrolysis in the Preparation of Room Temperature Vulcanized Silicone Rubber

    PubMed Central

    Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng

    2018-01-01

    α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( 1H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10−4 s−1 to 7.6 × 10−4 s−1, with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst. PMID:29757263

  3. Impacts of Different Functional Groups on the Kinetic Rates of α-Amine Ketoximesilanes Hydrolysis in the Preparation of Room Temperature Vulcanized Silicone Rubber.

    PubMed

    Xu, Huihui; Liu, Zihou; Liu, Qingyang; Bei, Yiling; Zhu, Qingzeng

    2018-05-13

    α-Amine ketoximesilanes are proven to be effective crosslinkers in the preparation of ketone-oxime one-component room temperature vulcanized (RTV) silicone rubber without the use of toxic metal catalyst. This work aimed to investigate the hydrolysis kinetic of α-amine ketoximesilanes, which is vitally important for the preparation of RTV silicone rubber. Five kinds of α-amine ketoximesilanes, namely α-(N,N-diethyl)aminomethyltri(methylethylketoxime)silane (DEMOS), α-(N,N-di-n-butyl)aminomethyltri(methylethylketoxime)silane (DBMOS), α-(N-n-butyl)aminomethyltri(methylethylketoxime)silane (n-BMOS), α-(N-cyclohexyl)aminomethyltri(methylethylketoxime)silane (CMOS) and α-(β-aminomethyl)aminomethyltri(methylethylketoxime)silane (AEMOS), were successfully obtained and confirmed using Fourier transform infrared spectrometer (FT-IR) and hydrogen-1 nuclear magnetic resonance ( ¹H NMR). Kinetics of hydrolysis reactions were measured by FT-IR and conductivity. Our results illustrated that the kinetic constant rates ranged from 12.2 × 10 −4 s −1 to 7.6 × 10 −4 s −1 , with the decreasing order of DEMOS > n-BMOS > DBMOS > CMOS > AEMOS at the given temperature and humidity. Better performances of thermal stability could be achieved when using the α-amine ketoximesilanes as crosslinkers in the preparation of RTV silicon rubber than that of RTV silicone rubber with the use of methyltri(methylethylketoxime)silane (MOS) as a crosslinker and organic tin as a catalyst.

  4. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    PubMed

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  5. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    PubMed

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.

  6. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    PubMed

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor.

    PubMed

    Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D Bruce

    2009-03-10

    N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine-associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors.

  8. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    PubMed

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  9. The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation.

    PubMed

    Selbes, Meric; Kim, Daekyun; Ates, Nuray; Karanfil, Tanju

    2013-02-01

    N-nitrosodimethylamine (NDMA), a probable human carcinogen, is a disinfection by-product that has been detected in chloraminated and chlorinated drinking waters and wastewaters. Formation mechanisms and precursors of NDMA are still not well understood. The main objectives of this study were to systematically investigate (i) the effect of tertiary amine structure, (ii) the effect of background natural organic matter (NOM), and (iii) the roles of mono vs. dichloramine species on the NDMA formation. Dimethylamine (DMA) and 20 different tertiary aliphatic and aromatic amines were carefully examined based on their functional groups attached to the basic DMA structure. The wide range (0.02-83.9%) of observed NDMA yields indicated the importance of the structure of tertiary amines, and both stability and electron distribution of the leaving group of tertiary amines on NDMA formation. DMA associated with branched alkyl groups or benzyl like structures having only one carbon between the ring and DMA structure consistently gave higher NDMA yields. Compounds with electron withdrawing groups (EWG) reacted preferentially with monochloramine, whereas compounds with electron donating group (EDG) showed tendency to react with dichloramine to form NDMA. When the selected amines were present in NOM solutions, NDMA formation increased for compounds with EWG while decreased for compounds with EDG. This impact was attributed to the competitions between NOM and amines for chloramine species. The results provided additional information to the commonly accepted mechanism for NDMA formation including chloramine species reacting with tertiary amines and the role of the leaving group on overall NDMA conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Nitrosamine formation in amine scrubbing at desorber temperatures.

    PubMed

    Fine, Nathan A; Goldman, Mark J; Rochelle, Gary T

    2014-01-01

    Amine scrubbing is a thermodynamically efficient and industrially proven method for carbon capture, but amine solvents can nitrosate in the desorber, forming potentially carcinogenic nitrosamines. The kinetics of reactions involving nitrite and monoethanolamine (MEA), diethanolamine (DEA), methylethanolamine (MMEA), and methyldiethanolamine (MDEA) were determined under desorber conditions. The nitrosations of MEA, DEA, and MMEA are first order in nitrite, carbamate species, and hydronium ion. Nitrosation of MDEA, a tertiary amine, is not catalyzed by the addition of CO2 since it cannot form a stable carbamate. Concentrated and CO2 loaded MEA was blended with low concentrations of N-(2-hydroxyethyl) glycine (HeGly), hydroxyethyl-ethylenediamine (HEEDA), and DEA, secondary amines common in MEA degradation. Nitrosamine yield was proportional to the concentration of secondary amine and was a function of CO2 loading and temperature. Blends of tertiary amines with piperazine (PZ) showed n-nitrosopiperazine (MNPZ) yields close to unity, validating the slow nitrosation rates hypothesized for tertiary amines. These results provide a useful tool for estimating nitrosamine accumulation over a range of amine solvents.

  11. N-terminal RASSF family

    PubMed Central

    Underhill-Day, Nicholas; Hill, Victoria

    2011-01-01

    Epigenetic inactivation of tumor suppressor genes is a hallmark of cancer development. RASSF1A (Ras Association Domain Family 1 isoform A) tumor suppressor gene is one of the most frequently epigenetically inactivated genes in a wide range of adult and children's cancers and could be a useful molecular marker for cancer diagnosis and prognosis. RASSF1A has been shown to play a role in several biological pathways, including cell cycle control, apoptosis and microtubule dynamics. RASSF2, RASSF4, RASSF5 and RASSF6 are also epigenetically inactivated in cancer but have not been analyzed in as wide a range of malignancies as RASSF1A. Recently four new members of the RASSF family were identified these are termed N-Terminal RASSF genes (RASSF7–RASSF10). Molecular and biological analysis of these newer members has just begun. This review highlights what we currently know in respects to structural, functional and molecular properties of the N-Terminal RASSFs. PMID:21116130

  12. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.

    PubMed

    So, Man-Ho; Liu, Yungen; Ho, Chi-Ming; Che, Chi-Ming

    2009-10-05

    Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43-100%) and product yields (66-99%) (19 examples). Oxidation of N-substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83-93%) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o-phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N-benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed.

  13. Plasmatic levels of N-terminal pro-atrial natriuretic peptide in preeclamptic patients and healthy normotensive pregnant women.

    PubMed

    Reyna-Villasmil, Eduardo; Mejia-Montilla, Jorly; Reyna-Villasmil, Nadia; Mayner-Tresol, Gabriel; Herrera-Moya, Pedro; Fernández-Ramírez, Andreina; Rondón-Tapía, Marta

    2018-05-11

    To compare plasma N-terminal pro-atrial natriuretic peptide concentrations in preeclamptic patients and healthy normotensive pregnant women. A cases-controls study was done with 180 patients at Hospital Central Dr. Urquinaona, Maracaibo, Venezuela, that included 90 preeclamptic patients (group A; cases) and 90 healthy normotensive pregnant women selected with the same age and body mass index similar to group A (group B; controls). Blood samples were collected one hour after admission and prior to administration of any medication in group A to determine plasma N-terminal pro-atrial natriuretic peptide and other laboratory parameters. Plasma N-terminal pro-atrial natriuretic peptide concentrations in group A (mean 1.01 [0.26] pg/mL) showed a significant difference when compared with patients in group B (mean 0.55 [0.07] pg/mL; P<.001]. There was no significant correlation with systolic and diastolic blood pressure values in preeclamptic patients (P=ns). A cut-off value of 0.66ng/mL had an area under the curve of 0.93, sensitivity of 87.8%, specificity of 83.3%, a positive predictive value of 84.0% and a negative predictive value of 87.2%, with a diagnostic accuracy of 85.6%. Preeclamptic patients have significantly higher concentrations of plasma N-terminal pro-atrial natriuretic peptide compared with healthy normotensive pregnant women, with high predictive values for diagnosis. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Solid-Phase Synthesis of Diverse Peptide Tertiary Amides By Reductive Amination

    PubMed Central

    Pels, Kevin; Kodadek, Thomas

    2015-01-01

    The synthesis of libraries of conformationally-constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as peptide tertiary amide (PTA). PTAs are strongly biased conformationally due to allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers. PMID:25695359

  15. Solid-phase synthesis of diverse peptide tertiary amides by reductive amination.

    PubMed

    Pels, Kevin; Kodadek, Thomas

    2015-03-09

    The synthesis of libraries of conformationally constrained peptide-like oligomers is an important goal in combinatorial chemistry. In this regard an attractive building block is the N-alkylated peptide, also known as a peptide tertiary amide (PTA). PTAs are conformationally constrained because of allylic 1,3 strain interactions. We report here an improved synthesis of these species on solid supports through the use of reductive amination chemistry using amino acid-terminated, bead-displayed oligomers and diverse aldehydes. The utility of this chemistry is demonstrated by the synthesis of a library of 10,000 mixed peptoid-PTA oligomers.

  16. Editing the stereochemical elements in an iridium catalyst for enantioselective allylic amination

    PubMed Central

    Leitner, Andreas; Shu, Chutian; Hartwig, John F.

    2004-01-01

    Individual diastereomeric phosphoramidites and mixtures of diastereomeric phosphoramidites were evaluated in the iridium-catalyzed amination of allylic carbonates. The original process was conducted with a phosphoramidite ligand containing a resolved 2,2-dihydroxy-1,1-binaphthyl (BINOL) group and a diastereomerically and enantiomerically pure bis(phenethyl)amino group. Evaluation of the structure of the active catalyst and relative rates for reactions in the presence of catalysts containing diastereomeric ligands led to the identification of a phosphoramidite that provided the amination product with enantiomeric excess similar to the original, more structurally and stereochemically complex ligand and that contains a racemic BINOLate and an N-benzylphenethylamino group on phosphorus. PMID:15067140

  17. Even-electron [M-H](+) ions generated by loss of AgH from argentinated peptides with N-terminal imine groups.

    PubMed

    Plaviak, Alexandra; Osburn, Sandra; Patterson, Khiry; van Stipdonk, Michael J

    2016-01-15

    Experiments were performed to probe the creation of apparent even-electron, [M-H](+) ions by CID of Ag-cationized peptides with N-terminal imine groups (Schiff bases). Imine-modified peptides were prepared using condensation reactions with aldehydes. Ag(+) -cationized precursors were generated by electrospray ionization (ESI). Tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer. Loss of AgH from peptide [M + Ag](+) ions, at the MS/MS stage, creates closed-shell [M-H](+) ions from imine-modified peptides. Isotope labeling unambiguously identifies the imine C-H group as the source of H eliminated in AgH. Subsequent CID of the [M-H](+) ions generated sequence ions that are analogous to those produced from [M + H](+) ions of the imine-modified peptides. Experiments show (a) formation of novel even-electron peptide cations by CID and (b) the extent to which sequence ions (conventional b, a and y ions) are generated from peptides with fixed charge site and thus lacking a conventional mobile proton. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Organoselenium-catalyzed, hydroxy-controlled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols.

    PubMed

    Deng, Zhimin; Wei, Jialiang; Liao, Lihao; Huang, Haiyan; Zhao, Xiaodan

    2015-04-17

    An efficient route to prepare 3-amino allylic alcohols in excellent regio- and stereoselectivity in the presence of bases by orangoselenium catalysis has been developed. In the absence of bases α,β-unsaturated aldehydes were formed in up to 97% yield. Control experiments reveal that the hydroxy group is crucial for the direct amination.

  19. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significantmore » improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.« less

  20. Synthesis, characterization, DNA-Binding, enzyme inhibition and antioxidant studies of new N-methylated derivatives of pyridinium amine

    NASA Astrophysics Data System (ADS)

    Zafar, Muhammad Naveed; Perveen, Fouzia; Nazar, Muhammad Faizan; Mughal, Ehsan Ullah; Rafique, Humera; Tahir, Muhammad Nawaz; Akbar, Muhammad Sharif; Zahra, Sabeen

    2017-06-01

    A series of novel N-methylated derivatives of pyridinium amine, [L1][Tf]-[L5][Tf], were synthesized and characterized by FTIR, NMR, MS and XRD analyses. Preliminary biological screening of these compounds including antioxidant, enzyme inhibition and DNA (salmon sperm) interaction studies were also carried out. The targeted compounds were synthesized by a melt reaction between 4-chloro-N-methyl pyridinium triflate and corresponding amines (1-naphthyl amine, o-ansidine, 2-nitroaniline, p-ansidine and cyclohexyl amine) at temperature of 230 °C. The DPPH radical antioxidant scavenging activities of these compounds at maximum concentration of 50 μg/mL were observed in the range of 60-70%. Acetylcholine esterase (AChE) and Butylcholine esterase (BChE) inhibitory activities of synthesized compounds at 2 mM concentration were also measured to be at maximum of 79 and 71% respectively. The spectral behavior of ligand-DNA obtained from photo-luminescent measurements showed that all ligands bind with DNA via non-covalent interactions. The binding constant values were determined by UV-visible and fluorescence spectroscopy and were quite close to that obtained from molecular docking studies.

  1. Labelling Polymers and Micellar Nanoparticles via Initiation, Propagation and Termination with ROMP

    PubMed Central

    Thompson, Matthew P.; Randolph, Lyndsay M.; James, Carrie R.; Davalos, Ashley N.; Hahn, Michael E.

    2014-01-01

    In this paper we compare and contrast three approaches for labelling polymers with functional groups via ring-opening metathesis polymerization (ROMP). We explored the incorporation of functionality via initiation, termination and propagation employing an array of novel initiators, termination agents and monomers. The goal was to allow the generation of selectively labelled and well-defined polymers that would in turn lead to the formation of labelled nanomaterials. Norbornene analogues, prepared as functionalized monomers for ROMP, included fluorescent dyes (rhodamine, fluorescein, EDANS, and coumarin), quenchers (DABCYL), conjugatable moieties (NHS esters, pentafluorophenyl esters), and protected amines. In addition, a set of symmetrical olefins for terminally labelling polymers, and for the generation of initiators in situ is described. PMID:24855496

  2. Characterization of Proteus vulgaris K80 lipase immobilized on amine-terminated magnetic microparticles.

    PubMed

    Natalia, Agnes; Kristiani, Lidya; Kim, Hyung Kwoun

    2014-10-01

    Proteus vulgaris K80 lipase was expressed in Escherichia coli BL21 (DE3) cells and immobilized on amine-terminated magnetic microparticles (Mag-MPs). The immobilization yield and activity retention were 84.15% and 7.87%, respectively. A homology model of lipase K80 was constructed using P. mirabilis lipase as the template. Many lysine residues were located on the protein surface, remote from active sites. The biochemical characteristics of immobilized lipase K80 were compared with the soluble free form of lipase K80. The optimum temperature of K80-Mag-MPs was 60°C, which was 20°C higher than that of the soluble form. K80-Mag-MPs also tended to be more stable than the soluble form at elevated temperatures and a broad range of pH. K80-Mag-MP maintained its stable form at up to 40°C and in a pH range of 5.0- 10.0, whereas soluble K80 maintained its activity up to 35°C and pH 6.0-10.0. K80-Mag-MPs had broader substrate specificity compared with that of soluble K80. K80-Mag-MPs showed about 80% residual relative activity after five recovery trials. These results indicate the potential benefit of K80-Mag-MPs as a biocatalyst in various industries.

  3. Evolution of free amino acids, biogenic amines and n-nitrosoamines throughout ageing in organic fermented beef.

    PubMed

    Wójciak, Karolina M; Solska, Elżbieta

    2016-01-01

    In recent years, interest in uncured meat products has grown and studies were carried out on the use of substances which could replace nitrites, such as acid whey. In spite of this problem in fermented meat products, there is no information regarding the effects of prolonged ageing on the formation of chemical (nitrosoamines, biogenic amines, secondary lipid oxidation products) and microbiological (L. monocytogenes, S. aureus, OLD) toxicants in fermented beef marinated with acid whey. The aim of this study was to determine the selected pathogenic bacteria, biogenic amines, N-nitrosamines contents in fermented beef subjected to extended ageing. In this study, selected pathogenic bacteria, N-nitrosamines, biogenic amines, amino acids, TBARS values changes during the ageing of fermented beef marinated with acid whey were analyzed in 0-, 2- and 36-month-old samples. The pH values of fermented beef aged for 2 months (5.68, 5.49 and 5.68 respectively) were significantly lower (p < 0.05) than those obtained after the end of the manufacturing ripening period (5.96, 5.97 and 5.74 respectively), which confirmed the effectiveness of the fermentation process of acidification on beef. The high Lactic Acid Bacteria content (5.64-6.30 log cfu/g) confirmed this finding. Histamine was not detected in either of the products. The highest concentration of total biogenic amine (i.e. 1159.0 mg/kg) was found in fermented beef marinated with acid whey, whereas a total of only 209.8 mg/kg, was observed in control beef with nitrate and nitrite. N-nitrosamines were not detected in any of the ageing beef samples. In this study, marinating beef in acid whey did not inhibit the production of biogenic amines in the samples analyzed. The high concentration of FAAs, the potential precursor of BA, could lead to intense peptidase activity. The results obtained indicate that biogenic amines are not direct precursors for nitrosamines formation in fermented beef. The LAB strain from acid whey reduced

  4. Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.

    PubMed

    Beauchamp, Justin; Vieille, Claire

    2015-01-01

    N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.

  5. Chemoselective Amination of Propargylic C(sp3)–H Bonds via Co(II)-Based Metalloradical Catalysis**

    PubMed Central

    Li, Chaoqun; Jiang, Huiling; Lizardi, Christopher L.

    2014-01-01

    Highly chemoselective intramolecular amination of propargylic C(sp3)–H bonds has been demonstrated for N-bishomopropargylic sulfamoyl azides via Co(II)-based metalloradical catalysis. Supported by D2h-symmetric amidoporphyrin ligand 3,5-DitBu-IbuPhyrin, the Co(II)-catalyzed C–H amination process can proceed effectively under neutral and nonoxidative conditions without the need of any additives, generating N2 as the only byproduct. The metalloradical amination is suitable to both secondary and tertiary propargylic C–H substrates with an unusually high degree of functional group tolerance, providing a direct method for high-yielding synthesis of functionalized propargylamine derivatives. PMID:24840605

  6. A simple synthesis of N-perfluoroacylated and N-acylated glycals of neuraminic acid with a cyclic aminic substituent at the 4α position as possible inhibitors of sialidases.

    PubMed

    Rota, Paola; Allevi, Pietro; Agnolin, Irene S; Mattina, Roberto; Papini, Nadia; Anastasia, Mario

    2012-04-14

    A simple protocol for the synthesis of N-perfluoroacylated and N-acylated glycals of neuraminic acid, with a secondary cyclic amine (morpholine or piperidine) at the 4α position, has been set-up, starting from peracetylated N-acetylneuraminic acid methyl ester that undergoes, sequentially to its direct N-transacylation followed by a C-4 amination, a β-elimination, and a selective hydrolysis of the ester functions, without affecting the sensitive perfluorinated amide. This journal is © The Royal Society of Chemistry 2012

  7. Influence of various cooking methods on the concentrations of volatile N-nitrosamines and biogenic amines in dry-cured sausages.

    PubMed

    Li, Ling; Wang, Peng; Xu, Xinglian; Zhou, Guanghong

    2012-05-01

    N-nitrosamines, biogenic amines, and residual nitrites are harmful substances and are often present in cured meats. The effects of different cooking methods (boiling, pan-frying, deep-frying, and microwave) were investigated on their contents in dry-cured sausage. The various N-nitrosamines were isolated by a steam distillation method and analyzed by gas chromatography mass spectrometry (GC-MS). The biogenic amines were determined after extraction with perchloric acid as dansyl derivatives by high-performance liquid chromatography (HPLC) method. The results showed that initial dry-cured raw sausage contained 5.31 μg/kg of total N-nitrosamines. Cooking by deep-frying or pan-frying resulted in products having the highest (P < 0.05) contents, compared with boiling or microwave treatments, which were not different from the raw. Although frying increased the content of N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), and N-nitrosopyrrolidine (NPYR), it decreased the contents of histamine and cadaverine. Boiling and microwave treatments decreased the total biogenic amines significantly (P < 0.05). Residual nitrite was significantly reduced by cooking treatments. The results suggest that boiling and microwave treatments were more suitable methods for cured meat. © 2012 Institute of Food Technologists®

  8. Base metal dehydrogenation of amine-boranes

    DOEpatents

    Blacquiere, Johanna Marie [Ottawa, CA; Keaton, Richard Jeffrey [Pearland, TX; Baker, Ralph Thomas [Los Alamos, NM

    2009-06-09

    A method of dehydrogenating an amine-borane having the formula R.sup.1H.sub.2N--BH.sub.2R.sup.2 using base metal catalyst. The method generates hydrogen and produces at least one of a [R.sup.1HN--BHR.sup.2].sub.m oligomer and a [R.sup.1N--BR.sup.2].sub.n oligomer. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources, such as, but not limited to, fuel cells.

  9. Application of ultraviolet, ozone, and advanced oxidation treatments to washwaters to destroy nitrosamines, nitramines, amines, and aldehydes formed during amine-based carbon capture.

    PubMed

    Shah, Amisha D; Dai, Ning; Mitch, William A

    2013-03-19

    Although amine-based CO(2) absorption is a leading contender for full-scale postcombustion CO(2) capture at power plants, concerns have been raised about the potential release of carcinogenic N-nitrosamines and N-nitramines formed by reaction of exhaust gas NO(x) with the amines. Experiments with a laboratory-scale pilot unit suggested that washwater units meant to scrub contaminants from absorber unit exhaust could potentially serve as a source of N-nitrosamines via reactions of residual NO(x) with amines accumulating in the washwater. Dosage requirements for the continuous treatment of the washwater recycle line with ultraviolet (UV) light for destruction of N-nitrosamines and N-nitramines, and with ozone or hydroxyl radical-based advanced oxidation processes (AOPs) for destruction of amines and aldehydes, were evaluated. Although <1000 mJ/cm(2) UV fluence was generally needed for 90% removal of a series of model N-nitrosamines and N-nitramines, 280-1000 mJ/cm(2) average fluence was needed for 90% removal of total N-nitrosamines in pilot washwaters associated with two different solvents. While AOPs were somewhat more efficient than ozone for acetaldehyde destruction, ozone was more efficient for amine destruction. Ozone achieved 90% amine removal in washwaters at 5-12 molar excess of ozone, indicating transferred dosage levels of ∼100 mg/L for 90% removal in a first-stage washwater unit, but likely only ∼10 mg/L if applied to a second-stage washwater. Accurate dosage and cost estimates would require pilot testing to capture synergies between UV and ozone treatments.

  10. Preventive effects of fermented brown rice and rice bran against N-nitrosobis (2-oxopropyl) amine-induced pancreatic tumorigenesis in male hamsters.

    PubMed

    Kuno, Toshiya; Takahashi, Satoru; Tomita, Hiroyuki; Hisamatsu, Kenji; Hara, Akira; Hirata, Akihiro; Kobayashi, Hiroshi; Mori, Hideki

    2015-12-01

    Fermented brown rice by Aspergillus oryzae (FBRA) is known to have the potential to prevent chemical carcinogenesis of the colon, liver, esophagus, urinary bladder, stomach and lungs in rodents. The present study examined the possible chemopreventive effects of FBRA on N-nitrosobis(2-oxopropyl)amine (BOP)-induced pancreatic tumorigenesis in hamsters. Five-week-old male Syrian golden hamsters were divided into seven groups. Groups 1-5 were subcutaneously injected with BOP (10 mg/kg body weight) four times during week 6 to induce pancreatic tumors, while groups 6 and 7 were injected with saline. Groups 2 and 3 were fed diets containing 5 and 10% FBRA, respectively, during the initiation phase. By contrast, groups 4 and 5 were fed diets containing 5 and 10% FBRA, respectively, during the post-initiation phase. Group 6 received a diet containing 10% FBRA throughout the experiment, and group 7 was kept on the basal diet alone and served as the untreated control. At the termination of the study (week 22), oral intake of 10% FBRA (group 5) during the post-initiation phase was identified to have significantly reduced the multiplicity (number of lesions/animal) of ductal adenocarcinoma [pancreatic intraepithelial neoplasia 3 (PanIN3); carcinoma in situ and invasive carcinoma] in comparison with group 1 control hamsters (0.24±0.44 vs. 0.71±0.72; P<0.05). Treatment with 10% FBRA in the post-initiation phase inhibited the progression of normal/precancerous lesions (PanIN1, mild hyperplastic lesions; and PanIN2, papillary hyperplasia) to ductal adenocarcinomas. Furthermore, dietary exposure to 10% FBRA during the initiation (group 3) and post-initiation phases (group 5) significantly reduced the multiplicity of PanIN2 (group 3, 0.55±0.69; group 5, 0.45±0.69; versus group 1, 1.26±1.24; P<0.05 and P<0.01, respectively). A significant reduction of Ki-67 positivity of PanIN2 in group 5 was also confirmed (group 5, 0.05±0.03; group 1, 0.22±0.12; P<0.01). Using terminal

  11. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles.

    PubMed

    Aguilar, David; Contel, Maria; Urriolabeitia, Esteban P

    2010-08-09

    Propargylamines can be obtained from secondary amines and terminal alkynes in chlorinated solvents by a three- and two-component synthesis catalyzed by gold compounds and nanoparticles (Au-NP) under mild conditions. The use of dichloromethane allows for the activation of two C-Cl bonds and a clean transfer of the methylene fragment to the final product. The scope of the reaction as well as the influence of different gold(III) cycloaurated complexes and salts has been investigated. The involvement of gold nanoparticles generated in situ in the process is discussed and a plausible reaction mechanism is proposed on the basis of the data obtained.

  12. An improved procedure, involving mass spectrometry, for N-terminal amino acid sequence determination of proteins which are N alpha-blocked.

    PubMed Central

    Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D

    1984-01-01

    A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284

  13. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klobukowski, Erik

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallicmore » complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system

  14. Secondary Amine Functional Disiloxanes as CO2 Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, MJ; Farnum, RL; Perry, RJ

    2014-05-01

    A series of two different types of secondary amine functional disiloxanes were prepared and screened as CO2 capture solvents. The first group of materials contained RNHCH2CH2CH2 side chains where the R groups were C1-6 alkyls. When R was a primary alkyl group, these materials exhibited CO2 uptake values slightly in excess of theoretical. As the alkyl groups were changed to more sterically hindered secondary or tertiary alkyls, the uptake was less efficient. Heats of absorption values for these materials were generally in the range 2000-2200 kJ/kg of CO2, values significantly lower than those obtained for primary amine functional disiloxanes (2500-2700more » kJ/kg of CO2). Also explored were a series of secondary amine functional disiloxanes with X-CH2CH2NH-CH2CH2CH2 - substituents. When X was an electron-donating group (RO-, R2N-, RO-CH2-) the CO2 uptake was also in excess of theoretical. Interestingly, these compounds were generally found to produce carbamate salts that were flowable, low-viscosity oils. Furthermore, the heat of absorption values determined for these materials were even lower. Most compounds gave values below 2000 kJ/kg of CO2. Overall the most promising results were obtained with a methoxyethylaminopropyl derivative, an ethoxyethylaminopropyl-containing material, and a dimethylaminoethylaminopropyl-based compound. These materials showed excellent CO2 uptake, had low heats of absorption, and produced carbamate salts that were flowable liquids even at room temperature.« less

  15. Room-Temperature, Ambient-Pressure Chemical Synthesis of Amine-Functionalized Hierarchical Carbon-Sulfur Composites for Lithium-Sulfur Battery Cathodes.

    PubMed

    Chae, Changju; Kim, Jinmin; Kim, Ju Young; Ji, Seulgi; Lee, Sun Sook; Kang, Yongku; Choi, Youngmin; Suk, Jungdon; Jeong, Sunho

    2018-02-07

    Recently, the achievement of newly designed carbon-sulfur composite materials has attracted a tremendous amount of attention as high-performance cathode materials for lithium-sulfur batteries. To date, sulfur materials have been generally synthesized by a sublimation technique in sealed containers. This is a well-developed technique for the synthesizing of well-ordered sulfur materials, but it is limited when used to scale up synthetic procedures for practical applications. In this study, we suggest an easily scalable, room-temperature/ambient-pressure chemical pathway for the synthesis of highly functioning cathode materials using electrostatically assembled, amine-terminated carbon materials. It is demonstrated that stable cycling performance outcomes are achievable with a capacity of 730 mAhg -1 at a current density of 1 C with good cycling stability by a virtue of the characteristic chemical/physical properties (a high conductivity for efficient charge conduction and the presence of a number of amine groups that can interact with sulfur atoms during electrochemical reactions) of composite materials. The critical roles of conductive carbon moieties and amine functional groups inside composite materials are clarified with combinatorial analyses by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.

  16. Csbnd N bond formation in alicyclic and heterocyclic compounds by amine-modified nanoclay

    NASA Astrophysics Data System (ADS)

    Zarnegar, Zohre; Alizadeh, Roghayeh; Ahmadzadeh, Majid; Safari, Javad

    2017-09-01

    In the current protocol, amine functionalized montmorillonite K10 nanoclay (NH2-MMT) was applied to catalyze the formation of Csbnd N bonds in the synthesis of azines and 2-aminothiazoles at room temperature. In comparison with the current methods of Csbnd N bond formation, this approach displays specific advantages include atom economy, clean conversion, design for energy efficiency, the use of nontoxic and heterogeneous catalyst, higher purity and yields, safer solvent and reagents for this organic transformation.

  17. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  18. Synthesis and bioelectrochemical behavior of aromatic amines.

    PubMed

    Shabbir, Muhammad; Akhter, Zareen; Ahmad, Iqbal; Ahmed, Safeer; Bolte, Michael; McKee, Vickie

    2017-12-01

    Four aromatic amines 1-amino-4-phenoxybenzene (A 1 ), 4-(4-aminophenyloxy) biphenyl (A 2 ), 1-(4-aminophenoxy) naphthalene (A 3 ) and 2-(4-aminophenoxy) naphthalene (A 4 ) were synthesized and characterized by elemental, spectroscopic (FTIR, NMR), mass spectrometric and single crystal X-ray diffraction methods. The compounds crystallized in monoclinic crystal system with space group P2 1 . Intermolecular hydrogen bonds were observed between the amine group and amine/ether acceptors of neighboring molecules. Electrochemical investigations were done using cyclic voltammetry (CV), square wave voltammetry (SWV) and differential pulse voltammetry (DPV). CV studies showed that oxidation of aromatic amines takes place at about 0.9 V (vs. Ag/AgCl) and the electron transfer (ET) process has irreversible nature. After first scan reactive intermediate were generated electrochemically and some other cathodic and anodic peaks also appeared in the succeeding scans. DPV study revealed that ET process is accompanied by one electron. DNA binding study of aromatic amines was performed by CV and UV-visible spectroscopy. These investigations revealed groove binding mode of interaction of aromatic amines with DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  20. Structural basis for substrate recognition by the human N-terminal methyltransferase 1

    DOE PAGES

    Dong, Cheng; Mao, Yunfei; Tempel, Wolfram; ...

    2015-11-05

    α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides,more » respectively, and reveal that NTMT1 contains two characteristic structural elements (a β hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.« less

  1. Oxidative Folding and N-terminal Cyclization of Onconase+

    PubMed Central

    Welker, Ervin; Hathaway, Laura; Xu, Guoqiang; Narayan, Mahesh; Pradeep, Lovy; Shin, Hang-Cheol; Scheraga, Harold A.

    2008-01-01

    Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein, but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC-catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally. PMID:17439243

  2. Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination.

    PubMed

    Piazzoli, Andrea; Breider, Florian; Aquillon, Caroline Gachet; Antonelli, Manuela; von Gunten, Urs

    2018-05-15

    N-nitrosamines are a group of potent human carcinogens that can be formed during oxidative treatment of drinking water and wastewater. Many tertiary and quaternary amines present in consumer products (e.g., pharmaceuticals, personal care and household products) are known to be N-nitrosodimethylamine (NDMA) precursors during chloramination, but the formation of other N-nitrosamines has been rarely studied. This study investigates the specific and total N-nitrosamine (TONO) formation potential (FP) of various precursors from nitrogen-containing micropollutants (chlorhexidine, metformin, benzalkonium chloride and cetyltrimethylammonium chloride) and tertiary and quaternary model amines (trimethyl amine, N,N-dimethylbutyl amine, N,N-dimethylbenzyl amine and tetramethyl ammonium). All the studied nitrogenous micropollutants displayed quantifiable TONO FP, with molar yields in the range 0.04-11.92%. However, the observed TONO pools constituted mostly of uncharacterized species, not included in US-EPA 8270 N-nitrosamines standard mix. Only the quaternary ammonium compound benzalkonium chloride showed quantifiable NDMA FP (0.56% molar yield), however, explaining only a minor fraction of the observed TONO FP. The studied model amines showed molar NDMA yields from 0.10% (trimethyl amine) to 5.05% (N,N-dimethylbenzyl amine), very similar to the molar TONO yields. The comparison of the FPs of micropollutants and model compounds showed that the presence of electron donating functional groups (such as a benzyl group) in tertiary and quaternary amine precursors leads to a higher formation of NDMA and uncharacterized N-nitrosamines, respectively. LC-qTOF screening of a list of proposed N-nitrosamine structures has enabled to identify a novel N-nitrosamine (N-nitroso-N-methyldodecylamine) from the chloramination of benzalkonium chloride. This finding supports the hypothesis that different functional groups in quaternary amines can act as leaving groups during chloramination and

  3. Solvent-Free Reductive Amination: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Goldstein, Steven W.; Cross, Amely V.

    2015-01-01

    The reductive amination reaction between an amine and an aldehyde or ketone is an important method to add an additional alkyl group to an amine nitrogen. In this experiment, students react a selection of benzylamines with aldehydes to form the corresponding imines. These imines are reduced with a mixture of "p"-toluenesulfonic acid…

  4. Michael Addition Polymerization of Trifunctional Amine and Acrylic Monomer: A Versatile Platform for Development of Biomaterials.

    PubMed

    Cheng, Weiren; Wu, Decheng; Liu, Ye

    2016-10-10

    Michael addition polymerizations of amines and acrylic monomers are versatile approaches to biomaterials for various applications. A combinatorial library of poly(β-amino ester)s and diverse poly(amido amine)s from diamines and diacrylates or bis(acrylamide)s have been reported, respectively. Furthermore, novel linear and hyperbranched polymers from Michael addition polymerizations of trifunctional amines and acrylic monomers significantly enrich this category of biomaterials. In this Review, we focus on the biomaterials from Michael addition polymerizations of trifunctional amines and acrylic monomers. First we discuss how the polymerization mechanisms, which are determined by the reactivity sequence of the three types of amines of trifunctional amines, i.e., secondary (2°) amines (original), primary (1°) amines, and 2° amines (formed), are affected by the chemistry of monomers, reaction temperature, and solvent. Then we update how to design and synthesize linear and hyperbranched polymers based on the understanding of polymerization mechanisms. Linear polymers containing 2° amines in the backbones can be obtained from polymerizations of diacrylates or bis(acrylamide)s with equimolar trifunctional amine, and several approaches, e.g., 2A 2 +BB'B″, A 3 +2BB'B', A 2 +BB'B″, to hyperbranched polymers are developed. Further through molecular design of monomers, conjugation of functional species to 2° amines in the backbones of linear polymers and the abundant terminal groups of hyperbranched polymers, the amphiphilicity of polymers can be adjusted, and additional stimuli, e.g., thermal, redox, reactive oxidation species (ROS), and light, responses can be integrated with the intrinsic pH response. Finally we discuss the applications of the polymers for gene/drug delivery and bioimaging through exploring their self-assemblies in various motifs, e.g., micelles, polyplexes particles/nanorings and hydrogels. Redox-responsive hyperbranched polymers can display 300

  5. Amines as occupational hazards for visual disturbance

    PubMed Central

    JANG, Jae-Kil

    2015-01-01

    Various amines, such as triethylamine and N,N-dimethylethylamine, have been reported to cause glaucopsia in workers employed in epoxy, foundry, and polyurethane foam industries. This symptom has been related to corneal edema and vesicular collection of fluid within the corneal subepithelial cells. Exposure to amine vapors for 30 min to several hours leads to blurring of vision, a blue-grey appearance of objects, and halos around lights, that are probably reversible. Concentration-effect relationships have been established. The visual disturbance is considered a nuisance, as it could cause onsite accidents, impair work efficiency, and create difficulties in driving back home. Occupational exposure limits have been established for some amines, but there is shortage of criteria. Volatility factors, such as vapor pressure, should be considered in industrial settings to prevent human ocular risks, while trying to reduce levels of hazardous amines in the atmosphere. PMID:26538000

  6. Vibrational spectroscopic study of cationic phosphorus dendrimers with aminoethylpiperidine terminal groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Tripathi, V.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2018-04-01

    Two generations of phosphoric dendrimers with piperidine functional groups were synthesized for use in biology and medicine. Neutral samples are soluble in organic solvents but after protonation these dendrimers become water soluble and can be used for biological experiments. The FTIR and FT Raman spectra of two generations of dendrimers Gi constructed from the cyclotriphosphazene core, repeating units sbnd Osbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P(S)< and aminoethylpiperidine end groups sbnd NHsbnd (CH2)2sbnd C5NH11 were recorded. The study of the IR spectra shows that the NH groups form hydrogen bonds. The calculation of the molecular structure and vibrational spectra of the first generation dendrimer was performed by the method of DFT. This molecule has flat, repeating units and a plane of symmetry passing through the core. The calculation of the distribution of potential energy made it possible to classify the bands in the experimental spectra of dendrimers. Amine groups are manifested in the form of a band of NH stretching vibrations at 3389 cm-1 in the IR spectrum of G1. NH+ stretching bands located at 2646 and 2540 cm-1 in the IR spectrum of G2. The stretching vibrations of NH+ groups are noticeably shifted to low frequencies due to the formation of a hydrogen bond with the chlorine atom. The line at 1575 cm-1 in the Raman spectrum of G1 is characteristic for repeating units.

  7. Acid-catalyzed dehydrogenation of amine-boranes

    DOEpatents

    Stephens, Frances Helen; Baker, Ralph Thomas

    2010-01-12

    A method of dehydrogenating an amine-borane using an acid-catalyzed reaction. The method generates hydrogen and produces a solid polymeric [R.sup.1R.sup.2B--NR.sup.3R.sup.4].sub.n product. The method of dehydrogenating amine-boranes may be used to generate H.sub.2 for portable power sources.

  8. Trimethylaluminum and borane complexes of primary amines.

    PubMed

    Németh, Balázs; Guégan, Jean-Paul; Veszprémi, Tamás; Guillemin, Jean-Claude

    2013-01-07

    Trimethylaluminum (TMA) complexes of methyl-, n-propyl-, cyclopropyl-, allyl-, and propargylamine were synthesized and their experimental properties and theoretical characteristics were compared with the respective amine-borane analogues. The amine ligand of an amine-TMA Lewis acid-base complex can be easily changed by another amine through a 2:1 amine-TMA intermediate in pentane at room temperature. The exchange of the same ligands in the case of amine-boranes requires remarkably more time in line with the calculated relative energy of the respective transition state. The (1)H and (13)C NMR experiments examining the addition of one or more equivalent of amine to the respective Lewis acid-base complex conclude in the fast exchange of the amine ligand in the NMR time scale only in the cases of amine-TMA complexes, which could also be caused by similar 2:1 complexes. However, in gas phase, only 1:1 amine-TMA complexes are present as evidenced by ultraviolet photoelectron spectroscopy (UPS). The observed UP spectra, which are the first recorded photoelectron spectra of primary amine-TMA compounds, indicate that the stabilization effect of the lone electron pair of nitrogen atom in amines during the borane complexation is stronger than that of the TMA complexation. In line with this observation, the destabilization of the σ(Al-C) orbitals is lower than that of σ(B-H) orbitals during the formation of amine-TMA and amine-borane complexes, respectively. As showed by theoretical calculations, the CH(4) elimination of the studied amine-TMA complexes is exothermic, indicating the possibility of using these compounds in metal organic chemical vapor deposition techniques (MOCVD). On the other hand, our experimental conditions avoid this methane elimination and constitutes the first procedure employing distillation to isolate primary amine-TMA complexes.

  9. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozo-Yauner, Luis del, E-mail: ldelpozo@inmegen.gob.mx; Wall, Jonathan S.; González Andrade, Martín

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stabilitymore » and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.« less

  10. Allylic Amination and N-Arylation-Based Domino Reactions Providing Rapid Three-Component Strategies to Fused Pyrroles with Different Substituted Patterns

    PubMed Central

    Jiang, Bo; Li, Ying; Tu, Man-Su; Wang, Shu-Liang; Tu, Shu-Jiang; Li, Guigen

    2012-01-01

    New three-component domino reaction providing divergent approaches to multi-functionalized fused pyrroles with different substituted patterns have been established (40 examples). The direct C(sp3)–N bond formation was achieved through intermolecular allylic amination in a one-pot operation; and N-arylation of amines was realized by varying N-amino acid enaminones. The reaction is easy to perform simply by mixing three common reactants in acetic acid under microwave heating. The reaction proceeds at fast rates and can be finished within 30 min, which makes workup convenient to give good chemical yields. PMID:22852549

  11. Palladium(II) complexes bearing di-(2-picolyl)amine functionalized chrysin fragments. An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    González-Montiel, Simplicio; Valdez-Calderón, Alejandro; Vásquez-Pérez, J. Manuel; Torres-Valencia, J. Martín; Martínez-Otero, Diego; López, Jorge A.; Cruz-Borbolla, Julián

    2017-10-01

    A new series of chrysin derivatives containing the di-(2-picolyl)amine (2a-d) moiety have been designed, synthesized, and treated with PdCl2·2CH3CN allowing the preparation of new cationic Palladium(II) complexes (3a-d). Solution-phase studies by 1H NMR spectroscopy of 3a-d revealed that the protons of the methylene groups of the di(2-picolyl)amine fragment are diasterotopic. GIAO/DFT studies were performed to predict the molecular structures of 3a-d by comparing the experimental and theoretical 1H-NMR chemical shifts. The molecular structure of 3c was determined by X-ray crystallographic analysis revealing that di-(2-picolyl)amine fragment is coordinated to the palladium center in a κ3-N,N,N-tridentate fashion in an overall square-planar geometry completed with a chloride atom.

  12. Thermal properties of wood reacted with a phosphorus pentoxide–amine system

    Treesearch

    Hong-Lin Lee; George C. Chen; Roger M. Rowell

    2004-01-01

    The objective of this research was to improve the fire-retardant properties of wood in one treatment using a phosphorus pentoxide–amine system. Phosphorus pentoxide and 16 amines including alkyl, halophenyl, and phenyl amines were compounded in N,N-dimethylformamide and the resulting solutions containing phosphoramides were reacted with wood. The characteristics of...

  13. Mechanistic Studies of the N-formylation of Edivoxetine, a Secondary Amine-Containing Drug, in a Solid Oral Dosage Form.

    PubMed

    Hoaglund Hyzer, Cherokee S; Williamson, Michele L; Jansen, Patrick J; Kopach, Michael E; Scherer, R Brian; Baertschi, Steven W

    2017-05-01

    Edivoxetine (LY2216684 HCl), although a chemically stable drug substance, has shown the tendency to degrade in the presence of carbohydrates that are commonly used tablet excipients, especially at high excipient:drug ratios. The major degradation product has been identified as N-formyl edivoxetine. Experimental evidence including solution and solid-state investigations, is consistent with the N-formylation degradation pathway resulting from a direct reaction of edivoxetine with (1) formic acid (generated from decomposition of microcrystalline cellulose or residual glucose) and (2) the reducing sugar ends (aldehydic carbons) of either residual glucose or the microcrystalline cellulose polymer. Results of labeling experiments indicate that the primary source of the formyl group is the C1 position from reducing sugars. Presence of water or moisture accelerates this degradation pathway. Investigations in solid and solution states support that the glucose Amadori Rearrangement Product does not appear to be a direct intermediate leading to N-formyl degradation of edivoxetine, and oxygen does not appear to play a significant role. Solution-phase studies, developed to rapidly assess propensity of amines toward Maillard reactivity and formylation, were extended to show comparative behavior with example systems. The cyclic amine systems, such as edivoxetine, showed the highest propensity toward these side reactions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  15. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature.

    PubMed

    Kim, Jinho; Stahl, Shannon S

    2013-07-05

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4'- t Bu 2 bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N -oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction.

  16. The Evaporation and Degradation of N-Nitroso Dimethyl Amine in Aqueous Solutions.

    DTIC Science & Technology

    The fate of N-Nitroso Dimethyl Amine ( NDMA ) in aqueous solutions and in a 25 percent caustic waste stream which is produced in the manufacture of...degradation of NDMA in an open lagoon. It was found that for basic solutions, the removal was primarily evaporation, whereas, evaporation is low for...that nitrite severely inhibits the photolysis of NDMA in acid and neutral pHs, and an increase in ionic strength slightly increases the evaporation rate

  17. Determination of attenuation parameters and energy absorption build-up factor of amine group materials

    NASA Astrophysics Data System (ADS)

    Lokhande, Rajkumar M.; More, Chaitali V.; Surung, Bharat S.; Pawar, Pravina P.

    2017-12-01

    We have computed radiological parameters of some C- H- N- O based amine group bio material in the energy range 122-1330 keV with the gamma ray count by narrow beam geometry. The NaI(Tl) detector with 8 K multichannel analyser was used having resolution 6.8% at 663 keV. The energy absorption buildup factor (EABF) was determined by using Geometric Progression (G-P) fitting method up to penetration depth of 40 mfp at energy 0.015-15 MeV. The NIST XCOM data were compared with the experimental value and we observed (3-5%) difference. The comparative study of effective atomic number and effective electron density in the energy range 122-1330 keV using Gaussian fit for accuracy were performed. The amino acid has the highest EABF value at 0.1 MeV and the variation in EABF with penetration depth up to 1-40 mean free path (mfp). The calculated radiological data of biological material are applicable in medical physics and dosimetry.

  18. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    PubMed Central

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Importantly, this photoinduced transformation allows direct and enantioselective access to α-amino aldehyde products that do not require post-reaction manipulation. PMID:23869694

  19. The vascular effects of trace amines and amphetamines.

    PubMed

    Broadley, Kenneth J

    2010-03-01

    Trace amines, including tyramine, beta-phenylethylamine (beta-PEA), tryptamine and octopamine, are biologically active amines mostly based on phenylethylamine, occurring in the body in trace amounts. They are a diverse group of naturally occurring and synthetic amines, which are also found in the diet and in herbal plants, such as ephedrine and cathinone. They include amphetamine and its analogues, such as MDMA ('ecstasy'), and synthetic proprietary sympathomimetic agents such as phenylpropanolamine and pseudoephedrine. On the vascular system they cause vasoconstriction and a rise in blood pressure. This effect is the basis of their use as nasal decongestants. For over 50 years, they have been assumed to be indirectly acting sympathomimetic amines, their responses being due to the release of noradrenaline from sympathetic neurones. There are, however, results that suggest that this is not their only mechanism of action and that they may also exert direct vascular effects independent of a noradrenergic mechanism. Recently, a group of novel trace amine-associated receptors (TAARs) have been cloned and identified in the brain and peripheral tissues including blood vessels. Trace amines bind to these cloned receptors and it is suggested that their vasoconstrictor effects can in part be attributed to this mechanism. This review describes the cardiovascular pharmacology of this diverse group of amines, their structures and uses and their endogenous synthesis and metabolism. The review also considers their clinical relevance as constituents of the diet, as therapeutic agents (ritodrine, phenylpropanolamine, and pseudoephedrine) and as drugs of abuse (amphetamine, 'ecstasy') and their mechanisms of action. 2009 Elsevier Inc. All rights reserved.

  20. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302

  1. Brønsted acid-catalyzed decarboxylative redox amination: formation of N-alkylindoles from azomethine ylides by isomerization.

    PubMed

    Mao, Hui; Wang, Sichang; Yu, Peng; Lv, Huiqing; Xu, Runsheng; Pan, Yuanjiang

    2011-02-18

    A Brønsted acid-catalyzed decarboxylative redox amination involving aldehydes with 2-carboxyindoline for the synthesis of N-alkylindoles is described. The decarboxylative condensations of aldehydes with 2-carboxyindoline produce azomethine ylides in situ, which then transform into N-alkylindoles by isomerization. © 2011 American Chemical Society

  2. Comparative distribution of misonidazole and its amine metabolite in female Swiss Webster mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Born, J.L.; Hadley, W.M.

    1985-06-01

    The distribution of misonidazole and its terminal reduction product 1-(2-amino-1-imidazolyl)-3-methoxy-2-propanol (misoamine) were compared in female Swiss Webster mice to determine if either misonidazole or misoamine is distributed to peripheral nerves. Female Swiss Webster mice received a 100 mg/kg (5 ..mu..Ci/..mu..mole) i.p. dose of either /sup 3/H-misonidazole or /sup 3/H-miso-amine and the distribution of radioactivity was determined in various tissues including sciatic nerves and other myelinated nerves. Misonidazole produced higher initial tissue concentrations of radioactivity than did miso-amine. The relative tissue concentrations of radioactivity produced by misonidazole or miso-amine were similar, although not identical, 48 hours after administration of the drugs.more » Both sciatic and other myelinated nerves were found to retain radioactivity following the administration of either misonidazole or miso-amine.« less

  3. Pd-catalyzed intramolecular oxidative C-H amination: synthesis of carbazoles.

    PubMed

    Youn, So Won; Bihn, Joon Hyung; Kim, Byung Seok

    2011-07-15

    A Pd-catalyzed oxidative C-H amination of N-Ts-2-arylanilines under ambient temperature using Oxone as an inexpensive, safe, and easy-to-handle oxidant has been developed. This process represents a green and practical method for the facile construction of carbazoles with a broad substrate scope and wide functional group tolerance. © 2011 American Chemical Society

  4. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors.

    PubMed

    Tremblay, Noah J; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E

    2011-11-22

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards 'intelligent sensors' that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations.

  5. 2,2,2-Trifluoroacetophenone as an organocatalyst for the oxidation of tertiary amines and azines to N-oxides.

    PubMed

    Limnios, Dimitris; Kokotos, Christoforos G

    2014-01-07

    A cheap, mild and environmentally friendly oxidation of tertiary amines and azines to the corresponding N-oxides is reported by using polyfluoroalkyl ketones as efficient organocatalysts. 2,2,2-Trifluoroacetophenone was identified as the optimum catalyst for the oxidation of aliphatic tertiary amines and azines. This oxidation is chemoselective and proceeds in high-to-quantitative yields utilizing 10 mol % of the catalyst and H2 O2 as the oxidant. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Regioselective Copper-Catalyzed Amination of Chlorobenzoic Acids: Synthesis and Solid-State Structures of N-Aryl Anthranilic Acid Derivatives

    PubMed Central

    Mei, Xuefeng; August, Adam T.; Wolf, Christian

    2008-01-01

    A chemo- and regioselective copper-catalyzed cross-coupling reaction for effective amination of 2-chlorobenzoic acids with aniline derivatives has been developed. The method eliminates the need for acid protection and produces a wide range of N-aryl anthranilic acid derivatives in up to 99%. The amination was found to proceed with both electron-rich and electron-deficient aryl chlorides and anilines and also utilizes sterically hindered anilines such as 2,6-dimethylaniline and 2-tert-butylaniline. The conformational isomerism of appropriately substituted N-aryl anthranilic acids has been investigated in the solid state. Crystallographic analysis of seven anthranilic acid derivatives showed formation of two distinct supramolecular architectures exhibiting trans-anti- and unprecedented trans-syn-dimeric structures. PMID:16388629

  7. Cu/Nitroxyl Catalyzed Aerobic Oxidation of Primary Amines into Nitriles at Room Temperature

    PubMed Central

    Kim, Jinho; Stahl, Shannon S.

    2013-01-01

    An efficient catalytic method has been developed for aerobic oxidation of primary amines to the corresponding nitriles. The reactions proceed at room temperature and employ a catalyst consisting of (4,4′-tBu2bpy)CuI/ABNO (ABNO = 9-azabicyclo[3.3.1]nonan-3-one N-oxyl). The reactions exhibit excellent functional group compatibility and substrate scope, and are effective with benzylic, allylic and aliphatic amines. Preliminary mechanistic studies suggest that aerobic oxidation of the Cu catalyst is the turnover-limiting step of the reaction. PMID:24015373

  8. Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene.

    PubMed

    Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C Raman

    2013-03-15

    Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson-Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available OH and COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n=3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Experimental investigation and DFT calculation of different amine/ammonium salts adsorption on kaolinite

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Min, Fan-fei; Liu, Lingyun; Liu, Chunfu; Lu, Fangqin

    2017-10-01

    The adsorption of four different amine/ammonium salts of DDA (Dodecyl amine), MDA (N-methyldodecyl amine), DMDA (N,N-dimethyldodecyl amine) and DTAC (Dodecyl trimethyl ammonium chloride) on kaolinite particles was investigated in the study through the measurement of contact angles, zeta potentials, aggregation observation, adsorption and sedimentation. The results show that different amine/ammonium salts can adsorb on the kaolinite surface to enhance the hydrophobicity and reduce the electronegativity of kaolinite particle surface, and thus induce a strong hydrophobic aggregation of kaolinite particles which promotes the settlement of kaolinite. To explore the adsorption mechanism of these four amine/ammonium salts on kaolinite surfaces, the adsorptions of DDA+, MDA+, DMDA+ and DTAC+ on kaolinite (001) surface and (00 1 bar) surface are calculated with DFT (Density functional theory). The DFT calculation results indicate that different amine/ammonium cations can strongly adsorbed on kaolinite (001) surface and (00 1 bar) surface by forming Nsbnd H⋯O strong hydrogen bonds or Csbnd H⋯O weak hydrogen bonds, and there are strongly electrostatic attractions between different amine/ammonium cations and kaolinite surfaces. The main adsorption mechanism of amine/ammonium cations on kaolinite is hydrogen-bond interaction and electrostatic attraction.

  10. Insights into the O-Acetylation Reaction of Hydroxylated Heterocyclic Amines by Human Arylamine N-Acetyltransferases: A Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, E Y; Felton, J S; Lightstone, F C

    2006-06-06

    A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common mutations may affect the structure of the protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclicmore » amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the P-loop was found using our models and will be discussed. Additionally, quantum mechanical calculations were performed to study the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP. This study has given us insight into why there are substrate differences among isoenzymes and explains some of the polymorphic activity differences.« less

  11. Monitoring of biogenic amines and drugs of various therapeutic groups in urine samples with use of HPLC.

    PubMed

    Baranowska, Irena; Płonka, Joanna

    2016-04-01

    A high-performance liquid chromatography method for simultaneous separation and determination of biogenic amines [dopamine, epinephrine, serotonin and its six metabolites (normetanephrine, metanephrine, 3,4-dihydroxyphenylacetic acid, 4-hydroxy-3-methoxyphenylglycol, homovanilic acid and 5-hydroxyindoloacetic acid)] with drugs from different therapeutically groups [analgesics (paracetamol, metamizol), diuretics (furosemide) and antibiotics (cefazolin, fluconazole)] was developed. A chromatographic column with pre-column with octadecylsilane phase (C18e ) and two detectors - diode array serial connected and fluorescence - was used. Gradient elution of mixture of acetate buffer (pH 4.66) and methanol as a mobile phase was applied. The limit of detection (LOD) of 8-10 ng/mL and limit of quantitation (LOQ) of 24-30 ng/mL for biogenic amines, as well as the LOD of 50-100 ng/mL and the LOQ of 150-300 ng/mL for drugs, were determined. The applied sample preparation method allowed recoveries of 93% for the biogenic amines and 92% for the drugs to be achieved. The developed procedure has been applied to simultaneous determination of the examined compounds in urine samples and could be used in clinical analysis. Copyright © 2015 John Wiley & Sons, Ltd.

  12. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal.

    PubMed

    Wang, Xiangyu; Du, Yanli; Hua, Ying; Fu, Muqing; Niu, Cong; Zhang, Bao; Zhao, Wei; Zhang, Qiwei; Wan, Chengsong

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, Δ espF ), N-terminal sequence (219 bp, Δ espF N ), and C-terminal sequence (528 bp, Δ espF C ) separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, Δ espF/pespF , Δ espF N /pespF N , and Δ espF C /pespF C by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER), and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT), Δ espF , Δ espF/pespF , Δ espF C , Δ espF C /pespF C , Δ espF N , and Δ espF N /pespF N groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, Δ espF/pespF , and Δ espF C were significantly higher than that of Δ espF , Δ espF N , Δ espF C /pespF C , and Δ espF N /pespF N group ( p < 0.05). The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  13. Carbon Dioxide-Mediated C(sp3)-H Arylation of Amine Substrates.

    PubMed

    Kapoor, Mohit; Liu, Daniel; Young, Michael C

    2018-05-25

    Elaborating amines via C-H functionalization has been an important area of research over the past decade but has generally relied on an added directing group or sterically hindered amine approach. Since free-amine-directed C(sp 3 )-H activation is still primarily limited to cyclization reactions and to improve the sustainability and reaction scope of amine-based C-H activation, we present a strategy using CO 2 in the form of dry ice that facilitates intermolecular C-H arylation. This methodology has been used to enable an operationally simple procedure whereby 1° and 2° aliphatic amines can be arylated selectively at their γ-C-H positions. In addition to potentially serving as a directing group, CO 2 has also been demonstrated to curtail the oxidation of sensitive amine substrates.

  14. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    PubMed

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A general method for N-methylation of amines and nitro compounds with dimethylsulfoxide.

    PubMed

    Jiang, Xue; Wang, Chao; Wei, Yawen; Xue, Dong; Liu, Zhaotie; Xiao, Jianliang

    2014-01-03

    DMSO methylates a broad range of amines in the presence of formic acid, providing a novel, green and practical method for amine methylation. The protocol also allows the one-pot transformation of aromatic nitro compounds into dimethylated amines in the presence of a simple iron catalyst. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  17. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: QSAR DEVELOPMENT

    EPA Science Inventory

    Despite the common occurrence of the aromatic amine functional group in environmental contaminants, few quantitative structure-activity relationships (QSARs) have been developed to predict sorption kinetics for aromatic amines in natural soils and sediments. Towards the goal of d...

  18. N-terminal acetylation modulates Bax targeting to mitochondria.

    PubMed

    Alves, Sara; Neiri, Leire; Chaves, Susana Rodrigues; Vieira, Selma; Trindade, Dário; Manon, Stephen; Dominguez, Veronica; Pintado, Belen; Jonckheere, Veronique; Van Damme, Petra; Silva, Rui Duarte; Aldabe, Rafael; Côrte-Real, Manuela

    2018-02-01

    The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25 -/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Determination of secondary and tertiary amines as N-nitrosamine precursors in drinking water system using ultra-fast liquid chromatography-tandem mass spectrometry.

    PubMed

    Wu, Qihua; Shi, Honglan; Ma, Yinfa; Adams, Craig; Eichholz, Todd; Timmons, Terry; Jiang, Hua

    2015-01-01

    N-Nitrosamines are potent mutagenic and carcinogenic emerging water disinfection by-products (DBPs). The most effective strategy to control the formation of these DBPs is minimizing their precursors from source water. Secondary and tertiary amines are dominating precursors of N-nitrosamines formation during drinking water disinfection process. Therefore, the screening and removal of these amines in source water are very essential for preventing the formation of N-nitrosamines. A rapid, simple, and sensitive ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed in this study to determine seven amines, including dimethylamine, ethylmethylamine, diethylamine, dipropylamine, trimethylamine, 3-(dimethylaminomethyl)indole, and 4-dimethylaminoantipyrine, as major precursors of N-nitrosamines in drinking water system. No sample preparation process is needed except a simple filtration. Separation and detection can be achieved in 11 min per sample. The method detection limits of selected amines are ranging from 0.02 μg/L to 1 μg/L except EMA (5 μg/L), and good calibration linearity was achieved. The developed method was applied to determine the selected precursors in source water and drinking water samples collected from Midwest area of the United States. In most of water samples, the concentrations of selected precursors of N-nitrosamines were below their method detection limits. Dimethylamine was detected in some of water samples at the concentration up to 25.4 μg/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts

    DOE PAGES

    Wang, Hua; Zhou, Feng; Ren, Gerui; ...

    2017-05-18

    In this article, the SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph 3P=N-PPh 3] +[HF 2] - as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of sidemore » chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.« less

  1. Tertiary-amine-containing thermo- and pH-sensitive hydrophilic ABA triblock copolymers: effect of different tertiary amines on thermally induced sol-gel transitions.

    PubMed

    Henn, Daniel M; Wright, Roger A E; Woodcock, Jeremiah W; Hu, Bin; Zhao, Bin

    2014-03-11

    This Article reports on the synthesis of a series of well-defined, tertiary-amine-containing ABA triblock copolymers, composed of a poly(ethylene oxide) (PEO) central block and thermo- and pH-sensitive outer blocks, and the study of the effect of different tertiary amines on thermally induced sol-gel transition temperatures (T(sol-gel)) of their 10 wt % aqueous solutions. The doubly responsive ABA triblock copolymers were prepared from a difunctional PEO macroinitiator by atom transfer radical polymerization of methoxydi(ethylene glycol) methacrylate and ethoxydi(ethylene glycol) methacrylate at a feed molar ratio of 30:70 with ∼5 mol % of either N,N-diethylaminoethyl methacrylate (DEAEMA), N,N-diisopropylaminoethyl methacrylate, or N,N-di(n-butyl)aminoethyl methacrylate. The chain lengths of thermosensitive outer blocks and the molar contents of tertiary amines were very similar for all copolymers. Using rheological measurements, we determined the pH dependences of T(sol-gel) of 10 wt % aqueous solutions of these copolymers in a phosphate buffer. The T(sol-gel) versus pH curves of all polymers exhibited a sigmoidal shape. The T(sol-gel) increased with decreasing pH; the changes were small on both high and low pH sides. At a specific pH, the T(sol-gel) decreased with increasing the hydrophobicity of the tertiary amine, and upon decreasing pH the onset pH value for the T(sol-gel) to begin to increase noticeably was lower for the more hydrophobic tertiary amine-containing copolymer. In addition, we studied the effect of different tertiary amines on the release behavior of FITC-dextran from 10 wt % micellar gels in an acidic medium at 37 and 27 °C. The release profiles for three studied hydrogels at 37 °C were essentially the same, suggesting that the release was dominated by the diffusion of FITC-dextran. At 27 °C, the release was significantly faster for the DEAEMA-containing copolymer, indicating that both diffusion and gel dissolution contributed to the

  2. Digital Inverter Amine Sensing via Synergistic Responses by n and p Organic Semiconductors

    PubMed Central

    Tremblay, Noah J.; Jung, Byung Jun; Breysse, Patrick; Katz, Howard E.

    2013-01-01

    Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic responses of paired p- and n-channel organic semiconductors, including an unprecedented analyte-induced current increase by the n-channel semiconductor. This represents the first step towards ‘intelligent sensors’ that utilize analog signal changes in sensitive OFETs to produce direct digital readouts suitable for further logic operations. PMID:23754969

  3. Structure-Function Study of Tertiary Amines as Switchable Polarity Solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaron D. Wilson; Frederick F. Stewart

    2014-02-01

    A series of tertiary amines have been screened for their function as switchable polarity solvents (SPS). The relative ratios of tertiary amine and carbonate species as well as maximum possible concentration were determined through quantitative 1H and 13C NMR spectroscopy. The viscosities of the polar SPS solutions were measured and ranged from near water in dilute systems through to gel formation at high concentrations. The van't Hoff indices for SPS solutions were measured through freezing point depression studies as a proxy for osmotic pressures. A new form of SPS with an amine : carbonate ratio significantly greater than unity hasmore » been identified. Tertiary amines that function as SPS at ambient pressures appear to be limited to molecules with fewer than 12 carbons. The N,N-dimethyl-n-alkylamine structure has been identified as important to the function of an SPS.« less

  4. DIRECT SYNTHESIS OF TERTIARY AMINES IN WATER USING MICROWAVES

    EPA Science Inventory

    A direct synthesis of tertiary amines is presented that proceeds expeditiously via N-alkylation of amines using alkyl halides in alkaline aqueous medium. This environmentally benign reaction is accelerated upon exposure to microwave irradiation resulting in shortened reaction tim...

  5. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds

    PubMed Central

    Mutti, Francesco G.

    2017-01-01

    Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study – operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme – performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the (R)-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH–Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product. PMID:28663713

  7. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.

    PubMed

    Knaus, Tanja; Böhmer, Wesley; Mutti, Francesco G

    2017-01-21

    Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study - operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme - performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the ( R )-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH-Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product.

  8. Decoding nitric oxide release rates of amine-based diazeniumdiolates.

    PubMed

    Wang, Yan-Ni; Collins, Jack; Holland, Ryan J; Keefer, Larry K; Ivanic, Joseph

    2013-08-01

    Amine-based diazeniumdiolates (NONOates) have garnered widespread use as nitric oxide (NO) donors, and their potential for nitroxyl (HNO) release has more recently been realized. While NO release rates can vary significantly with the type of amine, half-lives of seconds to days under physiological conditions, there is as yet no way to determine a priori the NO or HNO production rates of a given species, and no discernible trends have manifested other than that secondary amines produce only NO (i.e., no HNO). As a step to understanding these complex systems, here we describe a procedure for modeling amine-based NONOates in water solvent that provides an excellent correlation (R(2) = 0.94) between experimentally measured dissociation rates of seven secondary amine species and their computed NO release activation energies. The significant difference in behavior of NONOates in the gas and solvent phases is also rigorously demonstrated via explicit additions of quantum mechanical water molecules. The presented results suggest that the as-yet unsynthesized simplest amine-based NONOate, the diazeniumdiolated ammonia anion [H2N-N(O)═NO(-)], could serve as an unperturbed HNO donor. These results provide a step forward toward the accurate modeling of general NO and/or HNO donors as well as for the identification of tailored prodrug candidates.

  9. Pyrylium Salts as Reactive Matrices for MALDI-MS Imaging of Biologically Active Primary Amines

    NASA Astrophysics Data System (ADS)

    Shariatgorji, Mohammadreza; Nilsson, Anna; Källback, Patrik; Karlsson, Oskar; Zhang, Xiaoqun; Svenningsson, Per; Andren, Per E.

    2015-06-01

    Many neuroactive substances, including endogenous biomolecules, environmental compounds, and pharmaceuticals possess primary amine functional groups. Among these are catecholamine neurotransmitters (e.g., dopamine), many substituted phenethylamines (e.g., amphetamine), as well as amino acids and neuropeptides. In most cases, mass spectrometric (ESI and MALDI) analyses of trace amounts of such compounds are challenging because of their poor ionization properties. We present a method for chemical derivatization of primary amines by reaction with pyrylium salts that facilitates their detection by MALDI-MS and enables the imaging of primary amines in brain tissue sections. A screen of pyrylium salts revealed that the 2,4-diphenyl-pyranylium ion efficiently derivatizes primary amines and can be used as a reactive MALDI-MS matrix that induces both derivatization and desorption. MALDI-MS imaging with such matrix was used to map the localization of dopamine and amphetamine in brain tissue sections and to quantitatively map the distribution of the neurotoxin β- N-methylamino-L-alanine.

  10. Copper-catalyzed α-amination of aliphatic aldehydes.

    PubMed

    Tian, Jie-Sheng; Loh, Teck-Peng

    2011-05-21

    A highly efficient copper-catalyzed α-amination of aliphatic aldehydes for the synthesis of α-amino acetals using secondary amines with readily removable protecting groups as a nitrogen source was developed. This reaction can be operated under very mild conditions, affording the desired products in moderate to good yields. © The Royal Society of Chemistry 2011

  11. Sustainable Pathways to Pyrroles through Iron-Catalyzed N-Heterocyclization from Unsaturated Diols and Primary Amines.

    PubMed

    Yan, Tao; Barta, Katalin

    2016-09-08

    Pyrroles are prominent scaffolds in pharmaceutically active compounds and play an important role in medicinal chemistry. Therefore, the development of new, atom-economic, and sustainable catalytic strategies to obtain these moieties is highly desired. Direct catalytic pathways that utilize readily available alcohol substrates have been recently established; however, these approaches rely on the use of noble metals such as ruthenium or iridium. Here, we report on the direct synthesis of pyrroles using a catalyst based on the earth-abundant and inexpensive iron. The method uses 2-butyne-1,4-diol or 2-butene-1,4-diol that can be directly coupled with anilines, benzyl amines, and aliphatic amines to obtain a variety of N-substituted pyrroles in moderate-to-excellent isolated yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans.

    PubMed

    Song, Xuezheng; Johns, Brian A; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F; Cummings, Richard D

    2013-11-15

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here, we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or retagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker.

  13. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans

    PubMed Central

    Song, Xuezheng; Johns, Brian A.; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F.; Cummings, Richard D.

    2014-01-01

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or re-tagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker. PMID:23992636

  14. Catalyst- and Reagent-free Electrochemical Azole C-H Amination.

    PubMed

    Qiu, Youai; Struwe, Julia; Meyer, Tjark H; Oliveira, Joao Carlos Agostinho Carlos Agostinho; Ackermann, Lutz

    2018-06-14

    Catalyst-, and chemical oxidant-free electrochemical azole C-H aminations were accomplished via cross-dehydrogenative C-H/N-H functionalization. The catalyst-free electrochemical C-H amination proved feasible on azoles with high levels of efficacy and selectivity, avoiding the use of stoichiometric oxidants under ambient conditions. Likewise, the C(sp3)-H nitrogenation proved viable under otherwise identical conditions. The dehydrogenative C-H amination featured ample scope, including cyclic and acyclic aliphatic amines as well as anilines, and employed sustainable electricity as the sole oxidant. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1

    PubMed Central

    Parnham, Stuart; Gaines, William A.; Duggan, Brendan M.; Marcotte, William R.

    2011-01-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes. PMID:21152998

  16. Metal-free, mild, nonepimerizing, chemo- and enantio- or diastereoselective N-alkylation of amines by alcohols via oxidation/imine-iminium formation/reductive amination: a pragmatic synthesis of octahydropyrazinopyridoindoles and higher ring analogues.

    PubMed

    Khan, Imran A; Saxena, Anil K

    2013-12-06

    A mild step and atom-economical nonepimerizing chemo- and enantioselective N-alkylating procedure has been developed via oxidation/imine-iminium formation/reduction cascade using TEMPO-BAIB-HEH-Brønsted acid catalysis in DMPU as solvent and a stoichiometric amount of amine. The optimized conditions were further extended for the nonenzymatic kinetic resolution of the chiral amine thus formed under nonenzymatic in situ hydrogen-transfer conditions using VAPOL-derived phosphoric acid (VAPOL-PA) as the Brønsted acid catalyst. The enantioselective cascade of the presented reaction was successfully utilized in the synthesis of octahydropyrazinopyridoindole and its higher ring analogues.

  17. Interaction of protonated merocyanine dyes with amines in organic solvents.

    PubMed

    Ribeiro, Eduardo Alberton; Sidooski, Thiago; Nandi, Leandro Guarezi; Machado, Vanderlei Gageiro

    2011-10-15

    2,6-Diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (1a) and 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (2a) were protonated in organic solvents (dichloromethane, acetonitrile, and DMSO) to form 1b and 2b, respectively. The appearance of the solvatochromic bands of 1a and 2a was studied UV-vis spectrophotometrically by deprotonation of 1b and 2b in solution in the presence of the following amines: aniline (AN), N-methylaniline (NMAN), N,N-dimethylaniline (NDAN), n-butylamine (BA), diethylamine (DEA), and triethylamine (TEA). Titrations of 1b and 2b with the amines were carried out and the binding constants were determined from the titration curves in each solvent, using a mathematical model adapted from the literature which considers the simultaneous participation of two dye: amine stoichiometries, 1:1 and 1:2. The data obtained showed the following base order for the two compounds in DMSO: BA>DEA>TEA, while aromatic amines did not cause any effect. In dichloromethane, the following base order for 1b was verified: TEA>DEA>BA≫NDAN, while for 2b the order was: TEA>DEA>BA, suggesting that 1b is more acidic than 2b. The data in acetonitrile indicated for 1b and 2b the following order for the amines: DEA>TEA>BA. The diversity of the experimental data were explained based on a model that considers the level of interaction of the protonated dyes with the amines to be dependent on three aspects: (a) the basicity of the amine, which varies according to their molecular structure and the solvent in which it is dissolved, (b) the molecular structure of the dye, and (c) the solvent used to study the system. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Matthew L.; Varner, Mychel E.; Perraud, Veronique M.

    2014-12-18

    Aerosol particles are ubiquitous in the atmosphere and have been shown to impact the Earth’s climate, reduce visibility, and adversely affect human health. Modeling the evolution of aerosol systems requires an understanding of the species and mechanisms involved in particle growth, including the complex interactions between particle- and gas-phase species. Here we report studies of displacement of amines (methylamine, dimethylamine or trimethylamine) in methanesulfonate salt particles by exposure to a different gas-phase amine, using a single particle mass spectrometer, SPLAT II. The variation of the displacement with the nature of the amine suggests that behavior is dependent on water inmore » or on the particles. Small clusters of methanesulfonic acid with amines are used as a model in quantum chemical calculations to identify key structural elements that are expected to influence water uptake, and hence the efficiency of displacement by gas-phase molecules in the aminium salts. Such molecular-level understanding of the processes affecting the ability of gas-phase amines to displace particle-phase aminium species is important for modeling the growth of particles and their impacts in the atmosphere.« less

  19. Nuclear Magnetic Resonance Shift Reagents: Abnormal 13C Shifts Produced by Complexation of Lanthanide Chelates with Saturated Amines and n-Butyl Isocyanide

    PubMed Central

    Marzin, Claude; Leibfritz, Dieter; Hawkes, Geoffrey E.; Roberts, John D.

    1973-01-01

    Lanthanide-induced shfits of 13C nuclear magnetic resonances are reported for several amines and n-butyl isocyanide. Contact contributions to such shifts, especially of β carbons, are clearly important for the chelates of Eu+3 and Pr+3. The importance of contact terms is shown to change in a rather predictable manner with the structure of the amine. PMID:16592062

  20. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    PubMed

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  1. A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry.

    PubMed

    Kim, Heejin; Yonekura, Yuya; Yoshida, Jun-Ichi

    2018-04-03

    Reported is the electrophilic amination of functional organolithium intermediates with well-designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C-N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped-flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work-up. Integrated one-flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of the Terminal Electron Donor in D-D-π-A Organic Dye-Sensitized Solar Cells: Dithieno[3,2-b:2',3'-d]pyrrole versus Bis(amine).

    PubMed

    Dai, Panpan; Yang, Lin; Liang, Mao; Dong, Huanhuan; Wang, Peng; Zhang, Chunyao; Sun, Zhe; Xue, Song

    2015-10-14

    With respect to the electron-withdrawing acceptors of D-A-π-A organic dyes, reports on the second electron-donating donors for D-D-π-A organic dyes are very limited. Both of the dyes have attracted significant attention in the field of dye-sensitized solar cells (DSCs). In this work, four new D-D-π-A organic dyes with dithieno[3,2-b:2',3'-d]pyrrole (DTP) or bis(amine) donor have been designed and synthesized for a investigation of the influence of the terminal electron donor in D-D-π-A organic dye-sensitized solar cells. It is found that DTP is a promising building block as the terminal electron donor when introduced in the dithiophenepyrrole direction, but not just a good bridge, which exhibits several characteristics: (i) efficiently increasing the maximum molar absorption coefficient and extending the absorption bands; (ii) showing stronger charge transfer interaction as compared with the pyrrole direction; (iii) beneficial to photocurrent generation of DSCs employing cobalt electrolytes. DSCs based on M45 with the Co-phen electrolyte exhibit good light-to-electric energy conversion efficiencies as high as 9.02%, with a short circuit current density (JSC) of 15.3 mA cm(-2), open circuit voltage (VOC) of 867 mV and fill factor (FF) of 0.68 under AM 1.5 illumination (100 mW cm(-2)). The results demonstrate that N,S-heterocycles such as DTP unit could be promising candidates for application in highly efficient DSCs employing cobalt electrolyte.

  3. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES. 2. QSAR DEVELOPMENT

    EPA Science Inventory

    The fate of aromatic amines in soils and sediments is dominated by irreversible binding through nucleophilic addition and oxidative radical coupling. Despite the common occurrence of the aromatic amine functional group in organic chemicals, the molecular properties useful for pr...

  4. A Simple Secondary Amine Synthesis: Reductive Amination Using Sodium Triacetoxyborohydride

    NASA Astrophysics Data System (ADS)

    Carlson, Merle W.; Ciszewski, James T.; Bhatti, Micah M.; Swanson, Wesley F.; Wilson, Anne M.

    2000-02-01

    We present a reductive amination experiment for a second-semester organic chemistry class. It utilizes an imine intermediate and sodium triacetoxyborohydride, a mild reducing agent. The progress of the reaction is followed by TLC as the starting materials (the aldehyde and primary amine), the imine intermediate, and the secondary amine product are visible under ultraviolet light. This experiment provides an introduction to the observation of intermediates, the synthesis of amines, and the concept of mild reducing agents.

  5. Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry.

    PubMed

    Brisson, Emma R L; Xiao, Zeyun; Franks, George V; Connal, Luke A

    2017-01-09

    The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.

  6. Origin of fast catalysis in allylic amination reactions catalyzed by Pd-Ti heterobimetallic complexes.

    PubMed

    Walker, Whitney K; Kay, Benjamin M; Michaelis, Scott A; Anderson, Diana L; Smith, Stacey J; Ess, Daniel H; Michaelis, David J

    2015-06-17

    Experiments and density functional calculations were used to quantify the impact of the Pd-Ti interaction in the cationic heterobimetallic Cl2Ti(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 1 used for allylic aminations. The catalytic significance of the Pd-Ti interaction was evaluated computationally by examining the catalytic cycle for catalyst 1 with a conformation where the Pd-Ti interaction is intact versus one where the Pd-Ti interaction is severed. Studies were also performed on the relative reactivity of the cationic monometallic (CH2)2(N(t)BuPPh2)2Pd(η(3)-methallyl) catalyst 2 where the Ti from catalyst 1 was replaced by an ethylene group. These computational and experimental studies revealed that the Pd-Ti interaction lowers the activation barrier for turnover-limiting amine reductive addition and accelerates catalysis up to 10(5). The Pd-Ti distance in 1 is the result of the N(t)Bu groups enforcing a boat conformation that brings the two metals into close proximity, especially in the transition state. The turnover frequency of classic Pd π allyl complexes was compared to that of 1 to determine the impact of P-Pd-P coordination angle and ligand electronic properties on catalysis. These experiments identified that cationic (PPh3)2Pd(η(3)-CH2C(CH3)CH2) catalyst 3 performs similarly to 1 for allylic aminations with diethylamine. However, computations and experiment reveal that the apparent similarity in reactivity is due to very fast reaction kinetics. The higher reactivity of 1 versus 3 was confirmed in the reaction of methallyl chloride and 2,2,6,6-tetramethylpiperidine (TMP). Overall, experiments and calculations demonstrate that the Pd-Ti interaction induces and is responsible for significantly lower barriers and faster catalysis for allylic aminations.

  7. MIR and NIR group spectra of n-alkanes and 1-chloroalkanes.

    PubMed

    Kwaśniewicz, Michał; Czarnecki, Mirosław A

    2015-05-15

    Numerous attempts were undertaken to resolve the absorption originating from different parts of alkanes. The separation of the contributions from the terminal and midchain methylene units was observed only in the spectra of solid alkanes at low temperatures. On the other hand, for liquid alkanes this effect was not reported as yet. In this study, ATR-IR, Raman and NIR spectra of eight n-alkanes and seven 1-chloroalkanes in the liquid phase were measured from 1000 to 12,000cm(-1). The spectra were analyzed by using two-dimensional (2D) correlation approach and chemometrics methods. It was shown that in 2D asynchronous contour plots, constructed from the spectra of n-alkanes and 1-chloroalkanes, the methylene band was resolved into two components. These two components were assigned to the terminal and midchain methylene groups. For the first time, the contributions from these two molecular fragments were resolved in the spectra of liquid n-alkanes and 1-chloroalkanes. MCR-ALS resolved these spectra into two components that were assigned to the ethyl and midchain methylene groups. These components represent the group spectra that can be used for assignment, spectral analysis and prediction of unknown spectra. The spectral prediction based on the group spectra provides very good results for n-alkanes, especially in the first and second overtone regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana *

    PubMed Central

    Ndah, Elvis; Jonckheere, Veronique

    2017-01-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. PMID:28432195

  9. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana.

    PubMed

    Willems, Patrick; Ndah, Elvis; Jonckheere, Veronique; Stael, Simon; Sticker, Adriaan; Martens, Lennart; Van Breusegem, Frank; Gevaert, Kris; Van Damme, Petra

    2017-06-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Aerobic biodegradation of amines in industrial saline wastewaters.

    PubMed

    Campo, Pablo; Platten, William; Suidan, Makram T; Chai, Yunzhou; Davis, John W

    2011-11-01

    The treatment of hypersaline wastewaters represents a challenge since high salt concentrations disrupt bacteria present in normal biological treatments. This study was conducted to determine the fate of amines in two hypersaline wastewaters obtained from an industrial treatment plant processing influents with 3% and 7% of NaCl. The compounds were aniline (ANL), 4,4'-methylenedianiline (4,4'-MDA), cyclohexylamine (CHA), N-(2-aminoethyl)ethanolamine (AEA), N,N-diethylethanolamine (DEA), N,N-bis(2-hydroxyethyl)methylamine (MDEA), and tris(2-hydroxyethyl)amine (TEA). Mixtures of these chemicals with a mixed liquor suspended solids concentration of 1000 mg L(-1) were prepared at two salinities (3% and 7% NaCl). Ethanolamines were readily biodegraded at both salinities, following first-order kinetics with half-lives ranging between 10 and 58 h. Hydroxyl groups present in the ethanolamines had a positive impact on the biodegradation. Salinity did not affect the biodegradation rate of TEA and MDEA, whereas AEA and DEA degraded faster in 3% NaCl. After 48h, CHA was metabolized within a 24-h period in 3% NaCl, while no degradation was observed in 7% NaCl. ANL exhibited lag phases in both salinities and, in the following 24-h period, ANL concentrations dropped 40% and disappeared after 48 h. 4,4'-MDA degraded in 3% NaCl (half-life of 123 h) and remained unaltered after 120 h in 7% NaCl. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Reductive amination-assisted quantitation of tamoxifen and its metabolites by liquid phase chromatography tandem mass spectrometry.

    PubMed

    Liang, Shih-Shin; Wang, Tsu-Nai; Chiu, Chien-Chih; Kuo, Po-Lin; Huang, Mei-Fang; Liu, Meng-Chieh; Tsai, Eing-Mei

    2016-02-19

    Tamoxifen, a hormonal therapy drug against estrogen receptor-positive breast cancer, can be metabolized by cytochrome P450 enzymes such as CYP3A4 and CYP3A5, and converted to N-desmethyltamoxifen, which is subsequently, metabolized by CYP2D6 and inverted to form 4-hydroxy-N-desmethyltamoxifen (endoxifen). Conventional mass spectrometry (MS) analyses of tamoxifen and its metabolites require isotopic internal standards (ISs). In this study, endoxifen and N-desmethyltamoxifen amine groups were modified by reductive amination with formaldehyde-D2 to produce new metabolite molecules. Both endoxifen and N-desmethyltamoxifen generated their corresponding D2-methyl modified analogs. This method is expected to simplify MS detection and overcome the difficulty in selecting adequate ISs when tamoxifen metabolites are analyzed by absolute quantification. It identified tamoxifen, D2-methyl modified endoxifen, and D2-methyl modified N-desmethyltamoxifen with a linearity ranging from 2 to 5000 ng/mL with correlation coefficient (R(2)) values of 0.9868, 0.9849, and 0.9880, respectively. Furthermore, this reductive amination-based method may enhance the signal intensities of D2-methyl modified N-desmethyltamoxifen and endoxifen, thus facilitating the MS detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).

    PubMed

    Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio

    2015-01-01

    In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.

  13. A polyethylenimine-mimetic biodegradable polycation gene vector and the effect of amine composition in transfection efficiency.

    PubMed

    Shen, J; Zhao, D J; Li, W; Hu, Q L; Wang, Q W; Xu, F J; Tang, G P

    2013-06-01

    The low toxicity and efficient gene delivery of polymeric vectors remain the major barrier to the clinical application of non-viral gene therapy. Here, we present a poly-D, L-succinimide (PSI)-based biodegradable cationic polymer which mimicked the golden standard, branched polyethylenimine (PEI, ~25 kDa). To investigate the influence of 1°, 2°, 3° amine group ratio in the polymer, a series of PSI-based vectors (PSI-NN'x-NNy) grafted with different amine side chains of N,N-dimethyldipropylenetriamine (NN') and bis(3-aminopropyl)amine (NN) were first characterized and contrasted by biophysical measurements. The in vitro and in vivo biological assay demonstrated that PSI-NN'0.85-NN1 exhibited better transfection ability and biocompatibility than PEI. The present results suggest that such PEI-mimic biodegradable PSI-NN'0.85-NN1 possesses a good potential application for clinical gene delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. MICROWAVE-ASSISTED CU (I) CATALYZED SOLVENT-FREE THREE COMPONENT COUPLING OF ALDEHYDE, ALKYNE AND AMINE

    EPA Science Inventory

    Direct Grignard type addition of terminal alkynes to in situ generated imines, from aldehydes and amines, occurs under microwave irradiation using CuBr alone in a one-pot operation. This solventless approach provides ready access to propargylamines and is applicable both...

  15. Clean amine solvents economically and online

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, J.; Burns, D.

    1995-08-01

    Using electrodialysis technology to clean amine solvents is economically competitive with traditional change-out or ``bleed and feed`` methods, even for small systems, because a unit shutdown is not necessary to perform the process. Electrodialysis also has advantages over other online cleanup processes like ion exchange and vacuum reclamation. Off gases and olefinic and saturate liquefied petroleum gas (LPG) streams generated during operation of fluid catalytic crackers (FCC), cokers and other refinery processing equipment must be treated to remove undesirable components like hydrogen sulfide and carbon dioxide before they can be sold or used in downstream processes. At an Arkansas City,more » Kansas, refinery, a classic amine-based chemical absorbent system is used for this purpose. It comprises two absorbing contacts for gas and two for liquids. The system is charged with an N-methyldiethanolamine (MDEA)-based product that selectively absorbs contaminants. Amine is regenerated by removing contaminants with steam stripping. Lean amine is then recirculated to the absorbers. This case history demonstrates the effectiveness of electrodialysis technology for contaminant removal.« less

  16. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.

    PubMed

    Chiavarino, Barbara; Cipollini, Romano; Crestoni, Maria Elisa; Fornarini, Simonetta; Lanucara, Francesco; Lapi, Andrea

    2008-03-12

    The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base

  17. Photopolymerization of N,N-dimethylaminobenzyl alcohol as amine co-initiator for light-cured dental resins.

    PubMed

    Schroeder, Walter F; Cook, Wayne D; Vallo, Claudia I

    2008-05-01

    The present study was carried out in order to assess the suitability of N,N-dimethylaminobenzyl alcohol (DMOH) as co-initiator of camphorquinone (CQ) and 1-phenyl-1,2-propanedione (PPD) in light-cured dental resins. DMOH was synthesized and used as co-initiator for the photopolymerization of a model resin based on {2,2-bis[4-(2-hydroxy-3-methacryloxyprop-1-oxy)phenyl]propane} (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA). Experimental formulations containing CQ or PPD in combination with DMOH at different concentrations were studied. The photopolymerization was carried out by means of a commercial light-emitting diode (LED) curing unit. The evolution of double bonds consumption versus irradiation time was followed by near-infrared spectroscopy (NIR). The photon absorption efficiency (PAE) of the photopolymerization process was calculated from the spectral distribution of the LED unit and the molar absorption coefficient distributions of PPD and CQ. DMOH is an efficient photoreducer of CQ and PPD resulting in higher polymerization rate and higher double bond conversion compared with dimethylaminoethylmethacrylate. The PAE for PPD was higher than that for CQ. However, the polymerization initiated by PPD progressed at a lower rate and exhibited lower values of final conversion compared with the resins containing CQ. This observation indicates that the lower polymerization rate of the PPD/amine system should be explained in terms of the mechanism of generating primary radicals by PPD, which is less efficient compared with CQ. The DMOH/benzoyl peroxide redox system, has recently been proposed as a more biocompatible accelerator for the polymerization of bone cements based on poly(methyl methacrylate), because cytotoxity tests have demonstrated that DMOH possesses better biocompatibility properties compared with traditional tertiary amines. The results obtained in the present study reveal the suitability of the CQ/DMOH initiator system for the polymerization of

  18. Silylative Reductive Amination of α,β-Unsaturated Aldehydes: A Convenient Synthetic Route to β-Silylated Secondary Amines.

    PubMed

    Kim, Eunae; Park, Sehoon; Chang, Sukbok

    2018-04-17

    Described here is a reductive amination/hydrosilylation cascade of α,β-unsaturated aldehydes mediated by a Lewis acidic borane catalyst. The present reaction system provides an one-pot synthetic route towards β-silylated secondary amines that have not been accessible by other previous catalysis. Comparative 1 H NMR studies on the silylative reduction of enimines revealed that steric bulkiness of primary amine reactants strongly affects both catalytic efficiency and regioselectivity. This strategy was applicable to a broad range of substrates and amenable to one-pot gram-scale synthesis. Moreover, a diastereoselective introduction of the β-silyl group was also found to be feasible (d.r. up to 71:29). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    PubMed

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  20. Extractive separation of uranium and zirconium sulfates by amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  1. The localization of a vitamin K-induced modification in an N-terminal fragment of human prothrombin

    PubMed Central

    Skotland, Tore; Holm, Turid; Østerud, Bjarne; Flengsrud, Ragnar; Prydz, Hans

    1974-01-01

    1. The N-terminal fragment (PF-I) split off from prothrombin during coagulation was purified to homogeneity from human serum. 2. The apparent molecular weight is 27000±2000 in sodium dodecyl sulphate–polyacrylamide-gel electrophoresis, whereas a value of about 19600 is obtained by calculation based on amino acid and carbohydrate analyses. The N-terminal sequence is an Ala-Asx bond. The fragment contains about 16% carbohydrate, binds phospholipids in the presence of Ca2+ and is adsorbed to BaSO4. The pKa of its BaSO4-binding group(s) is 3.1–3.5. 3. By CNBr cleavage of fragment PF-I two peptides (C-1 and C-2) were obtained with molecular weights of about 5900 (C-2) and 12400 (C-1) on the basis of amino acid and carbohydrate analyses. Only the smaller (N-terminal) peptide is adsorbed to BaSO4 and, since the ability of the whole protein to bind to BaSO4 is known to be absent in samples obtained from patients treated with vitamin K antagonists, this peptide probably contains the site of a modification to the structure of the protein which occurs during biosynthesis and depends on vitamin K. This peptide does not contain hexosamine or sialic acid. ImagesFig. 2. PMID:4219283

  2. Striking Confinement Effect: AuCl[subscript 4][superscript -] Binding to Amines in a Nanocage Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henao, Juan D.; Suh, Young-Woong; Lee, Jeong-Kyu

    2009-02-23

    Binding of AuCl{sub 4}{sup -} to amine groups tethered to the interior of a 2 nm siloxane nanocage was determined in solutions containing various concentrations of acid. The mode of binding was inferred from EXAFS and UV-vis spectra to be by ligand exchange of amine for chloride, which implies that the amines remain unprotonated. Cyclic voltammetry confirmed that the Au complexes bind to the nanocage interior and established a 1:1 relationship between bound Au complex and amine groups. The results suggested a 5-7 pH unit shift in the protonation constant of the interior amines relative to free amines in solution.

  3. Star-shaped azomethines based on tris(2-aminoethyl)amine. Characterization, thermal and optical study.

    PubMed

    Iwan, Agnieszka; Janeczek, Henryk; Kaczmarczyk, Bozena; Jarzabek, Bozena; Sobota, Michal; Rannou, Patrice

    2010-02-01

    The synthesis and detailed (physico)-chemical ((1)H/(13)C NMR, FTIR, UV-vis and elemental analysis) characterizations of new star-shaped compounds based on tris(2-aminoethyl)amine, including in their structure an azomethine function (HCN-) and alkoxysemiperfluorinated (-O-(CH(2))(3)-(CF(2))(7)-CF(3)), octadecyloxy aliphatic (-O-(CH(2))(17)-CH(3)) chain or two phenyl rings (-Ph-Ph-) as a terminal group, were reported. The mesomorphic behavior was investigated by means of differential scanning calorimetry (DSC), polarized optical microscopy (POM) and additionally by FTIR(T) and UV-vis(T) spectroscopy. Wide-angle X-ray diffraction (WAXD) technique was used to probe the structural properties of the azomethines. Moreover, the azomethine A1 was electro-spun to prepare fibers with poly(methyl methacrylate) (PMMA) and investigated by DSC and POM. Additionally, a film of the A1 with PMMA was cast from chloroform and the thermal properties of the film were compared with the thermal properties of the fiber and powder. It was showed that terminal groups dramatically influence the thermal and optical properties of the star-shaped azomethines. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. A one-pot parallel reductive amination of aldehydes with heteroaromatic amines.

    PubMed

    Bogolubsky, Andrey V; Moroz, Yurii S; Mykhailiuk, Pavel K; Panov, Dmitriy M; Pipko, Sergey E; Konovets, Anzhelika I; Tolmachev, Andrey

    2014-08-11

    A parallel reductive amination of heteroaromatic amines has been performed using a combination of ZnCl2-TMSOAc (activating agents) and NaBH(OAc)3 (reducing agent). A library of diverse secondary amines was easily prepared on a 50-300 mg scale.

  5. Targeted mass spectrometric analysis of N-terminally truncated isoforms generated via alternative translation initiation.

    PubMed

    Kobayashi, Ryuji; Patenia, Rebecca; Ashizawa, Satoshi; Vykoukal, Jody

    2009-07-21

    Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.

  6. Retrospective evaluation of ProcalAmine administration in a population of hospitalized ICU dogs: 36 cases (2010-2013).

    PubMed

    Olan, Natasha V; Prittie, Jennifer

    2015-01-01

    To describe the use of ProcalAmine as a source of parenteral nutrition in hospitalized dogs and to report complications possibly referable to its use. Retrospective study. Private veterinary teaching hospital. Thirty-six dogs hospitalized in ICU receiving ProcalAmine between October 2010 and March 2013. None. The most common underlying disease process in this population of dogs was trauma (n = 8). Median duration of administration was 4 days and median resting energy requirement provided via ProcalAmine was 33%. ProcalAmine was administered via central catheters in 86% of cases and via peripheral catheters in 14% of cases. The overall mechanical complication rate was 19%. Metabolic complications possibly associated with ProcalAmine administration were documented in 12/36 dogs. Hyponatremia was most commonly identified (n = 6) followed by hyperglycemia (n = 4), hypochloremia (n = 2), azotemia (n = 2), metabolic alkalosis (n = 2), hyperchloremia (n = 1), and metabolic acidosis (n = 1). ProcalAmine appears to be relatively safe and a viable option for parenteral nutrition in ill and injured dogs. Due to the potential for electrolyte derangements and other metabolic complications, daily monitoring of these parameters is advisable. © Veterinary Emergency and Critical Care Society 2015.

  7. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    PubMed

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  8. Allylic aminations with hindered secondary amine nucleophiles catalyzed by heterobimetallic Pd-Ti complexes.

    PubMed

    Walker, Whitney K; Anderson, Diana L; Stokes, Ryjul W; Smith, Stacey J; Michaelis, David J

    2015-02-06

    Phosphinoamide-scaffolded heterobimetallic palladium-titanium complexes are highly effective catalysts for allylic aminations of allylic chlorides with hindered secondary amine nucleophiles. Three titanium-containing ligands are shown to assemble active catalysts in situ and enable catalysis at room temperature. A variety of sterically bulky secondary amines are efficiently allylated in high yields with as little as 1 mol % palladium catalyst. Piperidine and pyrrolidine products are also efficiently generated via intramolecular aminations with hindered amine nucleophiles.

  9. Stable, concentrated solutions of polyaniline using amines as gel inhibitors

    DOEpatents

    Wang, Hsing-Lin; Mattes, Benjamin R.

    2002-01-01

    Stable, concentrated solutions of high-molecular weight polyaniline using amines as gel inhibitors. Certain amine compounds (gel inhibitors) are used to form highly concentrated, stable solutions of the emeraldine base form of polyaniline in numerous organic solvents from which coatings, films and fibers are readily prepared without problems associated with rapid gelation which occurs when concentrated solutions are attempted without the use of the gel inhibitors of the present invention. Tertiary amines are used to solubilize low-molecular weight fractions (M.sub.w <120,000, M.sub.n <30,000) of the pernigraniline, emeraldine, and leucoemeraldine oxidation states of polyaniline as concentrated (>20 wt. %) polyaniline solutions, while primary and secondary amines are used to produce solutions having 15-40 wt % of high-molecular weight polyaniline [M.sub.w.gtoreq.120,000, M.sub.n.gtoreq.30,000]. Concentrated solutions of polyaniline co-polymers or ring and/or nitrogen-substituted polyanilines may also be prepared.

  10. Ultrafast relaxation dynamics of amine-substituted bipyridyl ruthenium(II) complexes

    NASA Astrophysics Data System (ADS)

    Song, Hongwei; Wang, Xian; Yang, WenWen; He, Guiying; Kuang, Zhuoran; Li, Yang; Xia, Andong; Zhong, Yu-Wu; Kong, Fan'ao

    2017-09-01

    The excited state properties of a series of ruthenium(II) amine-substituted bipyridyl complexes, [Ru(bpy)n(NNbpy)3-n]2+, were investigated by steady-state and transient absorption spectroscopy, as well as quantum chemical calculations. The steady-state absorption spectra of these complexes in CH3CN show a distinct red-shift of the 1MLCT absorption with increasing numbers of amine substituent, whereas the emission spectra indicate an energy gap order of [Ru(bpy)3]2+ > [Ru(bpy)2(NNbpy)]2+ > [Ru(NNbpy)3]2+ > [Ru(bpy)(NNbpy)2]2+. Nanosecond, femtosecond transient absorption and electrochemical measurements suggest that NNbpy ligand has a strong influence on the electronic and emission properties of these complexes, due to electron-rich amine substituent. We illustrate how the numbers of amine substituent modulate the spectroscopic properties of transition metal complexes, which is related to the design of new electro-active systems with novel photoelectrochemical properties.

  11. CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials.

    PubMed

    Zhu, Wenhao; Li, Qiang; Dai, Ning

    2017-02-01

    CO 2 -derived succinate production was enhanced by Actinobacillus succinogenes through polystyrene (PSt) microsphere materials for CO 2 adsorption in bioreactor, and the adhesion forces between A. succinogenes bacteria and PSt materials were characterized. Synthesized uniformly sized and highly cross-linked PSt microspheres had high specific surface areas. After modification with amine functional groups, the novel amine-functionalized PSt microspheres exhibited a high adsorption capacity of 25.3 mg CO 2 /g materials. After addition with the functionalized microspheres into the culture broth, CO 2 supply to the cells increased. Succinate production by A. succinogenes can be enhanced from 29.6 to 48.1 g L -1 . Moreover, the characterization of interaction forces between A. succinogenes cells and the microspheres indicated that the maximal adhesive force was about 250 pN. The amine-functionalized PSt microspheres can adsorb a large amount of CO 2 and be employed for A. succinogenes anaerobic cultivation in bioreactor for high-efficiency production of CO 2 -derived succinate.

  12. The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations

    PubMed Central

    2016-01-01

    Conspectus Redox-neutral methods for the functionalization of amine α-C–H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C–H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet–Spengler, and Kabachnik–Fields reactions, Friedel–Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C–H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic

  13. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations.

    PubMed

    Seidel, Daniel

    2015-02-17

    Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been

  14. Frustrated Lewis pairs beyond the main group: cationic zirconocene-phosphinoaryloxide complexes and their application in catalytic dehydrogenation of amine boranes.

    PubMed

    Chapman, Andy M; Haddow, Mairi F; Wass, Duncan F

    2011-06-15

    The cationic zirconocene-phosphinoaryloxide complexes [Cp(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (3) and [Cp*(2)ZrOC(6)H(4)P(t-Bu)(2)][B(C(6)F(5))(4)] (4) were synthesized by the reaction of Cp(2)ZrMe(2) or Cp*(2)ZrMe(2) with 2-(diphenylphosphino)phenol followed by protonation with [2,6-di-tert-butylpyridinium][B(C(6)F(5))(4)]. Compound 3 exhibits a Zr-P bond, whereas the bulkier Cp* derivative 4 was isolated as a chlorobenzene adduct without this Zr-P interaction. These compounds can be described as transition-metal-containing versions of linked frustrated Lewis pairs (FLPs), and treatment of 4 with H(2) under mild conditions cleaved H(2) in a fashion analogous to that for main-group FLPs. Their reactivity in amine borane dehydrogenation also mimics that of main-group FLPs, and they dehydrogenate a range of amine borane adducts. However, in contrast to main-group FLPs, 3 and 4 achieve this transformation in a catalytic rather than stoichiometric sense, with rates superior to those for previous high-valent catalysts. © 2011 American Chemical Society

  15. Photoredox-catalyzed Direct Reductive Amination of Aldehydes without an External Hydrogen/Hydride Source.

    PubMed

    Alam, Rauful; Molander, Gary A

    2018-05-04

    The direct reductive amination of aromatic aldehydes has been realized using a photocatalyst under visible light irradiation. The single electron oxidation of an in situ formed aminal species generates the putative α-amino radical that eventually delivers the reductive amination product. This method is operationally simple, highly selective, and functional group tolerant, which allows the direct synthesis of benzylic amines by a unique mechanistic pathway.

  16. Oxyfunctionalization of the Remote C-H Bonds of Aliphatic Amines by Decatungstate Photocatalysis.

    PubMed

    Schultz, Danielle M; Lévesque, François; DiRocco, Daniel A; Reibarkh, Mikhail; Ji, Yining; Joyce, Leo A; Dropinski, James F; Sheng, Huaming; Sherry, Benjamin D; Davies, Ian W

    2017-11-27

    Aliphatic amines, oxygenated at remote positions within the molecule, represent an important class of synthetic building blocks to which there are currently no direct means of access. Reported herein is an efficient and scalable solution that relies upon decatungstate photocatalysis under acidic conditions using either H 2 O 2 or O 2 as the terminal oxidant. By using these reaction conditions a series of simple and unbiased aliphatic amine starting materials can be oxidized to value-added ketone products. Lastly, NMR spectroscopy using in situ LED-irradiated samples was utilized to monitor the kinetics of the reaction, thus enabling direct translation of the reaction into flow. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. CH stretching overtone spectra of trimethyl amine and dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; Gough, Kathleen M.; Low, Geoffrey R.; Kjaergaard, Henrik G.

    2004-01-01

    Trimethyl amine (TMA) exhibits the largest known difference in CH bond lengths within a methyl group, due to what is known as the lone pair trans effect. Dimethyl sulfide also exhibits this effect, but to a far lesser extent, making it ideal for comparison to TMA. In this paper, the first through fourth overtone spectra of N(CH3)3, N(CD3)3, N(CD2H)(CD3)2, N(CH3)(CD3)2, N(CD3)(CH3)2 and S(CH3)2 are reported and all major bands are assigned. The intensities of the observed bands are compared to intensities predicted by the harmonically coupled anharmonic oscillator local mode model. Good correlation is found between the experimental intensities and those predicted with the local mode model and HF/6-311++G(2d,2p) calculated dipole moment functions. An increase in the ability to resolve peaks as methyl groups are deuterated suggests that the lone pair mediates increased coupling between methyl groups.

  18. Detection of cometary amines in samples returned by Stardust

    NASA Astrophysics Data System (ADS)

    Glavin, D. P.; Dworkin, J. P.; Sandford, S. A.

    2008-02-01

    The abundances of amino acids and amines, as well as their enantiomeric compositions, were measured in samples of Stardust comet-exposed aerogel and foil using liquid chromatography with UV fluorescence detection and time of flight mass spectrometry (LC-FD/ToF-MS). A suite of amino acids and amines including glycine, L-alanine, β-alanine (BALA), γ-amino-n-butyric acid (GABA), ɛ-amino-n-caproic acid (EACA), ethanolamine (MEA), methylamine (MA), and ethylamine (EA) were identified in acid-hydrolyzed, hot-water extracts of these Stardust materials above background levels. With the exception of MA and EA, all other primary amines detected in cometexposed aerogel fragments C2054,4 and C2086,1 were also present in the flight aerogel witness tile that was not exposed to the comet, indicating that most amines are terrestrial in origin. The enhanced relative abundances of MA and EA in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (C2054,4: 1.0 ± 0.2; C2086,1: 1.8 ± 0.2) that are distinct from preflight aerogels (E243-13C and E243-13F: 7 ± 3), suggest that these volatile amines were captured from comet Wild 2. MA and EA were present predominantly in an acid-hydrolyzable bound form in the aerogel, rather than as free primary amines, which is consistent with laboratory analyses of cometary ice analog materials. It is possible that Wild 2 MA and EA were formed on energetically processed icy grains containing ammonia and approximately equal abundances of methane and ethane. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organic carbon and nitrogen on the early Earth.

  19. Enhanced Stability of PtRu Supported on N-Doped Carbon for the Anode of a DMFC

    DTIC Science & Technology

    2012-09-18

    nitrogen functionalities are most likely limited to pyrrolic , N-C=O and amine groups. In the case of PtRu/C (N- doped), the ion implantation introduces...suggesting the presence of graphitic, quaternary, pyridinic, C-N=O, pyrrolic , amine and nitrile groups.32,46 Initial DMFC performance and electrochemical

  20. Grape yield to soil N-NO3- ratio can explain the different levels of biogenic amines in wine from two vineyards in the AOC Rioja (Spain)

    NASA Astrophysics Data System (ADS)

    Pérez-Álvarez, Eva Pilar; Garde-Cerdán, Teresa; Santamaría, Pilar; García-Escudero, Enrique; Peregrina, Fernando

    2014-05-01

    Plant N status may affect the grape amino acid concentration, which act as precursors in the formation of biogenic amines in wine. Biogenic amines have negative effects on human health and so they reduce the wine quality. The objective of this study was to analyze, at bloom (when the vine N demand peaks) if both the available soil N and the N concentration in the leaf could explain the amino acid concentration in the must as well as the biogenic amines in wines from AOC Rioja. Two plots with cv. Tempranillo (Vitis vinifera L.) vines grafted on R-110 rootstock were chosen: "La Grajera" (2,998 plants ha-1) and "Nájera" (2,849 plants ha-1), both plots with a traditional soil tillage management system and classified according to the American Soil Taxonomy as Typic Haloxerepts and Oxyaquic Xerorthent, respectively. Both soils had a pH higher than 7, a silty loam texture and organic matter values lower than 2%. The climatic conditions were described as semiarid Mediterranean according to the UNESCO aridity index. In each vineyard, three non-adjacent experimental plots with 3 rows of 30 vines each, were set out. No fertilizer was applied during the project. Each plot was sampled in 2009, 2010 and 2011 seasons at bloom, analyzing the available soil N-NO3- at 0-15 and 15-45 cm depth and expressing the results in kg ha-1 by means of the bulk density of soil and the coarse elements content. Also at bloom, 30 leaves per experimental plot were collected and their N concentration was analyzed. At harvest, 200 berries were taken from each plot and the amino acid content in the musts was determined by HPLC. In addition, 100 kg of grapes from each plot were taken in order to elaborate wine according to the AOC Rioja common winemaking practices. When the winemaking process was finished, the concentration of biogenic amines in the wine (histamine, methylamine, ethylamine, tyramine, putrescine, cadeverine, phenylethylamine and isoamylamine) was determined by HPLC. Our results showed

  1. No effect of group-based aerobic interval training on N-terminal pro- B-type natriuretic peptide levels in patients with chronic heart failure.

    PubMed

    Nilsson, Birgitta Blakstad; Westheim, Arne; Risberg, May Arna; Arnesen, Harald; Seljeflot, Ingebjørg

    2010-08-01

    Exercise training might improve cardiac function as well as functional capacity in patients with chronic heart failure (CHF). N-terminal pro-B-type natriuretic peptide (NT pro-BNP), is associated with the severity of the disease, and has been reported to be an independent predictor of outcome in CHF. We evaluated the effect of a four months group-based aerobic interval training program on circulating levels of NT pro-BNP in patients with CHF. We have previously reported improved functional capacity in 80 patients after exercise in this exercise program. Seventy-eight patients with stable CHF (21% women; 70+/-8 years; left ventricular ejection fraction 30+/-8.6%) on optimal medical treatment were randomized either to interval training (n=39), or to a control group (n=39). Circulating levels of NT pro-BNP, a six minute walk test (6MWT) and cycle ergometer test were evaluated at baseline, post exercise, and further after 12 months. There were no significant differences in NT pro-BNP levels from baseline to either post exercise or long-term follow-up between or within the groups. Inverse correlations were observed between NT pro-BNP and 6MWT (r=-0.24, p=0.035) and cycle exercise time (r=-0.48, p<0.001) at baseline. But no significant correlations were observed between change in NT pro-BNP and change in functional capacity (6MWT; r=0.12, p=0.33, cycle exercise time; r=0.04, p=0.72). No significant changes in NT pro-BNP levels were observed after interval training, despite significant improvement of functional capacity.

  2. Attitudes about Death, Dying, and Terminal Care: Differences among Groups at a University Teaching Hospital.

    ERIC Educational Resources Information Center

    Hatfield, C. B.; And Others

    1983-01-01

    Studied attitudes of eight hospital groups on several aspects of terminal care by means of a questionnaire. Responses of the groups, which included physicians, residents, nurses, aides, and orderlies, did not differ on general statements about terminal care. On more specific statements perception of personal involvement influenced responses.…

  3. New sulfenamide accelerators derived from 'safe' amines for the rubber and tyre industry.

    PubMed

    Wacker, C D; Spiegelhalder, B; Preussmann, R

    1991-01-01

    A reduction of the high exposures to N-nitrosamines in the rubber and tyre industry is possible using the concept of 'safe' amines, in which vulcanization accelerators contain amine moieties that are both difficult to nitrosate and, on nitrosation, yield noncarcinogenic N-nitroso compounds. The toxicological and technological properties of more than 50 benzothiazole sulfenamides derived from 'safe' amines have been evaluated. Some of the new compounds show excellent vulcanization properties and seem suitable as replacements for traditional accelerators in this class of compounds.

  4. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines.

    PubMed

    Zhang, Guoying; Gao, Bao; Huang, Hanmin

    2015-06-22

    A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. N-Boc amines to oxazolidinones via Pd(II)/bis-sulfoxide/Brønsted acid co-catalyzed allylic C-H oxidation.

    PubMed

    Osberger, Thomas J; White, M Christina

    2014-08-06

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C-H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C-H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C-H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration.

  6. N-Boc Amines to Oxazolidinones via Pd(II)/Bis-sulfoxide/Brønsted Acid Co-Catalyzed Allylic C–H Oxidation

    PubMed Central

    2015-01-01

    A Pd(II)/bis-sulfoxide/Brønsted acid catalyzed allylic C–H oxidation reaction for the synthesis of oxazolidinones from simple N-Boc amines is reported. A range of oxazolidinones are furnished in good yields (avg 63%) and excellent diastereoselectivities (avg 15:1) to furnish products regioisomeric from those previously obtained using allylic C–H amination reactions. Mechanistic studies suggest the role of the phosphoric acid is to furnish a Pd(II)bis-sulfoxide phosphate catalyst that promotes allylic C–H cleavage and π-allylPd functionalization with a weak, aprotic oxygen nucleophile and to assist in catalyst regeneration. PMID:24999765

  7. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  8. Sensitive immunosensing of squamous cell carcinoma antigen based on a nanocomposite of poly{3-amine-N-[3-(N-pyrrole)propyl]imidazole bromide} ionic liquid and gold nanoroots.

    PubMed

    Wu, Yingying; Zhao, Yong; Wang, Yanying; Ye, Xiaoxue; Wu, Tsunghsueh; Deng, HongPing; Wu, Peng; Li, Chunya

    2017-10-15

    Squamous cell carcinoma antigen (SCCA) is a good specific antigen for cancer diagnosis specifically for squamous cell carcinomas. In this study, 3-amine-N-[3-(N-pyrrole)propyl]imidazole bromide (APPIBr) ionic liquid was successfully synthesized and characterized by 1 H NMR, HPLC-MS and FTIR. APPIBr ionic liquid is a unique functional material with a pyrrole moiety which can be polymerized by using electrochemical technique and an amine group for immobilizing biomolecules; thus, it is ideal for the fabrication of biosensors. Using chloroauric acid as precursor and N-dodecyl imidazole as functional monomer, gold nanoroots (AuNRs) were fabricated and characterized with TEM, SEM and XRD. An immunosensor was built on a glassy carbon electrode (GCE), through the steps of forming the poly(APPIBr)/AuNRs/GCE interface by electrodeposition of APPIBr, anti-SCCA immobilization, and several optimization steps to achieve a sensitive, accurate, precise, and selective anti-SCCA/poly(APPIBr)/AuNRs/GCE for the electrochemical immunosensing SCCA. It was found that poly(APPIBr)/AuNRs nanointerface can improve the sensing performance of the immunosensor. Under the optimized experimental conditions, there existed two linear regimes relating the peak current variation to the concentration of squamous cell carcinoma antigen in the range of 0.001-0.1ngmL -1 and 0.1-5.0ngmL -1 . The detection limit was calculated to be 0.3pgmL -1 . The developed sensor was demonstrated its capability in quantitative analysis of squamous cell carcinoma antigen in human serum with recoveries of 97.3%, 102.4% and 107.4%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase.

    PubMed

    Aboalroub, Adam A; Bachman, Ashleigh B; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J; Gelis, Ioannis

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle.

  10. Acetyl group coordinated progression through the catalytic cycle of an arylalkylamine N-acetyltransferase

    PubMed Central

    Aboalroub, Adam A.; Bachman, Ashleigh B.; Zhang, Ziming; Keramisanou, Dimitra; Merkler, David J.

    2017-01-01

    The transfer of an acetyl group from acetyl-CoA to an acceptor amine is a ubiquitous biochemical transformation catalyzed by Gcn5-related N-acetyltransferases (GNATs). Although it is established that the reaction proceeds through a sequential ordered mechanism, the role of the acetyl group in driving the ordered formation of binary and ternary complexes remains elusive. Herein, we show that CoA and acetyl-CoA alter the conformation of the substrate binding site of an arylalkylamine N-acetyltransferase (AANAT) to facilitate interaction with acceptor substrates. However, it is the presence of the acetyl group within the catalytic funnel that triggers high affinity binding. Acetyl group occupancy is relayed through a conserved salt bridge between the P-loop and the acceptor binding site, and is manifested as differential dynamics in the CoA and acetyl-CoA-bound states. The capacity of the acetyl group carried by an acceptor to promote its tight binding even in the absence of CoA, but also its mutually exclusive position to the acetyl group of acetyl-CoA underscore its importance in coordinating the progression of the catalytic cycle. PMID:28486510

  11. 34 CFR 664.40 - Can participation in a Fulbright-Hays Group Projects Abroad be terminated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROJECTS ABROAD PROGRAM What Conditions Must Be Met by a Grantee? § 664.40 Can participation in a Fulbright-Hays Group Projects Abroad be terminated? (a) Participation may be terminated only by the J. William... 34 Education 3 2010-07-01 2010-07-01 false Can participation in a Fulbright-Hays Group Projects...

  12. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.

    PubMed

    Largeron, Martine; Chiaroni, Angèle; Fleury, Maurice-Bernard

    2008-01-01

    Environmentally friendly oxidation of primary aliphatic amines to imines has been successfully achieved, under metal-free conditions, by the use of diverse electrogenerated o-azaquinone mediators. High catalytic performance, together with high chemoselectivity, were observed with electron-poor o-azaquinone catalysts generated from 2-aminoresorcinol derivatives. Similar to copper amine oxidase enzymes, these mediators exhibited lower reactivity toward alpha-branched primary amines and no reactivity toward secondary amines. In the case of 3,4-aminophenol derivatives lacking a 2-hydroxy group, the generated o-azaquinone species failed to catalyze the oxidation of the amine to the corresponding imine. Further mechanistic considerations allowed a rationalization of the crucial role of the 2-hydroxy group in converting a catalytically inert species into a highly effective biomimetic catalyst.

  13. AMMO-Prot: amine system project 3D-model finder.

    PubMed

    Navas-Delgado, Ismael; Montañez, Raúl; Pino-Angeles, Almudena; Moya-García, Aurelio A; Urdiales, José Luis; Sánchez-Jiménez, Francisca; Aldana-Montes, José F

    2008-04-25

    Amines are biogenic amino acid derivatives, which play pleiotropic and very important yet complex roles in animal physiology. For many other relevant biomolecules, biochemical and molecular data are being accumulated, which need to be integrated in order to be effective in the advance of biological knowledge in the field. For this purpose, a multidisciplinary group has started an ontology-based system named the Amine System Project (ASP) for which amine-related information is the validation bench. In this paper, we describe the Ontology-Based Mediator developed in the Amine System Project (http://asp.uma.es) using the infrastructure of Semantic Directories, and how this system has been used to solve a case related to amine metabolism-related protein structures. This infrastructure is used to publish and manage not only ontologies and their relationships, but also metadata relating to the resources committed with the ontologies. The system developed is available at http://asp.uma.es/WebMediator.

  14. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Previous studies have demonstrated that alpha-crystallin binds specifically, in a saturable manner, to lens membrane. To determine the region of the alpha-crystallin molecule that might be involved in this binding, native alpha-crystallin from the bovine lens has been treated by limited digestion with trypsin, to produce alpha-A molecules with an intact C-terminal region, and a nicked N-terminal region. Compared to intact alpha-crystallin, trypsin-treated alpha-crystallin binds less avidly to lens membrane, suggesting that the N-terminal region of the alpha-A molecule may play a key role in the recognition between lens membrane and crystallin.

  15. In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

    DOE PAGES

    Leonard, Francois; Dickerson, J. R.; King, M. P.; ...

    2016-05-03

    Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less

  16. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal

    PubMed Central

    Wang, Xiangyu; Du, Yanli; Hua, Ying; Fu, Muqing; Niu, Cong; Zhang, Bao; Zhao, Wei; Zhang, Qiwei; Wan, Chengsong

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, ΔespF), N-terminal sequence (219 bp, ΔespFN), and C-terminal sequence (528 bp, ΔespFC) separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, ΔespF/pespF, ΔespFN/pespFN, and ΔespFC/pespFC by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER), and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT), ΔespF, ΔespF/pespF, ΔespFC, ΔespFC/pespFC, ΔespFN, and ΔespFN/pespFN groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, ΔespF/pespF, and ΔespFC were significantly higher than that of ΔespF, ΔespFN, ΔespFC/pespFC, and ΔespFN/pespFN group (p < 0.05). The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain. PMID:28983470

  17. Sorption of uranyl ions from various acido systems by amphoteric epoxy amine ion-exchange resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rychkov, V.N.; Radionov, B.K.; Molochnikov, L.S.

    1995-03-01

    Sorption of uranyl ions by epoxy amine ampholytes with N-monomethylenephosphonic acid groups modified with pyridine or quaternary ammonium groups was studied under dynamic conditions. Heterocyclic nitrogen favors sorption of uranyl ion from fluoride, sulfate, and fluoride-sulfate solutions. The ESR studies of mono- and bimetallic forms of nitrogen-containing ampholytes with copper(II) as paramagnetic marker revealed the characteristics of uranium(VI) interaction with cation- and anion-exchange groups and its dependence on the fluoride content in solution.

  18. Releasing N-glycan from peptide N-terminus by N-terminal succinylation assisted enzymatic deglycosylation.

    PubMed

    Weng, Yejing; Sui, Zhigang; Jiang, Hao; Shan, Yichu; Chen, Lingfan; Zhang, Shen; Zhang, Lihua; Zhang, Yukui

    2015-04-22

    Due to the important roles of N-glycoproteins in various biological processes, the global N-glycoproteome analysis has been paid much attention. However, by current strategies for N-glycoproteome profiling, peptides with glycosylated Asn at N-terminus (PGANs), generated by protease digestion, could hardly be identified, due to the poor deglycosylation capacity by enzymes. However, theoretically, PGANs occupy 10% of N-glycopeptides in the typical tryptic digests. Therefore, in this study, we developed a novel strategy to identify PGANs by releasing N-glycans through the N-terminal site-selective succinylation assisted enzymatic deglycosylation. The obtained PGANs information is beneficial to not only achieve the deep coverage analysis of glycoproteomes, but also discover the new biological functions of such modification.

  19. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    PubMed

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tertiary amine derivatives of chlorochalcone as acetylcholinesterase (AChE) and buthylcholinesterase (BuChE) inhibitors: the influence of chlorine, alkyl amine side chain and α,β-unsaturated ketone group.

    PubMed

    Gao, Xiao-Hui; Zhou, Chao; Liu, Hao-Ran; Liu, Lin-Bo; Tang, Jing-Jing; Xia, Xin-Hua

    2017-12-01

    A new series of tertiary amine derivatives of chlorochalcone (4a∼4l) were designed, synthesized and evaluated for the effect on acetylcholinesterase (AChE) and buthylcholinesterase (BuChE). The results indicated that all compounds revealed moderate or potent inhibitory activity against AChE, and some possessed high selectivity for AChE over BuChE. The structure-activity investigation showed that the substituted position of chlorine significantly influenced the activity and selectivity. The alteration of tertiary amine group also leads to obvious change in bioactivity. Among them, IC 50 of compound 4l against AChE was 0.17 ± 0.06 µmol/L, and the selectivity was 667.2 fold for AChE over BuChE. Molecular docking and enzyme kinetic study on compound 4l suggested that it simultaneously binds to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Further study showed that the pyrazoline derivatives synthesized from chlorochalcones had weaker activity and lower selectivity in inhibiting AChE compared to that of chlorochalcone derivatives.

  1. Structure, IR and Raman spectra of phosphotrihydrazide studied by DFT

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2016-09-01

    The FTIR and FT Raman measurements of the phosphotrihydrazide (S)P[N(Me)-NH2]3 have been performed. This compound is a zero generation dendrimer G0 with terminal amine groups. Structural optimization and normal mode analysis were obtained for G0 by the density functional theory (DFT). Optimized geometric bond length and angles obtained by DFT show good agreement with experiment. The amine terminal groups are characterized by the well-defined bands at 3321, 3238, 1614 cm- 1 in the experimental IR spectrum and by bands at 3327, 3241 cm- 1 in the Raman spectrum of G0. The experimental frequencies of asymmetric and symmetric NH2 stretching vibrations of amine group are lower than theoretical values due to intramolecular Nsbnd H ⋯ S hydrogen bond. This hydrogen bond is also responsible for higher experimental infrared intensity of these bands as compared with theoretical values. Relying on DFT calculations a complete vibrational assignment is proposed for the studied dendrimer.

  2. Biogenic amines in table olives. Analysis by high-performance liquid chromatography.

    PubMed

    Hornero-Méndez, D; Garrido-Fernández, A

    1994-09-01

    Biogenic amines in fermented vegetables have scarcely been studied. Available data show that in table olives and fermented cucumbers their presence is rare and any determinations made have been restricted mainly to histamine. However, some microorganisms, especially those related to spoilage, found in the fermentation brines of such products may have amino acid decarboxylase activity and give rise to biogenic amines by unusual processes. A method for the simultaneous determination of eight biogenic amines (tryptamine, beta-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine) has been developed to study their occurrence in fermented vegetables in more detail. The method consists of extraction of the amines from olive paste with 5% m/v trichloracetic acid and successive transfers into water-saturated n-BuOH and 0.1 mol l-1 HCl. An aliquot of this mixture is dried and derivatized with dansyl chloride. The dansyl derivatives are then analysed by high-performance liquid chromatography. Special emphasis has been given to optimization of the n-BuOH and 0.1 mol l-1 HCl extractions and to the derivatization conditions. By applying this method to the analysis of spoilt olives, the presence of some biogenic amines has been demonstrated. Thus a new method for monitoring the presence of biogenic amines during the fermentation of olives and for detecting anomalous fermentations is envisaged.

  3. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    PubMed

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  4. Graphene/multi-walled carbon nanotubes functionalized with an amine-terminated ionic liquid for determination of (Z)-3-(chloromethylene)-6-fluorothiochroman-4-one in urine.

    PubMed

    Chen, Huanhuan; Yuan, Yanan; Xiang, Can; Yan, Hongyuan; Han, Yehong; Qiao, Fengxia

    2016-11-25

    A new type of amine-terminated-ionic-liquid-functionalized graphene/multi-walled carbon nanotubes hybrid material (IL-G/MWCNTs) was synthesized and used as an adsorbent in miniaturized pipette tip solid-phase extraction (PT-SPE) coupled with liquid chromatography for the isolation and determination of (Z)-3-(chloromethylene)-6-fluorothiochroman-4-one (CMFT) in urine. Parameters for the preparation of IL-G/MWCNTs and the PT-SPE procedure, including the mass ratio of graphene oxide and oxidized multi-walled carbon nanotubes, the mass ratio of graphene oxide and the ionic liquid, and the type and volume of washing and elution solvents were optimized to achieve higher extraction efficiency. Good linearity of the method was achieved in the range 0.03-5.0μgmL -1 with a coefficient of determination (r 2 ) of 0.9999. The limits of detection and quantification were 0.009 and 0.030μgmL -1 , respectively. The intra- and inter-day precisions, expressed as relative standard deviations (RSDs), were evaluated by performing replicate analyses of samples spiked at 0.1μgmL -1 on the same day (n=6) and over three consecutive days, and were 4.8 and 5.5%, respectively. Recoveries between 73.9 and 93.9% were obtained at three spiking levels, with RSDs≤7.9%. Five batches of the adsorbent were investigated to confirm the reliability of the preparation method. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. N-terminal pro-brain natriuretic peptide in acute Kawasaki disease correlates with coronary artery involvement.

    PubMed

    Adjagba, Philippe M; Desjardins, Laurent; Fournier, Anne; Spigelblatt, Linda; Montigny, Martine; Dahdah, Nagib

    2015-10-01

    We have lately documented the importance of N-terminal pro-brain natriuretic peptide in aiding the diagnosis of Kawasaki disease. We sought to investigate the potential value of N-terminal pro-brain natriuretic peptide pertaining to the prediction of coronary artery dilatation (Z-score>2.5) and/or of resistance to intravenous immunoglobulin therapy. We hypothesised that increased serum N-terminal pro-brain natriuretic peptide level correlates with increased coronary artery dilatation and/or resistance to intravenous immunoglobulin. We carried out a prospective study involving newly diagnosed patients treated with 2 g/kg intravenous immunoglobulin within 5-10 days of onset of fever. Echocardiography was performed in all patients at onset, then weekly for 3 weeks, then at month 2, and month 3. Coronary arteries were measured at each visit, and coronary artery Z-score was calculated. All the patients had N-terminal pro-brain natriuretic peptide serum level measured at onset, and the Z-score calculated. There were 109 patients enrolled at 6.58±2.82 days of fever, age 3.79±2.92 years. High N-terminal pro-brain natriuretic peptide level was associated with coronary artery dilatation at onset in 22.2 versus 5.6% for normal N-terminal pro-brain natriuretic peptide levels (odds ratio 4.8 [95% confidence interval 1.05-22.4]; p=0.031). This was predictive of cumulative coronary artery dilatation for the first 3 months (p=0.04-0.02), but not during convalescence at 2-3 months (odds ratio 1.28 [95% confidence interval 0.23-7.3]; p=non-significant). Elevated N-terminal pro-brain natriuretic peptide levels did not predict intravenous immunoglobulin resistance, 15.3 versus 13.5% (p=1). Elevated N-terminal pro-brain natriuretic peptide level correlates with acute coronary artery dilatation in treated Kawasaki disease, but not with intravenous immunoglobulin resistance.

  6. Estimation of the basicity of the donor strength of terminal groups in cationic polymethine dyes

    NASA Astrophysics Data System (ADS)

    Kachkovsky, Alexey; Obernikhina, Nataliya; Prostota, Yaroslav; Naumenko, Antonina; Melnyk, Dmitriy; Yashchuk, Valeriy

    2018-02-01

    The well-known conception of the basicity of the terminal groups in the cationic polymethine dyes showing their donor properties is examined (considered) in detail. The various approachs are proposed to quantitative quantum-chemical estimation of a donor strength of the terminal groups in cationic polymethine dyes: shift of the frontier levels upon introducing terminal residues in comparison with unsybstituted polymethine cation; transferring of the electron density from the terminal groups to the polymethine chain and hence manifested itself as a redistribution of total positive charge between molecular fragments; changes of the charge alternation at carbon atoms along the chain. All approach correlate between them and agree with the concept of the basicity as a capability of terminal heterocycles to show its donor properties in the polymethine dyes. The results of the fulfilled calculations of numerous examples are presented; the proposed parameters point correctly the tendency in the change donor strength upon varying of the chemical constitution: the dimension of cycle, introducing of various heteroatoms, linear or angular annelating by benzene ring; as well as direct to take into consideration the existence of local levels.

  7. Synthesis and evaluation of the NSCLC anti-cancer activity and physical properties of 4-aryl-N-phenylpyrimidin-2-amines.

    PubMed

    Toviwek, Borvornwat; Suphakun, Praphasri; Choowongkomon, Kiattawee; Hannongbua, Supa; Gleeson, M Paul

    2017-10-15

    Reported herein are efforts to profile 4-aryl-N-phenylpyrimidin-2-amines in terms of their anti-cancer activity towards non small-cell lung carcinoma (NSCLC) cells. We have synthesized new 4-aryl-N-phenylpyrimidin-2-amines and assessed them in terms of their cytotoxicity (A549, NCI-H187, MCF7, Vero & KB) and physicochemical properties (logD 7.4 and solubility). 13f and 13c demonstrated potent anti-cancer activity in A549 cells (0.2µM), compared to 0.4μM for the NSCLC drug Doxorubicin. 13f also displayed low experimental logD 7.4 (2.9) and the best solubility (∼40μM). Compounds 13b and 13d showed the best balance of A549 anti-cancer activity and selectivity. 13g showed good activity and selectivity comparable with the anti-cancer drug Doxorubicin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Probing Charge Transport through Peptide Bonds.

    PubMed

    Brisendine, Joseph M; Refaely-Abramson, Sivan; Liu, Zhen-Fei; Cui, Jing; Ng, Fay; Neaton, Jeffrey B; Koder, Ronald L; Venkataraman, Latha

    2018-02-15

    We measure the conductance of unmodified peptides at the single-molecule level using the scanning tunneling microscope-based break-junction method, utilizing the N-terminal amine group and the C-terminal carboxyl group as gold metal-binding linkers. Our conductance measurements of oligoglycine and oligoalanine backbones do not rely on peptide side-chain linkers. We compare our results with alkanes terminated asymmetrically with an amine group on one end and a carboxyl group on the other to show that peptide bonds decrease the conductance of an otherwise saturated carbon chain. Using a newly developed first-principles approach, we attribute the decrease in conductance to charge localization at the peptide bond, which reduces the energy of the frontier orbitals relative to the Fermi energy and the electronic coupling to the leads, lowering the tunneling probability. Crucially, this manifests as an increase in conductance decay of peptide backbones with increasing length when compared with alkanes.

  9. CO₂ adsorption on amine-functionalized periodic mesoporous benzenesilicas.

    PubMed

    Sim, Kyohyun; Lee, Nakwon; Kim, Joonseok; Cho, Eun-Bum; Gunathilake, Chamila; Jaroniec, Mietek

    2015-04-01

    CO2 adsorption was investigated on amine-functionalized mesoporous silica (SBA-15) and periodic mesoporous organosilica (PMO) samples. Hexagonally (p6mm) ordered mesoporous SBA-15 and benzene-PMO (BPMO) samples were prepared in the presence of Pluronic P123 block copolymer template under acidic conditions. Three kinds of amine-containing organosilanes and polyethylenimine were used to functionalize SBA-15 and BPMO. Small-angle X-ray scattering and nitrogen adsorption isotherms showed that these samples featured ordered mesostructure, high surface area, and narrow pore size distributions. Solid-state (13)C- and (29)Si cross-polarization magic-angle spinning NMR spectra showed chemical linkage between amine-containing modifiers and the surface of mesoporous materials. The chemically linked amine-containing modifiers were found to be on both the inner and outer surfaces. N-[3-(trimethoxysilyl)propyl]ethylenediamine-modified BPMO (A2-BPMO) sample exhibited the highest CO2 uptake (i.e., ∼3.03 mmol/g measured on a volumetric adsorption analyzer) and the fastest adsorption rate (i.e., ∼13 min to attain 90% of the maximum amount) among all the samples studied. Selectivity and reproducibility measurements for the A2-BPMO sample showed quite good performance in flowing N2 gas at 40 mL/min and CO2 gas of 60 mL/min at 25 °C.

  10. Modification of the effects of guanethidine on cardiac catechol amines by various agents

    PubMed Central

    Bhagat, B.

    1964-01-01

    A study has been made of the effect of injections of guanethidine in rats, in depleting catechol amines from the whole cardiac ventricles and from various subcellular fractions. Unlike reserpine, guanethidine first affected the concentration of the amines in the soluble fraction of the cell. Neither [2-(2,6-dimethylphenoxy)-propyl]trimethylammonium chloride monohydrate (β-methyl xylocholine) nor hemicholinium affected the endogenous catechol amines or the uptake of injected noradrenaline, but each significantly reduced the action of guanethidine in depleting catechol amines. Administration of choline chloride after hemicholinium reversed its influence on guanethidine depletion. In cats, cocaine potentiated the pressor response to noradrenaline, but antagonized the response to tyramine and guanethidine, while bretylium and N-o-chlorobenzyl-N'N”-dimethylguanidine sulphate (BW392C60) potentiated the responses to noradrenaline, tyramine and guanethidine. PMID:14190459

  11. Crystal structure of bis­[trans-di­chlorido­bis(propane-1,3-di­amine-κ2 N,N′)chromium(III)] dichromate from synchrotron data

    PubMed Central

    Moon, Dohyun; Ryoo, Keon Sang; Choi, Jong-Ha

    2016-01-01

    The structure of the title compound, [CrCl2(tn)2]2[Cr2O7] (tn = propane-1,3-di­amine; C3H10N2), has been determined from synchrotron data. The asymmetric unit contains one CrIII complex cation and half a [Cr2O7]2− anion. In the complex cation, the CrIII ion is coordinated by the four N atoms of two propane-1,3-di­amine (tn) ligands in the equatorial plane and by two Cl atoms in a trans configuration, displaying a distorted octa­hedral coordination sphere. The two six-membered rings in the complex cation have an anti chair–chair conformation with respect to each other. The mean Cr—N(tn) and Cr—Cl bond lengths are 2.09 (1) and 2.320 (2) Å, respectively. The slightly bent dichromate anion is disordered over two sets of sites (occupancy ratio = 0.7:0.3) and has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the NH2 groups of the tn ligands as donors and the O atoms of the [Cr2O7]2− anion and chlorido ligands as acceptors. PMID:27920920

  12. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    methylbenzylamine suggest an SN2 mechanism for the formation of dibenzylamine. These results show the interdependence of pH and speciation with amine reaction rates. We predict the distribution of primary, secondary, tertiary, and quaternary amines in hydrothermal solutions can be used to solve for the pH of subsurface reaction zones in hydrothermal systems. [1] McCollom, T.M. (2013) The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions. Geochim. Cosmochim. Acta, 104, 330-357.

  13. Iron-catalyzed synthesis of secondary amines: on the way to green reductive aminations.

    PubMed

    Stemmler, Tobias; Surkus, Annette-Enrika; Pohl, Marga-Martina; Junge, Kathrin; Beller, Matthias

    2014-11-01

    Amines represent important intermediates in chemical and biological processes. Herein, we describe the use of a nanostructured iron-based catalyst for the tandem reductive amination between nitroarenes and aldehydes using hydrogen as reductant. The nanostructured iron-catalyst is prepared by immobilization of an iron-phenanthroline complex onto a commercially available carbon support. In the reaction sequence a primary amine is formed in situ from the corresponding nitro compound. Reversible condensation with aldehydes forms the respective imines, which are finally reduced to the desired secondary amine. This synthesis of secondary amines is atom-economical and environmentally attractive using cheap and readily available organic compounds as starting materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase

    PubMed Central

    Henke, Sarah K.; Cronan, John E.

    2014-01-01

    Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that allows transcriptional regulation of biotin biosynthetic and transport genes whereas Group I BPLs lack this N-terminal domain. The Bacillus subtilis BPL, BirA, is classified as a Group II BPL based on sequence predictions of an N-terminal helix-turn-helix motif and mutational alteration of its regulatory properties. We report evidence that B. subtilis BirA is a Group II BPL that regulates transcription at three genomic sites: bioWAFDBI, yuiG and yhfUTS. Moreover, unlike the paradigm Group II BPL, E. coli BirA, the N-terminal DNA binding domain can be deleted from Bacillus subtilis BirA without adverse effects on its ligase function. This is the first example of successful conversion of a Group II BPL to a Group I BPL with retention of full ligase activity. PMID:24816803

  15. The adsorption of biogenic amines on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sidorenko, I. G.; Markitan, O. V.; Vlasova, N. N.; Zagorovskii, G. M.; Lobanov, V. V.

    2009-06-01

    The adsorption of phenylethylamine, tryptamine, and tyramine on carbon nanotubes from aqueous solutions (pH 7.4) was studied depending on time and sorbate concentration. The suggestion was made that their interaction with electrodes was determined by electrostatic attraction between protonated amino groups and oxygen-containing functional groups of the surface of carbon. An increase in the adsorption of biological amines was caused by the interaction of the π systems of their aromatic rings with carbon surface hexagons. The adsorption of biogenic amines on carbon nanotubes was necessary for their possible electrooxidation and analytic determination by electrochemical methods with the use of carbon electrodes.

  16. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH

  17. fac-Re(CO)3L complexes containing tridentate monoanionic ligands (L-) with a seldom-studied sulfonamido group as one terminal ligating group.

    PubMed

    Christoforou, Anna Maria; Fronczek, Frank R; Marzilli, Patricia A; Marzilli, Luigi G

    2007-08-20

    To achieve a net-neutral coordination unit in radiopharmaceuticals with a fac-M(CO)3+ core (M = Tc, Re), facially coordinated monoanionic tridentate ligands are needed. New neutral fac-Re(CO)3L complexes were obtained by treating fac-[Re(CO)3(H2O)3]+ with unsymmetrical tridentate NNN donor ligands (LH) based primarily on a diethylenetriamine (dien) moiety with an aromatic group linked to a terminal nitrogen through a sulfonamide. LHs contain 2,4,6-trimethylbenzenesulfonyl (tmbSO2) and 5-(dimethylamino)naphthalene-1-sulfonyl (DNS) groups. X-ray crystallographic and NMR analyses confirm that in both the solid and the solution states all L- in fac-Re(CO)3L complexes are bound in a tridentate fashion with one donor being nitrogen from a deprotonated sulfonamido group. Another fundamental property that is important in radiopharmaceuticals is shape, which in turn depends on ring pucker. For L- = tmbSO2-dien-, tmbSO2-N'-Medien-, and tmbSO2-N,N-Me2dien-, the two chelate rings have a different pucker chirality, as is commonly found for a broad range of metal complexes. However, for fac-Re(CO)3(DNS-dien), both chelate rings have the same pucker chirality because the sulfonamido ring has an unusual pucker for the absolute configuration at Re; a finding that is attributable to intramolecular and intermolecular hydrogen bonds from the sulfonamido oxygens to the NH2 groups. Averaging of tmb NMR signals, even at -90 degrees C for Re(CO)3(tmbSO2-N,N-Me2dien), indicates rapid dynamic motion in the complexes with this group. However, examination of the structures suggests that free rotation about the S-C(tmb) bond is not possible but that concerted coupled rotations about the N-S and the S-C bonds can explain the NMR data.

  18. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon

    2006-11-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediatesmore » ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent

  19. Coupling in the absence of tertiary amines.

    PubMed

    Bodanszky, M; Bednarek, M A; Bodanszky, A

    1982-10-01

    In order to avoid base catalyzed side reactions during coupling, attempts were made to render superfluous the addition of tertiary amines to the reaction mixture. Weak acids were applied for the removal of acid labile protecting groups. Acetic acid and other carboxylic acids were considered unsuitable for this purpose coupling step. Pentachlorophenol and 2,4-dinitrophenol cleaved the Bpoc, Nps and Trt groups but more practical rates were reached with solutions of 1-hydroxybenzotriazole (HOBt) in trifluoroethanol, in acetic acid, or in a mixture of phenol and p-cresol. In addition to acidolysis, HOBt salts of amino components could also be obtained through hydrogenolysis of the Z group or thiolysis of the Nps group in the presence of HOBt, or by the displacement of acetic acid from acetate salts with HOBt. Acylation of HOBt salts of amino components with symmetrical or mixed anhydrides or with active esters did not require the addition of tertiary amine.

  20. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation.

    PubMed

    Shields, Kaitlyn M; Tooley, John G; Petkowski, Janusz J; Wilkey, Daniel W; Garbett, Nichola C; Merchant, Michael L; Cheng, Alan; Schaner Tooley, Christine E

    2017-08-01

    A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation. © 2017 The Protein Society.

  1. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  2. Asymmetric NHC-catalyzed redox α-amination of α-aroyloxyaldehydes.

    PubMed

    Taylor, James E; Daniels, David S B; Smith, Andrew D

    2013-12-06

    Asymmetric α-amination through an N-heterocyclic carbene (NHC)-catalyzed redox reaction of α-aroyloxyaldehydes with N-aryl-N-aroyldiazenes to form α-hydrazino esters with high enantioselectivity (up to 99% ee) is reported. The hydrazide products are readily converted into enantioenriched N-aryl amino esters through samarium(II) iodide mediated N-N bond cleavage.

  3. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure.

    PubMed

    Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin

    2017-01-01

    The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.

  4. Volatile N-nitrosamine inhibition after intake Korean green tea and Maesil (Prunus mume SIEB. et ZACC.) extracts with an amine-rich diet in subjects ingesting nitrate.

    PubMed

    Choi, S Y; Chung, M J; Sung, N J

    2002-07-01

    The formation of carcinogenic nitrosamines under simulated gastric conditions was studied during the incubation of amine rich food and nitrate, and its possible inhibition by adding kumquat, sweet orange, strawberry, garlic, kale juices, Maesil (Prunus mume) and green tea extracts. The strawberry, kale juices, Maesil and green tea extracts were equally effective in reducing the formation of N-nitrosodimethylamine (NDMA). The fruits of P. mume SIEB. et ZACC. (Korean name, Maesil) have been used as a traditional drug and health food in Korea. During four weeks of test (designated EW1, EW2, EW3 and EW4; experiment week 1, 2, 3 and 4 diets) volunteers consumed a diet of low nitrate and amine (EW1) and consumed a fish meal rich in amines as nitrosatable precursors in combination with intake of nitrate-containing drinking water without (EW2) or with Maesil and green tea extracts (EW3 and EW4, respectively). The intake of nitrate-containing drinking water (340 mg nitrate/100 ml) resulted in a significant rise in mean salivary nitrate and nitrite concentrations and in mean urinary nitrate levels. Mean urinary nitrate was increased to 455.0+/-66.2, 334.6+/-67.8 and 333.4+/-50.7 mg/18 h after the nitrate intake of EW2, EW3 and EW4, respectively. Significant increases in urinary dimethylamine and trimethylamine levels were observed in consumption of diets (EW2, EW3, and EW4) rich in amine and nitrate. Maesil and green tea extract in EW3 and EW4 enhanced the increase of urinary dimethylamine and trimethylamine levels. Urinary excretion of N-nitrosodimethylamine in consumption of diet rich in nitrate and amine (EW2) increased to 6504.4+/-2638.7 ng/18 h from 257.0+/-112.0 ng/18 h of low nitrate and amine diet (EW1). Korean green tea and Maesil extracts in nitrate and amine rich diet reduced the excretion of N-nitrosodimethylamine to 249.7+/-90.6 and 752.7+/-595.3 ng/18 h, respectively, compared with 6504.4+/-2638.7 ng /18 h after ingestion of TD1 diet.

  5. Teaching Old Compounds New Tricks: DDQ-Photocatalyzed C-H Amination of Arenes with Carbamates, Urea, and N-Heterocycles.

    PubMed

    Das, Somnath; Natarajan, Palani; König, Burkhard

    2017-12-22

    The C-H amination of benzene derivatives was achieved using DDQ as photocatalyst and BocNH 2 as the amine source under aerobic conditions and visible light irradiation. Electron-deficient and electron-rich benzenes react as substrates with moderate to good product yields. The amine scope of the reaction comprises Boc-amine, carbamates, pyrazoles, sulfonimides and urea. Preliminary mechanistic investigations indicate arene oxidation by the triplet of DDQ to radical cations with different electrophilicity and a charge transfer complex between the amine and DDQ as intermediate of the reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors.

    PubMed

    Park, Sang-Hyuck; Wei, Shuting; Mizaikoff, Boris; Taylor, Amelia E; Favero, Cedrick; Huang, Ching-Hua

    2009-03-01

    Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group.

  7. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  8. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue.

    PubMed

    Pane, Katia; Verrillo, Mariavittoria; Avitabile, Angela; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Di Maro, Antimo; Rega, Camilla; Amoresano, Angela; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2018-04-18

    Peptides with an N-terminal cysteine residue allow site-specific modification of proteins and peptides and chemical synthesis of proteins. They have been widely used to develop new strategies for imaging, drug discovery, diagnostics, and chip technologies. Here we present a method to produce recombinant peptides with an N-terminal cysteine residue as a convenient alternative to chemical synthesis. The method is based on the release of the desired peptide from a recombinant fusion protein by mild acid hydrolysis of an Asp-Cys sequence. To test the general validity of the method we prepared four fusion proteins bearing three different peptides (20-37 amino acid long) at the C-terminus of a ketosteroid isomerase-derived and two Onconase-derived carriers for the production of toxic peptides in E. coli. The chosen peptides were (C)GKY20, an antimicrobial peptide from the C-terminus of human thrombin, (C)ApoB L , an antimicrobial peptide from an inner region of human Apolipoprotein B, and (C)p53pAnt, an anticancer peptide containing the C-terminal region of the p53 protein fused to the cell penetrating peptide Penetratin. Cleavage efficiency of Asp-Cys bonds in the four fusion proteins was studied as a function of pH, temperature, and incubation time. In spite of the differences in the amino acid sequence (GTGDCGKY, GTGDCHVA, GSGTDCGSR, SQGSDCGSR) we obtained for all the proteins a cleavage efficiency of about 70-80% after 24 h incubation at 60 °C and pH 2. All the peptides were produced with very good yield (5-16 mg/L of LB cultures), high purity (>96%), and the expected content of free thiol groups (1 mol per mole of peptide). Furthermore, (C)GKY20 was modified with PyMPO-maleimide, a commercially available fluorophore bearing a thiol reactive group, and with 6-hydroxy-2-cyanobenzothiazole, a reagent specific for N-terminal cysteines, with yields of 100% thus demonstrating that our method is very well suited for the production of fully reactive peptides with an N-terminal

  9. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    PubMed

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  10. The role of brain biogenic amines in the control of pituitary-adrenocortical activity

    NASA Technical Reports Server (NTRS)

    Maickel, R. P.

    1975-01-01

    It was found that pretreatment of animals with desmethyl imipramine antagonized the reserpine-induced sedation without preventing the decline in brain amines or the hypersecretion of adrenocorticotropic hormone (ACTH). The antagonism of reserpine-induced ACTH hypersecretion by the monoamine oxidose (MAO) inhibitor pargyline (MO 911, N-methyl-N-benzyl-2-propynylamine) was studied. Evidence is presented that this antagonism is related to the level of brain biogenic amines maintained during the course of action of the drug. Pretreatment with MAO inhibitors does not affect the ACTH hypersecretion evoked by exposure to cold or chlorpromazine, lending further support to the hypothesis that reserpine-induced ACTH hypersecretion is related to brain amine changes.

  11. α-Carbamoylsulfides as N-Carbamoylimine Precursors in the Visible Light Photoredox-Catalyzed Synthesis of α,α-Disubstituted Amines.

    PubMed

    Lebée, Clément; Languet, Morgan; Allain, Clémence; Masson, Géraldine

    2016-03-18

    A general and practical photoredox-promoted addition of nucleophiles to N-acylimines generated in situ from α-amidosulfides using Ru(bpy)3(PF6)2 as the photocatalyst is reported. The broad scope of the reaction toward various nucleophiles and amidosulfide derivatives was explored. This novel protocol provides a rapid, mild, and efficient access to valuable α,α-disubstituted amines in respectable yields.

  12. Redox self-sufficient whole cell biotransformation for amination of alcohols.

    PubMed

    Klatte, Stephanie; Wendisch, Volker F

    2014-10-15

    Whole cell biotransformation is an upcoming tool to replace common chemical routes for functionalization and modification of desired molecules. In the approach presented here the production of various non-natural (di)amines was realized using the designed whole cell biocatalyst Escherichia coli W3110/pTrc99A-ald-adh-ta with plasmid-borne overexpression of genes for an l-alanine dehydrogenase, an alcohol dehydrogenase and a transaminase. Cascading alcohol oxidation with l-alanine dependent transamination and l-alanine dehydrogenase allowed for redox self-sufficient conversion of alcohols to the corresponding amines. The supplementation of the corresponding (di)alcohol precursors as well as amino group donor l-alanine and ammonium chloride were sufficient for amination and redox cofactor recycling in a resting buffer system. The addition of the transaminase cofactor pyridoxal-phosphate and the alcohol dehydrogenase cofactor NAD(+) was not necessary to obtain complete conversion. Secondary and cyclic alcohols, for example, 2-hexanol and cyclohexanol were not aminated. However, efficient redox self-sufficient amination of aliphatic and aromatic (di)alcohols in vivo was achieved with 1-hexanol, 1,10-decanediol and benzylalcohol being aminated best. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Efficient SO2 capture by amine functionalized PEG.

    PubMed

    Yang, Dezhong; Hou, Minqiang; Ning, Hui; Zhang, Jianling; Ma, Jun; Han, Buxing

    2013-11-07

    Polyethylene glycols (PEGs) are a class of non-toxic, non-volatile, biocompatible, and widely available polymers. In this work, we synthesized N-ethyl-N-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-2-aminoethanol (EE3AE) that combines the properties of PEG and amines, and N-decyl-N-ethyl-2-aminoethanol (DEAE). Their performances to capture SO2 were studied at different temperatures, pressures, and absorption times. The interaction between the absorbents and SO2 were characterized by NMR and FTIR techniques. It was demonstrated that both EE3AE and DEAE could absorb SO2 efficiently, and there existed chemical and physical interactions between the absorbents and SO2. In particular, the absorption capacity of EE3AE could be as high as 1.09 g SO2 per g EE3AE at 1 atm. The absorption capacity of EE3AE was much larger than that of DEAE because the ether group in the EE3AE interacted with SO2 more strongly than the alkyl group in the DEAE. The SO2 absorbed by EE3AE could be stripped out by bubbling N2 or by applying a vacuum and the EE3AE could be reused. Moreover, both absorbents exhibited a high SO2-CO2 selectivity.

  14. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant.

    PubMed

    Kitte, Shimeles Addisu; Wang, Chao; Li, Suping; Zholudov, Yuriy; Qi, Liming; Li, Jianping; Xu, Guobao

    2016-10-01

    Coreactant plays a critical role for the application of electrochemiluminescence (ECL). Herein, N-(3-aminopropyl)diethanolamine (APDEA) has been explored as a potential coreactant for enhancing tris(2,2'-bipyridyl)ruthenium(II) ECL. It is much more effective than tripropylamine at gold and platinum electrodes although it has one primary amine group besides a tertiary amine group. The presence of primary amine group and hydroxyl groups in APDEA promotes the oxidation rates of amine and thus remarkably increases ECL intensity. The ECL intensities of the Ru(bpy)3 (2+)/APDEA system are approximately 10 and 36 times stronger than that of Ru(bpy)3 (2+)/tripropylamine system and about 1.6 and 1.14 times stronger than that of Ru(bpy)3 (2+)/N-butyldiethanolamine system at Au and Pt electrodes, respectively. The ECL intensity of the Ru(bpy)3 (2+)/APDEA system is 2.42 times stronger than that of Ru(bpy)3 (2+)/N-butyldiethanolamine at glassy carbon electrodes.

  15. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  16. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  17. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    NASA Astrophysics Data System (ADS)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  18. Design, Synthesis, and Evaluation of N- and C-Terminal Protein Bioconjugates as G Protein-Coupled Receptor Agonists.

    PubMed

    Healey, Robert D; Wojciechowski, Jonathan P; Monserrat-Martinez, Ana; Tan, Susan L; Marquis, Christopher P; Sierecki, Emma; Gambin, Yann; Finch, Angela M; Thordarson, Pall

    2018-02-21

    A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.

  19. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization

    NASA Astrophysics Data System (ADS)

    Clark, Joseph R.; Feng, Kaibo; Sookezian, Anasheh; White, M. Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  20. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    PubMed

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  1. Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides

    PubMed Central

    Hartwig, John F.

    2010-01-01

    -heterocyclic carbene. During the past five years, we have studied a fourth-generation catalyst for these reactions containing ligands that combine the chelating properties of the second-generation systems with the steric hindrance and strong electron donation of the third-generation systems. This combination has created a catalyst that couples aryl chlorides, bromides and iodides with primary amines, N-H imines, and hydrazones in high yield, with broad scope, high functional group tolerance, nearly perfect selectivity for monoarylation, and the lowest levels of palladium that have been used for C-N coupling. This catalyst is based on palladium and a sterically hindered version of the Josiphos family of ligands that possesses a ferrocenyl-1-ethylbackbone, a hindered di-tert-butylphosphino group, and a hindered dicyclohexylphosphino group. This latest generation of catalyst not only improves the coupling of primary amines and related nucleophiles, but it has dramatically improved the coupling of thiols with haloarenes to form C-S bonds. This catalyst system couples both aliphatic and aromatic thiols with chloroarenes with much greater scope, functional group tolerance, and turnover numbers than had been observed previously. The effects of structural features of the Josiphos ligand on catalyst activity have been revealed by examining the reactivity of catalysts generated from ligands lacking one or more of the structural elements of the most active catalyst. These modified ligands lack the relative stereochemistry of the ferrocenyl-1-ethyl backbone, the strong electron donation of the dialkylphosphino groups, the steric demands of the alkylphosphine groups, or the stability of the ferrocenyl unit. This set of studies showed that each one of these structural features contributed to the high reactivity and selectivity of the catalyst containing the hindered, bidentate Josiphos ligand. Finally, a series of studies on the effect of electronic properties on the rates of reductive elimination

  2. Comparison of N-terminal modifications on neurotensin(8-13) analogues correlates peptide stability but not binding affinity with in vivo efficacy.

    PubMed

    Orwig, Kevin S; Lassetter, McKensie R; Hadden, M Kyle; Dix, Thomas A

    2009-04-09

    Neurotensin(8-13) and two related analogues were used as model systems to directly compare various N-terminal peptide modifications representing both commonly used and novel capping groups. Each N-terminal modification prevented aminopeptidase cleavage but surprisingly differed in its ability to inhibit cleavage at other sites, a phenomenon attributed to long-range conformational effects. None of the capping groups were inherently detrimental to human neurotensin receptor 1 (hNTR1) binding affinity or receptor agonism. Although the most stable peptides exhibited the lowest binding affinities and were the least potent receptor agonists, they produced the largest in vivo effects. Of the parameters studied only stability significantly correlated with in vivo efficacy, demonstrating that a reduction in binding affinity at NTR1 can be countered by increased in vivo stability.

  3. N-Terminal Amino Acid Sequence Determination of Proteins by N-Terminal Dimethyl Labeling: Pitfalls and Advantages When Compared with Edman Degradation Sequence Analysis.

    PubMed

    Chang, Elizabeth; Pourmal, Sergei; Zhou, Chun; Kumar, Rupesh; Teplova, Marianna; Pavletich, Nikola P; Marians, Kenneth J; Erdjument-Bromage, Hediye

    2016-07-01

    In recent history, alternative approaches to Edman sequencing have been investigated, and to this end, the Association of Biomolecular Resource Facilities (ABRF) Protein Sequencing Research Group (PSRG) initiated studies in 2014 and 2015, looking into bottom-up and top-down N-terminal (Nt) dimethyl derivatization of standard quantities of intact proteins with the aim to determine Nt sequence information. We have expanded this initiative and used low picomole amounts of myoglobin to determine the efficiency of Nt-dimethylation. Application of this approach on protein domains, generated by limited proteolysis of overexpressed proteins, confirms that it is a universal labeling technique and is very sensitive when compared with Edman sequencing. Finally, we compared Edman sequencing and Nt-dimethylation of the same polypeptide fragments; results confirm that there is agreement in the identity of the Nt amino acid sequence between these 2 methods.

  4. Deletion of the N-terminal Domain (NTD) Alters the Ethanol Inhibition of NMDA Receptors in a Subunit-Dependent Manner

    PubMed Central

    Smothers, C. Thetford; Jin, Chun; Woodward, John J.

    2013-01-01

    Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549

  5. MICROWAVE-ASSISTED CHEMISTRY: SYNTHESIS OF AMINES AND HETEROCYCLES VIA CARBON-NITROGEN BOND FORMATION IN AQUEOUS MEDIA

    EPA Science Inventory

    Improved C-N bond formation under MW influence is demonstrated by a) solventless three-component coupling reaction to generate propargyl amines that uses only Cu (I); b) aqueous N-alkylation of amines by alkyl halides that proceeds expeditiously in the presence of NaOH to deliver...

  6. Ruthenium-Catalyzed Aerobic Oxidation of Amines.

    PubMed

    Ray, Ritwika; Hazari, Arijit Singha; Lahiri, Goutam Kumar; Maiti, Debabrata

    2018-01-18

    Amine oxidation is one of the fundamental reactions in organic synthesis as it leads to a variety of value-added products such as oximes, nitriles, imines, and amides among many others. These products comprise the key N-containing building blocks in the modern chemical industry, and such transformations, when achieved in the presence of molecular oxygen without using stoichiometric oxidants, are much preferred as they circumvent the production of unwanted wastes. In parallel, the versatility of ruthenium catalysts in various oxidative transformations is well-documented. Herein, this review focuses on aerobic oxidation of amines specifically by using ruthenium catalysts and highlights the major achievements in this direction and challenges that still need to be addressed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization.

    PubMed

    Barman, Bhajendra N

    2014-01-31

    Carbonyl compounds, specifically aldehydes, present in amine catalysts or amines are determined by reversed-phase liquid chromatography using ultraviolet detection of their corresponding 2,4-dinitrophenylhydrazones. The primary focus has been to establish optimum conditions for determining aldehydes accurately because these add exposure concerns when the amine catalysts are used to manufacture polyurethane products. Concentrations of aldehydes determined by this method are found to vary with the pH of the aqueous amine solution and the derivatization time, the latter being problematic when the derivatization reaction proceeds slowly and not to completion in neutral and basic media. Accurate determination of aldehydes in amines through derivatization can be carried out at an effective solution pH of about 2 and with derivatization time of 20min. Hydrochloric acid has been used for neutralization of an amine. For complete derivatization, it is essential to protonate all nitrogen atoms in the amine. An approach for the determination of an adequate amount of acid needed for complete derivatization has been described. Several 0.2M buffer solutions varying in pH from 4 to 8 have also been used to make amine solutions for carrying out derivatization of aldehydes. These solutions have effective pHs of 10 or higher and provide much lower aldehyde concentrations compared to their true values. Mechanisms for the formation of 2,4-dinitrophenylhydrazones in both acidic and basic media are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Soda-amine pulping : reaction of amines with free phenolic [beta]-[omicron]-4 ethers

    Treesearch

    John R. Obst

    1981-01-01

    The quinone methide from guaiacylglycol-ß-guaiacyl ether underwent nucleophilic addition to the a-carbon with primary and secondary amines at 40°C. At pulping temperature, 170°C, only the primary amine adduct was detected. The quinone methide from guaiacylglycerol-ß-guaiacyl ether gave analogous adducts at 40°C, but no quinone methide-amine adducts were detected at 170...

  9. Integrated on-chip derivatization and electrophoresis for the rapid analysis of biogenic amines.

    PubMed

    Beard, Nigel P; Edel, Joshua B; deMello, Andrew J

    2004-07-01

    We demonstrate the monolithic integration of a chemical reactor with a capillary electrophoresis device for the rapid and sensitive analysis of biogenic amines. Fluorescein isothiocyanate (FITC) is widely employed for the analysis of amino-group containing analytes. However, the slow reaction kinetics hinders the use of this dye for on-chip labeling applications. Other alternatives are available such as o-phthaldehyde (OPA), however, the inferior photophysical properties and the UV lambdamax present difficulties when using common excitation sources leading to a disparity in sensitivity. Consequently, we present for the first time the use of dichlorotriazine fluorescein (DTAF) as a superior in situ derivatizing agent for biogenic amines in microfluidic devices. The developed microdevice employs both hydrodynamic and electroosmotic flow, facilitating the creation of a polymeric microchip to perform both precolumn derivatization and electrophoretic analysis. The favorable photophysical properties of the DTAF and its fast reaction kinetics provide detection limits down to 1 nM and total analysis times (including on-chip mixing and reaction) of <60 s. The detection limits are two orders of magnitude lower than current limits obtained with both FITC and OPA. The optimized microdevice is also employed to probe biogenic amines in real samples.

  10. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    PubMed

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  11. N-terminal pro-brain natriuretic peptide in prevalent peritoneal dialysis patients.

    PubMed

    Adachi, Yoko; Nishio, Akira

    2008-01-01

    Previous reports have shown that N-terminal pro-brain natriuretic peptide (NT-Pro-BNP) is a predictive marker for mortality in both peritoneal dialysis (PD) and hemodialysis (HD) patients. The aim of the present study was to clarify whether NT-Pro-BNP reflects a specific status in PD patients. We analyzed 40 stable PD patients, allocating them to one of two groups (20 each) according to the median value of NT-Pro-BNP: group A below and group B above 5423 pg/mL. In group B as compared with group A, red blood cell (RBC) counts, hemoglobin, hematocrit, sodium, chlorine, albumin, and daily urinary volume were significantly lower, and cardiothoracic ratio (CTR) and daily ultrafiltration volume were significantly higher. Patients using icodextrin and diabetic patients showed significantly higher NT-Pro-BNP values. We observed significant correlations between NT-Pro-BNP and RBC count, hematocrit, hemoglobin, sodium, chlorine, albumin, lactate dehydrogenase, CTR, daily urinary volume, and ultrafiltration volume. Multiple regression analysis revealed that increasing CTR and hyponatremia were significant predictors of an increase in NT-Pro-BNP. Our results indicate that increased serum NT-Pro-BNP well reflects anemia status, water balance, hyponatremia, and hypoalbuminemia in prevalent PD patients.

  12. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  13. Crystal structure of di-μ-chlorido-bis-(chlorido-{N1,N1-diethyl-N4-[(pyridin-2-yl-κN)methyl-idene]benzene-1,4-di-amine-κN4}mercury(II)).

    PubMed

    Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna

    2017-06-01

    The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].

  14. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  15. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor

    PubMed Central

    Lübker, Carolin; Dove, Stefan; Tang, Wei-Jen; Urbauer, Ramona J. Bieber; Moskovitz, Jackob; Urbauer, Jeffrey L.; Seifert, Roland

    2015-01-01

    Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, thus reducing production of reactive oxygen species (ROS) used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met) residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut) with Met to leucine (Leu) substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils. PMID:26184312

  16. Unlocking the Potential of Phenacyl Protecting Groups: CO2-Based Formation and Photocatalytic Release of Caged Amines.

    PubMed

    Speckmeier, Elisabeth; Klimkait, Michael; Zeitler, Kirsten

    2018-04-06

    Orthogonal protection and deprotection of amines remain important tools in synthetic design as well as in chemical biology and material research applications. A robust, highly efficient, and sustainable method for the formation of phenacyl-based carbamate esters was developed using CO 2 for the in situ preparation of the intermediate carbamates. Our mild and broadly applicable protocol allows for the formation of phenacyl urethanes of anilines, primary amines, including amino acids, and secondary amines in high to excellent yields. Moreover, we demonstrate the utility by a mild and convenient photocatalytic deprotection protocol using visible light. A key feature of the [Ru(bpy) 3 ](PF 6 ) 2 -catalyzed method is the use of ascorbic acid as reductive quencher in a neutral, buffered, two-phase acetonitrile/water mixture, granting fast and highly selective deprotection for all presented examples.

  17. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-02-11

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro.

  18. Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes

    DOE PAGES

    Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.; ...

    2017-05-29

    Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less

  19. Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.

    Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less

  20. Catalytic dehydrogenation of amine borane complexes

    NASA Technical Reports Server (NTRS)

    Mohajeri, Nahid (Inventor); Tabatabaie-Raissi, Ali (Inventor)

    2007-01-01

    A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components. Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.

  1. Catalytic dehydrogenation of amine borane complexes

    NASA Technical Reports Server (NTRS)

    Tabatabaie-Raissi, Ali (Inventor); Mohajeri, Nahid (Inventor); Bokerman, Gary (Inventor)

    2009-01-01

    A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.

  2. The α-Secretase-derived N-terminal Product of Cellular Prion, N1, Displays Neuroprotective Function in Vitro and in Vivo*

    PubMed Central

    Guillot-Sestier, Marie-Victoire; Sunyach, Claire; Druon, Charlotte; Scarzello, Sabine; Checler, Frédéric

    2009-01-01

    Cellular prion protein (PrPc) undergoes a disintegrin-mediated physiological cleavage, generating a soluble amino-terminal fragment (N1), the function of which remained unknown. Recombinant N1 inhibits staurosporine-induced caspase-3 activation by modulating p53 transcription and activity, whereas the PrPc-derived pathological fragment (N2) remains biologically inert. Furthermore, N1 protects retinal ganglion cells from hypoxia-induced apoptosis, reduces the number of terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling-positive and p53-immunoreactive neurons in a pressure-induced ischemia model of the rat retina and triggers a partial recovery of b-waves but not a-waves of rat electroretinograms. Our work is the first demonstration that the α-secretase-derived PrPc fragment N1, but not N2, displays in vivo and in vitro neuroprotective function by modulating p53 pathway. It further demonstrates that distinct N-terminal cleavage products of PrPc harbor different biological activities underlying the various phenotypes linking PrPc to cell survival. PMID:19850936

  3. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  4. Silane coupling agent bearing a photoremovable succinimidyl carbonate for patterning amines on glass and silicon surfaces with controlled surface densities.

    PubMed

    Nakayama, Hidekazu; Nakanishi, Jun; Shimizu, Takahiro; Yoshino, Yutaro; Iwai, Hideo; Kaneko, Shingo; Horiike, Yasuhiro; Yamaguchi, Kazuo

    2010-03-01

    Patterned immobilization of synthetic and biological ligands on material surfaces with controlled surface densities is important for various bioanalytical and cell biological purposes. This paper describes the synthesis, characterization, and application of a novel silane coupling agent bearing a photoremovable succinimidyl carbonate, which enables the photopatterning of various primary amines on glass and silicon surfaces. The silane coupling agent is 1-[5-methoxy-2-nitro-4-(3-trimethoxysilylpropyloxy)phenyl]ethyl N-succinimidyl carbonate. The distinct feature of this molecule is that it has a photocleavable 2-nitrobenzyl switch between a trimethoxysilyl group and a succinimidyl carbonate, each reactive to the hydroxy groups of inorganic oxides and primary amines. Based on this molecular design, the compound allows for the one-step introduction of succinimidyl carbonates onto the surface of glass and silicon, immobilization of primary amines, and region-selective and dose-dependent release of the amines by near-UV irradiation. Therefore, we were able to pattern amine ligands on the substrates in given surface densities and arbitrary geometries by controlling the doses and regions of photoirradiation. These features were verified by UV-vis spectroscopy, contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM). The compound was applied to form a chemical density gradient of amino-biotin on a silicon substrate in a range of 0.87-0.12 chains/nm(2) by controlling photoirradiation under a standard fluorescence microscope. Furthermore, we also succeeded in forming a chemical density gradient at a lower surface density range (0.15-0.011 chains/nm(2)) on the substrate by diluting the feed amino-biotin with an inert control amine.

  5. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    PubMed

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  6. Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Jeremiah; Klenchin, Vadim A.; Rayment, Ivan

    Tropomyosin is a stereotypical {alpha}-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage {phi}29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal aminomore » acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses {approx}15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.« less

  7. Proteolytic interconversion and N-terminal sequences of the Citrobacter diversus major beta-lactamases.

    PubMed Central

    Franceschini, N; Amicosante, G; Perilli, M; Maccarrone, M; Oratore, A; van Beeumen, J; Frère, J M

    1991-01-01

    The N-terminal sequences of the two major beta-lactamases produced by Citrobacter diversus differed only by the absence of the first residue in form II and the loss of five amino acid residues at the C-terminal end. Limited proteolysis of the homogeneous form I protein yielded a variety of enzymatically active products. In the major product obtained after the action of papain, the first three N-terminal residues of form I had been cleaved, whereas at the C-terminal end the treated enzyme lacked five residues. However, this cannot explain the different behaviours of form I, form II and papain digestion product upon chromatofocusing. Form I, which was sequenced up to position 56, exhibited a very high degree of similarity with a Klebsiella oxytoca beta-lactamase. The determined sequence, which contained the active serine residue, demonstrated that the chromosome-encoded beta-lactamase of Citrobacter diversus belong to class A. Images Fig. 2. PMID:2039443

  8. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino- or amido-functionalized pyrrolyl ligands.

    PubMed

    Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun

    2013-02-28

    The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.

  9. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material.

    PubMed

    Adhikari, Prashanta Dhoj; Jeon, Seunghan; Cha, Myoung-Jun; Jung, Dae Sung; Kim, Yooseok; Park, Chong-Yun

    2014-02-01

    We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT-G). Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT-G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT-G structure and p-n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT-G hybrids with the present technique could provide an efficient, novel route to device fabrication.

  10. Functionalization of Organotrifluoroborates: Reductive Amination

    PubMed Central

    Cooper, David J.

    2010-01-01

    Herein we report the conversion of aldehyde-containing potassium and tetrabutylammonium organotrifluoroborates to the corresponding amines through reductive amination protocols. Potassium formate facilitated by catalytic palladium acetate, sodium triacetoxyborohydride, and pyridine borane have all served as effective hydride donors, reducing the initially formed imines or iminium ions to provide the corresponding amines. PMID:18412389

  11. Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites

    PubMed Central

    Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia

    2015-01-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186

  12. 60 YEARS OF POMC: N-terminal POMC peptides and adrenal growth.

    PubMed

    Bicknell, Andrew B

    2016-05-01

    The peptide hormones contained within the sequence of proopiomelanocortin (POMC) have diverse roles ranging from pigmentation to regulation of adrenal function to control of our appetite. It is generally acknowledged to be the archetypal hormone precursor, and as its biology has been unravelled, so too have many of the basic principles of hormone biosynthesis and processing. This short review focuses on one group of its peptide products, namely, those derived from the N-terminal of POMC and their role in the regulation of adrenal growth. From a historical and a personal perspective, it describes how their role in regulating proliferation of the adrenal cortex was identified and also highlights the key questions that remain to be answered. © 2016 Society for Endocrinology.

  13. NO3 and OH initiated secondary aerosol formation from aliphatic amines - salt formation and effect of water vapor

    USDA-ARS?s Scientific Manuscript database

    Aliphatic amines enter the atmosphere from a variety of sources, and have been detected existing in gas and particle phases in the atmosphere. Similar to ammonia, amines can form inorganic salt through acid-base reactions. However, the atmospheric behavior of amines with atmospheric oxidants (e.g. n...

  14. AN EFFICIENT AND CHEMOSELECTIVE CBZ-PROTECTION OF AMINES USING SILICA-SULFURIC ACID AT ROOM TEMPERATURE

    EPA Science Inventory

    A simple, facile, and chemoselective N-benzyloxycarbonylation of amines using silica-sulfuric acid that proceeds under solvent-free conditions at room temperature has been achieved. These reactions are applicable to a wide variety of primary (aliphatic, cyclic) secondary amines, ...

  15. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  16. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    PubMed

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  17. Maillard reaction of lactose and fluoxetine hydrochloride, a secondary amine.

    PubMed

    Wirth, D D; Baertschi, S W; Johnson, R A; Maple, S R; Miller, M S; Hallenbeck, D K; Gregg, S M

    1998-01-01

    Analysis of commercially available generic formulations of fluoxetine HCl revealed the presence of lactose as the most common excipient. We show that such formulations are inherently less stable than formulations with starch as the diluent due to the Maillard reaction between the drug, a secondary amine hydrochloride, and lactose. The Amadori rearrangement product was isolated and characterized; the characterization was aided by reduction with sodium borohydride and subsequent characterization of this reduced adduct. The lactose-fluoxetine HCl reaction was examined in aqueous ethanol and in the solid state, in which factors such as water content, lubricant concentration, and temperature were found to influence the degradation. N-Formylfluoxetine was identified as a major product of this Maillard reaction and it is proposed that N-formyl compounds be used as markers for this drug-excipient interaction since they are easy to prepare synthetically. Many characteristic volatile products of the Maillard reaction have been identified by GC/MS, including furaldehyde, maltol, and 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-pyran-4-one. Close similarity between the degradation products of simple mixtures and formulated generic products was found; however, at least one product decomposed at a rate nearly 10 times that predicted from the simple models. Maillard products have also been identified in unstressed capsules. The main conclusion is that drugs which are secondary amines (not just primary amines as sometimes reported) undergo the Maillard reaction with lactose under pharmaceutically relevant conditions. This finding should be considered during the selection of excipients and stability protocols for drugs which are secondary amines or their salts, just as it currently is for primary amines.

  18. One-Pot Anti-Markovnikov Hydroamination of Unactivated Alkenes by Hydrozirconation and Amination

    PubMed Central

    Strom, Alexandra E.

    2013-01-01

    A one-pot hydroamination of alkenes is reported. The synthesis of primary and secondary amines from unactivated olefins was accomplished in the presence of a variety of functional groups. Hydrozirconation, followed by amination with nitrogen electrophiles, provides exclusive anti-Markovnikov selectivity, and most products are isolated in high yields without the use of column chromatography. PMID:23899320

  19. The Synthesis of Methyl Salicylate: Amine Diazotization.

    ERIC Educational Resources Information Center

    Zanger, Murray; McKee, James R.

    1988-01-01

    Notes that this experiment takes safety and noncarcinogenic reactants into account. Demonstrates the use of diazonium salts for the replacement of an aromatic amine group by a phenolic hydroxyl. Involves two pleasant-smelling organic compounds, methyl anthranilate (grape) and methyl salicylate (oil of wintergreen). (MVL)

  20. Pyridine synthesis by reactions of allyl amines and alkynes proceeding through a Cu(OAc)2 oxidation and Rh(III)-catalyzed N-annulation sequence.

    PubMed

    Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho

    2012-11-28

    A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.

  1. Spectroscopic Investigation into Oxidative Degradation of Silica-Supported Amine Sorbents for CO2 Capture

    PubMed Central

    Srikanth, Chakravartula S; Chuang, Steven S C

    2012-01-01

    Oxidative degradation characteristics of silica-supported amine sorbents with varying amounts of tetraethylenepentamine (TEPA) and polyethylene glycol (PEG; P200 or P600 represents PEG with molecular weights of 200 or 600) have been studied by IR and NMR spectroscopy. Thermal treatment of the sorbents and liquid TEPA at 100 °C for 12 h changed their color from white to yellow. The CO2 capture capacity of the TEPA/SiO2 sorbents (i.e., SiO2-supported TEPA with a TEPA/SiO2 ratio of 25:75) decreased by more than 60 %. IR and NMR spectroscopy studies showed that the yellow color of the degraded sorbents resulted from the formation of imide species. The imide species, consisting of NH associated with two C—O functional groups, were produced from the oxidation of methylene groups in TEPA. Imide species on the degraded sorbent are not capable of binding CO2 due to its weak basicity. The addition of P200 and P600 to the supported amine sorbents improved both their CO2 capture capacities and oxidative degradation resistance. IR spectroscopy results also showed that TEPA was immobilized on the SiO2 surface through hydrogen bonding between amine groups and the silanol groups of SiO2. The OH groups of PEG interact with NH2/NH of TEPA through hydrogen bonding. Hydrogen bonds disperse TEPA on SiO2 and block O2 from accessing TEPA for oxidation. Oxidative degradation resistance and CO2 capture capacity of the supported amine sorbents can be optimized through adjusting the ratio of hydroxyl to amine groups in the TEPA/PEG mixture. PMID:22744858

  2. A novel assay to measure tertiary and quaternary amines in wastewater: An indicator for NDMA wastewater precursors.

    PubMed

    Woods-Chabane, Gwen C; Glover, Caitlin M; Marti, Erica J; Dickenson, Eric R V

    2017-07-01

    This study examined the potential of using a novel bulk amine assay as an approximation for the tertiary and quaternary amine load in wastewaters and surface water samples, and this approximation was compared to N-nitrosodimethylamine (NDMA) formation potential using chloramines. An existing colorimetric method was examined and optimized for the detection of amines in environmental water samples. The method consists of liquid-liquid extraction followed by a catalyzed reaction to form a yet-undefined product that is known to be both a strong chromophore and fluorophore. Previous work verified that this reaction was effectively catalyzed by a number of compounds containing tertiary and quaternary amine moieties. Many tertiary and quaternary compounds are also efficient producers of NDMA under chloramination conditions, and a linear correlation was consequently derived from the bulk amine signals vs. NDMA formation potential in various wastewater samples (R 2  = 0.74; n = 24; p-value < 0.05). The results provide evidence that approximately 2% of the tertiary and quaternary amines measured can form NDMA and an estimated 0.01-1.3% of nitrogen in dissolved organic nitrogen originates from these bulk amines. The normalization of NDMA concentration by the amine measurement revealed that ozone effectively destroyed those tertiary and quaternary amine structures more likely to form NDMA in treated wastewater samples. This bulk amine assay illustrates that proxy measurements of tertiary and quaternary amines can be linked to the NDMA formation potential of a given sample, and this approach may prove useful as a characterizing tool for NDMA precursors in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.

    PubMed

    Carlsen, Ryan W; Ess, Daniel H

    2016-06-14

    Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row.

  4. Synthesis and Structure of Hypervalent Iodine(III) Reagents Containing Phthalimidate and Application to Oxidative Amination Reactions.

    PubMed

    Kiyokawa, Kensuke; Kosaka, Tomoki; Kojima, Takumi; Minakata, Satoshi

    2015-11-09

    A new class of hypervalent iodine reagents containing phthalimidate was synthesized, and structurally characterized by X-ray analysis. The benziodoxole-based reagent displays satisfactory solubility in common organic solvents and is reasonably stable in solution as well as in the solid state. The reagent was used for the oxidative amination of the C(sp(3))-H bond of N,N-dimethylanilines. In addition, the reagent was also applicable to oxidative amination with rearrangement of trialkylamines as well as enamines that were prepared in situ from secondary amines and aldehydes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A practical and catalyst-free trifluoroethylation reaction of amines using trifluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Andrews, Keith G.; Faizova, Radmila; Denton, Ross M.

    2017-06-01

    Amines are a fundamentally important class of biologically active compounds and the ability to manipulate their physicochemical properties through the introduction of fluorine is of paramount importance in medicinal chemistry. Current synthesis methods for the construction of fluorinated amines rely on air and moisture sensitive reagents that require special handling or harsh reductants that limit functionality. Here we report practical, catalyst-free, reductive trifluoroethylation reactions of free amines exhibiting remarkable functional group tolerance. The reactions proceed in conventional glassware without rigorous exclusion of either moisture or oxygen, and use trifluoroacetic acid as a stable and inexpensive fluorine source. The new methods provide access to a wide range of medicinally relevant functionalized tertiary β-fluoroalkylamine cores, either through direct trifluoroethylation of secondary amines or via a three-component coupling of primary amines, aldehydes and trifluoroacetic acid. A reduction of in situ-generated silyl ester species is proposed to account for the reductive selectivity observed.

  6. CO2-induced degradation of amine-containing adsorbents: reaction products and pathways.

    PubMed

    Sayari, Abdelhamid; Heydari-Gorji, Aliakbar; Yang, Yong

    2012-08-22

    A comprehensive study was conducted to investigate the stability of a wide variety of mesoporous silica-supported amine-containing adsorbents in the presence of carbon dioxide under dry conditions. CO(2)-induced degradation of grafted primary and secondary monoamines (pMono, sMono), diamines with one primary and one secondary amines (Diamine) and triamine with one primary and two secondary amines (TRI) as well as different impregnated polyamines such as branched and linear polyethylenimine (BPEI and LPEI) and polyallylamine (PALL) was investigated using extensive CO(2) adsorption-desorption cycling as well as diffuse reflectance infrared Fourier transform (DRIFT) and (13)C CP MAS NMR measurements. Except for sMono, all other supported amines underwent significant deactivation in the presence of dry CO(2) under mild conditions. In all cases, the decrease in CO(2) uptake was associated with the formation of urea linkages at the expense of amine groups. The urea-containing species were identified, and the deactivation pathways were delineated.

  7. A Blocking Group Scan Using a Spherical Organometallic Complex Identifies an Unprecedented Binding Mode with Potent Activity In Vitro and In Vivo for the Opioid Peptide Dermorphin.

    PubMed

    Strack, Martin; Bedini, Andrea; Yip, King T; Lombardi, Sara; Siegmund, Daniel; Stoll, Raphael; Spampinato, Santi M; Metzler-Nolte, Nils

    2016-10-04

    Herein, the selective enforcement of one particular receptor-ligand interaction between specific domains of the μ-selective opioid peptide dermorphin and the μ opioid receptor is presented. For this, a blocking group scan is described which exploits the steric demand of a bis(quinolinylmethyl)amine rhenium(I) tricarbonyl complex conjugated to a number of different, strategically chosen positions of dermorphin. The prepared peptide conjugates lead to the discovery of two different binding modes: An expected N-terminal binding mode corresponds to the established view of opioid peptide binding, whereas an unexpected C-terminal binding mode is newly discovered. Surprisingly, both binding modes provide high affinity and agonistic activity at the μ opioid receptor in vitro. Furthermore, the unprecedented C-terminal binding mode shows potent dose-dependent antinociception in vivo. Finally, in silico docking studies support receptor activation by both dermorphin binding modes and suggest a biological relevance for dermorphin itself. Relevant ligand-protein interactions are similar for both binding modes, which is in line with previous protein mutation studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. Copyright © 2015 by the Genetics Society of America.

  9. Solid-phase reductive amination for glycomic analysis.

    PubMed

    Jiang, Kuan; Zhu, He; Xiao, Cong; Liu, Ding; Edmunds, Garrett; Wen, Liuqing; Ma, Cheng; Li, Jing; Wang, Peng George

    2017-04-15

    Reductive amination is an indispensable method for glycomic analysis, as it tremendously facilitates glycan characterization and quantification by coupling functional tags at the reducing ends of glycans. However, traditional in-solution derivatization based approach for the preparation of reductively aminated glycans is quite tedious and time-consuming. Here, a simpler and more efficient strategy termed solid-phase reductive amination was investigated. The general concept underlying this new approach is to streamline glycan extraction, derivatization, and purification on non-porous graphitized carbon sorbents. Neutral and sialylated standard glycans were utilized to test the feasibility of the solid-phase method. As results, almost complete labeling of those glycans with four common labels of aniline, 2-aminobenzamide (2-AB), 2-aminobenzoic acid (2-AA) and 2-amino-N-(2-aminoethyl)-benzamide (AEAB) was obtained, and negligible desialylation occurred during sample preparation. The labeled glycans derived from glycoproteins showed excellent reproducibility in high performance liquid chromatography (HPLC) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Direct comparisons based on fluorescent absorbance and relative quantification using isotopic labeling demonstrated that the solid-phase strategy enabled 20-30% increase in sample recovery. In short, the solid-phase strategy is simple, reproducible, efficient, and sensitive for glycan analysis. This method was also successfully applied for N-glycan profiling of HEK 293 cells with MALDI-TOF MS, showing its attractive application in the high-throughput analysis of mammalian glycome. Published by Elsevier B.V.

  10. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  11. R(-)-4-(3-Isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, a fluorescent chiral tagging reagent: sensitive resolution of chiral amines and amino acids by reversed-phase liquid chromatography.

    PubMed

    Toyo'oka, T; Jin, D; Tomoi, N; Oe, T; Hiranuma, H

    2001-02-01

    The usefulness of R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole [R(-)-DBD-PyNCS], a fluorescent chiral tagging reagent, for the determination of racemic amines and amino acids, was studied. The reagent reacted with beta-blockers selected as representative secondary amines to produce corresponding fluorescent diastereomers (excitation at 460 nm and emission at 550 nm). The yields of the derivatization reaction were dependent on the stereostructure arround the NH group in beta-blockers. The resulting diastereomers were completely separated with single chromatographic run using linear gradient elutions by reversed-phase chromatography. R(-)-DBD-PyNCS was also applied to the determination of DL-amino acid, considered to be one of the primary amines, in human urine and foodstuffs. DL-amino acids tested equally reacted with the reagent, and the thiocarbamoyl derivatives were separated with an ODS column. The epimerization during the derivatization reaction was negligible judging from the resolution of opposite diastereomers on the chromatogram. The occurence of D-amino acids (D-Ala, D-Ser, D-Asp and/or D-Glu) was identified in the samples tested. The structures and the purities were elucidated with on-line HPLC-MS. The chiral reagent possessing an isothiocyanate group (-NCS) in the structure seems to be applicable to continuous sequential analysis of peptides containing D-amino acids. The thiocarbamoyl derivatives obtained from the reaction with DL-amino acids were converted to thiohydantoins via thiazolinones in acidic medium. The thiohydantoins produced from acidic, basic, neutral, hydroxyl and aromatic amino acids were completely separated with isocratic elutions using acidic mobile phase containing 0.1% TFA. The separations were sufficient for the identification of DL-amino acid in peptide sequences. Although the epimerization during the conversion reaction to thiohydantoins was not avoidable, the descrimination of D- and

  12. An improved stable isotope N-terminal labeling approach with light/heavy TMPP to automate proteogenomics data validation: dN-TOP.

    PubMed

    Bertaccini, Diego; Vaca, Sebastian; Carapito, Christine; Arsène-Ploetze, Florence; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine

    2013-06-07

    In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.

  13. Molecular structure of tris(cyclopropylsilyl)amine as determined by gas electron diffraction and quantum-chemical calculations

    NASA Astrophysics Data System (ADS)

    Vishnevskiy, Yuri V.; Abaev, Maxim A.; Ivanov, Arkadii A.; Vilkov, Lev V.; Dakkouri, Marwan

    2008-10-01

    The molecular structure and conformation of tris(cyclopropylsilyl)amine (TCPSA) has been studied by means of gas-phase electron diffraction at 338 K and quantum-chemical calculations. A total of 12 relatively stable conformations of TCPSA molecule were considered. According to the experimental results and the DFT calculations the most stable conformer corresponds to a configuration (according to the Prelog-Klyne notation) of the type (-ac)(-ac)(+ac)-(-ac)(-ac)(+ac), where the first three parentheses describe the three different Si-N-Si-C torsional angles and the latter ones depict the rotation of the three cyclopropyl groups about the C ring-Si axes, respectively. The quantum-mechanical calculations were performed using various density functional (B3LYP, X3LYP and O3LYP) and perturbation MP2 methods in combination with double- and triple- ζ basis sets plus polarization and diffuse functions. The most important experimental geometrical parameters of TCPSA ( ra Å, ∠ h1 degrees) are: (Si-N) av = 1.741(3), (Si-C) av = 1.866(4), (C-C) av = 1.510(3), (C-C(Si)) av = 1.535(3), (N-Si-C) av = 115.1(18)°. For the purpose of comparison and searching for reasons leading to the planarity of the Si 3N moiety in trisilylated amines we carried out NBO analysis and optimized the geometries of numerous silylamines. Among these compounds was tris(allylsilyl)amine (TASA), which is isovalent and isoelectronic to TCPSA. Utilizing the structural results we obtained we could show that Si +⋯Si + electrostatic repulsive interaction is predominantly responsible for the planarity of the Si 3N skeleton in TCPSA and in all other trisilylamines we considered. We also found that regardless the size and partial charges of the substituents the Si-N-Si bond angle in various disilylamines amounts to 130 ± 2°.

  14. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  15. Rapid fixation of methylene chloride by a macrocyclic amine.

    PubMed

    Lee, Jung-Jae; Stanger, Keith J; Noll, Bruce C; Gonzalez, Carlos; Marquez, Manuel; Smith, Bradley D

    2005-03-30

    A simple macrocyclic amine is alkylated by methylene chloride to give a quaternary ammonium chloride salt. When methylene chloride is the solvent, the reaction exhibits pseudo-first-order kinetics, and the reaction half-life at 25.0 degrees C is 2.0 min. The reaction half-life for a structurally related, acyclic amine is approximately 50 000 times longer. Detailed calculations favor a mechanism where the methylene chloride associates with the macrocycle to form an activated prereaction complex. The macrocyclic nitrogen subsequently attacks the methylene chloride with a classic SN2 trajectory, and although the carbon-chlorine bond breaks, the chloride leaving group does not separate from the newly formed cationic macrocycle, such that the product is a tightly associated ion-pair. X-ray crystal structures of the starting amine and the product salt, as well as kinetic data, support this mechanism.

  16. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.

    PubMed

    Hong, Seungpyo; Bielinska, Anna U; Mecke, Almut; Keszler, Balazs; Beals, James L; Shi, Xiangyang; Balogh, Lajos; Orr, Bradford G; Baker, James R; Banaszak Holl, Mark M

    2004-01-01

    We have investigated poly(amidoamine) (PAMAM) dendrimer interactions with supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayers and KB and Rat2 cell membranes using atomic force microscopy (AFM), enzyme assays, flow cell cytometry, and fluorescence microscopy. Amine-terminated generation 7 (G7) PAMAM dendrimers (10-100 nM) were observed to form holes of 15-40 nm in diameter in aqueous, supported lipid bilayers. G5 amine-terminated dendrimers did not initiate hole formation but expanded holes at existing defects. Acetamide-terminated G5 PAMAM dendrimers did not cause hole formation in this concentration range. The interactions between PAMAM dendrimers and cell membranes were studied in vitro using KB and Rat 2 cell lines. Neither G5 amine- nor acetamide-terminated PAMAM dendrimers were cytotoxic up to a 500 nM concentration. However, the dose dependent release of the cytoplasmic proteins lactate dehydrogenase (LDH) and luciferase (Luc) indicated that the presence of the amine-terminated G5 PAMAM dendrimer decreased the integrity of the cell membrane. In contrast, the presence of acetamide-terminated G5 PAMAM dendrimer had little effect on membrane integrity up to a 500 nM concentration. The induction of permeability caused by the amine-terminated dendrimers was not permanent, and leaking of cytosolic enzymes returned to normal levels upon removal of the dendrimers. The mechanism of how PAMAM dendrimers altered cells was investigated using fluorescence microscopy, LDH and Luc assays, and flow cytometry. This study revealed that (1) a hole formation mechanism is consistent with the observations of dendrimer internalization, (2) cytosolic proteins can diffuse out of the cell via these holes, and (3) dye molecules can be detected diffusing into the cell or out of the cell through the same membrane holes. Diffusion of dendrimers through holes is sufficient to explain the uptake of G5 amine-terminated PAMAM dendrimers into cells and is consistent

  17. Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer's patches.

    PubMed

    Kim, Sae-Hae; Cho, Byeol-Hee; Kiyono, Hiroshi; Jang, Yong-Suk

    2017-06-21

    The regional specialization of intestinal immune cells is affected by the longitudinal heterogeneity of environmental factors. Although the distribution of group 3 innate lymphoid cells (ILC3s) is well characterized in the lamina propria, it is poorly defined in Peyer's patches (PPs) along the intestine. Given that PP ILC3s are closely associated with mucosal immune regulation, it is important to characterize the regulatory mechanism of ILC3s. Here, we found that terminal ileal PPs of specific pathogen-free (SPF) mice have fewer NKp46 + ILC3s than jejunal PPs, while there was no difference in NKp46 + ILC3 numbers between terminal ileal and jejunal PPs in antibiotics (ABX)-treated mice. We also found that butyrate levels in the terminal ileal PPs of SPF mice were higher than those in the jejunal PPs of SPF mice and terminal ileal PPs of ABX-treated mice. The reduced number of NKp46 + ILC3s in terminal ileal PPs resulted in a decrease in Csf2 expression and, in turn, resulted in reduced regulatory T cells and enhanced antigen-specific T-cell proliferation. Thus, we suggest that NKp46 + ILC3s are negatively regulated by microbiota-derived butyrate in terminal ileal PPs and the reduced ILC3 frequency is closely associated with antigen-specific immune induction in terminal ileal PPs.

  18. Scandium Terminal Imido Chemistry.

    PubMed

    Lu, Erli; Chu, Jiaxiang; Chen, Yaofeng

    2018-02-20

    Research into transition metal complexes bearing multiply bonded main-group ligands has developed into a thriving and fruitful field over the past half century. These complexes, featuring terminal M═E/M≡E (M = transition metal; E = main-group element) multiple bonds, exhibit unique structural properties as well as rich reactivity, which render them attractive targets for inorganic/organometallic chemists as well as indispensable tools for organic/catalytic chemists. This fact has been highlighted by their widespread applications in organic synthesis, for example, as olefin metathesis catalysts. In the ongoing renaissance of transition metal-ligand multiple-bonding chemistry, there have been reports of M═E/M≡E interactions for the majority of the metallic elements of the periodic table, even some actinide metals. In stark contrast, the largest subgroup of the periodic table, rare-earth metals (Ln = Sc, Y, and lanthanides), have been excluded from this upsurge. Indeed, the synthesis of terminal Ln═E/Ln≡E multiple-bonding species lagged behind that of the transition metal and actinide congeners for decades. Although these species had been pursued since the discovery of a rare-earth metal bridging imide in 1991, such a terminal (nonpincer/bridging hapticities) Ln═E/Ln≡E bond species was not obtained until 2010. The scarcity is mainly attributed to the energy mismatch between the frontier orbitals of the metal and the ligand atoms. This renders the putative terminal Ln═E/Ln≡E bonds extremely reactive, thus resulting in the formation of aggregates and/or reaction with the ligand/environment, quenching the multiple-bond character. In 2010, the stalemate was broken by the isolation and structural characterization of the first rare-earth metal terminal imide-a scandium terminal imide-by our group. The double-bond character of the Sc═N bond was unequivocally confirmed by single-crystal X-ray diffraction. Theoretical investigations revealed the presence

  19. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines.

    PubMed

    Smit, Inga; Pfliehinger, Marco; Binner, Antonie; Großmann, Manfred; Horst, Walter J; Löhnertz, Otmar

    2014-08-01

    Wines rich in biogenic amines can cause adverse health effects to the consumer. Being nitrogen-containing substances, the amount of amines in wines might be strongly influenced by the rate of nitrogen fertiliser application during grape production. The aim of this work was to evaluate the effect of nitrogen fertilisation in the vineyard on the formation of biogenic amines in musts and wines. In a field experiment which compared unfertilised and fertilised (60 and 150 kg N ha(-1)) vines over two separate years, the total amine concentrations in must and wine increased. The latter was due to an increase of individual amines such as ethylamine, histamine, isopentylamine, phenylethylamine and spermidine in the musts and wines with the nitrogen application. Furthermore, the fermentation process increased the concentration of histamine and ethylamine in most of the treatments, while spermidine, spermine and isopentylamine concentrations generally decreased. Throughout both vintages, the concentrations of tyramine and histamine of the investigated musts and wines never reached detrimental levels to the health of non-allergenic people. Nitrogen fertilisation has a significant effect on amines formation in musts and wines. Furthermore, during fermentation, ethylamine and histamine increased while other amines were presumably serving as N sources during fermentation. © 2013 Society of Chemical Industry.

  20. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    PubMed

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Distribution of Aliphatic Amines in CO, CV, and CK Carbonaceous Chondrites and Relation to Mineralogy and Processing History

    NASA Technical Reports Server (NTRS)

    Aponte, Jose C.; Abreu, Neyda M.; Glavin, Daniel P.; Dworkin, Jason P.; Elsila, Jamie E.

    2017-01-01

    The analysis of water-soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol/g of meteorite; these amounts are 1-3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low-amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n-propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n-x-amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n-amines.

  2. Crystal structure of fac-tri­chlorido­[tris­(pyridin-2-yl-N)amine]­chromium(III)

    PubMed Central

    Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio

    2015-01-01

    In the neutral complex mol­ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris­(pyridin-2-yl)amine; C15H12N4], the CrIII ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa­hedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol­ecule is located on a mirror plane. In the crystal, a combination of C—H⋯N and C—H⋯Cl hydrogen-bonding inter­actions connect the mol­ecules into a three-dimensional network. PMID:25705455

  3. Amine Landscaping to Maximize Protein-Dye Fluorescence and Ultrastable Protein-Ligand Interaction.

    PubMed

    Jacobsen, Michael T; Fairhead, Michael; Fogelstrand, Per; Howarth, Mark

    2017-08-17

    Chemical modification of proteins provides great opportunities to control and visualize living systems. The most common way to modify proteins is reaction of their abundant amines with N-hydroxysuccinimide (NHS) esters. Here we explore the impact of amine number and positioning on protein-conjugate behavior using streptavidin-biotin, a central research tool. Dye-NHS modification of streptavidin severely damaged ligand binding, necessitating development of a new streptavidin-retaining ultrastable binding after labeling. Exploring the ideal level of dye modification, we engineered a panel bearing 1-6 amines per subunit: "amine landscaping." Surprisingly, brightness increased as amine number decreased, revealing extensive quenching following conventional labeling. We ultimately selected Flavidin (fluorophore-friendly streptavidin), combining ultrastable ligand binding with increased brightness after conjugation. Flavidin enhanced fluorescent imaging, allowing more sensitive and specific cell labeling in tissues. Flavidin should have wide application in molecular detection, providing a general insight into how to optimize simultaneously the behavior of the biomolecule and the chemical probe. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Amides and Hydrazides from Amine and Hydrazine Hydrochlorides.

    ERIC Educational Resources Information Center

    Shama, Sami A.; Tran, Thuan L.

    1978-01-01

    This safe and efficient procedure for the synthesis of N-substituted amides and hydrazides is a modification of the Schotten-Bausmann procedure in which the amine or hydrazide is replaced by the corresponding hydrochloride salt, and the use of alkali is eliminated. (Author/BB)

  5. Photocatalytic organic transformation by layered double hydroxides: highly efficient and selective oxidation of primary aromatic amines to their imines under ambient aerobic conditions.

    PubMed

    Yang, Xiu-Jie; Chen, Bin; Li, Xu-Bing; Zheng, Li-Qiang; Wu, Li-Zhu; Tung, Chen-Ho

    2014-06-25

    We report the first application of layered double hydroxide as a photocatalyst in the transformation of primary aromatic amines to their corresponding imines with high efficiency and selectivity by using oxygen in an air atmosphere as a terminal oxidant under light irradiation.

  6. Comparative investigation of two methods for Acetylcholinesterase enzyme immobilization on modified porous silicon

    NASA Astrophysics Data System (ADS)

    Khaldi, Khadidja; Sam, Sabrina; Lounas, Amel; Yaddaden, Chafiaa; Gabouze, Noure-Eddine

    2017-11-01

    In this work, Acetylcholinesterase enzyme (AChE) was immobilized on porous silicon (PSi) surface using two strategies. In the first method, acid chains were covalently grafted on the hydrogenated PSi by hydrosilylation reaction. The obtained acid-terminated surface was activated by a reaction with N-hydroxysuccinimide (NHS) in the presence of a peptide-coupling agent N-ethyl-N‧-(3-dimethylaminopropyl)-carbodiimide (EDC), and then reacted with the amino linker of the lysine residues AChE to anchor the enzyme by a covalent amide bond. In the second procedure, the PSi surface was first hydroxylated in piranha solution, followed by a silanization reaction with 3-aminopropyltriethoxysilane (APTES) to form amine-terminated surface. Finally, AChE was attached to the terminal amine groups by an aminolysis reaction with carboxylic acid groups of AChE in the presence of NHS/EDC mixture. Fourier transform infrared spectroscopy (FTIR) confirmed the efficiency of the surface modifications. The enzymatic activity of immobilized AChE was determined by means of a colorimetric test and was discussed according to the enzyme orientation on the surface which was revealed by contact angle measurements.

  7. Using liquid and solid state NMR and photoluminescence to study the synthesis and solubility properties of amine capped silicon nanoparticles.

    PubMed

    Giuliani, J R; Harley, S J; Carter, R S; Power, P P; Augustine, M P

    2007-08-01

    Water soluble silicon nanoparticles were prepared by the reaction of bromine terminated silicon nanoparticles with 3-(dimethylamino)propyl lithium and characterized with liquid and solid state nuclear magnetic resonance (NMR) and photoluminescence (PL) spectroscopies. The surface site dependent 29Si chemical shifts and the nuclear spin relaxation rates from an assortment of 1H-29Si heteronuclear solid state NMR experiments for the amine coated reaction product are consistent with both the 1H and 13C liquid state NMR results and routine transmission electron microscopy, ultra-violet/visible, and Fourier transform infrared measurements. PL was used to demonstrate the pH dependent solubility properties of the amine passivated silicon nanoparticles.

  8. The TDP-43 N-terminal domain structure at high resolution.

    PubMed

    Mompeán, Miguel; Romano, Valentina; Pantoja-Uceda, David; Stuani, Cristiana; Baralle, Francisco E; Buratti, Emanuele; Laurents, Douglas V

    2016-04-01

    Transactive response DNA-binding protein 43 kDa (TDP-43) is an RNA transporting and processing protein whose aberrant aggregates are implicated in neurodegenerative diseases. The C-terminal domain of this protein plays a key role in mediating this process. However, the N-terminal domain (residues 1-77) is needed to effectively recruit TDP-43 monomers into this aggregate. In the present study, we report, for the first time, the essentially complete (1) H, (15) N and (13) C NMR assignments and the structure of the N-terminal domain determined on the basis of 26 hydrogen-bond, 60 torsion angle and 1058 unambiguous NOE structural restraints. The structure consists of an α-helix and six β-strands. Two β-strands form a β-hairpin not seen in the ubiquitin fold. All Pro residues are in the trans conformer and the two Cys are reduced and distantly separated on the surface of the protein. The domain has a well defined hydrophobic core composed of F35, Y43, W68, Y73 and 17 aliphatic side chains. The fold is topologically similar to the reported structure of axin 1. The protein is stable and no denatured species are observed at pH 4 and 25 °C. At 4 kcal·mol(-1) , the conformational stability of the domain, as measured by hydrogen/deuterium exchange, is comparable to ubiquitin (6 kcal·mol(-1) ). The β-strands, α-helix, and three of four turns are generally rigid, although the loop formed by residues 47-53 is mobile, as determined by model-free analysis of the (15) N{(1) H}NOE, as well as the translational and transversal relaxation rates. Structural data have been deposited in the Protein Data Bank under accession code: 2n4p. The NMR assignments have been deposited in the BMRB database under access code: 25675. © 2016 Federation of European Biochemical Societies.

  9. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  10. 157 nm Photodissociation of Dipeptide Ions Containing N-Terminal Arginine

    NASA Astrophysics Data System (ADS)

    Webber, Nathaniel; He, Yi; Reilly, James P.

    2014-02-01

    Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.

  11. Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching

    NASA Astrophysics Data System (ADS)

    Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee

    2018-03-01

    Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.

  12. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    PubMed

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  13. Low-temperature microchip nonaqueous capillary electrophoresis of aliphatic primary amines: applications to Titan chemistry.

    PubMed

    Cable, Morgan L; Stockton, Amanda M; Mora, Maria F; Willis, Peter A

    2013-01-15

    We demonstrate microchip nonaqueous capillary electrophoresis (μNACE) analysis of primary aliphatic amines (C1-C18) in ethanol down to -20 °C as a first step in adapting microfluidic protocols for in situ analysis on Titan. To our knowledge, this is the first report of a nonaqueous separation at -20 °C on-chip. Limits of detection (LODs) ranged from 1.0 nM to 2.6 nM, and we identified several primary amines ranging in length from C2 to C16 in Titan aerosol analogue (tholin) samples; new amines were also detected in a tholin sample exposed to oxygen and liquid water. This preliminary work validates the sensitivity and efficacy of microfluidic chemical analysis of complex organics with relevance to Titan aerosols and surface deposits.

  14. Nuclear spatial delocalization silences electron density oscillations in 2-phenyl-ethyl-amine (PEA) and 2-phenylethyl-N,N-dimethylamine (PENNA) cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Andrew J.; Vacher, Morgane; Bearpark, Michael J.

    2016-03-14

    We simulate electron dynamics following ionization in 2-phenyl-ethyl-amine and 2-phenylethyl-N,N-dimethylamine as examples of systems where 3 coupled cationic states are involved. We study two nuclear effects on electron dynamics: (i) coupled electron-nuclear motion and (ii) nuclear spatial delocalization as a result of the zero-point energy in the neutral molecule. Within the Ehrenfest approximation, our calculations show that the coherent electron dynamics in these molecules is not lost as a result of coupled electron-nuclear motion. In contrast, as a result of nuclear spatial delocalization, dephasing of the oscillations occurs on a time scale of only a few fs, long before anymore » significant nuclear motion can occur. The results have been rationalized using a semi-quantitative model based upon the gradients of the potential energy surfaces.« less

  15. Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.H.; Shyu, C.T.

    1999-01-01

    Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less

  16. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation.

    PubMed

    Wang, Pei; He, Yi-Liang; Huang, Ching-Hua

    2010-12-01

    Fluoroquinolones (FQs) are a group of widely prescribed antibiotics and have been frequently detected in the aquatic environment. The reaction kinetics and transformation of seven FQs (ciprofloxacin (CIP), enrofloxacin (ENR), norfloxacin (NOR), ofloxacin (OFL), lomefloxacin (LOM), pipemidic acid (PIP) and flumequine (FLU)) and three structurally related amines (1-phenylpiperazine (PP), N-phenylmorpholine (PM) and 4-phenylpiperidine (PD)) toward chlorine dioxide (ClO(2)) were investigated to elucidate the behavior of FQs during ClO(2) disinfection processes. The reaction kinetics are highly pH-dependent, can be well described by a second-order kinetic model incorporating speciation of FQs, and follow the trend of OFL > ENR > CIP ∼ NOR ∼ LOM > > PIP in reactivity. Comparison among FQs and related amines and product characterization indicate that FQs' piperazine ring is the primary reactive center toward ClO(2). ClO(2) likely attacks FQ's piperazinyl N4 atom followed by concerted fragmentation involving piperazinyl N1 atom, leading to dealkylation, hydroxylation and intramolecular ring closure at the piperazine moiety. While FQs with tertiary N4 react faster with ClO(2) than FQs with secondary N4, the overall reactivity of the piperazine moiety also depends strongly on the quinolone ring through electronic effects. The reaction rate constants obtained in clean water matrix can be used to model the decay of CIP by ClO(2) in surface water samples, but overestimate the decay in wastewater samples. Overall, transformation of FQs, particularly for those with tertiary N4 amines, could be expected under typical ClO(2) disinfection conditions. However, the transformation may not eliminate antibacterial activity because of little destruction at the quinolone ring. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.

    PubMed

    Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2006-08-29

    The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.

  18. Oxidation of Amines by Flavoproteins

    PubMed Central

    Fitzpatrick, Paul F.

    2009-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon -nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D -amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. PMID:19651103

  19. Enhancement of carcinogenesis and fatty infiltration in the pancreas in N-nitrosobis(2-oxopropyl)amine-treated hamsters by high-fat diet.

    PubMed

    Hori, Mika; Kitahashi, Tsukasa; Imai, Toshio; Ishigamori, Rikako; Takasu, Shinji; Mutoh, Michihiro; Sugimura, Takashi; Wakabayashi, Keiji; Takahashi, Mami

    2011-11-01

    Obesity is associated with increased pancreatic cancer risk, although the mechanisms have yet to be detailed. This study aimed to elucidate promotion of pancreatic cancer by obesity and hyperlipidemia. Six-week-old female Syrian golden hamsters were treated with N-nitrosobis(2-oxopropyl)amine (BOP) and after 1 week were fed a high-fat diet (HFD) or standard diet (STD) for 6 or 17 weeks. Body weight and serum levels of lipids and leptin were significantly higher in the HFD than the STD group at 14 weeks of age. Pancreatic ductal adenocarcinomas developed only in the BOP + HFD group, with an incidence of 67% (P < 0.01) at 14 weeks of age. In addition, the multiplicity was 2-fold greater in the BOP + HFD group than in the BOP + STD group (P < 0.05) at 25 weeks of age. Pancreatic fatty infiltration was increased by BOP treatment and further enhanced by the HFD, correlating with progression of BOP-induced pancreatic ductal adenocarcinoma and up-regulated expression of adipocytokines and cell proliferation-related genes in the pancreas. High-fat diet is shown to increase serum lipid levels and enhance fatty infiltration in the pancreas with abnormal adipocytokine production, which may accelerate and enhance pancreatic cancer.

  20. Tandem mass spectrometry of isomeric aniline-labeled N-glycans separated on porous graphitic carbon: Revealing the attachment position of terminal sialic acids and structures of neutral glycans.

    PubMed

    Michael, Claudia; Rizzi, Andreas M

    2015-07-15

    Quantitative monitoring of changes in the N-glycome upon disease has gained significance in the context of biomarker discovery. Separation and quantification of isobaric glycan isomers can be attained by using high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS). Collision-induced dissociation (CID)-based fragmentation of separated isobaric glycans is evaluated in respect to its potential of providing fragment ions specific for the linkage positions of terminal sialic acids and the presence of intersecting GlcNAc moieties, respectively. N-Glycans were labeled via reductive amination using (12)C6-aniline and (13)C6-aniline as isotope-coded labeling reagents. The differently labeled glycans were merged and separated into various species using a porous graphitic carbon (PGC) stationary phase. Identification of structural features of separated isobaric isomers was performed by CID-based tandem mass spectrometry (MS/MS) carried out in a quadrupole time-of-flight (QqTOF) or a quadrupole ion-trap (IT) mass spectrometer. Working in the negative ion mode, new diagnostic CID fragment ions could be found that are indicative for the α2,6-type linkage of sialic acids. Other diagnostic ions, identified before as being indicative for the substitution of the 6-antenna, could be confirmed as being of relevance also in the case of aniline labeling. In the positive ion mode, CID fragment ions indicative for the structure of short neutral N-glycans were identified. One new diagnostic ion specific for the linkage position of the terminal sialic acids and one for the presence of bisecting GlcNAc in N-glycans were identified. The aniline label introduced for improved relative quantitation in MS(1) was found not to significantly alter the CID fragmentation patterns that were reported previously by other authors for unlabeled/reduced glycans or for glycans with more polar labels. Copyright © 2015 John Wiley & Sons, Ltd.

  1. THE EFFECT OF ALKYL AMINE TYPE ON THE EXTRACTION OF NITRIC ACID AND NITROSYLRUTHENIUM NITRATO COMPLEXES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmins, T.H.; Mason, E.A.

    1963-04-01

    An investigation of the solvent extraction characteristics of nitric acid and the nitrato complexes of nitrosylruthenium was conducted, using alkyl amines as extractants. The alkyl amines used were a primary amine Primene JMT, a tertiary amine trilaurylamine (TLA), and a quaternary amine Aliquat 336. The organic phase concentrations of HNO/sub 3/ resulting during extraction by alkyl amines were found to correlate well on the basis of the undissociated aqueous HNO/ sub 3/ activity for both salted (NaNO/sub 3/) and unsalted aqueous phases. The distribution ratios for Ru extraction showed better correlation on this basis than on the basis of aqueousmore » phase nitrate and nitric acid. The order of decreasing Ru extraction at low HNO/sub 3/ concentration (2N) was found to be Aliquat 336, TLA, and Primene JMT. At high HNO/sub 3/ concentration (9N). Primene JMT had the highest Ru extractability. Hapid dilution experiments were utilized to determine the number and aqueous phase concentrations of the extractable species of Ru, and the amine partition coefficients for the species. It was found that two Ru species are extractable, and the more extractable species is present in the aqueous phase at lower concentration than the less extractable species. The mole fractions of both species were found to increase with increasing HNO/sub 3/ concentration. The TLA partition coefficients for the extractable species were found to decrease with increasing HNO/sub 3/ concentration. The quaternary amine, Aliquat 336, was found to have partition coefficients an order of magnitude greater than the tertiary amine, TLA. Equations for the mole fractions and TLA partition coefficients in the region of HNO/sub 3/ concentration investigated were developed. (auth)« less

  2. Reductive amination of tertiary anilines and aldehydes.

    PubMed

    Lv, Yunhe; Zheng, Yiying; Li, Yan; Xiong, Tao; Zhang, Jingping; Liu, Qun; Zhang, Qian

    2013-10-09

    An unprecedented oxidant-mediated reductive amination of tertiary anilines and aldehydes without external reducing agents was developed via the nucleophilic attack of the oxygen atom of the carbonyl group to in situ generated iminium ions, in which tertiary anilines were used as both nitrogen source and reducing agent for the first time.

  3. N-substituted imidazolines and ethylenediamines and their action on alpha- and beta-adrenergic receptors.

    PubMed

    Hamada, A; Yaden, E L; Horng, J S; Ruffolo, R R; Patil, P N; Miller, D D

    1985-09-01

    A series of N-substituted imidazolines and ethylenediamines were synthesized and examined for their activity in alpha- and beta-adrenergic systems. The length of the intermediate side chain between the catechol and imidazoline ring or the amine of the ethylenediamine segment was shown to affect the adrenergic activity. N-[2-(3,4-Dihydroxyphenyl)ethyl]imidazoline hydrochloride (2) and N-[2-(3,4-dihydroxyphenyl)ethyl]ethylenediamine dihydrochloride (4), both with two methylene groups between the catechol and amine segment, were found to be somewhat selective for alpha 2-adrenergic receptors while 1-(3,4-dihydroxybenzyl)imidazoline hydrochloride (1) and N-2-(3,4-dihydroxybenzyl)ethylenediamine dihydrochloride (3), both with one methylene group between the catechol and amine segment, were more selective for alpha1-adrenergic receptors in a pithed rat model. Of the four compounds examined, only compound 2 showed significant direct activity on beta1- and beta2-adrenergic receptors.

  4. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    NASA Astrophysics Data System (ADS)

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C. K.; Wu, Qiaqing; Zhu, Dunming

    2016-05-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines.

  5. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    PubMed Central

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C.K.; Wu, Qiaqing; Zhu, Dunming

    2016-01-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines. PMID:27138090

  6. Monocyclic aromatic amines as potential human carcinogens: old is new again

    PubMed Central

    Skipper, Paul L.; Kim, Min Young; Sun, H.-L. Patty; Wogan, Gerald N.; Tannenbaum, Steven R.

    2010-01-01

    Alkylanilines are a group of chemicals whose ubiquitous presence in the environment is a result of the multitude of sources from which they originate. Exposure assessments indicate that most individuals experience lifelong exposure to these compounds. Many alkylanilines have biological activity similar to that of the carcinogenic multi-ring aromatic amines. This review provides an overview of human exposure and biological effects. It also describes recent investigations into the biochemical mechanisms of action that lead to the assessment that they are most probably more complex than those of the more extensively investigated multi-ring aromatic amines. Not only is nitrenium ion chemistry implicated in DNA damage by alkylanilines but also reactions involving quinone imines and perhaps reactive oxygen species. Recent results described here indicate that alkylanilines can be potent genotoxins for cultured mammalian cells when activated by exogenous or endogenous phase I and phase II xenobiotic-metabolizing enzymes. The nature of specific DNA damage products responsible for mutagenicity remains to be identified but evidence to date supports mechanisms of activation through obligatory N-hydroxylation as well as subsequent conjugation by sulfation and/or acetylation. A fuller understanding of the mechanisms of alkylaniline genotoxicity is expected to provide important insights into the environmental and genetic origins of one or more human cancers and may reveal a substantial role for this group of compounds as potential human chemical carcinogens. PMID:19887514

  7. Divergent N-Terminal Sequences Target an Inducible Testis Deubiquitinating Enzyme to Distinct Subcellular Structures

    PubMed Central

    Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.

    2000-01-01

    Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131

  8. Oxidation of amines by flavoproteins.

    PubMed

    Fitzpatrick, Paul F

    2010-01-01

    Many flavoproteins catalyze the oxidation of primary and secondary amines, with the transfer of a hydride equivalent from a carbon-nitrogen bond to the flavin cofactor. Most of these amine oxidases can be classified into two structural families, the D-amino acid oxidase/sarcosine oxidase family and the monoamine oxidase family. This review discusses the present understanding of the mechanisms of amine and amino acid oxidation by flavoproteins, focusing on these two structural families. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Structural analysis of N-glycans by the glycan-labeling method using 3-aminoquinoline-based liquid matrix in negative-ion MALDI-MS.

    PubMed

    Nishikaze, Takashi; Kaneshiro, Kaoru; Kawabata, Shin-ichirou; Tanaka, Koichi

    2012-11-06

    Negative-ion fragmentation of underivatized N-glycans has been proven to be more informative than positive-ion fragmentation. Fluorescent labeling via reductive amination is often employed for glycan analysis, but little is known about the influence of the labeling group on negative-ion fragmentation. We previously demonstrated that the on-target glycan-labeling method using 3-aminoquinoline/α-cyano-4-hydroxycinnamic acid (3AQ/CHCA) liquid matrix enables highly sensitive, rapid, and quantitative N-glycan profiling analysis. The current study investigates the suitability of 3AQ-labeled N-glycans for structural analysis based on negative-ion collision-induced dissociation (CID) spectra. 3AQ-labeled N-glycans exhibited simple and informative CID spectra similar to those of underivatized N-glycans, with product ions due to cross-ring cleavages of the chitobiose core and ions specific to two antennae (D and E ions). The interpretation of diagnostic fragment ions suggested for underivatized N-glycans could be directly applied to the 3AQ-labeled N-glycans. However, fluorescently labeled N-glycans by conventional reductive amination, such as 2-aminobenzamide (2AB)- and 2-pyrydilamine (2PA)-labeled N-glycans, exhibited complicated CID spectra consisting of numerous signals formed by dehydration and multiple cleavages. The complicated spectra of 2AB- and 2PA-labeled N-glycans was found to be due to their open reducing-terminal N-acetylglucosamine (GlcNAc) ring, rather than structural differences in the labeling group in the N-glycan derivative. Finally, as an example, the on-target 3AQ labeling method followed by negative-ion CID was applied to structurally analyze neutral N-glycans released from human epidermal growth factor receptor type 2 (HER2) protein. The glycan-labeling method using 3AQ-based liquid matrix should facilitate highly sensitive quantitative and qualitative analyses of glycans.

  10. The N-terminal sequence of albumin Redhill, a variant of human serum albumin.

    PubMed

    Hutchinson, D W; Matejtschuk, P

    1985-12-02

    Albumin Redhill, a variant human albumin, has been isolated by fast protein liquid chromatofocusing. The N-terminal sequence of this protein corresponded to that of albumin A except that one additional arginine residue was attached to the N-terminus.

  11. Controlling Nitrosamines, Nitramines, and Amines in Amine-Based CO₂ Capture Systems with Continuous Ultraviolet and Ozone Treatment of Washwater.

    PubMed

    Dai, Ning; Mitch, William A

    2015-07-21

    Formation of nitrosamines and nitramines from reactions between flue gas NOx and the amines used in CO2 capture units has arisen as a significant concern. Washwater scrubbers can capture nitrosamines and nitramines. They can also capture amines, preventing formation of nitrosamines and nitramines downwind by amine reactions with ambient NOx. The continuous application of UV alone, or a combination of UV and ozone to the return line of a washwater treatment unit was evaluated to control the accumulation of nitrosamines, nitramines and amines in a laboratory-scale washwater unit. With model secondary amine solvents ranging from nonvolatile diethanolamine to volatile morpholine, application of 272-537 mJ/cm(2) UV incident fluence alone reduced the accumulation of nitrosamines and nitramines by approximately an order of magnitude. Modeling indicated that the gains achieved by UV treatment should increase over time, because UV treatment converts the time dependence of nitrosamine accumulation from a quadratic to a linear function. Ozone (21 mg/L) maintained low steady-state concentrations of amines in the washwater. While modeling indicated that more than 80% of nitrosamine accumulation in the washwater was associated with reaction of washwater amines with residual NOx, a reduction in nitrosamine accumulation rates due to ozone oxidation of amines was not fully realized because the ozonation products of amines reduced nitrosamine photolysis rates by competing for photons.

  12. The direct reductive amination of electron-deficient amines with aldehydes: the unique reactivity of the Re2O7 catalyst.

    PubMed

    Das, Braja Gopal; Ghorai, Prasanta

    2012-08-25

    An unprecedented direct reductive amination of electron-deficient amines such as Cbz-, Boc-, EtOCO-, Fmoc-, Bz-, ArSO(2)-, Ar(2)PO-, etc. protected amines with aldehydes is achieved using the Re(2)O(7) catalyst and silanes as the hydride source. Excellent regioselective mono-alkylation and chemoselective reductive-amination were observed.

  13. Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies.

    PubMed

    dos Santos, Thiago Custódio; Bourrelly, Sandrine; Llewellyn, Philip L; Carneiro, José Walkimar de M; Ronconi, Célia Machado

    2015-04-28

    Adsorption of CO2 on MCM-41 functionalised with [3-(2-aminoethylamino)propyl]trimethoxysilane (MCM-41-N2), N(1)-(3-trimethoxysilylpropyl)diethylenetriamine (MCM-41-N3), 4-aminopyridine (MCM-41-aminopyridine), 4-(methylamino)pyridine (MCM-41-methylaminopyridine) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (MCM-41-guanidine) was investigated. The amine-functionalised materials were characterised by (29)Si and (13)C solid-state nuclear magnetic resonance, N2 adsorption/desorption isotherms, X-ray diffraction and transmission electron microscopy. CO2 adsorption at 1.0 bar and 30 °C showed that the amount of CO2 (nads/mmol g(-1)) adsorbed on MCM-41-N2 and MCM-41-N3 is approximately twice the amount adsorbed on MCM-41. For MCM-41-aminopyridine, MCM-41-methylaminopyridine and MCM-41-guanidine, the CO2 adsorption capacity was smaller than that of MCM-41 at the same conditions. The proton affinity (computed with wB97x-D/6-311++G(d,p)) of the secondary amino groups is higher than that of the primary amino groups; however, the relative stabilities of the primary and secondary carbamates are similar. The differential heat of adsorption decreases as the number of secondary amino groups increases.

  14. Supported polytertiary amines: highly efficient and selective SO2 adsorbents.

    PubMed

    Tailor, Ritesh; Abboud, Mohamed; Sayari, Abdelhamid

    2014-01-01

    Tertiary amine containing poly(propyleneimine) second (G2) and third (G3) generation dendrimers as well as polyethyleneimine (PEI) were developed for the selective removal of SO2. N-Alkylation of primary and secondary amines into tertiary amines was confirmed by FTIR and NMR analysis. Such modified polyamines were impregnated on two nanoporous supports, namely, SBA-15PL silica with platelet morphology and ethanol-extracted pore-expanded MCM-41 (PME) composite. In the presence of 0.1% SO2/N2 at 23 °C, the uptake of modified PEI, G2, and G3 supported on SBA-15PL was 2.07, 2.35, and 1.71 mmol/g, respectively; corresponding to SO2/N ratios of 0.22, 0.4, and 0.3. Under the same conditions, the SO2 adsorption capacity of PME-supported modified PEI and G3 was significantly higher, reaching 4.68 and 4.34 mmol/g, corresponding to SO2/N ratios of 0.41 and 0.82, respectively. The working SO2 adsorption capacity decreased with increasing temperature, reflecting the exothermic nature of the process. The adsorption capacity of these materials was enhanced dramatically in the presence of humidity in the gas mixture. FTIR data before SO2 adsorption and after adsorption and regeneration did not indicate any change in the materials. Nonetheless, the SO2 working capacity decreased in consecutive adsorption/regeneration cycles due to evaporation of impregnated polyamines, rather than actual deactivation. FTIR and (13)C and (15)N CP-MAS NMR of fresh and SO2 adsorbed modified G3 on PME confirmed the formation of a complexation adduct.

  15. Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity

    PubMed Central

    Bent, Stacey F.; Kachian, Jessica S.; Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.

    2011-01-01

    Surface functionalization of semiconductors has been the backbone of the newest developments in microelectronics, energy conversion, sensing device design, and many other fields of science and technology. Over a decade ago, the notion of viewing the surface itself as a chemical reagent in surface reactions was introduced, and adding a variety of new functionalities to the semiconductor surface has become a target of research for many groups. The electronic effects on the substrate have been considered as an important consequence of chemical modification. In this work, we shift the focus to the electronic properties of the functional groups attached to the surface and their role on subsequent reactivity. We investigate surface functionalization of clean Si(100)-2 × 1 and Ge(100)-2 × 1 surfaces with amines as a way to modify their reactivity and to fine tune this reactivity by considering the basicity of the attached functionality. The reactivity of silicon and germanium surfaces modified with ethylamine (CH3CH2NH2) and aniline (C6H5NH2) is predicted using density functional theory calculations of proton attachment to the nitrogen of the adsorbed amine to differ with respect to a nucleophilic attack of the surface species. These predictions are then tested using a model metalorganic reagent, tetrakis(dimethylamido)titanium (((CH3)2N)4Ti, TDMAT), which undergoes a transamination reaction with sufficiently nucleophilic amines, and the reactivity tests confirm trends consistent with predicted basicities. The identity of the underlying semiconductor surface has a profound effect on the outcome of this reaction, and results comparing silicon and germanium are discussed. PMID:21068370

  16. Tuning the acid/base properties of nanocarbons by functionalization via amination.

    PubMed

    Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng

    2010-07-21

    The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic

  17. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Liu, Fengxian; Bi, Xinhui; Zhang, Guohua; Peng, Long; Lian, Xiufeng; Lu, Huiying; Fu, Yuzhen; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2017-12-01

    Size-segregated PM10 samples were collected in Guangzhou, China during autumn of 2014. Nine amines, including seven aliphatic amines and two heterocyclic amines, were detected using a gas chromatography-mass spectrometer after derivatization by benzenesulfonyl chloride. The total concentration of the nine aminesamines) was 79.6-140.9 ng m-3 in PM10. The most abundant species was methylamine (MA), which had a concentration of 29.2-70.1 ng m-3. MA, dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA) were the predominant amines in the samples and accounted for approximately 80% of Ʃamines in each size segment. Two heterocyclic amines, pyrrolidine (PYR) and morpholine (MOR), were detected in all samples and had average concentrations of 1.14 ± 0.37 and 1.89 ± 0.64 ng m-3, respectively, in particles with aerodynamic diameters < 3 μm. More than 80% of Ʃamines were found in particles with diameters <1.5 μm, indicating that amines are mainly enriched in fine particles. All amines exhibited a bimodal distribution with a fine mode at 0.49-1.5 μm and a coarse mode at 7.2-10 μm. The maximum contributions of amines to particles (0.21%) and amines-N to water-soluble organic nitrogen (WSON) (3.1%) were found at the sizes < 0.49 μm. The maximum contribution of amines-C to water-soluble organic carbon (WSOC) was 1.6% over the size range of 0.95-1.5 μm. The molar ratio of Ʃamines to ammonium ranged from 0.0068 to 0.0107 in particles with diameters <1.5 μm, and the maximum ratio occurred in the smallest particles (diameter< 0.49 μm). The average dry deposition flux and velocity of Ʃamines in PM10 were 7.9 ± 1.6 μg m-2 d-1 and 0.084 ± 0.0021 cm s-1, respectively. The results of this study provide essential information on the contribution of amines to secondary organic aerosols and dry removal mechanisms in urban areas.

  18. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminusmore » is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.« less

  19. Analysis of biogenic amines using corona discharge ion mobility spectrometry.

    PubMed

    Hashemian, Z; Mardihallaj, A; Khayamian, T

    2010-05-15

    A new method based on corona discharge ion mobility spectrometry (CD-IMS) was developed for the analysis of biogenic amines including spermidine, spermine, putrescine, and cadaverine. The ion mobility spectra of the compounds were obtained with and without n-Nonylamine used as the reagent gas. The high proton affinity of n-Nonylamine prevented ion formation from compounds with a proton affinity lower than that of n-Nonylamine and, therefore, enhanced its selectivity. It was also realized that the ion mobility spectrum of n-Nonylamine varied with its concentration. A sample injection port of a gas chromatograph was modified and used as the sample introduction system into the CD-IMS. The detection limits, dynamic ranges, and analytical parameters of the compounds with and without using the reagent gas were obtained. The detection limits and dynamic ranges of the compounds were about 2ng and 2 orders of magnitude, respectively. The wide dynamic range of CD-IMS originates from the high current of the corona discharge. The results revealed the high capability of the CD-IMS for the analysis of biogenic amines.

  20. Hygroscopicity of dicarbonyl-amine secondary organic aerosol products investigated with HTDMA

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; de Haan, D. O.

    2010-12-01

    Recent studies have shown the importance of amine-dicarbonyl chemistry as a secondary organic aerosol (SOA) formation pathway, producing imines, imidazoles, and N-containing oligomers. Preliminary work in our group has suggested that some of these products may be surface active. Therefore, the presence of these products may result in important changes to submicron particle hygroscopicity that affect aerosol scattering and cloud condensation nuclei (CCN) activity, especially in regions with significant amine-containing particles. To investigate their hygroscopicity, we have designed a hygroscopicity tandem differential mobility analyzer (HTDMA) system around a 300 L Teflon chamber that allows for longer humidification times needed for some organic aerosol components that are only slightly hygroscopic. This modification provides a range of residence times from 2.5 minutes up to 1 hour, unlike previously published systems that vary from 2-30 seconds. Using the modified hygroscopicity tandem differential mobility analyzer (HTDMA), we have measured the hygroscopic growth factor (HGF) of SOA formed from reactions of glyoxal (and methylglyoxal) with methylamine, ammonium sulfate, and several amino acids. Changes to inorganic aerosol HGF in response to the presence of SOA products are also investigated.

  1. Nanoclay-Based Solid-Amine Adsorbents for Carbon Dioxide Capture

    NASA Astrophysics Data System (ADS)

    Roth, Elliot A.

    The objective of this research was to develop an efficient, low cost, recyclable solid sorbent for carbon dioxide adsorption from large point sources, such as coal-fired power plants. The current commercial way to adsorb CO 2 is to use a liquid amine or ammonia process. These processes are used in industry in the "sweetening" of natural gas, but liquid based technologies are not economically viable in the adsorption of CO2 from power plants due to the extremely large volume of CO2 and the inherent high regeneration costs of cycling the sorbent. Therefore, one of the main objectives of this research was to develop a novel sorbent that can be cycled and uses very little energy for regeneration. The sorbent developed here is composed of a nanoclay (montmorillonite), commonly used in the production of polymer nanocomposites, grafted with commercially available amines. (3-aminopropyl) trimethoxysilane (APTMS) was chemically grafted to the edge hydroxyl groups of the clay. While another amine, polyethylenimine (PEI), was attached to the surface of the clay by electrostatic interactions. To confirm the attachment of amines to the clay, the samples were characterized using FTIR and the corresponding peaks for amines were observed. The amount of amine loaded onto the support was determined by TGA techniques. The treated clay was initially analyzed for CO2 adsorption in a pure CO 2 stream. The adsorption temperatures that had the highest adsorption capacity were determined to be between 75°C and 100°C for all of the samples tested at atmospheric pressure. The maximum CO2 adsorption capacity observed was with nanoclay treated with both APTMS and PEI at 85°C. In a more realistic flue gas of 10% CO2 and 90% N2, the adsorbents had essentially the same overall CO2 adsorption capacity indicating that the presence of nitrogen did not hinder the adsorption of CO2. Adsorption studies in pure CO2 at room temperature under pressure from 40-300 PSI were also conducted. The average

  2. Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†

    PubMed Central

    Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878

  3. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  4. Highly sensitive quantification for human plasma-targeted metabolomics using an amine derivatization reagent.

    PubMed

    Arashida, Naoko; Nishimoto, Rumi; Harada, Masashi; Shimbo, Kazutaka; Yamada, Naoyuki

    2017-02-15

    Amino acids and their related metabolites play important roles in various physiological processes and have consequently become biomarkers for diseases. However, accurate quantification methods have only been established for major compounds, such as amino acids and a limited number of target metabolites. We previously reported a highly sensitive high-throughput method for the simultaneous quantification of amines using 3-aminopyridyl-N-succinimidyl carbamate as a derivatization reagent combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Herein, we report the successful development of a practical and accurate LC-MS/MS method to analyze low concentrations of 40 physiological amines in 19 min. Thirty-five of these amines showed good linearity, limits of quantification, accuracy, precision, and recovery characteristics in plasma, with scheduled selected reaction monitoring acquisitions. Plasma samples from 10 healthy volunteers were evaluated using our newly developed method. The results revealed that 27 amines were detected in one of the samples, and that 24 of these compounds could be quantified. Notably, this new method successfully quantified metabolites with high accuracy across three orders of magnitude, with lowest and highest averaged concentrations of 31.7 nM (for spermine) and 18.3 μM (for α-aminobutyric acid), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    PubMed

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  6. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide.

    PubMed

    Salter-Blanc, Alexandra J; Bylaska, Eric J; Lyon, Molly A; Ness, Stuart C; Tratnyek, Paul G

    2016-05-17

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).

  7. Ribonucleocapsid Formation of SARS-COV Through Molecular Action of the N-Terminal Domain of N Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.

    Conserved amongst all coronaviruses are four structural proteins, the matrix (M), small envelope (E) and spike (S) that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in their lumen. The N terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C-terminus of N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17Amore » (monoclinic) and 1.85 A (cubic) respectively, solved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core and is oriented similar to that in the IBV N-NTD and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggest a common mode of RNA recognition, but probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs hints that they employ different modes of both RNA recognition as well as oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.« less

  8. Development and validation of an LC-MS/MS method for the determination of biogenic amines in wines and beers.

    PubMed

    Nalazek-Rudnicka, Katarzyna; Wasik, Andrzej

    2017-01-01

    Biogenic amines are group of organic, basic, nitrogenous compounds that naturally occur in plant, microorganism, and animal organisms. Biogenic amines are mainly produced through decarboxylation of amino acids. They are formed during manufacturing of some kind of food and beverages such as cheese, wine, or beer. Histamine, cadaverine, agmatine, tyramine, putrescine, and β -phenylethylamine are the most common biogenic amines found in wines and beers. This group of compounds can be toxic at high concentrations; therefore, their control is very important. Analysis of biogenic amines in alcoholic drinks (beers and wines) was carried out by HPLC-MS/MS after their derivatization with p -toluenesulfonyl chloride (tosyl chloride). The developed method has been applied for analysis of seventeen biogenic amines in twenty-eight samples of lager beers and in twelve samples of different homemade wines (white grape, red grape, strawberry, chokeberry, black currant, plum, apple, raspberry, and quince). The developed method is sensitive and repeatable for majority of the analytes. It is versatile and can be used for the determination of biogenic amines in various alcoholic beverages.

  9. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    PubMed

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  10. Renalase prevents AKI independent of amine oxidase activity.

    PubMed

    Wang, Ling; Velazquez, Heino; Moeckel, Gilbert; Chang, John; Ham, Ahrom; Lee, H Thomas; Safirstein, Robert; Desir, Gary V

    2014-06-01

    AKI is characterized by increased catecholamine levels and hypertension. Renalase, a secretory flavoprotein that oxidizes catecholamines, attenuates ischemic injury and the associated increase in catecholamine levels in mice. However, whether the amine oxidase activity of renalase is involved in preventing ischemic injury is debated. In this study, recombinant renalase protected human proximal tubular (HK-2) cells against cisplatin- and hydrogen peroxide-induced necrosis. Similarly, genetic depletion of renalase in mice (renalase knockout) exacerbated kidney injury in animals subjected to cisplatin-induced AKI. Interestingly, compared with the intact renalase protein, a 20-amino acid peptide (RP-220), which is conserved in all known renalase isoforms, but lacks detectable oxidase activity, was equally effective at protecting HK-2 cells against toxic injury and preventing ischemic injury in wild-type mice. Furthermore, in vitro treatment with RP-220 or recombinant renalase rapidly activated Akt, extracellular signal-regulated kinase, and p38 mitogen-activated protein kinases and downregulated c-Jun N-terminal kinase. In summary, renalase promotes cell survival and protects against renal injury in mice through the activation of intracellular signaling cascades, independent of its ability to metabolize catecholamines, and we have identified the region of renalase required for these effects. Renalase and related peptides show potential as therapeutic agents for the prevention and treatment of AKI. Copyright © 2014 by the American Society of Nephrology.

  11. Iodine(III)-Mediated Selective Intermolecular C-H Amination for the Chemical Diversification of Tryptamines.

    PubMed

    Bosnidou, Alexandra E; Millán, Alba; Ceballos, Javier; Martínez, Claudio; Muñiz, Kilian

    2016-08-05

    Defined hypervalent iodine reagents of the general structure PhI[N(SO2R)(SO2R')]2 promote the selective direct C-H-amination of the indole core of various tryptamines. Starting from a general C2-amination strategy, subsequent transformations enable a variety of site-selective functionalizations, which proceed with noteworthy high chemoselectivity and provide an overall access to structurally diversified products.

  12. Structure of the N-terminal fragment of Escherichia coli Lon protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Basic Research Program, SAIC-Frederick, Frederick, MD 21702; Gustchina, Alla

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very longmore » C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.« less

  13. 40 CFR 721.3760 - Fluorene-containing diaromatic amines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amines (PMN P-88-998 and P-88-999) are subject to reporting under this section for the significant new... water. Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (where n = 1). (ii) [Reserved...), (c), and (k) are applicable to manufacturers, importers, and processors of this substance. (2...

  14. N-Terminal Protease Gene Phylogeny Reveals the Potential for Novel Cyanobactin Diversity in Cyanobacteria

    PubMed Central

    Martins, Joana; Leão, Pedro N.; Ramos, Vitor; Vasconcelos, Vitor

    2013-01-01

    Cyanobactins are a recently recognized group of ribosomal cyclic peptides produced by cyanobacteria, which have been studied because of their interesting biological activities. Here, we have used a PCR-based approach to detect the N-terminal protease (A) gene from cyanobactin synthetase gene clusters, in a set of diverse cyanobacteria from our culture collection (Laboratory of Ecotoxicology, Genomics and Evolution (LEGE) CC). Homologues of this gene were found in Microcystis and Rivularia strains, and for the first time in Cuspidothrix, Phormidium and Sphaerospermopsis strains. Phylogenetic relationships inferred from available A-gene sequences, including those obtained in this work, revealed two new groups of phylotypes, harboring Phormidium, Sphaerospermopsis and Rivularia LEGE isolates. Thus, this study shows that, using underexplored cyanobacterial strains, it is still possible to expand the known genetic diversity of genes involved in cyanobactin biosynthesis. PMID:24351973

  15. Complex amine-based reagents

    NASA Astrophysics Data System (ADS)

    Suslov, S. Yu.; Kirilina, A. V.; Sergeev, I. A.; Zezyulya, T. V.; Sokolova, E. A.; Eremina, E. V.; Timofeev, N. V.

    2017-03-01

    Amines for a long time have been applied to maintaining water chemistry conditions (WCC) at power plants. However, making use of complex reagents that are the mixture of neutralizing and the filmforming amines, which may also contain other organic components, causes many disputes. This is mainly due to lack of reliable information about these components. The protective properties of any amine with regard to metal surfaces depend on several factors, which are considered in this article. The results of applying complex reagents to the protection of heating surfaces in industrial conditions and estimated behavior forecasts for various reagents under maintaining WCC on heat-recovery boilers with different thermal circuits are presented. The case of a two-drum heat-recovery boiler with in-line drums was used as an example, for which we present the calculated pH values for various brands of reagents under the same conditions. Work with different reagent brands and its analysis enabled us to derive a composition best suitable for the conditions of their practical applications in heat-recovery boilers at different pressures. Testing the new amine reagent performed at a CCPP power unit shows that this reagent is an adequate base for further development of reagents based on amine compounds. An example of testing a complex reagent is shown created with the participation of the authors within the framework the program of import substitution and its possible use is demonstrated for maintaining WCC of power-generating units of combined-cycle power plants (CCPP) and TPP. The compliance of the employed reagents with the standards of water chemistry conditions and protection of heating surfaces were assessed. The application of amine-containing reagents at power-generating units of TPP makes it possible to solve complex problems aimed at ensuring the sparing cleaning of heating surfaces from deposits and the implementation of conservation and management of water chemistry condition

  16. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  17. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  18. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  19. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  20. 40 CFR 721.639 - Amine aldehyde condensate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine aldehyde condensate. 721.639... Substances § 721.639 Amine aldehyde condensate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an amine aldehyde condensate (PMN P-94-1810...

  1. Synthesis of 2‐Alkynoates by Palladium(II)‐Catalyzed Oxidative Carbonylation of Terminal Alkynes and Alcohols

    PubMed Central

    Cao, Qun; Hughes, N. Louise

    2016-01-01

    Abstract A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures. PMID:27305489

  2. Irradiated Chinese Rugao ham: Changes in volatile N-nitrosamine, biogenic amine and residual nitrite during ripening and post-ripening.

    PubMed

    Wei, Fashan; Xu, Xinglian; Zhou, Guanghong; Zhao, Gaiming; Li, Chunbao; Zhang, Yingjun; Chen, Lingzhen; Qi, Jun

    2009-03-01

    N-nitrosamines, biogenic amines and residual nitrite are harmful substances and often present in cured meat. The effects of gamma-irradiation (γ-irradiation) on these chemicals in dry-cured Chinese Rugao ham during ripening and post-ripening were investigated. Rugao hams were irradiated at a dose of 5kGy before ripening and were then ripened in an aging loft. Although γ-irradiation degraded tyramine, putrescine and spermine, on the other hand, it promoted the formation of spermidine, phenylethylamine, cadaverine and tryptamine. Residual nitrite was significantly reduced by γ-irradiation. N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA) and N-nitrosopyrrolidine (NPYR) were found in Chinese Rugao ham during ripening and post-ripening but could be degraded with γ-irradiation. The results suggest that γ-irradiation may be a potential decontamination measure for certain chemical compounds found in dry-cured meat.

  3. Biaryl Phosphine Ligands in Palladium-Catalyzed Amination

    PubMed Central

    Surry, David S.

    2012-01-01

    Palladium-catalyzed amination of aryl halides has undergone rapid development in the last 12 years. This has been largely driven by implementation of new classes of ligands. Biaryl phosphines have proven to provide especially active catalysts in this context. This review discusses the applications that these catalysts have found in C-N cross-coupling in heterocycle synthesis, pharmaceuticals, materials science and natural product synthesis. PMID:18663711

  4. 76 FR 47540 - Voluntary Termination of Subzone Status; Chrysler Group, LLC, Newark, DE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1775] Voluntary Termination of Subzone Status; Chrysler Group, LLC, Newark, DE Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U.S.C. 81a-81u), the Foreign-Trade Zones Board (the Board) adopts the...

  5. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    USDA-ARS?s Scientific Manuscript database

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  6. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  7. Selective Radical Amination of Aldehydic C(sp2)-H Bonds with Fluoroaryl Azides via Co(II)-Based Metalloradical Catalysis: Synthesis of N-Fluoroaryl Amides from Aldehydes under Neutral and Nonoxidative Conditions.

    PubMed

    Jin, Li-Mei; Lu, Hongjian; Cui, Yuan; Lizardi, Christopher L; Arzua, Thiago N; Wojtas, Lukasz; Cui, Xin; Zhang, X Peter

    2014-06-01

    The Co(II) complex of the D 2h -symmetric amidoporphyrin 3,5-Di t Bu-IbuPhyrin, [Co( P1 )], has proven to be an effective metalloradical catalyst for intermolecular amination of C(sp 2 )-H bonds of aldehydes with fluoroaryl azides. The [Co( P1 )]-catalyzed process can employ aldehydes as the limiting reagents and operate under neutral and non-oxidative conditions, generating nitrogen gas as the only byproduct. The metalloradical aldehydic C-H amination is suitable for different combinations of aldehydes and fluoroaryl azides, producing the corresponding N -fluoroaryl amides in good to excellent yields. A series of mechanistic studies support a stepwise radical mechanism for the Co(II)-catalyzed intermolecular C-H amination.

  8. Micropatterned ferrocenyl monolayers covalently bound to hydrogen-terminated silicon surfaces: effects of pattern size on the cyclic voltammetry and capacitance characteristics.

    PubMed

    Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han

    2014-06-24

    The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.

  9. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  10. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  11. Optimization of dendrimer structure for sentinel lymph node imaging: Effects of generation and terminal group.

    PubMed

    Niki, Yuichiro; Ogawa, Mikako; Makiura, Rie; Magata, Yasuhiro; Kojima, Chie

    2015-11-01

    The detection of the sentinel lymph node (SLN), the first lymph node draining tumor cells, is important in cancer diagnosis and therapy. Dendrimers are synthetic macromolecules with highly controllable structures, and are potent multifunctional imaging agents. In this study, 12 types of dendrimer of different generations (G2, G4, G6, and G8) and different terminal groups (amino, carboxyl, and acetyl) were prepared to determine the optimal dendrimer structure for SLN imaging. Radiolabeled dendrimers were intradermally administrated to the right footpads of rats. All G2 dendrimers were predominantly accumulated in the kidney. Amino-terminal, acetyl-terminal, and carboxyl-terminal dendrimers of greater than G4 were mostly located at the injection site, in the blood, and in the SLN, respectively. The carboxyl-terminal dendrimers were largely unrecognized by macrophages and T-cells in the SLN. Finally, SLN detection was successfully performed by single photon emission computed tomography imaging using carboxyl-terminal dendrimers of greater than G4. The early detection of tumor cells in the sentinel draining lymph nodes (SLN) is of utmost importance in terms of determining cancer prognosis and devising treatment. In this article, the authors investigated various formulations of dendrimers to determine the optimal one for tumor detection. The data generated from this study would help clinicians to fight the cancer battle in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Synthesis of 3-iodoindoles by the Pd/Cu-catalyzed coupling of N,N-dialkyl-2-iodoanilines and terminal acetylenes, followed by electrophilic cyclization.

    PubMed

    Yue, Dawei; Yao, Tuanli; Larock, Richard C

    2006-01-06

    [reaction: see text] 3-Iodoindoles have been prepared in excellent yields by coupling terminal acetylenes with N,N-dialkyl-o-iodoanilines in the presence of a Pd/Cu catalyst, followed by an electrophilic cyclization of the resulting N,N-dialkyl-o-(1-alkynyl)anilines using I2 in CH2Cl2. Aryl-, vinylic-, alkyl-, and silyl-substituted terminal acetylenes undergo this process to produce excellent yields of 3-iodoindoles. The reactivity of the carbon-nitrogen bond cleavage during cyclization follows the following order: Me > n-Bu, Me > Ph, and cyclohexyl > Me. Subsequent palladium-catalyzed Sonogashira, Suzuki, and Heck reactions of the resulting 3-iodoindoles proceed smoothly in good yields.

  13. C-terminal peptide extension via gas-phase ion/ion reactions

    PubMed Central

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  14. Efficient nitrogen incorporation in GaAs using novel metal organic As-N precursor di-tertiary-butyl-arsano-amine (DTBAA)

    NASA Astrophysics Data System (ADS)

    Sterzer, E.; Beyer, A.; Duschek, L.; Nattermann, L.; Ringler, B.; Leube, B.; Stegmüller, A.; Tonner, R.; von Hänisch, C.; Stolz, W.; Volz, K.

    2016-04-01

    III/V semiconductors containing small amounts of nitrogen (N; dilute nitrides) are discussed in the context of different solar cell and laser applications. The efficiency of these devices is negatively affected by carbon (C) incorporation, which comes either from the direct C-N bond in the N precursor unsymmetrical 1,1-dimethylhydrazine (UDMHy) used conventionally or from the alkyl groups of the conventional precursors for gallium (Ga), indium and arsenic (As) containing carbon. This C is incorporated together with the N due to the strength of the C-N bond. A further important issue in dilute nitride growth is the very low N incorporation efficiency in the crystal from UDMHy, which can be as little as 1% of the N supplied in the gas phase. Therefore, new metal organic chemicals have to be synthesized and their growth characteristics and suitability for dilute nitride growth have to be explored. This work presents the chemical di-tertiary-butyl-arsano-amine (DTBAA), which was synthesized, purified and tested as an N precursor for metal organic vapor phase epitaxy (MOVPE). Computational investigations show β-hydrogen and isobutane elimination to be the main reaction channel in the gas phase with high reaction barriers and absence of small fragments containing C as products. The loss of N via N2, as in UDMHy, can be excluded for unimolecular reactions of DTBAA. The Ga(NAs)/GaAs heterostructures were grown by MOVPE as initial test material and a systematic N incorporation study is presented in this paper. It is shown that high quality Ga(NAs) can be grown using DTBAA. The N incorporation was confirmed by high resolution X-ray diffraction and photoluminescence studies. All samples grown exhibit as grown room temperature photoluminescence and smooth surface morphologies. Furthermore, DTBAA shows extremely high N incorporation efficiency, which makes this molecule a very promising candidate for further research into dilute nitride material growth.

  15. Turnover of Biogenic Amines in the Hypothalamus of Rats during Pyrogen Fever

    NASA Technical Reports Server (NTRS)

    Penn, P. E.; Williams, B. A.

    1979-01-01

    Many pharmacological studies have implicated the biogenic amines in the hypothalamus as playing a role in the production of fever, but few investigations of endogenous neurochemicals have been made during fever. Turnover rates of transmitters utilizing radioactive precursors may be one of the most accurate measurements of activity in brain regions. The present study was designed to measure the turnover of 5-hydroxytryptamine (5-HT) norepinephrine (NE) and dopamine (DA) in the hypothalamus of rats during pyrogen fever. Salmonella typhosa (Wyeth, 8 units) was previously found in our laboratory to produce a significant hyperthermia in most rats by 2.5 hours. This pyrogen (N = l2) or saline control (N = 8) was injected intraperitoneally and the rats killed 2.75 hours later. Rectal temperatures (Tr) were monitored continuously with thermocouples taped to the tail and recorded automatically every 3 minutes. Half of each group received an injection of radioactive precursors, (3)H-tryptophan (0.5 mCi) and (3)H-tryptophan (1.0 mCi), via an indwelling jugular catheter 60 minutes before killing, and the other half at 90 minutes. The rats were killed by near freezing in liquid nitrogen and the brains dissected in the cold. Turnover was measured by the method of Lane (Life Sci 21, 1101, 1977). At the time of killing most of the pyrogen group showed a significant (p < .02) increase (mean +/- s.e.m.) in Tr above pre injection levels (0.75 +/- 0.13 C, N = 10). The saline group showed no change (-0.025 +/- 0.16, N = 8), and the difference between groups was also significant. No significant differences were found in the levels of the amines between the pyrogen and saline groups. A significant difference was found in the specific activity of NE between the 60 minute pyrogen and saline groups (4.41 +/- 0.41 vs 2.6 +/- 0.51 dpm/pmole) but no change in turnover. This suggests an increased accumulation of (3)H-NE in the pyrogen group, but no change in utilization. An increased turnover

  16. Strong, low-density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels.

    PubMed

    Boday, Dylan J; Stover, Robert J; Muriithi, Beatrice; Keller, Michael W; Wertz, Jason T; Defriend Obrey, Kimberly A; Loy, Douglas A

    2009-07-01

    Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyldisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators for the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher in molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface. Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density.

  17. Comparison between amine fluoride and chlorhexidine with institutionalized elders: a pilot study.

    PubMed

    López, Rosa Moreno; Uribe, Manuel Ribera; Rodríguez, Belisa Olmo; Casasempere, Inmaculada Vela

    2013-06-01

    Compare the efficacy of amine fluoride toothpaste and gel with chlorhexidine spray in an institutionalised population. People who live in nursing homes have poorer oral hygiene because of their dependency for the basic activities of daily living as they rely on caregivers. Twenty-six people over 65 years old who had at least four teeth and living in a nursing home. They were assigned to three groups: A: amine fluoride toothpaste and once a week amine fluoride gel (Elmex(®) ), B: 0.12% spray-chlorhexidine once a day (Perio-Aid(®) ) and C: brush teeth without toothpaste. The plaque and gingival index of Silness and Löe, General Oral Health Assessment Index, McLeran and Pfeiffer index were recorded, and the number of colonies of Streptoccocus mutans and Lactobacillus and the remineralisation of caries were evaluated using Diagnodent(®). Measurements were taken at the beginning of the study and after 6 months.   Twenty-two people finished the study. No group showed a statistical difference in the plaque or gingival index, but there was a tendency to show improvement in the amine fluoride group. There was also no difference between the number of colonies of either S. mutans or lactobacillus. There was a significant difference between the plaque and gingival index and the cognitive status (p=0.0054), along with their requirement for assistance to perform good oral hygiene (p=0.0001). Both products remineralised the carious lesions in this period compared with the control group (p=0.0151). The plaque and gingival indices did not improve during the study, but both products remineralised the previous caries lesions. © 2012 John Wiley & Sons A/S and The Gerodontology Society. Published by John Wiley & Sons Ltd.

  18. Knölker's iron complex: an efficient in situ generated catalyst for reductive amination of alkyl aldehydes and amines.

    PubMed

    Pagnoux-Ozherelyeva, Anastassiya; Pannetier, Nicolas; Mbaye, Mbaye Diagne; Gaillard, Sylvain; Renaud, Jean-Luc

    2012-05-14

    An aminated series: a well-defined iron-catalyzed reductive amination reaction of aldehydes and ketones with aliphatic amines using molecular hydrogen is presented. Under mild conditions, good yields for a broad range of alkyl ketones as well as aldehydes were achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. N-Allyl- N, N-Bis(trimethylsilyl)amine as a Novel Electrolyte Additive To Enhance the Interfacial Stability of a Ni-Rich Electrode for Lithium-Ion Batteries.

    PubMed

    Zheng, Qinfeng; Xing, Lidan; Yang, Xuerui; Li, Xiangfeng; Ye, Changchun; Wang, Kang; Huang, Qiming; Li, Weishan

    2018-05-16

    Enhancing the electrode/electrolyte interface stability of high-capacity LiNi 0.8 Co 0.15 Al 0.05 O 2 (LNCA) cathode material is urgently required for its application in next-generation lithium-ion battery. Herein, we demonstrate that enhanced interfacial stability of LNCA can be achieved by simply introducing 2 wt % N-allyl- N, N-bis(trimethylsilyl)amine (NNB) electrolyte additive. Electrolyte oxidation reactions and electrode structural destruction are greatly suppressed in the electrolyte with NNB additive, leading to improved cyclic stability of LNCA from 72.8 to 86.2% after 300 cycles. The mechanism of NNB on improving the cyclic stability of LNCA has been verified to its excellent solid electrolyte interface (SEI) film-forming capability. Moreover, the X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the NNB-derived Si-containing SEI film restrains the Li/Ni disorder of LNCA during cycling, which further improves the cyclic stability of Ni-rich LNCA. Importantly, the charging/discharging test reveals that the NNB additive effectively improves the cyclic stability of the LNCA/graphite full cell.

  20. Myeloperoxidase-catalyzed incorporation of amines into proteins: role of hypochlorous acid and dichloramines.

    PubMed

    Thomas, E L; Jefferson, M M; Grisham, M B

    1982-11-23

    obtained by reacting RNCl2 with polyhistidine or polytyrosine, and to a lesser extent with polylysine at high pH, but not with other poly(amino acids). Precipitable derivatives were also obtained by incubating MPO-containing extracts from leukocyte granules with hydrogen peroxide, Cl-, and labeled amines. The extracts were found to have a high content of substances with primary amino groups, which competed for incorporation. The results account for oxidative incorporation of amines into proteins in leukocytes and provide evidence that HOCl and nitrogen-chlorine (N-Cl) derivatives are formed in these cells. The characteristics of the incorporation reaction suggest that it would not contribute significantly to the antimicrobial activity of myeloperoxidase (MPO). Nevertheless, the reaction may provide a sensitive method for studying MPO action in vivo.

  1. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

    DOE PAGES

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.; ...

    2016-04-13

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less

  2. Structure-Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salter-Blanc, Alexandra J.; Bylaska, Eric J.; Lyon, Molly A.

    New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO 2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammettmore » $$\\sigma$$ constants ($$\\sigma^-$$), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a), E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO 2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).« less

  3. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination

    PubMed Central

    Muteeb, Ghazala; Dey, Debashish; Mishra, Saurabh; Sen, Ranjan

    2012-01-01

    One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals. PMID:23024214

  4. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination.

    PubMed

    Muteeb, Ghazala; Dey, Debashish; Mishra, Saurabh; Sen, Ranjan

    2012-12-01

    One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals.

  5. 40 CFR 35.4255 - Can my group terminate our TAG?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Technical Assistance Grant Disputes, Termination, and... written notification explaining the reasons for the termination and the effective date. ...

  6. N6-Trimethyl-lysine metabolism. Structural identification of the metabolite 3-hydroxy-N6-trimethyl-lysine

    PubMed Central

    Novak, Raymond F.; Swift, Terrence J.; Hoppel, Charles L.

    1980-01-01

    1H and 13C nuclear-magnetic-resonance spectroscopy and functional-group analysis were used to determine the molecular structure of an isolated metabolite (IIb) of trimethyl-lysine as 3-hydroxy-N6-trimethyl-lysine, an important intermediate in the conversion of trimethyl-lysine into trimethylammoniobutyrate and carnitine [Hoppel, Cox & Novak (1980) Biochem. J. 188, 509–519]. Functional-group analysis revealed the presence of a primary amine and reaction of metabolite (IIb) with periodate yielded 4-N-trimethylammoniobutyrate as a product, showing 2,3-substitution on the molecule and suggesting that the 3-substitution on the molecule may be an alcohol ([unk]CH–OH), amine ([unk]CH[unk]–NH2) or carbonyl ([unk]C=O) functional group. 1H integration ratios, 1H and 13C chemical-shift data and 1H and 13C signal multiplicities from the sample (IIb) were used to complete the identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. For example, the proton multiplet at δ 4.2p.p.m. and doublet at δ 4.1p.p.m., positions representative of amine or alcohol substitution on methylene carbon atoms, integration ratios of 1:1:2:9:4 and a positive ninhydrin test suggest 3-hydroxy-N6-trimethyl-lysine as the molecular structure for metabolite (IIb). 13C chemical-shift data obtained from the sample (IIb) and compared with several model compounds (trimethylammoniohexanoate, trimethyl-lysine and 3-hydroxylysine) resulted in generation of the spectrum of the metabolite and allowed independent identification of metabolite (IIb) as 3-hydroxy-N6-trimethyl-lysine. The 1H spectrum of erythro- and threo-3-hydroxylysine are presented for comparison, and the 1H and 13C n.m.r. spectra of the erythro-isomer support this analysis. PMID:6772169

  7. Self-terminated etching of GaN with a high selectivity over AlGaN under inductively coupled Cl2/N2/O2 plasma with a low-energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Zhong, Yaozong; Zhou, Yu; Gao, Hongwei; Dai, Shujun; He, Junlei; Feng, Meixin; Sun, Qian; Zhang, Jijun; Zhao, Yanfei; DingSun, An; Yang, Hui

    2017-10-01

    Etching of GaN/AlGaN heterostructure by O-containing inductively coupled Cl2/N2 plasma with a low-energy ion bombardment can be self-terminated at the surface of the AlGaN layer. The estimated etching rates of GaN and AlGaN were 42 and 0.6 nm/min, respectively, giving a selective etching ratio of 70:1. To study the mechanism of the etching self-termination, detailed characterization and analyses were carried out, including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It was found that in the presence of oxygen, the top surface of the AlGaN layer was converted into a thin film of (Al,Ga)Ox with a high bonding energy, which effectively prevented the underlying atoms from a further etching, resulting in a nearly self-terminated etching. This technique enables a uniform and reproducible fabrication process for enhancement-mode high electron mobility transistors with a p-GaN gate.

  8. Emerging role of the Jun N-terminal kinase interactome in human health.

    PubMed

    Guo, Xiao-Xi; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Tang, Tao; Xu, Tian-Rui

    2018-02-08

    The c-Jun N-terminal kinases (JNKs) are located downstream of Ras-mitogen activated protein kinase signaling cascades. More than 20 years of study has shown that JNKs control cell fate and many cellular functions. JNKs and their interacting proteins form a complicated network with diverse biological functions and physiological effects. Members of the JNK interactome include Jun, amyloid precursor protein, and insulin receptor substrate. Recent studies have shown that the JNK interactome is involved in tumorigenesis, neuron development, and insulin resistance. In this review, we summarize the features of the JNK interactome and classify its members into three groups: upstream regulators, downstream effectors, and scaffold partners. We also highlight the unique cellular signaling mechanisms of JNKs and provide more insights into the roles of the JNK interactome in human diseases. © 2018 International Federation for Cell Biology.

  9. Speaking Personally--with Amin Qazi

    ERIC Educational Resources Information Center

    Ragan, Lawrence

    2016-01-01

    This article provides an interview with Amin Quazi, the founding chief executive officer of Unizin, a university-owned consortium focused on the emerging digital teaching and learning ecosystem. Amin has a bachelor's degree in chemical engineering from The University of Iowa and a master's degree in business administration from the Carlson School…

  10. Controlling the oxidation of bis-tridentate cobalt(ii) complexes having bis(2-pyridylalkyl)amines: ligand vs. metal oxidation.

    PubMed

    Anjana, S; Donring, S; Sanjib, P; Varghese, B; Murthy, Narasimha N

    2017-08-22

    Two bis-tridentate chelated cobalt(ii) complexes, which differ in the ligand structure by a methylene group, activate molecular oxygen (O 2 ), and give different oxidation products. The O 2 reaction of [Co II (pepma) 2 ] 2+ (1) with unsymmetrical 2-(2-pyridyl)-N-(2-pyridylmethyl)ethanamine (pepma) results in ligand oxidation, to the corresponding Co(ii) imine complex [Co II (pepmi) 2 ] 2+ (2). Contrastingly, the Co(ii) complex [Co II (bpma) 2 ] 2+ (3) of similar symmetrical bis(2-pyridylmethyl)amine (bpma), undergoes metal oxidation, yielding a cobalt(iii) complex, [Co III (bpma) 2 ] 2+ (4). The reversibility of the amine to imine conversion and the stability of the Co(ii) imine complex (2) are investigated. Furthermore, the solution dynamics of Co(ii) complexes are highlighted with the help of paramagnetic 1 H-NMR spectroscopy.

  11. A turn-on fluorescence chemosensor based on a tripodal amine [tris(pyrrolyl-α-methyl)amine]-rhodamine conjugate for the selective detection of zinc ions.

    PubMed

    Balamurugan, Rathinam; Chang, Wen-I; Zhang, Yandison; Fitriyani, Sri; Liu, Jui-Hsiang

    2016-09-21

    A novel tetradendate ligand derived from a tris(pyrrolyl-α-methyl)amine (H3tpa) and rhodamine-based conjugate (PR) has been designed for use as a sensor, synthesized and characterized spectroscopically. PR {(tris(5-rhodamineiminopyrrol-2-ylmethyl)amine)} serves as a selective colorimetric as well as a fluorescent chemosensor for Zn(2+) in acetonitrile/water (1 : 1, v/v). In the presence of Zn(2+), PR exhibited obvious absorption (558 nm) and emission (577 nm) peaks whose intensity increased along with increasing Zn(2+) concentrations. Titration experiments revealed that a large excess of Zn(2+) was required to saturate the absorption (λmax) and emission intensities. Upon the addition of 1000 equivalents of Zn(2+), the fluorescence intensity of the PR underwent an ∼500-fold increase (Φf = 0.34) with the emission maximum at 580 nm. These kinetics studies demonstrated that the absorption and emission changes were proportional to the Zn(2+) concentration. The color of the solution changed from colorless to a dark pink color. The fluorescence of the PR-Zn(2+) complex can be reversibly restored by using ammonium water or by heating. Competitive ion tests revealed that the intensity of PR-Zn(2+) was not suppressed by excess amounts of other metal ions. The counter anions did not exert obvious influences on the absorption and emission profiles. (1)H-NMR and FT-IR spectroscopic investigations of PR and PR-Zn(2+) revealed that the pyrrole motifs, -C[double bond, length as m-dash]N- groups and spirolactam of rhodamine B are capable of coordinating cation guest species. Because each arm of the tripodal ligand tautomerizes independently, only moderate fluorescence enhancement could be seen until all three -C[double bond, length as m-dash]N- groups were coordinated by zinc, which may be due to the spirolactam ring opening mechanism of the rhodamine unit. Once all three -C[double bond, length as m-dash]N- groups were locked by coordinating with excess of Zn(2+), the

  12. Selective Radical Amination of Aldehydic C(sp2)–H Bonds with Fluoroaryl Azides via Co(II)-Based Metalloradical Catalysis: Synthesis of N-Fluoroaryl Amides from Aldehydes under Neutral and Nonoxidative Conditions

    PubMed Central

    Jin, Li-Mei; Lu, Hongjian; Cui, Yuan; Lizardi, Christopher L.; Arzua, Thiago N.; Wojtas, Lukasz; Cui, Xin

    2014-01-01

    The Co(II) complex of the D2h-symmetric amidoporphyrin 3,5-DitBu-IbuPhyrin, [Co(P1)], has proven to be an effective metalloradical catalyst for intermolecular amination of C(sp2)–H bonds of aldehydes with fluoroaryl azides. The [Co(P1)]-catalyzed process can employ aldehydes as the limiting reagents and operate under neutral and non-oxidative conditions, generating nitrogen gas as the only byproduct. The metalloradical aldehydic C–H amination is suitable for different combinations of aldehydes and fluoroaryl azides, producing the corresponding N-fluoroaryl amides in good to excellent yields. A series of mechanistic studies support a stepwise radical mechanism for the Co(II)-catalyzed intermolecular C–H amination. PMID:25071929

  13. Crystal structure of bis­[trans-(ethane-1,2-di­amine-κ2 N,N′)bis­(thio­cyanato-κN)chromium(III)] tetra­chlorido­zincate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, [Cr(NCS)2(C2H8N2)2]2[ZnCl4], has been determined from synchrotron data. In the asymmetric unit, there are four independent halves of the CrIII complex cations, each of which lies on an inversion centre, and one tetra­chlorido­zincate anion in a general position. The CrIII atoms are coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound NCS− anions in a trans arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) and Cr—N(NCS) bond lengths range from 2.0653 (10) to 2.0837 (10) Å and from 1.9811 (10) to 1.9890 (10) Å, respectively. The five-membered metalla-rings are in stable gauche conformations. The [ZnCl4]2− anion has a distorted tetra­hedral geometry. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 or CH2 groups as donors and chloride ligands of the anion and S atoms of NCS− ligands as acceptors. PMID:25705463

  14. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats.

    PubMed

    Ciepluch, Karol; Ziemba, Barbara; Janaszewska, Anna; Appelhans, Dietmar; Klajnert, Barbara; Bryszewska, Maria; Fogel, Wiesława Agnieszka

    2012-09-01

    Biogenic amines and polyamines participate in all vital organism functions, their levels being important function determinants. Studies were performed to check whether repeated administration of poly(propylene imine) (PPI) dendrimers, synthetic macromolecules with diaminobutane core, and peripheral primary amine groups, may influence the endogenous level of amines, as represented by the two of them: spermidine, a natural derivative of diaminobutane, and histamine. The experiment was carried out on Wistar rats. Fourth generation PPI dendrimer, as well as maltotriose-modified fourth generation PPI dendrimers with (a) cationic open sugar shell and (b) neutral dense sugar shell that possess a higher biocompatibility, was used. Applying the combination of column chromatography on Cellex P and spectrofluorimetric assays of o-phthaldialdehyde, the final amine condensation products were employed to analyze tissue spermidine and histamine outside the central nervous system. Furthermore, radioenzymatic assay was used to measure histamine levels in the brain. The obtained results indicate that in some tissues, the endogenous concentrations of histamine and spermidine may be affected by dendrimers depending on their dose and type of dendrimers.

  15. Receiving Versus Being Denied a Pregnancy Termination and Subsequent Alcohol Use: A Longitudinal Study

    PubMed Central

    Roberts, Sarah C. M.; Delucchi, Kevin; Wilsnack, Sharon C.; Foster, Diana Greene

    2015-01-01

    Aim Research finds women who terminate pregnancies are at risk of subsequent problematic alcohol use, but methodological and conceptual problems are common. This study examines the relationship between receiving versus being denied termination and subsequent alcohol use. Methods Data are from a prospective, longitudinal study of US women seeking pregnancy terminations. Participants presented just before a facility's gestational limit and received terminations (Near Limits, n = 452) or just beyond the limit and were denied terminations (Turnaways, n = 231). Results Groups did not differ in alcohol use before pregnancy recognition. One week after termination-seeking (Turnaways still pregnant, Near Limits not), Turnaways had lower odds of any and binge alcohol use, but did not differ on 1+ problem symptoms. Over 2.5 years, both Near Limits and Turnaways increased any and binge alcohol use, with Turnaways increasing more rapidly. The groups did not converge again on any or binge use. For Near Limits, any alcohol use surpassed the pre-pregnancy recognition level, but binge use did not. Changes in problem symptoms over time were not evident for either group. Conclusion While women who had a termination were more likely to report any and binge alcohol use than women who had a child, this difference was due to a reduction in consumption among women having the child rather than an increase in consumption among women having a termination. Thus, assertions that having a termination leads women to increase alcohol use to cope with having had a termination are not supported. PMID:25787011

  16. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine.

    PubMed Central

    Heese-Peck, A; Cole, R N; Borkhsenious, O N; Hart, G W; Raikhel, N V

    1995-01-01

    Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs. PMID:8589629

  17. Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics.

    PubMed

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S; Overall, Christopher M

    2010-05-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses

  18. Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics*

    PubMed Central

    Prudova, Anna; auf dem Keller, Ulrich; Butler, Georgina S.; Overall, Christopher M.

    2010-01-01

    Proteolysis is a major protein posttranslational modification that, by altering protein structure, affects protein function and, by truncating the protein sequence, alters peptide signatures of proteins analyzed by proteomics. To identify such modified and shortened protease-generated neo-N-termini on a proteome-wide basis, we developed a whole protein isobaric tag for relative and absolute quantitation (iTRAQ) labeling method that simultaneously labels and blocks all primary amines including protein N- termini and lysine side chains. Blocking lysines limits trypsin cleavage to arginine, which effectively elongates the proteolytically truncated peptides for improved MS/MS analysis and peptide identification. Incorporating iTRAQ whole protein labeling with terminal amine isotopic labeling of substrates (iTRAQ-TAILS) to enrich the N-terminome by negative selection of the blocked mature original N-termini and neo-N-termini has many advantages. It enables simultaneous characterization of the natural N-termini of proteins, their N-terminal modifications, and proteolysis product and cleavage site identification. Furthermore, iTRAQ-TAILS also enables multiplex N-terminomics analysis of up to eight samples and allows for quantification in MS2 mode, thus preventing an increase in spectral complexity and extending proteome coverage by signal amplification of low abundance proteins. We compared the substrate degradomes of two closely related matrix metalloproteinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), in fibroblast secreted proteins. Among 3,152 unique N-terminal peptides identified corresponding to 1,054 proteins, we detected 201 cleavage products for MMP-2 and unexpectedly only 19 for the homologous MMP-9 under identical conditions. Novel substrates identified and biochemically validated include insulin-like growth factor binding protein-4, complement C1r component A, galectin-1, dickkopf-related protein-3, and thrombospondin-2. Hence, N-terminomics analyses

  19. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    PubMed

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  20. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels.

    PubMed

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-02-15

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2 Delta 2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2 Delta 2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.