Sample records for n-terminal histidine tag

  1. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Production and structural characterization of amino terminally histidine tagged human oncostatin M in E. coli.

    PubMed

    Sporeno, E; Barbato, G; Graziani, R; Pucci, P; Nitti, G; Paonessa, G

    1994-05-01

    Oncostatin M is a cytokine that acts as a growth regulator on a wide variety of cells and has diverse biological activities including acute phase protein induction, LDL receptor up-regulation and cell-specific gene expression. In order to gather information about the Onc M structure, we established a protocol for large scale production and single step purification of this functional cytokine from bacterial cells. The cDNA of human Onc M was cloned by RT-PCR from total RNA of PMA induced U937 cells. After the addition of a six histidine tag at the N-terminus, the coding region of mature Onc M was cloned in the pT7.7 expression vector. Histidine tagged Onc M was overexpressed in bacterial cells and purified to homogeneity in one step on a metal chelating column. We found that recombinant 6xHis-OncM remains fully active in a growth inhibition assay. Structural characterization of the purified protein was performed by electrospray mass spectrometry, automated Edman degradation and peptide mapping by high-pressure liquid chromatography/fast-atom-bombardment mass spectrometry. Thermal and pH stability dependence of Onc M was assessed by circular dichroism spectroscopy; the helical content is about 50%, in agreement with the four helix bundle fold postulated for cytokines that bind haematopoietic receptors of type I.

  3. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  4. Structural and functional characterization of a new recombinant histidine-tagged acyl coenzyme A binding protein (ACBP) from mouse

    PubMed Central

    Petrescu, Anca D.; Huang, Huan; Hostetler, Heather A.; Schroeder, Friedhelm; Kier, Ann B.

    2008-01-01

    Acyl-coenzyme A binding protein (ACBP) has been proposed to transport fatty acyl-CoAs intracellularly, facilitating their metabolism. In this study, a new mouse recombinant ACBP was produced by insertion of a histidine (his) tag at the C-terminus to allow efficient purification by Ni-affinity chromatography. The his-tag was inserted at the C-terminus since ACBP is a small molecular size (10 kDa) protein whose structure and activity are sensitive to amino acid substitutions in the N-terminus. The his tag had no or little effect on ACBP structure or ligand binding affinity and specificity. His-ACBP bound the naturally-occurring fluorescent cis-parinaroyl-CoA with very high affinity (Kd=2.15 nM), but exhibited no affinity for non-esterified cis-parinaric acid. To determine if the presence of the C-terminal his tag altered ACBP interactions with other proteins, direct binding to hepatocyte nuclear factor 4α (HNF-4α), a nuclear receptor regulating transcription of genes involved in lipid metabolism, was examined. His-ACBP and HNF-4α were labeled with Cy5 and Cy3, respectively, and direct interaction was determined by a novel fluorescence resonance energy transfer (FRET) binding assay. FRET analysis showed that his-ACBP directly interacted with HNF-4α (intermolecular distance of 73 Å) at high affinity (Kd=64-111 nM) similar to native ACBP. The his-tag also had no effect on ACBPs ability to interact with and stimulate microsomal enzymes utilizing or forming fatty acyl CoA. Thus, C-terminal his-tagged-ACBP maintained very similar structural and functional features of the untagged native protein and can be used in further in vitro experiments that require pure recombinant ACBP. PMID:18178100

  5. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene.

    PubMed

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik; Hjortø, Gertrud Malene

    2012-04-01

    In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole and ethylenediaminetetraacetic acid (EDTA), as well as adsorption performed at different pH and ionic strength indicates that the high adsorption is caused by electrostatic interaction between negatively charged carboxylate groups on the TCPS surface and positively charged histidine residues in the proteins. Pre-adsorption of bovine serum albumin (BSA) does not decrease the adsorption of HIS-tagged proteins onto TCPS. Our findings identify a potential problem in using HIS-tagged signalling molecule in assays with cells cultured on TCPS, since the concentration of the molecule in solution might be affected and this could critically influence the assay outcome. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Impact of an N-terminal Poly Histidine Tag on Protein Thermal Stability

    USDA-ARS?s Scientific Manuscript database

    For years, the use of polyhistidine tags (His-tags) have been a staple in the isolation of recombinant proteins in immobilized metal affinity chromatography experiments. Their usage has been widely beneficial in increasing protein purity from crude cell lysates. For some recombinant proteins, a cons...

  7. Fabrication of Nanometer- and Micrometer-Scale Protein Structures by Site-Specific Immobilization of Histidine-Tagged Proteins to Aminosiloxane Films with Photoremovable Protein-Resistant Protecting Groups

    PubMed Central

    2016-01-01

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces. PMID:26820378

  8. Immobilized palladium(II) ion affinity chromatography for recovery of recombinant proteins with peptide tags containing histidine and cysteine.

    PubMed

    Kikot, Pamela; Polat, Aise; Achilli, Estefania; Fernandez Lahore, Marcelo; Grasselli, Mariano

    2014-11-01

    Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Fabrication of nanometer- and micrometer-scale protein structures by site-specific immobilization of histidine-tagged proteins to aminosiloxane films with photoremovable protein-resistant protecting groups

    DOE PAGES

    Xia, Sijing; Cartron, Michael; Morby, James; ...

    2016-01-28

    The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni 2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scalemore » patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. As a result, this simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces.« less

  10. Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags.

    PubMed

    Mack, Laura; Brill, Boris; Delis, Natalia; Groner, Bernd

    2014-12-01

    The presence of endotoxins in preparations of recombinantly produced therapeutic proteins poses serious problems for patients. Endotoxins can cause fever, respiratory distress syndromes, intravascular coagulation, or endotoxic shock. A number of methods have been devised to remove endotoxins from protein preparations using separation procedures based on molecular mass or charge properties. Most of the methods are limited in their endotoxin removal capacities and lack general applicability. We are describing a biotechnological approach for endotoxin removal. This strategy exploits the observation that endotoxins form micelles that expose negative charges on their surface, leading to preferential binding of endotoxins to cationic surfaces, allowing the separation from their resident protein. Endotoxins exhibit high affinity to stretches of histidines, which are widely used tools to facilitate the purification of recombinant proteins. They bind to nickel ions and are the basis for protein purification from cellular extracts by immobilized metal affinity chromatography. We show that the thrombin-mediated cleavage of two histidine tags from the purified recombinant protein and the adsorption of these histidine tags and their associated endotoxins to a nickel affinity column result in an appreciable depletion of the endotoxins in the purified protein fraction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Chang, Jeong Ho

    2014-12-01

    This work reports the high-efficient and one-step immobilization of multimeric protein G on magnetic nanoparticles. The histidine-tagged (His-tag) recombinant multimeric protein G was overexpressed in Escherichia coli BL21 by the repeated linking of protein G monomers with a flexible linker. High-efficient immobilization on magnetic nanoparticles was demonstrated by two different preparation methods through the amino-silane and chloro-silane functionalization on silica-coated magnetic nanoparticles. Three kinds of multimeric protein G such as His-tag monomer, dimer, and trimer were tested for immobilization efficiency. For these tests, bicinchoninic acid (BCA) assay was employed to determine the amount of immobilized His-tag multimeric protein G. The result showed that the immobilization efficiency of the His-tag multimeric protein G of the monomer, dimer, and trimer was increased with the use of chloro-silane-functionalized magnetic nanoparticles in the range of 98% to 99%, rather than the use of amino-silane-functionalized magnetic nanoparticles in the range of 55% to 77%, respectively.

  12. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies

    PubMed Central

    Anthony, Kelsey C.; You, Changjiang; Piehler, Jacob; Pomeranz Krummel, Daniel A.

    2014-01-01

    SUMMARY There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle (AuNPtris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of AuNPtris-NTA labeled proteins by electron microscopy is further ensured by the reagent’s short conformationally restricted linker. We have employed AuNPtris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. AuNPtris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our new labeling reagent should find broad application in non-covalent site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies. PMID:24560806

  13. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice

    PubMed Central

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1–4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain. PMID:29220360

  14. Linked Production of Pyroglutamate-Modified Proteins via Self-Cleavage of Fusion Tags with TEV Protease and Autonomous N-Terminal Cyclization with Glutaminyl Cyclase In Vivo

    PubMed Central

    Shih, Yan-Ping; Chou, Chi-Chi; Chen, Yi-Ling; Huang, Kai-Fa; Wang, Andrew H.- J.

    2014-01-01

    Overproduction of N-terminal pyroglutamate (pGlu)-modified proteins utilizing Escherichia coli or eukaryotic cells is a challenging work owing to the fact that the recombinant proteins need to be recovered by proteolytic removal of fusion tags to expose the N-terminal glutaminyl or glutamyl residue, which is then converted into pGlu catalyzed by the enzyme glutaminyl cyclase. Herein we describe a new method for production of N-terminal pGlu-containing proteins in vivo via intracellular self-cleavage of fusion tags by tobacco etch virus (TEV) protease and then immediate N-terminal cyclization of passenger target proteins by a bacterial glutaminyl cyclase. To combine with the sticky-end PCR cloning strategy, this design allows the gene of target proteins to be efficiently inserted into the expression vector using two unique cloning sites (i.e., SnaB I and Xho I), and the soluble and N-terminal pGlu-containing proteins are then produced in vivo. Our method has been successfully applied to the production of pGlu-modified enhanced green fluorescence protein and monocyte chemoattractant proteins. This design will facilitate the production of protein drugs and drug target proteins that possess an N-terminal pGlu residue required for their physiological activities. PMID:24733552

  15. Regioselective copper-catalyzed N(1)-(hetero)arylation of protected histidine.

    PubMed

    Sharma, Krishna K; Mandloi, Meenakshi; Jain, Rahul

    2016-09-26

    We report regioselective N(1)-arylation of protected histidine using copper(i) iodide as a catalyst, trans-N,N'-dimethylcyclohexane-1,2-diamine as a ligand and readily available aryl iodides as coupling partners under microwave irradiation at 130 °C for 40 min. The reaction provides rapid access to electron-donating, electron-withdrawing and bulky group substituted N-arylated histidines in high yields, including previously inaccessible N-heteroaryl histidines. These N(1)-(hetero)aryl histidines are promising building blocks in peptide-based drug design and discovery.

  16. Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates.

    PubMed

    Benjamin, Christopher J; Wright, Kyle J; Hyun, Seok-Hee; Krynski, Kyle; Yu, Guimei; Bajaj, Ruchika; Guo, Fei; Stauffacher, Cynthia V; Jiang, Wen; Thompson, David H

    2016-01-19

    We report the preparation and performance of TEM grids bearing stabilized nonfouling lipid monolayer coatings. These films contain NTA capture ligands of controllable areal density at the distal end of a flexible poly(ethylene glycol) 2000 (PEG2000) spacer to avoid preferred orientation of surface-bound histidine-tagged (His-tag) protein targets. Langmuir-Schaefer deposition at 30 mN/m of mixed monolayers containing two novel synthetic lipids-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(5-amido-1-carboxypentyl)iminodiacetic acid]polyethylene glycolamide 2000) (NTA-PEG2000-DSPE) and 1,2-(tricosa-10',12'-diynoyl)-sn-glycero-3-phosphoethanolamine-N-(methoxypolyethylene glycolamide 350) (mPEG350-DTPE)-in 1:99 and 5:95 molar ratios prior to treatment with a 5 min, 254 nm light exposure was used for grid fabrication. These conditions were designed to limit nonspecific protein adsorption onto the stabilized lipid coating by favoring the formation of a mPEG350 brush layer below a flexible, mushroom conformation of NTA-PEG2000 at low surface density to enable specific immobilization and random orientation of the protein target on the EM grid. These grids were then used to capture His6-T7 bacteriophage and RplL from cell lysates, as well as purified His8-green fluorescent protein (GFP) and nanodisc solubilized maltose transporter, His6-MalFGK2. Our findings indicate that TEM grid supported, polymerized NTA lipid monolayers are capable of capturing His-tag protein targets in a manner that controls their areal densities, while efficiently blocking nonspecific adsorption and limiting film degradation, even upon prolonged detergent exposure.

  17. Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling.

    PubMed

    Kim, Sung Hoon; Jeyakumar, M; Katzenellenbogen, John A

    2007-10-31

    We present the first example of a fluorophore-doped nickel chelate surface-modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700-900 TMRs per ca. 23 nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni2+. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components, and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni2+. When exposed to a bacterial lysate containing estrogen receptor alpha ligand binding domain (ERalpha) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERalpha, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni2+ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species.

  18. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  19. Study of NTA-Nickel (II) Motif Functionalization for Binding of Histidine-Tagged Proteins by a Whispering Gallery Mode Resonator

    NASA Astrophysics Data System (ADS)

    Khuong, Anne Chudolij

    This work demonstrates the viability of the whispering gallery mode (WGM) photonic sensing method for use as a biosensor by demonstrating a surface immobilization strategy for histidine tagged biomolecules to the WGM sensor surface. The WGM resonator is a dielectric spherical microstructure that can sustain high-Q electromagnetic waves confined to the sphere by total internal reflection. Light circumnavigates the periphery of the WGM resonator and when the trapped light constructively superimposes onto itself on the round trip, a resonance condition is achieved. Because of minimal loss due to reflection, these modes can reach unusually high quality factors. When a change occurs in the evanescent field at the boundary of the resonator and surrounding environment, such as when a molecule binds to the resonator surface, a shift results in the resonance wavelength; this enables the WGM resonator to be used as a sensor. WGM optical biosensors offer a powerful alternative to conventional analytical techniques due to their high sensitivity, specificity and their ability to directly detect label-free events in real time. There has been considerable growth in this field over the last decade and potential applications to medical and biotechnological research are numerous; however, there are still obstacles limiting the widespread commercial use of these devices. The obstacle we address in this work relates to a general fundamental difficulty incorporating biomaterial into biosensors. We demonstrate a specific and controlled functionalization strategy intended for subsequent assimilation of biomolecules onto the WGM resonator surface. We have developed a general method which can be used to controllably immobilize recombinant proteins to WGM silica surfaces via their histidine tags. In the work presented herein we monitor by WGM, in real time, a two step functionalization strategy to incorporate an NTA-Ni2+ motif onto the surface of a WGM resonator. We estimated the

  20. The substrate specificity of Metarhizium anisopliae and Bos taurus carboxypeptidases A: Insights into their use as tools for the removal of affinity tags

    PubMed Central

    Austin, Brian P.; Tözsér, József; Bagossi, Péter; Tropea, Joseph E.; Waugh, David S.

    2012-01-01

    Carboxypeptidases may serve as tools for removal for C-terminal affinity tags. In the present study, we describe the expression and purification of an A-type carboxypeptidase from the fungal pathogen Metarhizium anisopliae (MeCPA) that has been genetically engineered to facilitate the removal of polyhistidine tags from the C-termini of recombinant proteins. A complete, systematic analysis of the specificity of MeCPA in comparison with that of bovine carboxypeptidase A (BoCPA) was carried out. Our results indicate that the specificity of the two enzymes is similar but not identical. Histidine residues are removed more efficiently by MeCPA. The very inefficient digestion of peptides with C-terminal lysine or arginine residues, along with the complete inability of the enzyme to remove a C-terminal proline suggests a strategy for designing C-terminal affinity tags that can be trimmed by MeCPA (or BoCPA) to produce a digestion product with a homogeneous endpoint. PMID:21073956

  1. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection

    PubMed Central

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface. PMID:29360877

  2. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.

    PubMed

    Verma, Vaishali; Kaur, Charanpreet; Grover, Payal; Gupta, Amita; Chaudhary, Vijay K

    2018-01-01

    The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.

  3. Simultaneously achieve soluble expression and biomimetic immobilization of Candida antarctica lipase B by introducing polyamine tags.

    PubMed

    Zhou, Xiaoxue; Han, Yu; Lv, Zheng; Tian, Xuemei; Li, Han; Xie, Panpan; Zheng, Liangyu

    2017-05-10

    Polyamine tags fused in Candida antarctica lipase B (CalB) can help achieve high soluble expression of CalB in E. coli and can directly mediate silicification, which leads to rapid formation of a CalB-silica particle complex through a one-step approach. After optimization experiments, the fused lipase CalB tagged with 6-histidine at the N terminal and 10-lysine at the C terminal (6His-CalB-10Lys) is effectively expressed with high solubility (0.1mg/mL) and specific activity (10.1U/mg), and easily cross-linked in silica particles with a high immobilization efficiency of 96.8% and activity recovery of 81.5%. The immobilized lipase 6His-CalB-10Lys exhibits excellent performance at broad temperature ranges, high thermal and storage stabilities, and superior reusability. Michaelis-Menten kinetics indicates that the affinity and enantioselectivity of the free and immobilized 6His-CalB-10Lys toward the substrate are better than that of commercial Novozym 435 in enantioselective resolution of (S)-N-(2-ethyl-6-methylphenyl) alanine ((S)-NEMPA). The strategies described in this paper are useful for the facile expression and construction of diverse enzyme systems with high efficiency and excellent recyclability. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Glycoproteomics enabled by tagging sialic acid- or galactose-terminated glycans

    PubMed Central

    Ramya, T N C; Weerapana, Eranthie; Cravatt, Benjamin F; Paulson, James C

    2013-01-01

    In this paper, we present two complementary strategies for enrichment of glycoproteins on living cells that combine the desirable attributes of “robust enrichment” afforded by covalent-labeling techniques and “specificity for glycoproteins” typically provided by lectin or antibody affinity reagents. Our strategy involves the selective introduction of aldehydes either into sialic acids by periodate oxidation (periodate oxidation and aniline-catalyzed oxime ligation (PAL)) or into terminal galactose and N-acetylgalactosamine residues by galactose oxidase (galactose oxidase and aniline-catalyzed oxime ligation (GAL)), followed by aniline-catalyzed oxime ligation with aminooxy-biotin to biotinylate the glycans of glycoprotein subpopulations with high efficiency and cell viability. As expected, the two methods exhibit reciprocal tagging efficiencies when applied to fully sialylated cells compared with sialic acid-deficient cells. To assess the utility of these labeling methods for glycoproteomics, we enriched the PAL- and GAL-labeled (biotinylated) glycoproteome by adsorption onto immobilized streptavidin. Glycoprotein identities (IDs) and N-glycosylation site information were then obtained by liquid chromatography-tandem mass spectrometry on total tryptic peptides and on peptides subsequently released from N-glycans still bound to the beads using peptide N-glycosidase F. A total of 175 unique N-glycosylation sites were identified, belonging to 108 nonredundant glycoproteins. Of the 108 glycoproteins, 48 were identified by both methods of labeling and the remainder was identified using PAL on sialylated cells (40) or GAL on sialic acid-deficient cells (20). Our results demonstrate that PAL and GAL can be employed as complementary methods of chemical tagging for targeted proteomics of glycoprotein subpopulations and identification of glycosylation sites of proteins on cells with an altered sialylation status. PMID:23070960

  5. Effects of histidine and n-acetylcysteine on experimental lesions induced by doxorubicin in sciatic nerve of rats.

    PubMed

    Farshid, Amir Abbas; Tamaddonfard, Esmaeal; Najafi, Sima

    2015-10-01

    In this study, the effect of separate and combined intraperitoneal (i.p.) injections of histidine and n-acetylcysteine were investigated on experimental damage induced by doxorubicin (DOX) in sciatic nerve of rats. DOX was i.p. injected at a dose of 4 mg/kg once weekly for four weeks. Histidine and n-acetylcysteine were i.p. injected at a same dose of 20 mg/kg. Cold and mechanical allodynia were recorded using acetone spray and von Frey filaments tests, respectively. The sciatic nerve damage was evaluated by light microscopy. Plasma levels of malondialdehyde (MDA) and total antioxidant capacity (TAC) were measured. Histidine and especially n-acetylcysteine at a same dose of 20 mg/kg suppressed cold and mechanical allodynia, improved sciatic nerve lesions and reversed MDA and TAC levels in DOX-treated groups. Combination treatment with histidine and n-acetylcysteine showed better responses when compared with them used alone. The results of the present study showed peripheral neuroprotective effects for histidine and n-acetylcysteine. Reduction of free radical-induced toxic effects may have a role in neuroprotective properties of histidine and n-acetylcysteine.

  6. The histidine permease gene (HIP1) of Saccharomyces cerevisiae.

    PubMed

    Tanaka, J; Fink, G R

    1985-01-01

    The histidine-specific permease gene (HIP1) of Saccharomyces cerevisiae has been mapped, cloned, and sequenced. The HIP1 gene maps to the right arm of chromosome VII, approx. 11 cM distal to the ADE3 gene. The gene was isolated as an 8.6-kb BamHI-Sau3A fragment by complementation of the histidine-specific permease deficiency in recipient yeast cells. We sequenced a 2.4-kb subfragment of this BamHI-Sau3A fragment containing the HIP1 gene and identified a 1596-bp open reading frame (ORF). We confirmed the assignment of the 1596-bp ORF as the HIP1 coding sequence by sequencing a hip1 nonsense mutation. Analysis of the amino acid (aa) sequence of the HIP1 gene reveals several hydrophobic stretches, but shows no obvious N-terminal signal peptide. We have constructed a deletion of the HIP1 gene in vitro and replaced the wild-type copy of the gene with this deletion. The hip1 deletion mutant can grow when it is supplemented with 30 mM histidine, 50 times the amount required for the growth of HIP1 cells. Revertants of this deletion mutant able to grow on a normal level of histidine arise by mutation in unlinked genes. Both these observations suggest that there are additional, low-affinity pathways for histidine uptake.

  7. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    PubMed

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  8. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  9. Controlling Protein Surface Orientation by Strategic Placement of Oligo-Histidine Tags

    PubMed Central

    2017-01-01

    We report oriented immobilization of proteins using the standard hexahistidine (His6)-Ni2+:NTA (nitrilotriacetic acid) methodology, which we systematically tuned to give control of surface coverage. Fluorescence microscopy and surface plasmon resonance measurements of self-assembled monolayers (SAMs) of red fluorescent proteins (TagRFP) showed that binding strength increased by 1 order of magnitude for each additional His6-tag on the TagRFP proteins. All TagRFP variants with His6-tags located on only one side of the barrel-shaped protein yielded a 1.5 times higher surface coverage compared to variants with His6-tags on opposite sides of the so-called β-barrel. Time-resolved fluorescence anisotropy measurements supported by polarized infrared spectroscopy verified that the orientation (and thus coverage and functionality) of proteins on surfaces can be controlled by strategic placement of a His6-tag on the protein. Molecular dynamics simulations show how the differently tagged proteins reside at the surface in “end-on” and “side-on” orientations with each His6-tag contributing to binding. Also, not every dihistidine subunit in a given His6-tag forms a full coordination bond with the Ni2+:NTA SAMs, which varied with the position of the His6-tag on the protein. At equal valency but different tag positions on the protein, differences in binding were caused by probing for Ni2+:NTA moieties and by additional electrostatic interactions between different fractions of the β-barrel structure and charged NTA moieties. Potential of mean force calculations indicate there is no specific single-protein interaction mode that provides a clear preferential surface orientation, suggesting that the experimentally measured preference for the end-on orientation is a supra-protein, not a single-protein, effect. PMID:28850777

  10. Differential cellulolytic activity of native-form and C-terminal tagged-form cellulase derived from coptotermes formosanus and expressed in E. coli

    USDA-ARS?s Scientific Manuscript database

    The endogenous cellulase gene (CfEG3a) of Coptotermes formosanus, an economically important pest termite, was cloned and overexpressed in both native form (nCfEG) and C-terminal His-tagged form (tCfEG) in E.coli. Both forms of recombinant cellulases showed hydrolytic activity on cellulosic substrate...

  11. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase

    PubMed Central

    Trigoso, Yvonne D.; Evans, Russell C.; Karsten, William E.; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5’and 3’ terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40–50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  12. Polyvalent Display of Heme on Hepatitis B Virus Capsid Protein through Coordination to Hexahistidine Tags

    PubMed Central

    Prasuhn, Duane E.; Kuzelka, Jane; Strable, Erica; Udit, Andrew K.; Cho, So-Hye; Lander, Gabriel C.; Quispe, Joel D.; Diers, James R.; Bocian, David F.; Potter, Clint; Carragher, Bridget; Finn, M.G.

    2009-01-01

    SUMMARY The addition of a hexahistidine tag to the N terminus of the hepatitis B capsid protein gives rise to a self-assembled particle with 80 sites of high local density of histidine side chains. Iron protoporphyrin IX has been found to bind tightly at each of these sites, making a polyvalent system of well-defined spacing between metalloporphyrin complexes. The spectroscopic and redox properties of the resulting particle are consistent with the presence of 80 site-isolated bis(histidine)-bound heme centers, comprising a polyvalent b-type cytochrome mimic. PMID:18482703

  13. Uncovering the role of the flexible C-terminal tail: A model study with Strep-tagged GFP.

    PubMed

    Lassalle, Michael W; Kondou, Shinobu

    2016-06-01

    Recently, it has been recognized that, much like an electric current in an electric circuit, dynamic disruptions from flexible, unstructured regions distal to the active region are transferred through the contact network to the active site and influence protein stability and/or function. As transmembrane proteins frequently possess the β-barrel structure, studies of proteins with this topology are required. The unstructured lid segments of the β-barrel GFP protein are conserved and could play a role in the backbone stabilization required for chromophore function. A study of the disordered C-terminus and the function within the lid is necessary. In this study, we entirely truncated the flexible C-terminal tail and investigated the N-terminal Strep-tagged GFP by fluorescence spectroscopy, and the temperature- and GdnHCl-induced unfolding by circular dichroism. The introduction of the unstructured Strep-tag itself changed the unfolding pathway. Truncating the entire flexible tail did not decrease the fluorescence intensity to a large extent; however, the protein stability changed dramatically. The temperature for half-denaturation T 1/2 changed significantly from 79 °C for the wild-type to 72.8 °C for the mutant. Unfolding kinetics at different temperatures have been induced by 4 M GdnHCl, and the apparent Arrhenius activation energy decreased by 40% as compared to the wild-type.

  14. Construction of stabilized and tagged foot-and-mouth disease virus.

    PubMed

    Park, Jeong-Nam; Ko, Mi-Kyeong; Kim, Rae-Hyung; Park, Min-Eun; Lee, Seo-Yong; Yoon, Ji-Eun; Choi, Joo-Hyung; You, Su-Hwa; Park, Jung-Won; Lee, Kwang-Nyeong; Chun, Ji-Eun; Kim, Su-Mi; Tark, Dongseob; Lee, Hyang-Sim; Ko, Young-Joon; Kim, Byounghan; Lee, Myoung-Heon; Park, Jong-Hyeon

    2016-11-01

    Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease that affects cloven-hoofed animals worldwide. Construction and purification of stable antigen for vaccine are necessary but technically difficult and laborious. Here, we have tried to investigate an alternative method by inserting a hexa-histidine tag (6xHIS) in the VP1 C-terminal for easy purification and replacing two amino acids of VP1/VP2 to enhance the stability of the capsid of the FMD virus (FMDV) Asia1/MOG/05. In addition, infectious 6xHIS-tagged stable (S/T) FMDVs were maintained under acidic conditions (pH 6.0) and were readily purified from small-scale cultures using a commercial metal-affinity column. The groups vaccinated with the S/T FMDV antigen showed complete protection comparing to low survival rate in the group vaccinated with non-S/T FMDV against lethal challenge with Asia1 Shamir in mice. Therefore, the present findings indicate that the stabilized and tagged antigen offers an alternative to using the current methods for antigen purification and enhancement of stability and has potential for the development of a new FMD vaccine. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Viscoelasticity of thin biomolecular films: a case study on nucleoporin phenylalanine-glycine repeats grafted to a histidine-tag capturing QCM-D sensor.

    PubMed

    Eisele, Nico B; Andersson, Fredrik I; Frey, Steffen; Richter, Ralf P

    2012-08-13

    Immobilization of proteins onto surfaces is useful for the controlled generation of biomolecular assemblies that can be readily characterized with in situ label-free surface-sensitive techniques. Here we analyze the performance of a quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surface that enables the selective and oriented immobilization of histidine-tagged molecules for morphological and interaction studies. More specifically, we characterize monolayers of natively unfolded nucleoporin domains that are rich in phenylalanine-glycine repeats (FGRDs). An FGRD meshwork is thought to be responsible for the selectivity of macromolecular transport across the nuclear pore complex between the cytosol and the nucleus of living cells. We demonstrate that nucleoporin FGRD films can be formed on His-tag Capturing Sensors with properties comparable to a previously reported immobilization platform based on supported lipid bilayers (SLB). Approaches to extract the film thickness and viscoelastic properties in a time-resolved manner from the QCM-D response are described, with particular emphasis on the practical implementation of viscoelastic modeling and a detailed analysis of the quality and reliability of the fit. By comparing the results with theoretical predictions for the viscoelastic properties of polymer solutions and gels, and experimental data from an atomic force microscopy indentation assay, we demonstrate that detailed analysis can provide novel insight into the morphology and dynamics of FG repeat domain films. The immobilization approach is simple and versatile, and can be easily extended to other His-tagged biomolecules. The data analysis procedure should be useful for the characterization of other ultrathin biomolecular and polymer films.

  16. Barium Tagging for nEXO

    NASA Astrophysics Data System (ADS)

    Fudenberg, Daniel; Brunner, Thomas; Varentsov, Victor; Devoe, Ralph; Dilling, Jens; Gratta, Giorgio; nEXO Collaboration

    2015-10-01

    nEXO is a next-generation experiment designed to search for 0 νββ -decay of Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a Majorana particle In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, Ba-136. ``Tagging'' may be available for a 2nd phase of nEXO and will push the sensitivity beyond the inverted neutrino-mass hierarchy. Tagging methods in testing for this phase include Ba-ion capture on a probe with identification by resonance ionization laser spectroscopy, and Ba capture in solid xenon on a cold probe with identification by fluorescence. In addition, Ba tagging for a gas-phase detector, appropriate for a later stage, is being tested. Here efficient ion extraction from heavy carrier gases is key. Detailed gas-dynamic and ion transport calculations have been performed to optimize for ion extraction. An apparatus to extract Ba ions from up to 10 bar xenon gas into vacuum using an RF-only funnel has been constructed and demonstrates extraction of ions from noble gases. We will present this system's status along with results of this R&D program.

  17. Structure and synthesis of histopine, a histidine derivative produced by crown gall tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, H.A.; Kaushal, A.; Deng, P.N.

    1984-07-03

    Histopine, an unusual amino acid derivative of histidine isolated from crown gall tumors of sunflowers (Helianthus annus) inoculated with Agrobacterium tumefaciens strain B/sub 6/, was previously assigned the gross structure N-(1-carboxyethyl)histidine. A diastereomeric mixture containing histopine was readily prepared by reductive alkylation of (S)-histidine with pyruvic acid and sodium cyanoborohydride. The individual diastereomers were prepared by reaction of (S)-histidine with (R)- and (S)-2-bromopropionic acid. (R)-N-(1-Carboxyethyl)-(S)-histidine supports the growth of A. tumefaciens whereas (S)-N-(1-carboxyethyl)-(S)-histidine is inactive.

  18. Recombinant Human Erythropoietin with Additional Processable Protein Domains: Purification of Protein Synthesized in Escherichia coli Heterologous Expression System.

    PubMed

    Grunina, T M; Demidenko, A V; Lyaschuk, A M; Poponova, M S; Galushkina, Z M; Soboleva, L A; Cherepushkin, S A; Polyakov, N B; Grumov, D A; Solovyev, A I; Zhukhovitsky, V G; Boksha, I S; Subbotina, M E; Gromov, A V; Lunin, V G; Karyagina, A S

    2017-11-01

    Three variants of human recombinant erythropoietin (rhEPO) with additional N-terminal protein domains were obtained by synthesis in an Escherichia coli heterologous expression system. These domains included (i) maltose-binding protein (MBP), (ii) MBP with six histidine residues (6His) in N-terminal position, (iii) s-tag (15-a.a. oligopeptide derived from bovine pancreatic ribonuclease A) with N-terminal 6His. Both variants of the chimeric protein containing MBP domain were prone to aggregation under nondenaturing conditions, and further purification of EPO after the domain cleavage by enterokinase proved to be impossible. In the case of 6His-s-tag-EPO chimeric protein, the products obtained after cleavage with enterokinase were successfully separated by column chromatography, and rhEPO without additional domains was obtained. Results of MALDI-TOF mass spectrometry showed that after refolding 6His-s-tag-EPO formed a structure similar to that of one of native EPO with two disulfide bonds. Both 6His-s-tag-EPO and rhEPO without additional protein domains purified after proteolysis possessed the same biological activity in vitro in the cell culture.

  19. Evaluation of Intercontinental Transport of Ozone Using Full-tagged, Tagged-N and Sensitivity Methods

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Liu, J.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Fan, S.; Li, X.; Tao, S.

    2014-12-01

    Long-range transport of ozone is of great concern, yet the source-receptor relationships derived previously depend strongly on the source attribution techniques used. Here we describe a new tagged ozone mechanism (full-tagged), the design of which seeks to take into account the combined effects of emissions of ozone precursors, CO, NOx and VOCs, from a particular source, while keeping the current state of chemical equilibrium unchanged. We label emissions from the target source (A) and background (B). When two species from A and B sources react with each other, half of the resulting products are labeled A, and half B. Thus the impact of a given source on downwind regions is recorded through tagged chemistry. We then incorporate this mechanism into the Model for Ozone and Related chemical Tracers (MOZART-4) to examine the impact of anthropogenic emissions within North America, Europe, East Asia and South Asia on ground-level ozone downwind of source regions during 1999-2000. We compare our results with two previously used methods -- the sensitivity and tagged-N approaches. The ozone attributed to a given source by the full-tagged method is more widely distributed spatially, but has weaker seasonal variability than that estimated by the other methods. On a seasonal basis, for most source/receptor pairs, the full-tagged method estimates the largest amount of tagged ozone, followed by the sensitivity and tagged-N methods. In terms of trans-Pacific influence of ozone pollution, the full-tagged method estimates the strongest impact of East Asian (EA) emissions on the western U.S. (WUS) in MAM and JJA (~3 ppbv), which is substantially different in magnitude and seasonality from tagged-N and sensitivity studies. This difference results from the full-tagged method accounting for the maintenance of peroxy radicals (e.g., CH3O2, CH3CO3, and HO2), in addition to NOy, as effective reservoirs of EA source impact across the Pacific, allowing for a significant contribution to

  20. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain

    PubMed Central

    Ampah-Korsah, Henry; Anderberg, Hanna I.; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  1. SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase

    PubMed Central

    Si, Meng; Xu, Qing

    2016-01-01

    SpyTag can spontaneously form a covalent isopeptide bond with its protein partner SpyCatcher. Firefly luciferase from Photinus pyralis was cyclized in vivo by fusing SpyCatcher at the N terminus and SpyTag at the C terminus. Circular LUC was more thermostable and alkali-tolerant than the wild type, without compromising the specific activity. Structural analysis indicated that the cyclized LUC increased the thermodynamic stability of the structure and remained more properly folded at high temperatures when compared with the wild type. We also prepared an N-terminally and C-terminally shortened form of the SpyCatcher protein and cyclization using this truncated form led to even more thermostability than the original form. Our findings suggest that cyclization with SpyTag and SpyCatcher is a promising and effective strategy to enhance thermostability of enzymes. PMID:27658030

  2. Affinity Purification of Proteins in Tag-Free Form: Split Intein-Mediated Ultrarapid Purification (SIRP).

    PubMed

    Guan, Dongli; Chen, Zhilei

    2017-01-01

    Proteins purified using affinity-based chromatography often exploit a recombinant affinity tag. Existing methods for the removal of the extraneous tag, needed for many applications, suffer from poor efficiency and/or high cost. Here we describe a simple, efficient, and potentially low-cost approach-split intein-mediated ultrarapid purification (SIRP)-for both the purification of the desired tagged protein from Escherichia coli lysate and removal of the tag in less than 1 h. The N- and C-fragment of a self-cleaving variant of a naturally split DnaE intein from Nostoc punctiforme are genetically fused to the N-terminus of an affinity tag and a protein of interest (POI), respectively. The N-intein/affinity tag is used to functionalize an affinity resin. The high affinity between the N- and C-fragment of DnaE intein enables the POI to be purified from the lysate via affinity to the resin, and the intein-mediated C-terminal cleavage reaction causes tagless POI to be released into the flow-through. The intein cleavage reaction is strongly inhibited by divalent ions (e.g., Zn 2+ ) under non-reducing conditions and is significantly enhanced by reducing conditions. The POI is cleaved efficiently regardless of the identity of the N-terminal amino acid except in the cases of threonine and proline, and the N-intein-functionalized affinity resin can be regenerated for multiple cycles of use.

  3. Pharmacokinetics of stable isotopically labeled L-histidine in humans and the assessment of in vivo histidine ammonia lyase activities.

    PubMed

    Furuta, T; Okamiya, K; Shibasaki, H; Kasuya, Y

    1996-01-01

    The pharmacokinetics of L-histidine in humans has been investigated to evaluate the in vivo histidine ammonia lyase system for the conversion of L-histidine to urocanic acid. Two healthy volunteers (subjects A and B) received a single 100-mg oral dose of L-[3,3-2H2,1',3'-15N2]histidine. Blood and urine samples were obtained over 24 hr after the administration and analyzed by stable isotope dilution ms. Labeled L-histidine was rapidly absorbed, and a maximum plasma concentration of L-histidine was observed at 30 min (1057.6 ng/ml) in subject A and at 60 min (1635.6 ng/ml) in subject B after oral administration. Pharmacokinetic parameters were calculated based on a two-compartment model. Labeled L-histidine in subject A (t1/2 = 1.0 hr) was eliminated approximately twice faster than that in subject B (t1/2 = 1.9 hr). Total body clearances were 70.0 liters/hr in subject A and 30.0 liters/hr in subject B. The low ratios of the renal clearance to the total body clearance (1.04% for subject A and 0.43% for subject B) indicated that most of L-histidine was eliminated via the nonrenal processes. L-Histidine was rapidly metabolized to urocanic acid. Maximum plasma concentrations of urocanic acid were 59.61 ng/ml at 30 min for subject A and 46.10 ng/ml at 60 min for subject B. The slope of the plot of urinary excretion rate of urocanic acid vs. the plasma concentration of unchanged L-histidine was demonstrated to reflect the metabolic clearance of L-histidine to urocanic acid. The method of evaluating the in vivo human histidine ammonia lyase activities discussed in this study offers a significant value with regard to the biochemical and clinical elucidations of the heterogeneity of histidinemia.

  4. Diacylglycerol Acyltransferase 1 Is Regulated by Its N-Terminal Domain in Response to Allosteric Effectors.

    PubMed

    Caldo, Kristian Mark P; Acedo, Jeella Z; Panigrahi, Rashmi; Vederas, John C; Weselake, Randall J; Lemieux, M Joanne

    2017-10-01

    Diacylglycerol acyltransferase 1 (DGAT1) is an integral membrane enzyme catalyzing the final and committed step in the acyl-coenzyme A (CoA)-dependent biosynthesis of triacylglycerol (TAG). The biochemical regulation of TAG assembly remains one of the least understood areas of primary metabolism to date. Here, we report that the hydrophilic N-terminal domain of Brassica napus DGAT1 (BnaDGAT1 1-113 ) regulates activity based on acyl-CoA/CoA levels. The N-terminal domain is not necessary for acyltransferase activity and is composed of an intrinsically disordered region and a folded segment. We show that the disordered region has an autoinhibitory function and a dimerization interface, which appears to mediate positive cooperativity, whereas the folded segment of the cytosolic region was found to have an allosteric site for acyl-CoA/CoA. Under increasing acyl-CoA levels, the binding of acyl-CoA with this noncatalytic site facilitates homotropic allosteric activation. Enzyme activation, on the other hand, is prevented under limiting acyl-CoA conditions (low acyl-CoA-to-CoA ratio), whereby CoA acts as a noncompetitive feedback inhibitor through interaction with the same folded segment. The three-dimensional NMR solution structure of the allosteric site revealed an α-helix with a loop connecting a coil fragment. The conserved amino acid residues in the loop interacting with CoA were identified, revealing details of this important regulatory element for allosteric regulation. Based on these results, a model is proposed illustrating the role of the N-terminal domain of BnaDGAT1 as a positive and negative modulator of TAG biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. MLF1-interacting protein is mainly localized in nucleolus through N-terminal bipartite nuclear localization signal.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Saito, Shinobu; Takeda, Nobuakira; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2007-01-01

    The myelodysplasia/myeloid leukemia factor 1-interacting protein (MLF1LP, also called KLIP1 and CENP-50) is reported to localize in both the nucleus and the cytoplasm. To investigate the functions of MLF1IP, its subnuclear localization was studied. MLF1IP was tagged with green fluorescent protein (EGFP). Fibrillarin was tagged with red fluorescent protein (DsRed). EGFP-tagged MLF1IP deletion vectors were also constructed. Plasmid-constructs were transfected into human cervical adenocarcinoma HeLa cells or monkey kidney fibroblast COS-7 cells, and the localization was studied by either confocal fluorescence microscopy or fluorescence microscopy. Ectopically expressed MLF1IP was localized mainly in the nucleolus. In some cells, small dot-like particles of MLF1IP fluorescence were observed in the nucleoplasm. Co-staining of fibrillarin disclosed that MLF1IP was co-localized with fibrillarin in the nucleolus. Deletion mutants of MLF1IP revealed that the N-terminal bipartite nuclear localization signal (NLS) was responsible for nucleolar targeting. MLF1IP was localized mainly in the nucleolus through the N-terminal bipartite NLS and partly in the nucleoplasm featuring small dot-like particles. These findings suggest that MLF1IP may have multi-functions and its different localizations may contribute to carcinogenesis.

  6. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    PubMed Central

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-01-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960

  7. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.

    PubMed

    Hernández-Sánchez, Itzell E; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P; Jiménez-Bremont, Juan F

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  8. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    PubMed Central

    Hernández-Sánchez, Itzell E.; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P.; Jiménez-Bremont, Juan F.

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  9. N2O molecular tagging velocimetry

    NASA Astrophysics Data System (ADS)

    ElBaz, A. M.; Pitz, R. W.

    2012-03-01

    A new seeded velocity measurement technique, N2O molecular tagging velocimetry (MTV), is developed to measure velocity in wind tunnels by photochemically creating an NO tag line. Nitrous oxide "laughing gas" is seeded into the air flow. A 193 nm ArF excimer laser dissociates the N2O to O(1D) that subsequently reacts with N2O to form NO. O2 fluorescence induced by the ArF laser "writes" the original position of the NO line. After a time delay, the shifted NO line is "read" by a 226-nm laser sheet and the velocity is determined by time-of-flight. At standard atmospheric conditions with 4% N2O in air, ˜1000 ppm of NO is photochemically created in an air jet based on experiment and simulation. Chemical kinetic simulations predict 800-1200 ppm of NO for 190-750 K at 1 atm and 850-1000 ppm of NO for 0.25-1 atm at 190 K. Decreasing the gas pressure (or increasing the temperature) increases the NO ppm level. The presence of humid air has no significant effect on NO formation. The very short NO formation time (<10 ns) makes the N2O MTV method amenable to low- and high-speed air flow measurements. The N2O MTV technique is demonstrated in air jet to measure its velocity profile. The N2O MTV method should work in other gas flows as well (e.g., helium) since the NO tag line is created by chemical reaction of N2O with O(1D) from N2O photodissociation and thus does not depend on the bulk gas composition.

  10. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium.

    PubMed Central

    Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.

    1998-01-01

    The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962

  11. Quantitative evaluation of his-tag purification and immunoprecipitation of tristetraprolin and its mutant proteins from transfected human cells

    USDA-ARS?s Scientific Manuscript database

    Histidine (His)-tag is widely used for affinity purification of recombinant proteins, but the yield and purity of expressed proteins are quite different. Little information is available about quantitative evaluation of this procedure. The objective of the current study was to evaluate the His-tag pr...

  12. Terminating Devices in Spoken French.

    ERIC Educational Resources Information Center

    Andrews, Barry J.

    1989-01-01

    A study examines the way in which one group of discourse connectors, terminators, function in contemporary spoken French. Three types of terminators, elements used at the end of an utterance or section to indicate its completion, are investigated, including utterance terminators, interrogative tags, and terminal tags. (Author/MSE)

  13. A new pH-responsive peptide tag for protein purification.

    PubMed

    Nonaka, Takahiro; Tsurui, Noriko; Mannen, Teruhisa; Kikuchi, Yoshimi; Shiraki, Kentaro

    2018-06-01

    This paper describes a new pH-responsive peptide tag that adds a protein reversible precipitation and redissolution character. This peptide tag is a part of a cell surface protein B (CspB) derived from Corynebacterium glutamicum. Proinsulin that genetically fused with a peptide of N-terminal 6, 17, 50, or 250 amino acid residues of CspB showed that the reversible precipitation and redissolution depended on the pH. The transition occurred within a physiological and narrow pH range. A CspB50 tag comprising 50 amino acid residues of N-terminal CspB was further evaluated as a representative using other pharmaceutical proteins. Below pH 6.8, almost all CspB50-Teriparatide fusion formed an aggregated state. Subsequent addition of alkali turned the cloudy protein solution transparent above pH 7.3, in which almost all the CspB50-Teriparatide fusion redissolved. The CspB50-Bivalirudin fusion showed a similar behavior with slightly different pH range. This tag is offering a new protein purification method based on liquid-solid separation which does not require an affinity ligand. This sharp response around neutral pH is useful as a pH-responsive tag for the purification of unstable proteins at a non-physiological pH. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH.

    PubMed

    Kumar, V V; Pichon, C; Refregiers, M; Guerin, B; Midoux, P; Chaudhuri, A

    2003-08-01

    Presence of endosome-disrupting multiple histidine functionalities in the molecular architecture of cationic polymers, such as polylysine, has previously been demonstrated to significantly enhance their in vitro gene delivery efficiencies. Towards harnessing improved transfection property through covalent grafting of endosome-disrupting single histidine functionality in the molecular structure of cationic lipids, herein, we report on the design, the synthesis and the transfection efficiency of two novel nonglycerol-based histidylated cationic amphiphiles. We found that L-histidine-(N,N-di-n-hexadecylamine)ethylamide (lipid 1) and L-histidine-(N,N-di-n-hexadecylamine,-N-methyl)ethylamide (lipid 2) in combination with cholesterol gave efficient transfections into various cell lines. The transfection efficiency of Chol/lipid 1 lipoplexes into HepG2 cells was two order of magnitude higher than that of FuGENE(TM)6 and DC-Chol lipoplexes, whereas it was similar into A549, 293T7 and HeLa cells. A better efficiency was obtained with Chol/lipid 2 lipoplexes when using the cytosolic luciferase expression vector (pT7Luc) under the control of the bacterial T7 promoter. Membrane fusion activity measurements using fluorescence resonance energy transfer (FRET) technique showed that the histidine head-groups of Chol/lipid 1 liposomes mediated membrane fusion in the pH range 5-7. In addition, the transgene expression results using the T7Luc expression vector convincingly support the endosome-disrupting role of the presently described mono-histidylated cationic transfection lipids and the release of DNA into the cytosol. We conclude that covalent grafting of a single histidine amino acid residue to suitable twin-chain hydrophobic compounds is able to impart remarkable transfection properties on the resulting mono-histidylated cationic amphiphile, presumably via the endosome-disrupting characteristics of the histidine functionalities.

  15. Contributions of the Histidine Side Chain and the N-terminal α-Amino Group to the Binding Thermodynamics of Oligopeptides to Nucleic Acids as a Function of pH

    PubMed Central

    Ballin, Jeff D.; Prevas, James P.; Ross, Christina R.; Toth, Eric A.; Wilson, Gerald M.; Record, M. Thomas

    2010-01-01

    Interactions of histidine with nucleic acid phosphates and histidine pKa shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK (+NH3-His-Trp-Lys-Lys-NH2) and its lysine analog KWKK (+NH3-Lys-Trp-Lys-Lys-NH2) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, Kobs, and magnitudes of log-log salt derivatives SKobs ≡ (∂logKobs/∂log[Na+]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and α-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same Kobs and SKobs within uncertainty, and these SKobs values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pKa shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pKa shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the α-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific versus nonspecific nucleic acid binding. PMID:20108951

  16. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  17. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 234.239 Section 234.239 Transportation Other Regulations Relating to... Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or... of the apparatus. This requirement applies to each wire at each terminal in all housings including...

  18. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  19. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  20. Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles.

    PubMed

    Unzueta, Ugutz; Ferrer-Miralles, Neus; Cedano, Juan; Zikung, Xu; Pesarrodona, Mireia; Saccardo, Paolo; García-Fruitós, Elena; Domingo-Espín, Joan; Kumar, Pradeep; Gupta, Kailash C; Mangues, Ramón; Villaverde, Antonio; Vazquez, Esther

    2012-11-01

    Controlling the self-assembling of building blocks as nanoscale entities is a requisite for the generation of bio-inspired vehicles for nanomedicines. A wide spectrum of functional peptides has been incorporated to different types of nanoparticles for the delivery of conventional drugs and nucleic acids, enabling receptor-specific cell binding and internalization, endosomal escape, cytosolic trafficking, nuclear targeting and DNA condensation. However, the development of architectonic tags to induce the self-assembling of functionalized monomers has been essentially neglected. We have examined here the nanoscale architectonic capabilities of arginine-rich cationic peptides, that when displayed on His-tagged proteins, promote their self-assembling as monodisperse, protein-only nanoparticles. The scrutiny of the cross-molecular interactivity cooperatively conferred by poly-arginines and poly-histidines has identified regulatable electrostatic interactions between building blocks that can also be engineered to encapsulate cargo DNA. The combined use of cationic peptides and poly-histidine tags offers an unusually versatile approach for the tailored design and biofabrication of protein-based nano-therapeutics, beyond the more limited spectrum of possibilities so far offered by self-assembling amyloidogenic peptides. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. SH3-like motif-containing C-terminal domain of staphylococcal teichoic acid transporter suggests possible function.

    PubMed

    Ko, Tzu-Ping; Tseng, Shih-Ting; Lai, Shu-Jung; Chen, Sheng-Chia; Guan, Hong-Hsiang; Shin Yang, Chia; Jung Chen, Chun; Chen, Yeh

    2016-09-01

    The negatively charged bacterial polysaccharides-wall teichoic acids (WTAs) are synthesized intracellularly and exported by a two-component transporter, TagGH, comprising a transmembrane subunit TagG and an ATPase subunit TagH. We determined the crystal structure of the C-terminal domain of TagH (TagH-C) to investigate its function. The structure shows an N-terminal SH3-like subdomain wrapped by a C-terminal subdomain with an anti-parallel β-sheet and an outer shell of α-helices. A stretch of positively charged surface across the subdomain interface is flanked by two negatively charged regions, suggesting a potential binding site for negatively charged polymers, such as WTAs or acidic peptide chains. Proteins 2016; 84:1328-1332. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Visualizing autophosphorylation in histidine kinases.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two directions, cis (intrasubunit) or trans (intersubunit) within the dimeric histidine kinase. Here, we present the crystal structure of the complete catalytic machinery of a chimeric histidine kinase. The structure shows an asymmetric histidine kinase dimer where one subunit is caught performing the autophosphorylation reaction. A structure-guided functional analysis on HK853 and EnvZ, two prototypical cis- and trans-phosphorylating histidine kinases, has allowed us to decipher the catalytic mechanism of histidine kinase autophosphorylation, which seems to be common independently of the reaction directionality.

  3. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    PubMed

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  4. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli

    PubMed Central

    2012-01-01

    Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller Sef

  5. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.

    PubMed

    Molenaar, D; Bosscher, J S; ten Brink, B; Driessen, A J; Konings, W N

    1993-05-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histidine uptake, histamine efflux, and histidine/histamine exchange are electrogenic processes. Histidine/histamine exchange is much faster than the unidirectional fluxes of these substrates, is inhibited by an inside-negative delta psi and is stimulated by an inside positive delta psi. These data suggest that the generation of metabolic energy from histidine decarboxylation results from an electrogenic histidine/histamine exchange and indirect proton extrusion due to the combined action of the decarboxylase and carrier-mediated exchange. The abundance of amino acid decarboxylation reactions among bacteria suggests that this mechanism of metabolic energy generation and/or pH regulation is widespread.

  6. Pyrylium-based dye and charge tagging in proteomics.

    PubMed

    Bayer, Malte; König, Simone

    2016-11-01

    The pyrylium group is a selective reagent for ε-amino groups in proteins. In particular, for fluorescence labeling, a number of advantages over traditional N-hydroxysuccinimidyl ester chemistry were recognized such as the rapid prestaining procedure. Here, we have investigated the labeling reaction for the fluorogenic pyrylium dye Py-1 using liquid chromatography coupled to MS with the aim of determining its specificity and possible side products. Peptides containing no, one, and two lysine residue and a choice of no or one cysteine residue were labeled with Py-1 at yields > 30%. Gas phase fragmentation proved both labeling of lysine residues as well as that of the N-terminus also in peptides that contained a lysine residue. Evidence for cysteine labeling was not found, but several other products were detected such as the results of rearrangements with adjacent acidic amino acids. Apart from the use as a fluorogenic label, Py-1 recommends itself for N-terminal charge tagging as alternative to the commonly used quaternary ammonium salts. Predominantly a- and b-type ion series were observed for N-terminally labeled peptides. Further applications include chromophore tagging since the labeled product is not only fluorescent but also colored red. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Ionization energies and infrared spectra studies of histidine using density functional theory].

    PubMed

    Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li

    2010-05-01

    Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In

  8. Functions and ATP-binding responses of the twelve histidine residues in the TF1-ATPase beta subunit.

    PubMed

    Tozawa, K; Yagi, H; Hisamatsu, K; Ozawa, K; Yoshida, M; Akutsu, H

    2001-10-01

    The C2 proton signals of all (twelve) histidine residues of the TF1 beta subunit in the 1H-NMR spectrum have been identified and assigned by means of pH change experiments and site-directed substitution of histidines by glutamines. pH and ligand titration experiments were carried out for these signals. Furthermore, the ATPase activity of the reconstituted alpha3beta3gamma complex was examined for the twelve mutant beta subunits. Two of three conserved histidines, namely, His-119 and 324, were found to be important for expression of the ATPase activity. The former fixes the N-terminal domain to the central domain. His-324 is involved in the formation of the interface essential for the alpha3beta3gamma complex assembly. The other conserved residue, His-363, showed a very low pK(a), suggesting that it is involved in the tertiary structure formation. On the binding of a nucleotide, only the signals of His-173, 179, 200, and 324 shifted. These histidines are located in the hinge region, and its proximity, of the beta subunit. This observation provided further support for the conformational change of the beta monomer from the open to the closed form on the binding of a nucleotide proposed by us [Yagi et al. (1999) Biophys. J. 77, 2175-2183]. This conformational change should be one of the essential driving forces in the rotation of the alpha3beta3gamma complex.

  9. Preparation of protein samples for mass spectrometry and N-terminal sequencing.

    PubMed

    Glenn, Gary

    2014-01-01

    The preparation of protein samples for mass spectrometry and N-terminal sequencing is a key step in successfully identifying proteins. Mass spectrometry is a very sensitive technique, and as such, samples must be prepared carefully since they can be subject to contamination of the sample (e.g., due to incomplete subcellular fractionation or purification of a multiprotein complex), overwhelming of the sample by highly abundant proteins, and contamination from skin or hair (keratin can be a very common hit). One goal of sample preparation for mass spec is to reduce the complexity of the sample - in the example presented here, mitochondria are purified, solubilized, and fractionated by sucrose density gradient sedimentation prior to preparative 1D SDS-PAGE. It is important to verify the purity and integrity of the sample so that you can have confidence in the hits obtained. More protein is needed for N-terminal sequencing and ideally it should be purified to a single band when run on an SDS-polyacrylamide gel. The example presented here involves stably expressing a tagged protein in HEK293 cells and then isolating the protein by affinity purification and SDS-PAGE. © 2014 Elsevier Inc. All rights reserved.

  10. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    PubMed

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  11. An Asymmetry-to-Symmetry Switch in Signal Transmission by the Histidine Kinase Receptor for TMAO

    PubMed Central

    Moore, Jason O.; Hendrickson, Wayne A.

    2012-01-01

    Summary The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT(TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase. PMID:22483119

  12. An Asymmetry-to-Symmetry Switch in Signal Transmission by the Histidine Kinase Receptor for TMAO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Jason O.; Hendrickson, Wayne A.

    2012-06-28

    The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS, and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT (TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAOmore » binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase.« less

  13. An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO.

    PubMed

    Moore, Jason O; Hendrickson, Wayne A

    2012-04-04

    The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS, and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT (TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Protein-induced geometric constraints and charge transfer in bacteriochlorophyll-histidine complexes in LH2.

    PubMed

    Wawrzyniak, Piotr K; Alia, A; Schaap, Roland G; Heemskerk, Mattijs M; de Groot, Huub J M; Buda, Francesco

    2008-12-14

    Bacteriochlorophyll-histidine complexes are ubiquitous in nature and are essential structural motifs supporting the conversion of solar energy into chemically useful compounds in a wide range of photosynthesis processes. A systematic density functional theory study of the NMR chemical shifts for histidine and for bacteriochlorophyll-a-histidine complexes in the light-harvesting complex II (LH2) is performed using the BLYP functional in combination with the 6-311++G(d,p) basis set. The computed chemical shift patterns are consistent with available experimental data for positive and neutral(tau) (N(tau) protonated) crystalline histidines. The results for the bacteriochlorophyll-a-histidine complexes in LH2 provide evidence that the protein environment is stabilizing the histidine close to the Mg ion, thereby inducing a large charge transfer of approximately 0.5 electronic equivalent. Due to this protein-induced geometric constraint, the Mg-coordinated histidine in LH2 appears to be in a frustrated state very different from the formal neutral(pi) (N(pi) protonated) form. This finding could be important for the understanding of basic functional mechanisms involved in tuning the electronic properties and exciton coupling in LH2.

  15. Efficient heterologous expression and one-step purification of fully active c-terminal histidine-tagged uridine monophosphate kinase from Mycobacterium tuberculosis.

    PubMed

    Penpassakarn, Praweenuch; Chaiyen, Pimchai; Palittapongarnpim, Prasit

    2011-11-01

    Tuberculosis has long been recognized as one of the most significant public health problems. Finding novel antituberculous drugs is always a necessary approach for controlling the disease. Mycobacterium tuberculosis pyrH gene (Rv2883c) encodes for uridine monophosphate kinase (UMK), which is a key enzyme in the uridine nucleotide interconversion pathway. The enzyme is essential for M. tuberculosis to sustain growth and hence is a potential drug target. In this study, we have developed a rapid protocol for production and purification of M. tuberculosis UMK by cloning pyrH (Rv2883c) of M. tuberculosis H37Rv with the addition of 6-histidine residues to the C-terminus of the protein, and expressing in E. coli BL21-CodonPlus (DE3)-RIPL using an auto-induction medium. The enzyme was efficiently purified by a single-step TALON cobalt affinity chromatography with about 8 fold increase in specific activity, which was determined by a coupled assay with the pyruvate kinase and lactate dehydrogenase. The molecular mass of monomeric UMK was 28.2 kDa and that of the native enzyme was 217 kDa. The enzyme uses UMP as a substrate but not CMP and TMP and activity was enhanced by GTP. Measurements of enzyme kinetics revealed the kcat value of 7.6 +/- 0.4 U mg(-1) or 0.127 +/- 0.006 sec(-1).The protocol reported here can be used for expression of M. tuberculosis UMK in large quantity for formulating a high throughput target-based assay for screening anti-tuberculosis UMK compounds.

  16. Effect of dietary electrolytes and histidine on histidine metabolism and acid-base balance in rainbow trout (Salmo gairdneri)

    USGS Publications Warehouse

    Chiu, Y.N.; Austic, R.E.; Rumsey, G.L.

    1984-01-01

    1. Rainbow trout fingerlings were fed diets containing 1.2, 1.8 and 2.6% histidine and two mixtures of Na, K and Cl (Na + K - Cl = 0 or -200 meq/kgdiet) in a factorial design.2. Growth and efficiency of feed conversion were not affected by histidine in the diet when it contained the −200 meq/kg electrolyte mixture, but with the 0 meq/kg level, 2.6% histidine depressed both measures of response.3. Histidine increased plasma and muscle histidine levels, increased hepatic histidase activity, but did not affect hepatic histidine-pyruvate aminotransferase activity.4. Muscle-free histidine concentrations were markedly higher and lysine concentrations were lower in trout receiving 0 meq/kg than those receiving the −200 meq/kg electrolyte mixture.5. The electrolyte balance of the diet has a marked effect on the metabolism of histidine in trout.

  17. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of phosphorylation on hydrogen-bonding interactions of the active site histidine of the phosphocarrier protein HPr of the phosphoenolpyruvate-dependent phosphotransferase system determined by sup 15 N NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Dijk, A.A.; de Lange, L.C.M.; Robillard, G.T.

    1990-09-04

    The phosphocarrier protein HPr of the phosphoenolpyruvate-dependent sugar transport system of Escherichia coli can exist in a phosphorylated and a nonphosphorylated form. During phosphorylation, the phosphoryl group is carried on a histidine residue, His15. The hydrogen-bonding state of this histidine was examined with {sup 15}N NMR. For this purpose we selectively enriched the histidine imidazole nitrogens with {sup 15}N by supplying an E. coli histidine auxotroph with the amino acid labeled either at the N{delta}1 and N{epsilon}2 positions or at only the N{delta}1 position. {sup 15}N NMR spectra of two synthesized model compound, phosphoimidazole and phosphomethylimidazole, were also recorded. Themore » authors show that, prior to phosphorylation, the protonated His15 N{epsilon}2 is strongly hydrogen bonded, most probably to a carboxylate moiety. The H-bond should strengthen the nucleophilic character of the deprotonated N{delta}1, resulting in a good acceptor for the phosphoryl group. The hydrogen bond to the His15 N{delta}1 breaks upon phosphorylation of the residue. Implications of the H-bond structure for the mechanism of phosphorylation of HPr are discussed.« less

  19. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Ojima-Kato, Teruyo; Nagai, Satomi; Nakano, Hideo

    2017-05-01

    Despite advances in microbial protein expression systems, low production of proteins remains a great concern for some genes. Here we report that the insertion of a short peptide tag, consisting of Ser-Lys-Ile-Lys (SKIK), adjacent to the start codon of genes encoding difficult-to-express proteins can increase protein expression in Escherichia coli and Saccharomyces cerevisiae. Protein expression levels of a mouse monoclonal antibody (mAb), rabbit mAbs obtained from clonal B cells, and an artificially designed peptide were significantly increased simply by the addition of the SKIK tag in E. coli systems. In particular, a ∼30-fold increase in protein production was observed for the mouse mAb, and the artificially designed peptide band became detectable in sodium dodecyl sulfate-poly acrylamide gel electrophoresis after coomassie brilliant blue staining or western blotting on adding the SKIK tag. The tag also increased the expression of tagged proteins in S. cerevisiae and an E. coli cell-free protein synthesis system. Although the mechanism of high protein expression on addition of the tag is unclear, our findings offer great benefits to biotechnology research and industry. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. N-Terminal Domain of Turkey Pancreatic Lipase is Active on Long Chain Triacylglycerols and Stabilized by Colipase

    PubMed Central

    Bou Ali, Madiha; Karray, Aida; Gargouri, Youssef; Ben Ali, Yassine

    2013-01-01

    The gene encoding the TPL N-terminal domain (N-TPL), fused with a His6-tag, was cloned and expressed in Pichia pastoris, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. The recombinant protein was successfully expressed and secreted with an expression level of 5 mg/l of culture medium after 2 days of culture. The N-TPL was purified through a one-step Ni-NTA affinity column with a purification factor of approximately 23-fold. The purified N-TPL, with a molecular mass of 35 kDa, had a specific activity of 70 U/mg on tributyrin. Surprisingly, this domain was able to hydrolyse long chain TG with a specific activity of 11 U/mg using olive oil as substrate. This result was confirmed by TLC analysis showing that the N-TPL was able to hydrolyse insoluble substrates as olive oil. N-TPL was unstable at temperatures over 37°C and lost 70% of its activity at acid pH, after 5 min of incubation. The N-TPL exhibited non linear kinetics, indicating its rapid denaturation at the tributyrin–water interface. Colipase increased the N-TPL stability at the lipid-water interface, so the TPL N-terminal domain probably formed functional interactions with colipase despite the absence of the C-terminal domain. PMID:23977086

  1. Structural Analysis of the Dimerization Domain of the Human Estrogen Receptor and a Peptide Inhibitor of Dimerization

    DTIC Science & Technology

    1998-08-01

    communication). Various hER fragments were expressed in Esherichia coli (E. coli ) as glutathione-S-transferace (GST) fusion proteins, separated by...Using an E. coli expression vector, we successfully overexpressed hER[253-341] as a fusion protein with an N-terminal poly-histidine tag (Figure 1A...of hER fused to GST were expressed in E. coli , and they were then separated on SDS PAGE, and then transferred to a blotting membrane. The membrane was

  2. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    PubMed

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    PubMed Central

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  4. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway*

    PubMed Central

    Wei, Qiaoe; Ran, Tingting; Ma, Chencui; He, Jianhua; Xu, Dongqing; Wang, Weiwu

    2016-01-01

    Pyrroloquinoline quinone (PQQ) has received considerable attention due to its numerous important physiological functions. PqqA is a precursor peptide of PQQ with two conserved residues: glutamate and tyrosine. After linkage of the Cγ of glutamate and Cϵ of tyrosine by PqqE, these two residues are hypothesized to be cleaved from PqqA by PqqF. The linked glutamate and tyrosine residues are then used to synthesize PQQ. Here, we demonstrated that the pqqF gene is essential for PQQ biosynthesis as deletion of it eliminated the inhibition of prodigiosin production by glucose. We further determined the crystal structure of PqqF, which has a closed clamshell-like shape. The PqqF consists of two halves composed of an N- and a C-terminal lobe. The PqqF-N and PqqF-C lobes form a chamber with the volume of the cavity of ∼9400 Å3. The PqqF structure conforms to the general structure of inverzincins. Compared with the most thoroughly characterized inverzincin insulin-degrading enzyme, the size of PqqF chamber is markedly smaller, which may define the specificity for its substrate PqqA. Furthermore, the 14-amino acid-residue-long tag formed by the N-terminal tag from expression vector precisely protrudes into the counterpart active site; this N-terminal tag occupies the active site and stabilizes the closed, inactive conformation. His-48, His-52, Glu-129 and His-14 from the N-terminal tag coordinate with the zinc ion. Glu-51 acts as a base catalyst. The observed histidine residue-mediated inhibition may be applicable for the design of a peptide for the inhibition of M16 metalloproteases. PMID:27231346

  5. Functional efficacy of human recombinant FGF-2s tagged with (His)6 and (His-Asn)6 at the N- and C-termini in human gingival fibroblast and periodontal ligament-derived cells.

    PubMed

    Lee, Ji-Hye; Lee, Ji-Eun; Kang, Kyung-Jung; Jang, Young-Joo

    2017-07-01

    Fibroblast growth factor (FGF) is a multifunctional growth factor that induces cell proliferation, survival, migration, and differentiation in various cell types and tissues. With these biological functions, FGF-2 has been evaluated for clinical use in the regeneration of damaged tissues. The expression of hFGF-2 in Escherichia coli and a purification system using the immobilized metal affinity chromatography (IMAC) is well established to generate a continuous supply of FGF-2. Although hexa-histidine tag (H 6 ) is commonly used for IMAC purification, hexa-histidine-asparagine tag (HN 6 ) is also efficient for purification as it is easily exposed on the surface of the protein. In this study, four different tagging constructs of hFGF-2 based on tag positions and types (H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 ) were designed and expressed under the inducible T7 expression system in E. coli. The experimental conditions of expression and purification of each recombinant protein were optimized. The effective dosages of the recombinant proteins were determined based on the increase of cell proliferation in human gingival fibroblast. ED50s of H 6 -FGF2, FGF2-H 6 , HN 6 -FGF2, and FGF2-HN 6 were determined (4.42 ng/ml, 3.55 ng/ml, 3.54 ng/ml, and 4.14 ng/ml, respectively) and found to be comparable to commercial FGF-2 (3.67 ng/ml). All the recombinant hFGF-2s inhibit the osteogenic induction and mineralization in human periodontal ligament-derived cells. Our data suggested that biological activities of the recombinant hFGF-2 are irrelevant to types and positions of tags, but may have an influence on the expression efficiency and solubility. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Genome-wide transcription analysis of histidine-related cataract in Atlantic salmon (Salmo salar L)

    PubMed Central

    Waagbø, Rune; Breck, Olav; Stavrum, Anne-Kristin; Petersen, Kjell; Olsvik, Pål A.

    2009-01-01

    Purpose Elevated levels of dietary histidine have previously been shown to prevent or mitigate cataract formation in farmed Atlantic salmon (Salmo salar L). The aim of this study was to shed light on the mechanisms by which histidine acts. Applying microarray analysis to the lens transcriptome, we screened for differentially expressed genes in search for a model explaining cataract development in Atlantic salmon and possible markers for early cataract diagnosis. Methods Adult Atlantic salmon (1.7 kg) were fed three standard commercial salmon diets only differing in the histidine content (9, 13, and 17 g histidine/kg diet) for four months. Individual cataract scores for both eyes were assessed by slit-lamp biomicroscopy. Lens N-acetyl histidine contents were measured by high performance liquid chromatography (HPLC). Total RNA extracted from whole lenses was analyzed using the GRASP 16K salmonid microarray. The microarray data were analyzed using J-Express Pro 2.7 and validated by quantitative real-time polymerase chain reaction (qRT–PCR). Results Fish developed cataracts with different severity in response to dietary histidine levels. Lens N-acetyl histidine contents reflected the dietary histidine levels and were negatively correlated to cataract scores. Significance analysis of microarrays (SAM) revealed 248 significantly up-regulated transcripts and 266 significantly down-regulated transcripts in fish that were fed a low level of histidine compared to fish fed a higher histidine level. Among the differentially expressed transcripts were metallothionein A and B as well as transcripts involved in lipid metabolism, carbohydrate metabolism, regulation of ion homeostasis, and protein degradation. Hierarchical clustering and correspondence analysis plot confirmed differences in gene expression between the feeding groups. The differentially expressed genes could be categorized as “early” and “late” responsive according to their expression pattern relative to

  7. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... free histidine (an amino acid) in plasma and urine. Histidine measurements are used in the diagnosis and treatment of hereditary histidinemia characterized by excess histidine in the blood and urine...

  8. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... free histidine (an amino acid) in plasma and urine. Histidine measurements are used in the diagnosis and treatment of hereditary histidinemia characterized by excess histidine in the blood and urine...

  9. Diethylpyrocarbonate inhibition of vacuolar H+-pyrophosphatase possibly involves a histidine residue.

    PubMed

    Hsiao, Yi Yuong; Van, Ru Chuan; Hung, Hsiao Hui; Pan, Rong Long

    2002-01-01

    Vacuolar proton pumping pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PPi hydrolysis. A histidine-specific modifier, diethylpyrocarbonate (DEPC), could substantially inhibit enzymic activity and H+-translocation of vacuolar H+-PPase in a concentration-dependent manner. Absorbance of vacuolar H+-PPase at 240 nm was increased upon incubation with DEPC, demonstrating that an N-carbethoxyhistidine moiety was probably formed. On the other hand, hydroxylamine, a reagent that can deacylate N-carbethoxyhistidine, could reverse the absorption change at 240 nm and partially restore PPi hydrolysis activity as well. The pKa of modified residues of the enzyme was determined to be 6.4, a value close to that of histidine. Thus, we speculate that inhibition of vacuolar H+-PPase by DEPC possibly could be attributed to the modification of histidyl residues on the enzyme. Furthermore, inhibition of vacuolar H+-PPase by DEPC follows pseudo-first-order rate kinetics. A reaction order of 0.85 was calculated from a double logarithmic plot of the apparent reaction constant against DEPC concentration, suggesting that the modification of one single histidine residue on the enzyme suffices to inhibit vacuolar H+-PPase. Inhibition of vacuolar H+-PPase by DEPC changes Vmax but not Km values. Moreover, DEPC inhibition of vacuolar H+-PPase could be substantially protected against by its physiological substrate, Mg2+-PPi. These results indicated that DEPC specifically competes with the substrate at the active site and the DEPC-labeled histidine residue might locate in or near the catalytic domain of the enzyme. Besides, pretreatment of the enzyme with N-ethylmaleimide decreased the degree of subsequent labeling of H+-PPase by DEPC. Taken together, we suggest that vacuolar H+-PPase likely contains a substrate-protectable histidine residue contributing to the inhibition of its activity by

  10. Engineering the N-terminal end of CelA results in improved performance and growth of Caldicellulosiruptor bescii on crystalline cellulose

    DOE PAGES

    Kim, Sun -Ki; Chung, Daehwan; Himmel, Michael E.; ...

    2016-12-26

    Here, CelA is the most abundant enzyme secreted by Caldicellulosiruptor bescii and has been shown to outperform mixtures of commercially available exo- and endoglucanases in vitro. CelA contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. Here, repeated aspartate residues were introduced into the N-terminal ends of CelA GH9 and GH48 domains to improve secretion efficiency and/or catalytic efficiency of CelA. Among several constructs, the highest activity on carboxymethylcellulose (CMC), 0.81 ± 0.03 mg/mL was observed for the C.more » bescii strain containing CelA with 5-aspartate tag at the N-terminal end of GH9 domain – an 82% increase over wild type CelA. In addition, Expression of CelA with N-terminal repeated aspartate residues in C. bescii results in a dramatic increase in its ability to grow on Avicel.« less

  11. The N-terminal domain of a tick evasin is critical for chemokine binding and neutralization and confers specific binding activity to other evasins

    PubMed Central

    Eaton, James R. O.; Alenazi, Yara; Singh, Kamayani; Davies, Graham; Geis-Asteggiante, Lucia; Kessler, Benedikt; Robinson, Carol V.; Kawamura, Akane; Bhattacharya, Shoumo

    2018-01-01

    Tick chemokine-binding proteins (evasins) are an emerging class of biologicals that target multiple chemokines and show anti-inflammatory activities in preclinical disease models. Using yeast surface display, we identified a CCL8-binding evasin, P672, from the tick Rhipicephalus pulchellus. We found that P672 binds CCL8 and eight other CC-class chemokines with a Kd < 10 nm and four other CC chemokines with a Kd between 10 and 100 nm and neutralizes CCL3, CCL3L1, and CCL8 with an IC50 < 10 nm. The CC chemokine–binding profile was distinct from that of evasin 1 (EVA1), which does not bind CCL8. We also show that P672's binding activity can be markedly modulated by the location of a StrepII-His purification tag. Combining native MS and bottom-up proteomics, we further demonstrated that P672 is glycosylated and forms a 1:1 complex with CCL8, disrupting CCL8 homodimerization. Homology modeling of P672 using the crystal structure of the EVA1 and CCL3 complex as template suggested that 44 N-terminal residues of P672 form most of the contacts with CCL8. Replacing the 29 N-terminal residues of EVA1 with the 44 N-terminal residues of P672 enabled this hybrid evasin to bind and neutralize CCL8, indicating that the CCL8-binding properties of P672 reside, in part, in its N-terminal residues. This study shows that the function of certain tick evasins can be manipulated simply by adding a tag. We conclude that homology modeling helps identify regions with transportable chemokine-binding functions within evasins, which can be used to construct hybrid evasins with altered properties. PMID:29487134

  12. Crystal Structure and Function of PqqF Protein in the Pyrroloquinoline Quinone Biosynthetic Pathway.

    PubMed

    Wei, Qiaoe; Ran, Tingting; Ma, Chencui; He, Jianhua; Xu, Dongqing; Wang, Weiwu

    2016-07-22

    Pyrroloquinoline quinone (PQQ) has received considerable attention due to its numerous important physiological functions. PqqA is a precursor peptide of PQQ with two conserved residues: glutamate and tyrosine. After linkage of the Cγ of glutamate and Cϵ of tyrosine by PqqE, these two residues are hypothesized to be cleaved from PqqA by PqqF. The linked glutamate and tyrosine residues are then used to synthesize PQQ. Here, we demonstrated that the pqqF gene is essential for PQQ biosynthesis as deletion of it eliminated the inhibition of prodigiosin production by glucose. We further determined the crystal structure of PqqF, which has a closed clamshell-like shape. The PqqF consists of two halves composed of an N- and a C-terminal lobe. The PqqF-N and PqqF-C lobes form a chamber with the volume of the cavity of ∼9400 Å(3) The PqqF structure conforms to the general structure of inverzincins. Compared with the most thoroughly characterized inverzincin insulin-degrading enzyme, the size of PqqF chamber is markedly smaller, which may define the specificity for its substrate PqqA. Furthermore, the 14-amino acid-residue-long tag formed by the N-terminal tag from expression vector precisely protrudes into the counterpart active site; this N-terminal tag occupies the active site and stabilizes the closed, inactive conformation. His-48, His-52, Glu-129 and His-14 from the N-terminal tag coordinate with the zinc ion. Glu-51 acts as a base catalyst. The observed histidine residue-mediated inhibition may be applicable for the design of a peptide for the inhibition of M16 metalloproteases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing ¹⁸O-labeling and mass spectrometry.

    PubMed

    Liu, Min; Zhang, Zhongqi; Cheetham, Janet; Ren, Da; Zhou, Zhaohui Sunny

    2014-05-20

    A novel photo-oxidative cross-linking between two histidines (His-His) has been discovered and characterized in an IgG1 antibody via the workflow of XChem-Finder, (18)O labeling and mass spectrometry (Anal. Chem. 2013, 85, 5900-5908). Its structure was elucidated by peptide mapping with multiple proteases with various specificities (e.g., trypsin, Asp-N, and GluC combined with trypsin or Asp-N) and mass spectrometry with complementary fragmentation modes (e.g., collision-induced dissociation (CID) and electron-transfer dissociation (ETD)). Our data indicated that cross-linking occurred across two identical conserved histidine residues on two separate heavy chains in the hinge region, which is highly flexible and solvent accessible. On the basis of model studies with short peptides, it has been proposed that singlet oxygen reacts with the histidyl imidazole ring to form an endoperoxide and then converted to the 2-oxo-histidine (2-oxo-His) and His+32 intermediates, the latter is subject to a nucleophilic attack by the unmodified histidine; and finally, elimination of a water molecule leads to the final adduct with a net mass increase of 14 Da. Our findings are consistent with this mechanism. Successful discovery of cross-linked His-His again demonstrates the broad applicability and utility of our XChem-Finder approach in the discovery and elucidation of protein cross-linking, particularly without a priori knowledge of the chemical nature and site of cross-linking.

  14. The multiple roles of histidine in protein interactions

    PubMed Central

    2013-01-01

    Background Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. Results Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in neutral form (His), or plays the cation role in protonated form (His+); (2) π-π stacking interactions between histidine and other aromatic amino acids; (3) Hydrogen-π interactions between histidine and other aromatic amino acids; (4) Coordinate interactions between histidine and metallic cations. The energies of π-π stacking interactions and hydrogen-π interactions are calculated using CCSD/6-31+G(d,p). The energies of cation-π interactions and coordinate interactions are calculated using B3LYP/6-31+G(d,p) method and adjusted by empirical method for dispersion energy. Conclusions The coordinate interactions between histidine and metallic cations are the strongest one acting in broad range, followed by the cation-π, hydrogen-π, and π-π stacking interactions. When the histidine is in neutral form, the cation-π interactions are attractive; when it is protonated (His+), the interactions turn to repulsive. The two protonation forms (and pKa values) of histidine are reversibly switched by the attractive and repulsive cation-π interactions. In proteins the π-π stacking interaction between neutral histidine and aromatic amino acids (Phe, Tyr, Trp) are in the range from -3.0 to -4.0 kcal/mol, significantly larger than the van der Waals energies. PMID:23452343

  15. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... free histidine (an amino acid) in plasma and urine. Histidine measurements are used in the diagnosis... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Histidine test system. 862.1375 Section 862.1375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  16. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... free histidine (an amino acid) in plasma and urine. Histidine measurements are used in the diagnosis... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Histidine test system. 862.1375 Section 862.1375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  17. Proteins in Load-Bearing Junctions: The Histidine-Rich Metal-Binding Protein of Mussel Byssus†,‡

    PubMed Central

    Zhao, Hua; Waite, J. Herbert

    2007-01-01

    Building complex load-bearing scaffolds depends on effective ways of joining functionally different biomacromolecules. The junction between collagen fibers and foamlike adhesive plaques in mussel byssus is robust despite the strikingly dissimilar connected structures. mcfp-4, the matrix protein from this junction, and its presecreted form from the foot tissue of Mytilus californianus were isolated and characterized. mcfp-4 has a mass of ∼93 kDa as determined by MALDI-TOF mass spectrometry. Its composition is dominated by histidine (22 mol %), but levels of lysine, arginine, and aspartate are also significant. A small amount of 3,4-dihydroxyphenyl-L-alanine (2 mol %) can be detected by amino acid analysis and redox cycling assays. The cDNA-deduced sequence of mcfp-4 reveals multiple variants with highly repetitive internal structures, including ∼36 tandemly repeated His-rich decapeptides (e.g., HVHTHRVLHK) in the N-terminal half and 16 somewhat more degenerate aspartate-rich undecapeptides (e.g., DDHVNDIAQTA) in the C-terminal half. Incubation of a synthetic peptide based on the His-rich decapeptide with Fe3+, Co2+, Ni2+, Zn2+, and Cu2+ indicates that only Cu is strongly bound. MALDI-TOF mass spectrometry of the peptide modified with diethyl pyrocarbonate before and after Cu binding suggests that histidine residues dominate Cu binding. In contrast, the aspartate-rich undecapeptides preferentially bind Ca2+. mcfp-4 is strategically positioned to function as a macromolecular bifunctional linker by using metal ions to couple its own His-rich domains to the His-rich termini of the preCOLs. Ca2+ may mediate coupling of the C-terminus to other calcium-binding plaque proteins. PMID:17115717

  18. Neighbor-Directed Histidine N (s)–Alkylation: A Route to Imidazolium-Containing Phosphopeptide Macrocycles-Biopolymers | Center for Cancer Research

    Cancer.gov

    Our recently discovered, selective, on-resin route to N(s)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. Interestingly, these cationic moieties subsequently

  19. Carboplatin binding to histidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanley, Simon W. M.; Diederichs, Kay; Kroon-Batenburg, Loes M. J.

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the brominemore » form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are

  20. Crystal Structure of a Four-Layer Aggregate of Engineered TMV CP Implies the Importance of Terminal Residues for Oligomer Assembly

    PubMed Central

    Li, Xiangyang; Song, Baoan; Chen, Xi; Wang, Zhenchao; Zeng, Mengjiao; Yu, Dandan; Hu, Deyu; Chen, Zhuo; Jin, Linhong; Yang, Song; Yang, Caiguang; Chen, Baoen

    2013-01-01

    Background Crystal structures of the tobacco mosaic virus (TMV) coat protein (CP) in its helical and disk conformations have previously been determined at the atomic level. For the helical structure, interactions of proteins and nucleic acids in the main chains were clearly observed; however, the conformation of residues at the C-terminus was flexible and disordered. For the four-layer aggregate disk structure, interactions of the main chain residues could only be observed through water–mediated hydrogen bonding with protein residues. In this study, the effects of the C-terminal peptides on the interactions of TMV CP were investigated by crystal structure determination. Methodology/Principal Findings The crystal structure of a genetically engineered TMV CP was resolved at 3.06 Å. For the genetically engineered TMV CP, a six-histidine (His) tag was introduced at the N-terminus, and the C-terminal residues 155 to 158 were truncated (N-His-TMV CP19). Overall, N-His-TMV CP19 protein self-assembled into the four-layer aggregate form. The conformations of residues Gln36, Thr59, Asp115 and Arg134 were carefully analyzed in the high radius and low radius regions of N-His-TMV CP19, which were found to be significantly different from those observed previously for the helical and four-layer aggregate forms. In addition, the aggregation of the N-His-TMV CP19 layers was found to primarily be mediated through direct hydrogen-bonding. Notably, this engineered protein also can package RNA effectively and assemble into an infectious virus particle. Conclusion The terminal sequence of amino acids influences the conformation and interactions of the four-layer aggregate. Direct protein–protein interactions are observed in the major overlap region when residues Gly155 to Thr158 at the C-terminus are truncated. This engineered TMV CP is reassembled by direct protein–protein interaction and maintains the normal function of the four-layer aggregate of TMV CP in the presence of RNA

  1. The protein histidine phosphatase LHPP is a tumour suppressor.

    PubMed

    Hindupur, Sravanth K; Colombi, Marco; Fuhs, Stephen R; Matter, Matthias S; Guri, Yakir; Adam, Kevin; Cornu, Marion; Piscuoglio, Salvatore; Ng, Charlotte K Y; Betz, Charles; Liko, Dritan; Quagliata, Luca; Moes, Suzette; Jenoe, Paul; Terracciano, Luigi M; Heim, Markus H; Hunter, Tony; Hall, Michael N

    2018-03-29

    Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase. Consistent with these observations, global histidine phosphorylation was significantly upregulated in the liver tumours. Sustained, hepatic expression of LHPP in the hepatocellular carcinoma mouse model reduced tumour burden and prevented the loss of liver function. Finally, in patients with hepatocellular carcinoma, low expression of LHPP correlated with increased tumour severity and reduced overall survival. Thus, LHPP is a protein histidine phosphatase and tumour suppressor, suggesting that deregulated histidine phosphorylation is oncogenic.

  2. Insight into the coordination and the binding sites of Cu(2+) by the histidyl-6-tag using experimental and computational tools.

    PubMed

    Watly, Joanna; Simonovsky, Eyal; Wieczorek, Robert; Barbosa, Nuno; Miller, Yifat; Kozlowski, Henryk

    2014-07-07

    His-tags are specific sequences containing six to nine subsequent histydyl residues, and they are used for purification of recombinant proteins by use of IMAC chromatography. Such polyhistydyl tags, often used in molecular biology, can be also found in nature. Proteins containing histidine-rich domains play a critical role in many life functions in both prokaryote and eukaryote organisms. Binding mode and the thermodynamic properties of the system depend on the specific metal ion and the histidine sequence. Despite the wide application of the His-tag for purification of proteins, little is known about the properties of metal-binding to such tag domains. This inspired us to undertake detailed studies on the coordination of Cu(2+) ion to hexa-His-tag. Experiments were performed using the potentiometric, UV-visible, CD, and EPR techniques. In addition, molecular dynamics (MD) simulations and density functional theory (DFT) calculations were applied. The experimental studies have shown that the Cu(2+) ion binds most likely to two imidazoles and one, two, or three amide nitrogens, depending on the pH. The structures and stabilities of the complexes for the Cu(2+)-Ac-(His)6-NH2 system using experimental and computational tools were established. Polymorphic binding states are suggested, with a possibility of the formation of α-helix structure induced by metal ion coordination. Metal ion is bound to various pairs of imidazole moieties derived from the tag with different efficiencies. The coordination sphere around the metal ion is completed by molecules of water. Finally, the Cu(2+) binding by Ac-(His)6-NH2 is much more efficient compared to other multihistidine protein domains.

  3. Biological functions of histidine-dipeptides and metabolic syndrome.

    PubMed

    Song, Byeng Chun; Joo, Nam-Seok; Aldini, Giancarlo; Yeum, Kyung-Jin

    2014-02-01

    The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans.

  4. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  5. Molecular switch-modulated fluorescent copper nanoclusters for selective and sensitive detection of histidine and cysteine.

    PubMed

    Gu, Zefeng; Cao, Zhijuan

    2018-06-07

    A novel assay for histidine and cysteine has been constructed based on modulation of fluorescent copper nanoclusters (CuNCs) by molecular switches. In our previous work, a dumbbell DNA template with a poly-T (thymine) loop has been developed as an excellent template for the formation of strongly fluorescent CuNCs. Herein, for the first time, we established this biosensor for sensing two amino acids by using dumbbell DNA-templated CuNCs as the single probe. Among 20 natural amino acids, only histidine and cysteine can selectively quench fluorescence emission of CuNCs, because of the specific interaction of these compounds with copper ions. Furthermore, by using nickel ions (Ni 2+ ) and N-ethylmaleimide as the masking agents for histidine and cysteine respectively, an integrated logic gate system was designed by coupling with the fluorescent CuNCs and demonstrated selective and sensitive detection of cysteine and histidine. Under optimal conditions, cysteine can be detected in the concentration ranges of 0.01-10.0 μM with the detection limit (DL) of as low as 98 pM, while histidine can be detected in the ranges of 0.05-40.0 μM with DL of 1.6 nM. In addition, histidine and cysteine can be observed with the naked eye under a hand-held UV lamp (DL, 50 nM), which can be easily adapted to automated high-throughput screening. Finally, the strategy has been successfully utilized for biological fluids. The proposed system can be conducted in homogeneous solution, eliminating the need for organic cosolvents, separation processes of nanomaterials, or any chemical modifications. Overall, the assay provides an alternative method for simultaneous detection of cysteine and histidine by taking the advantages of high speed, no label and enzyme requirement, and good sensitivity and specificity, and will satisfy the great demand for determination of amino acids in fields such as food processing, biochemistry, pharmaceuticals, and clinical analysis. Graphical abstract.

  6. Quantification of Cell-Penetrating Peptide Associated with Polymeric Nanoparticles Using Isobaric-Tagging and MALDI-TOF MS/MS

    NASA Astrophysics Data System (ADS)

    Chiu, Jasper Z. S.; Tucker, Ian G.; McDowell, Arlene

    2016-11-01

    High sensitivity quantification of the putative cell-penetrating peptide di-arginine-histidine (RRH) associated with poly (ethyl-cyanoacrylate) (PECA) nanoparticles was achieved without analyte separation, using a novel application of isobaric-tagging and high matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometry. Isobaric-tagging reaction equilibrium was reached after 5 min, with 90% or greater RRH peptide successfully isobaric-tagged after 60 min. The accuracy was greater than 90%, which indicates good reliability of using isobaric-tagged RRH as an internal standard for RRH quantification. The sample intra- and inter-spot coefficients of variations were less than 11%, which indicate good repeatability. The majority of RRH peptides in the nanoparticle formulation were physically associated with the nanoparticles (46.6%), whereas only a small fraction remained unassociated (13.7%). The unrecovered RRH peptide (~40%) was assumed to be covalently associated with PECA nanoparticles.

  7. N-terminal nesprin-2 variants regulate β-catenin signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiuping; Minaisah, Rose-Marie; Ferraro, Elisa

    2016-07-15

    The spatial compartmentalisation of biochemical signalling pathways is essential for cell function. Nesprins are a multi-isomeric family of proteins that have emerged as signalling scaffolds, herein, we investigate the localisation and function of novel nesprin-2 N-terminal variants. We show that these nesprin-2 variants display cell specific distribution and reside in both the cytoplasm and nucleus. Immunofluorescence microscopy revealed that nesprin-2 N-terminal variants colocalised with β-catenin at cell-cell junctions in U2OS cells. Calcium switch assays demonstrated that nesprin-2 and β-catenin are lost from cell-cell junctions in low calcium conditions whereas emerin localisation at the NE remained unaltered, furthermore, an N-terminal fragmentmore » of nesprin-2 was sufficient for cell-cell junction localisation and interacted with β-catenin. Disruption of these N-terminal nesprin-2 variants, using siRNA depletion resulted in loss of β-catenin from cell-cell junctions, nuclear accumulation of active β-catenin and augmented β-catenin transcriptional activity. Importantly, we show that U2OS cells lack nesprin-2 giant, suggesting that the N-terminal nesprin-2 variants regulate β-catenin signalling independently of the NE. Together, these data identify N-terminal nesprin-2 variants as novel regulators of β-catenin signalling that tether β-catenin to cell-cell contacts to inhibit β-catenin transcriptional activity. - Highlights: • N-terminal nesprin-2 variants display cell specific expression patterns. • N-terminal spectrin repeats of nesprin-2 interact with β-catenin. • N-terminal nesprin-2 variants scaffold β-catenin at cell-cell junctions.. • Nesprin-2 variants play multiple roles in β-catenin signalling.« less

  8. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    NASA Technical Reports Server (NTRS)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  9. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans

    PubMed Central

    Song, Xuezheng; Johns, Brian A.; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F.; Cummings, Richard D.

    2014-01-01

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or re-tagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker. PMID:23992636

  11. Hydrogen-bonded ring closing and opening of protonated methanol clusters H(+)(CH3OH)(n) (n = 4-8) with the inert gas tagging.

    PubMed

    Li, Ying-Cheng; Hamashima, Toru; Yamazaki, Ryoko; Kobayashi, Tomohiro; Suzuki, Yuta; Mizuse, Kenta; Fujii, Asuka; Kuo, Jer-Lai

    2015-09-14

    The preferential hydrogen bond (H-bond) structures of protonated methanol clusters, H(+)(MeOH)n, in the size range of n = 4-8, were studied by size-selective infrared (IR) spectroscopy in conjunction with density functional theory calculations. The IR spectra of bare clusters were compared with those with the inert gas tagging by Ar, Ne, and N2, and remarkable changes in the isomer distribution with the tagging were found for clusters with n≥ 5. The temperature dependence of the isomer distribution of the clusters was calculated by the quantum harmonic superposition approach. The observed spectral changes with the tagging were well interpreted by the fall of the cluster temperature with the tagging, which causes the transfer of the isomer distribution from the open and flexible H-bond network types to the closed and rigid ones. Anomalous isomer distribution with the tagging, which has been recently found for protonated water clusters, was also found for H(+)(MeOH)5. The origin of the anomaly was examined by the experiments on its carrier gas dependence.

  12. Diagnostic potential of monoclonal antibodies developed against C-terminal polypeptide of P. falciparum Histidine Rich Protein2 (PfHRP2) in malaria infected patients from India.

    PubMed

    Verma, Reena; Chandy, Sara; Jayaprakash, N S; Manoharan, Anand; Vijayalakshmi, M A; Venkataraman, Krishnan

    2017-09-01

    Malaria, caused by Plasmodium falciparum has become a major health burden in most tropical and developing countries. P. falciparum Histidine Rich Protein2 (PfHRP2), which exhibits polymorphism, is being widely used as a diagnostic marker. Recently, we reported the development of monoclonal antibodies against conserved C-terminal 105 amino acids of PfHRP2 for malaria diagnosis. Now, in this study, the diagnostic performance of two anti-C-terminal PfHRP2 mAbs (b10c1 and Aa3c10) were evaluated with 100 blood samples from clinically identified malaria patients from seven different geographical centers in India. Sandwich ELISA, polymerase chain reaction (PCR) and statistical tools were used for the evaluation of the performance of the anti-C-terminal PfHRP2 mAb. These mAbs detected P. falciparum (mean OD value 1.525 ± 0.56) malaria with great accuracy with no cross reactivity with P. Plasmodium vivax (mean OD value 0.285 ± 0.051) and normal healthy control samples (mean OD value 0.185 ± 0.06) in Sandwich ELISA assay. The samples which were RDT negative for P. falciparum were also reactive in Sandwich ELISA with mean OD value of (1.303 ± 0.532). The amount of PfHRP2 antigen in the patients' blood sample was quantified and categorized into three distinct groups having the HRP2 antigen in high, intermediate and low amounts. The presence of Pfhrp2 gene was also confirmed by PCR analysis. The sensitivity and specificity of the mAb were found to be 95 and 96% respectively. These data strongly suggest that the anti-C-terminal PfHRP2 mAbs b10c1 and Aa3c10 have merits for improvising the existing malarial diagnostics.

  13. N-terminal RASSF family

    PubMed Central

    Underhill-Day, Nicholas; Hill, Victoria

    2011-01-01

    Epigenetic inactivation of tumor suppressor genes is a hallmark of cancer development. RASSF1A (Ras Association Domain Family 1 isoform A) tumor suppressor gene is one of the most frequently epigenetically inactivated genes in a wide range of adult and children's cancers and could be a useful molecular marker for cancer diagnosis and prognosis. RASSF1A has been shown to play a role in several biological pathways, including cell cycle control, apoptosis and microtubule dynamics. RASSF2, RASSF4, RASSF5 and RASSF6 are also epigenetically inactivated in cancer but have not been analyzed in as wide a range of malignancies as RASSF1A. Recently four new members of the RASSF family were identified these are termed N-Terminal RASSF genes (RASSF7–RASSF10). Molecular and biological analysis of these newer members has just begun. This review highlights what we currently know in respects to structural, functional and molecular properties of the N-Terminal RASSFs. PMID:21116130

  14. Radio-tracking manatees from land and space: tag design, implementation, and lessons learned from long-term study

    USGS Publications Warehouse

    Deutsch, C.J.; Bonde, R.K.; Reid, J.P.

    1998-01-01

    West Indian manatees (Trichechus manatus) were tracked along the Atlantic coast of Florida and Georgia (N = 83 manatees, n = 439 tag deployments, 1986-1996) and in eastern Puerto Rico (N = 8, n = 43, 1992-1996) using conventional and satellite-based radio-telemetry systems. A floating radio-tag, attached by a flexible tether to a padded belt around the base of the tail, enabled us to track manatees in saltwater environments. The tag incorporated VHF (very high frequency) and ultrasonic transmitters for field tracking and tag recovery, and an Argos satellite-monitored transmitter for remote tracking. We located each animal in the field about twice per week, received more than 60 000 good-quality Argos locations, and recovered tags in over 90% of deployments. The tag was designed to detach from the belt when entangled to prevent injury or drowning, and this often led to premature termination of tracking bouts. We had considerable success, however, in retagging belted manatees without recapture (97% of 392 retagging events). Most individuals were radio-tagged more than once (median = 3.0, maximum = 43) for a median total duration of 7.5 months (maximum = 6.8 yr). Data obtained through Argos have been valuable in addressing questions relating to long-distance movements, site fidelity, and identification of high-use areas. Fine-scale analyses of manatee habitat use and movements may require restricting the data set to the highest location quality or developing new analytical techniques to incorporate locational error. Field tracking provided useful ancillary data on life-history parameters, but sample sizes were small and survival estimates imprecise. Modification of the existing tag design to include Global Positioning System (GPS) functionality, with its finer spatial and temporal resolution, will offer new opportunities to address critical research and management problems facing this endangered species.

  15. Bidirectional immobilization of affinity-tagged cytochrome c on electrode surfaces.

    PubMed

    Schröper, Florian; Baumann, Arnd; Offenhäusser, Andreas; Mayer, Dirk

    2010-08-07

    Here, we report a new strategy for the directed bivalent immobilization of cyt c on or between gold electrodes. C-terminal modification with cys- or his-tag did not affect the functional integrity of the protein. In combination with electrostatic protein binding, these tags enable a bifunctional immobilization between two electrodes or alternatively one electrode and interacting enzymes.

  16. Barium Tagging n Solid Xenon for nEXO Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Walton, Tim; Chambers, Chris; Craycraft, Adam; Fairbank, William; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Since the daughter of this decay is barium (Ba136), detecting the presence of Ba136 at a decay site (called ``barium tagging'') would provide strong rejection of backgrounds in the search for this decay. This would involve detecting a single barium ion from within a macroscopic volume of liquid xenon. This technique may be available for a second phase of the nEXO detector and sensitivity beyond the inverted hierarchy to neutrino oscillations. Several methods of barium tagging are being explored by the nEXO collaboration, but here we present a method of trapping the barium ion/atom (it may neutralize) in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Our group at CSU has been studying the fluorescence of Ba in SXe by laser excitation, in order to ultimately detect a single Ba +/Ba in a SXe sample. We present studies of fluorescence signals, as well as recent results on imaging small numbers of Ba atoms in SXe, in a focused laser region. This work is supported by grants from the National Science Foundation and the Department of Energy.

  17. Novel cleavage of reductively aminated glycan-tags by N-bromosuccinimide to regenerate free, reducing glycans.

    PubMed

    Song, Xuezheng; Johns, Brian A; Ju, Hong; Lasanajak, Yi; Zhao, Chunmei; Smith, David F; Cummings, Richard D

    2013-11-15

    Glycans that are fluorescently tagged by reductive amination have been useful for functional glycomic studies. However, the existing tags can introduce unwanted properties to the glycans and complicate structural and functional studies. Here, we describe a facile method using N-bromosuccinimide (NBS) to remove the tags and efficiently regenerate free reducing glycans. The regenerated free reducing glycans can be easily analyzed by routine mass spectrometry or retagged with different tags for further studies. This new method can be used to efficiently remove a variety of fluorescent tags installed by reductive amination, including 2-aminobenzoic acid and 2-aminopyridine. NBS treatment essentially transforms the commonly used 2-aminobenzoic linkage to a cleavable linkage. It can be used to cleave printed glycans from microarrays and cleave neoglycopeptides containing a 2-aminobenzoic linker.

  18. A highly sensitive luminescent probe based on Ru(II)-bipyridine complex for Cu2+, l-Histidine detection and cellular imaging.

    PubMed

    Zhang, Shi-Ting; Li, Panpan; Liao, Caiyun; Luo, Tingting; Kou, Xingming; Xiao, Dan

    2018-05-02

    A ruthenium(II) bipyridyl complex conjugated with functionalized Schiff base (RuA) has been synthesized and functioned as a luminescent probe. The luminescence of RuA was greatly quenched by Cu 2+ due to its molecular coordination with paramagnetic Cu 2+ . Subsequently, the addition of l-Histidine can turn on the luminescence of the RuA-Cu(II) ensemble, which can be attributed to the replacement of RuA in RuA-Cu(II) ensemble by l-Histidine. On the basis of the quenching and recovery of the luminescence of RuA, we proposed a rapid and highly sensitive on-off-on luminescent assay for sensing Cu 2+ and l-Histidine in aqueous solution. Under the optimal conditions, Cu 2+ and l-Histidine can be detected in the concentration range of 5 nM-9.0 μM and 50 nM-30 μM, respectively, and the corresponding detection limits were calculated to be 0.35 and 0.44 nM (S/N=3), separately. The proposed luminescent probe has been successfully utilized for the analysis of Cu 2+ and l-Histidine in real samples (drinking water and biological fluids). Furthermore, the probe revealed good photostability, low cytotoxicity and excellent permeability, making it a suitable candidate for cell imaging and labeling in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    PubMed

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. TAGS 85/2N RTG Power for Viking Lander Capsule

    DOE R&D Accomplishments Database

    1969-08-01

    Results of studies performed by Isotopes, Inc., Nuclear Systems Division, to optimize and baseline a TAGS 85/2N RTG for the Viking Lander Capsule prime electrical power source are presented. These studies generally encompassed identifying the Viking RTG mission profile and design requirements, and establishing a baseline RTG design consistent with these requirements.

  1. Processing, Assembly and Localization of a Bacillus anthracis Spore Protein

    DTIC Science & Technology

    2010-01-01

    phage transduction, using the CP51 phage as described by Thorne (1968). All mutations were confirmed by PCR analysis (Supplementary Table S1). Protein...with End-It (Epicentre) and self-ligated, creating pKH-KSM4. The region between the T7 terminator and T7 promoter of pET23A (EMD Table 1. Strains and...represent full-length BxpA, we analysed the electrophoretic behaviour of a full-length, histidine-tagged and T7 -tagged version of BxpA overproduced in E

  2. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity

    USDA-ARS?s Scientific Manuscript database

    Here, we engineered two FMD viruses and histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co2...

  3. Mussel-inspired histidine-based transient network metal coordination hydrogels

    PubMed Central

    Fullenkamp, Dominic E.; He, Lihong; Barrett, Devin G.; Burghardt, Wesley R.; Messersmith, Phillip B.

    2013-01-01

    Transient network hydrogels cross-linked through histidine-divalent cation coordination bonds were studied by conventional rheologic methods using histidine-modified star poly(ethylene glycol) (PEG) polymers. These materials were inspired by the mussel, which is thought to use histidine-metal coordination bonds to impart self-healing properties in the mussel byssal thread. Hydrogel viscoelastic mechanical properties were studied as a function of metal, pH, concentration, and ionic strength. The equilibrium metal-binding constants were determined by dilute solution potentiometric titration of monofunctional histidine-modified methoxy-PEG and were found to be consistent with binding constants of small molecule analogs previously studied. pH-dependent speciation curves were then calculated using the equilibrium constants determined by potentiometric titration, providing insight into the pH dependence of histidine-metal ion coordination and guiding the design of metal coordination hydrogels. Gel relaxation dynamics were found to be uncorrelated with the equilibrium constants measured, but were correlated to the expected coordination bond dissociation rate constants. PMID:23441102

  4. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    NASA Astrophysics Data System (ADS)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing

  5. Expression of recombinant CD59 with an N-terminal peptide epitope facilitates analysis of residues contributing to its complement-inhibitory function.

    PubMed

    Zhou, Q; Zhao, J; Hüsler, T; Sims, P J

    1996-10-01

    CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.

  6. A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes.

    PubMed

    Forster, Brian M; Bitar, Alan Pavinski; Marquis, Hélène

    2014-01-01

    Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.

  7. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins.

    PubMed

    Subach, Oksana M; Malashkevich, Vladimir N; Zencheck, Wendy D; Morozova, Kateryna S; Piatkevich, Kiryl D; Almo, Steven C; Verkhusha, Vladislav V

    2010-04-23

    We determined the 2.2 A crystal structures of the red fluorescent protein TagRFP and its derivative, the blue fluorescent protein mTagBFP. The crystallographic analysis is consistent with a model in which TagRFP has the trans coplanar anionic chromophore with the conjugated pi-electron system, similar to that of DsRed-like chromophores. Refined conformation of mTagBFP suggests the presence of an N-acylimine functionality in its chromophore and single C(alpha)-C(beta) bond in the Tyr64 side chain. Mass spectrum of mTagBFP chromophore-bearing peptide indicates a loss of 20 Da upon maturation, whereas tandem mass spectrometry reveals that the C(alpha)-N bond in Leu63 is oxidized. These data indicate that mTagBFP has a new type of the chromophore, N-[(5-hydroxy-1H-imidazole-2-yl)methylidene]acetamide. We propose a chemical mechanism in which the DsRed-like chromophore is formed via the mTagBFP-like blue intermediate. (c) 2010 Elsevier Ltd. All rights reserved.

  8. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.

    PubMed

    Luck, Meike; Hegemann, Peter

    2017-10-01

    Histidine kinase rhodopsins (HKRs) belong to a class of unexplored sensory photoreceptors that share a similar modular architecture. The light sensing rhodopsin domain is covalently linked to signal-transducing modules and in some cases to a C-terminal guanylyl-cyclase effector. In spite of their wide distribution in unicellular organisms, very little is known about their physiological role and mechanistic functioning. We investigated the photochemical properties of the recombinant rhodopsin-fragment of Cr-HKR1 originating from Chlamydomonas reinhardtii. Our spectroscopic studies revealed an unusual thermal stability of the photoproducts with the deprotonated retinal Schiff base (RSB). Upon UV-irradiation these Rh-UV states with maximal absorbance in the UVA-region (Rh-UV) photochemically convert to stable blue light absorbing rhodopsin (Rh-Bl) with protonated chromophore. The heterogeneity of the sample is based on two parallel photocycles with the chromophore in C 15 =N-syn- or -anti-configuration. This report represents an attempt to decipher the underlying reaction schemes and interconversions of the two coexisting photocycles. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Chromatographic HPV-16 E6/E7 plasmid vaccine purification employing L-histidine and 1-benzyl-L-histidine affinity ligands.

    PubMed

    Amorim, Lúcia F A; Gaspar, Rita; Pereira, Patrícia; Černigoj, Urh; Sousa, Fani; Queiroz, João António; Sousa, Ângela

    2017-11-01

    Affinity chromatography based on amino acids as interacting ligands was already indicated as an alternative compared to ion exchange or hydrophobic interaction for plasmid DNA purification. Understanding the recognition mechanisms occurring between histidine-based ligands and nucleic acids enables more efficient purification of a DNA vaccine, as the binding and elution conditions can be adjusted in order to enhance the purification performance. Decreasing pH to slightly acidic conditions increases the positive charge of histidine ligand, what influences the type of interaction between chromatographic support and analytes. This was proven in this work, where hydrophobic effects established in the presence of ammonium sulfate were affected at pH 5.0 in comparison to pH 8.0, while electrostatic and cation-π interactions were intensified. Histidine ligand at pH 5.0 interacts with phosphate groups or aromatic rings of plasmid DNA. Due to different responses of RNA and pDNA on mobile phase changes, the elution order between RNA and pDNA was changed with mobile phase pH decrease from 8.0 to 5.0. The phenomenon was more evident with L-histidine ligand due to more hydrophilic character, leading to an improved selectivity of L-histidine-modified chromatographic monolith, allowing the product recovery with 99% of purity (RNA removal). With the 1-benzyl- L-histidine ligand, stronger and less selective interactions with the nucleic acids were observed due to the additional hydrophobicity associated with the phenyl aromatic ring. Optimization of sample displacement chromatography parameters (especially (NH 4 ) 2 SO 4 concentration) at slightly acidic pH enabled excellent isolation of pDNA, by the removal of RNA in a negative mode, with binding capacities above 1.5 mg pDNA per mL of chromatographic support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural basis for substrate recognition by the human N-terminal methyltransferase 1

    DOE PAGES

    Dong, Cheng; Mao, Yunfei; Tempel, Wolfram; ...

    2015-11-05

    α-N-terminal methylation represents a highly conserved and prevalent post-translational modification, yet its biological function has remained largely speculative. The recent discovery of α-N-terminal methyltransferase 1 (NTMT1) and its physiological substrates propels the elucidation of a general role of α-N-terminal methylation in mediating DNA-binding ability of the modified proteins. The phenotypes, observed from both NTMT1 knockdown in breast cancer cell lines and knockout mouse models, suggest the potential involvement of α-N-terminal methylation in DNA damage response and cancer development. In this study, we report the first crystal structures of human NTMT1 in complex with cofactor S-adenosyl-L-homocysteine (SAH) and six substrate peptides,more » respectively, and reveal that NTMT1 contains two characteristic structural elements (a β hairpin and an N-terminal extension) that contribute to its substrate specificity. Our complex structures, coupled with mutagenesis, binding, and enzymatic studies, also present the key elements involved in locking the consensus substrate motif XPK (X indicates any residue type other than D/E) into the catalytic pocket for α-N-terminal methylation and explain why NTMT1 prefers an XPK sequence motif. We propose a catalytic mechanism for α-N-terminal methylation. Overall, this study gives us the first glimpse of the molecular mechanism of α-N-terminal methylation and potentially contributes to the advent of therapeutic agents for human diseases associated with deregulated α-N-terminal methylation.« less

  11. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  12. 40 CFR 35.4255 - Can my group terminate our TAG?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Technical Assistance Grant Disputes, Termination, and... written notification explaining the reasons for the termination and the effective date. ...

  13. Oxidative Folding and N-terminal Cyclization of Onconase+

    PubMed Central

    Welker, Ervin; Hathaway, Laura; Xu, Guoqiang; Narayan, Mahesh; Pradeep, Lovy; Shin, Hang-Cheol; Scheraga, Harold A.

    2008-01-01

    Cyclization of the N-terminal glutamine residue to pyroglutamic acid in onconase, an anti-cancer chemotherapeutic agent, increases the activity and stability of the protein. Here, we examine the correlated effects of the folding/unfolding process and the formation of this N-terminal pyroglutamic acid. The results in this study indicate that cyclization of the N-terminal glutamine has no significant effect on the rate of either reductive unfolding or oxidative folding of the protein. Both the cyclized and uncyclized proteins seem to follow the same oxidative folding pathways; however, cyclization altered the relative flux of the protein in these two pathways by increasing the rate of formation of a kinetically trapped intermediate. Glutaminyl cyclase (QC) catalyzed the cyclization of the unfolded, reduced protein, but had no effect on the disulfide-intact, uncyclized, folded protein. The structured intermediates of uncyclized onconase were also resistant to QC-catalysis, consistent with their having a native-like fold. These observations suggest that, in vivo, cyclization takes place during the initial stages of oxidative folding, specifically, before the formation of structured intermediates. The competition between oxidative folding and QC-mediated cyclization suggests that QC-catalyzed cyclization of the N-terminal glutamine in onconase occurs in the endoplasmic reticulum, probably co-translationally. PMID:17439243

  14. Rapid labeling of intracellular His-tagged proteins in living cells

    PubMed Central

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A.; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-01-01

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni2+-NTA–based probes. Unfortunately, previous Ni-NTA–based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni2+ ions. The probe, driven by Ni2+-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells. PMID:25713372

  15. Rapid labeling of intracellular His-tagged proteins in living cells.

    PubMed

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  16. Evidence for histidine in the active sites of ficin and stem-bromelain

    PubMed Central

    Husain, S. S.; Lowe, G.

    1968-01-01

    1. Ficin and stem-bromelain are irreversibly inhibited by 1,3-dibromoacetone, a reagent designed to react first with the active-site cysteine residue and subsequently with a second nucleophile. Evidence is presented that establishes that a histidine residue is within a 5Å locus of the active-site cysteine residue in both enzymes. The histidine residue in both enzymes is alkylated at N-1 by dibromoacetone. It is suggested that, as with papain, the thiol and imidazole groups act in concert in the hydrolysis of substrates by these enzymes. 2. The inhibition of thiol-subtilisin with 1,3-dibromoacetone is shown to be due to the alkylation of a cysteine residue only. PMID:5722692

  17. Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.

    PubMed

    Hsiao, Yi Y; Van, Ru C; Hung, Shu H; Lin, Hsin H; Pan, Rong L

    2004-02-15

    Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains

  18. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.

    PubMed

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-07-07

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  19. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    PubMed

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozo-Yauner, Luis del, E-mail: ldelpozo@inmegen.gob.mx; Wall, Jonathan S.; González Andrade, Martín

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stabilitymore » and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.« less

  1. Phase modulation in RF tag

    DOEpatents

    Carrender, Curtis Lee; Gilbert, Ronald W.

    2007-02-20

    A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.

  2. Synthesis of Fe3O4@nickel-silicate core-shell nanoparticles for His-tagged enzyme immobilizing agents

    NASA Astrophysics Data System (ADS)

    Shin, Moo-Kwang; Kang, Byunghoon; Yoon, Nam-Kyung; Kim, Myeong-Hoon; Ki, Jisun; Han, Seungmin; Ahn, Jung-Oh; Haam, Seungjoo

    2016-12-01

    Immobilizing enzymes on artificially fabricated carriers for their efficient use and easy removal from reactants has attracted enormous interest for decades. Specifically, binding platforms using inorganic nanoparticles have been widely explored because of the benefits of their large surface area, easy surface modification, and high stability in various pH and temperatures. Herein, we fabricated Fe3O4 encapsulated ‘sea-urchin’ shaped nickel-silicate nanoparticles with a facile synthetic route. The enzymes were then rapidly and easily immobilized with poly-histidine tags (His-tags) and nickel ion affinity. Porous nickel silicate covered nanoparticles achieved a high immobilization capacity (85 μg mg-1) of His-tagged tobacco etch virus (TEV) protease. To investigate immobilized TEV protease enzymatic activity, we analyzed the cleaved quantity of maltose binding protein-exendin-fused immunoglobulin fusion protein, which connected with the TEV protease-specific cleavage peptide sequence. Moreover, TEV protease immobilized nanocomplexes conveniently removed and recollected from the reactant by applying an external magnetic field, maintained their enzymatic activity after reuse. Therefore, our newly developed nanoplatform for His-tagged enzyme immobilization provides advantageous features for biotechnological industries including recombinant protein processing.

  3. Changes at the KinA PAS-A Dimerization Interface Influence Histidine Kinase Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, James; Tomchick, Diana R.; Brautigam, Chad A.

    2008-11-12

    The Bacillus subtilis KinA protein is a histidine protein kinase that controls the commitment of this organism to sporulate in response to nutrient deprivation and several other conditions. Prior studies indicated that the N-terminal Per-ARNT-Sim domain (PAS-A) plays a critical role in the catalytic activity of this enzyme, as demonstrated by the significant decrease of the autophosphorylation rate of a KinA protein lacking this domain. On the basis of the environmental sensing role played by PAS domains in a wide range of proteins, including other bacterial sensor kinases, it has been suggested that the PAS-A domain plays an important regulatorymore » role in KinA function. We have investigated this potential by using a combination of biophysical and biochemical methods to examine PAS-A structure and function, both in isolation and within the intact protein. Here, we present the X-ray crystal structure of the KinA PAS-A domain, showing that it crystallizes as a homodimer using {beta}-sheet/{beta}-sheet packing interactions as observed for several other PAS domain complexes. Notably, we observed two dimers with tertiary and quaternary structure differences in the crystalline lattice, indicating significant structural flexibility in these domains. To confirm that KinA PAS-A also forms dimers in solution, we used a combination of NMR spectroscopy, gel filtration chromatography, and analytical ultracentrifugation, the results of which are all consistent with the crystallographic results. We experimentally tested the importance of several residues at the dimer interface using site-directed mutagenesis, finding changes in the PAS-A domain that significantly alter KinA enzymatic activity in vitro and in vivo. These results support the importance of PAS domains within KinA and other histidine kinases and suggest possible routes for natural or artificial regulation of kinase activity.« less

  4. Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster

    PubMed Central

    Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich

    2009-01-01

    Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390

  5. Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2017-01-01

    Rapid advances in bioengineering and biotechnology over the past three decades have greatly facilitated the production of recombinant proteins in Escherichia coli. Affinity-based methods that employ protein or peptide based tags for protein purification have been instrumental in this progress. Yet insolubility of recombinant proteins in E. coli remains a persistent problem. One way around this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) is widely acknowledged as a highly effective solubilizing agent. In this chapter, we describe how to construct either a His 6 - or a dual His 6 -MBP tagged fusion protein by Gateway ® recombinational cloning and how to evaluate their yield and solubility. We also describe a simple and rapid procedure to test the solubility of proteins after removing their N-terminal fusion tags by tobacco etch virus (TEV) protease digestion. The choice of whether to use a His 6 tag or a His 6 -MBP tag can be made on the basis of this solubility test.

  6. Expression, crystallization and preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins from Thermoplasma acidophilum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Sang Hee; Ha, Jun Yong; Kim, Kyoung Hoon

    2006-11-01

    An N-terminal acetyltransferase ARD1 subunit-related protein (Ta0058) and an N-terminal acetyltransferase-related protein (Ta1140) from T. acidophilum were crystallized. X-ray diffraction data were collected to 2.17 and 2.40 Å, respectively. N-terminal acetylation is one of the most common protein modifications in eukaryotes, occurring in approximately 80–90% of cytosolic mammalian proteins and about 50% of yeast proteins. ARD1 (arrest-defective protein 1), together with NAT1 (N-acetyltransferase protein 1) and possibly NAT5, is responsible for the NatA activity in Saccharomyces cerevisiae. In mammals, ARD1 is involved in cell proliferation, neuronal development and cancer. Interestingly, it has been reported that mouse ARD1 (mARD1{sup 225}) mediatesmore » ∊-acetylation of hypoxia-inducible factor 1α (HIF-1α) and thereby enhances HIF-1α ubiquitination and degradation. Here, the preliminary X-ray crystallographic analyses of two N-terminal acetyltransferase-related proteins encoded by the Ta0058 and Ta1140 genes of Thermoplasma acidophilum are reported. The Ta0058 protein is related to an N-terminal acetyltransferase complex ARD1 subunit, while Ta1140 is a putative N-terminal acetyltransferase-related protein. Ta0058 shows 26% amino-acid sequence identity to both mARD1{sup 225} and human ARD1{sup 235}.The sequence identity between Ta0058 and Ta1140 is 28%. Ta0058 and Ta1140 were overexpressed in Escherichia coli fused with an N-terminal purification tag. Ta0058 was crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium acetate pH 4.6, 8%(w/v) polyethylene glycol 4000 and 35%(v/v) glycerol. X-ray diffraction data were collected to 2.17 Å. The Ta0058 crystals belong to space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 49.334, c = 70.384 Å, α = β = γ = 90°. The asymmetric unit contains a monomer, giving a calculated crystal volume per protein weight (V{sub M}) of 2.13 Å{sup 3} Da{sup −1} and a solvent

  7. Tautomerism, acid-base equilibria, and H-bonding of the six histidines in subtilisin BPN′ by NMR

    PubMed Central

    Day, Regina M.; Thalhauser, Craig J.; Sudmeier, James L.; Vincent, Matthew P.; Torchilin, Ekaterina V.; Sanford, David G.; Bachovchin, Christopher W.; Bachovchin, William W.

    2003-01-01

    We have determined by 15N, 1H, and 13C NMR, the chemical behavior of the six histidines in subtilisin BPN′ and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every 15N, 1H, Cɛ1, and Cδ2 resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pKa = 7.30 ± 0.03 at 25°C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pKa value of 7.9 ± 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high Cɛ1-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved Cɛ1-H. . .O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare Nδ1-H tautomer, exhibiting 13Cδ1 chemical shifts ~9 ppm higher than those for Nɛ2-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by 15N-1H NOE effects, and titrates with rapid proton exchange kinetics linked to a pKa value of 7.47 ± 0.02. PMID:12649438

  8. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302

  9. Histidine augments the suppression of hepatic glucose production by central insulin action.

    PubMed

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-Ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-07-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes.

  10. Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action

    PubMed Central

    Kimura, Kumi; Nakamura, Yusuke; Inaba, Yuka; Matsumoto, Michihiro; Kido, Yoshiaki; Asahara, Shun-ichiro; Matsuda, Tomokazu; Watanabe, Hiroshi; Maeda, Akifumi; Inagaki, Fuyuhiko; Mukai, Chisato; Takeda, Kiyoshi; Akira, Shizuo; Ota, Tsuguhito; Nakabayashi, Hajime; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2013-01-01

    Glucose intolerance in type 2 diabetes is related to enhanced hepatic glucose production (HGP) due to the increased expression of hepatic gluconeogenic enzymes. Previously, we revealed that hepatic STAT3 decreases the expression of hepatic gluconeogenic enzymes and suppresses HGP. Here, we show that increased plasma histidine results in hepatic STAT3 activation. Intravenous and intracerebroventricular (ICV) administration of histidine-activated hepatic STAT3 reduced G6Pase protein and mRNA levels and augmented HGP suppression by insulin. This suppression of hepatic gluconeogenesis by histidine was abolished by hepatic STAT3 deficiency or hepatic Kupffer cell depletion. Inhibition of HGP by histidine was also blocked by ICV administration of a histamine H1 receptor antagonist. Therefore, histidine activates hepatic STAT3 and suppresses HGP via central histamine action. Hepatic STAT3 phosphorylation after histidine ICV administration was attenuated in histamine H1 receptor knockout (Hrh1KO) mice but not in neuron-specific insulin receptor knockout (NIRKO) mice. Conversely, hepatic STAT3 phosphorylation after insulin ICV administration was attenuated in NIRKO but not in Hrh1KO mice. These findings suggest that central histidine action is independent of central insulin action, while both have additive effects on HGP suppression. Our results indicate that central histidine/histamine-mediated suppression of HGP is a potential target for the treatment of type 2 diabetes. PMID:23474485

  11. Characterization of the sensor domain of QseE histidine kinase from Escherichia coli.

    PubMed

    Yeo, Kwon Joo; Park, Jin-Wan; Kim, Eun-Hee; Jeon, Young Ho; Hwang, Kwang Yeon; Cheong, Hae-Kap

    2016-10-01

    In enterohemorrhagic Escherichia coli (EHEC), the QseEF two-component system causes attaching and effacing (AE) lesion on epithelial cells. QseE histidine kinase senses the host hormone epinephrine, sulfate, and phosphate; it also regulates QseF response regulator, which activates LEE gene that encodes AE lesion. In order to understand the recognition of ligand molecules and signal transfer mechanism in pathogenic bacteria, structural studies of the sensor domain of QseE of Escherichia coli should be conducted. In this study, we describe the overexpression, purification, and structural and biophysical properties of the sensor domain of QseE. The fusion protein had a 6×His tag at its N-terminus; this protein was overexpressed as inclusion bodies in E. coli BL21 (DE3). The protein was denatured in 7M guanidine hydrochloride and refolded by dialysis. The purification of the refolded protein was carried out using Ni-NTA affinity column and size-exclusion chromatography. Thereafter, the characteristics of the refolded protein were determined from NMR, CD, and MALS spectroscopies. In a pH range of 7.4-5.0, the folded protein existed in a monomeric form with a predominantly helical structure. (1)H-(15)N HSQC NMR spectra shows that approximately 93% backbone amide peaks are detected at pH 5.0, suggesting that the number of backbone signals is sufficient for NMR studies. These data might provide an opportunity for structural and functional studies of the sensor domain of QseE. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger.

    PubMed

    Roth, Andreas H F J; Dersch, Petra

    2010-03-01

    A set of different integrative expression vectors for the intracellular production of recombinant proteins with or without affinity tag in Aspergillus niger was developed. Target genes can be expressed under the control of the highly efficient, constitutive pkiA promoter or the novel sucrose-inducible promoter of the beta-fructofuranosidase (sucA) gene of A. niger in the presence or absence of alternative carbon sources. All expression plasmids contain an identical multiple cloning sequence that allows parallel construction of N- or C-terminally His6- and StrepII-tagged versions of the target proteins. Production of two heterologous model proteins, the green fluorescence protein and the Thermobifida fusca hydrolase, proved the functionality of the vector system. Efficient production and easy detection of the target proteins as well as their fast purification by a one-step affinity chromatography, using the His6- or StrepII-tag sequence, was demonstrated.

  13. Method for designing gas tag compositions

    DOEpatents

    Gross, Kenny C.

    1995-01-01

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node #1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node #2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred.

  14. Method for designing gas tag compositions

    DOEpatents

    Gross, K.C.

    1995-04-11

    For use in the manufacture of gas tags such as employed in a nuclear reactor gas tagging failure detection system, a method for designing gas tagging compositions utilizes an analytical approach wherein the final composition of a first canister of tag gas as measured by a mass spectrometer is designated as node No. 1. Lattice locations of tag nodes in multi-dimensional space are then used in calculating the compositions of a node No. 2 and each subsequent node so as to maximize the distance of each node from any combination of tag components which might be indistinguishable from another tag composition in a reactor fuel assembly. Alternatively, the measured compositions of tag gas numbers 1 and 2 may be used to fix the locations of nodes 1 and 2, with the locations of nodes 3-N then calculated for optimum tag gas composition. A single sphere defining the lattice locations of the tag nodes may be used to define approximately 20 tag nodes, while concentric spheres can extend the number of tag nodes to several hundred. 5 figures.

  15. Expression, purification, and functional analysis of the C-terminal domain of Herbaspirillum seropedicae NifA protein.

    PubMed

    Monteiro, Rose A; Souza, Emanuel M; Geoffrey Yates, M; Steffens, M Berenice R; Pedrosa, Fábio O; Chubatsu, Leda S

    2003-02-01

    The Herbaspirillum seropedicae NifA protein is responsible for nif gene expression. The C-terminal domain of the H. seropedicae NifA protein, fused to a His-Tag sequence (His-Tag-C-terminal), was over-expressed and purified by metal-affinity chromatography to yield a highly purified and active protein. Band-shift assays showed that the NifA His-Tag-C-terminal bound specifically to the H. seropedicae nifB promoter region in vitro. In vivo analysis showed that this protein inhibited the Central + C-terminal domains of NifA protein from activating the nifH promoter of K. pneumoniae in Escherichia coli, indicating that the protein must be bound to the NifA-binding site (UAS site) at the nifH promoter region to activate transcription. Copyright 2002 Elsevier Science (USA)

  16. Conformational Dynamics inside Amino-Terminal Disease Hotspot of Ryanodine Receptor

    PubMed Central

    Zhong, Xiaowei; Liu, Ying; Zhu, Li; Meng, Xing; Wang, Ruiwu; Van Petegem, Filip; Wagenknecht, Terence; Wayne Chen, S. R.; Liu, Zheng

    2013-01-01

    Summary The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here we reconstructed 3D cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains. PMID:24139989

  17. A dual affinity-tag strategy for the expression and purification of human linker histone H1.4 in Escherichia coli.

    PubMed

    Ryan, Daniel P; Tremethick, David J

    2016-04-01

    Linker histones are an abundant and critical component of the eukaryotic chromatin landscape. They play key roles in regulating the higher order structure of chromatin and many genetic processes. Higher eukaryotes possess a number of different linker histone subtypes and new data are consistently emerging that indicate these subtypes are functionally distinct. We were interested in studying one of the most abundant human linker histone subtypes, H1.4. We have produced recombinant full-length H1.4 in Escherichia coli. An N-terminal Glutathione-S-Transferase tag was used to promote soluble expression and was combined with a C-terminal hexahistidine tag to facilitate a simple non-denaturing two-step affinity chromatography procedure that results in highly pure full-length H1.4. The purified H1.4 was shown to be functional via in vitro chromatin assembly experiments and remains active after extended storage at -80 °C. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. N-terminal acetylation modulates Bax targeting to mitochondria.

    PubMed

    Alves, Sara; Neiri, Leire; Chaves, Susana Rodrigues; Vieira, Selma; Trindade, Dário; Manon, Stephen; Dominguez, Veronica; Pintado, Belen; Jonckheere, Veronique; Van Damme, Petra; Silva, Rui Duarte; Aldabe, Rafael; Côrte-Real, Manuela

    2018-02-01

    The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25 -/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fully printed flexible and disposable wireless cyclic voltammetry tag.

    PubMed

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-29

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  20. Fully printed flexible and disposable wireless cyclic voltammetry tag

    NASA Astrophysics Data System (ADS)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  1. Assembly of the stator in Escherichia coli ATP synthase. Complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha

    PubMed Central

    Senior, Alan E.; Muharemagi, Alma; Wilke-Mounts, Susan

    2008-01-01

    Alpha subunit of Escherichia coli ATP synthase was expressed with a C-terminal 6-His tag and purified. Pure alpha was monomeric, competent in nucleotide binding, and had normal N-terminal sequence. In F1-subunit dissociation/reassociation experiments it supported full reconstitution of ATPase, and reassociated complexes were able to bind to F1-depleted membranes with restoration of ATP-driven proton pumping. Therefore interaction between the stator delta subunit and the N-terminal residue 1-22 region of alpha occurred normally when pure alpha was complexed with other F1 subunits. On the other hand, three different types of experiment showed that no interaction occurred between pure delta and isolated alpha subunit. Unlike in F1, the N-terminal region of isolated alpha was not susceptible to trypsin cleavage. Therefore, during assembly of ATP synthase, complexation of alpha subunit with other F1 subunits is prerequisite for delta subunit binding to the N-terminal region of alpha. We suggest that the N-terminal 1-22 residues of alpha are sequestered in isolated alpha until released by binding of beta to alpha subunit. This prevents 1/1 delta/alpha complexes from forming, and provides a satisfactory explanation of the stoichiometry of one delta per three alpha seen in the F1 sector of ATP synthase, assuming that steric hindrance prevents binding of more than one delta to the alpha3/beta3 hexagon. The cytoplasmic fragment of the b subunit (bsol) did not bind to isolated alpha. It might also be that complexation of alpha with beta subunits is prerequisite for direct binding of stator b subunit to the F1-sector. PMID:17176112

  2. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus

    PubMed Central

    Dietl, Anna-Maria; Amich, Jorge; Leal, Sixto; Beckmann, Nicola; Binder, Ulrike; Beilhack, Andreas; Pearlman, Eric; Haas, Hubertus

    2016-01-01

    Abstract Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heavy metals, including iron, copper and zinc, which play a pivotal role in antimicrobial host defense, (iii) attenuation of pathogenicity in 4 virulence models: murine pulmonary infection, murine systemic infection, murine corneal infection, and wax moth larvae. In agreement with the in vivo importance of histidine biosynthesis, the HisB inhibitor 3-amino-1,2,4-triazole reduced the virulence of the A. fumigatus wild type and histidine supplementation partially rescued virulence of the histidine-auxotrophic mutant in the wax moth model. Taken together, this study reveals limited histidine availability in diverse A. fumigatus host niches, a crucial role for histidine in metal homeostasis, and the histidine biosynthetic pathway as being an attractive target for development of novel antifungal therapy approaches. PMID:26854126

  3. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus.

    PubMed

    Dietl, Anna-Maria; Amich, Jorge; Leal, Sixto; Beckmann, Nicola; Binder, Ulrike; Beilhack, Andreas; Pearlman, Eric; Haas, Hubertus

    2016-05-18

    Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heavy metals, including iron, copper and zinc, which play a pivotal role in antimicrobial host defense, (iii) attenuation of pathogenicity in 4 virulence models: murine pulmonary infection, murine systemic infection, murine corneal infection, and wax moth larvae. In agreement with the in vivo importance of histidine biosynthesis, the HisB inhibitor 3-amino-1,2,4-triazole reduced the virulence of the A. fumigatus wild type and histidine supplementation partially rescued virulence of the histidine-auxotrophic mutant in the wax moth model. Taken together, this study reveals limited histidine availability in diverse A. fumigatus host niches, a crucial role for histidine in metal homeostasis, and the histidine biosynthetic pathway as being an attractive target for development of novel antifungal therapy approaches.

  4. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Bioinformatic mapping and production of recombinant N-terminal domains of human cardiac ryanodine receptor 2

    PubMed Central

    Bauerová-Hlinková, Vladena; Hostinová, Eva; Gašperík, Juraj; Beck, Konrad; Borko, Ľubomír; Lai, F. Anthony; Zahradníková, Alexandra; Ševčík, Jozef

    2010-01-01

    We report the domain analysis of the N-terminal region (residues 1–759) of the human cardiac ryanodine receptor (RyR2) that encompasses one of the discrete RyR2 mutation clusters associated with catecholaminergic polymorphic ventricular tachycardia (CPVT1) and arrhythmogenic right ventricular dysplasia (ARVD2). Our strategy utilizes a bioinformatics approach complemented by protein expression, solubility analysis and limited proteolytic digestion. Based on the bioinformatics analysis, we designed a series of specific RyR2 N-terminal fragments for cloning and overexpression in Escherichia coli. High yields of soluble proteins were achieved for fragments RyR21–606·His6, RyR2391–606·His6, RyR2409–606·His6, Trx·RyR2384–606·His6, Trx·RyR2391-606·His6 and Trx·RyR2409–606·His6. The folding of RyR21–606·His6 was analyzed by circular dichroism spectroscopy resulting in α-helix and β-sheet content of ∼23% and ∼29%, respectively, at temperatures up to 35 °C, which is in agreement with sequence based secondary structure predictions. Tryptic digestion of the largest recombinant protein, RyR21–606·His6, resulted in the appearance of two specific subfragments of ∼40 and 25 kDa. The 25 kDa fragment exhibited greater stability. Hybridization with anti-His6·Tag antibody indicated that RyR21–606·His6 is cleaved from the N-terminus and amino acid sequencing of the proteolytic fragments revealed that digestion occurred after residues 259 and 384, respectively. PMID:20045464

  6. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    PubMed

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  7. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1

    PubMed Central

    Parnham, Stuart; Gaines, William A.; Duggan, Brendan M.; Marcotte, William R.

    2011-01-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes. PMID:21152998

  8. Plasmids for C-terminal tagging in Saccharomyces cerevisiae that contain improved GFP proteins, Envy and Ivy.

    PubMed

    Slubowski, Christian J; Funk, Alyssa D; Roesner, Joseph M; Paulissen, Scott M; Huang, Linda S

    2015-04-01

    Green fluorescent protein (GFP) has become an invaluable tool in biological research. Many GFP variants have been created that differ in brightness, photostability, and folding robustness. We have created two hybrid GFP variants, Envy and Ivy, which we placed in a vector for the C-terminal tagging of yeast proteins by PCR-mediated recombination. The Envy GFP variant combines mutations found in the robustly folding SuperfolderGFP and GFPγ, while the Ivy GFP variant is a hybrid of GFPγ and the yellow-green GFP variant, Clover. We compared Envy and Ivy to EGFP, SuperfolderGFP and GFPγ and found that Envy is brighter than the other GFP variants at both 30°C and 37°C, while Ivy is the most photostable. Envy and Ivy are recognized by a commonly used anti-GFP antibody, and both variants can be immunoprecipitated using the GFP TRAP Camelidae antibody nanotrap technology. Because Envy is brighter than the other GFP variants and is as photostable as GFPγ, we suggest that Envy should be the preferred GFP variant, while Ivy may be used in cases where photostability is of the utmost importance. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, J.; Le-Khac, M; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes, where they are crucial for environmental adaption through the coupling of extracellular changes to intracellular responses. The typical two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. In the calssic system, extracellular signals such as small molecule ligands and ions are detected by the periplasmic sensor domain of the histidine kinase receptor, which modulates the catalytic activity of the cytoplasmic histidine kinase domain and promotes ATP-dependent autophosphorylation of a conserved histidine residue. G. sulfurreducens genomic DNA wasmore » used.« less

  10. Transition-metal chromophore as a new, sensitive spectroscopic tag for proteins. Selective covalent labeling of histidine residues in cytochromes c with chloro(2,2':6',2''-terpyridine)platinum(II) chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratilla, E.M.A.; Brothers, H.M. II; Kostic, N.M.

    1987-07-22

    Reactivity and selectivity of Pt(trpy)Cl/sup +/ toward proteins are studied with cytochromes c from horse and tuna as examples. The new transition-metal reagent is specific for histidine residues at pH 5. The reaction, facile one-step displacement of the Cl/sup -/ ligand by imidazole, produces good yield. The binding sites, His 26 and His 33 in the horse protein and His 26 in the tuna protein, are identified by UV-vis spectrophotometry and by peptide-mapping experiments. Model complexes with imidazole, histidine, histidine derivatives, and histidine-containing peptides are prepared and characterized. The covalently attached Pt(trpy)/sup 2 +/ labels allow easy separation of themore » protein derivatives by cation-exchange chromatography. The labels do not perturb the conformation and reduction potential of cytochrome c, as shown by UV-vis spectrophotometry, cyclic voltammetry, differential-pulse voltammetry, EPR spectroscopy, and /sup 1/H NMR spectroscopy. The selectivity of Pt(trpy)Cl/sup +/ is entirely opposite from that of PtCl/sub 4//sup 2 -/ although both of them are platinum(II)-chloro complexes. Owing to an interplay between the steric and electronic effects of the terpyridyl ligand, the new reagent is unreactive toward methionine (a thio ether) and cystine (a disulfide), which are otherwise highly nucleophilic ligands, but very reactive toward imidazole, which is otherwise a relatively weak ligand. Unusual and useful selectivity of preformed transition-metal complexes toward proteins evidently can be achieved by a judicious choice of ancillary ligands.« less

  11. Histidine in Continuum Electrostatics Protonation State Calculations

    PubMed Central

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  12. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana *

    PubMed Central

    Ndah, Elvis; Jonckheere, Veronique

    2017-01-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. PMID:28432195

  13. N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana.

    PubMed

    Willems, Patrick; Ndah, Elvis; Jonckheere, Veronique; Stael, Simon; Sticker, Adriaan; Martens, Lennart; Van Breusegem, Frank; Gevaert, Kris; Van Damme, Petra

    2017-06-01

    Proteogenomics is an emerging research field yet lacking a uniform method of analysis. Proteogenomic studies in which N-terminal proteomics and ribosome profiling are combined, suggest that a high number of protein start sites are currently missing in genome annotations. We constructed a proteogenomic pipeline specific for the analysis of N-terminal proteomics data, with the aim of discovering novel translational start sites outside annotated protein coding regions. In summary, unidentified MS/MS spectra were matched to a specific N-terminal peptide library encompassing protein N termini encoded in the Arabidopsis thaliana genome. After a stringent false discovery rate filtering, 117 protein N termini compliant with N-terminal methionine excision specificity and indicative of translation initiation were found. These include N-terminal protein extensions and translation from transposable elements and pseudogenes. Gene prediction provided supporting protein-coding models for approximately half of the protein N termini. Besides the prediction of functional domains (partially) contained within the newly predicted ORFs, further supporting evidence of translation was found in the recently released Araport11 genome re-annotation of Arabidopsis and computational translations of sequences stored in public repositories. Most interestingly, complementary evidence by ribosome profiling was found for 23 protein N termini. Finally, by analyzing protein N-terminal peptides, an in silico analysis demonstrates the applicability of our N-terminal proteogenomics strategy in revealing protein-coding potential in species with well- and poorly-annotated genomes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Effects of Histidine Supplementation on Global Serum and Urine 1H NMR-based Metabolomics and Serum Amino Acid Profiles in Obese Women from a Randomized Controlled Study.

    PubMed

    Du, Shanshan; Sun, Shuhong; Liu, Liyan; Zhang, Qiao; Guo, Fuchuan; Li, Chunlong; Feng, Rennan; Sun, Changhao

    2017-06-02

    The aim of current study was to investigate the metabolic changes associated with histidine supplementation in serum and urine metabolic signatures and serum amino acid (AA) profiles. Serum and urine 1 H NMR-based metabolomics and serum AA profiles were employed in 32 and 37 obese women with metabolic syndrome (MetS) intervened with placebo or histidine for 12 weeks. Multivariable statistical analysis were conducted to define characteristic metabolites. In serum 1 H NMR metabolic profiles, increases in histidine, glutamine, aspartate, glycine, choline, and trimethylamine-N-oxide (TMAO) were observed; meanwhile, decreases in cholesterol, triglycerides, fatty acids and unsaturated lipids, acetone, and α/β-glucose were exhibited after histidine supplement. In urine 1 H NMR metabolic profiles, citrate, creatinine/creatine, methylguanidine, and betaine + TMAO were higher, while hippurate was lower in histidine supplement group. In serum AA profiles, 10 AAs changed after histidine supplementation, including increased histidine, glycine, alanine, lysine, asparagine, and tyrosine and decreased leucine, isoleucine, ornithine, and citrulline. The study showed a systemic metabolic response in serum and urine metabolomics and AA profiles to histidine supplementation, showing significantly changed metabolism in AAs, lipid, and glucose in obese women with MetS.

  15. Simple purification method for a recombinantly expressed native His-tag-free aminopeptidase A from Lactobacillus delbrueckii.

    PubMed

    Stressler, Timo; Tanzer, Coralie; Ewert, Jacob; Claaßen, Wolfgang; Fischer, Lutz

    2017-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) is an intracellular exopeptidase present in lactic acid bacteria. The PepA cleaves glutamyl/aspartyl residues from the N-terminal end of peptides and can, therefore, be applied for the production of protein hydrolysates with an increased amount of these amino acids, which results in a savory taste (umami). The first PepA from a lactobacilli strain was recombinantly expressed in Escherichia coli in a recently published study and harbored a C-terminal His 6 -tag for easier purification. Due to the fact that a His-tag might influence the properties of an enzyme, a simple purification method for the non-His-tagged PepA was required. Surprisingly, the PepA precipitated at a very low ammonium sulfate concentration of 5%. Unusual for a precipitating step, the purity of PepA was over 95% and the obtained activity yield was 110%. The high purity allows biochemical characterization and kinetic investigation. As a result, the optimum pH (6.0-6.5) and temperature (60-65 °C) were comparable to the His 6 -tag harboring PepA; the K M value was at 0.79 mM slightly lower compared to 1.21 mM, respectively. Since PepA is a homo dodecamer, it has a high molecular mass of approximately 480 kDa. Therefore, a subsequent preparative size-exclusion chromatography (SEC) step seemed promising. The PepA after SEC was purified to homogeneity. In summary, the simple two-step purification method presented can be applied to purify high amounts of PepA that will allow the performance of experiments in the future to crystalize PepA for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, Ting; Gross, Kenny C.; Wegerich, Stephan

    1998-01-01

    A method and system for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established.

  17. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  18. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  19. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  20. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  1. 21 CFR 582.5361 - Histidine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements...

  2. Detection of site specific glycosylation in proteins using flow cytometry†

    PubMed Central

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  3. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag.

    PubMed

    Biancucci, Marco; Dolores, Jazel S; Wong, Jennifer; Grimshaw, Sarah; Anderson, Wayne F; Satchell, Karla J F; Kwon, Keehwan

    2017-01-05

    Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.

  4. Role of Reversible Histidine Coordination in Hydroxylamine Reduction by Plant Hemoglobins (Phytoglobins).

    PubMed

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Andreotti, Amy H; Hargrove, Mark S

    2016-10-18

    Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.

  5. Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP

    PubMed Central

    Malmsten, Martin; Kasetty, Gopinath; Pasupuleti, Mukesh; Alenfall, Jan; Schmidtchen, Artur

    2011-01-01

    Background Antimicrobial peptides (AMPs) are receiving increasing attention due to resistance development against conventional antibiotics. Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in an array of infections such as ocular infections, cystic fibrosis, wound and post-surgery infections, and sepsis. The goal of the study was to design novel AMPs against these pathogens. Methodology and Principal Findings Antibacterial activity was determined by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was evaluated by hemolysis and effects on human epithelial cells. Liposome and fluorescence studies provided mechanistic information. Protease sensitivity was evaluated after subjection to human leukocyte elastase, staphylococcal aureolysin and V8 proteinase, as well as P. aeruginosa elastase. Highly active peptides were evaluated in ex vivo skin infection models. C-terminal end-tagging by W and F amino acid residues increased antimicrobial potency of the peptide sequences GRRPRPRPRP and RRPRPRPRP, derived from proline arginine-rich and leucine-rich repeat protein (PRELP). The optimized peptides were antimicrobial against a range of Gram-positive S. aureus and Gram-negative P. aeruginosa clinical isolates, also in the presence of human plasma and blood. Simultaneously, they showed low toxicity against mammalian cells. Particularly W-tagged peptides displayed stability against P. aeruginosa elastase, and S. aureus V8 proteinase and aureolysin, and the peptide RRPRPRPRPWWWW-NH2 was effective against various “superbugs” including vancomycin-resistant enterococci, multi-drug resistant P. aeruginosa, and methicillin-resistant S. aureus, as well as demonstrated efficiency in an ex vivo skin wound model of S. aureus and P. aeruginosa infection. Conclusions/Significance Hydrophobic C-terminal end-tagging of the cationic sequence RRPRPRPRP generates highly selective AMPs with potent activity against

  6. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    PubMed

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle.

    PubMed

    Xie, Junfeng; Li, Kunpeng; Gao, Yuanzhu; Huang, Runqing; Lai, Yuxiong; Shi, Yan; Yang, Shaowei; Zhu, Guohua; Zhang, Qinfen; He, Jianguo

    2016-01-11

    Betanodavirus infection causes fatal disease of viral nervous necrosis in many cultured marine and freshwater fish worldwide and the virus-like particles (VLP) are effective vaccines against betanodavirus. But vaccine and viral vector designs of betanodavirus VLP based on their structures remain lacking. Here, the three-dimensional structure of orange-spotted grouper nervous necrosis virus (OGNNV) VLP (RBS) at 3.9 Å reveals the organization of capsid proteins (CP). Based on the structural results, seven putative important sites were selected to genetically insert a 6× histidine (His)-tag for VLP formation screen, resulting in four His-tagged VLP (HV) at positions N-terminus, Ala220, Pro292 and C-terminus. The His-tags of N-terminal HV (NHV) were concealed inside virions while those of 220HV and C-terminal HV (CHV) were displayed at the outer surface. NHV, 220HV and CHV maintained the same cell entry ability as RBS in the Asian sea bass (SB) cell line, indicating that their similar surface structures can be recognized by the cellular entry receptor(s). For application of vaccine design, chromatography-purified CHV could provoke NNV-specific antibody responses as strong as those of RBS in a sea bass immunization assay. Furthermore, in carrying capacity assays, N-terminus and Ala220 can only carry short peptides and C-terminus can even accommodate large protein such as GFP to generate fluorescent VLP (CGV). For application of a viral vector, CGV could be real-time visualized to enter SB cells in invasion study. All the results confirmed that the C-terminus of CP is a suitable site to accommodate foreign peptides for vaccine design and viral vector development.

  8. Method for nonlinear optimization for gas tagging and other systems

    DOEpatents

    Chen, T.; Gross, K.C.; Wegerich, S.

    1998-01-06

    A method and system are disclosed for providing nuclear fuel rods with a configuration of isotopic gas tags. The method includes selecting a true location of a first gas tag node, selecting initial locations for the remaining n-1 nodes using target gas tag compositions, generating a set of random gene pools with L nodes, applying a Hopfield network for computing on energy, or cost, for each of the L gene pools and using selected constraints to establish minimum energy states to identify optimal gas tag nodes with each energy compared to a convergence threshold and then upon identifying the gas tag node continuing this procedure until establishing the next gas tag node until all remaining n nodes have been established. 6 figs.

  9. Blocking an N-terminal acetylation–dependent protein interaction inhibits an E3 ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Daniel C.; Hammill, Jared T.; Min, Jaeki

    N-terminal acetylation is an abundant modification influencing protein functions. Because ~80% of mammalian cytosolic proteins are N-terminally acetylated, this modification is potentially an untapped target for chemical control of their functions. Structural studies have revealed that, like lysine acetylation, N-terminal acetylation converts a positively charged amine into a hydrophobic handle that mediates protein interactions; hence, this modification may be a druggable target. We report the development of chemical probes targeting the N-terminal acetylation–dependent interaction between an E2 conjugating enzyme (UBE2M or UBC12) and DCN1 (DCUN1D1), a subunit of a multiprotein E3 ligase for the ubiquitin-like protein NEDD8. The inhibitors aremore » highly selective with respect to other protein acetyl-amide–binding sites, inhibit NEDD8 ligation in vitro and in cells, and suppress anchorage-independent growth of a cell line with DCN1 amplification. Overall, our data demonstrate that N-terminal acetyl-dependent protein interactions are druggable targets and provide insights into targeting multiprotein E2–E3 ligases.« less

  10. Synthesis and activity of histidine-containing catalytic peptide dendrimers.

    PubMed

    Delort, Estelle; Nguyen-Trung, Nhat-Quang; Darbre, Tamis; Reymond, Jean-Louis

    2006-06-09

    Peptide dendrimers built by iteration of the diamino acid dendron Dap-His-Ser (His = histidine, Ser = Serine, Dap = diamino propionic acid) display a strong positive dendritic effect for the catalytic hydrolysis of 8-acyloxypyrene 1,3,6-trisulfonates, which proceeds with enzyme-like kinetics in aqueous medium (Delort, E.; Darbre, T.; Reymond, J.-L. J. Am. Chem. Soc. 2004, 126, 15642-3). Thirty-two mutants of the original third generation dendrimer A3 ((Ac-His-Ser)8(Dap-His-Ser)4(Dap-His-Ser)2Dap-His-Ser-NH2) were prepared by manual synthesis or by automated synthesis with use of a Chemspeed PSW1100 peptide synthesizer. Dendrimer catalysis was specific for 8-acyloxypyrene 1,3,6-trisulfonates, and there was no activity with other types of esters. While dendrimers with hydrophobic residues at the core and histidine residues at the surface only showed weak activity, exchanging serine residues in dendrimer A3 against alanine (A3A), beta-alanine (A3B), or threonine (A3C) improved catalytic efficiency. Substrate binding was correlated with the total number of histidines per dendrimer, with an average of three histidines per substrate binding site. The catalytic rate constant kcat depended on the placement of histidines within the dendrimers and the nature of the other amino acid residues. The fastest catalyst was the threonine mutant A3C ((Ac-His-Thr)8(Dap-His-Thr)4(Dap-His-Thr)2Dap-His-Thr-NH2), with kcat = 1.3 min(-1), kcat/k(uncat) = 90'000, KM = 160 microM for 8-bytyryloxypyrene 1,3,6-trisulfonate, corresponding to a rate acceleration of 18'000 per catalytic site and a 5-fold improvement over the original sequence A3.

  11. Histidine-lysine peptides as carriers of nucleic acids.

    PubMed

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  12. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase.

    PubMed

    Liyasova, Mariya S; Schopfer, Lawrence M; Lockridge, Oksana

    2013-03-25

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of "aerotoxic syndrome", affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Cresyl saligenin phosphate makes multiple adducts on free histidine, but does not form an adduct on histidine 438 of human butyrylcholinesterase

    PubMed Central

    Liyasova, Mariya S.; Schopfer, Lawrence M.; Lockridge, Oksana

    2012-01-01

    Cresyl saligenin phosphate (CBDP) is a suspected causative agent of “aerotoxic syndrome”, affecting pilots, crew members and passengers. CBDP is produced in vivo from ortho-containing isomers of tricresyl phosphate (TCP), a component of jet engine lubricants and hydraulic fluids. CBDP irreversibly inhibits butyrylcholinesterase (BChE) in human plasma by forming adducts on the active site serine (Ser-198). Inhibited BChE undergoes aging to release saligenin and o-cresol. The active site histidine (His-438) was hypothesized to abstract o-hydroxybenzyl moiety from the initial adduct on Ser-198. Our goal was to test this hypothesis. Mass spectral analysis of CBDP-inhibited BChE digested with Glu-C showed an o-hydroxybenzyl adduct (+106 amu) on lysine 499, a residue far from the active site, but not on His-438. Nevertheless, the nitrogen of the imidazole ring of free L-histidine formed a variety of adducts upon reaction with CBDP, including the o-hydroxybenzyl adduct, suggesting that histidine-CBDP adducts may form on other proteins. PMID:22898212

  14. Utilizing tagged paramagnetic shift reagents to monitor protein dynamics by NMR.

    PubMed

    Ye, Libin; Van Eps, Ned; Li, Xiang; Ernst, Oliver P; Prosser, R Scott

    2017-11-01

    Calmodulin is a ubiquitous calcium sensor protein, known to serve as a critical interaction hub with a wide range of signaling partners. While the holo form of calmodulin (CaM-4Ca 2+ ) has a well-defined ground state structure, it has been shown to undergo exchange, on a millisecond timescale, to a conformation resembling that of the peptide bound state. Tagged paramagnetic relaxation agents have been previously used to identify long-range dipolar interactions through relaxation effects on nuclear spins of interest. In the case of calmodulin, this lead to the determination of the relative orientation of the N- and C-terminal domains and the presence of a weakly populated peptide bound like state. Here, we make use of pseudocontact shifts from a tagged paramagnetic shift reagent which allows us to define minor states both in 13 C and 15 N NMR spectra and through 13 C- and 15 N-edited 1 H-CPMG relaxation dispersion measurements. This is validated by pulsed EPR (DEER) spectroscopy which reveals an ensemble consisting of a compact peptide-bound like conformer, an intermediate peptide-bound like conformer, and a (dumbbell-like) extended ground state conformer of CaM-4Ca 2+ , where addition of the MLCK peptide increases the population of the peptide-bound conformers. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Immuno-affinity Capture Followed by TMPP N-Terminus Tagging to Study Catabolism of Therapeutic Proteins.

    PubMed

    Kullolli, Majlinda; Rock, Dan A; Ma, Ji

    2017-02-03

    Characterization of in vitro and in vivo catabolism of therapeutic proteins has increasingly become an integral part of discovery and development process for novel proteins. Unambiguous and efficient identification of catabolites can not only facilitate accurate understanding of pharmacokinetic profiles of drug candidates, but also enables follow up protein engineering to generate more catabolically stable molecules with improved properties (pharmacokinetics and pharmacodynamics). Immunoaffinity capture (IC) followed by top-down intact protein analysis using either matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry analysis have been the primary methods of choice for catabolite identification. However, the sensitivity and efficiency of these methods is not always sufficient for characterization of novel proteins from complex biomatrices such as plasma or serum. In this study a novel bottom-up targeted protein workflow was optimized for analysis of proteolytic degradation of therapeutic proteins. Selective and sensitive tagging of the alpha-amine at the N-terminus of proteins of interest was performed by immunoaffinity capture of therapeutic protein and its catabolites followed by on-bead succinimidyloxycarbonylmethyl tri-(2,4,6-trimethoxyphenyl N-terminus (TMPP-NTT) tagging. The positively charged hydrophobic TMPP tag facilitates unambiguous sequence identification of all N-terminus peptides from complex tryptic digestion samples via data dependent liquid chromatgraphy-tandem mass spectroscopy. Utility of the workflow was illustrated by definitive analysis of in vitro catabolic profile of neurotensin human Fc (NTs-huFc) protein in mouse serum. The results from this study demonstrated that the IC-TMPP-NTT workflow is a simple and efficient method for catabolite formation in therapeutic proteins.

  16. Targeted mass spectrometric analysis of N-terminally truncated isoforms generated via alternative translation initiation.

    PubMed

    Kobayashi, Ryuji; Patenia, Rebecca; Ashizawa, Satoshi; Vykoukal, Jody

    2009-07-21

    Alternative translation initiation is a mechanism whereby functionally altered proteins are produced from a single mRNA. Internal initiation of translation generates N-terminally truncated protein isoforms, but such isoforms observed in immunoblot analysis are often overlooked or dismissed as degradation products. We identified an N-terminally truncated isoform of human Dok-1 with N-terminal acetylation as seen in the wild-type. This Dok-1 isoform exhibited distinct perinuclear localization whereas the wild-type protein was distributed throughout the cytoplasm. Targeted analysis of blocked N-terminal peptides provides rapid identification of protein isoforms and could be widely applied for the general evaluation of perplexing immunoblot bands.

  17. Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

    PubMed Central

    Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.

    2013-01-01

    An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357

  18. Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter

    PubMed Central

    2014-01-01

    Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911

  19. The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host.

    PubMed

    Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee

    2017-11-01

    The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    PubMed

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  1. L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts

    PubMed Central

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of FLO11 which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling FLO11 alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce FLO11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to FLO11 expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air–liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the FLO11 gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts. PMID:25369456

  2. Comparison of Luminex NxTAG Respiratory Pathogen Panel and xTAG Respiratory Viral Panel FAST Version 2 for the Detection of Respiratory Viruses

    PubMed Central

    Lee, Chun Kiat; Lee, Hong Kai; Ng, Christopher Wei Siong; Chiu, Lily; Tang, Julian Wei-Tze; Loh, Tze Ping

    2017-01-01

    Owing to advancements in molecular diagnostics, recent years have seen an increasing number of laboratories adopting respiratory viral panels to detect respiratory pathogens. In December 2015, the NxTAG respiratory pathogen panel (NxTAG RPP) was approved by the United States Food and Drug Administration. We compared the clinical performance of this new assay with that of the xTAG respiratory viral panel (xTAG RVP) FAST v2 using 142 clinical samples and 12 external quality assessment samples. Discordant results were resolved by using a laboratory-developed respiratory viral panel. The NxTAG RPP achieved 100% concordant negative results and 86.6% concordant positive results. It detected one coronavirus 229E and eight influenza A/H3N2 viruses that were missed by the xTAG RVP FAST v2. On the other hand, the NxTAG RPP missed one enterovirus/rhinovirus and one metapneumovirus that were detected by FAST v2. Both panels correctly identified all the pathogens in the 12 external quality assessment samples. Overall, the NxTAG RPP demonstrated good diagnostic performance. Of note, it was better able to subtype the influenza A/H3N2 viruses compared with the xTAG RVP FAST v2. PMID:28224774

  3. Biochemical characterization of Yarrowia lipolytica LIP8, a secreted lipase with a cleavable C-terminal region.

    PubMed

    Kamoun, Jannet; Schué, Mathieu; Messaoud, Wala; Baignol, Justine; Point, Vanessa; Mateos-Diaz, Eduardo; Mansuelle, Pascal; Gargouri, Youssef; Parsiegla, Goetz; Cavalier, Jean-François; Carrière, Frédéric; Aloulou, Ahmed

    2015-02-01

    Yarrowia lipolytica is a lipolytic yeast possessing 16 paralog genes coding for lipases. Little information on these lipases has been obtained and only the major secreted lipase, namely YLLIP2, had been biochemically and structurally characterized. Another secreted lipase, YLLIP8, was isolated from Y. lipolytica culture medium and compared with the recombinant enzyme produced in Pichia pastoris. N-terminal sequencing showed that YLLIP8 is produced in its active form after the cleavage of a signal peptide. Mass spectrometry analysis revealed that YLLIP8 recovered from culture medium lacks a C-terminal part of 33 amino acids which are present in the coding sequence. A 3D model of YLLIP8 built from the X-ray structure of the homologous YLLIP2 lipase shows that these truncated amino acids in YLLIP8 belong to an additional C-terminal region predicted to be mainly helical. Western blot analysis shows that YLLIP8 C-tail is rapidly cleaved upon enzyme secretion since both cell-bound and culture supernatant lipases lack this extension. Mature recombinant YLLIP8 displays a true lipase activity on short-, medium- and long-chain triacylglycerols (TAG), with an optimum activity at alkaline pH on medium chain TAG. It has no apparent regioselectivity in TAG hydrolysis, thus generating glycerol and FFAs as final lipolysis products. YLLIP8 properties are distinct from those of the 1,3-regioselective YLLIP2, acting optimally at acidic pH. These lipases are tailored for complementary roles in fatty acid uptake by Y. lipolytica. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor

    PubMed Central

    Bonomi, Hernán R.; Posadas, Diana M.; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A.; Zorreguieta, Angeles; Goldbaum, Fernando A.

    2012-01-01

    Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum. PMID:22773814

  5. Tail proteins of phage T5: investigation of the effect of the His6-tag position, from expression to crystallisation.

    PubMed

    Noirclerc-Savoye, Marjolaine; Flayhan, Ali; Pereira, Cindy; Gallet, Benoit; Gans, Pierre; Ebel, Christine; Breyton, Cécile

    2015-05-01

    Upon binding to its bacterial host receptor, the tail tip of phage T5 perforates, by an unknown mechanism, the heavily armoured cell wall of the host. This allows the injection of phage DNA into the cytoplasm to hijack the cell machinery and enable the production of new virions. In the perspective of a structural study of the phage tail, we have systematically overproduced eight of the eleven T5 tail proteins, with or without a N- or a C-terminal His6-tag. The widely used Hi6-tag is very convenient to purify recombinant proteins using immobilised-metal affinity chromatography. The presence of a tag however is not always innocuous. We combined automated gene cloning and expression tests to rapidly identify the most promising constructs for proteins of phage T5 tail, and performed biochemical and biophysical characterisation and crystallisation screening on available proteins. Automated small-scale purification was adapted for two highly expressed proteins. We obtained structural information for three of the proteins. We showed that the presence of a His6-tag can have drastic effect on protein expression, solubility, oligomerisation propensity and crystal quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  7. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  8. Method and apparatus for manufacturing gas tags

    DOEpatents

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  9. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  10. The C- and N-Terminal Residues of Synthetic Heptapeptide Ion Channels Influence Transport Efficacy Through Phospholipid Bilayers

    PubMed Central

    Djedovič, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Weber, Michelle E.; Schlesinger, Paul H.; Gokel, George W.

    2008-01-01

    The synthetic peptide, R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR’, was shown to be selective for Cl- over K+ when R is n-octadecyl and R’ is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2° amides, or 3° amides. The compounds having varied N-terminal anchors and C-terminal benzyl groups are as follows: 1, R = n-propyl; 2, R = n-hexyl; 3, R = n-octyl; 4, R = n-decyl; 5, R = n-dodecyl; 6, R = n-tetradecyl; 7, R = n-hexadecyl; 8, R = n-octadecyl. Compounds 9-19 have R = n-octadecyl and C-terminal residues as follows: 9, OR’ = OCH2CH3; 10, OR’ = OCH(CH3)2; 11, OR’ = O(CH2)6CH3; 12, OR’ = OCH2-c-C6H11; 13, OR’ = O(CH2)9CH3; 14, OR’ = O (CH2)17CH3; 15, NR’2 = N[(CH2)6CH3]2; 16, NHR’ = NH(CH2)9CH3; 17, NR’2 = N[(CH2)9CH3]2; 18, NHR’ = NH(CH2)17CH3; 19, NR’2 = N[(CH2)17CH3]2. The highest anion transport activities were observed as follows. For the benzyl esters whose N-terminal residues were varied, i.e. 1-8, compound 3 was most active. For the C18 anchored esters 10-14, n-heptyl ester 11 was most active. For the C18 anchored, C-terminal amides 15-19, di-n-decylamide 17 was most active. It was concluded that both the C- and N-terminal anchors were important for channel function in the bilayer but that activity was lost unless only one of the two anchoring groups was dominant. PMID:19633728

  11. Interaction between the Staphylococcus aureus extracellular adherence protein Eap and its subdomains with platelets.

    PubMed

    Palankar, Raghavendra; Binsker, Ulrike; Haracska, Bianca; Wesche, Jan; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-18

    S. aureus associated bacteremia can lead to severe infections with high risk of mortality (e.g. sepsis, infective endocarditis). Many virulence factors and adhesins of S. aureus are known to directly interact with platelets. Extracellular adherence protein, Eap, one of the most important virulence factors in S. aureus mediated infections is a multi-tandem domain protein and has been shown to interact with almost all cell types in the human circulatory system. By using amine reactive fluorescent N-hydroxysuccinimidyl (NHS)-ester dyes and by direct detection with primary fluorescently conjugated anti-histidine (His-tag) antibodies against detect N-terminal His6, we show Eap subdomain Eap D 3 D 4 specifically interacts and rapidly activates human platelets. Furthermore, we validate our finding by using site directed directional immobilization of Eap D 3 D 4 through N-terminal His 6 on nickel (II)-nitrilotriacetic acid (Ni-NTA) functionalized bacteriomimetic microbead arrays to visualize real-time platelet activation through calcium release assay. These methods offer an easily adoptable protocols for screening of S.aureus derived virulence factors and adhesins with platelets. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. A dynamic N-capping motif in cytochrome b5: evidence for a pH-controlled conformational switch.

    PubMed

    Davis, Ronald B; Lecomte, Juliette T J

    2006-05-01

    Apocytochrome b5 is a marginally stable protein exhibiting under native conditions a slow conformational exchange in its C-terminal region. The affected elements of secondary structure include a 3(10)-helix containing at its N-terminus a histidine Ncap and a subsequent proline. Participation of the neutral histidine side-chain in backbone amide capping lowers the imidazole pKa. To explore the nature of the conformational exchange in the protein and determine whether it is related to cis-trans isomerization of the His-Pro bond, three octapeptides encompassing the helix were synthesized and studied by NMR spectroscopy. One corresponded to the wild-type sequence, the second was the D-histidine epimer, and the third contained an alanine in place of the proline. It was found that the rates of cis-trans interconversion in the proline-containing peptides were slower than the rates of the conformational exchange in the protein. In addition, the wild-type peptide hinted at a predisposition for Ncap formation when in the trans configuration. Analysis of the pH response of the peptides and protein suggested that at pH near neutral, the conformational exchange detected in the protein involved only species with a trans His-Pro bond and could be approximated with a three-state model by which the terminal helix sampled a locally unfolded state. This state, which contained an uncapped histidine with a normal pKa, partitioned into neutral and protonated populations according to pH. The intrinsic conformational bias of the wild-type peptide and the pH-driven equilibria illustrated how a 3(10)-element could serve as a nucleation site for structural rearrangement. 2005 Wiley-Liss, Inc.

  13. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Previous studies have demonstrated that alpha-crystallin binds specifically, in a saturable manner, to lens membrane. To determine the region of the alpha-crystallin molecule that might be involved in this binding, native alpha-crystallin from the bovine lens has been treated by limited digestion with trypsin, to produce alpha-A molecules with an intact C-terminal region, and a nicked N-terminal region. Compared to intact alpha-crystallin, trypsin-treated alpha-crystallin binds less avidly to lens membrane, suggesting that the N-terminal region of the alpha-A molecule may play a key role in the recognition between lens membrane and crystallin.

  14. In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

    DOE PAGES

    Leonard, Francois; Dickerson, J. R.; King, M. P.; ...

    2016-05-03

    Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less

  15. Fatty acid DSF binds and allosterically activates histidine kinase RpfC of phytopathogenic bacterium Xanthomonas campestris pv. campestris to regulate quorum-sensing and virulence

    PubMed Central

    Zhang, Huan; Pan, Yue; Wu, Yao; Tian, Xiu-Qi; Wang, Fang-Fang; Wang, Li

    2017-01-01

    As well as their importance to nutrition, fatty acids (FA) represent a unique group of quorum sensing chemicals that modulate the behavior of bacterial population in virulence. However, the way in which full-length, membrane-bound receptors biochemically detect FA remains unclear. Here, we provide genetic, enzymological and biophysical evidences to demonstrate that in the phytopathogenic bacterium Xanthomonas campestris pv. campestris, a medium-chain FA diffusible signal factor (DSF) binds directly to the N-terminal, 22 amino acid-length sensor region of a receptor histidine kinase (HK), RpfC. The binding event remarkably activates RpfC autokinase activity by causing an allosteric change associated with the dimerization and histidine phosphotransfer (DHp) and catalytic ATP-binding (CA) domains. Six residues were found essential for sensing DSF, especially those located in the region adjoining to the inner membrane of cells. Disrupting direct DSF-RpfC interaction caused deficiency in bacterial virulence and biofilm development. In addition, two amino acids within the juxtamembrane domain of RpfC, Leu172 and Ala178, are involved in the autoinhibition of the RpfC kinase activity. Replacements of them caused constitutive activation of RpfC-mediated signaling regardless of DSF stimulation. Therefore, our results revealed a biochemical mechanism whereby FA activates bacterial HK in an allosteric manner, which will assist in future studies on the specificity of FA-HK recognition during bacterial virulence regulation and cell-cell communication. PMID:28369120

  16. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

    PubMed Central

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. DOI: http://dx.doi.org/10.7554/eLife.16093.001 PMID:27542194

  17. Arginine in the salt-induced peptide formation reaction: enantioselectivity facilitated by glycine, L- and D-histidine.

    PubMed

    Li, Feng; Fitz, Daniel; Fraser, Donald G; Rode, Bernd M

    2010-07-01

    The salt-induced peptide formation reaction has been proposed as a conceivable preliminary to the prebiotic evolution of peptides. In the present paper, the behaviour of arginine is reported for this reaction together with a discussion of the catalytic effects of glycine, and L- and D-histidine. Importantly, the behaviour of the two histidine enantiomers is different. Both histidine enantiomers perform better than glycine in enhancing the yields of arginine dipeptide with L-histidine being more effective than D-histidine. Yields in the presence of histidine are up to 70 times greater than for arginine solutions alone. This compares with 4.2 times higher in the presence of glycine. This difference is most pronounced in the most concentrated (containing 80 mM arginine) reaction solution where arginine has the lowest reactivity. A distinct preference for dimerisation of L-arginine also appears in the 80 mM cases for catalyses of other amino acids. This phenomenon is different from the behaviour of aliphatic amino acids, which display obvious inherent enantioselectivity for the L-stereomers in the SIPF reaction on their own rather than when catalysed by glycine or histidine.

  18. Releasing N-glycan from peptide N-terminus by N-terminal succinylation assisted enzymatic deglycosylation.

    PubMed

    Weng, Yejing; Sui, Zhigang; Jiang, Hao; Shan, Yichu; Chen, Lingfan; Zhang, Shen; Zhang, Lihua; Zhang, Yukui

    2015-04-22

    Due to the important roles of N-glycoproteins in various biological processes, the global N-glycoproteome analysis has been paid much attention. However, by current strategies for N-glycoproteome profiling, peptides with glycosylated Asn at N-terminus (PGANs), generated by protease digestion, could hardly be identified, due to the poor deglycosylation capacity by enzymes. However, theoretically, PGANs occupy 10% of N-glycopeptides in the typical tryptic digests. Therefore, in this study, we developed a novel strategy to identify PGANs by releasing N-glycans through the N-terminal site-selective succinylation assisted enzymatic deglycosylation. The obtained PGANs information is beneficial to not only achieve the deep coverage analysis of glycoproteomes, but also discover the new biological functions of such modification.

  19. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.

    PubMed

    Lu, Huasong; Yu, Dan; Hansen, Anders S; Ganguly, Sourav; Liu, Rongdiao; Heckert, Alec; Darzacq, Xavier; Zhou, Qiang

    2018-06-01

    Hyperphosphorylation of the C-terminal domain (CTD) of the RPB1 subunit of human RNA polymerase (Pol) II is essential for transcriptional elongation and mRNA processing 1-3 . The CTD contains 52 heptapeptide repeats of the consensus sequence YSPTSPS. The highly repetitive nature and abundant possible phosphorylation sites of the CTD exert special constraints on the kinases that catalyse its hyperphosphorylation. Positive transcription elongation factor b (P-TEFb)-which consists of CDK9 and cyclin T1-is known to hyperphosphorylate the CTD and negative elongation factors to stimulate Pol II elongation 1,4,5 . The sequence determinant on P-TEFb that facilitates this action is currently unknown. Here we identify a histidine-rich domain in cyclin T1 that promotes the hyperphosphorylation of the CTD and stimulation of transcription by CDK9. The histidine-rich domain markedly enhances the binding of P-TEFb to the CTD and functional engagement with target genes in cells. In addition to cyclin T1, at least one other kinase-DYRK1A 6 -also uses a histidine-rich domain to target and hyperphosphorylate the CTD. As a low-complexity domain, the histidine-rich domain also promotes the formation of phase-separated liquid droplets in vitro, and the localization of P-TEFb to nuclear speckles that display dynamic liquid properties and are sensitive to the disruption of weak hydrophobic interactions. The CTD-which in isolation does not phase separate, despite being a low-complexity domain-is trapped within the cyclin T1 droplets, and this process is enhanced upon pre-phosphorylation by CDK7 of transcription initiation factor TFIIH 1-3 . By using multivalent interactions to create a phase-separated functional compartment, the histidine-rich domain in kinases targets the CTD into this environment to ensure hyperphosphorylation and efficient elongation of Pol II.

  20. Fully printed flexible and disposable wireless cyclic voltammetry tag

    PubMed Central

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250

  1. The helical MreB cytoskeleton in Escherichia coli MC1000/pLE7 is an artifact of the N-Terminal yellow fluorescent protein tag.

    PubMed

    Swulius, Matthew T; Jensen, Grant J

    2012-12-01

    Based on fluorescence microscopy, the actin homolog MreB has been thought to form extended helices surrounding the cytoplasm of rod-shaped bacterial cells. The presence of these and other putative helices has come to dominate models of bacterial cell shape regulation, chromosome segregation, polarity, and motility. Here we use electron cryotomography to show that MreB does in fact form extended helices and filaments in Escherichia coli when yellow fluorescent protein (YFP) is fused to its N terminus but native (untagged) MreB expressed to the same levels does not. In contrast, mCherry fused to an internal loop (MreB-RFP(SW)) does not induce helices. The helices are therefore an artifact of the placement of the fluorescent protein tag. YFP-MreB helices were also clearly distinguishable from the punctate, "patchy" localization patterns of MreB-RFP(SW), even by standard light microscopy. The many interpretations in the literature of such punctate patterns as helices should therefore be reconsidered.

  2. N-terminal pro-brain natriuretic peptide in acute Kawasaki disease correlates with coronary artery involvement.

    PubMed

    Adjagba, Philippe M; Desjardins, Laurent; Fournier, Anne; Spigelblatt, Linda; Montigny, Martine; Dahdah, Nagib

    2015-10-01

    We have lately documented the importance of N-terminal pro-brain natriuretic peptide in aiding the diagnosis of Kawasaki disease. We sought to investigate the potential value of N-terminal pro-brain natriuretic peptide pertaining to the prediction of coronary artery dilatation (Z-score>2.5) and/or of resistance to intravenous immunoglobulin therapy. We hypothesised that increased serum N-terminal pro-brain natriuretic peptide level correlates with increased coronary artery dilatation and/or resistance to intravenous immunoglobulin. We carried out a prospective study involving newly diagnosed patients treated with 2 g/kg intravenous immunoglobulin within 5-10 days of onset of fever. Echocardiography was performed in all patients at onset, then weekly for 3 weeks, then at month 2, and month 3. Coronary arteries were measured at each visit, and coronary artery Z-score was calculated. All the patients had N-terminal pro-brain natriuretic peptide serum level measured at onset, and the Z-score calculated. There were 109 patients enrolled at 6.58±2.82 days of fever, age 3.79±2.92 years. High N-terminal pro-brain natriuretic peptide level was associated with coronary artery dilatation at onset in 22.2 versus 5.6% for normal N-terminal pro-brain natriuretic peptide levels (odds ratio 4.8 [95% confidence interval 1.05-22.4]; p=0.031). This was predictive of cumulative coronary artery dilatation for the first 3 months (p=0.04-0.02), but not during convalescence at 2-3 months (odds ratio 1.28 [95% confidence interval 0.23-7.3]; p=non-significant). Elevated N-terminal pro-brain natriuretic peptide levels did not predict intravenous immunoglobulin resistance, 15.3 versus 13.5% (p=1). Elevated N-terminal pro-brain natriuretic peptide level correlates with acute coronary artery dilatation in treated Kawasaki disease, but not with intravenous immunoglobulin resistance.

  3. The rescue and evaluation of FLAG and HIS epitope-tagged Asia 1 type foot-and-mouth disease viruses.

    PubMed

    Yang, Bo; Yang, Fan; Zhang, Yan; Liu, Huanan; Jin, Ye; Cao, Weijun; Zhu, Zixiang; Zheng, Haixue; Yin, Hong

    2016-02-02

    The VP1 G-H loop of the foot-and-mouth disease virus (FMDV) contains the primary antigenic site, as well as an Arg-Gly-Asp (RGD) binding motif for the αv-integrin family of cell surface receptors. We anticipated that introducing a foreign epitope tag sequence downstream of the RGD motif would be tolerated by the viral capsid and would not destroy the antigenic site of FMDV. In this study, we have designed, generated, and characterized two recombinant FMDVs with a FLAG tag or histidine (HIS) inserted in the VP1 G-H loop downstream of the RGD motif +9 position. The tagged viruses were genetically stable and exhibited similar growth properties with their parental virus. What is more, the recombinant viruses rFMDV-FLAG and rFMDV-HIS showed neutralization sensitivity to FMDV type Asia1-specific mAbs, as well as to polyclonal antibodies. Additionally, the r1 values of the recombinant viruses were similar to that of the parental virus, indicating that the insertion of FLAG or HIS tag sequences downstream of the RGD motif +9 position do not eradicate the antigenic site of FMDV and do not affect its antigenicity. These results indicated that the G-H loop of Asia1 FMDV is able to effectively display the foreign epitopes, making this a potential approach for novel FMDV vaccines development. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa

    PubMed Central

    Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua

    2017-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1’ α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents. PMID:28732057

  5. Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa.

    PubMed

    Wang, Dan; Chen, Weizhong; Huang, Shanqing; He, Yafeng; Liu, Xichun; Hu, Qingyuan; Wei, Tianbiao; Sang, Hong; Gan, Jianhua; Chen, Hao

    2017-07-01

    Pseudomonas aeruginosa (P. aeruginosa) is a major opportunistic human pathogen, causing serious nosocomial infections among immunocompromised patients by multi-determinant virulence and high antibiotic resistance. The CzcR-CzcS signal transduction system in P. aeruginosa is primarily involved in metal detoxification and antibiotic resistance through co-regulating cross-resistance between Zn(II) and carbapenem antibiotics. Although the intracellular regulatory pathway is well-established, the mechanism by which extracellular sensor domain of histidine kinase (HK) CzcS responds to Zn(II) stimulus to trigger downstream signal transduction remains unclear. Here we determined the crystal structure of the CzcS sensor domain (CzcS SD) in complex with Zn(II) at 1.7 Å resolution. This is the first three-dimensional structural view of Zn(II)-sensor domain of the two-component system (TCS). The CzcS SD is of α/β-fold in nature, and it senses the Zn(II) stimulus at micromole level in a tetrahedral geometry through its symmetry-related residues (His55 and Asp60) on the dimer interface. Though the CzcS SD resembles the PhoQ-DcuS-CitA (PDC) superfamily member, it interacts with the effector in a novel domain with the N-terminal α-helices rather than the conserved β-sheets pocket. The dimerization of the N-terminal H1 and H1' α-helices is of primary importance for the activity of HK CzcS. This study provides preliminary insight into the molecular mechanism of Zn(II) sensing and signaling transduction by the HK CzcS, which will be beneficial to understand how the pathogen P. aeruginosa resists to high levels of heavy metals and antimicrobial agents.

  6. Ypq3p-dependent histidine uptake by the vacuolar membrane vesicles of Saccharomyces cerevisiae.

    PubMed

    Manabe, Kunio; Kawano-Kawada, Miyuki; Ikeda, Koichi; Sekito, Takayuki; Kakinuma, Yoshimi

    2016-06-01

    The vacuolar membrane proteins Ypq1p, Ypq2p, and Ypq3p of Saccharomyces cerevisiae are known as the members of the PQ-loop protein family. We found that the ATP-dependent uptake activities of arginine and histidine by the vacuolar membrane vesicles were decreased by ypq2Δ and ypq3Δ mutations, respectively. YPQ1 and AVT1, which are involved in the vacuolar uptake of lysine/arginine and histidine, respectively, were deleted in addition to ypq2Δ and ypq3Δ. The vacuolar membrane vesicles isolated from the resulting quadruple deletion mutant ypq1Δypq2Δypq3Δavt1Δ completely lost the uptake activity of basic amino acids, and that of histidine, but not lysine and arginine, was evidently enhanced by overexpressing YPQ3 in the mutant. These results suggest that Ypq3p is specifically involved in the vacuolar uptake of histidine in S. cerevisiae. The cellular level of Ypq3p-HA(3) was enhanced by depletion of histidine from culture medium, suggesting that it is regulated by the substrate.

  7. Sensitive Carbohydrate Detection using Surface Enhanced Raman Tagging

    PubMed Central

    Vangala, Karthikeshwar; Yanney, Michael; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige; Sygula, Andrzej; Zhang, Dongmao

    2010-01-01

    Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose and glucuronic acid). SERS detection limits obtained with 632 nm HeNe laser were ~1 nM in concentration for all the RT-carbohydrate conjugates and ~10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 µM. Ratiometric SERS quantification using isotope-substituted SERS internal references also allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ~ 3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol that was achieved with linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique, and then identified with ESI-MS techniques. PMID:21082777

  8. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGES

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  9. Harmonic radar tagging for tracking movement of Nezara viridula (Hemiptera: Pentatomidae).

    PubMed

    Pilkay, Grant L; Reay-Jones, Francis P F; Greene, Jeremy K

    2013-10-01

    Harmonic radar tagging was investigated as a method for monitoring the movement of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Because adhesive toxicity and tag weight limit the use of this technology, initial efforts focused on selection of the optimal adhesive and design of harmonic radar tags to reduce impact on the movement of stink bugs. A design consisting of a 6-cm-long 0.10-mm-thick silver-plated copper monopole on the anode terminal of a three-contact Schottky barrier diode attached with Gorilla super glue provided a compromise between unimpaired movement and tracking range, adding an additional 8% to the weight of the stink bug while not significantly (P > 0.05) reducing walking or flying mobility in the laboratory. Recovery of tagged stink bugs in cotton, Gossypium hirsutum (L.), and fallow fields ranged from 10 to 75% after 24 h, whereas marked stink bugs were recovered at rates of 0-35% by using sweep net or drop cloth sampling. The distance dispersed in the field was not impacted (P > 0.05) by crop, tagged status, or gender of the insect. Future research should examine possible improvements to the harmonic radar transceiver and the wire antenna to decrease encumbrance.

  10. Controlled immobilization of His-tagged proteins for protein-ligand interaction experiments using Ni²⁺-NTA layer on glass surfaces.

    PubMed

    Cherkouk, Charaf; Rebohle, Lars; Lenk, Jens; Keller, Adrian; Ou, Xin; Laube, Markus; Neuber, Christin; Haase-Kohn, Cathleen; Skorupa, Wolfgang; Pietzsch, Jens

    2015-01-01

    Gold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass surfaces and substantially allows cost and resource savings. Here we present a novel method for the controlled oriented immobilization of His-tagged proteins on glass surfaces functionalized with a Ni²⁺-NTA layer. Exemplarily, the protein pattern morphology after immobilization on the Ni²⁺-NTA layer of His6-tagged soluble receptor for advanced glycation endproducts (sRAGE) was investigated and compared to non-oriented immobilization of sRAGE on amino SAM by using scanning electron microscopy (SEM). Moreover, we demonstrated interaction of immobilized sRAGE with three structurally different ligands, S100A12, S100A4, and glycated low density lipoproteins (glycLDL), by means of peak-force tapping atomic force microscopy (PF-AFM). We showed a clear discrimination of different protein-ligand orientations by differential height measurements.

  11. Effects of the location of distal histidine in the reaction of myoglobin with hydrogen peroxide.

    PubMed

    Matsui, T; Ozaki, S i; Liong, E; Phillips, G N; Watanabe, Y

    1999-01-29

    To clarify how the location of distal histidine affects the activation process of H2O2 by heme proteins, we have characterized reactions with H2O2 for the L29H/H64L and F43H/H64L mutants of sperm whale myoglobin (Mb), designed to locate the histidine farther from the heme iron. Whereas the L29H/H64L double substitution retarded the reaction with H2O2, an 11-fold rate increase versus wild-type Mb was observed for the F43H/H64L mutant. The Vmax values for 1-electron oxidations by the myoglobins correlate well with the varied reactivities with H2O2. The functions of the distal histidine as a general acid-base catalyst were examined based on the reactions with cumene hydroperoxide and cyanide, and only the histidine in F43H/H64L Mb was suggested to facilitate heterolysis of the peroxide bond. The x-ray crystal structures of the mutants confirmed that the distal histidines in F43H/H64L Mb and peroxidase are similar in distance from the heme iron, whereas the distal histidine in L29H/H64L Mb is located too far to enhance heterolysis. Our results indicate that the proper positioning of the distal histidine is essential for the activation of H2O2 by heme enzymes.

  12. Mechanism of the lysosomal membrane enzyme acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bame, K.J.

    1986-01-01

    Acetyl-CoA:..cap alpha..-glucosaminide N-acetyltransferase is a lysosomal membrane enzyme, deficient in the genetic disease Sanfilippo C syndrome. The enzyme catalyzes the transfer of an acetyl group from cytoplasmic acetyl-CoA to terminal ..cap alpha..-glucosamine residues of heparan sulfate within the organelle. The reaction mechanism was examined using high purified lysosomal membranes from rat liver and human fibroblasts. The N-acetyltransferase reaction is optimal above pH 5.5 and a 2-3 fold stimulation of activity is observed in the presence of 0.1% taurodeoxycholate. Double reciprocal analysis and product inhibition studies indicate that the enzyme works by a Di-Iso Ping Pong Bi Bi mechanism. The bindingmore » of acetyl-CoA to the enzyme is measured by exchange label from (/sup 3/H)CoA to acetyl-CoA, and is optimal at pH's above 7.0. The acetyl-enzyme intermediate is formed by incubating membranes with (/sup 3/H)acetyl-CoA. The acetyl group can be transferred to glucosamine, forming (/sup 3/H)N-acetylglucosamine; the transfer is optimal between pH 4 and 5. Lysosomal membranes from Sanfilippo C fibroblasts confirm that these half reactions carried out by the N-acetyltransferase. The enzyme is inactivated by N-bromosuccinimide and diethylpyrocarbonate, indicating that a histidine is involved in the reaction. These results suggest that the histidine residue is at the active site of the enzyme. The properties of the N-acetyltransferase in the membrane, the characterization of the enzyme kinetics, the chemistry of a histidine mediated acetylation and the pH difference across the lysosomal membrane all support a transmembrane acetylation mechanism.« less

  13. Improving Large Cetacean Implantable Satellite Tag Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals

    DTIC Science & Technology

    2013-09-30

    Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals Alexandre N. Zerbini Cascadia Research Collective 218 ½ 4th...the blubber-muscle interface and minimize physical and physiological effects of body penetrating tags to individual animals . OBJECTIVES (1...integrity of designs created in Objective (1) during laboratory experiments and in cetacean carcasses ; (3) Examine structural tissue damage in the

  14. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH

  15. Role of Heavy Meromyosin in Heat-Induced Gelation in Low Ionic Strength Solution Containing L-Histidine.

    PubMed

    Hayakawa, Toru; Yoshida, Yuri; Yasui, Masanori; Ito, Toshiaki; Wakamatsu, Jun-ichi; Hattori, Akihito; Nishimura, Takanori

    2015-08-01

    The gelation of myosin has a very important role in meat products. We have already shown that myosin in low ionic strength solution containing L-histidine forms a transparent gel after heating. To clarify the mechanism of this unique gelation, we investigated the changes in the nature of myosin subfragments during heating in solutions with low and high ionic strengths with and without L-histidine. The hydrophobicity of myosin and heavy meromyosin (HMM) in low ionic strength solution containing L-histidine was lower than in high ionic strength solution. The SH contents of myosin and HMM in low ionic strength solution containing l-histidine did not change during the heating process, whereas in high ionic strength solution they decreased slightly. The heat-induced globular masses of HMM in low ionic strength solution containing L-histidine were smaller than those in high ionic strength solution. These findings suggested that the polymerization of HMM molecules by heating was suppressed in low ionic strength solution containing L-histidine, resulting in formation of the unique gel. © 2015 Institute of Food Technologists®

  16. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  18. Radio tag retention and tag-related mortality among adult sockeye salmon

    USGS Publications Warehouse

    Ramstad, Kristina M.; Woody, Carol Ann

    2003-01-01

    Tag retention and tag-related mortality are concerns for any tagging study but are rarely estimated. We assessed retention and mortality rates for esophageal radio tag implants in adult sockeye salmon Oncorhynchus nerka. Migrating sockeye salmon captured at the outlet of Lake Clark, Alaska, were implanted with one of four different radio tags (14.5 × 43 mm (diameter × length), 14.5 × 49 mm, 16 × 46 mm, and 19 × 51 mm). Fish were observed for 15 to 35 d after tagging to determine retention and mortality rates. The overall tag retention rate was high (0.98; 95% confidence interval (CI), 0.92-1.00; minimum, 33 d), with one loss of a 19-mm × 51- mm tag. Mortality of tagged sockeye salmon (0.02; 95% CI, 0-0.08) was similar to that of untagged controls (0.03 (0-0.15)). Sockeye salmon with body lengths (mid-eye to tail fork) of 585-649 mm retained tags as large as 19 × 51 mm and those with body lengths of 499-628 mm retained tags as small as 14.5 × 43 mm for a minimum of 33 d with no increase in mortality. The tags used in this study represent a suite of radio tags that vary in size, operational life, and cost but that are effective in tracking adult anadromous salmon with little tag loss or increase in fish mortality.

  19. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor.

    PubMed

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G M

    2017-03-01

    Human cannabinoid receptor CB 2 belongs to the class A of G protein-coupled receptor (GPCR). CB 2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB 2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB 2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB 2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB 2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB 2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB 2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification

  20. The diagnostic value of plasma N-terminal connective tissue growth factor levels in children with heart failure.

    PubMed

    Li, Gang; Song, Xueqing; Xia, Jiyi; Li, Jing; Jia, Peng; Chen, Pengyuan; Zhao, Jian; Liu, Bin

    2017-01-01

    The aim of this study was to assess the diagnostic value of plasma N-terminal connective tissue growth factor in children with heart failure. Methods and results Plasma N-terminal connective tissue growth factor was determined in 61 children, including 41 children with heart failure, 20 children without heart failure, and 30 healthy volunteers. The correlations between plasma N-terminal connective tissue growth factor levels and clinical parameters were investigated. Moreover, the diagnostic value of N-terminal connective tissue growth factor levels was evaluated. Compared with healthy volunteers and children without heart failure, plasma N-terminal connective tissue growth factor levels were significantly elevated in those with heart failure (p0.05), but it obviously improved the ability of diagnosing heart failure in children, as demonstrated by the integrated discrimination improvement (6.2%, p=0.013) and net re-classification improvement (13.2%, p=0.017) indices. Plasma N-terminal connective tissue growth factor is a promising diagnostic biomarker for heart failure in children.

  1. Extracting tag hierarchies.

    PubMed

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the "flat" organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search. Moreover

  2. Extracting Tag Hierarchies

    PubMed Central

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2013-01-01

    Tagging items with descriptive annotations or keywords is a very natural way to compress and highlight information about the properties of the given entity. Over the years several methods have been proposed for extracting a hierarchy between the tags for systems with a "flat", egalitarian organization of the tags, which is very common when the tags correspond to free words given by numerous independent people. Here we present a complete framework for automated tag hierarchy extraction based on tag occurrence statistics. Along with proposing new algorithms, we are also introducing different quality measures enabling the detailed comparison of competing approaches from different aspects. Furthermore, we set up a synthetic, computer generated benchmark providing a versatile tool for testing, with a couple of tunable parameters capable of generating a wide range of test beds. Beside the computer generated input we also use real data in our studies, including a biological example with a pre-defined hierarchy between the tags. The encouraging similarity between the pre-defined and reconstructed hierarchy, as well as the seemingly meaningful hierarchies obtained for other real systems indicate that tag hierarchy extraction is a very promising direction for further research with a great potential for practical applications. Tags have become very prevalent nowadays in various online platforms ranging from blogs through scientific publications to protein databases. Furthermore, tagging systems dedicated for voluntary tagging of photos, films, books, etc. with free words are also becoming popular. The emerging large collections of tags associated with different objects are often referred to as folksonomies, highlighting their collaborative origin and the “flat” organization of the tags opposed to traditional hierarchical categorization. Adding a tag hierarchy corresponding to a given folksonomy can very effectively help narrowing or broadening the scope of search

  3. Intra- and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression*

    PubMed Central

    Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.

    2012-01-01

    Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709

  4. Shark Tagging Activities.

    ERIC Educational Resources Information Center

    Current: The Journal of Marine Education, 1998

    1998-01-01

    In this group activity, children learn about the purpose of tagging and how scientists tag a shark. Using a cut-out of a shark, students identify, measure, record data, read coordinates, and tag a shark. Includes introductory information about the purpose of tagging and the procedure, a data sheet showing original tagging data from Tampa Bay, and…

  5. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  6. Quantum tagging for tags containing secret classical data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finitemore » key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.« less

  7. Tab2, a novel recombinant polypeptide tag offering sensitive and specific protein detection and reliable affinity purification.

    PubMed

    Crusius, Kerstin; Finster, Silke; McClary, John; Xia, Wei; Larsen, Brent; Schneider, Douglas; Lu, Hong-Tao; Biancalana, Sara; Xuan, Jian-Ai; Newton, Alicia; Allen, Debbie; Bringmann, Peter; Cobb, Ronald R

    2006-10-01

    The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flagtrade mark, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGFalpha. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag-anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.

  8. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    PubMed

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.

  9. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study.

    PubMed

    Li, Yan-Chuan; Li, Chun-Long; Qi, Jia-Yue; Huang, Li-Na; Shi, Dan; Du, Shan-Shan; Liu, Li-Yan; Feng, Ren-Nan; Sun, Chang-Hao

    2016-07-11

    Our previous studies have demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women and high-fat diet-induced obese rats. However, the effects of dietary histidine on general population are not known. The objective of this Internet-based cross-sectional study was to evaluate the associations between dietary histidine and prevalence of overweight/obesity and abdominal obesity in northern Chinese population. A total of 2376 participants were randomly recruited and asked to finish our Internet-based dietary questionnaire for the Chinese (IDQC). Afterwards, 88 overweight/obese participants were randomly selected to explore the possible mechanism. Compared with healthy controls, dietary histidine was significantly lower in overweight (p < 0.05) and obese (p < 0.01) participants of both sexes. Dietary histidine was inversely associated with body mass index (BMI), waist circumference (WC) and blood pressure in overall population and stronger associations were observed in women and overweight/obese participants. Higher dietary histidine was associated with lower prevalence of overweight/obesity and abdominal obesity, especially in women. Further studies indicated that higher dietary histidine was associated with lower fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), 2-h postprandial glucose (2 h-PG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), malonaldehyde (MDA) and vaspin and higher glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and adiponectin of overweight/obese individuals of both sexes. In conclusion, higher dietary histidine is inversely associated with energy intake, status of insulin resistance, inflammation and oxidative stress in overweight/obese participants and lower prevalence of overweight/obesity in northern Chinese adults.

  10. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study

    PubMed Central

    Li, Yan-Chuan; Li, Chun-Long; Qi, Jia-Yue; Huang, Li-Na; Shi, Dan; Du, Shan-Shan; Liu, Li-Yan; Feng, Ren-Nan; Sun, Chang-Hao

    2016-01-01

    Our previous studies have demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women and high-fat diet-induced obese rats. However, the effects of dietary histidine on general population are not known. The objective of this Internet-based cross-sectional study was to evaluate the associations between dietary histidine and prevalence of overweight/obesity and abdominal obesity in northern Chinese population. A total of 2376 participants were randomly recruited and asked to finish our Internet-based dietary questionnaire for the Chinese (IDQC). Afterwards, 88 overweight/obese participants were randomly selected to explore the possible mechanism. Compared with healthy controls, dietary histidine was significantly lower in overweight (p < 0.05) and obese (p < 0.01) participants of both sexes. Dietary histidine was inversely associated with body mass index (BMI), waist circumference (WC) and blood pressure in overall population and stronger associations were observed in women and overweight/obese participants. Higher dietary histidine was associated with lower prevalence of overweight/obesity and abdominal obesity, especially in women. Further studies indicated that higher dietary histidine was associated with lower fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), 2-h postprandial glucose (2 h-PG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), malonaldehyde (MDA) and vaspin and higher glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and adiponectin of overweight/obese individuals of both sexes. In conclusion, higher dietary histidine is inversely associated with energy intake, status of insulin resistance, inflammation and oxidative stress in overweight/obese participants and lower prevalence of overweight/obesity in northern Chinese adults. PMID:27409634

  11. Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline

    PubMed Central

    Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.

    2011-01-01

    Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041

  12. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  13. The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of Xanthomonas campestris.

    PubMed

    An, Shi-Qi; Allan, John H; McCarthy, Yvonne; Febrer, Melanie; Dow, J Maxwell; Ryan, Robert P

    2014-05-01

    A cell-cell signalling system mediated by the fatty acid signal DSF controls the virulence of Xanthomonas campestris pv. campestris (Xcc) to plants. The synthesis and recognition of the DSF signal depends upon different Rpf proteins. DSF signal generation requires RpfF whereas signal perception and transduction depends upon the sensor RpfC and regulator RpfG. Detailed analyses of the regulatory roles of different Rpf proteins have suggested the occurrence of further sensors for DSF. Here we have used a mutagenesis approach coupled with high-resolution transcriptional analysis to identify XC_2579 (RpfS) as a second sensor for DSF in Xcc. RpfS is a complex sensor kinase predicted to have multiple Per/Arnt/Sim (PAS) domains, a histidine kinase domain and a C-terminal receiver (REC) domain. Isothermal calorimetry showed that DSF bound to the isolated N-terminal PAS domain with a Kd of 1.4 μM. RpfS controlled expression of a sub-set of genes distinct from those controlled by RpfC to include genes involved in type IV secretion and chemotaxis. Mutation of XC_2579 was associated with a reduction in virulence of Xcc to Chinese Radish when assayed by leaf spraying but not by leaf inoculation, suggesting a role for RpfS-controlled factors in the epiphytic phase of the disease cycle. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Design, Synthesis, and Evaluation of N- and C-Terminal Protein Bioconjugates as G Protein-Coupled Receptor Agonists.

    PubMed

    Healey, Robert D; Wojciechowski, Jonathan P; Monserrat-Martinez, Ana; Tan, Susan L; Marquis, Christopher P; Sierecki, Emma; Gambin, Yann; Finch, Angela M; Thordarson, Pall

    2018-02-21

    A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor. These chemical biology tools allow interactions of therapeutic proteins:GPCR to be monitored and visualized. The methodology used for site-specific bioconjugation represents an advance in application of 2-pyridinecarboxyaldehydes for N-terminal specific bioconjugations.

  15. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonidmore » Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7

  16. 21 CFR 862.1375 - Histidine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Histidine test system. 862.1375 Section 862.1375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...

  17. Long term retention, survival, growth, and physiological indicators of salmonids marked with passive integrated transponder tags

    USGS Publications Warehouse

    Ostrand, Kenneth G.; Zydlewski, Gayle B.; Gale, William L.; Zydlewski, Joseph D.

    2011-01-01

    To track individuals in situ, over 12 million salmon and trout have been marked with passive integrated transponder (PIT) tags in the Columbia River Basin, USA. However, few studies have examined long term tag retention as well as tag effects on juvenile salmon and trout. We marked juvenile coho salmon Oncorhynchus kisutch (N = 207), steelhead (anadromous rainbow trout) O. mykiss (N = 221), cutthroat trout O. clarkii (N = 202) and bull trout Salvelinus confluentus (N = 180) with 12, 19, or 23 mm PIT tags and examined tag retention, survival, growth, and physiological performance over a six month period in a laboratory environment. PIT tag retention rates were high for coho salmon (100%), steelhead (95%), cutthroat trout (97%), and bull trout (99%), regardless of tag size. Survival was also high for coho (99%), steelhead (99%), cutthroat trout (97%), and bull trout (88%) and did not vary among tag sizes. Short term individual growth rates for coho salmon marked with 12 mm tags were significantly higher than those marked with 19 mm and 23 mm PIT tags. Likewise, steelhead trout individual growth rates were lower for fish marked with 23 mm PIT tags followed by 19 and 12 mm tags. Conversely, long-term growth rates were positive and not affected by tag size. There were no significant effects of tag size or marking on coho gill Na+, K+, -ATPase activity (µmol ADP x mg protein–1 h–1) and plasma osmolality (µmol kg–1) or bull trout hepatosomatic indices. Our study suggests that marking juvenile salmonids with PIT tags results in high retention with little effect upon their survival, growth, and important physiological indicators regardless of tag size in a laboratory environment.

  18. Ontologies and tag-statistics

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  19. The active transport of histidine and its role in ATP production in Trypanosoma cruzi.

    PubMed

    Barisón, M J; Damasceno, F S; Mantilla, B S; Silber, A M

    2016-08-01

    Trypanosoma cruzi, the aetiological agent of Chagas's disease, metabolizes glucose, and after its exhaustion, degrades amino acids as energy source. Here, we investigate histidine uptake and its participation in energy metabolism. No putative genes for the histidine biosynthetic pathway have been identified in genome databases of T. cruzi, suggesting that its uptake from extracellular medium is a requirement for the viability of the parasite. From this assumption, we characterized the uptake of histidine in T. cruzi, showing that this amino acid is incorporated through a single and saturable active system. We also show that histidine can be completely oxidised to CO2. This finding, together with the fact that genes encoding the putative enzymes for the histidine - glutamate degradation pathway were annotated, led us to infer its participation in the energy metabolism of the parasite. Here, we show that His is capable of restoring cell viability after long-term starvation. We confirm that as an energy source, His provides electrons to the electron transport chain, maintaining mitochondrial inner membrane potential and O2 consumption in a very efficient manner. Additionally, ATP biosynthesis from oxidative phosphorylation was found when His was the only oxidisable metabolite present, showing that this amino acid is involved in bioenergetics and parasite persistence within its invertebrate host.

  20. Deletion of the N-terminal Domain (NTD) Alters the Ethanol Inhibition of NMDA Receptors in a Subunit-Dependent Manner

    PubMed Central

    Smothers, C. Thetford; Jin, Chun; Woodward, John J.

    2013-01-01

    Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549

  1. Effect of starvation on free histidine and amino acids in white muscle of milkfish Chanos chanos.

    PubMed

    Shiau, C Y; Pong, Y P; Chiou, T K; Tin, Y Y

    2001-03-01

    Milkfish (Chanos chanos) decreased their body weight from 47 to 28 g over the 60-day period of starvation. Starvation also resulted in the reduction of muscle lipid and protein, and hepatosomatic index. The predominant free amino acid (FAA) in white muscle of milkfish was histidine, followed by taurine and glycine. In the first 25 days of starvation, no significant change in histidine was found. After 40 days of starvation, however, the histidine concentration was significantly decreased by 46%, and remained unchanged thereafter. As compared to control group fish, the 60-day-starved fish possessed only half the amount of histidine. Taurine and glycine, on the other hand, showed no significant changes throughout starvation. Taurine became the most predominant in the FAA pool after 40 days of starvation, and the concentration of 60-day-starved fish was two times higher than that of control group fish without starvation. The ratios of histidine, taurine, and glycine to total FAAs remained approximately the same although the individual contributions varied considerably to the total FAAs during starvation. The results of this study suggested that a good strategy would be to keep taurine and glycine in milkfish muscle at relatively high levels for physiological function as histidine decreased drastically for energy source under conditions of food deprivation.

  2. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    PubMed

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  3. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  4. Dynamic optical tags

    NASA Astrophysics Data System (ADS)

    Griggs, Steven P.; Mark, Martin B.; Feldman, Barry J.

    2004-07-01

    The goal of the DARPA Dynamic Optical Tags (DOTs) program is to develop a small, robust, persistent, 2-way tagging, tracking and locating device that also supports communications at data rates greater than 100 kbps and can be interrogated at significant range. These tags will allow for two-way data exchange and tagging operations in friendly and denied areas. The DOTs will be passive and non-RF. To accomplish this, the DOTs program will develop small, thin, retro-reflecting modulators. The tags will operate for long periods of time (greater than two months) in real-world environmental conditions (-40° to +70° C) and allow for a wide interrogation angle (+/-60°). The tags will be passive (in the sleep mode) for most of the time and only become active when interrogated by a laser with the correct code. Once correctly interrogated, the tags will begin to modulate and retro-reflect the incoming beam. The program will also develop two tag specific transceiver systems that are eye-safe, employ automated scanning algorithms, and are capable of short search and interrogate times.

  5. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significantmore » improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.« less

  6. A Cleavable N-Terminal Signal Peptide Promotes Widespread Olfactory Receptor Surface Expression in HEK293T Cells

    PubMed Central

    Shepard, Blythe D.; Natarajan, Niranjana; Protzko, Ryan J.; Acres, Omar W.; Pluznick, Jennifer L.

    2013-01-01

    Olfactory receptors (ORs) are G protein-coupled receptors that detect odorants in the olfactory epithelium, and comprise the largest gene family in the genome. Identification of OR ligands typically requires OR surface expression in heterologous cells; however, ORs rarely traffic to the cell surface when exogenously expressed. Therefore, most ORs are orphan receptors with no known ligands. To date, studies have utilized non-cleavable rhodopsin (Rho) tags and/or chaperones (i.e. Receptor Transporting Protein, RTP1S, Ric8b and Gαolf) to improve surface expression. However, even with these tools, many ORs still fail to reach the cell surface. We used a test set of fifteen ORs to examine the effect of a cleavable leucine-rich signal peptide sequence (Lucy tag) on OR surface expression in HEK293T cells. We report here that the addition of the Lucy tag to the N-terminus increases the number of ORs reaching the cell surface to 7 of the 15 ORs (as compared to 3/15 without Rho or Lucy tags). Moreover, when ORs tagged with both Lucy and Rho were co-expressed with previously reported chaperones (RTP1S, Ric8b and Gαolf), we observed surface expression for all 15 receptors examined. In fact, two-thirds of Lucy-tagged ORs are able to reach the cell surface synergistically with chaperones even when the Rho tag is removed (10/15 ORs), allowing for the potential assessment of OR function with only an 8-amino acid Flag tag on the mature protein. As expected for a signal peptide, the Lucy tag was cleaved from the mature protein and did not alter OR-ligand binding and signaling. Our studies demonstrate that widespread surface expression of ORs can be achieved in HEK293T cells, providing promise for future large-scale deorphanization studies. PMID:23840901

  7. Association of Rare Loss-Of-Function Alleles in HAL, Serum Histidine: Levels and Incident Coronary Heart Disease.

    PubMed

    Yu, Bing; Li, Alexander H; Muzny, Donna; Veeraraghavan, Narayanan; de Vries, Paul S; Bis, Joshua C; Musani, Solomon K; Alexander, Danny; Morrison, Alanna C; Franco, Oscar H; Uitterlinden, André; Hofman, Albert; Dehghan, Abbas; Wilson, James G; Psaty, Bruce M; Gibbs, Richard; Wei, Peng; Boerwinkle, Eric

    2015-04-01

    Histidine is a semiessential amino acid with antioxidant and anti-inflammatory properties. Few data are available on the associations between genetic variants, histidine levels, and incident coronary heart disease (CHD) in a population-based sample. By conducting whole exome sequencing on 1152 African Americans in the Atherosclerosis Risk in Communities (ARIC) study and focusing on loss-of-function (LoF) variants, we identified 3 novel rare LoF variants in HAL, a gene that encodes histidine ammonia-lyase in the first step of histidine catabolism. These LoF variants had large effects on blood histidine levels (β=0.26; P=1.2×10(-13)). The positive association with histidine levels was replicated by genotyping an independent sample of 718 ARIC African Americans (minor allele frequency=1%; P=1.2×10(-4)). In addition, high blood histidine levels were associated with reduced risk of developing incident CHD with an average of 21.5 years of follow-up among African Americans (hazard ratio=0.18; P=1.9×10(-4)). This finding was validated in an independent sample of European Americans from the Framingham Heart Study (FHS) Offspring Cohort. However, LoF variants in HAL were not directly significantly associated with incident CHD after meta-analyzing results from the CHARGE Consortium. Three LoF mutations in HAL were associated with increased histidine levels, which in turn were shown to be inversely related to the risk of CHD among both African Americans and European Americans. Future investigations on the association between HAL gene variation and CHD are warranted. © 2015 American Heart Association, Inc.

  8. Identification of histidine residues that act as zinc ligands in beta-lactamase II by differential tritium exchange.

    PubMed Central

    Baldwin, G S; Waley, S G; Abraham, E P

    1979-01-01

    1. Four histidine-containing peptides have been isolated from a tryptic digest of the Zn2+-requiring beta-lactamase II from Bacillus cereus. One of these peptides probably contains two histidine residues. 2. The presence of one equivalent of Zn2+ substantially decreases the rate of exchange of the C-2 proton in at least two and probably three of the histidine residues of these peptides for solvent 3H. 3. It is concluded that peptides containing at least two of the three histidine residues acting as Zn2+ ligands at the tighter Zn2+-binding site of beta-lactamase II have been identified. PMID:314287

  9. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-02-11

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro.

  10. Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes

    DOE PAGES

    Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.; ...

    2017-05-29

    Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less

  11. Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.

    Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less

  12. Tagging RDT&E. Volume 1. Technology Assessment and Development Reports

    DTIC Science & Technology

    1994-03-01

    weapon system component could have a unique, counterfeit and transfer resistant, and tamper indicating identifier (or tag), inspectors could...the random nature of the reflective surfaces on each particle, the tag is highly resistant to counterfeiting . Sym t, n- BDM Jnvolvement RPT Sandia...layers) that tampering has occurred. A reflective particle (RP) disk was added by PNL to increase the difficulty of counterfeiting the tag and to make

  13. Impacts of ferry terminals on juvenile salmon movement along Puget Sound shorelines

    DOT National Transportation Integrated Search

    2006-06-01

    This study used both standardized surveys and innovative fish tagging and tracking technologies to address whether Washington State Ferries (WSF) terminals alter the behavior of migrating juvenile salmon, and if so, which attributes mediate abundance...

  14. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins

    PubMed Central

    Valéry, Céline; Deville-Foillard, Stéphanie; Lefebvre, Christelle; Taberner, Nuria; Legrand, Pierre; Meneau, Florian; Meriadec, Cristelle; Delvaux, Camille; Bizien, Thomas; Kasotakis, Emmanouil; Lopez-Iglesias, Carmen; Gall, Andrew; Bressanelli, Stéphane; Le Du, Marie-Hélène; Paternostre, Maïté; Artzner, Franck

    2015-01-01

    External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials. PMID:26190377

  15. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine

    PubMed Central

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-01-01

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation. PMID:26337119

  16. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine

    NASA Astrophysics Data System (ADS)

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-09-01

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation.

  17. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine.

    PubMed

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-09-04

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation.

  18. A laboratory evaluation of tagging-related mortality and tag loss in juvenile humpback chub

    USGS Publications Warehouse

    Ward, David L.; Persons, William R.; Young, Kirk; Stone, Dennis M.; Van Haverbeke, Randy; Knight, William R.

    2015-01-01

    We quantified tag retention, survival, and growth in juvenile, captive-reared Humpback Chub Gila cypha marked with three different tag types: (1) Biomark 12.5-mm, 134.2-kHz, full duplex PIT tags injected into the body cavity with a 12-gauge needle; (2) Biomark 8.4-mm, 134.2-kHz, full duplex PIT tags injected with a 16-gauge needle; and (3) Northwest Marine Technology visible implant elastomer (VIE) tags injected under the skin with a 29-gauge needle. Estimates of tag loss, tagging-induced mortality, and growth were evaluated for 60 d with each tag type for four different size-groups of fish: 40–49 mm, 50–59 mm, 60–69 mm, and 70–79 mm TL. Total length was a significant predictor of the probability of PIT tag retention and mortality for both 8-mm and 12-mm PIT tags, and the smallest fish had the highest rates of tag loss (12.5–30.0%) and mortality (7.5–20.0%). Humpback Chub of sizes 40–49 mm TL and tagged with VIE tags had no mortality but did have a 17.5% tag loss. Growth rates of all tagged fish were similar to controls. Our data indicate Humpback Chub can be effectively tagged using either 8-mm or 12-mm PIT tags with little tag loss or mortality at sizes as low as 65 mm TL.

  19. Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pK(a) calculations and molecular dynamics simulations.

    PubMed

    Langella, Emma; Improta, Roberto; Crescenzi, Orlando; Barone, Vincenzo

    2006-07-01

    A thorough study of the acid-base behavior of the four histidines and the other titratable residues of the structured domain of human prion protein (125-228) is presented. By using multi-tautomer electrostatic calculations, average titration curves have been built for all titratable residues, using the whole bundles of NMR structures determined at pH 4.5 and 7.0. According to our results, (1) only histidine residues are likely to be involved in the first steps of the pH-driven conformational transition of prion protein; (2) the pK(a)'s of His140 and His177 are approximately 7.0, whereas those of His155 and His187 are < 5.5. 10-ns long molecular dynamics simulations have been performed on five different models, corresponding to the most significant combinations of histidine protonation states. A critical comparison between the available NMR structures and our computational results (1) confirms that His155 and His187 are the residues whose protonation is involved in the conformational rearrangement of huPrP in mildly acidic condition, and (2) shows how their protonation leads to the destructuration of the C-terminal part of HB and to the loss of the last turn of HA that represent the crucial microscopic steps of the rearrangement. (c) 2006 Wiley-Liss, Inc.

  20. The α-Secretase-derived N-terminal Product of Cellular Prion, N1, Displays Neuroprotective Function in Vitro and in Vivo*

    PubMed Central

    Guillot-Sestier, Marie-Victoire; Sunyach, Claire; Druon, Charlotte; Scarzello, Sabine; Checler, Frédéric

    2009-01-01

    Cellular prion protein (PrPc) undergoes a disintegrin-mediated physiological cleavage, generating a soluble amino-terminal fragment (N1), the function of which remained unknown. Recombinant N1 inhibits staurosporine-induced caspase-3 activation by modulating p53 transcription and activity, whereas the PrPc-derived pathological fragment (N2) remains biologically inert. Furthermore, N1 protects retinal ganglion cells from hypoxia-induced apoptosis, reduces the number of terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling-positive and p53-immunoreactive neurons in a pressure-induced ischemia model of the rat retina and triggers a partial recovery of b-waves but not a-waves of rat electroretinograms. Our work is the first demonstration that the α-secretase-derived PrPc fragment N1, but not N2, displays in vivo and in vitro neuroprotective function by modulating p53 pathway. It further demonstrates that distinct N-terminal cleavage products of PrPc harbor different biological activities underlying the various phenotypes linking PrPc to cell survival. PMID:19850936

  1. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  2. Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Jeremiah; Klenchin, Vadim A.; Rayment, Ivan

    Tropomyosin is a stereotypical {alpha}-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage {phi}29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal aminomore » acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses {approx}15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.« less

  3. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  4. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Quantification of Histidine-Rich Protein 3 of Plasmodium falciparum.

    PubMed

    Palani, Balraj

    2018-04-01

    Malaria is a life-threatening infectious disease and continues to be a major public health crisis in many parts of the tropical world. Plasmodium falciparum is responsible for the majority of mortality and morbidity associated with malaria. During the intraerythrocytic cycle, P. falciparum releases three proteins with high histidine content as follows: histidine-rich protein 1 (HRP1), histidine-rich protein 2 (HRP2), and histidine-rich protein 3 (HRP3). Currently, most of the diagnostic tests of P. falciparum infection target HRP2, and a number of monoclonal antibodies (mAbs) against HRP2 have been developed for use in HRP2 detection and quantification. When parasites have HRP2 deletions, the detection of HRP3 could augment the sensitivity of the detection system. The combination of both HRP2 and HRP3 mAbs in the detection system will enhance the test sensitivity. In the HRP quantitative enzyme-linked immunosorbent assay (ELISA), both HRP2 and HRP3 contribute to the result, but the relative contribution of HRP2 and HRP3 was unable to investigate, because of the nonavailability of HRP3 specific antibody ELISA. Hence an ELISA test system based on HRP3 is also essential for detection and quantification. There is not much documented in the literature on HRP3 antigen and HRP3 specific mAbs and polyclonal antibodies (pAbs). In the present study, recombinant HRP3 was expressed in Escherichia coli and purified with Ni-NTA agarose column. The purified rHRP3 was used for the generation and characterization of monoclonal and pAbs. The purification of monoclonal and pAbs was done using a mixed-mode chromatography sorbent, phenylpropylamine HyperCel™. With the purified antibodies, a sandwich ELISA was developed. The sandwich ELISA method was explored to detect and quantify HRP3 of P. falciparum in the spent medium. The generated mAbs could be potentially used for the detection and quantification of P. falciparum HRP3.

  6. Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey

    USGS Publications Warehouse

    Simard, Lee G.; Sotola, V. Alex; Marsden, J. Ellen; Miehls, Scott M.

    2017-01-01

    Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure. Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length. Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.

  7. Proteolytic interconversion and N-terminal sequences of the Citrobacter diversus major beta-lactamases.

    PubMed Central

    Franceschini, N; Amicosante, G; Perilli, M; Maccarrone, M; Oratore, A; van Beeumen, J; Frère, J M

    1991-01-01

    The N-terminal sequences of the two major beta-lactamases produced by Citrobacter diversus differed only by the absence of the first residue in form II and the loss of five amino acid residues at the C-terminal end. Limited proteolysis of the homogeneous form I protein yielded a variety of enzymatically active products. In the major product obtained after the action of papain, the first three N-terminal residues of form I had been cleaved, whereas at the C-terminal end the treated enzyme lacked five residues. However, this cannot explain the different behaviours of form I, form II and papain digestion product upon chromatofocusing. Form I, which was sequenced up to position 56, exhibited a very high degree of similarity with a Klebsiella oxytoca beta-lactamase. The determined sequence, which contained the active serine residue, demonstrated that the chromosome-encoded beta-lactamase of Citrobacter diversus belong to class A. Images Fig. 2. PMID:2039443

  8. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications.

    PubMed

    Huang, He; Li, Chunguang; Zhu, Shoujun; Wang, Hailong; Chen, Cailing; Wang, Zhaorui; Bai, Tianyu; Shi, Zhan; Feng, Shouhua

    2014-11-18

    Nitrogen-doped (N-doped) photoluminescent carbon dots (CDs) were prepared by a one-pot microwave-assisted hydrothermal treatment using histidine as the sole carbon source in the absence of acid, alkali, or metal ions. With a diameter of 2-5 nm, the synthesized CDs had apparent lattice fringes and exhibited an excitation-dependent photoluminescent behavior. The CDs were highly yielded, well-dispersed in aqueous solution, and showed high photostability in the solutions of a wide range of pH and salinity. They were used as probes to identify the presence of Fe(3+) ions with a detection limit of 10 nM. With confirmed nontoxicity, these CDs could enter the cancer cells, indicating a practical potential for cellular imaging and labeling.

  9. Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites

    PubMed Central

    Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia

    2015-01-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186

  10. Signal Sensing and Transduction by Histidine Kinases as Unveiled through Studies on a Temperature Sensor.

    PubMed

    Abriata, Luciano A; Albanesi, Daniela; Dal Peraro, Matteo; de Mendoza, Diego

    2017-06-20

    experiments and molecular simulations further showed that reversible formation of a two-helix coiled coil in the fifth TM segment and the N-terminus of the cytoplasmic domain is essential for the sensing and signal transduction mechanisms. Together with other structural and functional works, the emerging picture suggests that diverse HKs possess distinct sensing and transduction mechanisms but share as rather general features (i) a symmetric phosphatase state and an asymmetric kinase state and (ii) similar functional outputs on the conserved DHp and ABD domains, achieved through different mechanisms that depend on the nature of the initial signal. We here advance (iii) an important role for TM prolines in transducing the initial signals to the cytoplasmic coiled coils, based on simulations of DesK's TM helices and our previous work on a related HK, PhoQ. Lastly, evidence for DesK, PhoQ, BvgS, and DctB HKs shows that (iv) overall catalytic output is tuned by a delicate balance between hydration potentials, coiled coil stability, and exposure of hydrophobic surface patches at their cytoplasmic coiled coils and at the N-terminal and C-terminal sides of their TM helices. This balance is so delicate that small perturbations, either physiological signals or induced by mutations, lead to large remodeling of the underlying conformational landscape achieving clear-cut changes in catalytic output, mirroring the required response speed of these systems for proper biological function.

  11. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  12. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poust, Sean; Yoon, Isu; Adams, Paul D.

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  13. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE PAGES

    Poust, Sean; Yoon, Isu; Adams, Paul D.; ...

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  14. Recoveries of rat lymph FA after administration of specific structured 13C-TAG.

    PubMed

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2003-09-01

    The potential of the specific structured TAG MLM [where M = caprylic acid (8:0) and L = linoleic acid (18:2n-6)] is the simultaneous delivery of energy and EFA. Compared with long-chain TAG (LLL), they may be more rapidly hydrolyzed and absorbed. This study examined the lymphatic recoveries of intragastrically administered L*L*L*, M*M*M*, ML*M, and ML*L* (where * = 13C-labeled FA) in rats. Lymph lipids were separated into lipid classes and analyzed by GC combustion isotope ratio MS. The recoveries of lymph TAG 18:2n-6 8 h after administration of L*L*L*, ML*M, and ML*L* were 38.6, 48.4, and 49.1%, respectively, whereas after 24 h the recoveries were approximately 50% in all experimental groups. The exogenous contribution to lymph TAG 18:2n-6 was approximately 80 and 60% at maximum absorption of the specific structured TAG and L*L*L*, respectively, 3-6 h after administration. The tendency toward more rapid recovery of exogenous long-chain FA following administration of specific structured TAG compared with long-chain TAG was probably due to fast hydrolysis. The lymphatic recovery of 8:0 was 2.2% 24 h after administration of M*M*M*. This minor lymphatic recovery of exogenous 8:0 was probably due to low stimulation of chylomicron formation. These results demonstrate tendencies toward faster lymphatic recovery of long-chain FA after administration of specific structured TAG compared with long-chain TAG.

  15. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    PubMed

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    PubMed

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The use of tags and tag clouds to discern credible content in online health message forums.

    PubMed

    O'Grady, Laura; Wathen, C Nadine; Charnaw-Burger, Jill; Betel, Lisa; Shachak, Aviv; Luke, Robert; Hockema, Stephen; Jadad, Alejandro R

    2012-01-01

    Web sites with health-oriented content are potentially harmful if inaccurate or inappropriate medical information is used to make health-related decisions. Checklists, rating systems and guidelines have been developed to help people determine what is credible, but recent Internet technologies emphasize applications that are collaborative in nature, including tags and tag clouds, where site users 'tag' or label online content, each using their own labelling system. Concepts such as the date, reference, author, testimonial and quotations are considered predictors of credible content. An understanding of these descriptive tools, how they relate to the depiction of credibility and how this relates to overall efforts to label data in relation to the semantic web has yet to emerge. This study investigates how structured (pre-determined) and unstructured (user-generated) tags and tag clouds with a multiple word search feature are used by participants to assess credibility of messages posted in online message forums. The targeted respondents were those using web sites message forums for disease self-management. We also explored the relevancy of our findings to the labelling or indexing of data in the context of the semantic web. Diabetes was chosen as the content area in this study, since (a) this is a condition with increasing prevalence and (b) diabetics have been shown to actively use the Internet to manage their condition. From January to March 2010 participants were recruited using purposive sampling techniques. A screening instrument was used to determine eligibility. The study consisted of a demographic and computer usage survey, a series of usability tests and an interview. We tested participants (N=22) on two scenarios, each involving tasks that assessed their ability to tag content and search using a tag cloud that included six structured credibility terms (statistics, date, reference, author, testimonial and quotations). MORAE Usability software (version 3

  18. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion.

    PubMed

    Mair, Caroline M; Meyer, Tim; Schneider, Katjana; Huang, Qiang; Veit, Michael; Herrmann, Andreas

    2014-11-01

    The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pK(a) of ∼ 6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pK(a). The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pK(a)-modulating effect of neighboring residues. The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of the HA

  19. The effect of histidine ammonia-lyase on some murine tumours.

    PubMed

    Jack, G W; Wiblin, C N; McMahon, P C

    1983-01-01

    The histidine ammonia-lyase from bacterial strain CAMR 5315 was partially purified to assess its effect on the growth of murine tumours. This strain was selected as the source after an extensive screening programme for histidine ammonia-lyases. The enzyme was partially purified by ammonium sulphate fractionation, chromatography on DEAE-cellulose and Sephadex G-150. The enzyme reduced circulating L-histidine levels in Wistar rats and in mice persisted with a half-life of 6-7 h. Neither LDH virus nor chemical modification with ethylacetimidate increased the half-life as observed with L-asparaginase and L-glutaminase. The enzyme was tested in mice against Ehrlich carcinoma, L5178Y lymphoblastic leukaemia, Mc/S sarcoma, B16 melanoma, P8157 mastocytoma, P1798 lymphosarcoma and the Gardner 6C3HED lymphosarcoma. The only tumours to show sensitivity to the enzyme were the Mc/S sarcoma against which a 65% increase in life span was observed at the highest enzyme dose, 1000 U/kg on alternate days over 14 days and the Ehrlich ascites carcinoma where cures were obtained at 250 U/kg on alternate days over 14 days, but only at inocula levels of 10(5) and 10(3) cells/animal respectively.

  20. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capablemore » of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.« less

  1. PIT Tagging Anurans

    USGS Publications Warehouse

    McCreary, Brome

    2008-01-01

    The following video demonstrates a procedure to insert a passive integrated transponder (PIT) tag under the skin of an anuran (frog or toad) for research and monitoring purposes. Typically, a 12.5 mm tag (0.5 in.) is used to uniquely identify individual anurans as smal as 40 mm (1.6 in.) in length from snout to vent. Smaller tags are also available and allow smaller anurans to be tagged. The procedure does not differ for other sizes of tages or other sizes of anurans. Anyone using this procedure should ensure that the tag is small enough to fit easily behind the sacral hump of the anuran, as shown in this video.

  2. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. Copyright © 2015 by the Genetics Society of America.

  3. Development of RAP Tag, a Novel Tagging System for Protein Detection and Purification.

    PubMed

    Fujii, Yuki; Kaneko, Mika K; Ogasawara, Satoshi; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Honma, Ryusuke; Kato, Yukinari

    2017-04-01

    Affinity tag systems, possessing high affinity and specificity, are useful for protein detection and purification. The most suitable tag for a particular purpose should be selected from many available affinity tag systems. In this study, we developed a novel affinity tag called the "RAP tag" system, which comprises a mouse antirat podoplanin monoclonal antibody (clone PMab-2) and the RAP tag (DMVNPGLEDRIE). This system is useful not only for protein detection in Western blotting, flow cytometry, and sandwich enzyme-linked immunosorbent assay, but also for protein purification.

  4. An improved stable isotope N-terminal labeling approach with light/heavy TMPP to automate proteogenomics data validation: dN-TOP.

    PubMed

    Bertaccini, Diego; Vaca, Sebastian; Carapito, Christine; Arsène-Ploetze, Florence; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine

    2013-06-07

    In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.

  5. ezTag: tagging biomedical concepts via interactive learning.

    PubMed

    Kwon, Dongseop; Kim, Sun; Wei, Chih-Hsuan; Leaman, Robert; Lu, Zhiyong

    2018-05-18

    Recently, advanced text-mining techniques have been shown to speed up manual data curation by providing human annotators with automated pre-annotations generated by rules or machine learning models. Due to the limited training data available, however, current annotation systems primarily focus only on common concept types such as genes or diseases. To support annotating a wide variety of biological concepts with or without pre-existing training data, we developed ezTag, a web-based annotation tool that allows curators to perform annotation and provide training data with humans in the loop. ezTag supports both abstracts in PubMed and full-text articles in PubMed Central. It also provides lexicon-based concept tagging as well as the state-of-the-art pre-trained taggers such as TaggerOne, GNormPlus and tmVar. ezTag is freely available at http://eztag.bioqrator.org.

  6. Sequence, overproduction and purification of Vibrio proteolyticus ribosomal protein L18 for in vitro and in vivo studies

    NASA Technical Reports Server (NTRS)

    Setterquist, R. A.; Smith, G. K.; Oakley, T. H.; Lee, Y. H.; Fox, G. E.

    1996-01-01

    A strategy suggested by comparative genomic studies was used to amplify the entire Vibrio proteolyticus (Vp) gene for ribosomal protein L18. Vp L18 and its flanking regions were sequenced and compared with the deduced amino acid (aa) sequences of other known L18 proteins. A 26-aa residue segment at the carboxy terminus contains many strongly conserved residues and may be critical for the L18 interaction with 5S rRNA. This approach should allow rapid characterization of L18 from large numbers of bacteria. Both Vp L18 and Escherichia coli (Ec) L18 were overproduced and purified using a T7 expression vector which fuses an N-terminal peptide segment (His-tag) containing 6 histidine residues to the recombinant protein. The purified fusion proteins, Vp His::L18 and Ec His::L18, were both found to bind to either the Vp 5S or Ec 5S rRNAs in vitro. Vp His::L18 protein was also shown to incorporate into Ec ribosomes in vivo. This His-tag strategy likely will have general applicability for the study of ribosomal proteins in vitro and in vivo.

  7. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  8. Signal Transduction in Histidine Kinases: Insights from New Structures

    PubMed Central

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  9. Highly sensitive ;turn-on; fluorescent chemical sensor for trace analysis of Cr3 + using electro-synthesized poly(N-(9-fluorenylmethoxycarbonyl)-L-histidine)

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhang, Ge; Xu, Jingkun; Wen, Yangping; Ming, Shouli; Zhang, Jie; Ding, Wanchuan

    2018-02-01

    Trivalent chromium (Cr3 +) can cause severely environment pollution, declining quality of edible agro-products in plants and animals, and human diseases. Poly(N-(9-fluorenylmethoxycarbonyl)-L-histidine) (PFLH) synthesized by the direct electro-polymerization of its corresponding commercially available monomer in both boron trifluoride diethyl etherate and dichloromethane mixed system. The ;turn-on; type fluorescent sensor based on PFLH displayed high sensitivity and selectivity for Cr3 + detecting. The structure of PFLH was rationally proved by 1H NMR spectra, FT-IR spectra, quantum chemical calculations, and its optical properties were characterized. The electro-synthesized PFLH exhibited a ;turn-on; fluorescent response towards Cr3 +, which was employed as a sensing platform for the ;turn-on; fluorescent analysis of Cr3 + in a wide linear range from 5.1 nM to 25 μM with a low limit of detection as low as 1.7 nM. The possible mechanism of fluorescent ;turn-on; sensor based on PFLH for Cr3 + was proposed. The sensor displayed high sensitivity, good selectivity, satisfactory practicability, suggesting that PFLH has potential fluorescent application for ;turn-on; sensing Cr3 + in agricultural environments and edible agro-products of plants and animals.

  10. A tandem affinity purification tag of TGA2 for isolation of interacting proteins in Arabidopsis thaliana

    PubMed Central

    Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne

    2014-01-01

    Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810

  11. Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine.

    PubMed

    Hayakawa, T; Yoshida, Y; Yasui, M; Ito, T; Iwasaki, T; Wakamatsu, J; Hattori, A; Nishimura, T

    2012-01-01

    Binding properties are important for meat products and are substantially derived from the heat-induced gelation of myosin. We have shown that myosin is solubilized in a low ionic strength solution containing L-histidine. To clarify its processing characteristics, we investigated properties and structures of heat-induced gels of myosin solubilized in a low ionic strength solution containing L-histidine. Myosin in a low ionic strength solution formed transparent gels at 40-50°C, while myosin in a high ionic strength solution formed opaque gels at 60-70°C. The gel of myosin in a low ionic strength solution with L-histidine showed a fine network consisting of thin strands and its viscosity was lower than that of myosin in a high ionic strength solution at 40-50°C. The rheological properties of heat-induced gels of myosin at low ionic strength are different from those at high ionic strength. This difference might be caused by structural changes in the rod region of myosin in a low ionic strength solution containing L-histidine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Three-dimensional seismic structure of a Mid-Atlantic Ridge segment characterized by active detachment faulting (TAG, 25°55’N-26°20’N)

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Canales, J.

    2009-12-01

    The Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge (MAR) (25°55'N-26°20'N) is characterized by massive active and relict high-temperature hydrothermal deposits. Previous geological and geophysical studies indicate that the active TAG hydrothermal mound sits on the hanging wall of an active detachment fault. The STAG microseismicity study revealed that seismicity associated to detachment faulting extends deep into the crust/uppermost mantle (>6 km), forming an arcuate band (in plan view) extending along ~25 km of the rift valley floor (deMartin et al., Geology, 35, 711-714, 2007). Two-dimensional analysis of the STAG seismic refraction data acquired with ocean bottom seismometers (OBSs) showed that the eastern rift valley wall is associated with high P-wave velocities (>7 km/s) at shallow levels (>1 km depth), indicating uplift of lower crustal and/or upper mantle rocks along the detachment fault (Canales et al., Geochem., Geophys., Geosyst., 8, Q08004, doi:08010.01029/02007GC001629, 2008). Here we present a three-dimensional (3D) seismic tomography analysis of the complete STAG seismic refraction OBS dataset to illuminate the 3D crustal architecture of the TAG segment. Our new results provide, for the first time, a detailed picture of the complex, dome-shaped geometry and structure of a nascent oceanic core complex being exhumed by a detachment fault. Our results show a relatively low-velocity anomaly embedded within the high-velocity body forming the footwall of the detachment fault. The low velocity sits 2-3 km immediately beneath the active TAG hydrothermal mound. Although velocities within the low-velocity zone are too high (6 km/s) to represent partial melt, we speculate that this low velocity zone is intimately linked to hydrothermal processes taking place at TAG. We consider three possible scenarios for its origin: (1) a highly fissured zone produced by extensional stresses during footwall exhumation that may help localize fluid flow

  13. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    NASA Astrophysics Data System (ADS)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  14. Effect of histidine on sorafenib-induced vascular damage: Analysis using novel medaka fish model.

    PubMed

    Shinagawa-Kobayashi, Yoko; Kamimura, Kenya; Goto, Ryo; Ogawa, Kohei; Inoue, Ryosuke; Yokoo, Takeshi; Sakai, Norihiro; Nagoya, Takuro; Sakamaki, Akira; Abe, Satoshi; Sugitani, Soichi; Yanagi, Masahiko; Fujisawa, Koichi; Nozawa, Yoshizu; Koyama, Naoto; Nishina, Hiroshi; Furutani-Seiki, Makoto; Sakaida, Isao; Terai, Shuji

    2018-02-05

    Sorafenib (SFN) is an anti-angiogenic chemotherapeutic that prolongs survival of patients with hepatocellular carcinoma (HCC); its side effects, including vascular damages such as hand-foot syndrome (HFS), are a major cause of therapy discontinuation. We previously reported that maintenance of peripheral blood flow by intake of dried bonito broth (DBB) significantly prevented HFS and prolonged the administration period. The amino acids contained in DBB probably contribute to its effects, but the mechanism has not been clarified. We hypothesized that histidine, the largest component among the amino acids contained in DBB, has effects on SFN-induced vascular damage, and evaluated this possibility using a novel medaka fish model. The fli::GFP transgenic medaka fish model has a fluorescently visible systemic vasculature. We fed the fish with SFN with and without histidine to compare blood flow and vascular structure among the differently fed models. The vascular cross-sectional area of each fish was measured to determine vascular diameter changes. Our results demonstrated that SFN-fed medaka developed a narrower vascular diameter. In addition, this narrowing was counteracted by addition of histidine to the medaka diet. We observed no positive effect of histidine on regeneration of cut vessels or on cell growth of endothelial cells and HCC cell lines. We proved the efficacy of the medaka model to assess vascular changes after administration of specific chemicals. And our results suggest that SFN causes vascular damage by narrowing peripheral vessel diameter, and that histidine effectively counteracts these changes to maintain blood flow. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling1[W][OA

    PubMed Central

    Jeon, Jin; Kim, Jungmook

    2013-01-01

    The Arabidopsis (Arabidopsis thaliana) two-component signaling system, which is composed of sensor histidine kinases, histidine phosphotransfer proteins, and response regulators, mediates the cytokinin response and various other plant responses. We have previously shown that ARABIDOPSIS HISTIDINE KINASE2 (AHK2), AHK3, and cold-inducible type A ARABIDOPSIS RESPONSE REGULATORS (ARRs) play roles in cold signaling. However, the roles of type B ARRs and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs) have not been investigated in cold signaling. Here, we show that ARR1 and AHP2, AHP3, and AHP5 play positive roles in the cold-inducible expression of type A ARRs. arr1 mutants showed greatly reduced cold-responsive expression of type A ARRs compared with the wild type, whereas ARR1-overexpressing Arabidopsis exhibited the hypersensitive cold response of type A ARRs as well as enhanced freezing tolerance with cytokinin, suggesting that ARR1 functions as a positive factor of cold signaling. Transgenic Arabidopsis expressing ARR1ΔDDK:GR lacking the amino-terminal receiver domain showed wild-type expression levels of type A ARRs in response to cold, indicating that the signal receiver domain of ARR1 might be important for cold-responsive expression of type A ARRs. ahp2 ahp3 ahp5 triple mutations greatly reduced type A ARR expression in response to cold, whereas the single or double ahp mutants displayed wild-type levels of ARR expression, suggesting that AHP2, AHP3, and AHP5 are redundantly involved in cold signaling. Taken together, these results suggest that ARR1 mediates cold signal via AHP2, AHP3, or AHP5 from AHK2 and AHK3 to express type A ARRs. We further identified a cold transcriptome affected by ahk2 ahk3 mutations by microarray analysis, revealing a new cold-responsive gene network regulated downstream of AHK2 and AHK3. PMID:23124324

  16. Insulin chains as efficient fusion tags for prokaryotic expression of short peptides.

    PubMed

    Deng, Ligang; Xue, Xiaoying; Shen, Cangjie; Song, Xiaohan; Wang, Chunyang; Wang, Nan

    2017-10-01

    Insulin chains are usually expressed in Escherichia coli as fusion proteins with different tags, including various low molecular weight peptide tags. The objective of this study was to determine if insulin chains could facilitate the recombinant expression of other target proteins, with an emphasis on low molecular weight peptides. A series of short peptides were fused to mini-proinsulin, chain B or chain A, and induced for expression in Escherichia coli. All the tested peptides including glucagon-like peptide 1 (GLP-1), a C-terminal extended GLP-1, oxyntomodulin, enfuvirtide, linaclotide, and an unstructured artificial peptide were expressed with reasonable yields, identified by Tricine-SDS-PAGE and immunoblotting. All recombinant products were expressed in inclusion bodies. The effective accumulation of products was largely attributed to the insoluble expression induced by fusion with insulin chains, and was confirmed by the fusion expression of transthyretin. Insulin chains thus show promise as efficient fusion tags for mass production of heterologous peptides in prokaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hybrid histidine kinases in pathogenic fungi.

    PubMed

    Defosse, Tatiana A; Sharma, Anupam; Mondal, Alok K; Dugé de Bernonville, Thomas; Latgé, Jean-Paul; Calderone, Richard; Giglioli-Guivarc'h, Nathalie; Courdavault, Vincent; Clastre, Marc; Papon, Nicolas

    2015-03-01

    Histidine kinases (HK) sense and transduce via phosphorylation events many intra- and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N-terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape-function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs. © 2015 John Wiley & Sons Ltd.

  18. Lamprey Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison; Deters, Kate

    2017-05-26

    Pacific Northwest National Laboratory has developed a super-small acoustic tracking tag designed just for juvenile lamprey. In this video, PNNL researcher Alison Colotelo describes how she and her colleague Kate Deters inject young lamprey with the PNNL tag.

  19. The TDP-43 N-terminal domain structure at high resolution.

    PubMed

    Mompeán, Miguel; Romano, Valentina; Pantoja-Uceda, David; Stuani, Cristiana; Baralle, Francisco E; Buratti, Emanuele; Laurents, Douglas V

    2016-04-01

    Transactive response DNA-binding protein 43 kDa (TDP-43) is an RNA transporting and processing protein whose aberrant aggregates are implicated in neurodegenerative diseases. The C-terminal domain of this protein plays a key role in mediating this process. However, the N-terminal domain (residues 1-77) is needed to effectively recruit TDP-43 monomers into this aggregate. In the present study, we report, for the first time, the essentially complete (1) H, (15) N and (13) C NMR assignments and the structure of the N-terminal domain determined on the basis of 26 hydrogen-bond, 60 torsion angle and 1058 unambiguous NOE structural restraints. The structure consists of an α-helix and six β-strands. Two β-strands form a β-hairpin not seen in the ubiquitin fold. All Pro residues are in the trans conformer and the two Cys are reduced and distantly separated on the surface of the protein. The domain has a well defined hydrophobic core composed of F35, Y43, W68, Y73 and 17 aliphatic side chains. The fold is topologically similar to the reported structure of axin 1. The protein is stable and no denatured species are observed at pH 4 and 25 °C. At 4 kcal·mol(-1) , the conformational stability of the domain, as measured by hydrogen/deuterium exchange, is comparable to ubiquitin (6 kcal·mol(-1) ). The β-strands, α-helix, and three of four turns are generally rigid, although the loop formed by residues 47-53 is mobile, as determined by model-free analysis of the (15) N{(1) H}NOE, as well as the translational and transversal relaxation rates. Structural data have been deposited in the Protein Data Bank under accession code: 2n4p. The NMR assignments have been deposited in the BMRB database under access code: 25675. © 2016 Federation of European Biochemical Societies.

  20. Glutamic Acid as a Precursor to N-Terminal Pyroglutamic Acid in Mouse Plasmacytoma Protein

    PubMed Central

    Twardzik, Daniel R.; Peterkofsky, Alan

    1972-01-01

    Cell suspensions derived from a mouse plasmacytoma (RPC-20) that secretes an immunoglobulin light chain containing N-terminal pyroglutamic acid can synthesize protein in vitro. Chromatographic examination of an enzymatic digest of protein labeled with glutamic acid shows only labeled glutamic acid and pyroglutamic acid; hydrolysis of protein from cells labeled with glutamine, however, yields substantial amounts of glutamic acid in addition to glutamine and pyroglutamic acid. The absence of glutamine synthetase and presence of glutaminase in plasmacytoma homogenates is consistent with these findings. These data indicate that N-terminal pyroglutamic acid can be derived from glutamic acid without prior conversion of glutamic acid to glutamine. Since free or bound forms of glutamine cyclize nonezymatically to pyroglutamate with ease, while glutamic acid does not, the data suggest that N-terminal pyroglutamic acid formation from glutamic acid is enzymatic rather than spontaneous. Images PMID:4400295

  1. 157 nm Photodissociation of Dipeptide Ions Containing N-Terminal Arginine

    NASA Astrophysics Data System (ADS)

    Webber, Nathaniel; He, Yi; Reilly, James P.

    2014-02-01

    Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.

  2. Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching

    NASA Astrophysics Data System (ADS)

    Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee

    2018-03-01

    Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.

  3. Hemoglobin istanbul: substitution of glutamine for histidine in a proximal histidine (F8(92)β)

    PubMed Central

    Aksoy, M.; Erdem, S.; Efremov, G. D.; Wilson, J. B.; Huisman, T. H. J.; Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Ulitin, O. N.; Müftüoğlu, A.

    1972-01-01

    A presumably spontaneous mutation has resulted in the formation of Hemoglobin (Hb) Istanbul in which glutamine is substituted for histidine in the proximal position of the β-chain (F8(92)). The anemia and other physiological effects that occur in the presence of Hb Istanbul were much ameliorated by splenectomy. Hb Istanbul is a relatively unstable molecule which produces a rather moderate case of “unstable hemoglobin hemolytic anemia.” In the determination of structure, a method of preferential cleavage of an aspartyl-proline bond at residues 99-100 of the β-chain was used. Images PMID:4639022

  4. Tag-to-Tag Interference Suppression Technique Based on Time Division for RFID.

    PubMed

    Khadka, Grishma; Hwang, Suk-Seung

    2017-01-01

    Radio-frequency identification (RFID) is a tracking technology that enables immediate automatic object identification and rapid data sharing for a wide variety of modern applications using radio waves for data transmission from a tag to a reader. RFID is already well established in technical areas, and many companies have developed corresponding standards and measurement techniques. In the construction industry, effective monitoring of materials and equipment is an important task, and RFID helps to improve monitoring and controlling capabilities, in addition to enabling automation for construction projects. However, on construction sites, there are many tagged objects and multiple RFID tags that may interfere with each other's communications. This reduces the reliability and efficiency of the RFID system. In this paper, we propose an anti-collision algorithm for communication between multiple tags and a reader. In order to suppress interference signals from multiple neighboring tags, the proposed algorithm employs the time-division (TD) technique, where tags in the interrogation zone are assigned a specific time slot so that at every instance in time, a reader communicates with tags using the specific time slot. We present representative computer simulation examples to illustrate the performance of the proposed anti-collision technique for multiple RFID tags.

  5. Photon-tagged and B-meson-tagged b-jet production at the LHC

    DOE PAGES

    Huang, Jinrui; Kang, Zhong -Bo; Vitev, Ivan; ...

    2015-09-18

    Tagged jet measurements in high energy hadronic and nuclear reactions provide constraints on the energy and parton flavor origin of the parton shower that recoils against the tagging particle. Such additional insight can be especially beneficial in illuminating the mechanisms of heavy flavor production in proton–proton collisions at the LHC and their modification in the heavy ion environment, which are not fully understood. With this motivation, we present theoretical results for isolated-photon-tagged and B-meson-tagged b-jet production at √s NN = 5.1 TeV for comparison to the upcoming lead–lead data. We find that photon-tagged b-jets exhibit smaller momentum imbalance shift inmore » nuclear matter, and correspondingly smaller energy loss, than photon-tagged light flavor jets. Our results show that B-meson tagging is most effective in ensuring that the dominant fraction of recoiling jets originate from prompt b-quarks. Furthermore, in this channel the large suppression of the cross section is not accompanied by a significant momentum imbalance shift.« less

  6. Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine), carcinine (beta-alanylhistamine) and L-carnosine (beta-alanyl-L-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2010-11-01

    A pharmacological chaperone is a relatively new concept in the treatment of certain chronic disabling diseases. Cells maintain a complete set of functionally competent proteins normally and in the face of injury or environmental stress with the use of various mechanisms, including systems of proteins called molecular chaperones. Proteins that are denatured by any form of proteotoxic stress are cooperatively recognized by heat shock proteins (HSP) and directed for refolding or degradation. Under non-denaturing conditions HSP have important functions in cell physiology such as in transmembrane protein transport and in enabling assembly and folding of newly synthesized polypeptides. Besides cellular molecular chaperones, which are stress-induced proteins, there have been recently reported chemical, or so-called pharmacological chaperones with demonstrated ability to be effective in preventing misfolding of different disease causing proteins, specifically in the therapeutic management of sight-threatening eye diseases, essentially reducing the severity of several neurodegenerative disorders (such as age-related macular degeneration), cataract and many other protein-misfolding diseases. This work reviews the biological and therapeutic activities protected with the patents of the family of imidazole-containing peptidomimetics Carcinine (β-alanylhistamine), N-acetylcarnosine (N-acetyl-β-alanylhistidine) and Carnosine (β-alanyl-L-histidine) which are essential constituents possessing diverse biological and pharmacological chaperone properties in human tissues.

  7. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    PubMed Central

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2015-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy- aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, it ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load. PMID:23313711

  8. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications.

    PubMed

    Xie, Zhengzhi; Baba, Shahid P; Sweeney, Brooke R; Barski, Oleg A

    2013-02-25

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptides. Histidine dipeptides are present in micromolar to millimolar range in the tissues of vertebrates, where they are involved in a variety of physiological functions such as pH buffering, metal chelation, oxidant and aldehyde scavenging. Histidine dipeptides such as carnosine form Michael adducts with lipid-derived unsaturated aldehydes, and react with carbohydrate-derived oxo- and hydroxy-aldehydes forming products of unknown structure. Although these peptides react with electrophilic molecules at lower rate than glutathione, they can protect glutathione from modification by oxidant and they may be important for aldehyde quenching in glutathione-depleted cells or extracellular space where glutathione is scarce. Consistent with in vitro findings, treatment with carnosine has been shown to diminish ischemic injury, improve glucose control, ameliorate the development of complications in animal models of diabetes and obesity, promote wound healing and decrease atherosclerosis. The protective effects of carnosine have been linked to its anti-oxidant properties, its ability to promote glycolysis, detoxify reactive aldehydes and enhance histamine levels. Thus, treatment with carnosine and related histidine dipeptides may be a promising strategy for the prevention and treatment of diseases associated with high carbonyl load. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.

    PubMed

    Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2006-08-29

    The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.

  10. An improved procedure, involving mass spectrometry, for N-terminal amino acid sequence determination of proteins which are N alpha-blocked.

    PubMed Central

    Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D

    1984-01-01

    A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284

  11. Detection of receptor ligands by monitoring selective stabilization of a Renilla luciferase-tagged, constitutively active mutant, G-protein-coupled receptor

    PubMed Central

    Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme

    2001-01-01

    The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868

  12. Bacterial hybrid histidine kinases in plant-bacteria interactions.

    PubMed

    Borland, Stéphanie; Prigent-Combaret, Claire; Wisniewski-Dyé, Florence

    2016-10-01

    Two-component signal transduction systems are essential for many bacteria to maintain homeostasis and adapt to environmental changes. Two-component signal transduction systems typically involve a membrane-bound histidine kinase that senses stimuli, autophosphorylates in the transmitter region and then transfers the phosphoryl group to the receiver domain of a cytoplasmic response regulator that mediates appropriate changes in bacterial physiology. Although usually found on distinct proteins, the transmitter and receiver modules are sometimes fused into a so-called hybrid histidine kinase (HyHK). Such structure results in multiple phosphate transfers that are believed to provide extra-fine-tuning mechanisms and more regulatory checkpoints than classical phosphotransfers. HyHK-based regulation may be crucial for finely tuning gene expression in a heterogeneous environment such as the rhizosphere, where intricate plant-bacteria interactions occur. In this review, we focus on roles fulfilled by bacterial HyHKs in plant-associated bacteria, providing recent findings on the mechanistic of their signalling properties. Recent insights into understanding additive regulatory properties fulfilled by the tethered receiver domain of HyHKs are also addressed.

  13. Synthesis of poly(N-isopropylacrylamide) particles for metal affinity binding of peptides

    PubMed Central

    Tsai, Hsin-Yi; Lee, Alexander; Peng, Wei; Yates, Matthew Z.

    2013-01-01

    Temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with metal affinity ligands were prepared for selective binding of peptides containing the His6-tag (six consecutive histidine residues). The PNIPAM particles were copolymerized with the functional ligand vinylbenzyl iminodiacetic acid (VBIDA) through a two-stage dispersion polymerization using poly(N-vinyl pyrrolidone) (PVP) as a steric stabilizer. The resulting particles were monodisperse in size and colloidally stable over a wide range of temperature and ionic strength due to chemically grafted PVP chains. The particle size was also found to be sensitive to ionic strength and pH of the aqueous environment, likely due to the electrostatic repulsion between ionized VBIDA groups. Divalent nickel ions were chelated to the VBIDA groups, allowing selective metal affinity attachment of a His6-Cys peptide. The peptide was released upon the addition of the competitive ligand imidazole, demonstrating that the peptide attachment to the particles is reversible and selective. PMID:24176889

  14. Tryptophan tags and de novo designed complementary affinity ligands for the expression and purification of recombinant proteins.

    PubMed

    Pina, Ana Sofia; Carvalho, Sara; Dias, Ana Margarida G C; Guilherme, Márcia; Pereira, Alice S; Caraça, Luciana T; Coroadinha, Ana Sofia; Lowe, Christopher R; Roque, A Cecília A

    2016-11-11

    A common strategy for the production and purification of recombinant proteins is to fuse a tag to the protein terminal residues and employ a "tag-specific" ligand for fusion protein capture and purification. In this work, we explored the effect of two tryptophan-based tags, NWNWNW and WFWFWF, on the expression and purification of Green Fluorescence Protein (GFP) used as a model fusion protein. The titers obtained with the expression of these fusion proteins in soluble form were 0.11mgml -1 and 0.48mgml -1 for WFWFWF and NWNWNW, respectively. A combinatorial library comprising 64 ligands based on the Ugi reaction was prepared and screened for binding GFP-tagged and non-tagged proteins. Complementary ligands A2C2 and A3C1 were selected for the effective capture of NWNWNW and WFWFWF tagged proteins, respectively, in soluble forms. These affinity pairs displayed 10 6 M -1 affinity constants and Qmax values of 19.11±2.60ugg -1 and 79.39ugg -1 for the systems WFWFWF AND NWNWNW, respectively. GFP fused to the WFWFWF affinity tag was also produced as inclusion bodies, and a refolding-on column strategy was explored using the ligand A4C8, selected from the combinatorial library of ligands but in presence of denaturant agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A novel capture-ELISA for detection of anti-neutrophil cytoplasmic antibodies (ANCA) based on c-myc peptide recognition in carboxy-terminally tagged recombinant neutrophil serine proteases.

    PubMed

    Lee, Augustine S; Finkielman, Javier D; Peikert, Tobias; Hummel, Amber M; Viss, Margaret A; Specks, Ulrich

    2005-12-20

    Testing for antineutrophil cytoplasmic antibodies (ANCA) reacting with proteinase 3 (PR3) is part of the routine diagnostic evaluation of patients with small vessel vasculitis. For PR3-ANCA detection, capture ELISAs are reported to be superior to direct ELISAs. Standard capture ELISAs, in which PR3 is anchored by anti-PR3 monoclonal antibodies (moAB), have two potential disadvantages. First, the capturing moAB may compete for epitopes recognized by some PR3-ANCA, causing occasional false-negative results. Second, the capture of recombinant PR3 mutant molecules becomes unpredictable as modifications of specific conformational epitopes may not only affect the binding of PR3-ANCA, but also the affinity of the capturing anti-PR3 moAB. Here, we describe a new capture ELISA, and its application for PR3-ANCA detection. This new assay is based on the standardized capture of a variety of different carboxy-terminally c-myc tagged recombinant ANCA target antigens using anti-c-myc coated ELISA plates. Antigen used include c-myc tagged human rPR3 variants (mature and pro-form conformations), mouse mature rPR3 and human recombinant neutrophil elastase. This new anti-c-myc-capture ELISA for PR3-ANCA detection has an intra- and inter-assay coefficient of variation of 3.6% to 7.7%, and 15.8% to 18.4%, respectively. The analytical sensitivity and specificity for PR3-ANCA positive serum samples were 93% and 100%, respectively when rPR3 with mature conformation was used as target antigen, and 83% and 100% when the pro-enzyme conformation was employed. In conclusion, this new anti-c-myc capture ELISA compares favorably to our standard capture ELISA for PR3-ANCA detection, enables the unified capture of different ANCA target antigens through binding to a c-myc tag, and allows capture of rPR3 mutants necessary for PR3-ANCA epitope mapping studies.

  16. Divergent N-Terminal Sequences Target an Inducible Testis Deubiquitinating Enzyme to Distinct Subcellular Structures

    PubMed Central

    Lin, Haijiang; Keriel, Anne; Morales, Carlos R.; Bedard, Nathalie; Zhao, Qing; Hingamp, Pascal; Lefrançois, Stephane; Combaret, Lydie; Wing, Simon S.

    2000-01-01

    Ubiquitin-specific processing proteases (UBPs) presently form the largest enzyme family in the ubiquitin system, characterized by a core region containing conserved motifs surrounded by divergent sequences, most commonly at the N-terminal end. The functions of these divergent sequences remain unclear. We identified two isoforms of a novel testis-specific UBP, UBP-t1 and UBP-t2, which contain identical core regions but distinct N termini, thereby permitting dissection of the functions of these two regions. Both isoforms were germ cell specific and developmentally regulated. Immunocytochemistry revealed that UBP-t1 was induced in step 16 to 19 spermatids while UBP-t2 was expressed in step 18 to 19 spermatids. Immunoelectron microscopy showed that UBP-t1 was found in the nucleus while UBP-t2 was extranuclear and was found in residual bodies. For the first time, we show that the differential subcellular localization was due to the distinct N-terminal sequences. When transfected into COS-7 cells, the core region was expressed throughout the cell but the UBP-t1 and UBP-t2 isoforms were concentrated in the nucleus and the perinuclear region, respectively. Fusions of each N-terminal end with green fluorescent protein yielded the same subcellular localization as the native proteins, indicating that the N-terminal ends were sufficient for determining differential localization. Interestingly, UBP-t2 colocalized with anti-γ-tubulin immunoreactivity, indicating that like several other components of the ubiquitin system, a deubiquitinating enzyme is associated with the centrosome. Regulated expression and alternative N termini can confer specificity of UBP function by restricting its temporal and spatial loci of action. PMID:10938131

  17. Impact of Stainless Steel Exposure on the Oxidation of Polysorbate 80 in Histidine Placebo and Active Monoclonal Antibody Formulation.

    PubMed

    Gopalrathnam, Ganapathy; Sharma, Anant Navanithan; Dodd, Steven Witt; Huang, Lihua

    2018-01-01

    Rapid oxidation of polysorbate 80 in histidine buffer was observed upon brief exposure to stainless steel. Liquid chromatography-mass spectrometry analysis indicates degradation of both polyoxyethylene sorbitan and polyoxyethylene head groups and unsaturated fatty acid chains, with further confirmation by reversed-phase high-performance liquid chromatography data. Both Fe 2+ and Fe 3+ were shown to induce polysorbate 80 oxidation. The degree of oxidation in polysorbate 20 and polysorbate 80 are comparable for the head groups and saturated fatty acid esters. However, the same phenomenon was not observed with placebo or monoclonal antibody at a threshold protein concentration, formulated in sodium citrate, in combination with histidine and sodium citrate, or with Na 2 ethylenediaminetetraacetic acid (EDTA). Further, polysorbate 80 oxidation was not observed with Lilly's antibody containing the active ingredient LY2951742, at or above a threshold concentration. Finally, no major polysorbate 80 degradation was observed in histidine buffer, with or without protein, in containers composed of glass or plastic, or when stainless steel exposure was otherwise completely absent. Finally, the 2-oxo oxidation form of histidine was not observed, but the other oxidation products and modifications of histidine were identified. LAY ABSTRACT: Rapid oxidation of polysorbate 80 in histidine buffer was observed upon brief exposure to stainless steel. The degree of oxidation in polysorbate 80 and polysorbate 20 were comparable. However, the same phenomenon was not observed with placebo when formulated in sodium citrate, in combination with histidine and sodium citrate, or with Na 2 ethylenediaminetetraacetic acid (EDTA). Polysorbate 80 oxidation was not observed with Lilly's antibody containing the active ingredient, LY2951742, at or above a threshold concentration. No major polysorbate 80 degradation in histidine buffer was observed when stainless steel contact was completely absent.

  18. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in

  19. The N-terminal sequence of albumin Redhill, a variant of human serum albumin.

    PubMed

    Hutchinson, D W; Matejtschuk, P

    1985-12-02

    Albumin Redhill, a variant human albumin, has been isolated by fast protein liquid chromatofocusing. The N-terminal sequence of this protein corresponded to that of albumin A except that one additional arginine residue was attached to the N-terminus.

  20. Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: Application to Bruton's tyrosine kinase

    PubMed Central

    Li, Yifeng; Franklin, Sarah; Zhang, Michael J; Vondriska, Thomas M

    2011-01-01

    Tandem affinity purification (TAP) is a generic approach for the purification of protein complexes. The key advantage of TAP is the engineering of dual affinity tags that, when attached to the protein of interest, allow purification of the target protein along with its binding partners through two consecutive purification steps. The tandem tag used in the original method consists of two IgG-binding units of protein A from Staphylococcus aureus (ProtA) and the calmodulin-binding peptide (CBP), and it allows for recovery of 20–30% of the bait protein in yeast. When applied to higher eukaryotes, however, this classical TAP tag suffers from low yields. To improve protein recovery in systems other than yeast, we describe herein the development of a three-tag system comprised of CBP, streptavidin-binding peptide (SBP) and hexa-histidine. We illustrate the application of this approach for the purification of human Bruton's tyrosine kinase (Btk), which results in highly efficient binding and elution of bait protein in both purification steps (>50% recovery). Combined with mass spectrometry for protein identification, this TAP strategy facilitated the first nonbiased analysis of Btk interacting proteins. The high efficiency of the SBP-His6 purification allows for efficient recovery of protein complexes formed with a target protein of interest from a small amount of starting material, enhancing the ability to detect low abundance and transient interactions in eukaryotic cell systems. PMID:21080425

  1. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study.

    PubMed

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-12-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users' motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources . Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems.

  2. Understanding why users tag: A survey of tagging motivation literature and results from an empirical study

    PubMed Central

    Strohmaier, Markus; Körner, Christian; Kern, Roman

    2012-01-01

    While recent progress has been achieved in understanding the structure and dynamics of social tagging systems, we know little about the underlying user motivations for tagging, and how they influence resulting folksonomies and tags. This paper addresses three issues related to this question. (1) What distinctions of user motivations are identified by previous research, and in what ways are the motivations of users amenable to quantitative analysis? (2) To what extent does tagging motivation vary across different social tagging systems? (3) How does variability in user motivation influence resulting tags and folksonomies? In this paper, we present measures to detect whether a tagger is primarily motivated by categorizing or describing resources, and apply these measures to datasets from seven different tagging systems. Our results show that (a) users’ motivation for tagging varies not only across, but also within tagging systems, and that (b) tag agreement among users who are motivated by categorizing resources is significantly lower than among users who are motivated by describing resources. Our findings are relevant for (1) the development of tag-based user interfaces, (2) the analysis of tag semantics and (3) the design of search algorithms for social tagging systems. PMID:23471473

  3. Effect of peptide histidine valine on cardiovascular and respiratory function in normal subjects.

    PubMed Central

    Chilvers, E R; Dixon, C M; Yiangou, Y; Bloom, S R; Ind, P W

    1988-01-01

    Non-adrenergic inhibitory nerves may have an important role in regulating airway calibre. A recently discovered peptide, peptide histidine valine, is a potent relaxer of airway smooth muscle in vitro and has been proposed as a possible neurotransmitter in this tissue. The cardiovascular and respiratory effects of graded infusions of this peptide (2.5-10 pmol kg-1 min-1) have been examined in six normal subjects in a placebo controlled, randomised double blind study. The mean (SEM) peak plasma concentration of peptide histidine valine during the highest infusion rate was 2392 (170) pmol/l, representing a 29 fold increase above the basal concentration. This was accompanied by flushing, a significant increase in heart rate of 28 (3.7) beats/min and skin temperature of 1.8 degrees (0.16 degrees) C, but no effect on systolic or diastolic blood pressure. Despite these high plasma concentrations of the peptide and the substantial tachycardia and increase in skin blood flow, there was no change in partial expiratory flow at 40% of vital capacity (Vp40) or in the airway response to inhaled histamine (geometric PD40 9.37 and 9.73 mumol during saline and peptide histidine valine infusion respectively). Although these findings provide no support for a physiological role of peptide histidine valine in controlling airway function in healthy subjects, important effects of locally released peptides in the vasoactive intestinal peptide family cannot be excluded. PMID:3206383

  4. Effect of peptide histidine valine on cardiovascular and respiratory function in normal subjects.

    PubMed

    Chilvers, E R; Dixon, C M; Yiangou, Y; Bloom, S R; Ind, P W

    1988-10-01

    Non-adrenergic inhibitory nerves may have an important role in regulating airway calibre. A recently discovered peptide, peptide histidine valine, is a potent relaxer of airway smooth muscle in vitro and has been proposed as a possible neurotransmitter in this tissue. The cardiovascular and respiratory effects of graded infusions of this peptide (2.5-10 pmol kg-1 min-1) have been examined in six normal subjects in a placebo controlled, randomised double blind study. The mean (SEM) peak plasma concentration of peptide histidine valine during the highest infusion rate was 2392 (170) pmol/l, representing a 29 fold increase above the basal concentration. This was accompanied by flushing, a significant increase in heart rate of 28 (3.7) beats/min and skin temperature of 1.8 degrees (0.16 degrees) C, but no effect on systolic or diastolic blood pressure. Despite these high plasma concentrations of the peptide and the substantial tachycardia and increase in skin blood flow, there was no change in partial expiratory flow at 40% of vital capacity (Vp40) or in the airway response to inhaled histamine (geometric PD40 9.37 and 9.73 mumol during saline and peptide histidine valine infusion respectively). Although these findings provide no support for a physiological role of peptide histidine valine in controlling airway function in healthy subjects, important effects of locally released peptides in the vasoactive intestinal peptide family cannot be excluded.

  5. Tag retention, growth, and survival of red swamp crayfish marked with a visible implant tag

    USGS Publications Warehouse

    Isely, J.J.; Stockett, P.E.

    2001-01-01

    Eighty juvenile (means: 42.4 mm total length, 1.6 g) red swamp crayfish Procambarus clarkii were implanted with sequentially numbered visible implant tags and held in the laboratory. Tags were injected transversely into the musculature just beneath the exoskeleton of the third abdominal segment from the cephalothorax; tags were visible upon inspection. An additional 20 crayfish were left untagged and served as controls. After 150 d, tag retention was 80% and all tags were readable. No tagged crayfish died during the study, and no differences in total length or weight were detected between tagged and control crayfish. All individuals molted at least three times during the 150-d study, and some individuals molted up to six times, suggesting that most tags would be permanently retained. The readability in the field without specialized equipment makes the visible implant tag ideal for studies of crayfish ecology, management, and culture.

  6. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    PubMed

    Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2017-11-15

    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.

  7. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hitoshi; Akazawa, Daisuke; Toray Industries, Inc., Kanagawa

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K.more » Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.« less

  8. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    NASA Astrophysics Data System (ADS)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  9. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminusmore » is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.« less

  10. Multi-Threaded DNA Tag/Anti-Tag Library Generator for Multi-Core Platforms

    DTIC Science & Technology

    2009-05-01

    base pair)  Watson ‐ Crick  strand pairs that bind perfectly within pairs, but poorly across pairs. A variety  of  DNA  strand hybridization metrics...AFRL-RI-RS-TR-2009-131 Final Technical Report May 2009 MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE PLATFORMS...TYPE Final 3. DATES COVERED (From - To) Jun 08 – Feb 09 4. TITLE AND SUBTITLE MULTI-THREADED DNA TAG/ANTI-TAG LIBRARY GENERATOR FOR MULTI-CORE

  11. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand

    PubMed Central

    2013-01-01

    Background Heparin cofactor II (HCII) is a circulating protease inhibitor, one which contains an N-terminal acidic extension (HCII 1-75) unique within the serpin superfamily. Deletion of HCII 1-75 greatly reduces the ability of glycosaminoglycans (GAGs) to accelerate the inhibition of thrombin, and abrogates HCII binding to thrombin exosite 1. While a minor portion of HCII 1-75 can be visualized in a crystallized HCII-thrombin S195A complex, the role of the rest of the extension is not well understood and the affinity of the HCII 1-75 interaction has not been quantitatively characterized. To address these issues, we expressed HCII 1-75 as a small, N-terminally hexahistidine-tagged polypeptide in E. coli. Results Immobilized purified HCII 1-75 bound active α-thrombin and active-site inhibited FPR-ck- or S195A-thrombin, but not exosite-1-disrupted γT-thrombin, in microtiter plate assays. Biotinylated HCII 1-75 immobilized on streptavidin chips bound α-thrombin and FPR-ck-thrombin with similar KD values of 330-340 nM. HCII 1-75 competed thrombin binding to chip-immobilized HCII 1-75 more effectively than HCII 54-75 but less effectively than the C-terminal dodecapeptide of hirudin (mean Ki values of 2.6, 8.5, and 0.29 μM, respectively). This superiority over HCII 54-75 was also demonstrated in plasma clotting assays and in competing the heparin-catalysed inhibition of thrombin by plasma-derived HCII; HCII 1-53 had no effect in either assay. Molecular modelling of HCII 1-75 correctly predicted those portions of the acidic extension that had been previously visualized in crystal structures, and suggested that an α-helix found between residues 26 and 36 stabilizes one found between residues 61-67. The latter region has been previously shown by deletion mutagenesis and crystallography to play a crucial role in the binding of HCII to thrombin exosite 1. Conclusions Assuming that the KD value for HCII 1-75 of 330-340 nM faithfully predicts that of this region in intact

  12. Histidine pKa shifts and changes of tautomeric states induced by the binding of gallium-protoporphyrin IX in the hemophore HasASM

    PubMed Central

    Wolff, Nicolas; Deniau, Clarisse; Létoffé, Sylvie; Simenel, Catherine; Kumar, Veena; Stojiljkovic, Igor; Wandersman, Cécile; Delepierre, Muriel; Lecroisey, Anne

    2002-01-01

    The HasASM hemophore, secreted by Serratia marcescens, binds free or hemoprotein bound heme with high affinity and delivers it to a specific outer membrane receptor, HasR. In HasASM, heme is held by two loops and coordinated to iron by two residues, His 32 and Tyr 75. A third residue His 83 was shown recently to play a crucial role in heme ligation. To address the mechanistic issues of the heme capture and release processes, the histidine protonation states were studied in both apo- and holo-forms of HasASM in solution. Holo-HasASM was formed with gallium-protoporphyrin IX (GaPPIX), giving rise to a diamagnetic protein. By use of heteronuclear correlation NMR spectroscopy, the imidazole side-chain 15N and 1H resonances of the six HasASM histidines were assigned and their pKa values and predominant tautomeric states according to pH were determined. We show that protonation states of the heme pocket histidines can modulate the nucleophilic character of the two axial ligands and, consequently, control the heme binding. In particular, the essential role of the His 83 is emphasized according to its direct interaction with Tyr 75. PMID:11910020

  13. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  14. Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†

    PubMed Central

    Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878

  15. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  16. Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation.

    PubMed

    Jeevan, A; McFarland, C T; Yoshimura, T; Skwor, T; Cho, H; Lasco, T; McMurray, D N

    2006-01-01

    Gamma interferon (IFN-gamma) plays a critical role in the protective immune responses against mycobacteria. We previously cloned a cDNA coding for guinea pig IFN-gamma (gpIFN-gamma) and reported that BCG vaccination induced a significant increase in the IFN-gamma mRNA expression in guinea pig cells in response to living mycobacteria and that the virulent H37Rv strain of Mycobacterium tuberculosis stimulated less IFN-gamma mRNA than did the attenuated H37Ra strain. In this study, we successfully expressed and characterized recombinant gpIFN-gamma with a histidine tag at the N terminus (His-tagged rgpIFN-gamma) in Escherichia coli. rgpIFN-gamma was identified as an 18-kDa band in the insoluble fraction; therefore, the protein was purified under denaturing conditions and renatured. N-terminal amino acid sequencing of the recombinant protein yielded the sequence corresponding to the N terminus of His-tagged gpIFN-gamma. The recombinant protein upregulated major histocompatibility complex class II expression in peritoneal macrophages. The antiviral activity of rgpIFN-gamma was demonstrated with a guinea pig fibroblast cell line (104C1) infected with encephalomyocarditis virus. Interestingly, peritoneal macrophages treated with rgpIFN-gamma did not produce any nitric oxide but did produce hydrogen peroxide and suppressed the intracellular growth of mycobacteria. Furthermore, rgpIFN-gamma induced morphological alterations in cultured macrophages. Thus, biologically active rgpIFN-gamma has been successfully produced and characterized in our laboratory. The study of rgpIFN-gamma will further increase our understanding of the cellular and molecular responses induced by BCG vaccination in the guinea pig model of pulmonary tuberculosis.

  17. Antenna for passive RFID tags

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Vladescu, Marian; Craciun, Anca-Ileana; Craciun, Alexandru

    2015-02-01

    Minuscule devices, called RFID tags are attached to objects and persons and emit information which positioned readers may capture wirelessly. Many methods of identification have been used, but that of most common is to use a unique serial number for identification of person or object. RFID tags can be characterized as either active or passive [1,2]. Traditional passive tags are typically in "sleep" state until awakened by the reader's emitted field. In passive tags, the reader's field acts to charge the capacitor that powers the badge and this can be a combination of antenna and barcodes obtained with SAW( Surface Acoustic Wave) devices [1,2,3] . The antenna in an RFID tag is a conductive element that permits the tag to exchange data with the reader. The paper contribution are targeted to antenna for passive RFID tags. The electromagnetic field generated by the reader is somehow oriented by the reader antenna and power is induced in the tag only if the orientation of the tag antenna is appropriate. A tag placed orthogonal to the reader yield field will not be read. This is the reason that guided manufacturers to build circular polarized antenna capable of propagating a field that is alternatively polarized on all planes passing on the diffusion axis. Passive RFID tags are operated at the UHF frequencies of 868MHz (Europe) and 915MHz (USA) and at the microwave frequencies of 2,45 GHz and 5,8 GHz . Because the tags are small dimensions, in paper, we present the possibility to use circular polarization microstrip antenna with fractal edge [2].

  18. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  19. Ribonucleocapsid Formation of SARS-COV Through Molecular Action of the N-Terminal Domain of N Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.

    Conserved amongst all coronaviruses are four structural proteins, the matrix (M), small envelope (E) and spike (S) that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in their lumen. The N terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C-terminus of N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17Amore » (monoclinic) and 1.85 A (cubic) respectively, solved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core and is oriented similar to that in the IBV N-NTD and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggest a common mode of RNA recognition, but probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs hints that they employ different modes of both RNA recognition as well as oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.« less

  20. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    PubMed

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  1. Strep-Tagged Protein Purification.

    PubMed

    Maertens, Barbara; Spriestersbach, Anne; Kubicek, Jan; Schäfer, Frank

    2015-01-01

    The Strep-tag system can be used to purify recombinant proteins from any expression system. Here, protocols for lysis and affinity purification of Strep-tagged proteins from E. coli, baculovirus-infected insect cells, and transfected mammalian cells are given. Depending on the amount of Strep-tagged protein in the lysate, a protocol for batch binding and subsequent washing and eluting by gravity flow can be used. Agarose-based matrices with the coupled Strep-Tactin ligand are the resins of choice, with a binding capacity of up to 9 mg ml(-1). For purification of lower amounts of Strep-tagged proteins, the use of Strep-Tactin magnetic beads is suitable. In addition, Strep-tagged protein purification can also be automated using prepacked columns for FPLC or other liquid-handling chromatography instrumentation, but automated purification is not discussed in this protocol. The protocols described here can be regarded as an update of the Strep-Tag Protein Handbook (Qiagen, 2009). © 2015 Elsevier Inc. All rights reserved.

  2. Structure of the N-terminal fragment of Escherichia coli Lon protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Basic Research Program, SAIC-Frederick, Frederick, MD 21702; Gustchina, Alla

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very longmore » C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.« less

  3. Isocitrate Lyase from Flax 1

    PubMed Central

    Khan, Fazal R.; McFadden, Bruce A.

    1982-01-01

    The cleavage of Ds-isocitrate catalyzed by isocitrate lyase from Linum usitatissimum results in the ordered release of succinate and glyoxylate. The glyoxylate analog 3-bromopyruvate irreversibly inactivates the flax enzyme in a process exhibiting saturation kinetics and protection by glyoxylate or isocitrate or the competitive inhibitor l-tartrate. Succinate provides considerably less protection. Results with 3-bromopyruvate suggest that this reagent modifies plant and prokaryotic isocitrate lyases differently. Treatment of the tetrameric 264,000-dalton flax enzyme with carboxypeptidase A results in a release of one histidine/subunit which is concordant with loss of activity. The only N-terminal residue is methionine. Treatment of flax enzyme with diethylpyrocarbonate at pH 6.5 selectively modifies two histidines per 67,000-dalton subunit. The reaction of one histidine residue is abolished by the binding of l-tartrate and the modification of one is coincident with inactivation. The carboxy-terminal and active-site modifications establish that one histidine residue/monomer is essential in the flax enzyme and considerably extend information heretofore available only for fungal and bacterial isocitrate lyase. PMID:16662648

  4. Iodine Tagging Velocimetry in a Mach 10 Wake

    NASA Technical Reports Server (NTRS)

    Balla, Robert Jeffrey

    2013-01-01

    A variation on molecular tagging velocimetry (MTV) [1] designated iodine tagging velocimetry (ITV) is demonstrated. Molecular iodine is tagged by two-photon absorption using an Argon Fluoride (ArF) excimer laser. A single camera measures fluid displacement using atomic iodine emission at 206 nm. Two examples ofMTVfor cold-flowmeasurements areN2OMTV [2] and Femtosecond Laser Electronic Excitation Tagging [3]. These, like most MTV methods, are designed for atmospheric pressure applications. Neither can be implemented at the low pressures (0.1- 1 Torr) in typical hypersonic wakes. Of all the single-laser/singlecamera MTV approaches, only Nitric-Oxide Planar Laser Induced Fluorescence-based MTV [4] has been successfully demonstrated in a Mach 10 wake. Oxygen quenching limits transit times to 500 ns and accuracy to typically 30%. The present note describes the photophysics of the ITV method. Off-body velocimetry along a line is demonstrated in the aerothermodynamically important and experimentally challenging region of a hypersonic low-pressure near-wake in a Mach 10 air wind tunnel. Transit times up to 10 µs are demonstrated with conservative errors of 10%.

  5. A rapid and ultrasensitive SERRS assay for histidine and tyrosine based on azo coupling.

    PubMed

    Sui, Huimin; Wang, Yue; Yu, Zhi; Cong, Qian; Han, Xiao Xia; Zhao, Bing

    2016-10-01

    A simple and highly sensitive surface-enhanced resonance Raman scattering (SERRS)-based approach coupled with azo coupling reaction has been put forward for quantitative analysis of histidine and tyrosine. The SERRS-based assay is simple and rapid by mixing the azo reaction products with silver nanoparticles (AgNPs) for measurements within 2min. The limits of detection (LODs) of the method are as low as 4.33×10(-11) and 8.80×10(-11)M for histidine and tyrosine, respectively. Moreover, the SERRS fingerprint information specific to corresponding amino acids guarantees the selective detection for the target histidine and tyrosine. The results from serum indicated the potential application of the proposed approach into biological samples. Compared with the methods ever reported, the main advantages of this methodology are simpleness, rapidity without time-consuming separation or pretreatment steps, high sensitivity, selectivity and the potential for determination of other molecules containing imidazole or phenol groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. WebTag: Web browsing into sensor tags over NFC.

    PubMed

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Alvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm.

  7. WebTag: Web Browsing into Sensor Tags over NFC

    PubMed Central

    Echevarria, Juan Jose; Ruiz-de-Garibay, Jonathan; Legarda, Jon; Álvarez, Maite; Ayerbe, Ana; Vazquez, Juan Ignacio

    2012-01-01

    Information and Communication Technologies (ICTs) continue to overcome many of the challenges related to wireless sensor monitoring, such as for example the design of smarter embedded processors, the improvement of the network architectures, the development of efficient communication protocols or the maximization of the life cycle autonomy. This work tries to improve the communication link of the data transmission in wireless sensor monitoring. The upstream communication link is usually based on standard IP technologies, but the downstream side is always masked with the proprietary protocols used for the wireless link (like ZigBee, Bluetooth, RFID, etc.). This work presents a novel solution (WebTag) for a direct IP based access to a sensor tag over the Near Field Communication (NFC) technology for secure applications. WebTag allows a direct web access to the sensor tag by means of a standard web browser, it reads the sensor data, configures the sampling rate and implements IP based security policies. It is, definitely, a new step towards the evolution of the Internet of Things paradigm. PMID:23012511

  8. Strategies for the depyrogenation of contaminated immunoglobulin G solutions by histidine-immobilized hollow fiber membrane.

    PubMed

    Legallais, C; Anspach, F B; Bueno, S M; Haupt, K; Vijayalakshmi, M A

    1997-03-28

    The depyrogenation of different IgG solutions using the histidine-linked hollow fiber membrane developed in our laboratory is presented here. Three strategies for endotoxin (ET) removal were investigated according to the immobilized histidine's ability to bind different immunoglobulins: (1) ET removal from 1 mg/ml non histidine-binding mouse monoclonal IgG1 (MabCD4) solution was achieved in the presence of acetate buffer (pH 5.0) without any protein loss. (2) For contaminated human IgG, combined adsorption of ET and IgG in the presence of MOPS of Tris buffer was tested, followed by differential elution using increasing salt concentrations. This attempt was not successful since ET were quantitatively found in the IgG elution fraction. (3) Alternatively, it was proposed to adsorb selectively ET in the presence of acetate buffer (pH 5.0) under non binding conditions for human IgG. Human IgG could then be purified if necessary with the same membrane in the presence of MOPS buffer (pH 6.5). With a 1 m2 histidine-PEVA module under these operating conditions, it is estimated that the depyrogenation of 3 l of 1 mg/ml IgG (human or murine) solution containing 80 EU/ml of ET should be possible.

  9. Metal-Assisted Channel Stabilization: Disposition of a Single Histidine on the N-terminus of Alamethicin Yields Channels with Extraordinarily Long Lifetimes

    PubMed Central

    Noshiro, Daisuke; Asami, Koji; Futaki, Shiroh

    2010-01-01

    Abstract Alamethicin, a member of the peptaibol family of antibiotics, is a typical channel-forming peptide with a helical structure. The self-assembly of the peptide in the membranes yields voltage-dependent channels. In this study, three alamethicin analogs possessing a charged residue (His, Lys, or Glu) on their N-termini were designed with the expectation of stabilizing the transmembrane structure. A slight elongation of channel lifetime was observed for the Lys and Glu analogs. On the other hand, extensive stabilization of certain channel open states was observed for the His analog. This stabilization was predominantly observed in the presence of metal ions such as Zn2+, suggesting that metal coordination with His facilitates the formation of a supramolecular assembly in the membranes. Channel stability was greatly diminished by acetylation of the N-terminal amino group, indicating that the N-terminal amino group also plays an important role in metal coordination. PMID:20441743

  10. Application of volcanic ash particles for protein affinity purification with a minimized silica-binding tag.

    PubMed

    Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio

    2016-11-01

    We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  12. Prebiotic synthesis of histidine

    NASA Technical Reports Server (NTRS)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  13. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  14. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    USDA-ARS?s Scientific Manuscript database

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  15. The amino acid sequence around the active-site cysteine and histidine residues of stem bromelain

    PubMed Central

    Husain, S. S.; Lowe, G.

    1970-01-01

    Stem bromelain that had been irreversibly inhibited with 1,3-dibromo[2-14C]-acetone was reduced with sodium borohydride and carboxymethylated with iodoacetic acid. After digestion with trypsin and α-chymotrypsin three radioactive peptides were isolated chromatographically. The amino acid sequences around the cross-linked cysteine and histidine residues were determined and showed a high degree of homology with those around the active-site cysteine and histidine residues of papain and ficin. PMID:5420046

  16. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  17. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  18. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression.

    PubMed

    Zhu, Shaozhou; Gong, Cuiyu; Ren, Lu; Li, Xingzhou; Song, Dawei; Zheng, Guojun

    2013-01-01

    The formation of inclusion bodies (IBs) in recombinant protein biotechnology has become one of the most frequent undesirable occurrences in both research and industrial applications. So far, the pET System is the most powerful system developed for the production of recombinant proteins when Escherichia coli is used as the microbial cell factory. Also, using fusion tags to facilitate detection and purification of the target protein is a commonly used tactic. However, there is still a large fraction of proteins that cannot be produced in E. coli in a soluble (and hence functional) form. Intensive research efforts have tried to address this issue, and numerous parameters have been modulated to avoid the formation of inclusion bodies. However, hardly anyone has noticed that adding fusion tags to the recombinant protein to facilitate purification is a key factor that affects the formation of inclusion bodies. To test this idea, the industrial biocatalysts uridine phosphorylase from Aeropyrum pernix K1 and (+)-γ-lactamase and (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6 were expressed in E. coli by using the pET System and then examined. We found that using a histidine tag as a fusion partner for protein expression did affect the formation of inclusion bodies in these examples, suggesting that removing the fusion tag can promote the solubility of heterologous proteins. The production of soluble and highly active uridine phosphorylase, (+)-γ-lactamase, and (-)-γ-lactamase in our results shows that the traditional process needs to be reconsidered. Accordingly, a simple and efficient structure-based strategy for the production of valuable soluble recombinant proteins in E. coli is proposed.

  19. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies.

    PubMed

    Chelius, Dirk; Jing, Kay; Lueras, Alexis; Rehder, Douglas S; Dillon, Thomas M; Vizel, Alona; Rajan, Rahul S; Li, Tiansheng; Treuheit, Michael J; Bondarenko, Pavel V

    2006-04-01

    The status of the N-terminus of proteins is important for amino acid sequencing by Edman degradation, protein identification by shotgun and top-down techniques, and to uncover biological functions, which may be associated with modifications. In this study, we investigated the pyroglutamic acid formation from N-terminal glutamic acid residues in recombinant monoclonal antibodies. Almost half the antibodies reported in the literature contain a glutamic acid residue at the N-terminus of the light or the heavy chain. Our reversed-phase high-performance liquid chromatography-mass spectrometry method could separate the pyroglutamic acid-containing light chains from the native light chains of reduced and alkylated recombinant monoclonal antibodies. Tryptic peptide mapping and tandem mass spectrometry of the reduced and alkylated proteins was used for the identification of the pyroglutamic acid. We identified the formation of pyroglutamic acid from N-terminal glutamic acid in the heavy chains and light chains of several antibodies, indicating that this nonenzymatic reaction does occur very commonly and can be detected after a few weeks of incubation at 37 and 45 degrees C. The rate of this reaction was measured in several aqueous buffers with different pH values, showing minimal formation of pyroglutamic acid at pH 6.2 and increased formation of pyroglutamic acid at pH 4 and pH 8. The half-life of the N-terminal glutamic acid was approximately 9 months in a pH 4.1 buffer at 45 degrees C. To our knowledge, we showed for the first time that glutamic acid residues located at the N-terminus of proteins undergo pyroglutamic acid formation in vitro.

  20. Mammalian histidine decarboxylase; changes in molecular properties induced by oxidation and reduction.

    PubMed

    Hammar, L; Hjertén, S

    1980-04-01

    Histidine decarboxylase from a murine mastocytoma has been submitted to different separation methods. In these experiments the activity peaks were often very broad. This heterogeneity of the enzyme is traced back to the formation of aggregates, differing in apparent molecular weight by a multiple of about 55,000, as a result of oxidation. Under non-oxidative conditions the histidine decarboxylase activity is confined to one peak in both molecular sieve chromatography, hydrophic interaction chromatography, chromatography on hydroxy apatite, pore gradient electrophoresis and electrofocusing. The molecular weight of the enzyme is estimated to be 110,000 by pore gradient electrophoresis (alkylated enzyme). The isoelectric point is pH 4.9--5.0, determined by electrofocusing under reducing conditions.

  1. Synthesis of 3-iodoindoles by the Pd/Cu-catalyzed coupling of N,N-dialkyl-2-iodoanilines and terminal acetylenes, followed by electrophilic cyclization.

    PubMed

    Yue, Dawei; Yao, Tuanli; Larock, Richard C

    2006-01-06

    [reaction: see text] 3-Iodoindoles have been prepared in excellent yields by coupling terminal acetylenes with N,N-dialkyl-o-iodoanilines in the presence of a Pd/Cu catalyst, followed by an electrophilic cyclization of the resulting N,N-dialkyl-o-(1-alkynyl)anilines using I2 in CH2Cl2. Aryl-, vinylic-, alkyl-, and silyl-substituted terminal acetylenes undergo this process to produce excellent yields of 3-iodoindoles. The reactivity of the carbon-nitrogen bond cleavage during cyclization follows the following order: Me > n-Bu, Me > Ph, and cyclohexyl > Me. Subsequent palladium-catalyzed Sonogashira, Suzuki, and Heck reactions of the resulting 3-iodoindoles proceed smoothly in good yields.

  2. The EspF N-Terminal of Enterohemorrhagic Escherichia coli O157:H7 EDL933w Imparts Stronger Toxicity Effects on HT-29 Cells than the C-Terminal.

    PubMed

    Wang, Xiangyu; Du, Yanli; Hua, Ying; Fu, Muqing; Niu, Cong; Zhang, Bao; Zhao, Wei; Zhang, Qiwei; Wan, Chengsong

    2017-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 EspF is an important multifunctional protein that destroys the tight junctions of intestinal epithelial cells and promotes host cell apoptosis. However, its molecular mechanism remains elusive. We knocked out the espF sequence (747 bp, Δ espF ), N-terminal sequence (219 bp, Δ espF N ), and C-terminal sequence (528 bp, Δ espF C ) separately using the pKD46-mediated λ Red homologous recombination system. Then, we built the corresponding complementation strains, namely, Δ espF/pespF , Δ espF N /pespF N , and Δ espF C /pespF C by overlap PCR, which were used in infecting HT-29 cells and BALB/C mice. The level of reactive oxygen species, cell apoptosis, mitochondrial trans-membrane potential, inflammatory factors, transepithelial electrical resistance (TER), and animal mortality were evaluated by DCFH-DA, double staining of Annexin V-FITC/PI, JC-1 staining, ELISA kit, and a mouse assay. The wild-type (WT), Δ espF , Δ espF/pespF , Δ espF C , Δ espF C /pespF C , Δ espF N , and Δ espF N /pespF N groups exhibited apoptotic rates of 68.3, 27.9, 64.9, 65.7, 73.4, 41.3, and 35.3% respectively, and mean TNF-α expression levels of 428 pg/mL, 342, 466, 446, 381, 383, and 374 pg/mL, respectively. In addition, the apoptotic rates and TNF-α levels of the WT, Δ espF/pespF , and Δ espF C were significantly higher than that of Δ espF , Δ espF N , Δ espF C /pespF C , and Δ espF N /pespF N group ( p < 0.05). The N-terminal of EspF resulted in an increase in the number of apoptotic cells, TNF-α secretion, ROS generation, mitochondria apoptosis, and pathogenicity in BalB/c mice. In conclusion, the N-terminal domain of the Enterohemorrhagic E. coli O157:H7 EspF more strongly promotes apoptosis and inflammation than the C-terminal domain.

  3. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  4. Social Tagging of Mission Data

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wallick, Michael N.; Joswig, Joseph C.; Powell, Mark W.; Torres, Recaredo J.; Mittman, David S.; Abramyan, Lucy; Crockett, Thomas M.; Shams, Khawaja S.; Fox, Jason M.; hide

    2010-01-01

    Mars missions will generate a large amount of data in various forms, such as daily plans, images, and scientific information. Often, there is a semantic linkage between images that cannot be captured automatically. Software is needed that will provide a method for creating arbitrary tags for this mission data so that items with a similar tag can be related to each other. The tags should be visible and searchable for all users. A new routine was written to offer a new and more flexible search option over previous applications. This software allows users of the MSLICE program to apply any number of arbitrary tags to a piece of mission data through a MSLICE search interface. The application of tags creates relationships between data that did not previously exist. These tags can be easily removed and changed, and contain enough flexibility to be specifically configured for any mission. This gives users the ability to quickly recall or draw attention to particular pieces of mission data, for example: Give a semantic and meaningful description to mission data; for example, tag all images with a rock in them with the tag "rock." Rapidly recall specific and useful pieces of data; for example, tag a plan as"driving template." Call specific data to a user s attention; for example, tag a plan as "for:User." This software is part of the MSLICE release, which was written in Java. It will run on any current Windows, Macintosh, or Linux system.

  5. Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo

    2013-08-01

    Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nɛ positions of the imidazole group to estimate the pKas. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.

  6. Mercury(II) binds to both of chymotrypsin's histidines, causing inhibition followed by irreversible denaturation/aggregation.

    PubMed

    Stratton, Amanda; Ericksen, Matthew; Harris, Travis V; Symmonds, Nick; Silverstein, Todd P

    2017-02-01

    The toxicity of mercury is often attributed to its tight binding to cysteine thiolate anions in vital enzymes. To test our hypothesis that Hg(II) binding to histidine could be a significant factor in mercury's toxic effects, we studied the enzyme chymotrypsin, which lacks free cysteine thiols; we found that chymotrypsin is not only inhibited, but also denatured by Hg(II). We followed the aggregation of denatured enzyme by the increase in visible absorbance due to light scattering. Hg(II)-induced chymotrypsin precipitation increased dramatically above pH 6.5, and free imidazole inhibited this precipitation, implicating histidine-Hg(II) binding in the process of chymotrypsin denaturation/aggregation. Diethylpyrocarbonate (DEPC) blocked chymotrypsin's two histidines (his 40 and his 57 ) quickly and completely, with an IC 50 of 35 ± 6 µM. DEPC at 350 µM reduced the hydrolytic activity of chymotrypsin by 90%, suggesting that low concentrations of DEPC react with his 57 at the active site catalytic triad; furthermore, DEPC below 400 µM enhanced the Hg(II)-induced precipitation of chymotrypsin. We conclude that his 57 reacts readily with DEPC, causing enzyme inhibition and enhancement of Hg(II)-induced aggregation. Above 500 µM, DEPC inhibited Hg(II)-induced precipitation, and [DEPC] >2.5 mM completely protected chymotrypsin against precipitation. This suggests that his 40 reacts less readily with DEPC, and that chymotrypsin denaturation is caused by Hg(II) binding specifically to the his 40 residue. Finally, we show that Hg(II)-histidine binding may trigger hemoglobin aggregation as well. Because of results with these two enzymes, we suggest that metal-histidine binding may be key to understanding all heavy metal-induced protein aggregation. © 2017 The Protein Society.

  7. Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine.

    PubMed

    Kopec, W; Wiliczkiewicz, A; Jamroz, D; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M

    2016-01-01

    The objective of this study was to investigate the effects of 1) spray dried blood cells rich in histidine and 2) pure histidine added to feed on the antioxidant status and concentration of carnosine related components in the blood and breast meat of female turkeys. The experiment was performed on 168 Big7 turkey females randomly assigned to 3 dietary treatments: control; control with the addition of 0.18% L-histidine (His); and control with the addition of spray dried blood cells (SDBC). Birds were raised for 103 d on a floor with sawdust litter, with drinking water and feed ad libitum. The antioxidant status of blood plasma and breast muscle was analyzed by ferric reducing ability (FRAP) and by 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging ability. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was analyzed in the blood and breast meat, with the content of carnosine and anserine quantified by HPLC. Proximate analysis as well as amino acid profiling were carried out for the feed and breast muscles. Growth performance parameters also were calculated. Histidine supplementation of the turkey diet resulted in increased DPPH radical scavenging capacity in the breast muscles and blood, but did not result in higher histidine dipeptide concentrations. The enzymatic antioxidant system of turkey blood was affected by the diet with SDBC. In the plasma, the SDBC addition increased both SOD and GPx activity, and decreased GPx activity in the erythrocytes. Feeding turkeys with an SDBC containing diet increased BW and the content of isoleucine and valine in breast muscles. © 2015 Poultry Science Association Inc.

  8. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination

    PubMed Central

    Muteeb, Ghazala; Dey, Debashish; Mishra, Saurabh; Sen, Ranjan

    2012-01-01

    One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals. PMID:23024214

  9. A multipronged strategy of an anti-terminator protein to overcome Rho-dependent transcription termination.

    PubMed

    Muteeb, Ghazala; Dey, Debashish; Mishra, Saurabh; Sen, Ranjan

    2012-12-01

    One of the important role of Rho-dependent transcription termination in bacteria is to prevent gene expressions from the bacteriophage DNA. The transcription anti-termination systems of the lambdoid phages have been designed to overcome this Rho action. The anti-terminator protein N has three interacting regions, which interact with the mRNA, with the NusA and with the RNA polymerase. Here, we show that N uses all these interaction modules to overcome the Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nutR/tR1 site), and this configuration slows down the rate of ATP hydrolysis and the rate of RNA release by Rho from the elongation complex. N-RNA polymerase interaction is not too important for this Rho inactivation process near/at the nutR site. This interaction becomes essential when the elongation complex moves away from the nutR site. From the unusual NusA-dependence property of a Rho mutant E134K, a suppressor of N, we deduced that the N-NusA complex in the anti-termination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. We propose that NusA-remodelling is also one of the mechanisms used by N to overcome the termination signals.

  10. Genetically encoded fluorescent tags

    PubMed Central

    Thorn, Kurt

    2017-01-01

    Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214

  11. Gravimetric antigen detection utilizing antibody-modified lipid bilayers.

    PubMed

    Larsson, Charlotte; Bramfeldt, Hanna; Wingren, Christer; Borrebaeck, Carl; Höök, Fredrik

    2005-10-01

    Lipid bilayers containing 5% nitrilotriacetic acid (NTA) lipids supported on SiO2 have been used as a template for immobilization of oligohistidine-tagged single-chained antibody fragments (scFvs) directed against cholera toxin. It was demonstrated that histidine-tagged scFvs could be equally efficiently coupled to an NTA-Ni2+-containing lipid bilayer from a purified sample as from an expression supernatant, thereby providing a coupling method that eliminates time-consuming protein prepurification steps. Irrespective of whether the coupling was made from the unpurified or purified antibody preparation, the template proved to be efficient for antigen (cholera toxin) detection, verified using quartz crystal microbalance with dissipation monitoring. In addition, via a secondary amplification step using lipid vesicles containing GM1 (the natural membrane receptor for cholera toxin), the detection limit of cholera toxin was less than 750 pM. To further strengthen the coupling of scFvs to the lipid bilayer, scFvs containing two histidine tags, instead of just one tag, were also evaluated. The increased coupling strength provided via the bivalent anchoring significantly reduced scFv displacement in complex solutions containing large amounts of histidine-containing proteins, verified via cholera toxin detection in serum.

  12. Barcode tagging of human oocytes and embryos to prevent mix-ups in assisted reproduction technologies.

    PubMed

    Novo, Sergi; Nogués, Carme; Penon, Oriol; Barrios, Leonardo; Santaló, Josep; Gómez-Martínez, Rodrigo; Esteve, Jaume; Errachid, Abdelhamid; Plaza, José Antonio; Pérez-García, Lluïsa; Ibáñez, Elena

    2014-01-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time

  13. Self-terminated etching of GaN with a high selectivity over AlGaN under inductively coupled Cl2/N2/O2 plasma with a low-energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Zhong, Yaozong; Zhou, Yu; Gao, Hongwei; Dai, Shujun; He, Junlei; Feng, Meixin; Sun, Qian; Zhang, Jijun; Zhao, Yanfei; DingSun, An; Yang, Hui

    2017-10-01

    Etching of GaN/AlGaN heterostructure by O-containing inductively coupled Cl2/N2 plasma with a low-energy ion bombardment can be self-terminated at the surface of the AlGaN layer. The estimated etching rates of GaN and AlGaN were 42 and 0.6 nm/min, respectively, giving a selective etching ratio of 70:1. To study the mechanism of the etching self-termination, detailed characterization and analyses were carried out, including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It was found that in the presence of oxygen, the top surface of the AlGaN layer was converted into a thin film of (Al,Ga)Ox with a high bonding energy, which effectively prevented the underlying atoms from a further etching, resulting in a nearly self-terminated etching. This technique enables a uniform and reproducible fabrication process for enhancement-mode high electron mobility transistors with a p-GaN gate.

  14. Novel 6xHis tagged foot-and-mouth disease virus vaccine bound to nanolipoprotein adjuvant via metal ions provides antigenic distinction and effective protective immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Devendra K.; Segundo, Fayna Diaz-San; Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT 06269

    Here, we engineered two FMD viruses with histidine residues inserted into or fused to the FMDV capsid. Both 6xHis viruses exhibited growth kinetics, plaque morphologies and antigenic characteristics similar to wild-type virus. The 6xHis tag allowed one-step purification of the mutant virions by Co{sup 2+} affinity columns. Electron microscopy and biochemical assays showed that the 6xHis FMDVs readily assembled into antigen: adjuvant complexes in solution, by conjugating with Ni{sup 2+}-chelated nanolipoprotein and monophosphoryl lipid A adjuvant (MPLA:NiNLP). Animals Immunized with the inactivated 6xHis-FMDV:MPLA:NiNLP vaccine acquired enhanced protective immunity against FMDV challenge compared to virions alone. Induction of anti-6xHis and anti-FMDVmore » neutralizing antibodies in the immunized animals could be exploited in the differentiation of vaccinated from infected animals needed for the improvement of FMD control measures. The novel marker vaccine/nanolipid technology described here has broad applications for the development of distinctive and effective immune responses to other pathogens of importance. - Highlights: • 6xHis-tags in A{sub 24} FMDV enable purification and biding to adjuvants via metal ions. • 6xHis A{sub 24} FMDV:MPLA:NiNLP vaccine enhanced protective immunity against FMDV. • Surface exposed capsid tags allow distinction of infected from vaccinated animals.« less

  15. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface.

    PubMed

    Buchko, Garry W; Edwards, Thomas E; Hewitt, Stephen N; Phan, Isabelle Q H; Van Voorhis, Wesley C; Miller, Samuel I; Myler, Peter J

    2015-10-01

    Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto α-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (μs-ms) and/or is heterogeneous.

  16. Review on SAW RFID tags.

    PubMed

    Plessky, Victor P; Reindl, Leonhard M

    2010-03-01

    SAW tags were invented more than 30 years ago, but only today are the conditions united for mass application of this technology. The devices in the 2.4-GHz ISM band can be routinely produced with optical lithography, high-resolution radar systems can be built up using highly sophisticated, but low-cost RF-chips, and the Internet is available for global access to the tag databases. The "Internet of Things," or I-o-T, will demand trillions of cheap tags and sensors. The SAW tags can overcome semiconductor-based analogs in many aspects: they can be read at a distance of a few meters with readers radiating power levels 2 to 3 orders lower, they are cheap, and they can operate in robust environments. Passive SAW tags are easily combined with sensors. Even the "anti-collision" problem (i.e., the simultaneous reading of many nearby tags) has adequate solutions for many practical applications. In this paper, we discuss the state-of-the-art in the development of SAW tags. The design approaches will be reviewed and optimal tag designs, as well as encoding methods, will be demonstrated. We discuss ways to reduce the size and cost of these devices. A few practical examples of tags using a time-position coding with 10(6) different codes will be demonstrated. Phase-coded devices can additionally increase the number of codes at the expense of a reduction of reading distance. We also discuss new and exciting perspectives of using ultra wide band (UWB) technology for SAW-tag systems. The wide frequency band available for this standard provides a great opportunity for SAW tags to be radically reduced in size to about 1 x 1 mm(2) while keeping a practically infinite number of possible different codes. Finally, the reader technology will be discussed, as well as detailed comparison made between SAW tags and IC-based semiconductor device.

  17. Tag retention, growth, and survival of red swamp crayfish Procambarus clarkii marked with coded wire tags

    USGS Publications Warehouse

    Isely, J.J.; Eversole, A.G.

    1998-01-01

    Juvenile red swamp crayfish (or crawfish), Procambarus clarkii (20-41 mm in total length) were collected from a crayfish culture pond by dipnetting and tagged with sequentially numbered, standard length, binary-coded wire tags. Four replicates of 50 crayfish were impaled perpendicular to the long axis of the abdomen with a fixed needle. Tags were injected transversely into the ventral surface of the first or second abdominal segment and were imbedded in the musculature just beneath the abdominal sternum. Tags were visible upon inspection. Additionally, two replicates of 50 crayfish were not tagged and were used as controls. Growth, survival, and tag retention were evaluated after 7 d in individual containers, after 100 d in aquaria, and after 200 d in field cages. Tag retention during each sample period was 100%, and average mortality of tagged crayfish within 7 d of tagging was 1%. Mortality during the remainder of the study was high (75-91%) but was similar between treatment and control samples. Most of the deaths were probably due to cannibalism. Average total length increased threefold during the course of the study, and crayfish reached maturity. Because crayfish were mature by the end of the study, we concluded that the coded wire tag was retained through the life history of the crayfish.

  18. Metabolism of. cap alpha. -C/sup 14/-histidine in the intact rat. II. Radioactive excretion products in urine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, G.; Wu, P.H.L.; Heck, W.W.

    1956-09-01

    The normal metabolic pathways in the intact rat was investigated via the radioactive urinary excretion products following administration of a physiological dose of a radioactive compound such as ..cap alpha..-C/sup 14/-DL-histidine. The major metabolites, except one, excreted in the urine 5 hours after administration of ..cap alpha..-C/sup 14/-DL-histidine were isolated and identified. Glutamic acid and urocanic acids had simlar and low activities, whereas carboxyl-labeled imidazoacetic acid was found to be the principal metabolite with a high level of activity. It was concluded that the main end-product of the catabolism of DL-histidine is imidazoleacetic acid probably formed through imidazolepyruvic acid.

  19. Peptide Deformylase Inhibitors as Potent Antimycobacterial Agents▿ †

    PubMed Central

    Teo, Jeanette W. P.; Thayalan, Pamela; Beer, David; Yap, Amelia S. L.; Nanjundappa, Mahesh; Ngew, Xinyi; Duraiswamy, Jeyaraj; Liung, Sarah; Dartois, Veronique; Schreiber, Mark; Hasan, Samiul ; Cynamon, Michael; Ryder, Neil S.; Yang, Xia; Weidmann, Beat; Bracken, Kathryn ; Dick, Thomas; Mukherjee, Kakoli

    2006-01-01

    Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 μM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of ≤5 × 10−7 in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents. PMID:16966397

  20. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels.

    PubMed

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-02-15

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2 Delta 2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2 Delta 2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.

  1. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    PubMed Central

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  2. 76 FR 22120 - Credit Watch Termination Initiative; Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR- 5511-N-01] Credit Watch Termination Initiative; Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  3. 75 FR 67387 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-4211-N-05] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  4. 77 FR 38818 - Credit Watch Termination Initiative; Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5644-N-01] Credit Watch Termination Initiative; Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  5. 76 FR 38406 - Credit Watch Termination Initiative; Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-03] Credit Watch Termination Initiative; Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  6. 76 FR 4126 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR- 5411-N-07] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  7. 77 FR 5263 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-06] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  8. 75 FR 61164 - Credit Watch Termination Initiative Termination of Origination Approval Agreements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-03] Credit Watch Termination Initiative Termination of Origination Approval Agreements AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  9. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  10. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  11. Expression and purification of mouse peptide ESP4 in Escherichia coli.

    PubMed

    Hirakane, Makoto; Taniguchi, Masahiro; Yoshinaga, Sosuke; Misumi, Shogo; Terasawa, Hiroaki

    2014-04-01

    Pheromones are species-specific chemical signals that regulate a wide range of social and sexual behaviors in many animals. In mice, the male-specific peptide ESP1 (exocrine gland-secreting peptide 1) is secreted into tear fluids and enhances female sexual receptive behavior. ESP1 belongs to the ESP family, a multigene family with 38 genes in mice. ESP1 shares the highest homology with ESP4. ESP1 is expressed in the extraorbital lacrimal gland, whereas ESP4 is expressed in some exocrine glands. Thus, ESP4 is expected to have a function that has not been elucidated yet. Large amounts of the purified ESP4 protein are required for structural and biochemical studies. Here we present an expression and purification scheme for the recombinant ESP4 protein. The N-terminally histidine-tagged ESP4 fusion protein was expressed in Escherichia coli as inclusion bodies, which were solubilized and purified by nickel affinity chromatography. The histidine tag was cleaved with thrombin and removed by a second nickel affinity chromatography step. The ESP4 protein was isolated with high purity by reversed-phase chromatography. For NMR analyses, we prepared a stable isotope-labeled ESP4 protein. Three repeated freeze-drying steps after the reversed-phase chromatography were required, to remove a volatile contaminating compound and to obtain an NMR spectrum with a homogeneous line shape. AMS-modification and far-UV CD spectroscopic analyses suggested that ESP4 has an intramolecular disulfide bridge and a helical structure, respectively. The present study provides a powerful tool for structural and biochemical studies of ESP4, leading toward the elucidation of the roles of the ESP family members. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murtaugh, Megan L.; Fanning, Sean W.; Sharma, Tressa M.

    2012-09-05

    There is growing interest in the development of protein switches, which are proteins whose function, such as binding a target molecule, can be modulated through environmental triggers. Efforts to engineer highly pH sensitive protein-protein interactions typically rely on the rational introduction of ionizable groups in the protein interface. Such experiments are typically time intensive and often sacrifice the protein's affinity at the permissive pH. The underlying thermodynamics of proton-linkage dictate that the presence of multiple ionizable groups, which undergo a pK{sub a} change on protein binding, are necessary to result in highly pH-dependent binding. To test this hypothesis, a novelmore » combinatorial histidine library was developed where every possible combination of histidine and wild-type residue is sampled throughout the interface of a model anti-RNase A single domain VHH antibody. Antibodies were coselected for high-affinity binding and pH-sensitivity using an in vitro, dual-function selection strategy. The resulting antibodies retained near wild-type affinity yet became highly sensitive to small decreases in pH, drastically decreasing their binding affinity, due to the incorporation of multiple histidine groups. Several trends were observed, such as histidine 'hot-spots,' which will help enhance the development of pH switch proteins as well as increase our understanding of the role of ionizable residues in protein interfaces. Overall, the combinatorial approach is rapid, general, and robust and should be capable of producing highly pH-sensitive protein affinity reagents for a number of different applications.« less

  13. A Non-Invasive NMR Method Based on Histidine Imidazoles to Analyze the pH-Modulation of Protein-Nucleic Acid Interfaces.

    PubMed

    Cruz-Gallardo, Isabel; Del Conte, Rebecca; Velázquez-Campoy, Adrián; García-Mauriño, Sofía M; Díaz-Moreno, Irene

    2015-05-11

    A useful (2) J(N-H) coupling-based NMR spectroscopic approach is proposed to unveil, at the molecular level, the contribution of the imidazole groups of histidines from RNA/DNA-binding proteins on the modulation of binding to nucleic acids by pH. Such protonation/deprotonation events have been monitored on the single His96 located at the second RNA/DNA recognition motif (RRM2) of T-cell intracellular antigen-1 (TIA-1) protein. The pKa values of the His96 ionizable groups were substantially higher in the complexes with short U-rich RNA and T-rich DNA oligonucleotides than those of the isolated TIA-1 RRM2. Herein, the methodology applied to determine changes in pKa of histidine side chains upon DNA/RNA binding, gives valuable information to understand the pH effect on multidomain DNA/RNA-binding proteins that shuttle among different cellular compartments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A dual protease approach for expression and affinity purification of recombinant proteins.

    PubMed

    Raran-Kurussi, Sreejith; Waugh, David S

    2016-07-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification. Published by Elsevier Inc.

  15. A Dual Protease Approach for Expression and Affinity Purification of Recombinant Proteins

    PubMed Central

    Raran-Kurussi, Sreejith; Waugh, David S.

    2016-01-01

    We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification. PMID:27105777

  16. Modifications of the pyroglutamic acid and histidine residues in thyrotropin-releasing hormone (TRH) yield analogs with selectivity for TRH receptor type 2 over type 1.

    PubMed

    Kaur, Navneet; Monga, Vikramdeep; Lu, Xinping; Gershengorn, Marvin C; Jain, Rahul

    2007-01-01

    Thyrotropin-releasing hormone (TRH) analogs in which the N-1(tau) or the C-2 position of the imidazole ring of the histidine residue is substituted with various alkyl groups and the l-pyroglutamic acid (pGlu) is replaced with the l-pyro-2-aminoadipic acid (pAad) or (R)- and (S)-3-oxocyclopentane-1-carboxylic acid (Ocp) were synthesized and studied as agonists for TRH receptor subtype 1 (TRH-R1) and subtype 2 (TRH-R2). We observed that several analogs were selective agonists of TRH-R2 showing relatively less or no activation of TRH-R1. For example, the most selective agonist of the series 13, in which pGlu is replaced with the pAad and histidine residue is substituted at the N-1 position with an isopropyl group, was found to activate TRH-R2 with a potency (EC(50)=1.9microM) but did not activate TRH-R1 (potency>100 microM); that is, exhibited >51-fold greater selectivity for TRH-R2 versus TRH-R1. Analog 8, in which pGlu is replaced with pAad and histidine is substituted at the N-1(tau) position with a methyl group, exhibited a binding affinity (K(i)=0.0032 microM) to TRH-R1 that is similar to that of [Ntau(1)-Me-His]-TRH and displayed potent activation of TRH-R1 and TRH-R2 (EC(50)=0.0049 and 0.0024 microM, respectively). None of the analogs in which pGlu is replaced with the bioisosteric (R)- and (S)-(Ocp) and the imidazole ring is substituted at the N-1(tau) or C-2 position were found to bind or activate either TRH-R1 or TRH-R2 at the highest test dose of 100 microM.

  17. An Implantable RFID Sensor Tag toward Continuous Glucose Monitoring.

    PubMed

    Xiao, Zhibin; Tan, Xi; Chen, Xianliang; Chen, Sizheng; Zhang, Zijian; Zhang, Hualei; Wang, Junyu; Huang, Yue; Zhang, Peng; Zheng, Lirong; Min, Hao

    2015-05-01

    This paper presents a wirelessly powered implantable electrochemical sensor tag for continuous blood glucose monitoring. The system is remotely powered by a 13.56-MHz inductive link and utilizes an ISO 15693 radio frequency identification (RFID) standard for communication. This paper provides reliable and accurate measurement for changing glucose level. The sensor tag employs a long-term glucose sensor, a winding ferrite antenna, an RFID front-end, a potentiostat, a 10-bit sigma-delta analog to digital converter, an on-chip temperature sensor, and a digital baseband for protocol processing and control. A high-frequency external reader is used to power, command, and configure the sensor tag. The only off-chip support circuitry required is a tuned antenna and a glucose microsensor. The integrated chip fabricated in SMIC 0.13-μm CMOS process occupies an area of 1.2 mm ×2 mm and consumes 50 μW. The power sensitivity of the whole system is -4 dBm. The sensor tag achieves a measured glucose range of 0-30 mM with a sensitivity of 0.75 nA/mM.

  18. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG

    PubMed Central

    Luo, Dan; Wen, Caixia; Zhao, Rongchuan; Liu, Xinyu; Liu, Xinxin; Cui, Jingjing; Liang, Joshua G.; Liang, Peng

    2016-01-01

    Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake. PMID:27214237

  19. Termination unit

    DOEpatents

    Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann

    2016-05-03

    Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.

  20. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (10 4 - 10 5 cm -2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 10 15 cm -3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p)more » layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  1. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells.

    PubMed

    Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema

    2017-05-25

    The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of

  2. Application of a new dual localization-affinity purification tag reveals novel aspects of protein kinase biology in Aspergillus nidulans.

    PubMed

    De Souza, Colin P; Hashmi, Shahr B; Osmani, Aysha H; Osmani, Stephen A

    2014-01-01

    Filamentous fungi occupy critical environmental niches and have numerous beneficial industrial applications but devastating effects as pathogens and agents of food spoilage. As regulators of essentially all biological processes protein kinases have been intensively studied but how they regulate the often unique biology of filamentous fungi is not completely understood. Significant understanding of filamentous fungal biology has come from the study of the model organism Aspergillus nidulans using a combination of molecular genetics, biochemistry, cell biology and genomic approaches. Here we describe dual localization-affinity purification (DLAP) tags enabling endogenous N or C-terminal protein tagging for localization and biochemical studies in A. nidulans. To establish DLAP tag utility we endogenously tagged 17 protein kinases for analysis by live cell imaging and affinity purification. Proteomic analysis of purifications by mass spectrometry confirmed association of the CotA and NimXCdk1 kinases with known binding partners and verified a predicted interaction of the SldABub1/R1 spindle assembly checkpoint kinase with SldBBub3. We demonstrate that the single TOR kinase of A. nidulans locates to vacuoles and vesicles, suggesting that the function of endomembranes as major TOR cellular hubs is conserved in filamentous fungi. Comparative analysis revealed 7 kinases with mitotic specific locations including An-Cdc7 which unexpectedly located to mitotic spindle pole bodies (SPBs), the first such localization described for this family of DNA replication kinases. We show that the SepH septation kinase locates to SPBs specifically in the basal region of apical cells in a biphasic manner during mitosis and again during septation. This results in gradients of SepH between G1 SPBs which shift along hyphae as each septum forms. We propose that SepH regulates the septation initiation network (SIN) specifically at SPBs in the basal region of G1 cells and that localized gradients

  3. Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain.

    PubMed

    Gronau, Greta; Qin, Zhao; Buehler, Markus J

    2013-03-01

    A spider's ability to store silk protein solutions at high concentration is believed to be related to the protein's terminal domains. It has been suggested that a shift in salt concentration and pH can have a significant influence on the assembly process. Based on experimental data, a model has been proposed in which the N-terminal domain exists as a monomer during storage and assembles into a homodimer upon spinning. Here we perform a systematic computational study using atomistic, coarse-grained and well-tempered metadynamics simulation to understand how the NaCl concentration in the solution affects the N-terminal domain of the silk protein. Our results show that a high salt concentration, as found during storage, weakens key salt bridges between the monomers, inducing a loss in bond energy by 28.6% in a single salt bridge. As a result dimer formation is less likely as 35.5% less energy is required to unfold the dimer by mechanical force. Conversely, homodimer formation appears to be more likely at low salt concentrations as the salt bridge stays at the lower energy state. The link between salt concentration, structure and stability of the N-terminal domain provides a possible mechanism that prevents premature fiber formation during storage.

  4. Infrared Spectroscopic and Theoretical Study of the HC_nO^+(N=5-12) Cations

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jin, Jiaye; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    Carbon chains and derivatives are highly active species, which are widely existed as reactive intermediates in many chemical processes including atmospheric chemistry, hydrocarbon combustion, as well as interstellar chemistry. The carbon chain cations, HC_nO^+ (n = 5-12) are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC_nO.CO] cation complexes in the 1600-3500 \\wn region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra in conjunction with theoretical calculations. All the HC_nO^+ (n = 5-12) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen. The HC_nO^+ cations with odd n have closed-shell singlet ground states with polyyne-like structures, while those with even n have triplet ground states with allene-like structures.

  5. HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor.

    PubMed

    Chain, Benjamin M; Noursadeghi, Mahdad; Gardener, Michelle; Tsang, Jhen; Wright, Edward

    2008-10-23

    The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes.

  6. HIV blocking antibodies following immunisation with chimaeric peptides coding a short N-terminal sequence of the CCR5 receptor

    PubMed Central

    Chain, Benjamin M.; Noursadeghi, Mahdad; Gardener, Michelle; Tsang, Jhen; Wright, Edward

    2008-01-01

    The chemokine receptor CCR5 is required for cellular entry by many strains of HIV, and provides a potential target for molecules, including antibodies, designed to block HIV transmission. This study investigates a novel approach to stimulate antibodies to CCR5. Rabbits were immunised with chimaeric peptides which encode a short fragment of the N-terminal sequence of CCR5, as well as an unrelated T cell epitope from Tetanus toxoid. Immunisation with these chimaeric peptides generates a strong antibody response which is highly focused on the N-terminal CCR5 sequence. The antibody to the chimaeric peptide containing an N-terminal methionine also recognises the full length CCR5 receptor on the cell surface, albeit at higher concentrations. Further comparison of binding to intact CCR5 with binding to CCR5 peptide suggest that the receptor specific antibody generated represents a very small fragment of the total anti-peptide antibody. These findings are consistent with the hypothesis that the N-terminal peptide in the context of the intact receptor has a different structure to that of the synthetic peptide. Finally, the antibody was able to block HIV infection of macrophages in vitro. Thus results of this study suggest that N-terminal fragments of CCR5 may provide potential immunogens with which to generate blocking antibodies to this receptor, while avoiding the dangers of including T cell auto-epitopes. PMID:18765264

  7. Global combined precursor isotopic labeling and isobaric tagging (cPILOT) approach with selective MS(3) acquisition.

    PubMed

    Evans, Adam R; Robinson, Renã A S

    2013-11-01

    Recently, we reported a novel proteomics quantitation scheme termed "combined precursor isotopic labeling and isobaric tagging (cPILOT)" that allows for the identification and quantitation of nitrated peptides in as many as 12-16 samples in a single experiment. cPILOT offers enhanced multiplexing and posttranslational modification specificity, however excludes global quantitation for all peptides present in a mixture and underestimates reporter ion ratios similar to other isobaric tagging methods due to precursor co-isolation. Here, we present a novel chemical workflow for cPILOT that can be used for global tagging of all peptides in a mixture. Specifically, through low pH precursor dimethylation of tryptic or LysC peptides followed by high pH tandem mass tags, the same reporter ion can be used twice in a single experiment. Also, to improve triple-stage mass spectrometry (MS(3) ) data acquisition, a selective MS(3) method that focuses on product selection of the y1 fragment of lysine-terminated peptides is incorporated into the workflow. This novel cPILOT workflow has potential for global peptide quantitation that could lead to enhanced sample multiplexing and increase the number of quantifiable spectra obtained from MS(3) acquisition methods. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Vitamin K2 (menaquinone) biosynthesis in Escherichia coli: evidence for the presence of an essential histidine residue in o-succinylbenzoyl coenzyme A synthetase.

    PubMed Central

    Bhattacharyya, D K; Kwon, O; Meganathan, R

    1997-01-01

    o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme. PMID:9324253

  9. Buddy Tag CONOPS and Requirements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brotz, Jay Kristoffer; Deland, Sharon M.

    2015-12-01

    This document defines the concept of operations (CONOPS) and the requirements for the Buddy Tag, which is conceived and designed in collaboration between Sandia National Laboratories and Princeton University under the Department of State Key VerificationAssets Fund. The CONOPS describe how the tags are used to support verification of treaty limitations and is only defined to the extent necessary to support a tag design. The requirements define the necessary functions and desired non-functional features of the Buddy Tag at a high level

  10. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    PubMed

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  11. 76 FR 22119 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-02] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  12. 76 FR 53148 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-25

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-05] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  13. 77 FR 5262 - Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-07] Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  14. 77 FR 38817 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5644-N-02] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  15. 76 FR 38407 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-30

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5511-N-04] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  16. 75 FR 61165 - Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-04] Credit Watch Termination Initiative Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  17. 76 FR 4364 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-08] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  18. 75 FR 67388 - Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5411-N-06] Credit Watch Termination Initiative; Termination of Direct Endorsement (DE) Approval AGENCY: Office of the Assistant Secretary for... (FHA) against HUD-approved mortgagees through the FHA Credit Watch Termination Initiative. This notice...

  19. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  20. Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.

    PubMed

    Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen

    2017-01-26

    pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.

  1. SparkClouds: visualizing trends in tag clouds.

    PubMed

    Lee, Bongshin; Riche, Nathalie Henry; Karlson, Amy K; Carpendale, Sheelash

    2010-01-01

    Tag clouds have proliferated over the web over the last decade. They provide a visual summary of a collection of texts by visually depicting the tag frequency by font size. In use, tag clouds can evolve as the associated data source changes over time. Interesting discussions around tag clouds often include a series of tag clouds and consider how they evolve over time. However, since tag clouds do not explicitly represent trends or support comparisons, the cognitive demands placed on the person for perceiving trends in multiple tag clouds are high. In this paper, we introduce SparkClouds, which integrate sparklines into a tag cloud to convey trends between multiple tag clouds. We present results from a controlled study that compares SparkClouds with two traditional trend visualizations—multiple line graphs and stacked bar charts—as well as Parallel Tag Clouds. Results show that SparkClouds ability to show trends compares favourably to the alternative visualizations.

  2. Structural and physiological studies of the Escherichia coli histidine operon inserted into plasmid vectors.

    PubMed Central

    Bruni, C B; Musti, A M; Frunzio, R; Blasi, F

    1980-01-01

    A fragment of deoxyribonucleic acid 5,300 base paris long and containing the promoter-proximal portion of the histidine operon of Escherichia coli K-12, has been cloned in plasmid pBR313 (plasmids pCB2 and pCB3). Restriction mapping, partial nucleotide sequencing, and studies on functional expression in vivo and on protein synthesis in minicells have shown that the fragment contains the regulatory region of the operon, the hisG, hisD genes, and part of the hisC gene. Another plasmid (pCB5) contained the hisG gene and part of the hisD gene. Expression of the hisG gene in the latter plasmid was under control of the tetracycline promoter of the pBR313 plasmid. The in vivo expression of the two groups of plasmids described above, as well as their effect on the expression of the histidine genes not carried by the plasmids but present on the host chromosome, has been studied. The presence of multiple copies of pCB2 or pCB3, but not of pCB5, prevented derepression of the chromosomal histidine operon. Possible interpretations of this phenomenon are discussed. Images PMID:6246067

  3. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  4. Non-native, N-terminal Hsp70 Molecular Motor Recognition Elements in Transit Peptides Support Plastid Protein Translocation*

    PubMed Central

    Chotewutmontri, Prakitchai; Bruce, Barry D.

    2015-01-01

    Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915

  5. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence uniquemore » in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.« less

  6. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes.

    PubMed

    Nguyen, Khoa; Garcia, Alvaro; Sani, Marc-Antoine; Diaz, Dil; Dubey, Vikas; Clayton, Daniel; Dal Poggetto, Giovanni; Cornelius, Flemming; Payne, Richard J; Separovic, Frances; Khandelia, Himanshu; Clarke, Ronald J

    2018-06-01

    The Na + ,K + -ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na + and K + electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31 P and 2 H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The effects of copper-histidine therapy on brain metabolism in a patient with Menkes disease: a proton magnetic resonance spectroscopic study.

    PubMed

    Munakata, Mitsutoshi; Sakamoto, Osamu; Kitamura, Taro; Ishitobi, Mamiko; Yokoyama, Hiroyuki; Haginoya, Kazuhiro; Togashi, Noriko; Tamura, Hajime; Higano, Shuichi; Takahashi, Shoki; Ohura, Toshihiro; Kobayashi, Yasuko; Onuma, Akira; Iinuma, Kazuie

    2005-06-01

    We report on metabolic changes in the brain of a boy with Menkes disease. He was treated with parenteral copper (Cu)-histidine supplementation, from 5 months of age, and assessed with proton magnetic resonance spectroscopy ((1)H-MRS). The single-voxel (1)H-MRS before treatment revealed an accumulation of lactate and a reduced N-acetyl aspartate (NAA)/total creatine (tCr) ratio with a z-score of -3.0. During treatment, the lactate signal faded away, whereas the NAA signal gradually increased to a z-score of -1.5 at 120 days of treatment. The choline/tCr ratio did not deviate much initially (z-score +0.5), but the ratio increased markedly during treatment (z-score +4.8). Consequently, the Cu-histidine therapy initiated after the critical period still improved the neuronal metabolism, suggesting that some Cu was delivered to neurons. Nevertheless, the brain atrophy, impaired myelination, and severe neurological symptoms were not ameliorated.

  8. Survival, growth, and tag retention in age-0 Chinook Salmon implanted with 8-, 9-, and 12-mm PIT tags

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Perry, Russell W.; Connor, William P.; Mullins, Frank L.; Rabe, Craig; Nelson, Doug D

    2015-01-01

    The ability to represent a population of migratory juvenile fish with PIT tags becomes difficult when the minimum tagging size is larger than the average size at which fish begin to move downstream. Tags that are smaller (e.g., 8 and 9 mm) than the commonly used 12-mm PIT tags are currently available, but their effects on survival, growth, and tag retention in small salmonid juveniles have received little study. We evaluated growth, survival, and tag retention in age-0 Chinook Salmon Oncorhynchus tshawytscha of three size-groups: 40–49-mm fish were implanted with 8- and 9-mm tags, and 50– 59-mm and 60–69-mm fish were implanted with 8-, 9-, and 12-mm tags. Survival 28 d after tagging ranged from 97.8% to 100% across all trials, providing no strong evidence for a fish-size-related tagging effect or a tag size effect. No biologically significant effects of tagging on growth in FL (mm/d) or weight (g/d) were observed. Although FL growth in tagged fish was significantly reduced for the 40–49-mm and 50–59-mm groups over the first 7 d, growth rates were not different thereafter, and all fish were similar in size by the end of the trials (day 28). Tag retention across all tests ranged from 93% to 99%. We acknowledge that actual implantation of 8- or 9-mm tags into small fish in the field will pose additional challenges (e.g., capture and handling stress) beyond those observed in our laboratory. However, we conclude that experimental use of the smaller tags for small fish in the field is supported by our findings.

  9. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neiditch,M.; Federle, M.; Pompeani, A.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement inmore » which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.« less

  10. Comparing the hierarchy of author given tags and repository given tags in a large document archive

    NASA Astrophysics Data System (ADS)

    Tibély, Gergely; Pollner, Péter; Palla, Gergely

    2016-10-01

    Folksonomies - large databases arising from collaborative tagging of items by independent users - are becoming an increasingly important way of categorizing information. In these systems users can tag items with free words, resulting in a tripartite item-tag-user network. Although there are no prescribed relations between tags, the way users think about the different categories presumably has some built in hierarchy, in which more special concepts are descendants of some more general categories. Several applications would benefit from the knowledge of this hierarchy. Here we apply a recent method to check the differences and similarities of hierarchies resulting from tags given by independent individuals and from tags given by a centrally managed repository system. The results from our method showed substantial differences between the lower part of the hierarchies, and in contrast, a relatively high similarity at the top of the hierarchies.

  11. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail

    PubMed Central

    Ludwigsen, Johanna; Pfennig, Sabrina; Singh, Ashish K; Schindler, Christina; Harrer, Nadine; Forné, Ignasi; Zacharias, Martin; Mueller-Planitz, Felix

    2017-01-01

    ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1. DOI: http://dx.doi.org/10.7554/eLife.21477.001 PMID:28109157

  12. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutantmore » correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.« less

  13. Graphene oxide wrapped SERS tags: multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect.

    PubMed

    Lin, Donghai; Qin, Tianqi; Wang, Yunqing; Sun, Xiuyan; Chen, Lingxin

    2014-01-22

    As novel optical nanoprobes, surface-enhanced Raman scattering (SERS) tags have drawn growing interests in the application of biomedical imaging and phototherapies. Herein, we demonstrated a novel in situ synthesis strategy for GO wrapped gold nanocluster SERS tags by using a tris(2,2'-bipyridyl)ruthenium(II) chloride (Rubpy)/GO nanohybrid as a complex Raman reporter, inspired by the role of GO as an artificial receptor for various dyes. The introduction of GO in the synthesis procedure provided systematic solutions for controlling several key parameters of SERS tags, including reproducibility, sensitivity, and colloidal and signal stability. An additional interesting thermal-sensitive SERS property (SERS intensity decreased upon increasing the temperature) was also achieved due to the heat-induced release/redistribution of reporter molecules adsorbed on GO. Combining the synergic effect of these features, we further fabricated multifunctional, aldehyde group conjugated Au@Rubpy/GO SERS tags for optical labeling and photothermal ablation of bacteria. Sensitive Raman imaging of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria could be realized, and satisfactory photothermal killing efficacy for both bacteria was achieved. Our results also demonstrated the correlation among the SERS intensity decrease ratio, bacteria survival rate, and the terminal temperature of the tag-bacteria suspension, showing the possibility to use SERS assay to measure antibacterial response during the photothermal process using this tag.

  14. Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain*

    PubMed Central

    Wang, Huanchen; Robinson, Howard; Ke, Hengming

    2010-01-01

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes. PMID:20861010

  15. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  16. Stepwise Internal Energy Control for Protonated Methanol Clusters by Using the Inert Gas Tagging

    NASA Astrophysics Data System (ADS)

    Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka

    2016-06-01

    Preferred isomer structures of hydrogen-bonded clusters should depend on their temperature because of the entropy term in the free energy. To observe such temperature dependence, we propose a new approach to control the internal energy (vibrational temperature) of protonated clusters in the gas phase. We performed IR spectroscopy of protonated methanol clusters, H+ (CH{_3}OH) {_n}, n= 5 and 7, with the tagging by various inert gas species (Ar, CO{_2}, CO, CS{_2}, C{_2}H{_2}, and C{_6}H{_6}). We found that vibrational temperature of the tagged clusters raises with increase of the interaction energy with the tag species, and the observed cluster structures follow the theoretical prediction of the temperature dependence of the isomer population.

  17. Structure of the Fibrillin-1 N-Terminal Domains Suggests that Heparan Sulfate Regulates the Early Stages of Microfibril Assembly

    PubMed Central

    Yadin, David A.; Robertson, Ian B.; McNaught-Davis, Joanne; Evans, Paul; Stoddart, David; Handford, Penny A.; Jensen, Sacha A.; Redfield, Christina

    2013-01-01

    Summary The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-terminal regions drives head-to-tail assembly. Here, we present the structure of a fibrillin N-terminal fragment comprising the fibrillin unique N-terminal (FUN) and the first three epidermal growth factor (EGF)-like domains (FUN-EGF3). Two rod-like domain pairs are separated by a short, flexible linker between the EGF1 and EGF2 domains. We also show that the binding site for the C-terminal region spans multiple domains and overlaps with a heparin interaction site. These data suggest that heparan sulfate may sequester fibrillin at the cell surface via FUN-EGF3 prior to aggregation of the C terminus, thereby regulating microfibril assembly. PMID:24035709

  18. Crystallization and preliminary crystallographic analysis of an Enterococcus faecalis repressor protein, CylR2, involved in regulating cytolysin production through quorum-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.

    2004-06-01

    CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.

  19. The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea.

    PubMed

    Nathues, Eva; Jörgens, Cordula; Lorenz, Nicole; Tudzynski, Paul

    2007-09-01

    SUMMARY Histidine kinases are important mediators for adaptation of bacteria and plants to environmental signals. Genome analyses of filamentous fungi have revealed the presence of a high number of potential hybrid histidine kinase (HK)-encoding genes; the role of most of these potential sensors is so far unclear, though some members of the class III histidine kinases were shown to be involved in osmostress responses. Here we present a functional analysis of cphk2, a histidine kinase-encoding gene in the biotrophic grass pathogen Claviceps purpurea. The putative product of cphk2 (CpHK2) was shown to group within family X of fungal HKs and it had high homology to the oxidative stress sensors SpMAK2/3 of Schizosaccharomyces pombe. Analysis of a cphk2 deletion mutant indicated that this histidine kinase is involved in spore germination, sensitivity to oxidative stress and fungicide resistance. In addition, virulence of the Dcphk2 mutant on rye was significantly reduced compared with the wild-type strain, even if the conidial titre was adjusted to the lower germination rate. This is the first report of a role for a class X histidine kinase in a filamentous fungus.

  20. The role of the N-terminal tail for the oligomerization, folding and stability of human frataxin☆

    PubMed Central

    Faraj, Santiago E.; Venturutti, Leandro; Roman, Ernesto A.; Marino-Buslje, Cristina B.; Mignone, Astor; Tosatto, Silvio C.E.; Delfino, José M.; Santos, Javier

    2013-01-01

    The N-terminal stretch of human frataxin (hFXN) intermediate (residues 42–80) is not conserved throughout evolution and, under defined experimental conditions, behaves as a random-coil. Overexpression of hFXN56–210 in Escherichia coli yields a multimer, whereas the mature form of hFXN (hFXN81–210) is monomeric. Thus, cumulative experimental evidence points to the N-terminal moiety as an essential element for the assembly of a high molecular weight oligomer. The secondary structure propensity of peptide 56–81, the moiety putatively responsible for promoting protein–protein interactions, was also studied. Depending on the environment (TFE or SDS), this peptide adopts α-helical or β-strand structure. In this context, we explored the conformation and stability of hFXN56–210. The biophysical characterization by fluorescence, CD and SEC-FPLC shows that subunits are well folded, sharing similar stability to hFXN90–210. However, controlled proteolysis indicates that the N-terminal stretch is labile in the context of the multimer, whereas the FXN domain (residues 81–210) remains strongly resistant. In addition, guanidine hydrochloride at low concentration disrupts intermolecular interactions, shifting the ensemble toward the monomeric form. The conformational plasticity of the N-terminal tail might impart on hFXN the ability to act as a recognition signal as well as an oligomerization trigger. Understanding the fine-tuning of these activities and their resulting balance will bear direct relevance for ultimately comprehending hFXN function. PMID:23951553

  1. Notes on SAW Tag Interrogation Techniques

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2010-01-01

    We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only

  2. The N-terminal domain of the mammalian nucleoporin p62 interacts with other nucleoporins of the FXFG family during interphase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stochaj, Ursula; Banski, Piotr; Kodiha, Mohamed

    2006-08-01

    Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-{beta}1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. Inmore » ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.« less

  3. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method

    PubMed Central

    Huang, Junfeng; Qin, Hongqiang; Sun, Zhen; Huang, Guang; Mao, Jiawei; Cheng, Kai; Zhang, Zhang; Wan, Hao; Yao, Yating; Dong, Jing; Zhu, Jun; Wang, Fangjun; Ye, Mingliang; Zou, Hanfa

    2015-01-01

    Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome. PMID:25959593

  4. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2)*

    PubMed Central

    Elguindy, Mahmoud M.; Nakamaru-Ogiso, Eiko

    2015-01-01

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. PMID:26063804

  5. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2).

    PubMed

    Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2015-08-21

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.

    PubMed

    van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan

    2015-06-01

    Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. An N-terminal peptide extension results in efficient expression, but not secretion, of a synthetic horseradish peroxidase gene in transgenic tobacco.

    PubMed

    Kis, Mihaly; Burbridge, Emma; Brock, Ian W; Heggie, Laura; Dix, Philip J; Kavanagh, Tony A

    2004-03-01

    Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic

  8. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases.

    PubMed

    Lamb, Brian M; Mercer, Andrew C; Barbas, Carlos F

    2013-11-01

    Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5'-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5' T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5' T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes.

  9. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    PubMed

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of sodium chloride on the structure and stability of spider silk’s N-terminal protein domain

    PubMed Central

    Gronau, Greta; Qin, Zhao; Buehler, Markus J.

    2013-01-01

    A spider’s ability to store silk protein solutions at high concentration is believed to be related to the protein’s terminal domains. It has been suggested that a shift in salt concentration and pH can have a significant influence on the assembly process. Based on experimental data, a model has been proposed in which the N-terminal domain exists as a monomer during storage and assembles into a homodimer upon spinning. Here we perform a systematic computational study using atomistic, coarse-grained and well-tempered metadynamics simulation to understand how the NaCl concentration in the solution affects the N-terminal domain of the silk protein. Our results show that a high salt concentration, as found during storage, weakens key salt bridges between the monomers, inducing a loss in bond energy by 28.6% in a single salt bridge. As a result dimer formation is less likely as 35.5% less energy is required to unfold the dimer by mechanical force. Conversely, homodimer formation appears to be more likely at low salt concentrations as the salt bridge stays at the lower energy state. The link between salt concentration, structure and stability of the N-terminal domain provides a possible mechanism that prevents premature fiber formation during storage. PMID:23833703

  11. The development of an intermediate-duration tag to characterize the diving behavior of large whales.

    PubMed

    Mate, Bruce R; Irvine, Ladd M; Palacios, Daniel M

    2017-01-01

    The development of high-resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide-ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three-axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3-7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales ( Physeter macrocephalus; N  = 46), blue whales ( Balaenoptera musculus; N  = 8), and fin whales ( B. physalus; N  = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short-term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is

  12. Molecular cloning and characterization of Aspergillus nidulans cyclophilin B.

    PubMed

    Joseph, J D; Heitman, J; Means, A R

    1999-06-01

    Cyclophilins are an evolutionarily conserved family of proteins which serve as the intracellular receptors for the immunosuppressive drug cyclosporin A. Here we report the characterization of the first cyclophilin cloned from the filamentous fungus Aspergillus nidulans (CYPB). Sequence analysis of the cypB gene predicts an encoded protein with highest homology to the murine cyclophilin B protein. The sequence similarity includes an N-terminal sequence predicted to target the protein to the endoplasmic reticulum (ER) as well as a C-terminal sequence predicted to retain the mature protein in the ER. The bacterially expressed hexa-histidine tagged protein displays peptidyl-prolyl isomerase activity which is inhibited by cyclosporin A. In the presence of cyclosporin A, the expressed protein also inhibits purified calcineurin. When the endogenous cypB gene was disrupted and placed under the control of the regulatable alcohol dehydrogenase promoter, the strain demonstrated no detectable growth phenotype under conditions which induce or repress cypB transcription. Induction or repression of the cypB gene also did not effect sensitivity of A. nidulans to cyclosporin A. cypB mRNA levels were significantly elevated under severe heat shock conditions, indicating a possible role for the A. nidulans cyclophilin B protein during growth in high stress environments. Copyright 1999 Academic Press.

  13. Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.

    PubMed

    Sunbul, Murat; Nacheva, Lora; Jäschke, Andres

    2015-08-19

    Labeling of proteins with fluorescent dyes in live cells enables the investigation of their roles in biological systems by fluorescence microscopy. Because the labeling procedure should not disturb the native function of the protein of interest, it is of high importance to find the optimum labeling method for the problem to be studied. Here, we developed a rapid one-step method to covalently and site-specifically label proteins with a TexasRed fluorophore in vitro and in live bacteria. To this end, a genetically encodable TexasRed fluorophore-binding peptide (TR512) was converted into a reactive tag (ReacTR) by adjoining a cysteine residue which rapidly reacts with N-α-chloroacetamide-conjugated TexasRed fluorophore owing to the proximity effect; ReacTR tag first binds to the TexasRed fluorophore and this interaction brings the nucleophilic cysteine and the electrophilic N-α-chloroacetamide groups in close proximity. Our method has several advantages over existing methods: (i) it utilizes a peptide tag much smaller than fluorescent proteins, the SNAP, CLIP, or HaLo tags; (ii) it allows for labeling of proteins with a small, photostable, red-emitting TexasRed fluorophore; (iii) the probe used is very easy to synthesize; (iv) no enzyme is required to transfer the fluorophore to the peptide tag; and (v) labeling yields a stable covalent product in a very fast reaction.

  14. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation.

    PubMed

    Shields, Kaitlyn M; Tooley, John G; Petkowski, Janusz J; Wilkey, Daniel W; Garbett, Nichola C; Merchant, Michael L; Cheng, Alan; Schaner Tooley, Christine E

    2017-08-01

    A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation. © 2017 The Protein Society.

  15. Soldier Data Tag Study Effort.

    DTIC Science & Technology

    1985-06-10

    interested in protecting it. The tag itself is difficult--though not impossible--to counterfeit . Also, it (’• iii 71 -, potentially improves the data...attacks during the design, manufacture, and distribution processes, counterfeiting , unauthorized access/alteration of tag data, and use of the tag to...45 3.3.2 Hijacking of SOT System Shipments, or Large- Scale Counterfeit of SOT Systems ....................... 46 3.3.3 Unauthorized Alteration

  16. Role of the C-terminal extension peptide of plastid located glutamine synthetase from Medicago truncatula: Crucial for enzyme activity and needless for protein import into the plastids.

    PubMed

    Ferreira, Maria João; Vale, Diogo; Cunha, Luis; Melo, Paula

    2017-02-01

    Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is encoded by a small family of highly homologous nuclear genes that produce cytosolic (GS1) and plastidic (GS2) isoforms. Compared to GS1, GS2 proteins have two extension peptides, one at the N- and the other at the C-terminus, which show a high degree of conservation among plant species. It has long been known that the N-terminal peptide acts as a transit peptide, targeting the protein to the plastids however, the function of the C-terminal extension is still unknown. To investigate whether the C-terminal extension influences the activity of the enzyme, we produced a C-terminal truncated version of Medicago truncatula GS2a in Escherechia coli and studied its catalytic properties. The activity of the truncated protein was found to be lower than that of MtGS2a and with less affinity for glutamate. The importance of the C-terminal extension for the protein import into the chloroplast was also assessed by transient expression of fluorescently-tagged MtGS2a truncated at the C-terminus, which was correctly detected in the chloroplast. The results obtained in this work demonstrate that the C-terminal extension of M. truncatula GS2a is important for the activity of the enzyme and does not contain crucial information for the import process. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Direct embryo tagging and identification system by attachment of biofunctionalized polysilicon barcodes to the zona pellucida of mouse embryos.

    PubMed

    Novo, Sergi; Penon, Oriol; Barrios, Leonardo; Nogués, Carme; Santaló, Josep; Durán, Sara; Gómez-Matínez, Rodrigo; Samitier, Josep; Plaza, José Antonio; Pérez-García, Luisa; Ibáñez, Elena

    2013-06-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading

  18. Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains.

    PubMed

    Bot, Simonetta; Andreuzzi, Eva; Capuano, Alessandra; Schiavinato, Alvise; Colombatti, Alfonso; Doliana, Roberto

    2015-01-01

    EMILIN1 and EMILIN2 belong to a family of extracellular matrix glycoproteins characterized by the N-terminal cysteine-rich EMI domain, a long segment with high probabilty for coiled-coil structure formation and a C-terminal gC1q domain. To study EMILIN1 and EMILIN2 interaction and assembly we have applied qualitative and quantitative two hybrid systems using constructs corresponding to the gC1q and EMI domains. The identified interactions were further confirmed in yeast extracts of co-transfected cells followed by co-immunoprecipitation. The data indicated that gC1q domains are able to self-interact as well as to interact one each other and with the EMI domains, but no self interactions were detected between the EMI domains. Furthermore EMILINs interactions were studied in 293-EBNA cells co-transfected with full lenght EMILIN1 and EMILIN2 constructs. Specific antibodies were able to co-immunoprecipitate EMILINs, indicating that also full-lenght proteins can give rise to non-covalent homo- and hetero-multimers even if reduced and alkylated before mixing. Immunofluorescence analysis on mouse cell cultures and tissues sections with specific antibodies showed co-distribution of EMILIN1 and EMILIN2. Thus, we can hypothesize that EMILINs multimers are formed by head-to-tail interaction between C-terminal and N-terminal domains of EMILIN1 and/or EMILIN2 but also by tail-to-tail interaction between gC1q domains. These multiple interactions may regulate homo-typic and/or hetero-typic linear and eventually lateral branching assemblies of EMILIN1 and EMILIN2 in tissues. Copyright © 2014. Published by Elsevier B.V.

  19. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.

    PubMed

    Ploss, Martin; Kuhn, Andreas

    2011-09-26

    Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  20. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage

    PubMed Central

    2011-01-01

    Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies. PMID:21943062

  1. Plasmatic levels of N-terminal pro-atrial natriuretic peptide in preeclamptic patients and healthy normotensive pregnant women.

    PubMed

    Reyna-Villasmil, Eduardo; Mejia-Montilla, Jorly; Reyna-Villasmil, Nadia; Mayner-Tresol, Gabriel; Herrera-Moya, Pedro; Fernández-Ramírez, Andreina; Rondón-Tapía, Marta

    2018-05-11

    To compare plasma N-terminal pro-atrial natriuretic peptide concentrations in preeclamptic patients and healthy normotensive pregnant women. A cases-controls study was done with 180 patients at Hospital Central Dr. Urquinaona, Maracaibo, Venezuela, that included 90 preeclamptic patients (group A; cases) and 90 healthy normotensive pregnant women selected with the same age and body mass index similar to group A (group B; controls). Blood samples were collected one hour after admission and prior to administration of any medication in group A to determine plasma N-terminal pro-atrial natriuretic peptide and other laboratory parameters. Plasma N-terminal pro-atrial natriuretic peptide concentrations in group A (mean 1.01 [0.26] pg/mL) showed a significant difference when compared with patients in group B (mean 0.55 [0.07] pg/mL; P<.001]. There was no significant correlation with systolic and diastolic blood pressure values in preeclamptic patients (P=ns). A cut-off value of 0.66ng/mL had an area under the curve of 0.93, sensitivity of 87.8%, specificity of 83.3%, a positive predictive value of 84.0% and a negative predictive value of 87.2%, with a diagnostic accuracy of 85.6%. Preeclamptic patients have significantly higher concentrations of plasma N-terminal pro-atrial natriuretic peptide compared with healthy normotensive pregnant women, with high predictive values for diagnosis. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. Uncertainty of exploitation estimates made from tag returns

    USGS Publications Warehouse

    Miranda, L.E.; Brock, R.E.; Dorr, B.S.

    2002-01-01

    Over 6,000 crappies Pomoxis spp. were tagged in five water bodies to estimate exploitation rates by anglers. Exploitation rates were computed as the percentage of tags returned after adjustment for three sources of uncertainty: postrelease mortality due to the tagging process, tag loss, and the reporting rate of tagged fish. Confidence intervals around exploitation rates were estimated by resampling from the probability distributions of tagging mortality, tag loss, and reporting rate. Estimates of exploitation rates ranged from 17% to 54% among the five study systems. Uncertainty around estimates of tagging mortality, tag loss, and reporting resulted in 90% confidence intervals around the median exploitation rate as narrow as 15 percentage points and as broad as 46 percentage points. The greatest source of estimation error was uncertainty about tag reporting. Because the large investments required by tagging and reward operations produce imprecise estimates of the exploitation rate, it may be worth considering other approaches to estimating it or simply circumventing the exploitation question altogether.

  3. Use of portable antennas to estimate abundance of PIT-tagged fish in small streams: Factors affecting detection probability

    USGS Publications Warehouse

    O'Donnell, Matthew J.; Horton, Gregg E.; Letcher, Benjamin H.

    2010-01-01

    Portable passive integrated transponder (PIT) tag antenna systems can be valuable in providing reliable estimates of the abundance of tagged Atlantic salmon Salmo salar in small streams under a wide range of conditions. We developed and employed PIT tag antenna wand techniques in two controlled experiments and an additional case study to examine the factors that influenced our ability to estimate population size. We used Pollock's robust-design capture–mark–recapture model to obtain estimates of the probability of first detection (p), the probability of redetection (c), and abundance (N) in the two controlled experiments. First, we conducted an experiment in which tags were hidden in fixed locations. Although p and c varied among the three observers and among the three passes that each observer conducted, the estimates of N were identical to the true values and did not vary among observers. In the second experiment using free-swimming tagged fish, p and c varied among passes and time of day. Additionally, estimates of N varied between day and night and among age-classes but were within 10% of the true population size. In the case study, we used the Cormack–Jolly–Seber model to examine the variation in p, and we compared counts of tagged fish found with the antenna wand with counts collected via electrofishing. In that study, we found that although p varied for age-classes, sample dates, and time of day, antenna and electrofishing estimates of N were similar, indicating that population size can be reliably estimated via PIT tag antenna wands. However, factors such as the observer, time of day, age of fish, and stream discharge can influence the initial and subsequent detection probabilities.

  4. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity.

    PubMed

    Hirai, Kumiko; Kuroyanagi, Hidehito; Tatebayashi, Yoshitaka; Hayashi, Yoshitaka; Hirabayashi-Takahashi, Kanako; Saito, Kuniaki; Haga, Seiich; Uemura, Tomihiko; Izumi, Susumu

    2010-12-01

    l-kynurenine 3-monooxygenase (KMO) is an NAD(P)H-dependent flavin monooxygenase that catalyses the hydroxylation of l-kynurenine to 3-hydroxykynurenine, and is localized as an oligomer in the mitochondrial outer membrane. In the human brain, KMO may play an important role in the formation of two neurotoxins, 3-hydroxykynurenine and quinolinic acid, both of which provoke severe neurodegenerative diseases. In mosquitos, it plays a role in the formation both of eye pigment and of an exflagellation-inducing factor (xanthurenic acid). Here, we present evidence that the C-terminal region of pig liver KMO plays a dual role. First, it is required for the enzymatic activity. Second, it functions as a mitochondrial targeting signal as seen in monoamine oxidase B (MAO B) or outer membrane cytochrome b(5). The first role was shown by the comparison of the enzymatic activity of two mutants (C-terminally FLAG-tagged KMO and carboxyl-terminal truncation form, KMOΔC50) with that of the wild-type enzyme expressed in COS-7 cells. The second role was demonstrated with fluorescence microscopy by the comparison of the intracellular localization of the wild-type, three carboxyl-terminal truncated forms (ΔC20, ΔC30 and ΔC50), C-terminally FLAG-tagged wild-type and a mutant KMO, where two arginine residues, Arg461-Arg462, were replaced with Ser residues.

  5. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  6. RAC-tagging: Recombineering And Cas9-assisted targeting for protein tagging and conditional analyses

    PubMed Central

    Baker, Oliver; Gupta, Ashish; Obst, Mandy; Zhang, Youming; Anastassiadis, Konstantinos; Fu, Jun; Stewart, A. Francis

    2016-01-01

    A fluent method for gene targeting to establish protein tagged and ligand inducible conditional loss-of-function alleles is described. We couple new recombineering applications for one-step cloning of gRNA oligonucleotides and rapid generation of short-arm (~1 kb) targeting constructs with the power of Cas9-assisted targeting to establish protein tagged alleles in embryonic stem cells at high efficiency. RAC (Recombineering And Cas9)-tagging with Venus, BirM, APEX2 and the auxin degron is facilitated by a recombineering-ready plasmid series that permits the reuse of gene-specific reagents to insert different tags. Here we focus on protein tagging with the auxin degron because it is a ligand-regulated loss-of-function strategy that is rapid and reversible. Furthermore it includes the additional challenge of biallelic targeting. Despite high frequencies of monoallelic RAC-targeting, we found that simultaneous biallelic targeting benefits from long-arm (>4 kb) targeting constructs. Consequently an updated recombineering pipeline for fluent generation of long arm targeting constructs is also presented. PMID:27216209

  7. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  8. Slow histidine H/D exchange protocol for thermodynamic analysis of protein folding and stability using mass spectrometry.

    PubMed

    Tran, Duc T; Banerjee, Sambuddha; Alayash, Abdu I; Crumbliss, Alvin L; Fitzgerald, Michael C

    2012-02-07

    Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application. © 2011 American Chemical Society

  9. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting.

    PubMed

    Lin, Pei-Hsuan; Lin, Hsien-Yi; Kuo, Cheng-Chin; Yang, Liang-Tung

    2015-06-24

    The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on

  10. Coevolution of the ATPase ClpV, the Sheath Proteins TssB and TssC, and the Accessory Protein TagJ/HsiE1 Distinguishes Type VI Secretion Classes*

    PubMed Central

    Förster, Andreas; Planamente, Sara; Manoli, Eleni; Lossi, Nadine S.; Freemont, Paul S.; Filloux, Alain

    2014-01-01

    The type VI secretion system (T6SS) is a bacterial nanomachine for the transport of effector molecules into prokaryotic and eukaryotic cells. It involves the assembly of a tubular structure composed of TssB and TssC that is similar to the tail sheath of bacteriophages. The sheath contracts to provide the energy needed for effector delivery. The AAA+ ATPase ClpV disassembles the contracted sheath, which resets the systems for reassembly of an extended sheath that is ready to fire again. This mechanism is crucial for T6SS function. In Vibrio cholerae, ClpV binds the N terminus of TssC within a hydrophobic groove. In this study, we resolved the crystal structure of the N-terminal domain of Pseudomonas aeruginosa ClpV1 and observed structural alterations in the hydrophobic groove. The modification in the ClpV1 groove is matched by a change in the N terminus of TssC, suggesting the existence of distinct T6SS classes. An accessory T6SS component, TagJ/HsiE, exists predominantly in one of the classes. Using bacterial two-hybrid approaches, we showed that the P. aeruginosa homolog HsiE1 interacts strongly with ClpV1. We then resolved the crystal structure of HsiE1 in complex with the N terminus of HsiB1, a TssB homolog and component of the contractile sheath. Phylogenetic analysis confirmed that these differences distinguish T6SS classes that resulted from a functional co-evolution between TssB, TssC, TagJ/HsiE, and ClpV. The interaction of TagJ/HsiE with the sheath as well as with ClpV suggests an alternative mode of disassembly in which HsiE recruits the ATPase to the sheath. PMID:25305017

  11. Single tag for total carbohydrate analysis.

    PubMed

    Anumula, Kalyan Rao

    2014-07-15

    Anthranilic acid (2-aminobenzoic acid, 2-AA) has the remarkable property of reacting rapidly with every type of reducing carbohydrate. Reactivity of 2-AA with carbohydrates in aqueous solutions surpasses all other tags reported to date. This unique capability is attributed to the strategically located -COOH which accelerates Schiff base formation. Monosaccharides, oligosaccharides (N-, O-, and lipid linked and glycans in secretory fluids), glycosaminoglycans, and polysaccharides can be easily labeled with 2-AA. With 2-AA, labeling is simple in aqueous solutions containing proteins, peptides, buffer salts, and other ingredients (e.g., PNGase F, glycosidase, and transferase reaction mixtures). In contrast, other tags require relatively pure glycans for labeling in anhydrous dimethyl sulfoxide-acetic acid medium. Acidic conditions are known to cause desialylation, thus requiring a great deal of attention to sample preparation. Simpler labeling is achieved with 2-AA within 30-60 min in mild acetate-borate buffered solution. 2-AA provides the highest sensitivity and resolution in chromatographic methods for carbohydrate analysis in a simple manner. Additionally, 2-AA is uniquely qualified for quantitative analysis by mass spectrometry in the negative mode. Analyses of 2-AA-labeled carbohydrates by electrophoresis and other techniques have been reported. Examples cited here demonstrate that 2-AA is the universal tag for total carbohydrate analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. 3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy

    NASA Astrophysics Data System (ADS)

    Kolb, N. R.; Feldman, G.; O'rielly, G. V.; Pywell, R. E.; Skopik, D. M.; Hackett, E. D.; Quraan, M. A.; Rodning, N. L.

    1996-11-01

    Cross sections have been measured for the 3He(γ,pp)n reaction with tagged photons in the range Eγ =161-208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40°-140° and azimuthal angles of 0°-360° with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data.

  13. Z-path SAW RFID tag.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Hartmann, Clinton S; Steichen, William

    2008-01-01

    Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are soon expected to be produced in very high volumes. The size and cost of a SAW RFID tag will be key parameters for many applications. Therefore, it is of primary importance to reduce the chip size. In this work, we describe the design principles of a 2.4-GHz SAW RFID tag that is significantly smaller than earlier reported tags. We also present simulated and experimental results. The coded signal should arrive at the reader with a certain delay (typically about 1 micros), i.e., after the reception of environmental echoes. If the tag uses a bidirectional interdigital transducer (IDT), space for the initial delay is needed on both sides of the IDT. In this work, we replace the bidirectional IDT by a unidirectional one. This halves the space required by the initial delay because all the code reflectors must now be placed on the same side of the IDT. We reduce tag size even further by using a Z-path geometry in which the same space in x-direction is used for both the initial delay and the code reflectors. Chip length is thus determined only by the space required by the code reflectors.

  14. The long N-terminus of the human monocarboxylate transporter 8 is a target of ubiquitin-dependent proteasomal degradation which regulates protein expression and oligomerization capacity.

    PubMed

    Zwanziger, Denise; Schmidt, Mathias; Fischer, Jana; Kleinau, Gunnar; Braun, Doreen; Schweizer, Ulrich; Moeller, Lars Christian; Biebermann, Heike; Fuehrer, Dagmar

    2016-10-15

    Monocarboxylate transporter 8 (MCT8) equilibrates thyroid hormones between the extra- and the intracellular sides. MCT8 exists either with a short or a long N-terminus, but potential functional differences between both variants are yet not known. We, therefore, generated MCT8 constructs which are different in N-terminal length: MCT8(1-613), MCT8(25-613), MCT8(49-613) and MCT8(75-613). The M75G substitution prevents translation of MCT8(75-613) and ensures expression of full-length MCT8 protein. The K56G substitution was made to prevent ubiquitinylation. Cell-surface expression, localization and proteasomal degradation were investigated using C-terminally GFP-tagged MCT8 constructs (HEK293 and MDCK1 cells) and oligomerization capacity was determined using N-terminally HA- and C-terminally FLAG-tagged MCT8 constructs (COS7 cells). MCT8(1-613)-GFP showed a lower protein expression than the shorter MCT8(75-613)-GFP protein. The proteasome inhibitor lactacystin increased MCT8(1-613)-GFP protein amount, suggesting proteasomal degradation of MCT8 with the long N-terminus. Ubiquitin conjugation of MCT8(1-613)-GFP was found by immuno-precipitation. A diminished ubiquitin conjugation caused by K56G substitution resulted in increased MCT8(1-613)-GFP protein expression. Sandwich ELISA was performed to investigate if the bands at higher molecular weight observed in Western blot analysis are due to MCT8 oligomerization, which was indeed shown. Our data imply a role of the long N-terminus of MCT8 as target of ubiquitin-dependent proteasomal degradation affecting MCT8 amount and subsequently oligomerization capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Nitrogen termination of single crystal (100) diamond surface by radio frequency N{sub 2} plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, Maneesh, E-mail: maneesh@tx.technion.ac.il, E-mail: choffman@tx.technion.ac.il; Shasha, Michal; Michaelson, Shaul

    2015-09-14

    In this letter, we report the electronic and chemical properties of nitrogen terminated (N-terminated) single crystal (100) diamond surface, which is a promising candidate for shallow NV{sup −} centers. N-termination is realized by an indirect RF nitrogen plasma process without inducing a large density of surface defects. Thermal stability and electronic property of N-terminated diamond surface are systematically investigated under well-controlled conditions by in-situ x-ray photoelectron spectroscopy and secondary electron emission. An increase in the low energy cut-off of the secondary electron energy distribution curve (EDC), with respect to a bare diamond surface, indicates a positive electron affinity of themore » N-terminated diamond. Exposure to atomic hydrogen results in reorganization of N-terminated diamond to H-terminated diamond, which exhibited a negative electron affinity surface. The change in intensity and spectral features of the secondary electron EDC of the N-terminated diamond is discussed.« less

  16. Learning Semantic Tags from Big Data for Clinical Text Representation.

    PubMed

    Li, Yanpeng; Liu, Hongfang

    2015-01-01

    In clinical text mining, it is one of the biggest challenges to represent medical terminologies and n-gram terms in sparse medical reports using either supervised or unsupervised methods. Addressing this issue, we propose a novel method for word and n-gram representation at semantic level. We first represent each word by its distance with a set of reference features calculated by reference distance estimator (RDE) learned from labeled and unlabeled data, and then generate new features using simple techniques of discretization, random sampling and merging. The new features are a set of binary rules that can be interpreted as semantic tags derived from word and n-grams. We show that the new features significantly outperform classical bag-of-words and n-grams in the task of heart disease risk factor extraction in i2b2 2014 challenge. It is promising to see that semantics tags can be used to replace the original text entirely with even better prediction performance as well as derive new rules beyond lexical level.

  17. Improving Large Cetacean Implantable Satellite Tag Designs to Maximize Tag Robustness and Minimize Health Effects to Individual Animals

    DTIC Science & Technology

    2015-09-30

    Olympia, WA, 98501 & National Marine Mammal Laboratory Alaska Fisheries Science Center, NOAA Fisheries 7600 Sand Point Way NE Seattle, WA...to Maximize Tag Robustness and Minimize Health Effects to Individual Animals Alexandre N. Zerbini Cascadia Research Collective 218 ½ 4 th Ave W...available to the marine mammal community after the conclusion of the project. This study has been carried out by scientists and engineers from eight

  18. Roles of the N- and C-terminal sequences in Hsp27 self-association and chaperone activity

    PubMed Central

    Lelj-Garolla, Barbara; Mauk, A Grant

    2012-01-01

    The small heat shock protein 27 (Hsp27 or HSPB1) is an oligomeric molecular chaperone in vitro that is associated with several neuromuscular, neurological, and neoplastic diseases. Although aspects of Hsp27 biology are increasingly well known, understanding of the structural basis for these involvements or of the functional properties of the protein remains limited. As all 11 human small heat shock proteins (sHsps) possess an α-crystallin domain, their varied functional and physiological characteristics must arise from contributions of their nonconserved sequences. To evaluate the role of two such sequences in Hsp27, we have studied three Hsp27 truncation variants to assess the functional contributions of the nonconserved N- and C-terminal sequences. The N-terminal variants Δ1–14 and Δ1–24 exhibit little chaperone activity, somewhat slower but temperature-dependent subunit exchange kinetics, and temperature-independent self-association with formation of smaller oligomers than wild-type Hsp27. The C-terminal truncation variants exhibit chaperone activity at 40 °C but none at 20 °C, limited subunit exchange, and temperature-independent self-association with an oligomer distribution at 40 °C that is very similar to that of wild-type Hsp27. We conclude that more of the N-terminal sequence than simply the WPDF domain is essential in the formation of larger, native-like oligomers after binding of substrate and/or in binding of Hsp27 to unfolding peptides. On the other hand, the intrinsically flexible C-terminal region drives subunit exchange and thermally-induced unfolding, both of which are essential to chaperone activity at low temperature and are linked to the temperature dependence of Hsp27 self-association. PMID:22057845

  19. Scalable Faceted Ranking in Tagging Systems

    NASA Astrophysics Data System (ADS)

    Orlicki, José I.; Alvarez-Hamelin, J. Ignacio; Fierens, Pablo I.

    Nowadays, web collaborative tagging systems which allow users to upload, comment on and recommend contents, are growing. Such systems can be represented as graphs where nodes correspond to users and tagged-links to recommendations. In this paper we analyze the problem of computing a ranking of users with respect to a facet described as a set of tags. A straightforward solution is to compute a PageRank-like algorithm on a facet-related graph, but it is not feasible for online computation. We propose an alternative: (i) a ranking for each tag is computed offline on the basis of tag-related subgraphs; (ii) a faceted order is generated online by merging rankings corresponding to all the tags in the facet. Based on the graph analysis of YouTube and Flickr, we show that step (i) is scalable. We also present efficient algorithms for step (ii), which are evaluated by comparing their results with two gold standards.

  20. Tags, wireless communication systems, tag communication methods, and wireless communications methods

    DOEpatents

    Scott,; Jeff W. , Pratt; Richard, M [Richland, WA

    2006-09-12

    Tags, wireless communication systems, tag communication methods, and wireless communications methods are described. In one aspect, a tag includes a plurality of antennas configured to receive a plurality of first wireless communication signals comprising data from a reader, a plurality of rectifying circuits coupled with. respective individual ones of the antennas and configured to provide rectified signals corresponding to the first wireless communication signals, wherein the rectified signals are combined to produce a composite signal, an adaptive reference circuit configured to vary a reference signal responsive to the composite signal, a comparator coupled with the adaptive reference circuit and the rectifying circuits and configured to compare the composite signal with respect to the reference signal and to output the data responsive to the comparison, and processing circuitry configured to receive the data from the comparator and to process the data.