Sample records for n-terminal ig domain

  1. An Internal Signal Sequence Directs Intramembrane Proteolysis of a Cellular Immunoglobulin Domain Protein*S⃞

    PubMed Central

    Robakis, Thalia; Bak, Beata; Lin, Shu-huei; Bernard, Daniel J.; Scheiffele, Peter

    2008-01-01

    Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins. PMID:18981173

  2. Analysis of correlated domain motions in IgG light chain reveals possible mechanisms of immunological signal transduction.

    PubMed

    Król, Marcin; Roterman, Irena; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Stopa, Barbara; Spólnik, Paweł

    2005-05-15

    It was shown experimentally that binding of a micelle composed of Congo red molecules to immunological complexes leads to the enhanced stability of the latter, and simultaneously prevents binding of a complement molecule (C1q). The dye binds in a cavity created by the removal of N-terminal polypeptide chain, as observed experimentally in a model system-immunoglobulin G (IgG) light chain dimer. Molecular Dynamics (MD) simulations of three forms of IgG light chain dimer, with and without the dye, were performed to investigate the role of N-terminal fragment and self-assembled ligand in coupling between V and C domains. Root-mean-square distance (RMSD) time profiles show that removal of N-terminal fragment leads to destabilization of V domain. A micelle composed of four self-assembled dye molecules stabilizes and fixes the domain. Analysis of root-mean-square fluctuation (RMSF) values and dynamic cross-correlation matrices (DCCM) reveals that removal of N-terminal fragment results in complete decoupling between V and C domains. Binding of self-assembled Congo red molecules improves the coupling, albeit slightly. The disruption of a small beta-sheet composed of N- and C-terminal fragments of the domain (NC sheet) is the most likely reason for the decoupling. Self-assembled ligand, bound in the place originally occupied by N-terminal fragment, is not able to take over the function of the beta-sheet. Lack of correlation of motions between residues in V and C domains denotes that light chain-Congo red complexes have hampered ability to transmit conformational changes between domains. This is a likely explanation of the lack of complement binding by immunological complexes, which bind Congo red, and supports the idea that the NC sheet is the key structural fragment taking part in immunological signal transduction. Copyright 2005 Wiley-Liss, Inc.

  3. Secretion of the Intimin Passenger Domain Is Driven by Protein Folding*

    PubMed Central

    Leo, Jack C.; Oberhettinger, Philipp; Yoshimoto, Shogo; Udatha, D. B. R. K. Gupta; Morth, J. Preben; Schütz, Monika; Hori, Katsutoshi

    2016-01-01

    Intimin is an essential adhesin of attaching and effacing organisms such as entropathogenic Escherichia coli. It is also the prototype of type Ve secretion or inverse autotransport, where the extracellular C-terminal region or passenger is exported with the help of an N-terminal transmembrane β-barrel domain. We recently reported a stalled secretion intermediate of intimin, where the passenger is located in the periplasm but the β-barrel is already inserted into the membrane. Stalling of this mutant is due to the insertion of an epitope tag at the very N terminus of the passenger. Here, we examined how this insertion disrupts autotransport and found that it causes misfolding of the N-terminal immunoglobulin (Ig)-like domain D00. We could also stall the secretion by making an internal deletion in D00, and introducing the epitope tag into the second Ig-like domain, D0, also resulted in reduced passenger secretion. In contrast to many classical autotransporters, where a proximal folding core in the passenger is required for secretion, the D00 domain is dispensable, as the passenger of an intimin mutant lacking D00 entirely is efficiently exported. Furthermore, the D00 domain is slightly less stable than the D0 and D1 domains, unfolding at ∼200 piconewtons (pN) compared with ∼250 pN for D0 and D1 domains as measured by atomic force microscopy. Our results support a model where the secretion of the passenger is driven by sequential folding of the extracellular Ig-like domains, leading to vectorial transport of the passenger domain across the outer membrane in an N to C direction. PMID:27466361

  4. The carcinoembryonic antigen IgV-like N domain plays a critical role in the implantation of metastatic tumor cells.

    PubMed

    Abdul-Wahid, Aws; Huang, Eric H-B; Cydzik, Marzena; Bolewska-Pedyczak, Eleonora; Gariépy, Jean

    2014-03-01

    The human carcinoembryonic antigen (CEA) is a cell adhesion molecule involved in both homotypic and heterotypic interactions. The aberrant overexpression of CEA on adenocarcinoma cells correlates with their increased metastatic potential. Yet, the mechanism(s) by which its adhesive properties can lead to the implantation of circulating tumor cells and expansion of metastatic foci remains to be established. In this study, we demonstrate that the IgV-like N terminal domain of CEA directly participates in the implantation of cancer cells through its homotypic and heterotypic binding properties. Specifically, we determined that the recombinant N terminal domain of CEA directly binds to fibronectin (Fn) with a dissociation constant in the nanomolar range (K(D) 16 ± 3 nM) and interacts with itself (K(D) 100 ± 17 nM) and more tightly to the IgC-like A(3) domain (K(D) 18 ± 3 nM). Disruption of these molecular associations through the addition of antibodies specific to the CEA N or A(3)B(3) domains, or by adding soluble recombinant forms of the CEA N, A(3) or A(3)B(3) domains or a peptide corresponding to residues 108-115 of CEA resulted in the inhibition of CEA-mediated intercellular aggregation and adherence events in vitro. Finally, pretreating CEA-expressing murine colonic carcinoma cells (MC38.CEA) with rCEA N, A3 or A(3)B(3) modules blocked their implantation and the establishment of tumor foci in vivo. Together, these results suggest a new mechanistic insight into how the CEA IgV-like N domain participates in cellular events that can have a macroscopic impact in terms of cancer progression and metastasis. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Fragments of Bacterial Endoglycosidase S and Immunoglobulin G Reveal Subdomains of Each That Contribute to Deglycosylation*

    PubMed Central

    Dixon, Emma V.; Claridge, Jolyon K.; Harvey, David J.; Baruah, Kavitha; Yu, Xiaojie; Vesiljevic, Snezana; Mattick, Susan; Pritchard, Laura K.; Krishna, Benjamin; Scanlan, Christopher N.; Schnell, Jason R.; Higgins, Matthew K.; Zitzmann, Nicole; Crispin, Max

    2014-01-01

    Endoglycosidase S (EndoS) is a glycoside-hydrolase secreted by the bacterium Streptococcus pyogenes. EndoS preferentially hydrolyzes the N-linked glycans from the Fc region of IgG during infection. This hydrolysis impedes Fc functionality and contributes to the immune evasion strategy of S. pyogenes. Here, we investigate the mechanism of human serum IgG deactivation by EndoS. We expressed fragments of IgG1 and demonstrated that EndoS was catalytically active against all of them including the isolated CH2 domain of the Fc domain. Similarly, we sought to investigate which domains within EndoS could contribute to activity. Bioinformatics analysis of the domain organization of EndoS confirmed the previous predictions of a chitinase domain and leucine-rich repeat but also revealed a putative carbohydrate binding module (CBM) followed by a C-terminal region. Using expressed fragments of EndoS, circular dichroism of the isolated CBM, and a CBM-C-terminal region fusion revealed folded domains dominated by β sheet and α helical structure, respectively. Nuclear magnetic resonance analysis of the CBM with monosaccharides was suggestive of carbohydrate binding functionality. Functional analysis of truncations of EndoS revealed that, whereas the C-terminal of EndoS is dispensable for activity, its deletion impedes the hydrolysis of IgG glycans. PMID:24668806

  6. C-Terminal Domain of Hemocyanin, a Major Antimicrobial Protein from Litopenaeus vannamei: Structural Homology with Immunoglobulins and Molecular Diversity

    PubMed Central

    Zhang, Yue-Ling; Peng, Bo; Li, Hui; Yan, Fang; Wu, Hong-Kai; Zhao, Xian-Liang; Lin, Xiang-Min; Min, Shao-Ying; Gao, Yuan-Yuan; Wang, San-Ying; Li, Yuan-You; Peng, Xuan-Xian

    2017-01-01

    Invertebrates rely heavily on immune-like molecules with highly diversified variability so as to counteract infections. However, the mechanisms and the relationship between this variability and functionalities are not well understood. Here, we showed that the C-terminal domain of hemocyanin (HMC) from shrimp Litopenaeus vannamei contained an evolutionary conserved domain with highly variable genetic sequence, which is structurally homologous to immunoglobulin (Ig). This domain is responsible for recognizing and binding to bacteria or red blood cells, initiating agglutination and hemolysis. Furthermore, when HMC is separated into three fractions using anti-human IgM, IgG, or IgA, the subpopulation, which reacted with anti-human IgM (HMC-M), showed the most significant antimicrobial activity. The high potency of HMC-M is a consequence of glycosylation, as it contains high abundance of α-d-mannose relative to α-d-glucose and N-acetyl-d-galactosamine. Thus, the removal of these glycans abolished the antimicrobial activity of HMC-M. Our results present a comprehensive investigation of the role of HMC in fighting against infections through genetic variability and epigenetic modification. PMID:28659912

  7. Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain

    PubMed Central

    Müller, Mischa R.; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O’Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P.; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J.

    2012-01-01

    Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies. PMID:23676205

  8. Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain.

    PubMed

    Müller, Mischa R; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O'Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J

    2012-01-01

    Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.

  9. Plasma autoantibodies against platelet glycoprotein IIb/IIIa from patients with autoimmune thrombocytopenic purpura may recognize different antigenic determinants.

    PubMed

    Berchtold, P; Müller, D; Kouns, W C; Riederer, M A; Steiner, B

    1998-10-01

    Autoantibodies against platelet glycoprotein (GP) GPIIb/IIIa have been demonstrated in patients with autoimmune thrombocytopenic purpura. Recently, it has been shown that plasma autoantibodies from some patients bind to the cytoplasmic domain of GPIIIa. Our aim was to evaluate further the binding specificity of these plasma autoantibodies. From 7 patients with detectable plasma antibodies against intact GPIIb/IIIa, 1 showed strong antibody binding to a synthetic C-terminal peptide of GPIIIa. Ig class analysis of affinity purified anti-GPIIb/IIIa autoantibodies from this patient revealed an IgM antibody that reacted with intact GPIIb/IIIa as well as with recombinant GPIIb/IIIa lacking the C-terminal domains, and an IgG antibody that bound to intact GPIIb/IIIa but not to GPIIb/IIIa lacking the C-terminal region. These data indicate that this patient has at least 2 autoantibodies, an IgG directed against the cytoplasmic domain of GPIIIa and an IgM reacting with the extracellular part of GPIIIa. This may support the hypothesis that plasma IgG antibodies directed against the C-terminal domain of GPIIIa may be due to the exposition of cytoplasmic epitopes of GPIIIa as a result of increased cell lysis by IgM autoantibodies.

  10. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residuesmore » 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full length ECD. Quite unexpectedly, ND1 forms a dimer mediated through the exchange of its last {beta}-strand (strand G). {beta}-strand swapping, which is a subset of 3D domain swapping, has been found to mediate cell-cell adhesion by cadherins. 3D domain swapping has been proposed to be a mechanism of protein oligomerization, aggregation, evolution of oligomeric proteins from single domains and amyloidogenesis. In domain swapped proteins, the same structural elements are involved in the final 3D structure, and so there is little overall energetic difference between the monomer and the swapped oligomers. However, there is often a high energy barrier for the conversion as it often goes through an unfolded state. It is also possible that strand-swapping occurs during folding of nascent polypeptide chains. Frequently, the exchange hinges contain proline-rich motifs which are often in high strain conformations. Domain swapping appears to be a strategy to resolve such local structural strain. The exchange hinge of ND1 contains a Pro-Glu-Pro tripeptide motif. Both of the proline residues adopt extended trans conformations, when compared with cis in the full-length ECD structure. Proline cis-trans isomerization may be the driving force for this exchange. Strand-exchanged dimerization may be a mechanism for the oligomerization of EMMPRIN ECD and its cis-dependent homophilic interactions in cell-cell adhesion.« less

  11. Crystal Structure of the C-terminal Region of Streptococcus mutans Antigen I/II and Characterization of Salivary Agglutinin Adherence Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.

    2012-05-29

    The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimalmore » region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.« less

  12. Crystal structures of sialyltransferase from Photobacterium damselae

    DOE PAGES

    Huynh, Nhung; Li, Yanhong; Yu, Hai; ...

    2014-11-15

    Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2–6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6-linked sialosides. In this paper, we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks themore » Ig-domain. Finally, comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.« less

  13. 1H, 15N and 13C assignments of domain 5 of Dictyostelium discoideum gelation factor (ABP-120) in its native and 8M urea-denatured states.

    PubMed

    Hsu, Shang-Te Danny; Cabrita, Lisa D; Christodoulou, John; Dobson, Christopher M

    2009-06-01

    The gelation factor from Dictyostelium discoideum (ABP-120) is an actin binding protein consisting of six immunoglobulin (Ig) domains in the C-terminal rod domain. We have recently used the pair of domains 5 and 6 of ABP-120 as a model system for studying multi-domain nascent chain folding on the ribosome. Here we present the NMR assignments of domain 5 in its native and 8M urea-denatured states.

  14. Bio-nanocapsules displaying various immunoglobulins as an active targeting-based drug delivery system.

    PubMed

    Tatematsu, Kenji; Iijima, Masumi; Yoshimoto, Nobuo; Nakai, Tadashi; Okajima, Toshihide; Kuroda, Shun'ichi

    2016-04-15

    The bio-nanocapsule (BNC) is an approximately 30-nm particle comprising the hepatitis B virus (HBV) envelope L protein and a lipid bilayer. The L protein harbors the HBV-derived infection machinery; therefore, BNC can encapsulate payloads such as drugs, nucleic acids, and proteins and deliver them into human hepatocytes specifically in vitro and in vivo. To diversify the possible functions of BNC, we generated ZZ-BNC by replacing the domain indispensable for the human hepatotrophic property of BNC (N-terminal region of L protein) with the tandem form of the IgG Fc-binding Z domain of Staphylococcus aureus protein A. Thus, the ZZ-BNC is an active targeting-based drug delivery system (DDS) nanocarrier that depends on the specificity of the IgGs displayed. However, the Z domain limits the animal species and subtypes of IgGs that can be displayed on ZZ-BNC. In this study, we introduced into BNC an Ig κ light chain-binding B1 domain of Finegoldia magna protein L (protein-L B1 domain) and an Ig Fc-binding C2 domain of Streptococcus species protein G (protein-G C2 domain) to produce LG-BNC. The LL-BNC was constructed in a similar way using a tandem form of the protein-L B1 domain. Both LG-BNC and LL-BNC could display rat IgGs, mouse IgG1, human IgG3, and human IgM, all of which not binding to ZZ-BNC, and accumulate in target cells in an antibody specificity-dependent manner. Thus, these BNCs could display a broad spectrum of Igs, significantly improving the prospects for BNCs as active targeting-based DDS nanocarriers. We previously reported that ZZ-BNC, bio-nanocapsule deploying the IgG-binding Z domain of protein A, could display cell-specific antibody in an oriented immobilization manner, and act as an active targeting-based DDS nanocarrier. Since the Z domain can only bind to limited types of Igs, we generated BNCs deploying other Ig-binding domains: LL-BNC harboring the tandem form of Ig-binding domain of protein L, and LG-BNC harboring the Ig binding domains of protein L and protein G sequentially. Both BNCs could display a broader spectrum of Igs than does the ZZ-BNC. When these BNCs displayed anti-CD11c IgG or anti-EGFR IgG, both of which cannot bind to Z domain, they could bind to and then enter their respective target cells. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Solution structure of the C-terminal domain of Ole e 9, a major allergen of olive pollen

    PubMed Central

    Treviño, Miguel Á.; Palomares, Oscar; Castrillo, Inés; Villalba, Mayte; Rodríguez, Rosalía; Rico, Manuel; Santoro, Jorge; Bruix, Marta

    2008-01-01

    Ole e 9 is an olive pollen allergen belonging to group 2 of pathogenesis-related proteins. The protein is composed of two immunological independent domains: an N-terminal domain (NtD) with 1,3-β-glucanase activity, and a C-terminal domain (CtD) that binds 1,3-β-glucans. We have determined the three-dimensional structure of CtD-Ole e 9 (101 amino acids), which consists of two parallel α-helices forming an angle of ∼55°, a small antiparallel β-sheet with two short strands, and a 3–10 helix turn, all connected by long coil segments, resembling a novel type of folding among allergens. Two regions surrounded by aromatic residues (F49, Y60, F96, Y91 and Y31, H68, Y65, F78) have been localized on the protein surface, and a role for sugar binding is suggested. The epitope mapping of CtD-Ole e 9 shows that B-cell epitopes are mainly located on loops, although some of them are contained in secondary structural elements. Interestingly, the IgG and IgE epitopes are contiguous or overlapped, rather than coincident. The three-dimensional structure of CtD-Ole e 9 might help to understand the underlying mechanism of its biochemical function and to determine possible structure–allergenicity relationships. PMID:18096638

  16. The outer-membrane export signal of Porphyromonas gingivalis type IX secretion system (T9SS) is a conserved C-terminal β-sandwich domain

    PubMed Central

    de Diego, Iñaki; Ksiazek, Miroslaw; Mizgalska, Danuta; Koneru, Lahari; Golik, Przemyslaw; Szmigielski, Borys; Nowak, Magdalena; Nowakowska, Zuzanna; Potempa, Barbara; Houston, John A.; Enghild, Jan J.; Thøgersen, Ida B.; Gao, Jinlong; Kwan, Ann H.; Trewhella, Jill; Dubin, Grzegorz; Gomis-Rüth, F. Xavier; Nguyen, Ky-Anh; Potempa, Jan

    2016-01-01

    In the recently characterized Type IX Secretion System (T9SS), the conserved C-terminal domain (CTD) in secreted proteins functions as an outer membrane translocation signal for export of virulence factors to the cell surface in the Gram-negative Bacteroidetes phylum. In the periodontal pathogen Porphyromonas gingivalis, the CTD is cleaved off by PorU sortase in a sequence-independent manner, and anionic lipopolysaccharide (A-LPS) is attached to many translocated proteins, thus anchoring them to the bacterial surface. Here, we solved the atomic structure of the CTD of gingipain B (RgpB) from P. gingivalis, alone and together with a preceding immunoglobulin-superfamily domain (IgSF). The CTD was found to possess a typical Ig-like fold encompassing seven antiparallel β-strands organized in two β-sheets, packed into a β-sandwich structure that can spontaneously dimerise through C-terminal strand swapping. Small angle X-ray scattering (SAXS) revealed no fixed orientation of the CTD with respect to the IgSF. By introducing insertion or substitution of residues within the inter-domain linker in the native protein, we were able to show that despite the region being unstructured, it nevertheless is resistant to general proteolysis. These data suggest structural motifs located in the two adjacent Ig-like domains dictate the processing of CTDs by the T9SS secretion pathway. PMID:27005013

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Kerry M.; Yamagata, Masahito; Jin, Xiangshu

    Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (viatransinteractions) and Sdk clusteringmore » in isolated cells (viacisinteractions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition betweencisandtransinteractions provides a novel mechanism to sharpen the specificity of cell-cell interactions.« less

  18. Uncoupling GP1 and GP2 Expression in the Lassa Virus Glycoprotein Complex: Implications for GPI Ectodomain Shedding

    DTIC Science & Technology

    2008-12-23

    glycoprotein precursor (GPC) signal peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain...consistent with viral TM fusion proteins [9,10]. GPC con- tains a 58 residue hydrophobic N-terminal signal peptide (SP), which directs the precursor to the...including GPC, GP1, and GP2. Various signal peptides , purification tags, and modifications to internal domains were employed for the generation and

  19. Structure and Function of the Haemophilus influenzae Autotransporters

    PubMed Central

    Spahich, Nicole A.; St. Geme, Joseph W.

    2011-01-01

    Autotransporters are a large class of proteins that are found in the outer membrane of Gram-negative bacteria and are almost universally implicated in virulence. These proteins consist of a C-terminal β-domain that is embedded in the outer membrane and an N-terminal domain that is exposed on the bacterial surface and is endowed with effector function. In this article, we review and compare the structural and functional characteristics of the Haemophilus influenzae IgA1 protease and Hap monomeric autotransporters and the H. influenzae Hia and Hsf trimeric autotransporters. All of these proteins play a role in colonization of the upper respiratory tract and in the pathogenesis of H. influenzae disease. PMID:22919571

  20. Molecular phylogeny of C1 inhibitor depicts two immunoglobulin-like domains fusion in fishes and ray-finned fishes specific intron insertion after separation from zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Abhishek, E-mail: akumar@bot.uni-kiel.de; Bhandari, Anita; Sarde, Sandeep J.

    Highlights: • C1 inhibitors of fishes have two Ig domains fused in the N-terminal end. • Spliceosomal introns gain in two Ig domains of selected ray-finned fishes. • C1 inhibitors gene is maintained from 450 MY on the same locus. • C1 inhibitors gene is missing in frog and lampreys. • C1 inhibitors of tetrapod and fishes differ in the RCL region. - Abstract: C1 inhibitor (C1IN) is a multi-facet serine protease inhibitor in the plasma cascades, inhibiting several proteases, notably, regulates both complement and contact system activation. Despite huge advancements in the understanding of C1IN based on biochemical propertiesmore » and its roles in the plasma cascades, the phylogenetic history of C1IN remains uncharacterized. To date, there is no comprehensive study illustrating the phylogenetic history of C1IN. Herein, we explored phylogenetic history of C1IN gene in vertebrates. Fishes have C1IN with two immunoglobulin like domains attached in the N-terminal region. The RCL regions of CIIN from fishes and tetrapod genomes have variations at the positions P2 and P1′. Gene structures of C1IN gene from selected ray-finned fishes varied in the Ig domain region with creation of novel intron splitting exon Im2 into Im2a and Im2b. This intron is limited to ray-finned fishes with genome size reduced below 1 Gb. Hence, we suggest that genome compaction and associated double-strand break repairs are behind this intron gain. This study reveals the evolutionary history of C1IN and confirmed that this gene remains the same locus for ∼450 MY in 52 vertebrates analysed, but it is not found in frogs and lampreys.« less

  1. Structural basis for PECAM-1 homophilic binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paddock, C.; Zhou, D.; Lertkiatmongkol, P.

    2015-12-23

    Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a 130-kDa member of the immunoglobulin gene superfamily (IgSF) that is present on the surface of circulating platelets and leukocytes, and highly expressed at the junctions of confluent endothelial cell monolayers. PECAM-1–mediated homophilic interactions, known to be mediated by its 2 amino-terminal immunoglobulin homology domains, are essential for concentrating PECAM-1 at endothelial cell intercellular junctions, where it functions to facilitate diapedesis, maintain vascular integrity, and transmit survival signals into the cell. Given the importance of PECAM-1–mediated homophilic interactions in mediating each of these cell physiological events, and to reveal the nature and orientationmore » of the PECAM-1–PECAM-1 homophilic-binding interface, we undertook studies aimed at determining the crystal structure of the PECAM-1 homophilic-binding domain, which is composed of amino-terminal immunoglobulin homology domains 1 and 2 (IgD1 and IgD2). The crystal structure revealed that both IgD1 and IgD2 exhibit a classical IgSF fold, having a β-sandwich topology formed by 2 sheets of antiparallel β strands stabilized by the hallmark disulfide bond between the B and F strands. Interestingly, despite previous assignment to the C2 class of immunoglobulin-like domains, the structure of IgD1 reveals that it actually belongs to the I2 set of IgSF folds. Both IgD1 and IgD2 participate importantly in the formation of the trans homophilic-binding interface, with a total buried interface area of >2300 Å 2. These and other unique structural features of PECAM-1 allow for the development of an atomic-level model of the interactions that PECAM-1 forms during assembly of endothelial cell intercellular junctions.« less

  2. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway.

    PubMed

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-02-03

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4-5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.

  3. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway

    PubMed Central

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-01-01

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4–5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers. PMID:28157181

  4. Modulation of IgG1 immunoeffector function by glycoengineering of the GDP-fucose biosynthesis pathway.

    PubMed

    Kelly, Ronan M; Kowle, Ronald L; Lian, Zhirui; Strifler, Beth A; Witcher, Derrick R; Parekh, Bhavin S; Wang, Tongtong; Frye, Christopher C

    2018-03-01

    Cross-linking of the Fcγ receptors expressed on the surface of hematopoietic cells by IgG immune complexes triggers the activation of key immune effector mechanisms, including antibody-dependent cell mediated cytotoxicity (ADCC). A conserved N-glycan positioned at the N-terminal region of the IgG C H 2 domain is critical in maintaining the quaternary structure of the molecule for Fcγ receptor engagement. The removal of a single core fucose residue from the N-glycan results in a considerable increase in affinity for FcγRIIIa leading to an enhanced receptor-mediated immunoeffector function. The enhanced potency of the molecule translates into a number of distinct advantages in the development of IgG antibodies for cancer therapy. In an effort to significantly increase the potency of an anti-CD20, IgG1 molecule, we selectively targeted the de novo GDP-fucose biosynthesis pathway of the host CHO cell line to generate >80% afucosylated IgG1 resulting in enhanced FcγRIIIa binding (13-fold) and in vitro ADCC cell-based activity (11-fold). In addition, this effective glycoengineering strategy also allowed for the utilization of the alternate GDP-fucose salvage pathway to provide a fast and efficient mechanism to manipulate the N-glycan fucosylation level to modulate IgG immune effector function. © 2017 Wiley Periodicals, Inc.

  5. The origin and evolution of Basigin(BSG) gene: A comparative genomic and phylogenetic analysis.

    PubMed

    Zhu, Xinyan; Wang, Shenglan; Shao, Mingjie; Yan, Jie; Liu, Fei

    2017-07-01

    Basigin (BSG), also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), plays various fundamental roles in the intercellular recognition involved in immunologic phenomena, differentiation, and development. In this study, we aimed to compare the similarities and differences of BSG among organisms and explore possible evolutionary relationships based on the comparison result. We used the extensive BLAST tool to search the metazoan genomes, N-glycosylation sites, the transmembrane region and other functional sites. We then identified BSG homologs from genomic sequences and analyzed their phylogenetic relationships. We identified that BSG genes exist not only in the vertebrate metazoans but also in the invertebrate metazoans such as Amphioxus B. floridae, D. melanogaster, A. mellifera, S. japonicum, C. gigas, and T. patagoniensis. After sequence analysis, we confirmed that only vertebrate metazoans and Cephalochordate (amphioxus B. floridae) have the classic structure (a signal peptide, two Ig-like domains (IgC2 and IgI), a transmembrane region, and an intracellular domain). The invertebrate metazoans (excluding amphioxus B. floridae) lack the N-terminal signal peptides and IgC2 domain. We then generated a phylogenetic tree, genome organization comparison, and chromosomal disposition analysis based on the biological information obtained from the NCBI and Ensembl databases. Finally, we established the possible evolutionary scenario of the BSG gene, which showed the restricted exon rearrangement that has occurred during evolution, forming the present-day BSG gene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Diverse oligomeric states of CEACAM IgV domains

    PubMed Central

    Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert; Beckett, Dorothy; Sundberg, Eric J.

    2015-01-01

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans. PMID:26483485

  7. Diverse oligomeric states of CEACAM IgV domains.

    PubMed

    Bonsor, Daniel A; Günther, Sebastian; Beadenkopf, Robert; Beckett, Dorothy; Sundberg, Eric J

    2015-11-03

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined the crystal structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6-CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6-CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.

  8. Determining antibody-binding site of streptococcal pyrogenic exotoxin B to protect mice from group a streptococcus infection.

    PubMed

    Tsao, Nina; Cheng, Miao-Hui; Yang, Hsiu-Chen; Wang, Yu-Chieh; Liu, Yi-Ling; Kuo, Chih-Feng

    2013-01-01

    Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcal (GAS) infection. SPE B binds and cleaves antibody isotypes and further impairs the immune system by inhibiting complement activation. In this study, we examined the antibody-binding site of SPE B and used it to block SPE B actions during GAS infection. We constructed different segments of the spe B gene and induced them to express different recombinant fragments of SPE B. Using an enzyme-linked immunosorbent assay (ELISA), we found that residues 345-398 of the C-terminal domain of SPE B (rSPE B(345-398)), but not the N-terminal domain, was the major binding site for antibody isotypes. Using a competitive ELISA, we also found that rSPE B(345-398) bound to the Fc portion of IgG. The in vitro functional assays indicate that rSPE B(345-398) not only interfered with cleavage of antibody isotypes but also interfered with SPE B-induced inhibition of complement activation. Immunization of BALB/c mice using rSPE B(345-398) was able to induce production of a high titer of anti-rSPE B(345-398) antibodies and efficiently protected mice from GAS-induced death. These findings suggest that SPE B uses its C-terminal domain to bind the Fc portion of IgG and that immunization of mice with this binding domain (rSPE B(345-398)) could protect mice from GAS infection.

  9. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.

  10. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome

    PubMed Central

    Tsuboi, H; Matsumoto, I; Wakamatsu, E; Nakamura, Y; Iizuka, M; Hayashi, T; Goto, D; Ito, S; Sumida, T

    2010-01-01

    M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with Sjögren's syndrome (SS) carried inhibitory autoantibodies against M3R. The purpose of this study is to clarify the epitopes and function of anti-M3R antibodies in SS. We synthesized peptides encoding the extracellular domains of human-M3R including the N-terminal region and the first, second and third extracellular loops. Antibodies against these regions were examined by enzyme-linked immunosorbent assay in sera from 42 SS and 42 healthy controls. For functional analysis, human salivary gland (HSG) cells were preincubated with immunoglobulin G (IgG) separated from sera of anti-M3R antibody-positive SS, -negative SS and controls for 12 h. After loading with Fluo-3, HSG cells were stimulated with cevimeline hydrochloride, and intracellular Ca2+ concentrations [(Ca2+)i] were measured. Antibodies to the N-terminal, first, second and third loops were detected in 42·9% (18 of 42), 47·6% (20 of 42), 54·8% (23 of 42) and 45·2% (19 of 42) of SS, while in 4·8% (two of 42), 7·1% (three of 42), 2·4% (one of 42) and 2·4% (one of 42) of controls, respectively. Antibodies to the second loop positive SS-IgG inhibited the increase of (Ca2+)i induced by cevimeline hydrochloride. Antibodies to the N-terminal positive SS-IgG and antibodies to the first loop positive SS-IgG enhanced it, while antibodies to the third loop positive SS-IgG showed no effect on (Ca2+)i as well as anti-M3R antibody-negative SS-IgG. Our results indicated the presence of several B cell epitopes on M3R in SS. The influence of anti-M3R antibodies on salivary secretion might differ based on these epitopes. PMID:20731676

  11. New epitopes and function of anti-M3 muscarinic acetylcholine receptor antibodies in patients with Sjögren's syndrome.

    PubMed

    Tsuboi, H; Matsumoto, I; Wakamatsu, E; Nakamura, Y; Iizuka, M; Hayashi, T; Goto, D; Ito, S; Sumida, T

    2010-10-01

    M3 muscarinic acetylcholine receptor (M3R) plays a crucial role in the secretion of saliva from salivary glands. It is reported that some patients with Sjögren's syndrome (SS) carried inhibitory autoantibodies against M3R. The purpose of this study is to clarify the epitopes and function of anti-M3R antibodies in SS. We synthesized peptides encoding the extracellular domains of human-M3R including the N-terminal region and the first, second and third extracellular loops. Antibodies against these regions were examined by enzyme-linked immunosorbent assay in sera from 42 SS and 42 healthy controls. For functional analysis, human salivary gland (HSG) cells were preincubated with immunoglobulin G (IgG) separated from sera of anti-M3R antibody-positive SS, -negative SS and controls for 12 h. After loading with Fluo-3, HSG cells were stimulated with cevimeline hydrochloride, and intracellular Ca(2+) concentrations [(Ca(2+) )i] were measured. Antibodies to the N-terminal, first, second and third loops were detected in 42·9% (18 of 42), 47·6% (20 of 42), 54·8% (23 of 42) and 45·2% (19 of 42) of SS, while in 4·8% (two of 42), 7·1% (three of 42), 2·4% (one of 42) and 2·4% (one of 42) of controls, respectively. Antibodies to the second loop positive SS-IgG inhibited the increase of (Ca(2+) )i induced by cevimeline hydrochloride. Antibodies to the N-terminal positive SS-IgG and antibodies to the first loop positive SS-IgG enhanced it, while antibodies to the third loop positive SS-IgG showed no effect on (Ca(2+) )i as well as anti-M3R antibody-negative SS-IgG. Our results indicated the presence of several B cell epitopes on M3R in SS. The influence of anti-M3R antibodies on salivary secretion might differ based on these epitopes. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  12. Structural features of a close homologue of L1 (CHL1) in the mouse: a new member of the L1 family of neural recognition molecules.

    PubMed

    Holm, J; Hillenbrand, R; Steuber, V; Bartsch, U; Moos, M; Lübbert, H; Montag, D; Schachner, M

    1996-08-01

    We have identified a close homologue of L1 (CHL1) in the mouse. CHL1 comprises an N-terminal signal sequence, six immunoglobulin (Ig)-like domains, 4.5 fibronectin type III (FN)-like repeats, a transmembrane domain and a C-terminal, most likely intracellular domain of approximately 100 amino acids. CHL1 is most similar in its extracellular domain to chicken Ng-CAM (approximately 40% amino acid identity), followed by mouse L1, chicken neurofascin, chicken Nr-CAM, Drosophila neuroglian and zebrafish L1.1 (37-28% amino acid identity), and mouse F3, rat TAG-1 and rat BIG-1 (approximately 27% amino acid identity). The similarity with other members of the Ig superfamily [e.g. neural cell adhesion molecule (N-CAM), DCC, HLAR, rse] is 16-11%. The intracellular domain is most similar to mouse and chicken Nr-CAM, mouse and rat neurofascin (approximately 60% amino acid identity) followed by chicken neurofascin and Ng-CAM, Drosophila neuroglian and zebrafish L1.1 and L1.2 (approximately 40% amino acid identity). Besides the high overall homology and conserved modular structure among previously recognized members of the L1 family (mouse/human L1/rat NILE; chicken Ng-CAM; chicken/mouse Nr-CAM; Drosophila neuroglian; zebrafish L1.1 and L1.2; chicken/mouse neurofascin/rat ankyrin-binding glycoprotein), criteria characteristic of L1 were identified with regard to the number of amino acids between positions of conserved amino acid residues defining distances within and between two adjacent Ig-like domains and FN-like repeats. These show a collinearity in the six Ig-like domains and four adjacent FN-like repeats that is remarkably conserved between L1 and molecules containing these modules (designated the L1 family cassette), including the GPI-linked forms of the F3 subgroup (mouse F3/chicken F11/human CNTN1; rat BIG-1/mouse PANG; rat TAG-1/mouse TAX-1/chicken axonin-1). The colorectal cancer molecule (DCC), previously introduced as an N-CAM-like molecule, conforms to the L1 family cassette. Other structural features of CHL 1 shared between members of the L1 family are a high degree of N-glycosidically linked carbohydrates (approximately 20% of its molecular mass), which include the HNK-1 carbohydrate structure, and a pattern of protein fragments comprising a major 185 kDa band and smaller fragments of 165 and 125 kDa. As for the other L1 family members, predominant expression of CHL1 is observed in the nervous system and at later developmental stages. In the central nervous system CHL1 is expressed by neurons, but, in contrast to L1, also by glial cells. Our findings suggest a common ancestral L1-like molecule which evolved via gene duplication to generate a diversity of structurally and functionally distinct yet similar molecules.

  13. Diverse oligomeric states of CEACAM IgV domains

    DOE PAGES

    Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert; ...

    2015-10-19

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined in this paper the crystalmore » structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Finally, our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.« less

  14. Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY

    PubMed Central

    He, Yongning; Bjorkman, Pamela J.

    2011-01-01

    Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≤6.5, but not pH ≥7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution. PMID:21746914

  15. N-glycosylation at the SynCAM (synaptic cell adhesion molecule) immunoglobulin interface modulates synaptic adhesion.

    PubMed

    Fogel, Adam I; Li, Yue; Giza, Joanna; Wang, Qing; Lam, Tukiet T; Modis, Yorgo; Biederer, Thomas

    2010-11-05

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn(60). Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn(70)/Asn(104) flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn(60) reduces adhesion, N-glycans at Asn(70)/Asn(104) of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion.

  16. N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion*

    PubMed Central

    Fogel, Adam I.; Li, Yue; Giza, Joanna; Wang, Qing; Lam, TuKiet T.; Modis, Yorgo; Biederer, Thomas

    2010-01-01

    Select adhesion molecules connect pre- and postsynaptic membranes and organize developing synapses. The regulation of these trans-synaptic interactions is an important neurobiological question. We have previously shown that the synaptic cell adhesion molecules (SynCAMs) 1 and 2 engage in homo- and heterophilic interactions and bridge the synaptic cleft to induce presynaptic terminals. Here, we demonstrate that site-specific N-glycosylation impacts the structure and function of adhesive SynCAM interactions. Through crystallographic analysis of SynCAM 2, we identified within the adhesive interface of its Ig1 domain an N-glycan on residue Asn60. Structural modeling of the corresponding SynCAM 1 Ig1 domain indicates that its glycosylation sites Asn70/Asn104 flank the binding interface of this domain. Mass spectrometric and mutational studies confirm and characterize the modification of these three sites. These site-specific N-glycans affect SynCAM adhesion yet act in a differential manner. Although glycosylation of SynCAM 2 at Asn60 reduces adhesion, N-glycans at Asn70/Asn104 of SynCAM 1 increase its interactions. The modification of SynCAM 1 with sialic acids contributes to the glycan-dependent strengthening of its binding. Functionally, N-glycosylation promotes the trans-synaptic interactions of SynCAM 1 and is required for synapse induction. These results demonstrate that N-glycosylation of SynCAM proteins differentially affects their binding interface and implicate post-translational modification as a mechanism to regulate trans-synaptic adhesion. PMID:20739279

  17. Analysis of agalacto-IgG in rheumatoid arthritis using surface plasmon resonance.

    PubMed

    Liljeblad, M; Lundblad, A; Påhlsson, P

    2000-05-01

    It is well established that IgG from rheumatoid arthritis (RA) patients are less galactosylated than IgG from normal individuals. Determination of agalacto-IgG may therefore aid in diagnosis and treatment of RA. The decrease in galactosylation of IgG leads to an increase in terminal N-acetylglucosamine residues, which can be detected using a specific lectin from Psathyrella velutina. In the present study IgG from RA and control serum was purified using affinity chromatography. The samples were then, after reduction, analyzed on a BIOCORE 2000 system with immobilized Psathyrella velutina lectin. Using this technique it was possible to discriminate between IgG from RA patients and IgG from control individuals with respect to its content of IgG with terminal N-acetylglucosamine. The affinity biosensor technique makes it possible to detect binding without labeling or using secondary antibodies.

  18. Hashimoto's thyroiditis with heterogeneous antithyrotropin receptor antibodies: unique epitopes may contribute to the regulation of thyroid function by the antibodies.

    PubMed

    Akamizu, T; Kohn, L D; Hiratani, H; Saijo, M; Tahara, K; Nakao, K

    2000-06-01

    Blocking-type TSH-binding inhibitor Igs (TBIIs) are known to cause hypothyroidism and an atrophic thyroid gland in patients with primary myxedema. They can block the activity of thyroid-stimulating antibodies (TSAbs) in Graves' patients as well as the activity of TSH. The majority of the epitopes for these blocking-type TBIIs have been, and are shown herein, to be present on the C-terminal region of the extracellular domain of the human TSH receptor (TSHR), whereas those for Graves' TSAbs are on the N-terminus. We report on a patient with Hashimoto's thyroiditis who suffered from mild hypothyroidism and a moderately sized goiter. Her serum had a potent blocking-type TBII and a weak TSAb in human and porcine TSHR systems. Using human TSHR/lutropin-CG receptor chimeras, we determined that the functional epitope of her blocking-type TBII was uniquely present on the N-terminal, rather than the C-terminal, region of the extracellular domain of the TSHR, unlike the case for blocking-type TBIIs in primary myxedema patients. The epitope of her TSAb was also unusual. Although the functional epitopes of most TSAbs are known to involve the N-terminal region of the receptor, her TSAb epitope did not seem to be present solely on the N- or C-terminus of the extracellular domain of the receptor. Blocking-type TBIIs from patients with primary myxedema blocked her TSAb activity as well as stimulation by TSH; her blocking-type TBII was able to only partially block her TSAb. In contrast, her blocking-type TBII almost completely blocked TSAbs from Graves' patients. Thus, we suggest that the unique epitopes of this patient's heterogeneous population of TSH receptor antibodies, at least in part, contribute to regulation of her thyroid function.

  19. Uncoupling GP1 and GP2 Expression in the Lassa Virus Glycoprotein Complex: Implications for GP1 Ectodomain Shedding

    DTIC Science & Technology

    2008-12-23

    glycoprotein precursor (GPC) signal peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain... peptide (SP) or human IgG signal sequences (s.s.). GP2 was secreted from cells only when (1) the transmembrane (TM) domain was deleted, the...terminal signal peptide (SP), which directs the precursor to the endoplasmic retic- ulum (ER) for further processing [11]. The SP, which has been

  20. The terminal portion of leptospiral immunoglobulin-like protein LigA confers protective immunity against lethal infection in the hamster model of leptospirosis

    PubMed Central

    Silva, Éverton F.; Medeiros, Marco A.; McBride, Alan J. A.; Matsunaga, Jim; Esteves, Gabriela S.; Ramos, João G. R.; Santos, Cleiton S.; Croda, Júlio; Homma, Akira; Dellagostin, Odir A.; Haake, David A.; Reis, Mitermayer G.; Ko, Albert I.

    2007-01-01

    Subunit vaccines are a potential intervention strategy against leptospirosis, which is a major public health problem in developing countries and a veterinary disease in livestock and companion animals worldwide. Leptospiral immunoglobulin-like (Lig) proteins are a family of surface-exposed determinants that have Ig-like repeat domains found in virulence factors such as intimin and invasin. We expressed fragments of the repeat domain regions of LigA and LigB from Leptospira interrogans serovar Copenhageni. Immunization of Golden Syrian hamsters with Lig fragments in Freund’s adjuvant induced robust antibody responses against recombinant protein and native protein, as detected by ELISA and immunoblot, respectively. A single fragment, LigANI, which corresponds to the six carboxy-terminal Ig-like repeat domains of the LigA molecule, conferred immunoprotection against mortality (67-100%, P <0.05) in hamsters which received a lethal inoculum of L. interrogans serovar Copenhageni. However, immunization with this fragment did not confer sterilizing immunity. These findings indicate that the carboxy-terminal portion of LigA is an immunoprotective domain and may serve as a vaccine candidate for human and veterinary leptospirosis. PMID:17629368

  1. The terminal portion of leptospiral immunoglobulin-like protein LigA confers protective immunity against lethal infection in the hamster model of leptospirosis.

    PubMed

    Silva, Everton F; Medeiros, Marco A; McBride, Alan J A; Matsunaga, Jim; Esteves, Gabriela S; Ramos, João G R; Santos, Cleiton S; Croda, Júlio; Homma, Akira; Dellagostin, Odir A; Haake, David A; Reis, Mitermayer G; Ko, Albert I

    2007-08-14

    Subunit vaccines are a potential intervention strategy against leptospirosis, which is a major public health problem in developing countries and a veterinary disease in livestock and companion animals worldwide. Leptospiral immunoglobulin-like (Lig) proteins are a family of surface-exposed determinants that have Ig-like repeat domains found in virulence factors such as intimin and invasin. We expressed fragments of the repeat domain regions of LigA and LigB from Leptospira interrogans serovar Copenhageni. Immunization of Golden Syrian hamsters with Lig fragments in Freund's adjuvant induced robust antibody responses against recombinant protein and native protein, as detected by ELISA and immunoblot, respectively. A single fragment, LigANI, which corresponds to the six carboxy-terminal Ig-like repeat domains of the LigA molecule, conferred immunoprotection against mortality (67-100%, P<0.05) in hamsters which received a lethal inoculum of L. interrogans serovar Copenhageni. However, immunization with this fragment did not confer sterilizing immunity. These findings indicate that the carboxy-terminal portion of LigA is an immunoprotective domain and may serve as a vaccine candidate for human and veterinary leptospirosis.

  2. Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism.

    PubMed

    Liberato, Marcelo V; Silveira, Rodrigo L; Prates, Érica T; de Araujo, Evandro A; Pellegrini, Vanessa O A; Camilo, Cesar M; Kadowaki, Marco A; Neto, Mario de O; Popov, Alexander; Skaf, Munir S; Polikarpov, Igor

    2016-04-01

    Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.

  3. Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism

    NASA Astrophysics Data System (ADS)

    Liberato, Marcelo V.; Silveira, Rodrigo L.; Prates, Érica T.; de Araujo, Evandro A.; Pellegrini, Vanessa O. A.; Camilo, Cesar M.; Kadowaki, Marco A.; Neto, Mario De O.; Popov, Alexander; Skaf, Munir S.; Polikarpov, Igor

    2016-04-01

    Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.

  4. Structure of the extracellular domains of the human interleukin-6 receptor α-chain

    PubMed Central

    Varghese, J. N.; Moritz, R. L.; Lou, M.-Z.; van Donkelaar, A.; Ji, H.; Ivancic, N.; Branson, K. M.; Hall, N. E.; Simpson, R. J.

    2002-01-01

    Dysregulated production of IL-6 and its receptor (IL-6R) are implicated in the pathogenesis of multiple myeloma, autoimmune diseases and prostate cancer. The IL-6R complex comprises two molecules each of IL-6, IL-6R, and the signaling molecule, gp130. Here, we report the x-ray structure (2.4 Å) of the IL-6R ectodomains. The N-terminal strand of the Ig-like domain (D1) is disulfide-bonded to domain D2, and domains D2 and D3, the cytokine-binding domain, are structurally similar to known cytokine-binding domains. The head-to-tail packing of two closely associated IL-6R molecules observed in the crystal may be representative of the configuration of the physiological dimer of IL-6R and provides new insight into the architecture of the IL-6R complex. PMID:12461182

  5. A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Hae Joo; Paterson, Neil G.; Kim, Chae Un

    2014-05-01

    Two crystal structures of the major pilin SpaD from C. diphtheriae have been determined at 1.87 and 2.5 Å resolution. The N-terminal domain is found to contain an isopeptide bond that forms slowly over time in the recombinant protein. Given its structural context, this provides insight into the relationship between internal isopeptide-bond formation and pilus assembly. The Gram-positive organism Corynebacterium diphtheriae, the cause of diphtheria in humans, expresses pili on its surface which it uses for adhesion and colonization of its host. These pili are covalent protein polymers composed of three types of pilin subunit that are assembled by specificmore » sortase enzymes. A structural analysis of the major pilin SpaD, which forms the polymeric backbone of one of the three types of pilus expressed by C. diphtheriae, is reported. Mass-spectral and crystallographic analysis shows that SpaD contains three internal Lys–Asn isopeptide bonds. One of these, shown by mass spectrometry to be located in the N-terminal D1 domain of the protein, only forms slowly, implying an energy barrier to bond formation. Two crystal structures, of the full-length three-domain protein at 2.5 Å resolution and of a two-domain (D2-D3) construct at 1.87 Å resolution, show that each of the three Ig-like domains contains a single Lys–Asn isopeptide-bond cross-link, assumed to give mechanical stability as in other such pili. Additional stabilizing features include a disulfide bond in the D3 domain and a calcium-binding loop in D2. The N-terminal D1 domain is more flexible than the others and, by analogy with other major pilins of this type, the slow formation of its isopeptide bond can be attributed to its location adjacent to the lysine used in sortase-mediated polymerization during pilus assembly.« less

  6. Adaptive Immunity against Leishmania Nucleoside Hydrolase Maps Its C-Terminal Domain as the Target of the CD4+ T Cell–Driven Protective Response

    PubMed Central

    Nico, Dirlei; Claser, Carla; Borja-Cabrera, Gulnara P.; Travassos, Luiz R.; Palatnik, Marcos; da Silva Soares, Irene; Rodrigues, Mauricio Martins; Palatnik-de-Sousa, Clarisa B.

    2010-01-01

    Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide exceeds in 36.73±12.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and IgG2b antibodies, CD4+ T cell proportions, IFN-γ secretion, ratios of IFN-γ/IL-10 producing CD4+ and CD8+ T cells and percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases in DTH and in ratios of TNFα/IL-10 CD4+ producing cells were however the strong correlates of protection which was confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after vaccination with the N-domain of NH36, in spite of the induction of IFN-γ/IL-10 expression by CD4+ T cells after challenge. Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent pathogens. PMID:21085470

  7. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine

    PubMed Central

    Okazaki, Taku; Maeda, Akito; Nishimura, Hiroyuki; Kurosaki, Tomohiro; Honjo, Tasuku

    2001-01-01

    PD-1 is an immunoreceptor that belongs to the immunoglobulin (Ig) superfamily and contains two tyrosine residues in the cytoplasmic region. Studies on PD-1-deficient mice have shown that PD-1 plays critical roles in establishment and/or maintenance of peripheral tolerance, but the mode of action is totally unknown. To study the molecular mechanism for negative regulation of lymphocytes through the PD-1 receptor, we generated chimeric molecules composed of the IgG Fc receptor type IIB (FcγRIIB) extracellular region and the PD-1 cytoplasmic region and expressed them in a B lymphoma cell line, IIA1.6. Coligation of the cytoplasmic region of PD-1 with the B cell receptor (BCR) in IIA1.6 transformants inhibited BCR-mediated growth retardation, Ca2+ mobilization, and tyrosine phosphorylation of effector molecules, including Igβ, Syk, phospholipase C-γ2 (PLCγ2), and ERK1/2, whereas phosphorylation of Lyn and Dok was not affected. Mutagenesis studies indicated that these inhibitory effects do not require the N-terminal tyrosine in the immunoreceptor tyrosine-based inhibitory motif-like sequence, but do require the other tyrosine residue in the C-terminal tail. This tyrosine was phosphorylated and recruited src homology 2-domain-containing tyrosine phosphatase 2 (SHP-2) on coligation of PD-1 with BCR. These results show that PD-1 can inhibit BCR signaling by recruiting SHP-2 to its phosphotyrosine and dephosphorylating key signal transducers of BCR signaling. PMID:11698646

  8. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    PubMed

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonsor, Daniel A.; Günther, Sebastian; Beadenkopf, Robert

    Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) comprise a large family of cell surface adhesion molecules that bind to themselves and other family members to carry out numerous cellular functions, including proliferation, signaling, differentiation, tumor suppression, and survival. They also play diverse and significant roles in immunity and infection. The formation of CEACAM oligomers is caused predominantly by interactions between their N-terminal IgV domains. Although X-ray crystal structures of CEACAM IgV domain homodimers have been described, how CEACAMs form heterodimers or remain monomers is poorly understood. To address this key aspect of CEACAM function, we determined in this paper the crystalmore » structures of IgV domains that form a homodimeric CEACAM6 complex, monomeric CEACAM8, and a heterodimeric CEACAM6–CEACAM8 complex. To confirm and quantify these interactions in solution, we used analytical ultracentrifugation to measure the dimerization constants of CEACAM homodimers and isothermal titration calorimetry to determine the thermodynamic parameters and binding affinities of CEACAM heterodimers. We found the CEACAM6–CEACAM8 heterodimeric state to be substantially favored energetically relative to the CEACAM6 homodimer. Finally, our data provide a molecular basis for the adoption of the diverse oligomeric states known to exist for CEACAMs and suggest ways in which CEACAM6 and CEACAM8 regulate the biological functions of one another, as well as of additional CEACAMs with which they interact, both in cis and in trans.« less

  10. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab

    PubMed Central

    Tan, Shuguang; Zhang, Hao; Chai, Yan; Song, Hao; Tong, Zhou; Wang, Qihui; Qi, Jianxun; Wong, Gary; Zhu, Xiaodong; Liu, William J.; Gao, Shan; Wang, Zhongfu; Shi, Yi; Yang, Fuquan; Gao, George F.; Yan, Jinghua

    2017-01-01

    Cancer immunotherapy by targeting of immune checkpoint molecules has been a research ‘hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1. PMID:28165004

  11. Immunoglobulin G1 Fc domain motions: implications for Fc engineering

    PubMed Central

    Frank, Martin; Walker, Ross C.; Lanzilotta, William N.; Prestegard, James H.; Barb, Adam W.

    2014-01-01

    The fragment crystallizable (Fc) region links the key pathogen identification and destruction properties of immunoglobulin G(IgG). Pathogen opsonization positions Fcs to activate pro-inflammatory Fcγ receptors (FcγRs) on immune cells. The cellular response and committal to a damaging, though protective, immune response is tightly controlled at multiple levels. Control mechanisms are diverse and in many cases unclear, but one frequently suggested contribution originates in Fcγ receptor affinity being modulated through shifts in Fc conformational sampling. Here we report a previously unseen IgG1 Fc conformation. This observation motivated an extensive molecular dynamics (MD) investigation of polypeptide and glycan motions that revealed greater amplitude of motion for the N-terminal Cγ2 domains and N-glycan than previously observed. Residues in the Cγ2/Cγ3 interface and disulphide-bonded hinge were identified as influencing the Cγ2 motion. Our results are consistent with a model of Fc that is structurally dynamic. Conformational states that are competent to bind immune-stimulating FcγRs interconverted with Fc conformations distinct from those observed in FcγR complexes, which may represent a transient, nonbinding population. PMID:24522230

  12. Deletion of the N-terminal Domain (NTD) Alters the Ethanol Inhibition of NMDA Receptors in a Subunit-Dependent Manner

    PubMed Central

    Smothers, C. Thetford; Jin, Chun; Woodward, John J.

    2013-01-01

    Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549

  13. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusivemore » protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.« less

  14. In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure.

    PubMed

    Wright, A; Sato, Y; Okada, T; Chang, K; Endo, T; Morrison, S

    2000-12-01

    We have now produced mouse-human chimeric IgG1 in wild-type Chinese hamster ovary (CHO) cell lines Pro-5 as well as in the glycosylation mutants Lec 2, Lec 8, and Lec 1. Analysis of the attached carbohydrates shows those present on IgG1-Lec 1 were mannose terminated. Carbohydrate present on IgG1-Lec8 was uniformly biantennary terminating in N-acetylglucosamine. The glycosylation profiles of IgG1-Lec 2 and IgG1-Pro-5 were heterogeneous. Only IgG1-Pro-5 was sialylated with sialic acid present on only a small percentage of the carbohydrate structures. When the in vivo fate of antibodies labeled with (125)I-lactotyramine was determined, it was found that the majority of all of the antibodies, irrespective of the structure of their attached carbohydrate, is catabolized in the skin and muscle. However, the attached carbohydrate structure does influence the amount that is catabolized in the liver and the liver serves as a major site for the catabolism of proteins bearing carbohydrate with the Lec2 (with terminal galactose) or Lec1(with terminal mannose) structure.

  15. Monovalent IgG4 molecules

    PubMed Central

    Wilkinson, Ian C.; Fowler, Susan B.; Machiesky, LeeAnn; Miller, Kenneth; Hayes, David B.; Adib, Morshed; Her, Cheng; Borrok, M. Jack; Tsui, Ping; Burrell, Matthew; Corkill, Dominic J.; Witt, Susanne; Lowe, David C.; Webster, Carl I.

    2013-01-01

    Antibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling. Using rational engineering of the IgG4 Fc domain to disrupt key interactions at the CH3-CH3 interface, we identified a number of point mutations that abolish Fc dimerization and created half-antibodies, a novel monovalent antibody format that retains a monomeric Fc domain. Introduction of these mutations into an IgG1 framework also led to the creation of half-antibodies. These half-antibodies were shown to be soluble, thermodynamically stable and monomeric, characteristics that are favorable for use as therapeutic proteins. Despite significantly reduced FcRn binding in vitro, which suggests that avidity gains in a dimeric Fc are critical to optimal FcRn binding, this format demonstrated an increased terminal serum half-life compared with that expected for most alternative antibody fragments. PMID:23567207

  16. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

    PubMed Central

    Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall

    2013-01-01

    Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.

    The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less

  18. Anti-inflammatory IgG Production Requires Functional P1 Promoter in β-Galactoside α2,6-Sialyltransferase 1 (ST6Gal-1) Gene*

    PubMed Central

    Jones, Mark B.; Nasirikenari, Mehrab; Lugade, Amit A.; Thanavala, Yasmin; Lau, Joseph T. Y.

    2012-01-01

    The anti-inflammatory properties associated with intravenous immunoglobulin therapy require the sialic acid modification of the N-glycan of the Fc domain of IgG. Sialylation of the Fc fragment is mediated by β-galactoside α2,6-sialyltransferase 1 (ST6Gal-1), acting on the Gal(β4)GlcNAc terminal structure of the biantennary N-glycans on the Fc domain. However, little is known regarding the in vivo regulation of Fc sialylation and its role in the progression of inflammatory processes. Here, we report that decreased Fc sialylation of circulatory IgG accompanies the acute phase response elicited by turpentine exposure or upon acute exposure to either nontypeable Haemophilus influenzae or ovalbumin. However, Fc sialylation was increased 3-fold from the base line upon transition to chronic inflammation by repeated exposure to challenge. The P1 promoter of the ST6Gal-1 gene is critical for Fc sialylation, but P1 does not drive ST6Gal-1 expression in B cells. The Siat1ΔP1 mouse, with a dysfunctional P1 promoter, was unable to produce sialylated Fc in the systemic circulation, despite the presence of Gal(β4)GlcNAc termini on the Fc glycans. The major contribution of P1 action is to synthesize ST6Gal-1 enzymes that are deposited into the systemic circulation. The data strongly indicate that this pool of extracellular ST6Gal-1 in the blood impacts the sialylation of IgG Fc and that defective Fc sialylation is likely a major contributing mechanism for the proinflammatory tendencies previously noted in Siat1ΔP1 animals. PMID:22427662

  19. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1).

    PubMed

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W; Prestegard, James H

    2016-09-16

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC'C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC'C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    PubMed Central

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  1. Human Lipooligosaccharide IGG That Prevents Endemic Meningococcal Disease Recognizes an Internal Lacto-N-neotetraose Structure*

    PubMed Central

    Cheng, Hui; Yang, Zhijie; Estabrook, Michele M.; John, Constance M.; Jarvis, Gary A.; McLaughlin, Stephanie; Griffiss, J. McLeod

    2011-01-01

    Antibodies that initiate complement-mediated killing of Neisseria meningitidis as they enter the bloodstream from the oropharynx protect against disseminated disease. Human IgGs that bind the neisserial L7 lipooligosaccharide (LOS) are bactericidal for L3,7 and L2,4 meningococci in the presence of human complement. These strains share a lacto-N-neotetraose (nLc4) LOS α chain. We used a set of mutants that have successive saccharide deletions from the nLc4 α chain to characterize further the binding and bactericidal activity of nLc4 LOS IgG. We found that the nLc4 α chain conforms at least four different antigens. We separately purified IgG that required the nLc4 (non-reducing) terminal galactose (Gal) for binding and IgG that bound the truncated nLc3 α chain that lacks this Gal residue. IgG that bound the internal nLc3 α chain killed both L3,7 and L2,4 strains, whereas IgG that required the nLc4 terminal Gal residue for binding killed L2,4 stains but not L3,7 strains. These results show that the diversity of LOS antibodies in human serum is as much a function of the conformation of multiple antigens by a single glycoform as of the production of multiple glycoforms. Differences in sensitivity to killing by human nLc4 LOS IgG may account for the fact that fully two-thirds of endemic group B meningococcal disease in infants and children is caused by L3,7 strains, but only 20% is caused by L2,4 stains. PMID:22027827

  2. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.

    PubMed

    Tanaka, Masafumi; Dhanasekaran, Padmaja; Nguyen, David; Ohta, Shinya; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2006-08-29

    The tertiary structure of lipid-free apolipoprotein (apo) A-I in the monomeric state comprises two domains: a N-terminal alpha-helix bundle and a less organized C-terminal domain. This study examined how the N- and C-terminal segments of apoA-I (residues 1-43 and 223-243), which contain the most hydrophobic regions in the molecule and are located in opposite structural domains, contribute to the lipid-free conformation and lipid interaction. Measurements of circular dichroism in conjunction with tryptophan and 8-anilino-1-naphthalenesulfonic acid fluorescence data demonstrated that single (L230P) or triple (L230P/L233P/Y236P) proline insertions into the C-terminal alpha helix disrupted the organization of the C-terminal domain without affecting the stability of the N-terminal helix bundle. In contrast, proline insertion into the N terminus (Y18P) disrupted the bundle structure in the N-terminal domain, indicating that the alpha-helical segment in this region is part of the helix bundle. Calorimetric and gel-filtration measurements showed that disruption of the C-terminal alpha helix significantly reduced the enthalpy and free energy of binding of apoA-I to lipids, whereas disruption of the N-terminal alpha helix had only a small effect on lipid binding. Significantly, the presence of the Y18P mutation offset the negative effects of disruption/removal of the C-terminal helical domain on lipid binding, suggesting that the alpha helix around Y18 concealed a potential lipid-binding region in the N-terminal domain, which was exposed by the disruption of the helix-bundle structure. When these results are taken together, they indicate that the alpha-helical segment in the N terminus of apoA-I modulates the lipid-free structure and lipid interaction in concert with the C-terminal domain.

  3. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1

    PubMed Central

    Parnham, Stuart; Gaines, William A.; Duggan, Brendan M.; Marcotte, William R.

    2011-01-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes. PMID:21152998

  4. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with Alpha-Alpha Domain Architecture that Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence

    PubMed Central

    Harris, Golda G.; Lombardi, Patrick M.; Pemberton, Travis A.; Matsui, Tsutomu; Weiss, Thomas M.; Cole, Kathryn E.; Köksal, Mustafa; Murphy, Frank V.; Vedula, L. Sangeetha; Chou, Wayne K.W.; Cane, David E.; Christianson, David W.

    2015-01-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg2+ for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with 3 Mg2+ ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed based on ~36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  5. Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry.

    PubMed

    Rhein, Bethany A; Brouillette, Rachel B; Schaack, Grace A; Chiorini, John A; Maury, Wendy

    2016-07-01

    Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion-TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Characterization of Human and Murine T-Cell Immunoglobulin Mucin Domain 4 (TIM-4) IgV Domain Residues Critical for Ebola Virus Entry

    PubMed Central

    Rhein, Bethany A.; Brouillette, Rachel B.; Schaack, Grace A.; Chiorini, John A.

    2016-01-01

    ABSTRACT Phosphatidylserine (PtdSer) receptors that are responsible for the clearance of dying cells have recently been found to mediate enveloped virus entry. Ebola virus (EBOV), a member of the Filoviridae family of viruses, utilizes PtdSer receptors for entry into target cells. The PtdSer receptors human and murine T-cell immunoglobulin mucin (TIM) domain proteins TIM-1 and TIM-4 mediate filovirus entry by binding to PtdSer on the virion surface via a conserved PtdSer binding pocket within the amino-terminal IgV domain. While the residues within the TIM-1 IgV domain that are important for EBOV entry are characterized, the molecular details of virion–TIM-4 interactions have yet to be investigated. As sequences and structural alignments of the TIM proteins suggest distinct differences in the TIM-1 and TIM-4 IgV domain structures, we sought to characterize TIM-4 IgV domain residues required for EBOV entry. Using vesicular stomatitis virus pseudovirions bearing EBOV glycoprotein (EBOV GP/VSVΔG), we evaluated virus binding and entry into cells expressing TIM-4 molecules mutated within the IgV domain, allowing us to identify residues important for entry. Similar to TIM-1, residues in the PtdSer binding pocket of murine and human TIM-4 (mTIM-4 and hTIM-4) were found to be important for EBOV entry. However, additional TIM-4-specific residues were also found to impact EBOV entry, with a total of 8 mTIM-4 and 14 hTIM-4 IgV domain residues being critical for virion binding and internalization. Together, these findings provide a greater understanding of the interaction of TIM-4 with EBOV virions. IMPORTANCE With more than 28,000 cases and over 11,000 deaths during the largest and most recent Ebola virus (EBOV) outbreak, there has been increased emphasis on the development of therapeutics against filoviruses. Many therapies under investigation target EBOV cell entry. T-cell immunoglobulin mucin (TIM) domain proteins are cell surface factors important for the entry of many enveloped viruses, including EBOV. TIM family member TIM-4 is expressed on macrophages and dendritic cells, which are early cellular targets during EBOV infection. Here, we performed a mutagenesis screening of the IgV domain of murine and human TIM-4 to identify residues that are critical for EBOV entry. Surprisingly, we identified more human than murine TIM-4 IgV domain residues that are required for EBOV entry. Defining the TIM IgV residues needed for EBOV entry clarifies the virus-receptor interactions and paves the way for the development of novel therapeutics targeting virus binding to this cell surface receptor. PMID:27122575

  7. The amino-terminal domain of ORF149 of koi herpesvirus is preferentially targeted by IgM from carp populations surviving infection.

    PubMed

    Torrent, F; Villena, A; Lee, P A; Fuchs, W; Bergmann, S M; Coll, J M

    2016-10-01

    Recombinantly expressed fragments of the protein encoded by ORF149 (pORF149), a structural protein from the common- and koi-carp-infecting cyprinid herpesvirus-3 (CyHV-3) that was previously shown to be antigenic, were used to obtain evidence that its amino-terminal part contains immunodominant epitopes in fish populations that survived the infection. To obtain such evidence, nonspecific binding of carp serum tetrameric IgM had to be overcome by a novel ELISA protocol (rec2-ELISA). Rec2-ELISA involved pre-adsorption of carp sera with a heterologous recombinant fragment before incubation with pORF149 fragments and detection with anti-carp IgM monoclonal antibodies. Only in this way was it possible to distinguish between sera from uninfected and survivor carp populations. Although IgM from survivors recognised pORF149 fragments to a lesser degree than whole virus, specificity was confirmed by correlation of rec2- and CyHV-3-ELISAs, inhibition of rec2-ELISA by an excess of frgIIORF149, ELISA using IgM-capture, Western blotting, and reduction of reactivity in CyHV-3-ELISA by pre-adsorption of sera with frgIIORF149. The similarity of IgM-binding profiles between frgIORF149 (amino acid residues 42-629) and frgIIORF149 (42-159) and their reactivities with previously described anti-CyHV-3 monoclonal antibodies confirmed that most pORF149 epitopes were localised in its amino-terminal part.

  8. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins

    PubMed Central

    Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.

    2006-01-01

    Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115

  9. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection.

    PubMed

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis.

  10. A Chimera Containing CD4+ and CD8+ T-Cell Epitopes of the Leishmania donovani Nucleoside Hydrolase (NH36) Optimizes Cross-Protection against Leishmania amazonesis Infection

    PubMed Central

    Alves-Silva, Marcus Vinícius; Nico, Dirlei; Morrot, Alexandre; Palatnik, Marcos; Palatnik-de-Sousa, Clarisa B.

    2017-01-01

    The Leishmania donovani nucleoside hydrolase (NH36) and NH A34480 of Leishmania amazonensis share 93% of sequence identity. In mice, the NH36 induced protection against visceral leishmaniasis is mediated by a CD4+ T cell response against its C-terminal domain (F3). Besides this CD4+ Th1 response, prevention and cure of L. amazonensis infection require also additional CD8+ and regulatory T-cell responses to the NH36 N-terminal (F1 domain). We investigated if mice vaccination with F1 and F3 domains cloned in tandem, in a recombinant chimera, with saponin, optimizes the vaccine efficacy against L. amazonensis infection above the levels promoted by the two admixed domains or by each domain independently. The chimera induced the highest IgA, IgG, and IgG2a anti-NH36 antibody, IDR, IFN-γ, and IL-10 responses, while TNF-α was more secreted by mice vaccinated with F3 or all F3-contaning vaccines. Additionally, the chimera and the F1 vaccine also induced the highest proportions of CD4+ and CD8+ T cells secreting IL-2, TNF-α, or IFN-γ alone, TNF-α in combination with IL-2 or IFN-γ, and of CD4+ multifunctional cells secreting IL-2, TNF-α, and IFN-γ. Correlating with the immunological results, the strongest reductions of skin lesions sizes were determined by the admixed domains (80%) and by the chimera (84%), which also promoted the most pronounced and significant reduction of the parasite load (99.8%). Thus, the epitope presentation in a recombinant chimera optimizes immunogenicity and efficacy above the levels induced by the independent or admixed F1 and F3 domains. The multiparameter analysis disclosed that the Th1-CD4+ T helper response induced by the chimera is mainly directed against its FRYPRPKHCHTQVA epitope. Additionally, the YPPEFKTKL epitope of F1 induced the second most important CD4+ T cell response, and, followed by the DVAGIVGVPVAAGCT, FMLQILDFYTKVYE, and ELLAITTVVGNQ sequences, also the most potent CD8+ T cell responses and IL-10 secretion. Remarkably, the YPPEFKTKL epitope shows high amino acid identity with a multipotent PADRE sequence and stimulates simultaneously the CD4+, CD8+ T cell, and a probable T regulatory response. With this approach, we advanced in the design of a NH36 polytope vaccine capable of inducing cross-protection to cutaneous leishmaniasis. PMID:28280494

  11. A peptide extension dictates IgM assembly.

    PubMed

    Pasalic, Dzana; Weber, Benedikt; Giannone, Chiara; Anelli, Tiziana; Müller, Roger; Fagioli, Claudio; Felkl, Manuel; John, Christine; Mossuto, Maria Francesca; Becker, Christian F W; Sitia, Roberto; Buchner, Johannes

    2017-10-10

    Professional secretory cells can produce large amounts of high-quality complex molecules, including IgM antibodies. Owing to their multivalency, polymeric IgM antibodies provide an efficient first-line of defense against pathogens. To decipher the mechanisms of IgM assembly, we investigated its biosynthesis in living cells and faithfully reconstituted the underlying processes in vitro. We find that a conserved peptide extension at the C-terminal end of the IgM heavy (Ig-μ) chains, termed the tailpiece, is necessary and sufficient to establish the correct geometry. Alanine scanning revealed that hydrophobic amino acids in the first half of the tailpiece contain essential information for generating the correct topology. Assembly is triggered by the formation of a disulfide bond linking two tailpieces. This induces conformational changes in the tailpiece and the adjacent domain, which drive further polymerization. Thus, the biogenesis of large and topologically challenging IgM complexes is dictated by a local conformational switch in a peptide extension.

  12. Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin

    PubMed Central

    Mills, Ishara A.; Flaugh, Shannon L.; Kosinski-Collins, Melissa S.; King, Jonathan A.

    2007-01-01

    The transparency of the eye lens depends on the high solubility and stability of the lens crystallin proteins. The monomeric γ-crystallins and oligomeric β-crystallins have paired homologous double Greek key domains, presumably evolved through gene duplication and fusion. Prior investigation of the refolding of human γD-crystallin revealed that the C-terminal domain folds first and nucleates the folding of the N-terminal domain. This result suggested that the human N-terminal domain might not be able to fold on its own. We constructed and expressed polypeptide chains corresponding to the isolated N- and C-terminal domains of human γD-crystallin, as well as the isolated domains of human γS-crystallin. Both circular dichroism and fluorescence spectroscopy indicated that the isolated domains purified from Escherichia coli were folded into native-like monomers. After denaturation, the isolated domains refolded efficiently at pH 7 and 37°C into native-like structures. The in vitro refolding of all four domains revealed two kinetic phases, identifying partially folded intermediates for the Greek key motifs. When subjected to thermal denaturation, the isolated N-terminal domains were less stable than the full-length proteins and less stable than the C-terminal domains, and this was confirmed in equilibrium unfolding/refolding experiments. The decrease in stability of the N-terminal domain of human γD-crystallin with respect to the complete protein indicated that the interdomain interface contributes of 4.2 kcal/mol to the overall stability of this very long-lived protein. PMID:17905830

  13. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain

    PubMed Central

    Djordjevic, Snezana; Goudreau, Paul N.; Xu, Qingping; Stock, Ann M.; West, Ann H.

    1998-01-01

    We report the x-ray crystal structure of the methylesterase CheB, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Methylesterase CheB and methyltransferase CheR modulate signaling output of the chemotaxis receptors by controlling the level of receptor methylation. The structure of CheB, which consists of an N-terminal regulatory domain and a C-terminal catalytic domain joined by a linker, was solved by molecular replacement methods using independent search models for the two domains. In unphosphorylated CheB, the N-terminal domain packs against the active site of the C-terminal domain and thus inhibits methylesterase activity by directly restricting access to the active site. We propose that phosphorylation of CheB induces a conformational change in the regulatory domain that disrupts the domain interface, resulting in a repositioning of the domains and allowing access to the active site. Structural similarity between the two companion receptor modification enzymes, CheB and CheR, suggests an evolutionary and/or functional relationship. Specifically, the phosphorylated N-terminal domain of CheB may facilitate interaction with the receptors, similar to the postulated role of the N-terminal domain of CheR. Examination of surfaces in the N-terminal regulatory domain of CheB suggests that despite a common fold throughout the response regulator family, surfaces used for protein–protein interactions differ significantly. Comparison between CheB and other response regulators indicates that analogous surfaces are used for different functions and conversely, similar functions are mediated by different molecular surfaces. PMID:9465023

  14. The glycosylated IgII extracellular domain of EMMPRIN is implicated in the induction of MMP-2.

    PubMed

    Papadimitropoulou, Adriana; Mamalaki, Avgi

    2013-07-01

    EMMPRIN is a widely expressed transmembrane glycoprotein that plays important roles in many physiological and pathological processes, such as tumor invasion and metastasis. It stimulates the production of matrix metalloproteinase (MMPs) by tumor-associated fibroblasts. In the present study, our aim was to (a) to investigate if the IgII loop domain of the extracellular domain (ECD) of EMMPRIN contributes to the MMP production by fibroblasts and (b) to evaluate the significance of glycosylation in this process. For this purpose, we expressed the ECD, IgI, or IgII domains of EMMPRIN, in their glycosylated and non-glycosylated forms, in the heterologous expression systems of P. pastoris and E. coli, respectively. Dermal fibroblasts were treated with purified recombinant domains and proteins from cell extracts and supernatants were analyzed by Western blot and zymography assays. Fibroblasts treated with ECD-, IgI-, and IgII-glycosylated domains of EMMPRIN significantly stimulated the gelatinolytic activity of MMP-2, compared to untreated fibroblasts, whereas no significant effect was observed after treatment with the non-glycosylated ECD, IgI, and IgII domains. Western blot analysis from cell extracts and supernatants revealed that only the glycosylated forms were able to stimulate MMP-2 production and secretion, respectively. Quantitative PCR revealed that this effect was not attributed to transcriptional alterations. This study showed that N-glycosylation was a prerequisite for efficient MMP-2 production, with the IgII loop domain contributing significantly to this process. Perturbation of the function of IgII-EMMPRIN loop could have potential therapeutic value in the inhibition of MMP-2-dependent cancer cell invasion and metastasis.

  15. Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization.

    PubMed

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S; Kristensen, Torsten; Otzen, Daniel E; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J; Nielsen, Niels Chr

    2013-12-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3' containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. © 2013.

  16. Mutation in Transforming Growth Factor Beta Induced protein associated with Granular Corneal Dystrophy Type 1 Reduces the Proteolytic Susceptibility through Local Structural Stabilization#

    PubMed Central

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S.; Kristensen, Torsten; Otzen, Daniel E.; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J.; Nielsen, Niels Chr.

    2014-01-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3′ containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions. PMID:24129074

  17. Mechanism of calmodulin recognition of the binding domain of isoform 1b of the plasma membrane Ca2+-ATPase: kinetic pathway and effects of methionine oxidation

    PubMed Central

    Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.

    2008-01-01

    Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368

  18. Recombinant C-terminal 311 amino acids of HapS adhesin as a vaccine candidate for nontypeable Haemophilus influenzae: A study on immunoreactivity in Balb/C mouse.

    PubMed

    Tabatabaee Bafroee, Akram Sadat; Siadat, Seyed Davar; Mousavi, Seyed Fazlollah; Aghasadeghi, Mohammad Reza; Khorsand, Hashem; Nejati, Mehdi; Sadat, Seyed Mehdi; Mahdavi, Mehdi

    2016-09-01

    Hap, an auto-transporter protein, is an antigenically conserved adhesion protein which is present on both typeable and nontypeable Haemophilus influenzae. This protein has central role in bacterial attachment to respiratory tract epithelial cells. A 1000bp C-terminal fragment of Hap passenger domain (HapS) from nontypeable Haemophilus influenzae was cloned into a prokaryotic expression vector, pET-24a. BALB/c mice were immunized subcutaneously with purified rC-HapS. Serum IgG responses to purified rC-HapS, serum IgG subclasses were determined by ELISA and functional activity of antibodies was examined by Serum Bactericidal Assay. The output of rC-HapS was approximately 62% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with rC-HapS mixed with Freund's adjuvant in comparison with control groups. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after subcutaneous immunization in BALB/c mice (IgG2a/IgG1 < 1). The sera from rC-HapS immunized animals were strongly bactericidal against nontypeable Haemophilus influenzae. These results suggest that rC-HapS may be a potential vaccine candidate for nontypeable Haemophilus influenzae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition.

    PubMed

    Liu, Zhonghua; Wang, Chuanping; Rathkey, Joseph K; Yang, Jie; Dubyak, George R; Abbott, Derek W; Xiao, Tsan Sam

    2018-05-01

    Pyroptosis is an inflammatory form of programmed cell death that plays important roles in immune protection against infections and in inflammatory disorders. Gasdermin D (GSDMD) is an executor of pyroptosis upon cleavage by caspases-1/4/5/11 following canonical and noncanonical inflammasome activation. GSDMD N-terminal domain assembles membrane pores to induce cytolysis, whereas its C-terminal domain inhibits cell death through intramolecular association with the N domain. The molecular mechanisms of autoinhibition for GSDMD are poorly characterized. Here we report the crystal structures of the human and murine GSDMD C-terminal domains, which differ from those of the full-length murine GSDMA3 and the human GSDMB C-terminal domain. Mutations of GSDMD C-domain residues predicted to locate at its interface with the N-domain enhanced pyroptosis. Our results suggest that GSDMDs may employ a distinct mode of intramolecular domain interaction and autoinhibition, which may be relevant to its unique role in pyroptosis downstream of inflammasome activation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity.

    PubMed

    He, Ran; Zu, Li-Dong; Yao, Peng; Chen, Xin; Wang, En-Duo

    2009-02-01

    In human cytoplasm, nine aminoacyl-tRNA synthetases (aaRSs) and three protein factors form a multi-synthetase complex (MSC). Human cytosolic methionyl-tRNA synthetase (hcMetRS) is a component of the MSC. Sequence alignment revealed that hcMetRS has an N-terminal extension of 267 amino acid residues. This extension can be divided into three sub-domains: GST-like, GN, and GC sub-domains. The effect of each sub-domain in the N-terminal extension of hcMetRS on enzymatic activity and incorporation into the MSC was studied. The results of cellular assay showed that the GST-like sub-domain was responsible for the incorporation of hcMetRS into the MSC. The entire N-terminal extension of hcMetRS is indispensable for the enzymatic activity. Deletion mutagenesis revealed that a seven-amino acid motif within the sub-domain GC was important for the activity of amino acid activation. A conserved proline residue within the seven-amino acid motif was crucial, while the other six residues were moderately important for the amino acid activation activity. Thus, the last 15 residues of previously defined N-terminal extension of hcMetRS was a part of the catalytic domain; whereas the first 252 residues of hcMetRS constitute the N-terminal extended domain of hcMetRS. The formerly defined N-terminal extension of hcMetRS possesses two functions of two different domains.

  1. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells.

    PubMed

    Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema

    2017-05-25

    The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.

  2. Inter-domain cross-talk controls the NifA protein activity of Herbaspirillum seropedicae.

    PubMed

    Monteiro, R A; de Souza, E M; Wassem, R; Yates, M G; Pedrosa, F O; Chubatsu, L S

    2001-11-09

    Herbaspirillum seropedicae is an endophytic diazotroph, which colonizes sugar cane, wheat, rice and maize. The activity of NifA, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through a mechanism involving its N-terminal domain. Here we show that this domain interacts specifically in vitro with the N-truncated NifA protein, as revealed by protection against proteolysis, and this interaction caused an inhibitory effect on both the ATPase and DNA-binding activities of the N-truncated NifA protein. We suggest that the N-terminal domain inhibits NifA-dependent transcriptional activation by an inter-domain cross-talk between the catalytic domain of the NifA protein and its regulatory N-terminal domain in response to fixed nitrogen.

  3. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies.

    PubMed

    Perry, A; Lian, L Y; Scrutton, N S

    2001-02-15

    A minigene encoding the C-terminal domain of the 2Fe rubredoxin of Pseudomonas oleovorans was created from the parental alk G gene contained in the expression plasmid pKK223-3. The vector directed the high-level production of the C-terminal domain of this rubredoxin; a simple procedure was used to purify the recombinant domain in the 1Fe form. The 1Fe form of the C-terminal domain was readily converted into the apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of cadmium chloride respectively. In steady-state assays, the recombinant 1Fe C-terminal domain is redox-active and able to transfer electrons from reduced rubredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the iron- and cadmium-substituted C-terminal domain are similar to those reported for the iron- and cadmium-substituted Desulfovibrio gigas rubredoxin [Henehen, Pountney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of the cadmium-substituted C-terminal domain revealed the presence of four Gaussian-resolved maxima at 202, 225, 240 and 276 nm; from Jørgensen's electronegativity theory, the 240 nm band is attributable to a CysS-Cd(II) charge-transfer excitation. Attempts to express the N-terminal domain of the 2Fe rubredoxin directly from a minigene were unsuccessful. However, the N-terminal domain was isolated through cleavage of an engineered 2Fe rubredoxin in which a factor Xa proteolysis site had been introduced into the putative interdomain linker. The N-terminal domain is characterized by absorption spectra typical of the 1Fe rubredoxins. The domain is folded as determined by CD and NMR spectroscopies and is redox-active. However, the N-terminal domain is less stable than the isolated C-terminal domain, a finding consistent with the known properties of the full-length 2Fe and cadmium-substituted Ps. oleovorans rubredoxin.

  4. Mapping and Engineering Functional Domains of the Assembly Activating Protein of Adeno-Associated Viruses.

    PubMed

    Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind

    2018-04-25

    Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions. Copyright © 2018 American Society for Microbiology.

  5. Structural analysis and cross-protective efficacy of recombinant 87 kDa outer membrane protein (Omp87) of Pasteurella multocida serogroup B:2.

    PubMed

    Kumar, Abhinendra; Yogisharadhya, Revanaiah; Ramakrishnan, Muthannan A; Viswas, K N; Shivachandra, Sathish B

    2013-12-01

    Pasteurella multocida serogroup B:2, a causative agent of haemorrhagic septicaemia (HS) in cattle and buffalo especially in tropical regions of Asian and African countries, is known to possess several outer membrane proteins (OMPs) as immunogenic antigens. In the present study, omp87 gene encoding for 87 kDa OMP (Omp87) protein of P. multocida serogroup B:2 strain P52, has been amplified (∼2304 bp), cloned in to pET32a vector and over-expressed in recombinant Escherichia coli as fusion protein. The recombinant Omp87 protein (∼102 kDa) including N-terminus hexa-histidine tag was purified under denaturing condition. Immunization of mice with rOmp87 resulted in increased antigen specific IgG titres in serum and provided protection of 66.6 and 83.3% following homologous (B:2) and heterologous (A:1) challenge, respectively. A homology model of Omp87 revealed the presence of two distinct domains; N-terminal domain with four POTRA repeats in the periplasmic space and a pore forming C-terminal β-barrel domain (β1- β16) in the outer membrane of P. multocida, which belong to Omp85-TpsB transporter superfamily of OMPs. The study indicated the potential possibilities to use rOmp87 protein along with suitable adjuvant in developing subunit vaccine for haemorrhagic septicaemia and pasteurellosis in livestock. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A peptide extension dictates IgM assembly

    PubMed Central

    Pasalic, Dzana; Weber, Benedikt; Giannone, Chiara; Anelli, Tiziana; Müller, Roger; Fagioli, Claudio; Felkl, Manuel; John, Christine; Mossuto, Maria Francesca; Sitia, Roberto; Buchner, Johannes

    2017-01-01

    Professional secretory cells can produce large amounts of high-quality complex molecules, including IgM antibodies. Owing to their multivalency, polymeric IgM antibodies provide an efficient first-line of defense against pathogens. To decipher the mechanisms of IgM assembly, we investigated its biosynthesis in living cells and faithfully reconstituted the underlying processes in vitro. We find that a conserved peptide extension at the C-terminal end of the IgM heavy (Ig-μ) chains, termed the tailpiece, is necessary and sufficient to establish the correct geometry. Alanine scanning revealed that hydrophobic amino acids in the first half of the tailpiece contain essential information for generating the correct topology. Assembly is triggered by the formation of a disulfide bond linking two tailpieces. This induces conformational changes in the tailpiece and the adjacent domain, which drive further polymerization. Thus, the biogenesis of large and topologically challenging IgM complexes is dictated by a local conformational switch in a peptide extension. PMID:28973899

  7. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense

    PubMed Central

    Sotomaior, P.; Araújo, L.M.; Nishikawa, C.Y.; Huergo, L.F.; Monteiro, R.A.; Pedrosa, F.O.; Chubatsu, L.S.; Souza, E.M.

    2012-01-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate. PMID:22983183

  8. Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GlnB protein of Azospirillum brasilense.

    PubMed

    Sotomaior, P; Araújo, L M; Nishikawa, C Y; Huergo, L F; Monteiro, R A; Pedrosa, F O; Chubatsu, L S; Souza, E M

    2012-12-01

    Azospirillum brasilense is a diazotroph that associates with important agricultural crops and thus has potential to be a nitrogen biofertilizer. The A. brasilense transcription regulator NifA, which seems to be constitutively expressed, activates the transcription of nitrogen fixation genes. It has been suggested that the nitrogen status-signaling protein GlnB regulates NifA activity by direct interaction with the NifA N-terminal GAF domain, preventing the inhibitory effect of this domain under conditions of nitrogen fixation. In the present study, we show that an N-terminal truncated form of NifA no longer required GlnB for activity and lost regulation by ammonium. On the other hand, in trans co-expression of the N-terminal GAF domain inhibited the N-truncated protein in response to fixed nitrogen levels. We also used pull-down assays to show in vitro interaction between the purified N-terminal GAF domain of NifA and the GlnB protein. The results showed that A. brasilense GlnB interacts directly with the NifA N-terminal domain and this interaction is dependent on the presence of ATP and 2-oxoglutarate.

  9. The Tyrosine Sulfate Domain of Fibromodulin Binds Collagen and Enhances Fibril Formation.

    PubMed

    Tillgren, Viveka; Mörgelin, Matthias; Önnerfjord, Patrik; Kalamajski, Sebastian; Aspberg, Anders

    2016-11-04

    Small leucine-rich proteoglycans interact with other extracellular matrix proteins and are important regulators of matrix assembly. Fibromodulin has a key role in connective tissues, binding collagen through two identified binding sites in its leucine-rich repeat domain and regulating collagen fibril formation in vitro and in vivo Some nine tyrosine residues in the fibromodulin N-terminal domain are O-sulfated, a posttranslational modification often involved in protein interactions. The N-terminal domain mimics heparin, binding proteins with clustered basic amino acid residues. Because heparin affects collagen fibril formation, we investigated whether tyrosine sulfate is involved in fibromodulin interactions with collagen. Using full-length fibromodulin and its N-terminal tyrosine-sulfated domain purified from tissue, as well as recombinant fibromodulin fragments, we found that the N-terminal domain binds collagen. The tyrosine-sulfated domain and the leucine-rich repeat domain both bound to three specific sites along the collagen type I molecule, at the N terminus and at 100 and 220 nm from the N terminus. The N-terminal domain shortened the collagen fibril formation lag phase and tyrosine sulfation was required for this effect. The isolated leucine-rich repeat domain inhibited the fibril formation rate, and full-length fibromodulin showed a combination of these effects. The fibrils formed in the presence of fibromodulin or its fragments showed more organized structure. Fibromodulin and its tyrosine sulfate domain remained bound on the formed fiber. Taken together, this suggests a novel, regulatory function for tyrosine sulfation in collagen interaction and control of fibril formation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The increased flexibility of CDR loops generated in antibodies by Congo red complexation favors antigen binding.

    PubMed

    Krol, Marcin; Roterman, Irena; Drozd, Anna; Konieczny, Leszek; Piekarska, Barbara; Rybarska, Janina; Spolnik, Paweł; Stopa, Barbara

    2006-02-01

    The dye Congo red and related self-assembling compounds were found to stabilize immune complexes by binding to antibodies currently engaged in complexation to antigen. In our simulations, it was shown that the site that becomes accessible for binding the supramolecular dye ligand is located in the V domain, and is normally occupied by the N-terminal polypeptide chain fragment. The binding of the ligand disrupts the beta-structure in the domain, increasing the plasticity of the antigen-binding site. The higher fluctuation of CDR-bearing loops enhances antigen binding, and allows even low-affinity antibodies to be engaged in immune complexes. Experimental observations of the enhancement effect were supported by theoretical studies using L lambda chain (4BJL-PDB identification) and the L chain from the complex of IgM-rheumatoid factor bound to the CH3 domain of the Fc fragment (1ADQ-PDB identification) as the initial structures for theoretical studies of dye-induced changes. Commercial IgM-type rheumatoid factor (human) and sheep red blood cells with coupled IgG (human) were used for experimental tests aimed to reveal the dye-enhancement effect in this system. The specificity of antigen-antibody interaction enhanced by dye binding was studied using rabbit anti-sheep red cell antibodies to agglutinate red cells of different species. Red blood cells of hoofed mammals (horse, goat) showed weak enhancement of agglutination in the presence of Congo red. Neither agglutination nor enhancement were observed in the case of human red cells. The dye-enhancement capability in the SRBC-antiSRBC system was lost after pepsin-digestion of antibodies producing (Fab)2 fragments still agglutinating red cells. Monoclonal (myeloma) IgG, L lambda chain and ovoalbumin failed to agglutinate red cells, as expected, and showed no enhancement effect. This indicates that the enhancement effect is specific.

  11. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  12. Construction of a Functional S-Layer Fusion Protein Comprising an Immunoglobulin G-Binding Domain for Development of Specific Adsorbents for Extracorporeal Blood Purification

    PubMed Central

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit

    2004-01-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773

  13. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension.

    PubMed

    Ihalainen, Teemu O; Aires, Lina; Herzog, Florian A; Schwartlander, Ruth; Moeller, Jens; Vogel, Viola

    2015-12-01

    Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton-cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.

  14. Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension

    NASA Astrophysics Data System (ADS)

    Ihalainen, Teemu O.; Aires, Lina; Herzog, Florian A.; Schwartlander, Ruth; Moeller, Jens; Vogel, Viola

    2015-12-01

    Nuclear lamins play central roles at the intersection between cytoplasmic signalling and nuclear events. Here, we show that at least two N- and C-terminal lamin epitopes are not accessible at the basal side of the nuclear envelope under environmental conditions known to upregulate cell contractility. The conformational epitope on the Ig-domain of A-type lamins is more buried in the basal than apical nuclear envelope of human mesenchymal stem cells undergoing osteogenesis (but not adipogenesis), and in fibroblasts adhering to rigid (but not soft) polyacrylamide hydrogels. This structural polarization of the lamina is promoted by compressive forces, emerges during cell spreading, and requires lamin A/C multimerization, intact nucleoskeleton-cytoskeleton linkages (LINC), and apical-actin stress-fibre assembly. Notably, the identified Ig-epitope overlaps with emerin, DNA and histone binding sites, and comprises various laminopathy mutation sites. Our findings should help decipher how the physical properties of cellular microenvironments regulate nuclear events.

  15. A role for the RNA pol II–associated PAF complex in AID-induced immune diversification

    PubMed Central

    Willmann, Katharina L.; Milosevic, Sara; Pauklin, Siim; Schmitz, Kerstin-Maike; Rangam, Gopinath; Simon, Maria T.; Maslen, Sarah; Skehel, Mark; Robert, Isabelle; Heyer, Vincent; Schiavo, Ebe; Reina-San-Martin, Bernardo

    2012-01-01

    Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions. PMID:23008333

  16. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. The Role of the N-Domain in the ATPase Activity of the Mammalian AAA ATPase p97/VCP*

    PubMed Central

    Niwa, Hajime; Ewens, Caroline A.; Tsang, Chun; Yeung, Heidi O.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97/valosin-containing protein (VCP) is a type II ATPase associated with various cellular activities that forms a homohexamer with each protomer containing an N-terminal domain (N-domain); two ATPase domains, D1 and D2; and a disordered C-terminal region. Little is known about the role of the N-domain or the C-terminal region in the p97 ATPase cycle. In the p97-associated human disease inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, the majority of missense mutations are located at the N-domain D1 interface. Structure-based predictions suggest that such mutations affect the interaction of the N-domain with D1. Here we have tested ten major inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia-linked mutants for ATPase activity and found that all have increased activity over the wild type, with one mutant, p97A232E, having three times higher activity. Further mutagenesis of p97A232E shows that the increase in ATPase activity is mediated through D2 and requires both the N-domain and a flexible ND1 linker. A disulfide mutation that locks the N-domain to D1 in a coplanar position reversibly abrogates ATPase activity. A cryo-EM reconstruction of p97A232E suggests that the N-domains are flexible. Removal of the C-terminal region also reduces ATPase activity. Taken together, our data suggest that the conformation of the N-domain in relation to the D1-D2 hexamer is directly linked to ATP hydrolysis and that the C-terminal region is required for hexamer stability. This leads us to propose a model where the N-domain adopts either of two conformations: a flexible conformation compatible with ATP hydrolysis or a coplanar conformation that is inactive. PMID:22270372

  18. The C-terminal domain of the Bloom syndrome DNA helicase is essential for genomic stability

    PubMed Central

    Yankiwski, Victor; Noonan, James P; Neff, Norma F

    2001-01-01

    Background Bloom syndrome is a rare cancer-prone disorder in which the cells of affected persons have a high frequency of somatic mutation and genomic instability. Bloom syndrome cells have a distinctive high frequency of sister chromatid exchange and quadriradial formation. BLM, the protein altered in BS, is a member of the RecQ DNA helicase family, whose members share an average of 40% identity in the helicase domain and have divergent N-terminal and C-terminal flanking regions of variable lengths. The BLM DNA helicase has been shown to localize to the ND10 (nuclear domain 10) or PML (promyelocytic leukemia) nuclear bodies, where it associates with TOPIIIα, and to the nucleolus. Results This report demonstrates that the N-terminal domain of BLM is responsible for localization of the protein to the nuclear bodies, while the C-terminal domain directs the protein to the nucleolus. Deletions of the N-terminal domain of BLM have little effect on sister chromatid exchange frequency and chromosome stability as compared to helicase and C-terminal mutations which can increase SCE frequency and chromosome abnormalities. Conclusion The helicase activity and the C-terminal domain of BLM are critical for maintaining genomic stability as measured by the sister chromatid exchange assay. The localization of BLM into the nucleolus by the C-terminal domain appears to be more important to genomic stability than localization in the nuclear bodies. PMID:11472631

  19. A method for high-throughput, sensitive analysis of IgG Fc and Fab glycosylation by capillary electrophoresis.

    PubMed

    Mahan, Alison E; Tedesco, Jacquelynne; Dionne, Kendall; Baruah, Kavitha; Cheng, Hao D; De Jager, Philip L; Barouch, Dan H; Suscovich, Todd; Ackerman, Margaret; Crispin, Max; Alter, Galit

    2015-02-01

    The N-glycan of the IgG constant region (Fc) plays a central role in tuning and directing multiple antibody functions in vivo, including antibody-dependent cellular cytotoxicity, complement deposition, and the regulation of inflammation, among others. However, traditional methods of N-glycan analysis, including HPLC and mass spectrometry, are technically challenging and ill suited to handle the large numbers of low concentration samples analyzed in clinical or animal studies of the N-glycosylation of polyclonal IgG. Here we describe a capillary electrophoresis-based technique to analyze plasma-derived polyclonal IgG-glycosylation quickly and accurately in a cost-effective, sensitive manner that is well suited for high-throughput analyses. Additionally, because a significant fraction of polyclonal IgG is glycosylated on both Fc and Fab domains, we developed an approach to separate and analyze domain-specific glycosylation in polyclonal human, rhesus and mouse IgGs. Overall, this protocol allows for the rapid, accurate, and sensitive analysis of Fc-specific IgG glycosylation, which is critical for population-level studies of how antibody glycosylation may vary in response to vaccination or infection, and across disease states ranging from autoimmunity to cancer in both clinical and animal studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Aurora A regulates the activity of HURP by controlling the accessibility of its microtubule-binding domain.

    PubMed

    Wong, Jim; Lerrigo, Robert; Jang, Chang-Young; Fang, Guowei

    2008-05-01

    HURP is a spindle-associated protein that mediates Ran-GTP-dependent assembly of the bipolar spindle and promotes chromosome congression and interkinetochore tension during mitosis. We report here a biochemical mechanism of HURP regulation by Aurora A, a key mitotic kinase that controls the assembly and function of the spindle. We found that HURP binds to microtubules through its N-terminal domain that hyperstabilizes spindle microtubules. Ectopic expression of this domain generates defects in spindle morphology and function that reduce the level of tension across sister kinetochores and activate the spindle checkpoint. Interestingly, the microtubule binding activity of this N-terminal domain is regulated by the C-terminal region of HURP: in its hypophosphorylated state, C-terminal HURP associates with the microtubule-binding domain, abrogating its affinity for microtubules. However, when the C-terminal domain is phosphorylated by Aurora A, it no longer binds to N-terminal HURP, thereby releasing the inhibition on its microtubule binding and stabilizing activity. In fact, ectopic expression of this C-terminal domain depletes endogenous HURP from the mitotic spindle in HeLa cells in trans, suggesting the physiological importance for this mode of regulation. We concluded that phosphorylation of HURP by Aurora A provides a regulatory mechanism for the control of spindle assembly and function.

  1. Detection of Human Toxoplasma-Specific Immunoglobulins A, M, and G with a Recombinant Toxoplasma gondii Rop2 Protein

    PubMed Central

    Martin, Valentina; Arcavi, Miriam; Santillan, Graciela; Amendoeira, Maria Regina R.; De Souza Neves, Elizabeth; Griemberg, Gloria; Guarnera, Eduardo; Garberi, Juan C.; Angel, Sergio O.

    1998-01-01

    The Toxoplasma gondii rhoptry protein Rop2 was expressed in Escherichia coli as a fusion protein containing 44 kDa of the 55-kDa mature Rop2, supplied with six histidyl residues at the N-terminal end (Rop2196–561). Humoral response during Toxoplasma infection of humans was analyzed by immunoglobulin G (IgG), IgA, and IgM enzyme-linked immunosorbent assay with Rop2196–561 as the antigen substrate. The analyzed sera were divided according to T. gondii-specific serological tests (IgG, IgA, or IgM indirect immunofluorescence and IgA or IgM immunosorbent agglutination assay) as group A (IgG+ IgA− IgM−; n = 35), group B (IgG+ IgA+ IgM+; n = 21), group C (IgG+ IgA+ IgM−; n = 5), and group D (IgG+ IgA− IgM+; n = 16). Twenty-six T. gondii-seronegative sera from individuals with other infections were also included (group E). Anti-Rop2 IgG antibodies were detected in 82.8% of group A sera and in 97.6% of the sera with acute-phase marker immunoglobulins (groups B, C, and D). The percentage of IgA antibody reactivity against Rop2196–561 was 17.1% in group A, 50% in group D, and 80.8% in groups B and C. The percentage of IgM antibody reactivity was 0% in groups A and C and 62% in groups B and D. Sera from group E failed to show IgA, IgM, or IgG antibody reactivity. Since T. gondii Rop2 elicits a strong humoral response from an early stage of infection, it is suggested that recombinant Rop2196–561 would be suitable for use in diagnostic systems, in combination with other T. gondii antigens, to detect specific IgG, IgA, and IgM antibodies. PMID:9729528

  2. Human serum antibodies against EBV latent membrane protein 1 cross-react with α-synuclein

    PubMed Central

    Gray, Madison T.; Ganesh, Munisha S.; Middeldorp, Jaap M.

    2016-01-01

    Objectives: To identify the epitope on α-synuclein (α-syn) to which antibodies against the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) bind and to determine whether antibodies targeting this mimicry domain are present in human sera. Methods: Reactivity of the α-syn-cross-reacting anti-LMP1 monoclonal antibody CS1-4 to a synthetic peptide containing the putative mimicry domain was compared to those in which this domain was mutated and to murine and rat α-syn (which differ from human α-syn at this site) in Western blots. Using ELISA, sera from EBV+ (n = 4) and EBV− (n = 12) donors as well as those with infectious mononucleosis (IM; n = 120), and Hodgkin disease (HD; n = 33) were interrogated for antibody reactivity to synthetic peptides corresponding to regions of α-syn and LMP1 containing the mimicry domain. Results: CS1-4 showed strong reactivity to wild-type human α-syn, but not to the mutant peptides or rodent α-syn. Control EBV− and EBV+ sera showed no reactivity to α-syn or LMP1 peptides. However, a significant proportion of IM and HD sera contained immunoglobulin M (IgM) (59% and 70%, in IM and HD, respectively), immunoglobulin G (IgG) (40% and 48%), and immunoglobulin A (IgA) (28% and 36%) antibodies to both peptides, as well as a significant correlation in the titers of IgM (ρ = 0.606 and 0.664, for IM and HD, respectively), IgG (0.526 and 0.836), and IgA (0.569 and 0.728) antibodies targeting LMP1 and α-syn peptides. Conclusions: Anti-EBV-LMP1 antibodies cross-reacting with a defined epitope in α-syn are present in human patients. These findings may have implications for the pathogenesis of synucleinopathies. PMID:27218119

  3. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  4. High-resolution crystal structure and IgE recognition of the major grass pollen allergen Phl p 3.

    PubMed

    Devanaboyina, S C; Cornelius, C; Lupinek, C; Fauland, K; Dall'Antonia, F; Nandy, A; Hagen, S; Flicker, S; Valenta, R; Keller, W

    2014-12-01

    Group 2 and 3 grass pollen allergens are major allergens with high allergenic activity and exhibit structural similarity with the C-terminal portion of major group 1 allergens. In this study, we aimed to determine the crystal structure of timothy grass pollen allergen, Phl p 3, and to study its IgE recognition and cross-reactivity with group 2 and group 1 allergens. The three-dimensional structure of Phl p 3 was solved by X-ray crystallography and compared with the structures of group 1 and 2 grass pollen allergens. Cross-reactivity was studied using a human monoclonal antibody which inhibits allergic patients' IgE binding and by IgE inhibition experiments with patients' sera. Conformational Phl p 3 IgE epitopes were predicted with the algorithm SPADE, and Phl p 3 variants containing single point mutations in the predicted IgE binding sites were produced to analyze allergic patients' IgE binding. Phl p 3 is a globular β-sandwich protein showing structural similarity to Phl p 2 and the Phl p 1-C-terminal domain. Phl p 3 showed IgE cross-reactivity with group 2 allergens but not with group 1 allergens. SPADE identified two conformational IgE epitope-containing areas, of which one overlaps with the epitope defined by the monoclonal antibody. The mutation of arginine 68 to alanine completely abolished binding of the blocking antibody. This mutation and a mutation of D13 in the predicted second IgE epitope area also reduced allergic patients' IgE binding. Group 3 and group 2 grass pollen allergens are cross-reactive allergens containing conformational IgE epitopes. They lack relevant IgE cross-reactivity with group 1 allergens and therefore need to be included in diagnostic tests and allergen-specific treatments in addition to group 1 allergens. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation.

    PubMed

    Cho, Chris; Smallwood, Philip M; Nathans, Jeremy

    2017-08-30

    Reck, a GPI-anchored membrane protein, and Gpr124, an orphan GPCR, have been implicated in Wnt7a/Wnt7b signaling in the CNS vasculature. We show here that vascular endothelial cell (EC)-specific reduction in Reck impairs CNS angiogenesis and that EC-specific postnatal loss of Reck, combined with loss of Norrin, impairs blood-brain barrier (BBB) maintenance. The most N-terminal domain of Reck binds to the leucine-rich repeat (LRR) and immunoglobulin (Ig) domains of Gpr124, and weakening this interaction by targeted mutagenesis reduces Reck/Gpr124 stimulation of Wnt7a signaling in cell culture and impairs CNS angiogenesis. Finally, a soluble Gpr124(LRR-Ig) probe binds to cells expressing Frizzled, Wnt7a or Wnt7b, and Reck, and a soluble Reck(CC1-5) probe binds to cells expressing Frizzled, Wnt7a or Wnt7b, and Gpr124. These experiments indicate that Reck and Gpr124 are part of the cell surface protein complex that transduces Wnt7a- and Wnt7b-specific signals in mammalian CNS ECs to promote angiogenesis and regulate the BBB. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation

    PubMed Central

    Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich

    2015-01-01

    We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753

  7. CEACAM1 regulates TIM–3–mediated tolerance and exhaustion

    PubMed Central

    Huang, Yu-Hwa; Zhu, Chen; Kondo, Yasuyuki; Anderson, Ana C.; Gandhi, Amit; Russell, Andrew; Dougan, Stephanie K.; Petersen, Britt-Sabina; Melum, Espen; Pertel, Thomas; Clayton, Kiera L.; Raab, Monika; Chen, Qiang; Beauchemin, Nicole; Yazaki, Paul J.; Pyzik, Michal; Ostrowski, Mario A.; Glickman, Jonathan N.; Rudd, Christopher E.; Ploegh, Hidde L.; Franke, Andre; Petsko, Gregory A.; Kuchroo, Vijay K.; Blumberg, Richard S.

    2014-01-01

    T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers1–5. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition6–10. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity. PMID:25363763

  8. Extensive diversification of IgD-, IgY-, and truncated IgY(δFc)-encoding genes in the red-eared turtle (Trachemys scripta elegans).

    PubMed

    Li, Lingxiao; Wang, Tao; Sun, Yi; Cheng, Gang; Yang, Hui; Wei, Zhiguo; Wang, Ping; Hu, Xiaoxiang; Ren, Liming; Meng, Qingyong; Zhang, Ran; Guo, Ying; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng

    2012-10-15

    IgY(ΔFc), containing only CH1 and CH2 domains, is expressed in the serum of some birds and reptiles, such as ducks and turtles. The duck IgY(ΔFc) is produced by the same υ gene that expresses the intact IgY form (CH1-4) using different transcriptional termination sites. In this study, we show that intact IgY and IgY(ΔFc) are encoded by distinct genes in the red-eared turtle (Trachemys scripta elegans). At least eight IgY and five IgY(ΔFc) transcripts were found in a single turtle. Together with Southern blotting, our data suggest that multiple genes encoding both IgY forms are present in the turtle genome. Both of the IgY forms were detected in the serum using rabbit polyclonal Abs. In addition, we show that multiple copies of the turtle δ gene are present in the genome and that alternative splicing is extensively involved in the generation of both the secretory and membrane-bound forms of the IgD H chain transcripts. Although a single μ gene was identified, the α gene was not identified in this species.

  9. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments.

    PubMed

    Gasek, Nathan S; Nyland, Lori R; Vigoreaux, Jim O

    2016-04-27

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (fln(ΔC44)) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln⁺; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (fln(ΔN62); 3.21 ± 0.06 μm). Persistence length was significantly reduced in fln(ΔN62) (418 ± 72 μm; p < 0.005) compared to fln⁺ (1386 ± 196μm) and fln(ΔC44)(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM's dual role in flight and courtship behaviors.

  10. The Contributions of the Amino and Carboxy Terminal Domains of Flightin to the Biomechanical Properties of Drosophila Flight Muscle Thick Filaments

    PubMed Central

    Gasek, Nathan S.; Nyland, Lori R.; Vigoreaux, Jim O.

    2016-01-01

    Flightin is a myosin binding protein present in Pancrustacea. In Drosophila, flightin is expressed in the indirect flight muscles (IFM), where it is required for the flexural rigidity, structural integrity, and length determination of thick filaments. Comparison of flightin sequences from multiple Drosophila species revealed a tripartite organization indicative of three functional domains subject to different evolutionary constraints. We use atomic force microscopy to investigate the functional roles of the N-terminal domain and the C-terminal domain that show different patterns of sequence conservation. Thick filaments containing a C-terminal domain truncated flightin (flnΔC44) are significantly shorter (2.68 ± 0.06 μm; p < 0.005) than thick filaments containing a full length flightin (fln+; 3.21 ± 0.05 μm) and thick filaments containing an N-terminal domain truncated flightin (flnΔN62; 3.21 ± 0.06 μm). Persistence length was significantly reduced in flnΔN62 (418 ± 72 μm; p < 0.005) compared to fln+ (1386 ± 196μm) and flnΔC44(1128 ± 193 μm). Statistical polymer chain analysis revealed that the C-terminal domain fulfills a secondary role in thick filament bending propensity. Our results indicate that the flightin amino and carboxy terminal domains make distinct contributions to thick filament biomechanics. We propose these distinct roles arise from the interplay between natural selection and sexual selection given IFM’s dual role in flight and courtship behaviors. PMID:27128952

  11. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis.

    PubMed

    Torkashvand, Ali; Bahrami, Fariborz; Adib, Minoo; Ajdary, Soheila

    2018-05-05

    We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

    PubMed Central

    Wiedemann, Christoph; Szambowska, Anna; Häfner, Sabine; Ohlenschläger, Oliver; Gührs, Karl-Heinz; Görlach, Matthias

    2015-01-01

    The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain. PMID:25712103

  13. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J., E-mail: fisher@chem.ucdavis.edu

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminalmore » sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.« less

  14. Structure of the Fibrillin-1 N-Terminal Domains Suggests that Heparan Sulfate Regulates the Early Stages of Microfibril Assembly

    PubMed Central

    Yadin, David A.; Robertson, Ian B.; McNaught-Davis, Joanne; Evans, Paul; Stoddart, David; Handford, Penny A.; Jensen, Sacha A.; Redfield, Christina

    2013-01-01

    Summary The human extracellular matrix glycoprotein fibrillin-1 is the primary component of the 10- to 12-nm-diameter microfibrils, which perform key structural and regulatory roles in connective tissues. Relatively little is known about the molecular mechanisms of fibrillin assembly into microfibrils. Studies using recombinant fibrillin fragments indicate that an interaction between the N- and C-terminal regions drives head-to-tail assembly. Here, we present the structure of a fibrillin N-terminal fragment comprising the fibrillin unique N-terminal (FUN) and the first three epidermal growth factor (EGF)-like domains (FUN-EGF3). Two rod-like domain pairs are separated by a short, flexible linker between the EGF1 and EGF2 domains. We also show that the binding site for the C-terminal region spans multiple domains and overlaps with a heparin interaction site. These data suggest that heparan sulfate may sequester fibrillin at the cell surface via FUN-EGF3 prior to aggregation of the C terminus, thereby regulating microfibril assembly. PMID:24035709

  15. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation

    PubMed Central

    van den Bremer, Ewald TJ; Beurskens, Frank J; Voorhorst, Marleen; Engelberts, Patrick J; de Jong, Rob N; van der Boom, Burt G; Cook, Erika M; Lindorfer, Margaret A; Taylor, Ronald P; van Berkel, Patrick HC; Parren, Paul WHI

    2015-01-01

    Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexamerization at the cell surface. Here we demonstrate that C-terminal lysines may interfere with this process, leading to suboptimal C1q binding and CDC of cells opsonized with C-terminal lysine-containing IgG. After we removed these lysines with a carboxypeptidase, maximal complement activation was observed. Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules are produced in a pro-form in which charged C-termini interfere with IgG hexamer formation, C1q binding and CDC. To allow maximal complement activation, C-terminal lysine processing is required to release the antibody's full cytotoxic potential. PMID:26037225

  16. Inward open characterization of EmrD transporter with molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Xianwei; Wang, Boxiong, E-mail: boxiong_wang@yahoo.com

    EmrD is a member of the multidrug resistance exporter family. Up to now, little is known about the structural dynamics that underline the function of the EmrD protein in inward-facing open state and how the EmrD transits from an occluded state to an inward open state. For the first time the article applied the AT simulation to investigate the membrane transporter protein EmrD, and described the dynamic features of the whole protein, the domain, the helices, and the amino acid residues during an inward-open process from its occluded state. The gradual inward-open process is different from the current model ofmore » rigid-body domain motion in alternating-access mechanism. Simulation results show that the EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. In addition, it is observed that the helices exposed to the surrounding membrane show a higher level of flexibility than the other regions, and the protonated E227 plays a key role in the transition from the occluded to the open state. -- Highlights: •This study described the dynamic features of the whole EmrD protein, during an inward-open process from its occluded state. •The EmrD inward-open conformational fluctuation propagates from a C-terminal domain to an N-terminal domain via the linker region during the transition from its occluded state. •The conformational fluctuation of the C-terminal domain is larger than that of the N-terminal domain. •The protonated E227 plays a key role in the transition from the occluded to the open state.« less

  17. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  18. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  19. Conformational Changes in Small Ligands Upon Tetanus Toxin Binding

    DTIC Science & Technology

    2008-06-01

    lectin-like N-terminal jelly -roll domain and a C-terminal P-trefoil domain;2’ see Figure 2. The ganglioside binding site has been found to occur along...C-terminal P-trefoil and N-terminal jelly -roll sub- domains.’ 0 The site has been identified as the most highly conserved pocket in the structures of...the TeNT and botulinum toxins.23 p-trefoil jelly -roll Figure 2: Crystal Structure of TetC Determined to 1.6 A Resolution. a-Helices are red, P-sheets

  20. The formation of pyrrolid-2-one-5-carboxylic acid at the N-terminus of immunoglobulin G heavy chain

    PubMed Central

    Stott, D. I.; Munro, A. J.

    1972-01-01

    We propose that pyrrolid-2-one-5-carboxyl-tRNA is not involved in the initiation of protein synthesis in eukaryotic cells and that the N-terminal pyrrolid-2-one-5-carboxylic acid group of an IgG (immunoglobulin G) (that secreted by the mouse plasmacytoma Adj PC5) is formed by the enzymic cyclization of the N-terminal glutamine of the heavy chain of the completed IgG molecule and that the cyclization takes place inside the cell. We base these conclusions on the following evidence. (1) Pyrrolidonecarboxyl-tRNA was not found in incorporation experiments with rat liver preparations and [U-14C]-pyrrolidonecarboxylic acid, glutamic acid and glutamine, even though an incorporation extent of less than 2% of the total products could have been detected. (2) Double-labelling experiments showed that less than 8% of the nascent peptides of heavy chains (those obtained by precipitation by the antibody to Fc fragment) began with pyrrolidonecarboxylic acid. (3) Further double-labelling experiments showed that 60–66% of the heavy chains of the completed intracellular IgG molecule began with pyrrolidonecarboxylic acid after both 1 and 5h of labelling. (4) The IgG, after secretion by plasmacytoma Adj PC5, was found to have the sequence [unk]Glu- Val-Gln-Leu- at the N-termini of the heavy chains. PMID:4674626

  1. Antibody proteolysis: a common picture emerging from plants

    PubMed Central

    Donini, Marcello; Lombardi, Raffaele; Lonoce, Chiara; Di Carli, Mariasole; Marusic, Carla; Morea, Veronica; Di Micco, Patrizio

    2015-01-01

    We have recently characterized the degradation profiles of 2 human IgG1 monoclonal antibodies, the tumor-targeting mAb H10 and the anti-HIV mAb 2G12. Both mAbs were produced in plants either as stable transgenics or using a transient expression system based on leaf agroinfiltration. The purified antibodies were separated by 1DE and protein bands were characterized by N-terminal sequencing. The proteolytic cleavage sites identified in the heavy chain (HC) of both antibodies were localized in 3 inter-domain regions, suggesting that the number of proteolytic cleavage events taking place in plants is limited. One of the cleavage sites, close to the hinge region, was common to both antibodies. PMID:26186119

  2. Bean peptides have higher in silico binding affinities than ezetimibe for the N-terminal domain of cholesterol receptor Niemann-Pick C1 Like-1.

    PubMed

    Real Hernandez, Luis M; Gonzalez de Mejia, Elvira

    2017-04-01

    Niemann-Pick C1 like-1 (NPC1L1) mediates cholesterol absorption at the apical membrane of enterocytes through a yet unknown mechanism. Bean, pea, and lentil proteins are naturally hydrolyzed during digestion to produce peptides. The potential for pulse peptides to have high binding affinities for NPC1L1 has not been determined. In this study , in silico binding affinities and interactions were determined between the N-terminal domain of NPC1L1 and 14 pulse peptides (5≥ amino acids) derived through pepsin-pancreatin digestion. Peptides were docked in triplicate to the N-terminal domain using docking program AutoDock Vina, and results were compared to those of ezetimibe, a prescribed NPC1L1 inhibitor. Three black bean peptides (-7.2 to -7.0kcal/mol) and the cowpea bean dipeptide Lys-Asp (-7.0kcal/mol) had higher binding affinities than ezetimibe (-6.6kcal/mol) for the N-terminal domain of NPC1L1. Lentil and pea peptides studied did not have high binding affinities. The common bean peptide Tyr-Ala-Ala-Ala-Thr (-7.2kcal/mol), which can be produced from black or navy bean proteins, had the highest binding affinity. Ezetimibe and peptides with high binding affinities for the N-terminal domain are expected to interact at different locations of the N-terminal domain. All high affinity black bean peptides are expected to have van der Waals interactions with SER130, PHE136, and LEU236 and a conventional hydrogen bond with GLU238 of NPC1L1. Due to their high affinity for the N-terminal domain of NPC1L1, black and cowpea bean peptides produced in the digestive track have the potential to disrupt interactions between NPC1L1 and membrane proteins that lead to cholesterol absorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    PubMed

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  4. Nebulette interacts with filamin C.

    PubMed

    Holmes, William B; Moncman, Carole L

    2008-02-01

    The actin-binding proteins, nebulette, and nebulin, are comprised of a four-domain layout containing an acidic N-terminal region, a repeat domain, a serine-rich-linker region, and a Src homology-3 domain. Both proteins contain homologous N-terminal regions that are predicted to be in different environments within the sarcomere. The nebulin acidic N-terminal region is found at the distal ends of the thin filaments. Nebulette, however, is predicted to extend 150 nm from the center of the Z-line. To dissect out the functions of the N-terminal domain of nebulette, we have performed a yeast two-hybrid screen using nebulette residues 1-86 as bait. We have identified filamin-C, ZASP-1, and tropomyosin-1 as binding partners. Characterization of the nebulette-filamin interaction indicates that filamin-C predominantly interacts with the modules. These data suggest that filamin-C, a known component of striated muscle Z-lines, interacts with nebulette modules. Copyright 2007 Wiley-Liss, Inc.

  5. The work of titin protein folding as a major driver in muscle contraction

    PubMed Central

    Eckels, Edward C.; Tapia-Rojo, Rafael; Rivas-Pardo, Jamie Andrés; Fernández, Julio M.

    2018-01-01

    Single molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin Ig domains are capable of folding against a pulling force, generating mechanical work which exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin crossbridges reduces the force on titin causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4–15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil, and occurs at forces which exceed the maximum stalling force of single myosin motors. Thus titin operates like a mechanical battery storing elastic energy efficiently by unfolding Ig domains, and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction. PMID:29433413

  6. Structural studies of MFE-1: the 1.9 A crystal structure of the dehydrogenase part of rat peroxisomal MFE-1.

    PubMed

    Taskinen, Jukka P; Kiema, Tiila R; Hiltunen, J Kalervo; Wierenga, Rik K

    2006-01-27

    The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.

  7. Structure of the Bacteriophage [phi]KZ Lytic Transglycosylase gp144

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fokine, Andrei; Miroshnikov, Konstantin A.; Shneider, Mikhail M.

    2008-04-02

    Lytic transglycosylases are enzymes that act on the peptidoglycan of bacterial cell walls. They cleave the glycosidic linkage between N-acetylmuramoyl and N-acetylglucosaminyl residues with the concomitant formation of a 1,6-anhydromuramoyl product. The x-ray structure of the lytic transglycosylase gp144 from the Pseudomonas bacteriophage {phi}KZ has been determined to 2.5-{angstrom} resolution. This protein is probably employed by the bacteriophage in the late stage of the virus reproduction cycle to destroy the bacterial cell wall to release the phage progeny. {phi}KZ gp144 is a 260-residue {alpha}-helical protein composed of a 70-residue N-terminal cell wall-binding domain and a C-terminal catalytic domain. The foldmore » of the N-terminal domain is similar to the peptidoglycan-binding domain from Streptomyces albus G d-Ala-d-Ala carboxypeptidase and to the N-terminal prodomain of human metalloproteinases that act on extracellular matrices. The C-terminal catalytic domain of gp144 has a structural similarity to the catalytic domain of the transglycosylase Slt70 from Escherichia coli and to lysozymes. The gp144 catalytic domain has an elongated groove that can bind at least five sugar residues at sites A-E. As in other lysozymes, the peptidoglycan cleavage (catalyzed by Glu{sup 115} in gp144) occurs between sugar-binding subsites D and E. The x-ray structure of the {phi}KZ transglycosylase complexed with the chitotetraose (N-acetylglucosamine){sub 4} has been determined to 2.6-{angstrom} resolution. The N-acetylglucosamine residues of the chitotetraose bind in sites A-D.« less

  8. ADAMTS13 Autoantibodies Cloned from Patients with Acquired Thrombotic Thrombocytopenic Purpura: 1. Structural and functional characterization in vitro

    PubMed Central

    Ostertag, Eric M.; Kacir, Stephen; Thiboutot, Michelle; Gulendran, Gayathri; Zheng, X. Long; Cines, Douglas B.; Siegel, Don L.

    2016-01-01

    BACKGROUND Acquired thrombotic thrombocytopenia purpura (TTP) is a life-threatening illness caused by autoantibodies that decrease the activity of ADAMTS13, the von Willebrand Factor cleaving protease. Despite efficacy of plasma exchange, mortality remains high and relapse is common. Improved therapies may come from understanding the diversity of pathogenic autoantibodies on a molecular/genetic level. Cloning comprehensive repertoires of patient autoantibodies can provide the necessary tools for studying immunobiology of disease and developing animal models. STUDY DESIGN AND METHODS Anti-ADAMTS13 antibodies were cloned from four patients with acquired TTP using phage display and characterized with respect to genetic origin, inhibition of ADAMTS13 proteolytic activity, and epitope specificity. Anti-idiotypic antisera raised to a subset of autoantibodies enabled comparison of their relatedness to each other and to polyclonal IgG in patient plasma. RESULTS Fifty-one unique antibodies were isolated comprising epitope specificities resembling the diversity found in circulating patient IgG. Antibodies directed to both the amino terminal domains and those requiring the ADAMTS13 cysteine-rich/spacer region for binding inhibited proteolytic activity, while those solely targeting carboxy-terminal domains were non-inhibitory. Anti-idiotypic antisera raised to a subset of antibody clones crossreacted with and reduced the inhibitory activity of polyclonal IgG from a set of unrelated patients. CONCLUSIONS Anti-ADAMTS13 autoantibodies isolated by repertoire cloning display the diversity of epitope specificities found in patient plasma and provide tools for developing animal models of acquired TTP. Shared idiotypes of inhibitory clones with circulating IgG from multiple patients suggest common features of pathogenic autoantibodies that could be exploited for developing more targeted therapies. PMID:27040144

  9. Recombinant dissection of myosin heavy chain of Toxocara canis shows strong clustering of antigenic regions.

    PubMed

    Obwaller, A; Duchêne, M; Bruhn, H; Steipe, B; Tripp, C; Kraft, D; Wiedermann, G; Auer, H; Aspöck, H

    2001-05-01

    Myosins from nematode parasites elicit strong humoral and cellular immune responses and have been investigated as vaccine candidates. In this study we cloned and sequenced a cDNA coding for myosin heavy chain from Toxocara canis, a nematode parasite of canids which may also infect humans and cause various unspecific symptoms. To determine the major antigenic regions the myosin heavy chain was systematically dissected into ten overlapping recombinant fusion polypeptides which were purified by metal chelate chromatography. Single fragments were then tested for their IgG reactivity in sera from toxocarosis patients and healthy probands. Two regions, one region at the mid to carboxy-terminal end of the head domain and one region in the rod domain, were identified as major antigens, which in combination were positive with 86% of the sera. The other domains were less reactive. This shows that the patients' IgG reactivity was not directed evenly against all parts of the molecule, but was rather clustered in few regions.

  10. Modeling AFM-induced PEVK extension and the reversible unfolding of Ig/FNIII domains in single and multiple titin molecules.

    PubMed Central

    Zhang, B; Evans, J S

    2001-01-01

    Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble. PMID:11159428

  11. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    PubMed Central

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase within the non-homologous end joining pathway. PMID:25108835

  12. Structural and functional analysis of human HtrA3 protease and its subdomains

    DOE PAGES

    Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; ...

    2015-06-25

    Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that themore » protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.« less

  13. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains

    PubMed Central

    Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Lesner, Adam; Banecki, Bogdan; Skorko-Glonek, Joanna; Joachimiak, Andrzej; Lipinska, Barbara

    2015-01-01

    Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases. PMID:26110759

  14. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains.

    PubMed

    Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Lesner, Adam; Banecki, Bogdan; Skorko-Glonek, Joanna; Joachimiak, Andrzej; Lipinska, Barbara

    2015-01-01

    Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.

  15. Role of Plant-Specific N-Terminal Domain of Maize CK2β1 Subunit in CK2β Functions and Holoenzyme Regulation

    PubMed Central

    Vélez-Bermúdez, Isabel C.; Carretero-Paulet, Lorenzo; Lumbreras, Victoria; Pagès, Montserrat

    2011-01-01

    Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes. PMID:21789193

  16. Aggregation of γ-crystallins associated with human cataracts via domain swapping at the C-terminal β-strands

    PubMed Central

    Das, Payel; King, Jonathan A.; Zhou, Ruhong

    2011-01-01

    The prevalent eye disease age-onset cataract is associated with aggregation of human γD-crystallins, one of the longest-lived proteins. Identification of the γ-crystallin precursors to aggregates is crucial for developing strategies to prevent and reverse cataract. Our microseconds of atomistic molecular dynamics simulations uncover the molecular structure of the experimentally detected aggregation-prone folding intermediate species of monomeric native γD-crystallin with a largely folded C-terminal domain and a mostly unfolded N-terminal domain. About 30 residues including a, b, and c strands from the Greek Key motif 4 of the C-terminal domain experience strong solvent exposure of hydrophobic residues as well as partial unstructuring upon N-terminal domain unfolding. Those strands comprise the domain–domain interface crucial for unusually high stability of γD-crystallin. We further simulate the intermolecular linkage of these monomeric aggregation precursors, which reveals domain-swapped dimeric structures. In the simulated dimeric structures, the N-terminal domain of one monomer is frequently found in contact with residues 135–164 encompassing the a, b, and c strands of the Greek Key motif 4 of the second molecule. The present results suggest that γD-crystallin may polymerize through successive domain swapping of those three C-terminal β-strands leading to age-onset cataract, as an evolutionary cost of its very high stability. Alanine substitutions of the hydrophobic residues in those aggregation-prone β-strands, such as L145 and M147, hinder domain swapping as a pathway toward dimerization. These findings thus provide critical molecular insights onto the initial stages of age-onset cataract, which is important for understanding protein aggregation diseases. PMID:21670251

  17. A Gene Encoding a Hevein-Like Protein from Elderberry Fruits Is Homologous to PR-4 and Class V Chitinase Genes1

    PubMed Central

    Van Damme, Els J.M.; Charels, Diana; Roy, Soma; Tierens, Koenraad; Barre, Annick; Martins, José C.; Rougé, Pierre; Van Leuven, Fred; Does, Mirjam; Peumans, Willy J.

    1999-01-01

    We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene. PMID:10198114

  18. The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module*

    PubMed Central

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H. P.; Whisstock, James C.; Baker, Edward N.; Kreikemeyer, Bernd

    2012-01-01

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain. PMID:22977243

  19. The extracellular protein factor Epf from Streptococcus pyogenes is a cell surface adhesin that binds to cells through an N-terminal domain containing a carbohydrate-binding module.

    PubMed

    Linke, Christian; Siemens, Nikolai; Oehmcke, Sonja; Radjainia, Mazdak; Law, Ruby H P; Whisstock, James C; Baker, Edward N; Kreikemeyer, Bernd

    2012-11-02

    Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.

  20. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain.

    PubMed

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-06-24

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23-230) as detected by [(1)H, (15)N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn(2+)-binding to the octarepeat motif.

  1. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain

    PubMed Central

    Narayanan, Sunilkumar Puthenpurackal; Nair, Divya Gopalakrishnan; Schaal, Daniel; Barbosa de Aguiar, Marisa; Wenzel, Sabine; Kremer, Werner; Schwarzinger, Stephan; Kalbitzer, Hans Robert

    2016-01-01

    Fatal neurodegenerative disorders termed transmissible spongiform encephalopathies (TSEs) are associated with the accumulation of fibrils of misfolded prion protein PrP. The noble gas xenon accommodates into four transiently enlarged hydrophobic cavities located in the well-folded core of human PrP(23–230) as detected by [1H, 15N]-HSQC spectroscopy. In thermal equilibrium a fifth xenon binding site is formed transiently by amino acids A120 to L125 of the presumably disordered N-terminal domain and by amino acids K185 to T193 of the well-folded domain. Xenon bound PrP was modelled by restraint molecular dynamics. The individual microscopic and macroscopic dissociation constants could be derived by fitting the data to a model including a dynamic opening and closing of the cavities. As observed earlier by high pressure NMR spectroscopy xenon binding influences also other amino acids all over the N-terminal domain including residues of the AGAAAAGA motif indicating a structural coupling between the N-terminal domain and the core domain. This is in agreement with spin labelling experiments at positions 93 or 107 that show a transient interaction between the N-terminus and the start of helix 2 and the end of helix 3 of the core domain similar to that observed earlier by Zn2+-binding to the octarepeat motif. PMID:27341298

  2. Value of isolated IgA anti-β2 -glycoprotein I positivity in the diagnosis of the antiphospholipid syndrome.

    PubMed

    Murthy, Vijaya; Willis, Rohan; Romay-Penabad, Zurina; Ruiz-Limón, Patricia; Martínez-Martínez, Laura A; Jatwani, Shraddha; Jajoria, Praveen; Seif, Alan; Alarcón, Graciela S; Papalardo, Elizabeth; Liu, Jigna; Vilá, Luis M; McGwin, Gerald; McNearney, Terry A; Maganti, Rashmi; Sunkureddi, Prashanth; Parekh, Trisha; Tarantino, Michael; Akhter, Ehtisham; Fang, Hong; Gonzalez, Emilio B; Binder, Walter R; Norman, Gary L; Shums, Zakera; Teodorescu, Marius; Reveille, John D; Petri, Michelle; Pierangeli, Silvia S

    2013-12-01

    To examine the prevalence of isolated IgA anti-β2 -glycoprotein I (anti-β2 GPI) positivity and the association of these antibodies, and a subgroup that bind specifically to domain IV/V of β2 GPI, with clinical manifestations of the antiphospholipid syndrome (APS) in 3 patient groups and to evaluate the pathogenicity of IgA anti-β2 GPI in a mouse model of thrombosis. Patients with systemic lupus erythematosus (SLE) from a multiethnic, multicenter cohort (LUpus in MInorities, NAture versus nurture [LUMINA]) (n = 558), patients with SLE from the Hopkins Lupus Cohort (n = 215), and serum samples referred to the Antiphospholipid Standardization Laboratory (APLS) (n = 5,098) were evaluated. IgA anti-β2 GPI titers and binding to domain IV/V of β2 GPI were examined by enzyme-linked immunosorbent assay (ELISA). CD1 mice were inoculated with purified IgA anti-β2 GPI antibodies, and surgical procedures and ELISAs were performed to evaluate thrombus development and tissue factor (TF) activity. A total of 198 patients were found to be positive for IgA anti-β2 GPI isotype, and 57 patients were positive exclusively for IgA anti-β2 GPI antibodies. Of these, 13 of 23 patients (56.5%) in the LUMINA cohort, 17 of 17 patients (100%) in the Hopkins cohort, and 10 of 17 patients (58.9%) referred to APLS had at least one APS-related clinical manifestation. Fifty-four percent of all the IgA anti-β2 GPI-positive serum samples reacted with domain IV/V of anti-β2 GPI, and 77% of those had clinical features of APS. Isolated IgA anti-β2 GPI positivity was associated with an increased risk of arterial thrombosis (P < 0.001), venous thrombosis (P = 0.015), and all thrombosis (P < 0.001). The association between isolated IgA anti-β2 GPI and arterial thrombosis (P = 0.0003) and all thrombosis (P = 0.0003) remained significant after adjusting for other risk factors for thrombosis. In vivo mouse studies demonstrated that IgA anti-β2 GPI antibodies induced significantly larger thrombi and higher TF levels compared to controls. Isolated IgA anti-β2 GPI-positive titers may identify additional patients with clinical features of APS. Testing for these antibodies when other antiphospholipid tests are negative and APS is suspected is recommended. IgA anti-β2 GPI antibodies directed to domain IV/V of β2 GPI represent an important subgroup of clinically relevant antiphospholipids. Copyright © 2013 by the American College of Rheumatology.

  3. Value of Isolated IgA anti-β2GPI Positivity in the Diagnosis of the Antiphospholipid Syndrome

    PubMed Central

    Murthy, Vijaya; Willis, Rohan; Romay-Penabad, Zurina; Ruiz-Limón, Patricia; Martínez-Martínez, Laura A.; Jatwani, Shraddha; Jajoria, Praveen; Seif, Alan; Alarcón, Graciela S.; Papalardo, Elizabeth; Liu, Jigna; Vilá, Luis M.; McGwin, Gerald; McNearney, Terry A.; Maganti, Rashmi; Sunkureddi, Prashanth; Parekh, Trisha; Tarantino, Michael; Akhter, Ehtisham; Fang, Hong; Gonzalez, Emilio B.; Binder, Walter R.; Norman, Gary L.; Shums, Zakera; Teodorescu, Marius; Reveille, John D.; Petri, Michelle; Pierangeli, Silvia S.

    2014-01-01

    Purpose To examine the prevalence of isolated IgA anti-β2Glycoprotein I (anti-β2GPI) positivity and the association of these antibodies, and a subgroup that bind specifically to domain IV/V of β2GPI, with clinical manifestations of the Antiphospholipid Syndrome (APS) in three patients groups. The pathogenicity of IgA anti-β2GPI was also evaluated in a mouse model of thrombosis. Methods Patients with systemic lupus erythematosus (SLE) from a multiethnic, multicenter cohort (LUpus in MInorities, NAture versus nurture [LUMINA]) (n=558), patients with SLE from the Hopkins Lupus Cohort (n=215), and serum samples referred to the Antiphospholipid Standardization Laboratory (APLS) (n=5,098) were evaluated. IgA anti-β2GPI titers and binding to domain IV/V of β2GPI were examined by enzyme-linked immunosorbent assay (ELISA). CD1 mice were inoculated with purified IgA anti- β2GPI antibodies, and surgical procedures and ELISAs were performed to evaluate thrombus development and tissue factor (TF) activity. Results A total of 198 patients were found to be positive for IgA anti-β2GPI isotype, and 57 patients were positive exclusively for IgA anti-β2GPI antibodies. Of these, 13 of 23 patients (56.5%) in the LUMINA cohort, 17 of 17 patients (100%) in the Hopkins cohort, and 10 of 17 patients (58.9%) referred to APLS had at least one APS-related clinical manifestation. Fifty-four percent of all the IgA anti-β2GPI positive serum samples reacted with domain IV/V of anti-β2GPI, and 77% of those had clinical features of APS. Isolated IgA anti-β2GPI positivity was associated with an increased risk for arterial thrombosis (p<0.001), venous thrombosis (p=0.015) and all thrombosis (p<0.001). The association between isolated IgA anti-β2GPI and arterial thrombosis (p=0.0003) and all thrombosis (p=0.0003) remained significant after adjusting for other risk factors for thrombosis. In vivo mouse studies demonstrated that IgA anti-β2GPI antibodies induced significantly larger thrombi and higher TF levels compared to controls. Conclusion Isolated IgA anti-β2GPI positive titers may identify additional patients with clinical features of APS. Testing for these antibodies when other antiphospholipid (aPL) tests are negative and APS is suspected is recommended. IgA anti-β2GPI antibodies directed to domain IV/V of β2GPI represent an important subgroup of clinically relevant antiphospholipids. PMID:23983008

  4. Work Done by Titin Protein Folding Assists Muscle Contraction.

    PubMed

    Rivas-Pardo, Jaime Andrés; Eckels, Edward C; Popa, Ionel; Kosuri, Pallav; Linke, Wolfgang A; Fernández, Julio M

    2016-02-16

    Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig) domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6-8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. PDZ affinity chromatography: a general method for affinity purification of proteins based on PDZ domains and their ligands.

    PubMed

    Walkup, Ward G; Kennedy, Mary B

    2014-06-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ∼90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways

    PubMed Central

    Willett, Julia L. E.; Gucinski, Grant C.; Fatherree, Jackson P.; Low, David A.; Hayes, Christopher S.

    2015-01-01

    Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal “translocation domains.” These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria. PMID:26305955

  7. Biophysical characterization of the calmodulin-like domain of Plasmodium falciparum calcium dependent protein kinase 3

    PubMed Central

    Andresen, Cecilia; Niklasson, Markus; Cassman Eklöf, Sofie; Wallner, Björn

    2017-01-01

    Calcium dependent protein kinases are unique to plants and certain parasites and comprise an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium binding domain. Since the proteins are not found in man they are potential drug targets. We have characterized the calcium binding lobes of the regulatory domain of calcium dependent protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structurally similar, the two lobes differ in several other regards. While the monomeric N-terminal lobe changes its structure in response to calcium binding and shows global dynamics on the sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe could not be prepared calcium-free and forms dimers in solution. If our results can be generalized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even at basal levels and that activation is caused by the structural reorganization associated with binding of a single calcium ion to the N-terminal lobe. PMID:28746405

  8. N-Terminal Domain of Turkey Pancreatic Lipase is Active on Long Chain Triacylglycerols and Stabilized by Colipase

    PubMed Central

    Bou Ali, Madiha; Karray, Aida; Gargouri, Youssef; Ben Ali, Yassine

    2013-01-01

    The gene encoding the TPL N-terminal domain (N-TPL), fused with a His6-tag, was cloned and expressed in Pichia pastoris, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. The recombinant protein was successfully expressed and secreted with an expression level of 5 mg/l of culture medium after 2 days of culture. The N-TPL was purified through a one-step Ni-NTA affinity column with a purification factor of approximately 23-fold. The purified N-TPL, with a molecular mass of 35 kDa, had a specific activity of 70 U/mg on tributyrin. Surprisingly, this domain was able to hydrolyse long chain TG with a specific activity of 11 U/mg using olive oil as substrate. This result was confirmed by TLC analysis showing that the N-TPL was able to hydrolyse insoluble substrates as olive oil. N-TPL was unstable at temperatures over 37°C and lost 70% of its activity at acid pH, after 5 min of incubation. The N-TPL exhibited non linear kinetics, indicating its rapid denaturation at the tributyrin–water interface. Colipase increased the N-TPL stability at the lipid-water interface, so the TPL N-terminal domain probably formed functional interactions with colipase despite the absence of the C-terminal domain. PMID:23977086

  9. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.

    1993-03-01

    Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.

  10. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  11. The intermembrane space domain of Tim23 is intrinsically disordered with a distinct binding region for presequences

    PubMed Central

    de la Cruz, Laura; Bajaj, Rakhi; Becker, Stefan; Zweckstetter, Markus

    2010-01-01

    Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N-terminal, soluble domain in the intermembrane space (IMS) and a C-terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N-terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge-hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network. PMID:20718036

  12. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase

    PubMed Central

    2014-01-01

    Background Bacteroides spp. form a significant part of our gut microbiome and are well known for optimized metabolism of diverse polysaccharides. Initial analysis of the archetypal Bacteroides thetaiotaomicron genome identified 172 glycosyl hydrolases and a large number of uncharacterized proteins associated with polysaccharide metabolism. Results BT_1012 from Bacteroides thetaiotaomicron VPI-5482 is a protein of unknown function and a member of a large protein family consisting entirely of uncharacterized proteins. Initial sequence analysis predicted that this protein has two domains, one on the N- and one on the C-terminal. A PSI-BLAST search found over 150 full length and over 90 half size homologs consisting only of the N-terminal domain. The experimentally determined three-dimensional structure of the BT_1012 protein confirms its two-domain architecture and structural analysis of both domains suggests their specific functions. The N-terminal domain is a putative catalytic domain with significant similarity to known glycoside hydrolases, the C-terminal domain has a beta-sandwich fold typically found in C-terminal domains of other glycosyl hydrolases, however these domains are typically involved in substrate binding. We describe the structure of the BT_1012 protein and discuss its sequence-structure relationship and their possible functional implications. Conclusions Structural and sequence analyses of the BT_1012 protein identifies it as a glycosyl hydrolase, expanding an already impressive catalog of enzymes involved in polysaccharide metabolism in Bacteroides spp. Based on this we have renamed the Pfam families representing the two domains found in the BT_1012 protein, PF13204 and PF12904, as putative glycoside hydrolase and glycoside hydrolase-associated C-terminal domain respectively. PMID:24742328

  13. Solution structure of the N-terminal domain of a replication restart primosome factor, PriC, in Escherichia coli

    PubMed Central

    Aramaki, Takahiko; Abe, Yoshito; Katayama, Tsutomu; Ueda, Tadashi

    2013-01-01

    In eubacterial organisms, the oriC-independent primosome plays an essential role in replication restart after the dissociation of the replication DNA-protein complex by DNA damage. PriC is a key protein component in the replication restart primosome. Our recent study suggested that PriC is divided into two domains: an N-terminal and a C-terminal domain. In the present study, we determined the solution structure of the N-terminal domain, whose structure and function have remained unknown until now. The revealed structure was composed of three helices and one extended loop. We also observed chemical shift changes in the heteronuclear NMR spectrum and oligomerization in the presence of ssDNA. These abilities may contribute to the PriC-ssDNA complex, which is important for the replication restart primosome. PMID:23868391

  14. Immune response against the coiled coil domain of Sjögren's syndrome associated autoantigen Ro52 induces salivary gland dysfunction.

    PubMed

    Sroka, Magdalena; Bagavant, Harini; Biswas, Indranil; Ballard, Abigail; Deshmukh, Umesh S

    2018-01-31

    The structural domains of Ro52, termed the RING, B-box, coiled coil (CC) and B30.2/SPRY are targets of anti-Ro52 in multiple autoimmune disorders. In Sjögren's syndrome patients, the presence of anti-Ro52 is associated with higher disease severity, and in mice, they induce salivary gland hypofunction. This study was undertaken to investigate whether immune responses against different domains of Ro52, influences salivary gland disease in mice. Female NZM2758 mice were immunised with Ro52 domains expressed as recombinant fusion proteins with maltose binding protein (MBP) [MBP-RING-B-box, MBP-CC, MBP-CC(ΔC19), MBP-B30.2/SPRY]. Sera from immunised mice were studied for IgG antibodies to Ro52 by immunoprecipitation, and to salivary gland cells by immunofluorescence. Pilocarpine-induced saliva production was measured to evaluate salivary gland function. Submandibular glands were investigated by histopathology for inflammation and by immune-histochemistry for IgG deposition. Mice immunised with different Ro52-domains had comparable reactivity to Ro52 and to salivary gland cells. However, only mice immunised with the CC domain and its C-terminal truncated version CC(ΔC19) showed a significant drop in saliva production. None of the mice developed severe salivary gland inflammation. The salivary gland hypofunction significantly correlated with increased intra-lobar IgG deposits in the submandibular salivary glands. Our data demonstrate that epitope specificity of anti-Ro52 antibodies plays a critical role in the induction of glandular dysfunction. Clearly, screening Sjögren's syndrome patients for relative levels of Ro52 domain specific antibodies will be more informative for associating anti-Ro52 with clinical measures of the disorder.

  15. CD80 and CD86 IgC domains are important for quaternary structure, receptor binding and co-signaling function.

    PubMed

    Girard, Tanya; Gaucher, Denis; El-Far, Mohamed; Breton, Gaëlle; Sékaly, Rafick-Pierre

    2014-09-01

    CD86 and CD80, the ligands for the co-stimulatory molecules CD28 and CTLA-4, are members of the Ig superfamily. Their structure includes Ig variable-like (IgV) domains, Ig constant-like (IgC) domains and intracellular domains. Although crystallographic studies have clearly identified the IgV domain to be responsible for receptor interactions, earlier studies suggested that both Ig domains are required for full co-signaling function. Herein, we have used deletion and chimeric human CD80 and CD86 molecules in co-stimulation assays to study the impact of the multimeric state of IgV and IgC domains on receptor binding properties and on co-stimulatory function in a peptide-specific T cell activation model. We report for the first time the presence of CD80 dimers and CD86 monomers in living cells. Moreover, we show that the IgC domain of both molecules inhibits multimer formation and greatly affects binding to the co-receptors CD28 and CTLA-4. Finally, both IgC and intracellular domains are required for full co-signaling function. These findings reveal the distinct but complementary roles of CD80 and CD86 IgV and IgC domains in T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter

    PubMed Central

    2014-01-01

    Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911

  17. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  18. Specific binding of the WASP N-terminal domain to Btk is critical for TLR2 signaling in macrophages.

    PubMed

    Sakuma, Chisato; Sato, Mitsuru; Takenouchi, Takato; Kitani, Hiroshi

    2015-02-01

    Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we revealed that WASP is involved in lipopolysaccharide-TLR4 signaling in macrophages by association of Bruton's tyrosine kinase (Btk) with the WASP N-terminal domain. Btk has been shown to play important roles in the signaling of several TLRs and to modulate the inflammatory response in macrophages. In this study, we evaluated the importance of the interaction between Btk and WASP in TLR2 signaling by using bone marrow-derived macrophage cell lines from transgenic (Tg) mice expressing anti-WASP N-terminal domain single-chain variable fragment (scFv) or VL single-domain intrabodies. In this Tg bone marrow-derived macrophages, specific interaction between WASP and Btk were strongly inhibited by masking of the binding site in the WASP N-terminal domain. There was impairment of gene expression of TNF-α, IL-6, and IL-1β and phosphorylation of inhibitor of κB α/β (IKKα/β) and nuclear factor (NF)-κB upon stimulation with TLR2 ligands. Furthermore, tyrosine phosphorylation of WASP following TLR2-ligand stimulation was severely inhibited in the Tg bone marrow-derived macrophages, as shown by the impairment in WASP tyrosine phosphorylation following lipopolysaccharide stimulation. These results strongly suggest that the association between the WASP N-terminal domain and Btk plays an important role in the TLR2-signaling pathway in macrophages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurzburg, Beth A.; Kim, Beomkyu; Tarchevskaya, Svetlana S.

    IgE antibodies interact with the high affinity IgE Fc receptor, FcϵRI, and activate inflammatory pathways associated with the allergic response. The IgE-Fc region, comprising the C-terminal domains of the IgE heavy chain, binds FcϵRI and can adopt different conformations ranging from a closed form incompatible with receptor binding to an open, receptor-bound state. A number of intermediate states are also observed in different IgE-Fc crystal forms. To further explore this apparent IgE-Fc conformational flexibility and to potentially trap a closed, inactive state, we generated a series of disulfide bond mutants. Here we describe the structure and biochemical properties of anmore » IgE-Fc mutant that is trapped in the closed, non-receptor binding state via an engineered disulfide at residue 335 (Cys-335). Reduction of the disulfide at Cys-335 restores the ability of IgE-Fc to bind to its high affinity receptor, FcϵRIα. The structure of the Cys-335 mutant shows that its conformation is within the range of previously observed, closed form IgE-Fc structures and that it retains the hydrophobic pocket found in the hinge region of the closed conformation. Locking the IgE-Fc into the closed state with the Cys-335 mutation does not affect binding of two other IgE-Fc ligands, omalizumab and DARPin E2_79, demonstrating selective blocking of the high affinity receptor binding.« less

  20. Structural Basis for Toughness and Flexibility in the C-terminal Passenger Domain of an Acinetobacter Trimeric Autotransporter Adhesin*

    PubMed Central

    Koiwai, Kotaro; Hartmann, Marcus D.; Linke, Dirk; Lupas, Andrei N.; Hori, Katsutoshi

    2016-01-01

    Trimeric autotransporter adhesins (TAAs) on the cell surface of Gram-negative pathogens mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific high adhesiveness to abiotic material surfaces as well as to biotic surfaces. It consists of a passenger domain secreted by the C-terminal transmembrane anchor domain (TM), and the passenger domain contains an N-terminal head, N-terminal stalk, C-terminal head (Chead), and C-terminal stalk (Cstalk). The Chead-Cstalk-TM fragment, which is conserved in many Acinetobacter TAAs, has by itself the head-stalk-anchor architecture of a complete TAA. Here, we show the crystal structure of the Chead-Cstalk fragment, AtaA_C-terminal passenger domain (CPSD), providing the first view of several conserved TAA domains. The YadA-like head (Ylhead) of the fragment is capped by a unique structure (headCap), composed of three β-hairpins and a connector motif; it also contains a head insert motif (HIM1) before its last inner β-strand. The headCap, Ylhead, and HIM1 integrally form a stable Chead structure. Some of the major domains of the CPSD fragment are inherently flexible and provide bending sites for the fiber between segments whose toughness is ensured by topological chain exchange and hydrophobic core formation inside the trimer. Thus, although adherence assays using in-frame deletion mutants revealed that the characteristic adhesive sites of AtaA reside in its N-terminal part, the flexibility and toughness of the CPSD part provide the resilience that enables the adhesive properties of the full-length fiber across a wide range of conditions. PMID:26698633

  1. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain.

    PubMed

    Hofmann, Bianca T; Jücker, Manfred

    2012-10-01

    The phosphoinositide 3-kinase (PI3K) is frequently activated in human cancer cells due to gain of function mutations in the catalytic (p110) and the regulatory (p85) subunits. The regulatory subunit consists of an SH3 domain and two SH2 domains. An oncogenic form of p85α named p65 lacking the c-terminal SH2 domain (cSH2) has been cloned from an irradiation-induced murine thymic lymphoma and transgenic mice expressing p65 in T lymphocytes develop a lymphoproliferative disorder. We have recently detected a c-terminal truncated form of p85α named p76α in a human lymphoma cell line lacking most of the cSH2 domain due to a frame shift mutation. Here, we report that the deletion of the cSH2 domain enhances the activating effects of the n-terminal SH2 domain (nSH2) mutants K379E and R340E on the PI3K/Akt pathway and micro tumor formation in a focus assay. Further analysis revealed that this transforming effect is mediated by activation of the catalytic PI3K isoform p110α and downstream signaling through mTOR. Our data further support a mechanistic model in which mutations of the cSH2 domain of p85α can abrogate its negative regulatory function on PI3K activity via the nSH2 domain of p85α. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Structural Disorder within Henipavirus Nucleoprotein and Phosphoprotein: From Predictions to Experimental Assessment

    PubMed Central

    Darbon, Hervé; Longhi, Sonia

    2010-01-01

    Henipaviruses are newly emerged viruses within the Paramyxoviridae family. Their negative-strand RNA genome is packaged by the nucleoprotein (N) within α-helical nucleocapsid that recruits the polymerase complex made of the L protein and the phosphoprotein (P). To date structural data on Henipaviruses are scarce, and their N and P proteins have never been characterized so far. Using both computational and experimental approaches we herein show that Henipaviruses N and P proteins possess large intrinsically disordered regions. By combining several disorder prediction methods, we show that the N-terminal domain of P (PNT) and the C-terminal domain of N (NTAIL) are both mostly disordered, although they contain short order-prone segments. We then report the cloning, the bacterial expression, purification and characterization of Henipavirus PNT and NTAIL domains. By combining gel filtration, dynamic light scattering, circular dichroism and nuclear magnetic resonance, we show that both NTAIL and PNT belong to the premolten globule sub-family within the class of intrinsically disordered proteins. This study is the first reported experimental characterization of Henipavirus P and N proteins. The evidence that their respective N-terminal and C-terminal domains are highly disordered under native conditions is expected to be invaluable for future structural studies by helping to delineate N and P protein domains amenable to crystallization. In addition, following previous hints establishing a relationship between structural disorder and protein interactivity, the present results suggest that Henipavirus PNT and NTAIL domains could be involved in manifold protein-protein interactions. PMID:20657787

  3. Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain.

    PubMed

    Gronau, Greta; Qin, Zhao; Buehler, Markus J

    2013-03-01

    A spider's ability to store silk protein solutions at high concentration is believed to be related to the protein's terminal domains. It has been suggested that a shift in salt concentration and pH can have a significant influence on the assembly process. Based on experimental data, a model has been proposed in which the N-terminal domain exists as a monomer during storage and assembles into a homodimer upon spinning. Here we perform a systematic computational study using atomistic, coarse-grained and well-tempered metadynamics simulation to understand how the NaCl concentration in the solution affects the N-terminal domain of the silk protein. Our results show that a high salt concentration, as found during storage, weakens key salt bridges between the monomers, inducing a loss in bond energy by 28.6% in a single salt bridge. As a result dimer formation is less likely as 35.5% less energy is required to unfold the dimer by mechanical force. Conversely, homodimer formation appears to be more likely at low salt concentrations as the salt bridge stays at the lower energy state. The link between salt concentration, structure and stability of the N-terminal domain provides a possible mechanism that prevents premature fiber formation during storage.

  4. Effect of sodium chloride on the structure and stability of spider silk’s N-terminal protein domain

    PubMed Central

    Gronau, Greta; Qin, Zhao; Buehler, Markus J.

    2013-01-01

    A spider’s ability to store silk protein solutions at high concentration is believed to be related to the protein’s terminal domains. It has been suggested that a shift in salt concentration and pH can have a significant influence on the assembly process. Based on experimental data, a model has been proposed in which the N-terminal domain exists as a monomer during storage and assembles into a homodimer upon spinning. Here we perform a systematic computational study using atomistic, coarse-grained and well-tempered metadynamics simulation to understand how the NaCl concentration in the solution affects the N-terminal domain of the silk protein. Our results show that a high salt concentration, as found during storage, weakens key salt bridges between the monomers, inducing a loss in bond energy by 28.6% in a single salt bridge. As a result dimer formation is less likely as 35.5% less energy is required to unfold the dimer by mechanical force. Conversely, homodimer formation appears to be more likely at low salt concentrations as the salt bridge stays at the lower energy state. The link between salt concentration, structure and stability of the N-terminal domain provides a possible mechanism that prevents premature fiber formation during storage. PMID:23833703

  5. Expression, Refolding and Crystallizations of the Grb2-like (GADS) C-Terminal SH3 Domain Complexed with a SLP-76 Motif Peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faravelli,A.; Dimasi, N.

    The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli, refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized.

  6. Complex of Fas-associated Factor 1 (FAF1) with Valosin-containing Protein (VCP)-Npl4-Ufd1 and Polyubiquitinated Proteins Promotes Endoplasmic Reticulum-associated Degradation (ERAD)*

    PubMed Central

    Lee, Jae-Jin; Park, Joon Kyu; Jeong, Jaeho; Jeon, Hyesung; Yoon, Jong-Bok; Kim, Eunice EunKyeong; Lee, Kong-Joo

    2013-01-01

    Fas-associated factor 1 (FAF1) is a ubiquitin receptor containing multiple ubiquitin-related domains including ubiquitin-associated (UBA), ubiquitin-like (UBL) 1, UBL2, and ubiquitin regulatory X (UBX). We previously showed that N-terminal UBA domain recognizes Lys48-ubiquitin linkage to recruit polyubiquitinated proteins and that a C-terminal UBX domain interacts with valosin-containing protein (VCP). This study shows that FAF1 interacts only with VCP complexed with Npl4-Ufd1 heterodimer, a requirement for the recruitment of polyubiquitinated proteins to UBA domain. Intriguingly, VCP association to C-terminal UBX domain regulates ubiquitin binding to N-terminal UBA domain without direct interaction between UBA and UBX domains. These interactions are well characterized by structural and biochemical analysis. VCP-Npl4-Ufd1 complex is known as the machinery required for endoplasmic reticulum-associated degradation. We demonstrate here that FAF1 binds to VCP-Npl4-Ufd1 complex via UBX domain and polyubiquitinated proteins via UBA domain to promote endoplasmic reticulum-associated degradation. PMID:23293021

  7. The structure of S . lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain

    DOE PAGES

    Mitchell, Carter A.; Tucker, Alex C.; Escalante-Semerena, Jorge C.; ...

    2014-12-09

    The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. In this paper, the structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain. Specifically, several acetyl- and acetoacetyl-CoA synthetases contain a 30-residue extension on the C-terminus compared to othermore » members of this family. Finally, whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N-terminal domain.« less

  8. NMR assignments of SPOC domain of the human transcriptional corepressor SHARP in complex with a C-terminal SMRT peptide.

    PubMed

    Mikami, Suzuka; Kanaba, Teppei; Ito, Yutaka; Mishima, Masaki

    2013-10-01

    The transcriptional corepressor SMRT/HDAC1-associated repressor protein (SHARP) recruits histone deacetylases. Human SHARP protein is thought to function in processes involving steroid hormone responses and the Notch signaling pathway. SHARP consists of RNA recognition motifs (RRMs) in the N-terminal region and the spen paralog and ortholog C-terminal (SPOC) domain in the C-terminal region. It is known that the SPOC domain binds the LSD motif in the C-terminal tail of corepressors silencing mediator for retinoid and thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR). We are interested in delineating the mechanism by which the SPOC domain recognizes the LSD motif of the C-terminal tail of SMRT/NcoR. To this end, we are investigating the tertiary structure of the SPOC/SMRT peptide using NMR. Herein, we report on the (1)H, (13)C and (15)N resonance assignments of the SPOC domain in complex with a SMRT peptide, which contributes towards a structural understanding of the SPOC/SMRT peptide and its molecular recognition.

  9. Functional and structural characterization of domain truncated violaxanthin de-epoxidase.

    PubMed

    Hallin, Erik Ingmar; Guo, Kuo; Åkerlund, Hans-Erik

    2016-08-01

    Photosynthetic organisms need protection against excessive light. By using non-photochemical quenching, where the excess light is converted into heat, the organism can survive at higher light intensities. This process is partly initiated by the formation of zeaxanthin, which is achieved by the de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin. This reaction is catalyzed by violaxanthin de-epoxidase (VDE). VDE consists of three domains of which the central lipocalin-like domain has been the most characterized. By truncating the domains surrounding the lipocalin-like domain, we show that VDE activity is possible without the C-terminal domain but not without the N-terminal domain. The N-terminal domain shows no VDE activity by itself but when separately expressed domains are mixed, VDE activity is possible. This shows that these domains can be folded separately and could therefore be studied separately. An increase of the hydrodynamic radius of wild-type VDE was observed when pH was lowered toward the pH required for activity, consistent with a pH-dependent oligomerization. The C-terminally truncated VDE did not show such an oligomerization, was relatively more active at higher pH but did not alter the KM for ascorbate. Circular dichroism measurements revealed the presence of α-helical structure in both the N- and C-terminal domains. By measuring the initial formation of the product, VDE was found to convert a large number of violaxanthin molecules to antheraxanthin before producing any zeaxanthin, favoring a model where violaxanthin is bound non-symmetrically in VDE. © 2016 Scandinavian Plant Physiology Society.

  10. Directed evolution of the TALE N-terminal domain for recognition of all 5' bases.

    PubMed

    Lamb, Brian M; Mercer, Andrew C; Barbas, Carlos F

    2013-11-01

    Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5'-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5' T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5' T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes.

  11. Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites

    PubMed Central

    Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia

    2015-01-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186

  12. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    PubMed Central

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy. G.; Jones, David N.M.; Kieft, Jeffrey S.; Eisenmesser, Elan Zohar

    2011-01-01

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despite its potential role in retinoblastoma. We present the first crystal structure of the human CD147 Ig0 domain and show that the CD147 Ig0 domain is a crystallographic dimer with an I-type domain structure, which is maintained in solution. Furthermore, we have utilized our structural data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6 and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Finally, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation. PMID:21620857

  13. Kinetics of N-Glycan Release from Human Immunoglobulin G (IgG) by PNGase F: All Glycans Are Not Created Equal.

    PubMed

    Huang, Yining; Orlando, Ron

    2017-12-01

    The biologic activity of IgG molecules is modulated by its crystallizable fragment N-glycosylation, and thus, the analysis of IgG glycosylation is critical. A standard approach to analyze glycosylation of IgGs involves the release of the N-glycans by the enzyme peptide N-glycosidase F, which cleaves the linkage between the asparagine residue and innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the reducing terminal GlcNAc residue. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this de-glycosylation reaction for IgG glycopeptides and to determine the effect of glycan structure and amino acid sequence on the rate of glycan release from glycopeptides of IgGs. This study revealed that the slight differences in amino acid sequences did not lead to a statistically different deglycosylation rate. However, statistically significant differences in the deglycosylation rate constants were observed between glycopeptides differing only in glycan structure ( i.e. , nonfucosylated, fucosylated, bisecting-GlcNAc, sialylated, etc .). For example, a single sialic acid residue was found to decrease the rate by a factor of 3. Similar reductions in rate were associated with the presence of a bisecting-GlcNAc. We predict the differences in release kinetics can lead to significant quantitative variations of the glycosylation study of IgGs.

  14. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein.

    PubMed

    Chao, Kinlin L; Kulakova, Liudmila; Herzberg, Osnat

    2017-02-14

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn's disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88 DNVD 91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport.

  15. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein

    PubMed Central

    Chao, Kinlin L.; Kulakova, Liudmila; Herzberg, Osnat

    2017-01-01

    The exact function of human gasdermin-B (GSDMB), which regulates differentiation and growth of epithelial cells, is yet to be elucidated. In human epidermal growth factor receptor 2 (HER2)-positive breast cancer, GSDMB gene amplification and protein overexpression indicate a poor response to HER2-targeted therapy. Genome-wide association studies revealed a correlation between GSDMB SNPs and an increased susceptibility to Crohn’s disease, ulcerative colitis, and asthma. The N- and C-terminal domains of all gasdermins possess lipid-binding and regulatory activities, respectively. Inflammatory caspases cleave gasdermin-D in the interdomain linker but not GSDMB. The cleaved N-terminal domain binds phosphoinositides and cardiolipin, forms membrane-disrupting pores, and executes pyroptosis. We show that both full-length GSDMB and the N-terminal domain bind to nitrocellulose membranes immobilized with phosphoinositides or sulfatide, but not with cardiolipin. In addition, the GSDMB N-terminal domain binds liposomes containing sulfatide. The crystal structure of the GSDMB C-terminal domain reveals the structural impact of the amino acids encoded by SNPs that are linked to asthma and inflammatory bowel disease (IBD). A loop that carries the polymorphism amino acids corresponding to healthy individuals (Gly299:Pro306) exhibits high conformational flexibility, whereas the loop carrying amino acids found in individuals with increased disease risk (Arg299:Ser306) exhibits a well-defined conformation and higher positive surface charge. Apoptotic executioner caspase-3, -6, and -7, but not the inflammatory caspases, cleave GSDMB at 88DNVD91 within the N-terminal domain. Selective sulfatide binding may indicate possible function for GSDMB in the cellular sulfatide transport. PMID:28154144

  16. Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.

    PubMed

    Kaur, Gurmeet; Subramanian, Srikrishna

    2017-10-18

    Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.

  17. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore

    PubMed Central

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A.J.; Goetze, Tom A.; Edwardson, J. Michael; Barrera, Nelson P.; Venter, Henrietta

    2016-01-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel. PMID:26934982

  18. Preparation of a functional fluorescent human Fas ligand extracellular domain derivative using a three-dimensional structure guided site-specific fluorochrome conjugation.

    PubMed

    Muraki, Michiro

    2016-01-01

    Human Fas ligand extracellular domain has been investigated as an important target protein in the field of medical biotechnology. In a recent study, the author developed an effective method to produce biologically active human Fas ligand extracellular domain derivatives using site-specific chemical modifications. A human Fas ligand extracellular domain derivative containing a reactive cysteine residue within its N-terminal tag sequence, which locates not proximal to the binding interface between the ligand and the receptor in terms of the three-dimensional structure, was modified by Fluorescein-5-Maleimide without impairing the specific binding activity toward human Fas receptor extracellular domain. The purified protein sample free of low molecular-weight contaminants showed a characteristic fluorescence spectrum derived from the attached Fluorescein moieties, and formed a stable binding complex with human Fas receptor extracellular domain-human IgG1 Fc domain fusion protein in solution. The conjugation number of the fluorochrome was estimated to be 2.5 per a single human Fas ligand extracellular domain trimer from the ratio of the absorbance value at 280 nm to that at 495 nm. A functional fluorescent human Fas ligand extracellular domain derivative was prepared via a site-specific conjugation of fluorochrome, which was guided by the three-dimensional structure information on the ligand-receptor complex. Fluorescent derivatives created by this method may contribute to the development of an improved diagnosis system for the diseases related to Fas receptor.

  19. Expression, purification, and DNA-binding activity of the solubilized NtrC protein of Herbaspirillum seropedicae.

    PubMed

    Twerdochlib, Adriana L; Chubatsu, Leda S; Souza, Emanuel M; Pedrosa, Fábio O; Steffens, M Berenice R; Yates, M Geoffrey; Rigo, Liu U

    2003-07-01

    NtrC is a bacterial enhancer-binding protein (EBP) that activates transcription by the sigma54 RNA polymerase holoenzyme. NtrC has a three domain structure typical of EBP family. In Herbaspirillum seropedicae, an endophytic diazotroph, NtrC regulates several operons involved in nitrogen assimilation, including glnAntrBC. In order to over-express and purify the NtrC protein, DNA fragments containing the complete structural gene for the whole protein, and for the N-terminal+Central and Central+C-terminal domains were cloned into expression vectors. The NtrC and NtrC(N-terminal+Central) proteins were over-expressed as His-tag fusion proteins upon IPTG addition, solubilized using N-lauryl-sarcosyl and purified by metal affinity chromatography. The over-expressed His-tag-NtrC(Central+C-terminal) fusion protein was partially soluble and was also purified by affinity chromatography. DNA band-shift assays showed that the NtrC protein and the Central+C-terminal domains bound specifically to the H. seropedicae glnA promoter region. The C-terminal domain is presumably necessary for DNA-protein interaction and DNA-binding does not require a phosphorylated protein.

  20. The antibiotic cyclomarin blocks arginine-phosphate-induced millisecond dynamics in the N-terminal domain of ClpC1 from Mycobacterium tuberculosis.

    PubMed

    Weinhäupl, Katharina; Brennich, Martha; Kazmaier, Uli; Lelievre, Joel; Ballell, Lluis; Goldberg, Alfred; Schanda, Paul; Fraga, Hugo

    2018-06-01

    Mycobacterium tuberculosis can remain dormant in the host, an ability that explains the failure of many current tuberculosis treatments. Recently, the natural products cyclomarin, ecumicin, and lassomycin have been shown to efficiently kill Mycobacterium tuberculosis persisters. Their target is the N-terminal domain of the hexameric AAA+ ATPase ClpC1, which recognizes, unfolds, and translocates protein substrates, such as proteins containing phosphorylated arginine residues, to the ClpP1P2 protease for degradation. Surprisingly, these antibiotics do not inhibit ClpC1 ATPase activity, and how they cause cell death is still unclear. Here, using NMR and small-angle X-ray scattering, we demonstrate that arginine-phosphate binding to the ClpC1 N-terminal domain induces millisecond dynamics. We show that these dynamics are caused by conformational changes and do not result from unfolding or oligomerization of this domain. Cyclomarin binding to this domain specifically blocked these N-terminal dynamics. On the basis of these results, we propose a mechanism of action involving cyclomarin-induced restriction of ClpC1 dynamics, which modulates the chaperone enzymatic activity leading eventually to cell death. © 2018 Weinhäupl et al.

  1. Protumorigenic Role of HAPLN1 and Its IgV Domain in Malignant Pleural Mesothelioma

    PubMed Central

    Ivanova, Alla V.; Goparaju, Chandra M.V.; Ivanov, Sergey V.; Nonaka, Daisuke; Cruz, Christina; Beck, Amanda; Lonardo, Fulvio; Wali, Anil; Pass, Harvey I.

    2013-01-01

    Purpose Tumor extracellular matrix (ECM) plays a crucial role in cancer progression mediating and transforming host-tumor interactions. Targeting the ECM is becoming an increasingly promising therapeutic approach in cancer treatment. We find that one of the ECM proteins, HAPLN1, is overexpressed in the majority of mesotheliomas. This study was designed to characterize the protumorigenic role of HAPLN1 in mesothelioma. Experimental Design Overexpression of HAPLN1was assessed and validated on a large set of normal/mesothelioma specimens on the RNA and protein levels. We also analyzed DNA copy number alterations in the HAPLN1 genomic locus using the array-based comparative genomic hybridization representational oligonucleotide microarray analysis tool. Tumorigenic activities of the HAPLN1 domains were evaluated in vitro on mesothelioma cells transfected with HAPLN1-expressing constructs. Results We found that HAPLN1 is 23-fold overexpressed in stage Imesothelioma and confirmed it for 76% samples (n = 53) on RNA and 97% (n = 40) on protein levels. The majority of lung cancers showed no differential expression of HAPLN1. Analysis of DNA copy number alterations identified recurrent gain in the 5q14.3 HAPLN1 locus in ~27% of tumors. Noteworthy, high expression of HAPLN1negatively correlated with time to progression (P = 0.05, log-rank test) and overall survival (P = 0.006). Proliferation, motility, invasion, and soft-agar colony formation assays on mesothelioma cells overexpressing full-length HAPLN1 or its functional domains strongly supported the protumorigenic role of HAPLN1 and its SP-IgV domain. Conclusion Overexpression of HAPLN1 and its SP-IgV domain increases tumorigenic properties of mesothelioma. Thus, targeting the SP-IgV domain may be one of the therapeutic approaches in cancer treatment. PMID:19351750

  2. Protumorigenic role of HAPLN1 and its IgV domain in malignant pleural mesothelioma.

    PubMed

    Ivanova, Alla V; Goparaju, Chandra M V; Ivanov, Sergey V; Nonaka, Daisuke; Cruz, Christina; Beck, Amanda; Lonardo, Fulvio; Wali, Anil; Pass, Harvey I

    2009-04-15

    Tumor extracellular matrix (ECM) plays a crucial role in cancer progression mediating and transforming host-tumor interactions. Targeting the ECM is becoming an increasingly promising therapeutic approach in cancer treatment. We find that one of the ECM proteins, HAPLN1, is overexpressed in the majority of mesotheliomas. This study was designed to characterize the protumorigenic role of HAPLN1 in mesothelioma. Overexpression of HAPLN1 was assessed and validated on a large set of normal/mesothelioma specimens on the RNA and protein levels. We also analyzed DNA copy number alterations in the HAPLN1 genomic locus using the array-based comparative genomic hybridization representational oligonucleotide microarray analysis tool. Tumorigenic activities of the HAPLN1 domains were evaluated in vitro on mesothelioma cells transfected with HAPLN1-expressing constructs. We found that HAPLN1 is 23-fold overexpressed in stage I mesothelioma and confirmed it for 76% samples (n = 53) on RNA and 97% (n = 40) on protein levels. The majority of lung cancers showed no differential expression of HAPLN1. Analysis of DNA copy number alterations identified recurrent gain in the 5q14.3 HAPLN1 locus in approximately 27% of tumors. Noteworthy, high expression of HAPLN1 negatively correlated with time to progression (P = 0.05, log-rank test) and overall survival (P = 0.006). Proliferation, motility, invasion, and soft-agar colony formation assays on mesothelioma cells overexpressing full-length HAPLN1 or its functional domains strongly supported the protumorigenic role of HAPLN1 and its SP-IgV domain. Overexpression of HAPLN1 and its SP-IgV domain increases tumorigenic properties of mesothelioma. Thus, targeting the SP-IgV domain may be one of the therapeutic approaches in cancer treatment.

  3. Domain analysis of 3 Keto Acyl-CoA synthase for structural variations in Vitis vinifera and Oryza brachyantha using comparative modelling.

    PubMed

    Sagar, Mamta; Pandey, Neetesh; Qamar, Naseha; Singh, Brijendra; Shukla, Akanksha

    2015-03-01

    The long chain fatty acids incorporated into plant lipids are derived from the iterative addition of C2 units which is provided by malonyl-CoA to an acyl-CoA after interactions with 3-ketoacyl-CoA synthase (KCS), found in several plants. This study provides functional characterization of three 3 ketoacyl CoA synthase like proteins in Vitis vinifera (one) and Oryza brachyantha (two proteins). Sequence analysis reveals that protein of Oryza brachyantha shows 96% similarity to a hypothetical protein in Sorghum bicolor; total 11 homologs were predicted in Sorghum bicolor. Conserved domain prediction confirm the presence of FAE1/Type III polyketide synthase-like protein, Thiolase-like, subgroup; Thiolase-like and 3-Oxoacyl-ACP synthase III, C-terminal and chalcone synthase like domain but very long chain 3-keto acyl CoA domain is absent. All three proteins were found to have Chalcone and stilbene synthases C terminal domain which is similar to domain of thiolase and β keto acyl synthase. Its N terminal domain is absent in J3M9Z7 protein of Oryza brachyantha and F6HH63 protein of Vitis vinifera. Differences in N-terminal domain is responsible for distinguish activity. The J3MF16 protein of Oryza brachyantha contains N terminal domain and C terminal domain and characterized using annotation of these domains. Domains Gcs (streptomyces coelicolor) and Chalcone-stilbene synthases (KAS) in 2-pyrone synthase (Gerbera hybrid) and chalcone synthase 2 (Medicago sativa) were found to be present in three proteins. This similarity points toward anthocyanin biosynthetic process. Similarity to chalcone synthase 2 reveals its possible role in Naringenine and Chalcone synthase like activity. In 3 keto acyl CoA synthase of Oryza brachyantha. Active site residues C-240, H-407, N-447 are present in J3MF16 protein that are common in these three protein at different positions. Structural variations among dimer interface, product binding site, malonyl-CoA binding sites, were predicted in localized combination of conserved residues.

  4. Novel alternative splicings of BPAG1 (bullous pemphigoid antigen 1) including the domain structure closely related to MACF (microtubule actin cross-linking factor).

    PubMed

    Okumura, Masayo; Yamakawa, Hisashi; Ohara, Osamu; Owaribe, Katsushi

    2002-02-22

    BPAG1 (bullous pemphigoid antigen 1) was originally identified as a 230-kDa hemidesmosomal protein and belongs to the plakin family, because it consists of a plakin domain, a coiled-coil rod domain and a COOH-terminal intermediate filament binding domain. To date, alternatively spliced products of BPAG1, BPAG1e, and BPAG1n are known. BPAG1e is expressed in epithelial tissues and localized to hemidesmosomes, on the other hand, BPAG1n is expressed in neural tissues and muscles and has an actin binding domain at the NH(2)-terminal of BPAG1e. BPAG1 is also known as a gene responsible for Dystonia musculorum (dt) neurodegeneration syndrome of the mouse. Another plakin family protein MACF (microtubule actin cross-linking factor) has also an actin binding domain and the plakin domain at the NH(2)-terminal. However, in contrast to its high homology with BPAG1 at the NH(2)-terminal, the COOH-terminal structure of MACF, including a microtubule binding domain, resembles dystrophin rather than plakins. Here, we investigated RNAs and proteins expressed from the BPAG1 locus and suggest novel alternative splicing variants, which include one consisting of the COOH-terminal domain structure homologous to MACF. The results indicate that BPAG1 has three kinds of cytoskeletal binding domains and seems to play an important role in linking the different types of cytoskeletons.

  5. The DnaA N-terminal domain interacts with Hda to facilitate replicase clamp-mediated inactivation of DnaA.

    PubMed

    Su'etsugu, Masayuki; Harada, Yuji; Keyamura, Kenji; Matsunaga, Chika; Kasho, Kazutoshi; Abe, Yoshito; Ueda, Tadashi; Katayama, Tsutomu

    2013-12-01

    DnaA activity for replication initiation of the Escherichia coli chromosome is negatively regulated by feedback from the DNA-loaded form of the replicase clamp. In this process, called RIDA (regulatory inactivation of DnaA), ATP-bound DnaA transiently assembles into a complex consisting of Hda and the DNA-clamp, which promotes inter-AAA+ domain association between Hda and DnaA and stimulates hydrolysis of DnaA-bound ATP, producing inactive ADP-DnaA. Using a truncated DnaA mutant, we previously demonstrated that the DnaA N-terminal domain is involved in RIDA. However, the precise role of the N-terminal domain in RIDA has remained largely unclear. Here, we used an in vitro reconstituted system to demonstrate that the Asn-44 residue in the N-terminal domain of DnaA is crucial for RIDA but not for replication initiation. Moreover, an assay termed PDAX (pull-down after cross-linking) revealed an unstable interaction between a DnaA-N44A mutant and Hda. In vivo, this mutant exhibited an increase in the cellular level of ATP-bound DnaA. These results establish a model in which interaction between DnaA Asn-44 and Hda stabilizes the association between the AAA+ domains of DnaA and Hda to facilitate DnaA-ATP hydrolysis during RIDA. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seong K., E-mail: skim1@lsuhsc.edu; Kim, Seongman; Dai Gan

    2011-09-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% ofmore » control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.« less

  7. Separate functional properties of NMDARs regulate distinct aspects of spatial cognition.

    PubMed

    Sanders, Erin M; Nyarko-Odoom, Akua O; Zhao, Kevin; Nguyen, Michael; Liao, Hong Hong; Keith, Matthew; Pyon, Jane; Kozma, Alyssa; Sanyal, Mohima; McHail, Daniel G; Dumas, Theodore C

    2018-06-01

    N -methyl-d-aspartate receptors (NMDARs) at excitatory synapses are central to activity-dependent synaptic plasticity and learning and memory. NMDARs act as ionotropic and metabotropic receptors by elevating postsynaptic calcium concentrations and by direct intracellular protein signaling. In the forebrain, these properties are controlled largely by the auxiliary GluN2 subunits, GluN2A and GluN2B. While calcium conductance through NMDAR channels and intracellular protein signaling make separate contributions to synaptic plasticity, it is not known if these properties individually influence learning and memory. To address this issue, we created chimeric GluN2 subunits containing the amino-terminal domain and transmembrane domains from GluN2A or GluN2B fused to the carboxy-terminal domain of GluN2B (termed ABc) or GluN2A ATD (termed BAc), respectively, and expressed these mutated GluN2 subunits in transgenic mice. Expression was confirmed at the mRNA level and protein subunit translation and translocation into dendrites were observed in forebrain neurons. In the spatial version of the Morris water maze, BAc mice displayed signs of a learning deficit. In contrast, ABc animals performed similarly to wild-types during training, but showed a more direct approach to the goal location during a long-term memory test. There was no effect of ABc or BAc expression in a nonspatial water escape task. Since background expression is predominantly GluN2A in mature animals, the results suggest that spatial learning is more sensitive to manipulations of the amino-terminal domain and transmembrane domains (calcium conductance) and long-term memory is regulated more by the carboxy-terminal domain (intracellular protein signaling). © 2018 Sanders et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Conformational Dynamics inside Amino-Terminal Disease Hotspot of Ryanodine Receptor

    PubMed Central

    Zhong, Xiaowei; Liu, Ying; Zhu, Li; Meng, Xing; Wang, Ruiwu; Van Petegem, Filip; Wagenknecht, Terence; Wayne Chen, S. R.; Liu, Zheng

    2013-01-01

    Summary The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here we reconstructed 3D cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains. PMID:24139989

  9. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  10. Structural insights into the N-terminal GIY-YIG endonuclease activity of "Arabidopsis" glutaredoxin AtGRXS16 in chloroplasts

    USDA-ARS?s Scientific Manuscript database

    Glutaredoxins (Grxs) have been identified across taxa as important mediators in various physiological functions. A chloroplastic monothiol glutaredoxin, AtGRXS16 from "Arabidopsis thaliana", comprises two distinct functional domains, an N-terminal domain (NTD) with GlyIleTyr-TyrIleGly (GIY-YIG) endo...

  11. Expression, refolding and crystallizations of the Grb2-like (GADS) C-terminal SH3 domain complexed with a SLP-76 motif peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faravelli, Alessandro; Dimasi, Nazzareno, E-mail: ndimasi@gmail.com

    Several crystals of the Grb2-like C-terminal SH3 domain in complex with a motif peptide from the SLP-76 protein were obtained and characterized. The Grb2-like adaptor protein GADS is composed of an N-terminal SH3 domain, an SH2 domain, a proline-rich region and a C-terminal SH3 domain. GADS interacts through its C-terminal SH3 domain with the adaptor protein SLP-76, thus recruiting this protein and other associated molecules to the linker for activation of T-cell (LAT) protein. The DNA encoding the C-terminal SH3 domain of GADS (GADS-cSH3) was assembled synthetically using a recursive PCR technique and the protein was overexpressed in Escherichia coli,more » refolded and purified. Several crystals of this domain in complex with the SLP-76 peptide were obtained and characterized.« less

  12. The N-terminal Ankyrin Repeat Domain Is Not Required for Electrophile and Heat Activation of the Purified Mosquito TRPA1 Receptor*

    PubMed Central

    2016-01-01

    Temperature sensors are crucial for animals to optimize living conditions. The temperature response of the ion channel transient receptor potential A1 (TRPA1) is intriguing; some orthologs have been reported to be activated by cold and others by heat, but the molecular mechanisms responsible for its activation remain elusive. Single-channel electrophysiological recordings of heterologously expressed and purified Anopheles gambiae TRPA1 (AgTRPA1), with and without the N-terminal ankyrin repeat domain, demonstrate that both proteins are functional because they responded to the electrophilic compounds allyl isothiocyanate and cinnamaldehyde as well as heat. The proteins' similar intrinsic fluorescence properties and corresponding quenching when activated by allyl isothiocyanate or heat suggest lipid bilayer-independent conformational changes outside the N-terminal domain. The results show that AgTRPA1 is an inherent thermo- and chemoreceptor, and analogous to what has been reported for the human TRPA1 ortholog, the N-terminal domain may tune the response but is not required for the activation by these stimuli. PMID:27875296

  13. Characterization of an Invertase with pH Tolerance and Truncation of Its N-Terminal to Shift Optimum Activity toward Neutral pH

    PubMed Central

    Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme. PMID:23638032

  14. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  15. Targeting malignant B cells with an immunotoxin against ROR1

    PubMed Central

    Baskar, Sivasubramanian; Wiestner, Adrian; Wilson, Wyndham H.; Pastan, Ira; Rader, Christoph

    2012-01-01

    The selective cell surface expression of receptor tyrosine kinase-like orphan receptor 1 (ROR1) in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) has made ROR1 a novel and promising target for therapeutic monoclonal antibodies (mAbs). Four mouse mAbs generated by hybridoma technology exhibited specific binding to human ROR1. Epitope mapping studies showed that two mAbs (2A2 and 2D11) recognized N-terminal epitopes in the extracellular region of ROR1 and the other two (1A1 and 1A7) recognized C-terminal epitopes. A ROR1- immunotoxin (BT-1) consisting of truncated Pseudomonas exotoxin A (PE38) and the VH and VL fragments of 2A2-IgG was made recombinantly. Both 2A2-IgG and BT-1 showed dose-dependent and selective binding to primary CLL and MCL cells and MCL cell lines. Kinetic analyses revealed 0.12-nM (2A2-IgG) to 65-nM (BT-1) avidity/affinity to hROR1, depicting bivalent and monovalent interactions, respectively. After binding to cell surface ROR1, 2A2-IgG and BT-1 were partially internalized by primary CLL cells and MCL cell lines, and BT-1 induced profound apoptosis of ROR1-expressing MCL cell lines in vitro (EC50 = 16 pM–16 nM), but did not affect ROR1-negative cell lines. Our data suggest that ROR1-immunotoxins such as BT-1 could serve as targeted therapeutic agents for ROR1-expressing B cell malignancies and other cancers. PMID:22531447

  16. A Novel Epitope from CD22 Regulates Th1 and Th17 Cell Function in Systemic Lupus Erythematosus

    PubMed Central

    Chen, Xiao; Zhang, Li-Hua; Song, You; Cheng, Xiang; Zhou, Zi-Hua; Wang, Min; Guo, He-Ping; Du, Rong; Liao, Yu-Hua

    2013-01-01

    The published antibodies (Abs) against CD22 on B cells including Epratuzumab could inhibit B cell activation mainly through binding to C2-set Ig domain of CD22, but they are rarely reported to modulate the pathogenic CD4+ T cell function in systemic lupus erythematosus (SLE). Recently, it was proved that the extracellular amino-terminal V-set Ig domain of CD22 might mediate the interaction of B and T cells, but for now the exact effect of this domain on CD4+ T cell biology have not been identified. Thus, in this study, we screened out a peptide termed B2285 from this V-set Ig domain, developed the novel specific anti-B2285 Abs in rabbits, and investigated their effects in MRL/lpr mice with spontaneous SLE. The results showed that anti-B2285 Abs could ameliorate the disease severity obviously in spontaneous SLE mice with the decreased differentiations of Th1 and Th17 cells and no changes of Th2 and Treg cells. In co-cultured B cells and CD4+ T cells, this specific anti-CD22 Abs was observed to inhibit the anti-dsDNA Abs production, CD4+ T cells proliferation, the protein levels of T-bet and RORγt, and the mRNA levels of TNF-α, IFN-γ, IL-6 and IL-17 in CD4+ T cells. Moreover, the expression of CD45RO on CD4+ T cells could be also apparently diminished by this novel Abs. The data suggested that anti-B2285 Abs could slow SLE progression significantly by regulating Th1 and Th17 cells function via B-T cell interaction and the cytokine network regulation. The treatment against V-set Ig domain of CD22 would be a valuable therapeutic method for SLE and other autoimmune diseases. PMID:23704998

  17. A novel epitope from CD22 regulates Th1 and Th17 cell function in systemic lupus erythematosus.

    PubMed

    Yuan, Jing; Yu, Miao; Cao, Ai-Lin; Chen, Xiao; Zhang, Li-Hua; Song, You; Cheng, Xiang; Zhou, Zi-Hua; Wang, Min; Guo, He-Ping; Du, Rong; Liao, Yu-Hua

    2013-01-01

    The published antibodies (Abs) against CD22 on B cells including Epratuzumab could inhibit B cell activation mainly through binding to C2-set Ig domain of CD22, but they are rarely reported to modulate the pathogenic CD4(+) T cell function in systemic lupus erythematosus (SLE). Recently, it was proved that the extracellular amino-terminal V-set Ig domain of CD22 might mediate the interaction of B and T cells, but for now the exact effect of this domain on CD4(+) T cell biology have not been identified. Thus, in this study, we screened out a peptide termed B2285 from this V-set Ig domain, developed the novel specific anti-B2285 Abs in rabbits, and investigated their effects in MRL/lpr mice with spontaneous SLE. The results showed that anti-B2285 Abs could ameliorate the disease severity obviously in spontaneous SLE mice with the decreased differentiations of Th1 and Th17 cells and no changes of Th2 and Treg cells. In co-cultured B cells and CD4(+) T cells, this specific anti-CD22 Abs was observed to inhibit the anti-dsDNA Abs production, CD4(+) T cells proliferation, the protein levels of T-bet and RORγt, and the mRNA levels of TNF-α, IFN-γ, IL-6 and IL-17 in CD4(+) T cells. Moreover, the expression of CD45RO on CD4(+) T cells could be also apparently diminished by this novel Abs. The data suggested that anti-B2285 Abs could slow SLE progression significantly by regulating Th1 and Th17 cells function via B-T cell interaction and the cytokine network regulation. The treatment against V-set Ig domain of CD22 would be a valuable therapeutic method for SLE and other autoimmune diseases.

  18. J chain in the nurse shark: implications for function in a lower vertebrate.

    PubMed

    Hohman, Valerie S; Stewart, Sue E; Rumfelt, Lynn L; Greenberg, Andrew S; Avila, David W; Flajnik, Martin F; Steiner, Lisa A

    2003-06-15

    J chain is a small polypeptide covalently attached to polymeric IgA and IgM. In humans and mice, it plays a role in binding Ig to the polymeric Ig receptor for transport into secretions. The putative orthologue of mammalian J chain has been identified in the nurse shark by sequence analysis of cDNA and the polypeptide isolated from IgM. Conservation with J chains from other species is relatively poor, especially in the carboxyl-terminal portion, and, unlike other J chains, the shark protein is not acidic. The only highly conserved segment in all known J chains is a block of residues surrounding an N-linked glycosylation site. Of the eight half-cystine residues that are conserved in mammalian J chains, three are lacking in the nurse shark, including two in the carboxyl-terminal segment that have been reported to be required for binding of human J chain-containing IgA to secretory component. Taken together with these data, the relative abundance of J chain transcripts in the spleen and their absence in the spiral valve (intestine) suggest that J chain in nurse sharks may not have a role in Ig secretion. Analysis of J chain sequences in diverse species is in agreement with accepted phylogenetic relationships, with the exception of the earthworm, suggesting that the reported presence of J chain in invertebrates should be reassessed.

  19. Identification and Characterization of Multiple Spidroin 1 Genes Encoding Major Ampullate Silk Proteins in Nephila clavipes

    PubMed Central

    Gaines, William A.; Marcotte, William R.

    2010-01-01

    Spider dragline silk is primarily composed of proteins called major ampullate spidroins (MaSp) that consist of a large repeat array flanked by non-repetitive N- and C-terminal domains. Until recently, there has been little evidence for more than one gene encoding each of the two major spidroin silk proteins, MaSp1 and MaSp2. Here, we report the deduced N-terminal domain sequences for two distinct MaSp1 genes from Nephila clavipes (MaSp1A and MaSp1B) and for MaSp2. All three MaSp genes are co-expressed in the major ampullate gland. A search of the GenBank database also revealed two distinct MaSp1 C-terminal domain sequences. Sequencing confirmed that both MaSp1 genes are present in all seven Nephila clavipes spiders examined. The presence of nucleotide polymorphisms in these genes confirmed that MaSp1A and MaSp1B are distinct genetic loci and not merely alleles of the same gene. We have experimentally determined the transcription start sites for all three MaSp genes and established preliminary pairing between the two MaSp1 N- and C-terminal domains. Phylogenetic analysis of these new sequences and other published MaSp N- and C-terminal domain sequences illustrated that duplications of MaSp genes may be widespread among spider species. PMID:18828837

  20. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly.

    PubMed

    Romier, Christophe; James, Nicole; Birck, Catherine; Cavarelli, Jean; Vivarès, Christian; Collart, Martine A; Moras, Dino

    2007-05-18

    General transcription factor TFIID plays an essential role in transcription initiation by RNA polymerase II at numerous promoters. However, understanding of the assembly and a full structural characterization of this large 15 subunit complex is lacking. TFIID subunit TAF(II)5 has been shown to be present twice in this complex and to be critical for the function and assembly of TFIID. Especially, the TAF(II)5 N-terminal domain is required for its incorporation within TFIID and immuno-labelling experiments carried out by electron microscopy at low resolution have suggested that this domain might homodimerize, possibly explaining the three-lobed architecture of TFIID. However, the resolution at which the electron microscopy (EM) analyses were conducted is not sufficient to determine whether homodimerization occurs or whether a more intricate assembly implying other subunits is required. Here we report the X-ray structures of the fully evolutionary conserved C-terminal sub-domain of the TAF(II)5 N terminus, from yeast and the mammalian parasite Encephalitozoon cuniculi. This sub-domain displays a novel fold with specific surfaces having conserved physico-chemical properties that can form protein-protein interactions. Although a crystallographic dimer implying one of these surfaces is present in one of the crystal forms, several biochemical analyses show that this sub-domain is monomeric in solution, even at various salt conditions and in presence of different divalent cations. Consequently, the N-terminal sub-domain of the TAF(II)5 N terminus, which is homologous to a dimerization motif but has not been fully conserved during evolution, was studied by analytical ultracentrifugation and yeast genetics. Our results show that this sub-domain dimerizes at very high concentration but is neither required for yeast viability, nor for incorporation of two TAF(II)5 molecules within TFIID and for the assembly of this complex. Altogether, although our results do not argue in favour of a homodimerization of the TAF(II)5 N-terminal domain, our structural analyses suggest a role for this domain in assembly of TFIID and its related complexes SAGA, STAGA, TFTC and PCAF.

  1. Identification and Characterization of a New Pecan [Carya illinoinensis (Wangenh.) K. Koch] Allergen, Car i 2.

    PubMed

    Zhang, Yuzhu; Lee, BoRam; Du, Wen-Xian; Lyu, Shu-Chen; Nadeau, Kari C; Grauke, Larry J; Zhang, Yan; Wang, Shuo; Fan, Yuting; Yi, Jiang; McHugh, Tara H

    2016-05-25

    The 7S vicilin and 11S legumin seed storage globulins belong to the cupin protein superfamily and are major food allergens in many foods from the "big eight" food allergen groups. Here, for the first time, pecan vicilin was found to be a food allergen. Western blot experiments revealed that 30% of 27 sera used in this study and 24% of the sera from 25 patients with double-blind, placebo controlled clinical pecan allergy contained IgE antibodies specific to pecan vicilin. This allergen consists of a low-complexity region at its N-terminal and a structured domain at the C-terminal that contains two cupin motifs and forms homotrimers. The crystal structure of recombinant pecan vicilin was determined. The refined structure gave R/Rfree values of 0.218/0.262 for all data to 2.65 Å. There were two trimeric biological units in the crystallographic asymmetric unit. Pecan vicilin is also a copper protein. These data may facilitate the understanding of the nutritional value and the allergenicity relevance of the copper binding property of seed storage proteins in tree nuts.

  2. Monoclonal Antibodies Against Tyrosyl-tRNA Synthetase and Its Isolated Cytokine-Like Domain

    PubMed Central

    Khoruzenko, Antonina; Cherednyk, Olga; Filonenko, Valeriy; Kornelyuk, Aleksander

    2013-01-01

    Tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. In addition to its basic role, this enzyme reveals some important non-canonical functions. Under apoptotic conditions, the full-length enzyme splits into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. The NH2-terminal catalytic fragment, known as miniTyrRS, binds strongly to the CXC-chemokine receptor CXCR1 and, like interleukin 8, functions as a chemoattractant for polymorphonuclear leukocytes. On the other hand, an extra COOH-terminal domain of human TyrRS has cytokine activities like those of a mature human endothelial monocyte-activating polypeptide II (EMAP II). Moreover, the etiology of specific diseases (cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions) is connected to specific aminoacyl-tRNA synthetases. Here we report the generation and characterization of monoclonal antibodies specific to N- and C-terminal domains of TyrRS. Recombinant TyrRS and its N- and C-terminal domains were expressed as His-tag fusion proteins in bacteria. Affinity purified proteins have been used as antigens for immunization and hybridoma cell screening. Monoclonal antibodies specific to catalytic N-terminal module and C-terminal EMAP II-like domain of TyrRS may be useful as tools in various aspects of TyrRS function and cellular localization. PMID:23750478

  3. Solution structure of the His12 --> Cys mutant of the N-terminal zinc binding domain of HIV-1 integrase complexed to cadmium.

    PubMed Central

    Cai, M.; Huang, Y.; Caffrey, M.; Zheng, R.; Craigie, R.; Clore, G. M.; Gronenborn, A. M.

    1998-01-01

    The solution structure of His12 --> Cys mutant of the N-terminal zinc binding domain (residues 1-55; IN(1-55)) of HIV-1 integrase complexed to cadmium has been solved by multidimensional heteronuclear NMR spectroscopy. The overall structure is very similar to that of the wild-type N-terminal domain complexed to zinc. In contrast to the wild-type domain, however, which exists in two interconverting conformational states arising from different modes of coordination of the two histidine side chains to the metal, the cadmium complex of the His12 --> Cys mutant exists in only a single form at low pH. The conformation of the polypeptide chain encompassing residues 10-18 is intermediate between the two forms of the wild-type complex. PMID:9865962

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Yeh; C Lee; L Amzel

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both inmore » Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.« less

  5. Communication between the N and C Termini Is Required for Copper-stimulated Ser/Thr Phosphorylation of Cu(I)-ATPase (ATP7B)*

    PubMed Central

    Braiterman, Lelita T.; Gupta, Arnab; Chaerkady, Raghothama; Cole, Robert N.; Hubbard, Ann L.

    2015-01-01

    The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration. PMID:25666620

  6. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of thismore » domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm–NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. - Highlights: • GBNV NSm localizes to plasmodesmata via the C-terminal coiled coil domain. • GBNV NSm interacts with endoplasmic reticulum network and remodels it to vesicles. • The C-terminal coiled domain alone is responsible for vesicle formation. • The N-terminal unfolded region of NSm is involved in the re-localization of NP to PD.« less

  7. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases

    PubMed Central

    Lamb, Brian M.; Mercer, Andrew C.; Barbas, Carlos F.

    2013-01-01

    Transcription activator-like effector (TALE) proteins can be designed to bind virtually any DNA sequence. General guidelines for design of TALE DNA-binding domains suggest that the 5′-most base of the DNA sequence bound by the TALE (the N0 base) should be a thymine. We quantified the N0 requirement by analysis of the activities of TALE transcription factors (TALE-TF), TALE recombinases (TALE-R) and TALE nucleases (TALENs) with each DNA base at this position. In the absence of a 5′ T, we observed decreases in TALE activity up to >1000-fold in TALE-TF activity, up to 100-fold in TALE-R activity and up to 10-fold reduction in TALEN activity compared with target sequences containing a 5′ T. To develop TALE architectures that recognize all possible N0 bases, we used structure-guided library design coupled with TALE-R activity selections to evolve novel TALE N-terminal domains to accommodate any N0 base. A G-selective domain and broadly reactive domains were isolated and characterized. The engineered TALE domains selected in the TALE-R format demonstrated modularity and were active in TALE-TF and TALEN architectures. Evolved N-terminal domains provide effective and unconstrained TALE-based targeting of any DNA sequence as TALE binding proteins and designer enzymes. PMID:23980031

  8. Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4.

    PubMed

    Sehar, Ujala; Mehmood, Muhammad Aamer; Hussain, Khadim; Nawaz, Salman; Nadeem, Shahid; Siddique, Muhammad Hussnain; Nadeem, Habibullah; Gull, Munazza; Ahmad, Niaz; Sohail, Iqra; Gill, Saba Shahid; Majeed, Summera

    2013-01-01

    This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.

  9. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins

    PubMed Central

    Radakovics, Katharina; Smith, Terry K.; Bobik, Nina; Round, Adam; Djinović-Carugo, Kristina; Usón, Isabel

    2016-01-01

    Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1–83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1–83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1–240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88. PMID:27973613

  10. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain

    PubMed Central

    Ampah-Korsah, Henry; Anderberg, Hanna I.; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  11. A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite

    PubMed Central

    Ribeiro, Carla M. S.; Bird, Steve; Raes, Geert; Ghassabeh, Gholamreza H.; Schijns, Virgil E. J. C.; Pontes, Maria J. S. L.; Savelkoul, Huub F. J.; Wiegertjes, Geert F.

    2011-01-01

    Background The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF) receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways. Methodology/Principal Findings Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I-) type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production. Conclusion/Significance We report the structural and functional characterization of a novel soluble immune-type receptor (SITR) in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite. PMID:21305002

  12. Characterization of the Grp94/OS-9 chaperone-lectin complex

    PubMed Central

    Seidler, Paul M.; Shinsky, Stephen A.; Hong, Feng; Li, Zihai; Cosgrove, Michael S.; Gewirth, Daniel T.

    2014-01-01

    Grp94 is a macromolecular chaperone belonging to the hsp90 family and is the most abundant glycoprotein in the endoplasmic reticulum of mammals. In addition to its essential role in protein folding, Grp94 was proposed to participate in the ER associated degradation (ERAD) quality control pathway by interacting with the lectin OS-9, a sensor for terminally misfolded proteins (TMPs). To understand how OS-9 interacts with ER chaperone proteins, we mapped its interaction with Grp94. Glycosylation of the full length Grp94 protein was essential for OS-9 binding, although deletion of the Grp94 N-terminal domain relieved this requirement suggesting that the effect was allosteric rather than direct. Although yeast OS-9 is composed of a well-established N-terminal MRH lectin domain and a C-terminal dimerization domain, we find that the C-terminal domain of OS-9 in higher eukaryotes contains ‘mammalian-specific insets’ that are specifically recognized by the middle and C-terminal domains of Grp94. Additionally, the Grp94 binding domain in OS-9 was found to be intrinsically disordered. The biochemical analysis of the interacting regions provides insight into the manner by which the two associate, and additionally hints at a plausible biological role for the Grp94/OS-9 complex. PMID:25193139

  13. Understanding the Physical and Molecular Basis of Stability of Arabidopsis DNA Pol λ under UV-B and High NaCl Stress.

    PubMed

    Roy, Sujit; Banerjee, Victor; Das, Kali Pada

    2015-01-01

    Here, we have investigated the physical and molecular basis of stability of Arabidopsis DNA Pol λ, the sole X family DNA polymerase member in plant genome, under UV-B and salinity stress in connection with the function of the N-terminal BRCT (breast cancer-associated C terminus) domain and Ser-Pro rich region in the regulation of the overall structure of this protein. Tryptophan fluorescence studies, fluorescence quenching and Bis-ANS binding experiments using purified recombinant full length Pol λ and its N-terminal deletion forms have revealed UV-B induced conformational change in BRCT domain deficient Pol λ. On the other hand, the highly conserved C-terminal catalytic core PolX domain maintained its tertiary folds under similar condition. Circular dichroism (CD) and fourier transform infrared (FT-IR) spectral studies have indicated appreciable change in the secondary structural elements in UV-B exposed BRCT domain deficient Pol λ. Increased thermodynamic stability of the C-terminal catalytic core domain suggested destabilizing effect of the N-terminal Ser-Pro rich region on the protein structure. Urea-induced equilibrium unfolding studies have revealed increased stability of Pol λ and its N-terminal deletion mutants at high NaCl concentration. In vivo aggregation studies using transient expression systems in Arabidopsis and tobacco indicated possible aggregation of Pol λ lacking the BRCT domain. Immunoprecipitation assays revealed interaction of Pol λ with the eukaryotic molecular chaperone HSP90, suggesting the possibility of regulation of Pol λ stability by HSP90 in plant cell. Overall, our results have provided one of the first comprehensive information on the biophysical characteristics of Pol λ and indicated the importance of both BRCT and Ser-Pro rich modules in regulating the stability of this protein under genotoxic stress in plants.

  14. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  15. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    PubMed

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  16. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.

    2016-05-23

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1,more » which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.« less

  17. Structural basis of Vta1 function in the multi-vesicular body sorting pathway

    PubMed Central

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai; Azmi, Ishara; Davies, Brian A.; Katzmann, David J.; Xu, Zhaohui

    2009-01-01

    Summary The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly. PMID:18194651

  18. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase

    PubMed Central

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R.; Yang, Shaoqing; Jiang, Zhengqiang

    2015-01-01

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions — a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins. PMID:26669854

  19. A unique GCN5-related glucosamine N-acetyltransferase region exist in the fungal multi-domain glycoside hydrolase family 3 β-N-acetylglucosaminidase.

    PubMed

    Qin, Zhen; Xiao, Yibei; Yang, Xinbin; Mesters, Jeroen R; Yang, Shaoqing; Jiang, Zhengqiang

    2015-12-16

    Glycoside hydrolase (GH) family 3 β-N-acetylglucosaminidases widely exist in the filamentous fungi, which may play a key role in chitin metabolism of fungi. A multi-domain GH family 3 β-N-acetylglucosaminidase from Rhizomucor miehei (RmNag), exhibiting a potential N-acetyltransferase region, has been recently reported to show great potential in industrial applications. In this study, the crystal structure of RmNag was determined at 2.80 Å resolution. The three-dimensional structure of RmNag showed four distinctive domains, which belong to two distinguishable functional regions--a GH family 3 β-N-acetylglucosaminidase region (N-terminal) and a N-acetyltransferase region (C-terminal). From structural and functional analysis, the C-terminal region of RmNag was identified as a unique tandem array linking general control non-derepressible 5 (GCN5)-related N-acetyltransferase (GNAT), which displayed glucosamine N-acetyltransferase activity. Structural analysis of this glucosamine N-acetyltransferase region revealed that a unique glucosamine binding pocket is located in the pantetheine arm binding terminal region of the conserved CoA binding pocket, which is different from all known GNAT members. This is the first structural report of a glucosamine N-acetyltransferase, which provides novel structural information about substrate specificity of GNATs. The structural and functional features of this multi-domain β-N-acetylglucosaminidase could be useful in studying the catalytic mechanism of GH family 3 proteins.

  20. GSDM family genes meet autophagy.

    PubMed

    Tamura, Masaru; Shiroishi, Toshihiko

    2015-07-15

    In the previous issue of Biochemical Journal, Shi et al. [(2015) 468, 325-336] report that Gasdermin (Gsdm) family proteins regulate autophagy activity, which is counter-balanced by the opposite functions of well-conserved N- and C-terminal domains of the proteins. The Gsdm family was originally identified as the causative gene of dominant skin mutations exhibiting alopecia. Each member of the Gsdm gene family shows characteristic expression patterns in the epithelium, which is tissue and differentiation stage-specific. Previous phenotype analyses of mutant mice, biochemical analyses of proteins and genome-wide association studies showed that the Gsdm gene family might be involved in epithelial cell development, apoptosis, inflammation, carcinogenesis and immune-related diseases. To date, however, their molecular function(s) remain unclear. Shi et al. found that mutations in the C-terminal domain of Gsdma3, a member of the Gsdm family, induce autophagy. Further studies revealed that the wild-type N-terminal domain has pro-autophagic activity and that the C-terminal domain conversely inhibits this N-terminal function. These opposite functions of the two domains were also observed in other Gsdm family members. Thus, their study provides a new insight into the function of Gsdm genes in epithelial cell lineage, causality of cancers and immune-related diseases including childhood-onset asthma. © 2015 Authors; published by Portland Press Limited.

  1. Mutational analyses of Aquifex pyrophilus DNA ligase define essential domains for self-adenylation and DNA binding activity.

    PubMed

    Lim, J H; Choi, J; Kim, W; Ahn, B Y; Han, Y S

    2001-04-15

    We constructed nine deletion mutants of NAD+-dependent DNA ligase from Aquifex pyrophilus to characterize the functional domains. All of DNA ligase deletion mutants were analyzed in biochemical assays for NAD+-dependent self-adenylation, DNA binding, and nick-closing activity. Although the mutant lsub1 (91-362) included the active site lysine (KxDG), self-adenylation was not shown. However, the mutants lsub6 (1-362), lsub7 (1-516), and lsub9 (1-635) showed the same adenylation activity as that of wild type. The lsub5 (91-719), which has the C-terminal domain (487-719) as to lsub4 (91-486), showed minimal adenylation activity. These results suggest that the presence of N-terminal 90 residues is essential for the formation of an enzyme-AMP complex, while C-terminal domain (487-719) appears to play a minimal role in adenylation. It was found that the presence of C-terminal domain (487-719) is indispensable for DNA binding activity of lsub5 (91-719). The mutant lsub9 (1-635) showed reduced DNA binding activity compared to that of wild type, suggesting the contribution of the domain (636-719) for the DNA binding activity. Thus, we concluded that the N-terminal 90 residues and C-terminal domain (487-719) of NAD+-dependent DNA ligase from A. pyrophilus are mutually indispensable for binding of DNA substrate.

  2. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  3. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  7. Structural and functional organization of the ESCRT-I trafficking complex

    PubMed Central

    Kostelansky, Michael S.; Sun, Ji; Lee, Sangho; Kim, Jaewon; Ghirlando, Rodolfo; Hierro, Aitor; Emr, Scott D.; Hurley, James H.

    2006-01-01

    Summary The Endosomal Sorting Complex Required for Transport (ESCRT) complexes are central to receptor downregulation, lysosome biogenesis, and budding of HIV. The yeast ESCRT-I complex contains the Vps23, Vps28, and Vps37 proteins and its assembly is directed by the C-terminal steadiness box of Vps23, the N-terminal half of Vps28, and the C-terminal half of Vps37. The crystal structures of a Vps23:Vps28 core subcomplex and the Vps23:Vps28:Vps37 core were solved at 2.1 and 2.8 Å resolution. Each subunit contains a structurally similar pair of helices that form the core. The N-terminal domain of Vps28 has a hydrophobic binding site on its surface that is conformationally dynamic. The C-terminal domain of Vps28 binds the ESCRT-II complex. The structure shows how ESCRT-I is assembled by a compact core from which the Vps23 UEVdomain, the Vps28 C-domain, and other domains project to bind their partners. PMID:16615894

  8. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita,S.; Zhenxing, H.; Swaathi, J.

    2006-01-01

    Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine ({psi}) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E. coli RluF at 2.6 Angstroms resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. Themore » structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of {psi}-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.« less

  9. Arc1p is required for cytoplasmic confinement of synthetases and tRNA.

    PubMed

    Golinelli-Cohen, Marie-Pierre; Mirande, Marc

    2007-06-01

    In yeast, Arc1p interacts with ScMetRS and ScGluRS and operates as a tRNA-Interacting Factor (tIF) in trans of these two synthetases. Its N-terminal domain (N-Arc1p) binds the two synthetases and its C-terminal domain is an EMAPII-like domain organized around an OB-fold-based tIF. ARC1 is not an essential gene but its deletion (arc1- cells) is accompanied by a growth retardation phenotype. Here, we show that expression of N-Arc1p or of C-Arc1p alone palliates the growth defect of arc1- cells, and that bacterial Trbp111 or human p43, two proteins containing EMAPII-like domains, also improve the growth of an arc1- strain. The synthetic lethality of an arc1-los1- strain can be complemented with either ARC1 or LOS1. Expression of N-Arc1p or C-Arc1p alone does not complement an arc1-los1- phenotype, but coexpression of the two domains does. Our data demonstrate that Trbp111 or p43 may replace C-Arc1p to complement an arc1-los1- strain. The two functional domains of Arc1p (N-Arc1p and C-Arc1p) are required to get rid of the synthetic lethal phenotype but do not need to be physically linked. To get some clues to the discrete functions of N-Arc1p and C-Arc1p, we targeted ScMetRS or tIF domains to the nuclear compartment and analyzed their cellular localization by using GFP fusions, and their ability to sustain growth. Our results are consistent with a model according to which Arc1p is a bifunctional protein involved in the subcellular localization of ScMetRS and ScGluRS via its N-terminal domain and of tRNA via its C-terminal domain.

  10. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy G.

    2011-06-18

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despitemore » its potential role in retinoblastoma. Thus, here we have extensively characterized the CD147 Ig0 domain by elucidating its three-dimensional structure through crystallography and its solution behavior through several biophysical methods that include nuclear magnetic resonance. Furthermore, we have utilized this data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6, which is a well-known contributor to retinoblastoma and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Furthermore, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation.« less

  11. The Emerging Importance of IgG Fab Glycosylation in Immunity.

    PubMed

    van de Bovenkamp, Fleur S; Hafkenscheid, Lise; Rispens, Theo; Rombouts, Yoann

    2016-02-15

    Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Successful Conversion of the Bacillus subtilis BirA Group II Biotin Protein Ligase into a Group I Ligase

    PubMed Central

    Henke, Sarah K.; Cronan, John E.

    2014-01-01

    Group II biotin protein ligases (BPLs) are characterized by the presence of an N-terminal DNA binding domain that allows transcriptional regulation of biotin biosynthetic and transport genes whereas Group I BPLs lack this N-terminal domain. The Bacillus subtilis BPL, BirA, is classified as a Group II BPL based on sequence predictions of an N-terminal helix-turn-helix motif and mutational alteration of its regulatory properties. We report evidence that B. subtilis BirA is a Group II BPL that regulates transcription at three genomic sites: bioWAFDBI, yuiG and yhfUTS. Moreover, unlike the paradigm Group II BPL, E. coli BirA, the N-terminal DNA binding domain can be deleted from Bacillus subtilis BirA without adverse effects on its ligase function. This is the first example of successful conversion of a Group II BPL to a Group I BPL with retention of full ligase activity. PMID:24816803

  13. Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii.

    PubMed

    Gayen, Shovanlal; Balakrishna, Asha M; Biuković, Goran; Yulei, Wu; Hunke, Cornelia; Grüber, Gerhard

    2008-04-01

    The boomerang-like H subunit of A(1)A(0) ATP synthase forms one of the peripheral stalks connecting the A(1) and A(0) sections. Structural analyses of the N-terminal part (H1-47) of subunit H of the A(1)A(0) ATP synthase from Methanocaldococcus jannaschii have been performed by NMR spectroscopy. Our initial NMR structural calculations for H1-47 indicate that amino acid residues 7-44 fold into a single alpha-helical structure. Using the purified N- (E1-100) and C-terminal domains (E101-206) of subunit E, NMR titration experiments revealed that the N-terminal residues Met1-6, Lys10, Glu11, Ala15, Val20 and Glu24 of H1-47 interact specifically with the N-terminal domain E1-100 of subunit E. A more detailed picture regarding the residues of E1-100 involved in this association was obtained by titration studies using the N-terminal peptides E1-20, E21-40 and E41-60. These data indicate that the N-terminal tail E41-60 interacts with the N-terminal amino acids of H1-47, and this has been confirmed by fluorescence correlation spectroscopy results. Analysis of (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of the central stalk subunit F in the presence and absence of E101-206 show no obvious interaction between the C-terminal domain of E and subunit F. The data presented provide, for the first time, structural insights into the interaction of subunits E and H, and their arrangement within A(1)A(0) ATP synthase.

  14. Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies

    PubMed Central

    Rajan, Rakhi; Prasad, Rajendra; Taneja, Bhupesh; Wilson, Samuel H.; Mondragón, Alfonso

    2013-01-01

    Topoisomerase V (Topo-V) is the only member of a novel topoisomerase subtype. Topo-V is unique because it is a bifunctional enzyme carrying both topoisomerase and DNA repair lyase activities within the same protein. Previous studies had shown that the topoisomerase domain spans the N-terminus of the protein and is followed by 12 tandem helix–hairpin–helix [(HhH)2] domains. There are at least two DNA repair lyase active sites for apurinic/apyrimidinic (AP) site processing, one within the N-terminal region and the second within the C-terminal domain of Topo-V, but their exact locations and characteristics are unknown. In the present study, the N-terminal 78-kDa fragment of Topo-V (Topo-78), containing the topoisomerase domain and one of the lyase DNA repair domains, was characterized by structural and biochemical studies. The results show that an N-terminal 69-kDa fragment is the minimal fragment with both topoisomerase and AP lyase activities. The lyase active site of Topo-78 is at the junction of the fifth and sixth (HhH)2 domains. From the biochemical and structural data, it appears that Lys571 is the most probable nucleophile responsible for the lyase activity. Our experiments also suggest that Topo-V most likely acts as a Class I AP endonuclease in vivo. PMID:23125368

  15. Robust and tunable circadian rhythms from differentially sensitive catalytic domains

    PubMed Central

    Phong, Connie; Markson, Joseph S.; Wilhoite, Crystal M.; Rust, Michael J.

    2013-01-01

    Circadian clocks are ubiquitous biological oscillators that coordinate an organism’s behavior with the daily cycling of the external environment. To ensure synchronization with the environment, the period of the clock must be maintained near 24 h even as amplitude and phase are altered by input signaling. We show that, in a reconstituted circadian system from cyanobacteria, these conflicting requirements are satisfied by distinct functions for two domains of the central clock protein KaiC: the C-terminal autokinase domain integrates input signals through the ATP/ADP ratio, and the slow N-terminal ATPase acts as an input-independent timer. We find that phosphorylation in the C-terminal domain followed by an ATPase cycle in the N-terminal domain is required to form the inhibitory KaiB•KaiC complexes that drive the dynamics of the clock. We present a mathematical model in which this ATPase-mediated delay in negative feedback gives rise to a compensatory mechanism that allows a tunable phase and amplitude while ensuring a robust circadian period. PMID:23277568

  16. Non-native, N-terminal Hsp70 Molecular Motor Recognition Elements in Transit Peptides Support Plastid Protein Translocation*

    PubMed Central

    Chotewutmontri, Prakitchai; Bruce, Barry D.

    2015-01-01

    Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915

  17. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    PubMed

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  18. Tensin stabilizes integrin adhesive contacts in Drosophila.

    PubMed

    Torgler, Catherine N; Narasimha, Maithreyi; Knox, Andrea L; Zervas, Christos G; Vernon, Matthew C; Brown, Nicholas H

    2004-03-01

    We report the functional characterization of the Drosophila ortholog of tensin, a protein implicated in linking integrins to the cytoskeleton and signaling pathways. A tensin null was generated and is viable with wing blisters, a phenotype characteristic of loss of integrin adhesion. In tensin mutants, mechanical abrasion is required during wing expansion to cause wing blisters, suggesting that tensin strengthens integrin adhesion. The localization of tensin requires integrins, talin, and integrin-linked kinase. The N-terminal domain and C-terminal PTB domain of tensin provide essential recruitment signals. The intervening SH2 domain is not localized on its own. We suggest a model where tensin is recruited to sites of integrin adhesion via its PTB and N-terminal domains, localizing the SH2 domain so that it can interact with phosphotyrosine-containing proteins, which stabilize the integrin link to the cytoskeleton.

  19. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins.

    PubMed

    Sun, D; Leung, C L; Liem, R K

    2001-01-01

    MACF (microtubule actin cross-linking factor) is a large, 608-kDa protein that can associate with both actin microfilaments and microtubules (MTs). Structurally, MACF can be divided into 3 domains: an N-terminal domain that contains both a calponin type actin-binding domain and a plakin domain; a rod domain that is composed of 23 dystrophin-like spectrin repeats; and a C-terminal domain that includes two EF-hand calcium-binding motifs, as well as a region that is homologous to two related proteins, GAR22 and Gas2. We have previously demonstrated that the C-terminal domain of MACF binds to MTs, although no homology was observed between this domain and other known microtubule-binding proteins. In this report, we describe the characterization of this microtubule-binding domain of MACF by transient transfection studies and in vitro binding assays. We found that the C-terminus of MACF contains at least two microtubule-binding regions, a GAR domain and a domain containing glycine-serine-arginine (GSR) repeats. In transfected cells, the GAR domain bound to and partially stabilized MTs to depolymerization by nocodazole. The GSR-containing domain caused MTs to form bundles that are still sensitive to nocodazole-induced depolymerization. When present together, these two domains acted in concert to bundle MTs and render them stable to nocodazole treatment. Recently, a study has shown that the N-terminal half of the plakin domain (called the M1 domain) of MACF also binds MTs. We therefore examined the microtubule binding ability of the M1 domain in the context of the entire plakin domain with and without the remaining N-terminal regions of two different MACF isoforms. Interestingly, in the presence of the surrounding sequences, the M1 domain did not bind MTs. In addition to MACF, cDNA sequences encoding the GAR and GSR-containing domains are also found in the partial human EST clone KIAA0728, which has high sequence homology to the 3' end of the MACF cDNA; hence, we refer to it as MACF2. The C-terminal domain of mouse MACF2 was cloned and characterized. The microtubule-binding properties of MACF2 C-terminal domain are similar to that of MACF. The GAR domain was originally found in Gas 2 protein and here we show that it can associate with MTs in transfected cells. Plectin and desmoplakin have GSR-containing domains at their C-termini and we further demonstrate that the GSR-containing domain of plectin, but not desmoplakin, can bind to MTs in vivo.

  20. Characterization, cell-surface expression and ligand-binding properties of different truncated N-terminal extracellular domains of the ionotropic glutamate receptor subunit GluR1.

    PubMed

    McIlhinney, R A; Molnár, E

    1996-04-01

    To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.

  1. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  2. A Conserved Acidic Motif in the N-Terminal Domain of Nitrate Reductase Is Necessary for the Inactivation of the Enzyme in the Dark by Phosphorylation and 14-3-3 Binding1

    PubMed Central

    Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian

    1999-01-01

    It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364

  3. Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains.

    PubMed

    Bot, Simonetta; Andreuzzi, Eva; Capuano, Alessandra; Schiavinato, Alvise; Colombatti, Alfonso; Doliana, Roberto

    2015-01-01

    EMILIN1 and EMILIN2 belong to a family of extracellular matrix glycoproteins characterized by the N-terminal cysteine-rich EMI domain, a long segment with high probabilty for coiled-coil structure formation and a C-terminal gC1q domain. To study EMILIN1 and EMILIN2 interaction and assembly we have applied qualitative and quantitative two hybrid systems using constructs corresponding to the gC1q and EMI domains. The identified interactions were further confirmed in yeast extracts of co-transfected cells followed by co-immunoprecipitation. The data indicated that gC1q domains are able to self-interact as well as to interact one each other and with the EMI domains, but no self interactions were detected between the EMI domains. Furthermore EMILINs interactions were studied in 293-EBNA cells co-transfected with full lenght EMILIN1 and EMILIN2 constructs. Specific antibodies were able to co-immunoprecipitate EMILINs, indicating that also full-lenght proteins can give rise to non-covalent homo- and hetero-multimers even if reduced and alkylated before mixing. Immunofluorescence analysis on mouse cell cultures and tissues sections with specific antibodies showed co-distribution of EMILIN1 and EMILIN2. Thus, we can hypothesize that EMILINs multimers are formed by head-to-tail interaction between C-terminal and N-terminal domains of EMILIN1 and/or EMILIN2 but also by tail-to-tail interaction between gC1q domains. These multiple interactions may regulate homo-typic and/or hetero-typic linear and eventually lateral branching assemblies of EMILIN1 and EMILIN2 in tissues. Copyright © 2014. Published by Elsevier B.V.

  4. Relative stabilities of IgG1 and IgG4 Fab domains: Influence of the light–heavy interchain disulfide bond architecture

    PubMed Central

    Heads, James T; Adams, Ralph; D'Hooghe, Lena E; Page, Matt J T; Humphreys, David P; Popplewell, Andrew G; Lawson, Alastair D; Henry, Alistair J

    2012-01-01

    The stability of therapeutic antibodies is a prime pharmaceutical concern. In this work we examined thermal stability differences between human IgG1 and IgG4 Fab domains containing the same variable regions using the thermofluor assay. It was found that the IgG1 Fab domain is up to 11°C more stable than the IgG4 Fab domain containing the same variable region. We investigated the cause of this difference with the aim of developing a molecule with the enhanced stability of the IgG1 Fab and the biological properties of an IgG4 Fc. We found that replacing the seven residues, which differ between IgG1 CH1 and IgG4 CH1 domains, while retaining the native IgG1 light-heavy interchain disulfide (L–H) bond, did not affect thermal stability. Introducing the IgG1 type L–H interchain disulfide bond (DSB) into the IgG4 Fab resulted in an increase in thermal stability to levels observed in the IgG1 Fab with the same variable region. Conversely, replacement of the IgG1 L–H interchain DSB with the IgG4 type L–H interchain DSB reduced the thermal stability. We utilized the increased stability of the IgG1 Fab and designed a hybrid antibody with an IgG1 CH1 linked to an IgG4 Fc via an IgG1 hinge. This construct has the expected biophysical properties of both the IgG4 Fc and IgG1 Fab domains and may therefore be a pharmaceutically relevant format. PMID:22761163

  5. Structural and functional insight into the N-terminal domain of the clathrin adaptor Ent5 from Saccharomyces cerevisiae.

    PubMed

    Zhang, Fan; Song, Yang; Ebrahimi, Mohammad; Niu, Liwen; Teng, Maikun; Li, Xu

    2016-09-02

    Clathrin-coated vesicles (CCVs) play critical roles in multiple cellular processes, including nutrient uptake, endosome/lysosome biogenesis, pathogen invasion, regulation of signalling receptors, etc. Saccharomyces cerevisiae Ent5 (ScEnt5) is one of the two major adaptors supporting the CCV-mediated TGN/endosome traffic in yeast cells. However, the classification and phosphoinositide binding characteristic of ScEnt5 remain elusive. Here we report the crystal structures of the ScEnt5 N-terminal domain, and find that ScEnt5 contains an insertion α' helix that does not exist in other ENTH or ANTH domains. Furthermore, we investigate the classification of ScEnt5-N(31-191) by evolutionary history analyses and structure comparisons, and find that the ScEnt5 N-terminal domain shows different phosphoinositide binding property from rEpsin1 and rCALM. Above results facilitate the understanding of the ScEnt5-mediated vesicle coat formation process. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    PubMed Central

    Kim, Seong K.; Kim, Seongman; Dai, Gan; Zhang, Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2012-01-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1,487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. PMID:21794889

  7. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets

    PubMed Central

    Guzmán Prieto, Ana M.; Urbanus, Rolf T.; Zhang, Xinglin; Bierschenk, Damien; Koekman, C. Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P.; Pape, Marieke; Paganelli, Fernanda L.; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P. A.; Bonten, Marc J. M.; Willems, Rob J. L.; van Schaik, Willem

    2015-01-01

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets. PMID:26675410

  8. The N-terminal domain of the thermo-regulated surface protein PrpA of Enterococcus faecium binds to fibrinogen, fibronectin and platelets.

    PubMed

    Guzmán Prieto, Ana M; Urbanus, Rolf T; Zhang, Xinglin; Bierschenk, Damien; Koekman, C Arnold; van Luit-Asbroek, Miranda; Ouwerkerk, Janneke P; Pape, Marieke; Paganelli, Fernanda L; Wobser, Dominique; Huebner, Johannes; Hendrickx, Antoni P A; Bonten, Marc J M; Willems, Rob J L; van Schaik, Willem

    2015-12-17

    Enterococcus faecium is a commensal of the mammalian gastrointestinal tract, but is also found in non-enteric environments where it can grow between 10 °C and 45 °C. E. faecium has recently emerged as a multi-drug resistant nosocomial pathogen. We hypothesized that genes involved in the colonization and infection of mammals exhibit temperature-regulated expression control and we therefore performed a transcriptome analysis of the clinical isolate E. faecium E1162, during mid-exponential growth at 25 °C and 37 °C. One of the genes that exhibited differential expression between 25 °C and 37 °C, was predicted to encode a peptidoglycan-anchored surface protein. The N-terminal domain of this protein is unique to E. faecium and closely related enterococci, while the C-terminal domain is homologous to the Streptococcus agalactiae surface protein BibA. This region of the protein contains proline-rich repeats, leading us to name the protein PrpA for proline-rich protein A. We found that PrpA is a surface-exposed protein which is most abundant during exponential growth at 37 °C in E. faecium E1162. The heterologously expressed and purified N-terminal domain of PrpA was able to bind to the extracellular matrix proteins fibrinogen and fibronectin. In addition, the N-terminal domain of PrpA interacted with both non-activated and activated platelets.

  9. Characterization of the ligand-binding site of the transferrin receptor in Trypanosoma brucei demonstrates a structural relationship with the N-terminal domain of the variant surface glycoprotein.

    PubMed

    Salmon, D; Hanocq-Quertier, J; Paturiaux-Hanocq, F; Pays, A; Tebabi, P; Nolan, D P; Michel, A; Pays, E

    1997-12-15

    The Trypanosoma brucei transferrin (Tf) receptor is a heterodimer encoded by ESAG7 and ESAG6, two genes contained in the different polycistronic transcription units of the variant surface glycoprotein (VSG) gene. The sequence of ESAG7/6 differs slightly between different units, so that receptors with different affinities for Tf are expressed alternatively following transcriptional switching of VSG expression sites during antigenic variation of the parasite. Based on the sequence homology between pESAG7/6 and the N-terminal domain of VSGs, it can be predicted that the four blocks containing the major sequence differences between pESAG7 and pESAG6 form surface-exposed loops and generate the ligand-binding site. The exchange of a few amino acids in this region between pESAG6s encoded by different VSG units greatly increased the affinity for bovine Tf. Similar changes in other regions were ineffective, while mutations predicted to alter the VSG-like structure abolished the binding. Chimeric proteins containing the N-terminal dimerization domain of VSG and the C-terminal half of either pESAG7 or pESAG6, which contains the ligand-binding domain, can form heterodimers that bind Tf. Taken together, these data provided evidence that the T.brucei Tf receptor is structurally related to the N-terminal domain of the VSG and that the ligand-binding site corresponds to the exposed surface loops of the protein.

  10. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  11. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Identification of the WW domain-interaction sites in the unstructured N-terminal domain of EBV LMP 2A.

    PubMed

    Seo, Min-Duk; Park, Sung Jean; Kim, Hyun-Jung; Lee, Bong Jin

    2007-01-09

    Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase.

  14. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish.

    PubMed

    Rumfelt, Lynn L; Diaz, Marilyn; Lohr, Rebecca L; Mochon, Evonne; Flajnik, Martin F

    2004-07-15

    In most jawed vertebrates including cartilaginous fish, membrane-bound IgM is expressed as a five Ig superfamily (Igsf)-domain H chain attached to a transmembrane (Tm) region. Heretofore, bony fish IgM was the one exception with IgM mRNA spliced to produce a four-domain Tm H chain. We now demonstrate that the Tm and secretory (Sec) mRNAs of the novel cartilaginous fish Ig isotypes, IgW and IgNAR, are present in multiple forms, most likely generated by alternative splicing. In the nurse shark, Ginglymostoma cirratum, and horn shark, Heterodontus francisci, alternative splicing of Tm exons to the second or the fourth constant (C(H)) exons produces two distinct IgW Tm cDNAs. Although the seven-domain IgW Sec cDNA form contains a canonical secretory tail shared with IgM, IgNAR, and IgA, we report a three-domain cDNA form of shark IgW (IgW(short)) having an unusual Sec tail, which is orthologous to skate IgX(short) cDNA. The IgW and IgW(short) Sec transcripts are restricted in their tissue distribution and expression levels vary among individual sharks, with all forms expressed early in ontogeny. IgNAR mRNA is alternatively spliced to produce a truncated four-domain Tm cDNA and a second Tm cDNA is expressed identical in Igsf domains as the Sec form. PBL is enriched in the Tm cDNA of these Igs. These molecular data suggest that cartilaginous fish have augmented their humoral immune repertoire by diversifying the sizes of their Ig isotypes. Furthermore, these Tm cDNAs are prototypical and the truncated variants may translate as more stable protein at the cell surface.

  15. Putative suppressing effect of IgG Fc-conjugated haemagglutinin (HA) stalk of influenza virus H7N9 on the neutralizing immunogenicity of Fc-conjugated HA head: implication for rational design of HA-based influenza vaccines.

    PubMed

    He, B; Xia, S; Yu, F; Fu, Y; Li, W; Wang, Q; Lu, L; Jiang, S

    2016-02-01

    The emergence of influenza A H7N9 in infection has posed a great threat to public health globally. Poor immunogenicity of H7N9 haemagglutinin (HA) is a major obstacle to the development of an effective H7N9 vaccine. Here, we found that the vaccine containing the H7HA head conjugated with IgG Fc (Hd-Fc) induced strong neutralizing antibody responses and protection against H7N9 infection, whilst the Fc-conjugated H7HA stalk (St-Fc)-based vaccine could not induce neutralizing antibodies, although the St-Fc-immunized mice were partially protected. The vaccines containing the full-length extracellular domain of HA conjugated with Fc and the mixture of Hd-Fc plus St-Fc induced significantly lower neutralizing antibody and haemagglutination inhibition titres than the Hd-Fc-based vaccine. These results suggest that the St-Fc may have inhibitory effects on the neutralizing immunogenicity of Hd-Fc. Therefore, the neutralizing domain(s), such as the receptor-binding domain, in the HA head should be kept and the non-neutralizing domain(s) in the HA stalk with the ability to potentially suppress the neutralizing immunogenicity of HA head should be removed from Fc-conjugated HA-based influenza vaccines to increase the neutralizing antibody response.

  16. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding

    PubMed Central

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc

    2017-01-01

    ABSTRACT The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α0), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α0, which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α0 and aid understanding of the role of NS3 in HCV virion morphogenesis. IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly. PMID:28053108

  17. Structural and Enzymatic Analysis of MshA from Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetting,M.; Frantom, P.; Blanchard, J.

    2008-01-01

    The glycosyltransferase termed MshA catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to 1-l-myo-inositol-1-phosphate in the first committed step of mycothiol biosynthesis. The structure of MshA from Corynebacterium glutamicum was determined both in the absence of substrates and in a complex with UDP and 1-l-myo-inositol-1-phosphate. MshA belongs to the GT-B structural family whose members have a two-domain structure with both domains exhibiting a Rossman-type fold. Binding of the donor sugar to the C-terminal domain produces a 97 rotational reorientation of the N-terminal domain relative to the C-terminal domain, clamping down on UDP and generating the binding site for 1-l-myo-inositol-1-phosphate. The structuremore » highlights the residues important in binding of UDP-N-acetylglucosamine and 1-l-myo-inositol-1-phosphate. Molecular models of the ternary complex suggest a mechanism in which the {beta}-phosphate of the substrate, UDP-N-acetylglucosamine, promotes the nucleophilic attack of the 3-hydroxyl group of 1-l-myo-inositol-1-phosphate while at the same time promoting the cleavage of the sugar nucleotide bond.« less

  18. The N Terminus of the Retinoblastoma Protein Inhibits DNA Replication via a Bipartite Mechanism Disrupted in Partially Penetrant Retinoblastomas

    PubMed Central

    Borysov, Sergiy I.; Nepon-Sixt, Brook S.

    2015-01-01

    The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer. Specifically, Rb exon 7 is necessary and sufficient to target and inhibit the replicative CMG helicase, resulting in the accumulation of inactive CMGs on chromatin. An independent N-terminal loop domain, which forms a projection, specifically blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting DNA polymerases ε and δ or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-to-S cell cycle transit. However, their combined loss abolishes these functions of Rb. Thus, Rb growth-suppressive functions include its ability to block replicative complexes via bipartite, independent, and additive N-terminal domains. The partial loss of replication, CMG, or Pol-α control provides a potential molecular explanation for how N-terminal Rb loss-of-function deletions contribute to the etiology of partially penetrant retinoblastomas. PMID:26711265

  19. Architecture and Assembly of HIV Integrase Multimers in the Absence of DNA Substrates*

    PubMed Central

    Bojja, Ravi Shankar; Andrake, Mark D.; Merkel, George; Weigand, Steven; Dunbrack, Roland L.; Skalka, Anna Marie

    2013-01-01

    We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition. PMID:23322775

  20. The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ54-Dependent Transcription

    PubMed Central

    2012-01-01

    Summary: Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ54. We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ54 for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ54-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ54 to the bacterial cell and its unique role in regulating transcription. PMID:22933558

  1. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-07

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  2. Mouse Noxa uses only the C-terminal BH3-domain to inactivate Mcl-1.

    PubMed

    Weber, Arnim; Ausländer, David; Häcker, Georg

    2013-09-01

    Noxa is a member of the pro-apoptotic BH3-only group of Bcl-2 proteins that is known to bind specifically to anti-apoptotic Mcl-1 and A1, antagonizing their function. Mcl-1 has been reported to have a short half-life, and Noxa up-regulation accelerates Mcl-1 degradation by the proteasome. Unlike human Noxa, mouse Noxa has two BH3-domains, which both have affinity for Mcl-1. We here investigate two aspects of the molecular function of Noxa, namely the requirements for the two BH3-domains in mouse Noxa and the role of Noxa in Mcl-1-degradation. We found that only the C-terminal BH3-domain of mouse Noxa is active in neutralizing Mcl-1. This was the result of the targeting of Noxa to the outer mitochondrial membrane through its C-terminal alpha-helix, which allowed Mcl-1-neutralization only when the BH3-domain was immediately N-terminal of the membrane anchor. However, the N-terminal BH3-domain enhanced interaction with Mcl-1 and A1. The Noxa-dependent degradation of Mcl-1 was independent of the kinase GSK3 and the deubiquitinase Usp9x in mouse embryonic fibroblasts. These data show that Noxa is targeted to the mitochondrial membrane where it neutralises Mcl-1 via its C-terminal BH3-domain and suggest that Noxa is co-degraded with Noxa, in a way independent of ubiquitin-modifying enzymes described for Mcl-1.

  3. Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity.

    PubMed

    Horn, James V C; Ellena, Rachel A; Tran, Jesse J; Beck, Wendy H J; Narayanaswami, Vasanthy; Weers, Paul M M

    2017-08-01

    Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins.

    PubMed

    Feige, Matthias J; Gräwert, Melissa A; Marcinowski, Moritz; Hennig, Janosch; Behnke, Julia; Ausländer, David; Herold, Eva M; Peschek, Jirka; Castro, Caitlin D; Flajnik, Martin; Hendershot, Linda M; Sattler, Michael; Groll, Michael; Buchner, Johannes

    2014-06-03

    Sharks and other cartilaginous fish are the phylogenetically oldest living organisms that rely on antibodies as part of their adaptive immune system. They produce the immunoglobulin new antigen receptor (IgNAR), a homodimeric heavy chain-only antibody, as a major part of their humoral adaptive immune response. Here, we report the atomic resolution structure of the IgNAR constant domains and a structural model of this heavy chain-only antibody. We find that despite low sequence conservation, the basic Ig fold of modern antibodies is already present in the evolutionary ancient shark IgNAR domains, highlighting key structural determinants of the ubiquitous Ig fold. In contrast, structural differences between human and shark antibody domains explain the high stability of several IgNAR domains and allowed us to engineer human antibodies for increased stability and secretion efficiency. We identified two constant domains, C1 and C3, that act as dimerization modules within IgNAR. Together with the individual domain structures and small-angle X-ray scattering, this allowed us to develop a structural model of the complete IgNAR molecule. Its constant region exhibits an elongated shape with flexibility and a characteristic kink in the middle. Despite the lack of a canonical hinge region, the variable domains are spaced appropriately wide for binding to multiple antigens. Thus, the shark IgNAR domains already display the well-known Ig fold, but apart from that, this heavy chain-only antibody employs unique ways for dimerization and positioning of functional modules.

  5. Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shekeb; Mian, Hira S.; Sandercock, Linda E.

    2013-03-07

    Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal 'passenger domain' responsible for the specific effector functions of the molecule and a C-terminal '{beta}-domain' responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-{angstrom} crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel {beta}-helix precededmore » by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this {beta}-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the {beta}-helix within SPATEs.« less

  6. Heme impairs the ball-and-chain inactivation of potassium channels.

    PubMed

    Sahoo, Nirakar; Goradia, Nishit; Ohlenschläger, Oliver; Schönherr, Roland; Friedrich, Manfred; Plass, Winfried; Kappl, Reinhard; Hoshi, Toshinori; Heinemann, Stefan H

    2013-10-15

    Fine-tuned regulation of K(+) channel inactivation enables excitable cells to adjust action potential firing. Fast inactivation present in some K(+) channels is mediated by the distal N-terminal structure (ball) occluding the ion permeation pathway. Here we show that Kv1.4 K(+) channels are potently regulated by intracellular free heme; heme binds to the N-terminal inactivation domain and thereby impairs the inactivation process, thus enhancing the K(+) current with an apparent EC50 value of ∼20 nM. Functional studies on channel mutants and structural investigations on recombinant inactivation ball domain peptides encompassing the first 61 residues of Kv1.4 revealed a heme-responsive binding motif involving Cys13:His16 and a secondary histidine at position 35. Heme binding to the N-terminal inactivation domain induces a conformational constraint that prevents it from reaching its receptor site at the vestibule of the channel pore.

  7. The N-Terminal Domain of the Flo1 Flocculation Protein from Saccharomyces cerevisiae Binds Specifically to Mannose Carbohydrates ▿

    PubMed Central

    Goossens, Katty V. Y.; Stassen, Catherine; Stals, Ingeborg; Donohue, Dagmara S.; Devreese, Bart; De Greve, Henri; Willaert, Ronnie G.

    2011-01-01

    Saccharomyces cerevisiae cells possess a remarkable capacity to adhere to other yeast cells, which is called flocculation. Flocculation is defined as the phenomenon wherein yeast cells adhere in clumps and sediment rapidly from the medium in which they are suspended. These cell-cell interactions are mediated by a class of specific cell wall proteins, called flocculins, that stick out of the cell walls of flocculent cells. The N-terminal part of the three-domain protein is responsible for carbohydrate binding. We studied the N-terminal domain of the Flo1 protein (N-Flo1p), which is the most important flocculin responsible for flocculation of yeast cells. It was shown that this domain is both O and N glycosylated and is structurally composed mainly of β-sheets. The binding of N-Flo1p to d-mannose, α-methyl-d-mannoside, various dimannoses, and mannan confirmed that the N-terminal domain of Flo1p is indeed responsible for the sugar-binding activity of the protein. Moreover, fluorescence spectroscopy data suggest that N-Flo1p contains two mannose carbohydrate binding sites with different affinities. The carbohydrate dissociation constants show that the affinity of N-Flo1p for mono- and dimannoses is in the millimolar range for the binding site with low affinity and in the micromolar range for the binding site with high affinity. The high-affinity binding site has a higher affinity for low-molecular-weight (low-MW) mannose carbohydrates and no affinity for mannan. However, mannan as well as low-MW mannose carbohydrates can bind to the low-affinity binding site. These results extend the cellular flocculation model on the molecular level. PMID:21076009

  8. Structure and evolution of N-domains in AAA metalloproteases.

    PubMed

    Scharfenberg, Franka; Serek-Heuberger, Justyna; Coles, Murray; Hartmann, Marcus D; Habeck, Michael; Martin, Jörg; Lupas, Andrei N; Alva, Vikram

    2015-02-27

    Metalloproteases of the AAA (ATPases associated with various cellular activities) family play a crucial role in protein quality control within the cytoplasmic membrane of bacteria and the inner membrane of eukaryotic organelles. These membrane-anchored hexameric enzymes are composed of an N-terminal domain with one or two transmembrane helices, a central AAA ATPase module, and a C-terminal Zn(2+)-dependent protease. While the latter two domains have been well studied, so far, little is known about the N-terminal regions. Here, in an extensive bioinformatic and structural analysis, we identified three major, non-homologous groups of N-domains in AAA metalloproteases. By far, the largest one is the FtsH-like group of bacteria and eukaryotic organelles. The other two groups are specific to Yme1: one found in plants, fungi, and basal metazoans and the other one found exclusively in animals. Using NMR and crystallography, we determined the subunit structure and hexameric assembly of Escherichia coli FtsH-N, exhibiting an unusual α+β fold, and the conserved part of fungal Yme1-N from Saccharomyces cerevisiae, revealing a tetratricopeptide repeat fold. Our bioinformatic analysis showed that, uniquely among these proteins, the N-domain of Yme1 from the cnidarian Hydra vulgaris contains both the tetratricopeptide repeat region seen in basal metazoans and a region of homology to the N-domains of animals. Thus, it is a modern-day representative of an intermediate in the evolution of animal Yme1 from basal eukaryotic precursors. Copyright © 2015. Published by Elsevier Ltd.

  9. Recombinant Human Erythropoietin with Additional Processable Protein Domains: Purification of Protein Synthesized in Escherichia coli Heterologous Expression System.

    PubMed

    Grunina, T M; Demidenko, A V; Lyaschuk, A M; Poponova, M S; Galushkina, Z M; Soboleva, L A; Cherepushkin, S A; Polyakov, N B; Grumov, D A; Solovyev, A I; Zhukhovitsky, V G; Boksha, I S; Subbotina, M E; Gromov, A V; Lunin, V G; Karyagina, A S

    2017-11-01

    Three variants of human recombinant erythropoietin (rhEPO) with additional N-terminal protein domains were obtained by synthesis in an Escherichia coli heterologous expression system. These domains included (i) maltose-binding protein (MBP), (ii) MBP with six histidine residues (6His) in N-terminal position, (iii) s-tag (15-a.a. oligopeptide derived from bovine pancreatic ribonuclease A) with N-terminal 6His. Both variants of the chimeric protein containing MBP domain were prone to aggregation under nondenaturing conditions, and further purification of EPO after the domain cleavage by enterokinase proved to be impossible. In the case of 6His-s-tag-EPO chimeric protein, the products obtained after cleavage with enterokinase were successfully separated by column chromatography, and rhEPO without additional domains was obtained. Results of MALDI-TOF mass spectrometry showed that after refolding 6His-s-tag-EPO formed a structure similar to that of one of native EPO with two disulfide bonds. Both 6His-s-tag-EPO and rhEPO without additional protein domains purified after proteolysis possessed the same biological activity in vitro in the cell culture.

  10. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  11. Fas Apoptosis Inhibitory Molecule (FAIM) Contains a Novel Beta Sandwich in Contact with a Partially Ordered Domain

    PubMed Central

    Hemond, Michael; Rothstein, Thomas L.; Wagner, Gerhard

    2009-01-01

    Summary Fas apoptosis inhibitory molecule (FAIM) is a soluble cytosolic protein inhibitor of programmed cell death and is found in organisms throughout the animal kingdom. A short isoform (FAIM-S) is expressed in all tissue types, while an alternatively spliced long isoform (FAIM-L) is specifically expressed in the brain. Here FAIM-S is shown to consist of two independently folding domains in contact with one another. The NMR solution structure of the C-terminal domain of murine FAIM is solved in isolation and revealed to be a novel protein fold, a noninterleaved seven-stranded beta sandwich. The structure and sequence reveal several residues that are likely to be involved in functionally significant interactions with the N-terminal domain or other binding partners. Chemical shift perturbation is used to elucidate contacts made between the N- and C-terminal domains. PMID:19168072

  12. Toward understanding insulin fibrillation.

    PubMed

    Brange, J; Andersen, L; Laursen, E D; Meyn, G; Rasmussen, E

    1997-05-01

    Formation of insulin fibrils is a physical process by which partially unfolded insulin molecules interact with each other to form linear aggregates. Shielding of hydrophobic domains is the main driving force for this process, but formation of intermolecular beta-sheet may further stabilize the fibrillar structure. Conformational displacement of the B-chain C-terminal with exposure of nonpolar, aliphatic core residues, including A2, A3, B11, and B15, plays a crucial role in the fibrillation process. Recent crystal analyses and molecular modeling studies have suggested that when insulin fibrillates this exposed domain interacts with a hydrophobic surface domain formed by the aliphatic residues A13, B6, B14, B17, and B18, normally buried when three insulin dimers form a hexamer. In rabbit immunization experiments, insulin fibrils did not elicit an increased immune response with respect to formation of IgG insulin antibodies when compared with native insulin. In contrast, the IgE response increased with increasing content of insulin in fibrillar form. Strategies and practical approaches to prevent insulin from forming fibrils are reviewed. Stabilization of the insulin hexameric structure and blockage of hydrophobic interfaces by addition of surfactants are the most effective means of counteracting insulin fibrillation.

  13. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons

    NASA Technical Reports Server (NTRS)

    Mohamed, Habib A.; Mosier, Dennis R.; Zou, Ling L.; Siklos, Laszlo; Alexianu, Maria E.; Engelhardt, Jozsef I.; Beers, David R.; Le, Wei-dong; Appel, Stanley H.

    2002-01-01

    Receptors for the Fc portion of immunoglobulin G (IgG; FcgammaRs) facilitate IgG uptake by effector cells as well as cellular responses initiated by IgG binding. In earlier studies, we demonstrated that amyotrophic lateral sclerosis (ALS) patient IgG can be taken up by motor neuron terminals and transported retrogradely to the cell body and can alter the function of neuromuscular synapses, such as increasing intracellular calcium and spontaneous transmitter release from motor axon terminals after passive transfer. In the present study, we examined whether FcgammaR-mediated processes can contribute to these effects of ALS patient immunoglobulins. F(ab')(2) fragments (which lack the Fc portion) of ALS patient IgG were not taken up by motor axon terminals and were not retrogradely transported. Furthermore, in a genetically modified mouse lacking the gamma subunit of the FcR, the uptake of whole ALS IgG and its ability to enhance intracellular calcium and acetylcholine release were markedly attenuated. These data suggest that FcgammaRs appear to participate in IgG uptake into motor neurons as well as IgG-mediated increases in intracellular calcium and acetylcholine release from motor axon terminals. Copyright 2002 Wiley-Liss, Inc.

  14. Determinants in the Ig Variable Domain of Human HAVCR1 (TIM-1) Are Required To Enhance Hepatitis C Virus Entry.

    PubMed

    Kachko, Alla; Costafreda, Maria Isabel; Zubkova, Iryna; Jacques, Jerome; Takeda, Kazuyo; Wells, Frances; Kaplan, Gerardo; Major, Marian E

    2018-03-15

    Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. Several host molecules participate in HCV cell entry, but this process remains unclear. The complete unraveling of the HCV entry process is important to further understand viral pathogenesis and develop therapeutics. Human hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, functions as a phospholipid receptor involved in cell entry of several enveloped viruses. Here, we studied the role of HAVCR1 in HCV infection. HAVCR1 antibody inhibited entry in a dose-dependent manner. HAVCR1 soluble constructs neutralized HCV, which did not require the HAVCR1 mucinlike region and was abrogated by a mutation of N to A at position 94 (N94A) in the Ig variable (IgV) domain phospholipid-binding pocket, indicating a direct interaction of the HAVCR1 IgV domain with HCV virions. However, knockout of HAVCR1 in Huh7 cells reduced but did not prevent HCV growth. Interestingly, the mouse HAVCR1 ortholog, also a phospholipid receptor, did not enhance infection and a soluble form failed to neutralize HCV, although replacement of the mouse IgV domain with the human HAVCR1 IgV domain restored the enhancement of HCV infection. Mutations in the cytoplasmic tail revealed that direct HAVCR1 signaling is not required to enhance HCV infection. Our data show that the phospholipid-binding function and other determinant(s) in the IgV domain of human HAVCR1 enhance HCV infection. Although the exact mechanism is not known, it is possible that HAVCR1 facilitates entry by stabilizing or enhancing attachment, leading to direct interactions with specific receptors, such as CD81. IMPORTANCE Hepatitis C virus (HCV) enters cells through a multifaceted process. We identified the human hepatitis A virus cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, as a facilitator of HCV entry. Antibody blocking and silencing or knockout of HAVCR1 in hepatoma cells reduced HCV entry. Our findings that the interaction of HAVCR1 with HCV early during infection enhances entry but is not required for infection support the hypothesis that HAVCR1 facilitates entry by stabilizing or enhancing virus binding to the cell surface membrane and allowing the correct virus-receptor positioning for interaction with the main HCV receptors. Furthermore, our data show that in addition to the phospholipid-binding function of HAVCR1, the enhancement of HCV infection involves other determinants in the IgV domain of HAVCR1. These findings expand the repertoire of molecules that HCV uses for cell entry, adding to the already complex mechanism of HCV infection and pathogenesis. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  15. Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark.

    PubMed

    Rumfelt, Lynn L; Lohr, Rebecca L; Dooley, Helen; Flajnik, Martin F

    2004-05-06

    Adult cartilaginous fish express three immunoglobulin (Ig) isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric) IgM and monomeric/dimeric IgM1gj, a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric) IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3) with non-templated nucleotide (N-region) addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT) expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families. IgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1) and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge) within a species. As in ratfish, sandbar and horn sharks, most nurse shark IgM VH genes are from one family with multiple, heterogeneous loci. Their IgW VH genes have diversified, forming at least three families. The neonatal shark Ig VH CDR3 repertoire, diversified via N-region addition, is shorter than the adult VDJ junction, suggesting one means of postnatal repertoire diversification is expression of longer CDR3 junctions.

  16. Diversity and repertoire of IgW and IgM VH families in the newborn nurse shark

    PubMed Central

    Rumfelt, Lynn L; Lohr, Rebecca L; Dooley, Helen; Flajnik, Martin F

    2004-01-01

    Background Adult cartilaginous fish express three immunoglobulin (Ig) isotypes, IgM, IgNAR and IgW. Newborn nurse sharks, Ginglymostoma cirratum, produce 19S (multimeric) IgM and monomeric/dimeric IgM1gj, a germline-joined, IgM-related VH, and very low amounts of 7S (monomeric) IgM and IgNAR proteins. Newborn IgNAR VH mRNAs are diverse in the complementarity-determining region 3 (CDR3) with non-templated nucleotide (N-region) addition, which suggests that, unlike in many other vertebrates, terminal deoxynucleotidyl transferase (TdT) expressed at birth is functional. IgW is present in the lungfish, a bony fish sharing a common ancestor with sharks 460 million years ago, implying that the IgW VH family is as old as the IgM VH family. This nurse shark study examined the IgM and IgW VH repertoire from birth through adult life, and analyzed the phylogenetic relationships of these gene families. Results IgM and IgW VH cDNA clones isolated from newborn nurse shark primary and secondary lymphoid tissues had highly diverse and unique CDR3 with N-region addition and VDJ gene rearrangement, implicating functional TdT and RAG gene activity. Despite the clear presence of N-region additions, newborn CDR3 were significantly shorter than those of adults. The IgM clones are all included in a conventional VH family that can be classified into five discrete groups, none of which is orthologous to IgM VH genes in other elasmobranchs. In addition, a novel divergent VH family was orthologous to a published monotypic VH horn shark family. IgW VH genes have diverged sufficiently to form three families. IgM and IgW VH serine codons using the potential somatic hypermutation hotspot sequence occur mainly in VH framework 1 (FR1) and CDR1. Phylogenetic analysis of cartilaginous fish and lungfish IgM and IgW demonstrated they form two major ancient gene groups; furthermore, these VH genes generally diversify (duplicate and diverge) within a species. Conclusion As in ratfish, sandbar and horn sharks, most nurse shark IgM VH genes are from one family with multiple, heterogeneous loci. Their IgW VH genes have diversified, forming at least three families. The neonatal shark Ig VH CDR3 repertoire, diversified via N-region addition, is shorter than the adult VDJ junction, suggesting one means of postnatal repertoire diversification is expression of longer CDR3 junctions. PMID:15132758

  17. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence uniquemore » in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.« less

  18. Genetics Home Reference: autosomal dominant hyper-IgE syndrome

    MedlinePlus

    ... binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007 Aug 30;448(7157):1058-62. Epub 2007 Aug 5. Citation on PubMed Renner ED, Torgerson TR, Rylaarsdam S, Añover-Sombke S, Golob K, LaFlam T, Zhu Q, Ochs HD. STAT3 mutation in the original patient with Job's syndrome. N Engl J Med. 2007 Oct 18; ...

  19. Structural Basis of Vta1 Function in the Multivesicular Body Sorting Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai

    The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domainmore » stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.« less

  20. The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness.

    PubMed

    Longhi, Sonia

    2012-01-01

    In this chapter, I focus on the biochemical and structural characterization of the complex between the intrinsically disordered C-terminal domain of the measles virus nucleoprotein (N(TAIL)) and the C-terminal X domain (XD) of the viral phosphoprotein (P). I summarize the main experimental data available so far pointing out the prevalently disordered nature of N(TAIL) even after complex formation and the role of the flexible C-terminal appendage in the binding reaction. I finally discuss the possible functional role of these residual disordered regions within the complex in terms of their ability to capture other regulatory, binding partners.

  1. Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5

    PubMed Central

    Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul

    2015-01-01

    ABSTRACT Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs. PMID:26378167

  2. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR

    NASA Astrophysics Data System (ADS)

    Ogura, Kenji; Okamura, Hideyasu

    2013-10-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.

  3. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    USDA-ARS?s Scientific Manuscript database

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  4. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  5. Discovery of new molecular entities able to strongly interfere with Hsp90 C-terminal domain.

    PubMed

    Terracciano, Stefania; Russo, Alessandra; Chini, Maria G; Vaccaro, Maria C; Potenza, Marianna; Vassallo, Antonio; Riccio, Raffaele; Bifulco, Giuseppe; Bruno, Ines

    2018-01-26

    Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone deeply involved in the complex network of cellular signaling governing some key functions, such as cell proliferation and survival, invasion and angiogenesis. Over the past years the N-terminal protein domain has been fully investigated as attractive strategy against cancer, but despite the many efforts lavished in the field, none of the N-terminal binders (termed "classical inhibitors"), currently in clinical trials, have yet successfully reached the market, because of the detrimental heat shock response (HSR) that showed to induce; thus, recently, the selective inhibition of Hsp90 C-terminal domain has powerfully emerged as a more promising alternative strategy for anti-cancer therapy, not eliciting this cell rescue cascade. However, the structural complexity of the target protein and, mostly, the lack of a co-crystal structure of C-terminal domain-ligand, essential to drive the identification of new hits, represent the largest hurdles in the development of new selective C-terminal inhibitors. Continuing our investigations on the identification of new anticancer drug candidates, by using an orthogonal screening approach, here we describe two new potent C-terminal inhibitors able to induce cancer cell death and a considerable down-regulation of Hsp90 client oncoproteins, without triggering the undesired heat shock response.

  6. Engineering the N-terminal end of CelA results in improved performance and growth of Caldicellulosiruptor bescii on crystalline cellulose

    DOE PAGES

    Kim, Sun -Ki; Chung, Daehwan; Himmel, Michael E.; ...

    2016-12-26

    Here, CelA is the most abundant enzyme secreted by Caldicellulosiruptor bescii and has been shown to outperform mixtures of commercially available exo- and endoglucanases in vitro. CelA contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. Here, repeated aspartate residues were introduced into the N-terminal ends of CelA GH9 and GH48 domains to improve secretion efficiency and/or catalytic efficiency of CelA. Among several constructs, the highest activity on carboxymethylcellulose (CMC), 0.81 ± 0.03 mg/mL was observed for the C.more » bescii strain containing CelA with 5-aspartate tag at the N-terminal end of GH9 domain – an 82% increase over wild type CelA. In addition, Expression of CelA with N-terminal repeated aspartate residues in C. bescii results in a dramatic increase in its ability to grow on Avicel.« less

  7. Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain*

    PubMed Central

    Wang, Huanchen; Robinson, Howard; Ke, Hengming

    2010-01-01

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98–147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes. PMID:20861010

  8. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  9. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, whichmore » may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.« less

  10. Understanding the Physical and Molecular Basis of Stability of Arabidopsis DNA Pol λ under UV-B and High NaCl Stress

    PubMed Central

    Das, Kali Pada

    2015-01-01

    Here, we have investigated the physical and molecular basis of stability of Arabidopsis DNA Pol λ, the sole X family DNA polymerase member in plant genome, under UV-B and salinity stress in connection with the function of the N-terminal BRCT (breast cancer-associated C terminus) domain and Ser-Pro rich region in the regulation of the overall structure of this protein. Tryptophan fluorescence studies, fluorescence quenching and Bis-ANS binding experiments using purified recombinant full length Pol λ and its N-terminal deletion forms have revealed UV-B induced conformational change in BRCT domain deficient Pol λ. On the other hand, the highly conserved C-terminal catalytic core PolX domain maintained its tertiary folds under similar condition. Circular dichroism (CD) and fourier transform infrared (FT-IR) spectral studies have indicated appreciable change in the secondary structural elements in UV-B exposed BRCT domain deficient Pol λ. Increased thermodynamic stability of the C-terminal catalytic core domain suggested destabilizing effect of the N-terminal Ser-Pro rich region on the protein structure. Urea-induced equilibrium unfolding studies have revealed increased stability of Pol λ and its N-terminal deletion mutants at high NaCl concentration. In vivo aggregation studies using transient expression systems in Arabidopsis and tobacco indicated possible aggregation of Pol λ lacking the BRCT domain. Immunoprecipitation assays revealed interaction of Pol λ with the eukaryotic molecular chaperone HSP90, suggesting the possibility of regulation of Pol λ stability by HSP90 in plant cell. Overall, our results have provided one of the first comprehensive information on the biophysical characteristics of Pol λ and indicated the importance of both BRCT and Ser-Pro rich modules in regulating the stability of this protein under genotoxic stress in plants. PMID:26230318

  11. Molecular and biochemical analysis of rainbow trout LCK suggests a conserved mechanism for T-cell signaling in gnathostomes

    USGS Publications Warehouse

    Laing, K.J.; Dutton, S.; Hansen, J.D.

    2007-01-01

    Two genes were identified in rainbow trout that display high sequence identity to vertebrate Lck. Both of the trout Lck transcripts are associated with lymphoid tissues and were found to be highly expressed in IgM-negative lymphocytes. In vitro analysis of trout lymphocytes indicates that trout Lck mRNA is up-regulated by T-cell mitogens, supporting an evolutionarily conserved function for Lck in the signaling pathways of T-lymphocytes. Here, we describe the generation and characterization of a specific monoclonal antibody raised against the N-terminal domains of recombinant trout Lck that can recognize Lck protein(s) from trout thymocyte lysates that are similar in size (???57 kDa) to mammalian Lck. This antibody also reacted with permeabilized lymphocytes during FACS analysis, indicating its potential usage for cellular analyses of trout lymphocytes, thus representing an important tool for investigations of salmonid T-cell function.

  12. Structure of the gangrene alpha-toxin: the beauty in the beast.

    PubMed

    Derewenda, Z S; Martin, T W

    1998-08-01

    The crystal and molecular structure of the Clostridium perfringens alpha-toxin crowns over a century-long research into the mechanisms of pathogenesis of gas gangrene. The structure reveals a two-domain enzyme, with a catalytic all-helical N-terminal domain, and a C-terminal domain similar in its jelly-roll topology to those found in pancreatic lipase and lipoxygenases.

  13. Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain.

    PubMed

    Nickerson, Nicholas N; Joag, Vineet; McGavin, Martin J

    2008-09-01

    The Staphylococcus aureus proteolytic cascade consists of a metalloprotease aureolysin (Aur), which activates a serine protease zymogen proSspA, which in turn activates the SspB cysteine protease. As with other M4 metalloproteases, including elastase of Pseudomonas aeruginosa, the propeptide of proAur contains an N-terminal fungalysin-thermolysin-propeptide (FTP) domain. Autocatalytic activation of proAur was initiated by processing at T85 downward arrowL(86) in the FTP domain. This differed from the mechanism described for proElastase, where the FTP domain has an RY motif in place of TL(86), and processing occurred at the junction of the propeptide and metalloprotease domains, which remained as an inactive complex during passage across the outer membrane. When TL(86) in the FTP domain was replaced with RY, an intact N-terminal propeptide was secreted, but the M4 metalloprotease domain was degraded. Consequently, this segment of the FTP domain promotes intramolecular processing of proAur while bestowing a chaperone function, but discourages processing within the FTP domain of proElastase, where activation must be co-ordinated with passage across a second membrane. We conclude that the FTP domain of proAur is adapted to facilitate a rapid autocatalytic activation mechanism, consistent with the role or proAur as initiator of the staphylococcal proteolytic cascade.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcianò, G.; Huang, D. T., E-mail: d.huang@beatson.gla.ac.uk

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of humanmore » Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.« less

  15. Purification, crystallization and preliminary X-ray diffraction of the N-terminal calmodulin-like domain of the human mitochondrial ATP-Mg/P{sub i} carrier SCaMC1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qin, E-mail: yang@crystal.harvard.edu; Brüschweiler, Sven; Chou, James J., E-mail: yang@crystal.harvard.edu

    2013-12-24

    The N-terminal calmodulin-like domain of the human mitochondrial ATP-Mg/P{sub i} carrier SCaMC1 was crystallized in the presence of Ca{sup 2+}. X-ray diffraction data were collected to 2.9 Å resolution from crystals which belonged to space group P6{sub 2}22.

  16. p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K.

    PubMed

    Sánchez-Margalet, V; Najib, S

    1999-07-23

    The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.

  17. The archaeo-eukaryotic primase of plasmid pRN1 requires a helix bundle domain for faithful primer synthesis

    PubMed Central

    Beck, Kirsten; Vannini, Alessandro; Cramer, Patrick; Lipps, Georg

    2010-01-01

    The plasmid pRN1 encodes for a multifunctional replication protein with primase, DNA polymerase and helicase activity. The minimal region required for primase activity encompasses amino-acid residues 40–370. While the N-terminal part of that minimal region (residues 47–247) folds into the prim/pol domain and bears the active site, the structure and function of the C-terminal part (residues 248–370) is unknown. Here we show that the C-terminal part of the minimal region folds into a compact domain with six helices and is stabilized by a disulfide bond. Three helices superimpose well with the C-terminal domain of the primase of the bacterial broad host range plasmid RSF1010. Structure-based site-directed mutagenesis shows that the C-terminal helix of the helix bundle domain is required for primase activity although it is distant to the active site in the crystallized conformation. Furthermore, we identified mutants of the C-terminal domain, which are defective in template binding, dinucleotide formation and conformation change prior to DNA extension. PMID:20511586

  18. The N-Terminal Domain of Human DNA Helicase Rtel1 Contains a Redox Active Iron-Sulfur Cluster

    PubMed Central

    Landry, Aaron P.

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of −248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1. PMID:25147792

  19. The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster.

    PubMed

    Landry, Aaron P; Ding, Huangen

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of -248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1.

  20. Multi-PAS domain-mediated protein oligomerization of PpsR from Rhodobacter sphaeroides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heintz, Udo; Meinhart, Anton; Winkler, Andreas, E-mail: andreas.winkler@mpimf-heidelberg.mpg.de

    2014-03-01

    Crystal structures of two truncated variants of the transcription factor PpsR from R. sphaeroides are presented that enabled the phasing of a triple PAS domain construct. Together, these structures reveal the importance of α-helical PAS extensions for multi-PAS domain-mediated protein oligomerization and function. Per–ARNT–Sim (PAS) domains are essential modules of many multi-domain signalling proteins that mediate protein interaction and/or sense environmental stimuli. Frequently, multiple PAS domains are present within single polypeptide chains, where their interplay is required for protein function. Although many isolated PAS domain structures have been reported over the last decades, only a few structures of multi-PAS proteinsmore » are known. Therefore, the molecular mechanism of multi-PAS domain-mediated protein oligomerization and function is poorly understood. The transcription factor PpsR from Rhodobacter sphaeroides is such a multi-PAS domain protein that, in addition to its three PAS domains, contains a glutamine-rich linker and a C-terminal helix–turn–helix DNA-binding motif. Here, crystal structures of two N-terminally and C-terminally truncated PpsR variants that comprise a single (PpsR{sub Q-PAS1}) and two (PpsR{sub N-Q-PAS1}) PAS domains, respectively, are presented and the multi-step strategy required for the phasing of a triple PAS domain construct (PpsR{sub ΔHTH}) is illustrated. While parts of the biologically relevant dimerization interface can already be observed in the two shorter constructs, the PpsR{sub ΔHTH} structure reveals how three PAS domains enable the formation of multiple oligomeric states (dimer, tetramer and octamer), highlighting that not only the PAS cores but also their α-helical extensions are essential for protein oligomerization. The results demonstrate that the long helical glutamine-rich linker of PpsR results from a direct fusion of the N-cap of the PAS1 domain with the C-terminal extension of the N-domain that plays an important role in signal transduction.« less

  1. Protection against β-amyloid neurotoxicity by a non-toxic endogenous N-terminal β-amyloid fragment and its active hexapeptide core sequence.

    PubMed

    Forest, Kelly H; Alfulaij, Naghum; Arora, Komal; Taketa, Ruth; Sherrin, Tessi; Todorovic, Cedomir; Lawrence, James L M; Yoshikawa, Gene T; Ng, Ho-Leung; Hruby, Victor J; Nichols, Robert A

    2018-01-01

    High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C-terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM-nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N-terminal domain of Aβ. An N-terminal Aβ fragment (1-15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ-induced impairments of long-term potentiation. Here, we show the impact of this N-terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10-15) to protect or reverse Aβ-induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N-terminal Aβ fragment and Aβcore on Aβ-induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108-15) and mouse hippocampal neuron cultures. The protective action of the N-terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N-terminal Aβcore were also shown to be fully protective against Aβ-triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N-terminal Aβ fragment, while active stabilized N-terminal Aβcore derivatives offer the potential for therapeutic application. © 2017 International Society for Neurochemistry.

  2. Effect of point mutations on Herbaspirillum seropedicae NifA activity.

    PubMed

    Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S

    2015-08-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  3. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    PubMed Central

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S.

    2015-01-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain. PMID:26176311

  4. The Role of TSC Proteins in Regulating Cell Adhesion and Motility

    DTIC Science & Technology

    2006-09-01

    Pennsylvania Philadelphia, Pennsylvania 19104-6270 9 . SPONSORING...from seizures, mental retardation, and autism . Thus, TSC represents a major cause of developmental disorders and epilepsy in the pediatric...images are from 138 microinjected cells 2. 0 20 40 60 80 100 * * GF P C el l m ig ra tio n, % Pɘ.001 TS C2 TS C2 -C TS C2 -N Figure 9 . N-terminal

  5. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms.

    PubMed

    Yoshida, Hisashi; Kawai, Fumihiro; Obayashi, Eiji; Akashi, Satoko; Roper, David I; Tame, Jeremy R H; Park, Sam-Yong

    2012-10-26

    Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A Point Mutation in the N-Terminal Amphipathic Helix α0 in NS3 Promotes Hepatitis C Virus Assembly by Altering Core Localization to the Endoplasmic Reticulum and Facilitating Virus Budding.

    PubMed

    Yan, Yu; He, Ying; Boson, Bertrand; Wang, Xuesong; Cosset, François-Loïc; Zhong, Jin

    2017-03-15

    The assembly of hepatitis C virus (HCV), a complicated process in which many viral and cellular factors are involved, has not been thoroughly deciphered. NS3 is a multifunctional protein that contains an N-terminal amphipathic α helix (designated helix α 0 ), which is crucial for the membrane association and stability of NS3 protein, followed by a serine protease domain and a C-terminal helicase/NTPase domain. NS3 participates in HCV assembly likely through its C-terminal helicase domain, in which all reported adaptive mutations enhancing virion assembly reside. In this study, we determined that the N-terminal helix α 0 of NS3 may contribute to HCV assembly. We identified a single mutation from methionine to threonine at amino acid position 21 (M21T) in helix α 0 , which significantly promoted viral production while having no apparent effect on the membrane association and protease activity of NS3. Subsequent analyses demonstrated that the M21T mutation did not affect HCV genome replication but rather promoted virion assembly. Further study revealed a shift in the subcellular localization of core protein from lipid droplets (LD) to the endoplasmic reticulum (ER). Finally, we showed that the M21T mutation increased the colocalization of core proteins and viral envelope proteins, leading to a more efficient envelopment of viral nucleocapsids. Collectively, the results of our study revealed a new function of NS3 helix α 0 and aid understanding of the role of NS3 in HCV virion morphogenesis. IMPORTANCE HCV NS3 protein possesses the protease activity in its N-terminal domain and the helicase activity in its C-terminal domain. The role of NS3 in virus assembly has been mainly attributed to its helicase domain, because all adaptive mutations enhancing progeny virus production are found to be within this domain. Our study identified, for the first time to our knowledge, an adaptive mutation within the N-terminal helix α 0 domain of NS3 that significantly enhanced virus assembly while having no effect on viral genome replication. The mechanistic studies suggested that this mutation promoted the relocation of core proteins from LD to the ER, leading to a more efficient envelopment of viral nucleocapsids. Our results revealed a possible new function of helix α 0 in the HCV life cycle and provided new clues to understanding the molecular mechanisms for the action of NS3 in HCV assembly. Copyright © 2017 American Society for Microbiology.

  7. A functional analysis of TOEFAZ1 uncovers protein domains essential for cytokinesis in Trypanosoma brucei.

    PubMed

    Sinclair-Davis, Amy N; McAllaster, Michael R; de Graffenried, Christopher L

    2017-11-15

    The parasite Trypanosoma brucei is highly polarized, including a flagellum that is attached along the cell surface by the flagellum attachment zone (FAZ). During cell division, the new FAZ positions the cleavage furrow, which ingresses from the anterior tip of the cell towards the posterior. We recently identified TOEFAZ1 (for 'Tip of the Extending FAZ protein 1') as an essential protein in trypanosome cytokinesis. Here, we analyzed the localization and function of TOEFAZ1 domains by performing overexpression and RNAi complementation experiments. TOEFAZ1 comprises three domains with separable functions: an N-terminal α-helical domain that may be involved in FAZ recruitment, a central intrinsically disordered domain that keeps the morphogenic kinase TbPLK at the new FAZ tip, and a C-terminal zinc finger domain necessary for TOEFAZ1 oligomerization. Both the N-terminal and C-terminal domains are essential for TOEFAZ1 function, but TbPLK retention at the FAZ is not necessary for cytokinesis. The feasibility of alternative cytokinetic pathways that do not employ TOEFAZ1 are also assessed. Our results show that TOEFAZ1 is a multimeric scaffold for recruiting proteins that control the timing and location of cleavage furrow ingression. © 2017. Published by The Company of Biologists Ltd.

  8. A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice.

    PubMed

    de Ridder, Gustaaf G; Ray, Rupa; Pizzo, Salvatore V

    2012-06-01

    The HSP70 family member GRP78 is a selective tumor marker upregulated on the surface of many tumor cell types, including melanoma, where it acts as a growth factor receptor-like protein. Receptor-recognized forms of the proteinase inhibitor α2-macroglobulin (α2M*) are the best-characterized ligands for GRP78, but in melanoma and other cancer patients, autoantibodies arise against the NH2-terminal domain of GRP78 that react with tumor cell-surface GRP78. This causes the activation of signaling cascades that are proproliferative and antiapoptotic. Antibodies directed against the COOH-terminal domain of GRP78, however, upregulate p53-mediated proapoptotic signaling, leading to cell death. Here, we describe the binding characteristics, cell signaling properties, and downstream cellular effects of three novel murine monoclonal antibodies. The NH2-terminal domain-reactive antibody, N88, mimics α2M* as a ligand and drives PI 3-kinase-dependent activation of Akt and the subsequent stimulation of cellular proliferation in vitro. The COOH-terminal domain-reactive antibody, C38, acts as an antagonist of both α2M* and N88, whereas another, C107, directly induces apoptosis in vitro. In a murine B16F1 melanoma flank tumor model, we demonstrate the acceleration of tumor growth by treatment with N88, whereas C107 significantly slowed tumor growth whether administered before (P<0.005) or after (P<0.05) tumor implantation.

  9. Properties and structure of a low-potential, penta-heme cytochrome c 552 from a thermophilic purple sulfur photosynthetic bacterium Thermochromatium tepidum.

    PubMed

    Chen, Jing-Hua; Yu, Long-Jiang; Boussac, Alain; Wang-Otomo, Zheng-Yu; Kuang, Tingyun; Shen, Jian-Ren

    2018-04-24

    The thermophilic purple sulfur bacterium Thermochromatium tepidum possesses four main water-soluble redox proteins involved in the electron transfer behavior. Crystal structures have been reported for three of them: a high potential iron-sulfur protein, cytochrome c', and one of two low-potential cytochrome c 552 (which is a flavocytochrome c) have been determined. In this study, we purified another low-potential cytochrome c 552 (LPC), determined its N-terminal amino acid sequence and the whole gene sequence, characterized it with absorption and electron paramagnetic spectroscopy, and solved its high-resolution crystal structure. This novel cytochrome was found to contain five c-type hemes. The overall fold of LPC consists of two distinct domains, one is the five heme-containing domain and the other one is an Ig-like domain. This provides a representative example for the structures of multiheme cytochromes containing an odd number of hemes, although the structures of multiheme cytochromes with an even number of hemes are frequently seen in the PDB database. Comparison of the sequence and structure of LPC with other proteins in the databases revealed several characteristic features which may be important for its functioning. Based on the results obtained, we discuss the possible intracellular function of this LPC in Tch. tepidum.

  10. Molecular and Biochemical Characterization of a Cold-Regulated Phosphoethanolamine N-Methyltransferase from Wheat1

    PubMed Central

    Charron, Jean-Benoit Frenette; Breton, Ghislain; Danyluk, Jean; Muzac, Ingrid; Ibrahim, Ragai K.; Sarhan, Fathey

    2002-01-01

    A cDNA that encodes a methyltransferase (MT) was cloned from a cold-acclimated wheat (Triticum aestivum) cDNA library. Molecular analysis indicated that the enzyme WPEAMT (wheat phosphoethanolamine [P-EA] MT) is a bipartite protein with two separate sets of S-adenosyl-l-Met-binding domains, one close to the N-terminal end and the second close to the C-terminal end. The recombinant protein was found to catalyze the three sequential methylations of P-EA to form phosphocholine, a key precursor for the synthesis of phosphatidylcholine and glycine betaine in plants. Deletion and mutation analyses of the two S-adenosyl-l-Met-binding domains indicated that the N-terminal domain could perform the three N-methylation steps transforming P-EA to phosphocholine. This is in contrast to the MT from spinach (Spinacia oleracea), suggesting a different functional evolution for the monocot enzyme. The truncated C-terminal and the N-terminal mutated enzyme were only able to methylate phosphomonomethylethanolamine and phosphodimethylethanolamine, but not P-EA. This may suggest that the C-terminal part is involved in regulating the rate and the equilibrium of the three methylation steps. Northern and western analyses demonstrated that both Wpeamt transcript and the corresponding protein are up-regulated during cold acclimation. This accumulation was associated with an increase in enzyme activity, suggesting that the higher activity is due to de novo protein synthesis. The role of this enzyme during cold acclimation and the development of freezing tolerance are discussed. PMID:12011366

  11. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics

    PubMed Central

    King, Amy C.; Kavosi, Mania; Wang, Mengmeng; O'Hara, Denise M.; Tchistiakova, Lioudmila; Katragadda, Madan

    2018-01-01

    ABSTRACT A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics. PMID:28991504

  12. Bacterially produced human B7-1 protein encompassing its complete extracellular domain maintains its costimulatory activity in vitro.

    PubMed

    Shen, W; Wang, Y; Geng, Y; Si, L

    2000-08-01

    To investigate which of the two immunoglobulin (Ig)-like domains, immunoglobulin variable region homologous domain IgV (hB7-1 IgV), or immunoglobulin constant region homologous domain IgC (hB7-1 IgC) on human B7-1 molecule contain the receptor binding sites, and to evaluate if the B7-1 molecule expressed in bacteria has biological activity. PCR was used to amplify three fragments of hB7-1 IgV, hB7-1 IgC and complete extracellular region of human B7-1 containing both the IgV and IgC domains (hB7-1 IgV + IgC). Three recombinants, pQE9-hB7-1 IgV, pQE9-hB7-1 IgC and pQE9-Hb7-1 (IgV + IgC) were generated by cloning the PCR products into a prokaryote expression plasmid (pQE-9) and were introduced into the host stain M15. The relevant target hexahistidine-tagged proteins were identified by SDS-PAGE and Western blotting. With the presence of the first signal imitated by anti-CD3 antibody, T cell activation was observed by exposing purified T lymphocytes to each soluble form of the three bacterially-produced human B7-1 proteins and [3H]-TdR incorporation. Three recombinant proteins of human B7-1, hB7-1 IgV, hB7-1 IgC and hB7-1 (IgV + IgC) were produced and detected in both soluble and inclusive body forms from engineered bacterial cells. With the presence of anti-CD3 antibody, T lymphocytes proliferated when co-stimulated by bacterially produced hB7-1 (IgV + IgC), but not by either hB7-1 IgV or hB7-1 IgC. Functional glycoprotein human B7-1 could be produced in bacterial cells. Both extracellular immunoglobulin-like domains are necessary for B7-1 to react with its counter receptors.

  13. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  14. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin.

    PubMed Central

    Sasaki, T; Fukai, N; Mann, K; Göhring, W; Olsen, B R; Timpl, R

    1998-01-01

    The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form. PMID:9687493

  15. Asparagine-linked oligosaccharides present on a non-consensus amino acid sequence in the CH1 domain of human antibodies.

    PubMed

    Valliere-Douglass, John F; Kodama, Paul; Mujacic, Mirna; Brady, Lowell J; Wang, Wes; Wallace, Alison; Yan, Boxu; Reddy, Pranhitha; Treuheit, Michael J; Balland, Alain

    2009-11-20

    We report that N-linked oligosaccharide structures can be present on an asparagine residue not adhering to the consensus site motif NX(S/T), where X is not proline, described in the literature. We have observed oligosaccharides on a non-consensus asparaginyl residue in the C(H)1 constant domain of IgG1 and IgG2 antibodies. The initial findings were obtained from characterization of charge variant populations evident in a recombinant human antibody of the IgG2 subclass. HPLC-MS results indicated that cation-exchange chromatography acidic variant populations were enriched in antibody with a second glycosylation site, in addition to the well documented canonical glycosylation site located in the C(H)2 domain. Subsequent tryptic and chymotryptic peptide map data indicated that the second glycosylation site was associated with the amino acid sequence TVSWN(162)SGAL in the C(H)1 domain of the antibody. This highly atypical modification is present at levels of 0.5-2.0% on most of the recombinant antibodies that have been tested and has also been observed in IgG1 antibodies derived from human donors. Site-directed mutagenesis of the C(H)1 domain sequence in a recombinant-human IgG1 antibody resulted in an increase in non-consensus glycosylation to 3.15%, a greater than 4-fold increase over the level observed in the wild type, by changing the -1 and +1 amino acids relative to the asparagine residue at position 162. We believe that further understanding of the phenomenon of non-consensus glycosylation can be used to gain fundamental insights into the fidelity of the cellular glycosylation machinery.

  16. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development.

    PubMed

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2011-09-01

    High-resolution immunohistochemistry shows that the receptor protein p75(NTR) is present in the nerve terminal, muscle cell, and glial Schwann cell at the neuromuscular junction (NMJ) of postnatal rats (P4-P6) during the synapse elimination period. Blocking the receptor with the antibody anti-p75-192-IgG (1-5 μg/ml, 1 hr) results in reduced endplate potentials (EPPs) in mono- and polyinnervated synapses ex vivo, but the mean number of functional inputs per NMJ does not change for as long as 3 hr. Incubation with exogenous brain-derived neurotrophic factor (BDNF) for 1 hr (50 nM) resulted in a significant increase in the size of the EPPs in all nerve terminals, and preincubation with anti-p75-192-IgG prevented this potentiation. Long exposure (24 hr) in vivo of the NMJs to the antibody anti-p75-192-IgG (1-2 μg/ml) results in a delay of postnatal synapse elimination and even some regrowth of previously withdrawn axons, but also in some acceleration of the morphologic maturation of the postsynaptic nicotinic acetylcholine receptor (nAChR) clusters. The results indicate that p75(NTR) is involved in both ACh release and axonal retraction during postnatal axonal competition and synapse elimination. Copyright © 2011 Wiley-Liss, Inc.

  17. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  18. Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR.

    PubMed

    Zou, Chao; Naider, Fred; Zerbe, Oliver

    2008-12-01

    The human Y4 receptor, a class A G-protein coupled receptor (GPCR) primarily targeted by the pancreatic polypeptide (PP), is involved in a large number of physiologically important functions. This paper investigates a Y4 receptor fragment (N-TM1-TM2) comprising the N-terminal domain, the first two transmembrane (TM) helices and the first extracellular loop followed by a (His)(6) tag, and addresses synthetic problems encountered when recombinantly producing such fragments from GPCRs in Escherichia coli. Rigorous purification and usage of the optimized detergent mixture 28 mM dodecylphosphocholine (DPC)/118 mM% 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) resulted in high quality TROSY spectra indicating protein conformational homogeneity. Almost complete assignment of the backbone, including all TM residue resonances was obtained. Data on internal backbone dynamics revealed a high secondary structure content for N-TM1-TM2. Secondary chemical shifts and sequential amide proton nuclear Overhauser effects defined the TM helices. Interestingly, the properties of the N-terminal domain of this large fragment are highly similar to those determined on the isolated N-terminal domain in the presence of DPC micelles.

  19. Functional Interaction Map of Lyssavirus Phosphoprotein: Identification of the Minimal Transcription Domains

    PubMed Central

    Jacob, Yves; Real, Eléonore; Tordo, Noël

    2001-01-01

    Lyssaviruses, the causative agents of rabies encephalitis, are distributed in seven genotypes. The phylogenetically distant rabies virus (PV strain, genotype 1) and Mokola virus (genotype 3) were used to develop a strategy to identify functional homologous interactive domains from two proteins (P and N) which participate in the viral ribonucleoprotein (RNP) transcription-replication complex. This strategy combined two-hybrid and green fluorescent protein–reverse two-hybrid assays in Saccharomyces cerevisiae to analyze protein-protein interactions and a reverse genetic assay in mammalian cells to study the transcriptional activity of the reconstituted RNP complex. Lyssavirus P proteins contain two N-binding domains (N-BDs), a strong one encompassing amino acid (aa) 176 to the C terminus and a weak one in the 189 N-terminal aa. The N-terminal portion of P (aa 52 to 189) also contains a homomultimerization site. Here we demonstrate that N-P interactions, although weaker, are maintained between proteins of the different genotypes. A minimal transcriptional module of the P protein was obtained by fusing the first 60 N-terminal aa containing the L protein binding site to the C-terminal strong N-BD. Random mutation of the strong N-BD on P protein identified three highly conserved K residues crucial for N-P interaction. Their mutagenesis in full-length P induced a transcriptionally defective RNP. The analysis of homologous interactive domains presented here and previously reported dissections of the P protein allowed us to propose a model of the functional interaction network of the lyssavirus P protein. This model underscores the central role of P at the interface between L protein and N-RNA template. PMID:11559793

  20. Activation of MTK1/MEKK4 by GADD45 through induced N-C dissociation and dimerization-mediated trans autophosphorylation of the MTK1 kinase domain.

    PubMed

    Miyake, Zenshi; Takekawa, Mutsuhiro; Ge, Qingyuan; Saito, Haruo

    2007-04-01

    The mitogen-activated protein kinase (MAPK) module, composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK), is a cellular signaling device that is conserved throughout the eukaryotic world. In mammalian cells, various extracellular stresses activate two major subfamilies of MAPKs, namely, the Jun N-terminal kinases and the p38/stress-activated MAPK (SAPK). MTK1 (also called MEKK4) is a stress-responsive MAPKKK that is bound to and activated by the stress-inducible GADD45 family of proteins (GADD45alpha/beta/gamma). Here, we dissected the molecular mechanism of MTK1 activation by GADD45 proteins. The MTK1 N terminus bound to its C-terminal segment, thereby inhibiting the C-terminal kinase domain. This N-C interaction was disrupted by the binding of GADD45 to the MTK1 N-terminal GADD45-binding site. GADD45 binding also induced MTK1 dimerization via a dimerization domain containing a coiled-coil motif, which is essential for the trans autophosphorylation of MTK1 at Thr-1493 in the kinase activation loop. An MTK1 alanine substitution mutant at Thr-1493 has a severely reduced activity. Thus, we conclude that GADD45 binding induces MTK1 N-C dissociation, dimerization, and autophosphorylation at Thr-1493, leading to the activation of the kinase catalytic domain. Constitutively active MTK1 mutants induced the same events, but in the absence of GADD45.

  1. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  2. Immunocontraceptive efficacy of synthetic peptides corresponding to major antigenic determinants of chicken riboflavin carrier protein in the female rats.

    PubMed

    Subramanian, S; Karande, A A; Adiga, P R

    2000-09-01

    Earlier studies have demonstrated that antibodies directed towards the N-terminal (residues 10-17) and C-terminal (residues 200-207) regions on chicken riboflavin carrier protein (RCP; 219 AA) are effective in pregnancy termination in rodents and sub-human primates. In the present study, the immunocontraceptive potential of three additional immunodominant sequences comprising of residues 33-49, 64 83 and 130-147 (CYA, CED and CGE peptides, respectively) of chicken RCP was investigated. The three antigenic peptides were synthesized by using Fmoc chemistry. Oligoclonal antibodies were generated in rabbits. Bioneutralizing capacity of these peptides was assessed by passive and active immunoneutralization studies. All the three peptides-specific antisera recognized their cognate epitopes on native RCP. When the affinity purified peptide IgG were administered on three consecutive days to pregnant rats (on days 10, 11 and 12), it was observed that the rats injected with CED and CGE-IgG failed to deliver any pups whereas the animals which received CYA IgG delivered normal pups. Active immunization of fertile female rats with CED or CGE peptide conferred protection from pregnancy. These results demonstrate the presence of two additional stretches in chicken RCP which can serve as mini-vaccines.

  3. A conserved interaction that is essential for the biogenesis of histone locus bodies.

    PubMed

    Yang, Xiao-cui; Sabath, Ivan; Kunduru, Lalitha; van Wijnen, Andre J; Marzluff, William F; Dominski, Zbigniew

    2014-12-05

    Nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH) are two major components of discrete nuclear structures called histone locus bodies (HLBs). NPAT is a key co-activator of histone gene transcription, whereas FLASH through its N-terminal region functions in 3' end processing of histone primary transcripts. The C-terminal region of FLASH contains a highly conserved domain that is also present at the end of Yin Yang 1-associated protein-related protein (YARP) and its Drosophila homologue, Mute, previously shown to localize to HLBs in Drosophila cells. Here, we show that the C-terminal domain of human FLASH and YARP interacts with the C-terminal region of NPAT and that this interaction is essential and sufficient to drive FLASH and YARP to HLBs in HeLa cells. Strikingly, only the last 16 amino acids of NPAT are sufficient for the interaction. We also show that the C-terminal domain of Mute interacts with a short region at the end of the Drosophila NPAT orthologue, multi sex combs (Mxc). Altogether, our data indicate that the conserved C-terminal domain shared by FLASH, YARP, and Mute recognizes the C-terminal sequence of NPAT orthologues, thus acting as a signal targeting proteins to HLBs. Finally, we demonstrate that the C-terminal domain of human FLASH can be directly joined with its N-terminal region through alternative splicing. The resulting 190-amino acid MiniFLASH, despite lacking 90% of full-length FLASH, contains all regions necessary for 3' end processing of histone pre-mRNA in vitro and accumulates in HLBs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1

    PubMed Central

    Ai, Jing; Maturu, Amita; Johnson, Wesley; Wang, Yijie; Marsh, Clay B.; Tridandapani, Susheela

    2006-01-01

    FcγR-mediated phagocytosis of IgG-coated particles is a complex process involving the activation of multiple signaling enzymes and is regulated by the inositol phosphatases PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SHIP-1 (Src homology [SH2] domain-containing inositol phosphatase). In a recent study we have demonstrated that SHIP-2, an inositol phosphatase with high-level homology to SHIP-1, is involved in FcγR signaling. However, it is not known whether SHIP-2 plays a role in modulating phagocytosis. In this study we have analyzed the role of SHIP-2 in FcγR-mediated phagocytosis using independent cell models that allow for manipulation of SHIP-2 function without influencing the highly homologous SHIP-1. We present evidence that SHIP-2 translocates to the site of phagocytosis and down-regulates FcγR-mediated phagocytosis. Our data indicate that SHIP-2 must contain both the N-terminal SH2 domain and the C-terminal proline-rich domain to mediate its inhibitory effect. The effect of SHIP-2 is independent of SHIP-1, as overexpression of dominant-negative SHIP-2 in SHIP-1-deficient primary macrophages resulted in enhanced phagocytic efficiency. Likewise, specific knockdown of SHIP-2 expression using siRNA resulted in enhanced phagocytosis. Finally, analysis of the molecular mechanism of SHIP-2 down-regulation of phagocytosis revealed that SHIP-2 down-regulates upstream activation of Rac. Thus, we conclude that SHIP-2 is a novel negative regulator of FcγR-mediated phagocytosis independent of SHIP-1. (Blood. 2006;107:813-820) PMID:16179375

  6. Homo-trimerization is essential for the transcription factor function of Myrf for oligodendrocyte differentiation.

    PubMed

    Kim, Dongkyeong; Choi, Jin-Ok; Fan, Chuandong; Shearer, Randall S; Sharif, Mohamed; Busch, Patrick; Park, Yungki

    2017-05-19

    Myrf is a key transcription factor for oligodendrocyte differentiation and central nervous system myelination. We and others have previously shown that Myrf is generated as a membrane protein in the endoplasmic reticulum (ER), and that it undergoes auto-processing to release its N-terminal fragment from the ER, which enters the nucleus to work as a transcription factor. These previous studies allow a glimpse into the unusual complexity behind the biogenesis and function of the transcription factor domain of Myrf. Here, we report that Myrf N-terminal fragments assemble into stable homo-trimers before ER release. Consequently, Myrf N-terminal fragments are released from the ER only as homo-trimers. Our re-analysis of a previous genetic screening result in Caenorhabditis elegans shows that homo-trimerization is essential for the biological functions of Myrf N-terminal fragment, and that the region adjacent to the DNA-binding domain is pivotal to its homo-trimerization. Further, our computational analysis uncovered a novel homo-trimeric DNA motif that mediates the homo-trimeric DNA binding of Myrf N-terminal fragments. Importantly, we found that homo-trimerization defines the DNA binding specificity of Myrf N-terminal fragments. In sum, our study elucidates the molecular mechanism governing the biogenesis and function of Myrf N-terminal fragments and its physiological significance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Xiaomin; Meehan, Edward J.; Xie, Jieming

    2008-10-27

    A novel type 1 ribosome-inactivating protein (RIP) designated cucurmosin was isolated from the sarcocarp of Cucurbita moschata (pumpkin). Besides rRNA N-glycosidase activity, cucurmosin exhibits strong cytotoxicities to three cancer cell lines of both human and murine origins, but low toxicity to normal cells. Plant genomic DNA extracted from the tender leaves was amplified by PCR between primers based on the N-terminal sequence and X-ray sequence of the C-terminal. The complete mature protein sequence was obtained from N-terminal protein sequencing and partial DNA sequencing, confirmed by high resolution crystal structure analysis. The crystal structure of cucurmosin has been determined at 1.04more » {angstrom}, a resolution that has never been achieved before for any RIP. The structure contains two domains: a large N-terminal domain composed of seven {alpha}-helices and eight {beta}-strands, and a smaller C-terminal domain consisting of three {alpha}-helices and two {beta}-strands. The high resolution structure established a glycosylation pattern of GlcNAc{sub 2}Man3Xyl. Asn225 was identified as a glycosylation site. Residues Tyr70, Tyr109, Glu158 and Arg161 define the active site of cucurmosin as an RNA N-glycosidase. The structural basis of cytotoxicity difference between cucurmosin and trichosanthin is discussed.« less

  8. Modeling of the N-terminal Section and the Lumenal Loop of Trimeric Light Harvesting Complex II (LHCII) by Using EPR*

    PubMed Central

    Fehr, Niklas; Dietz, Carsten; Polyhach, Yevhen; von Hagens, Tona; Jeschke, Gunnar; Paulsen, Harald

    2015-01-01

    The major light harvesting complex II (LHCII) of green plants plays a key role in the absorption of sunlight, the regulation of photosynthesis, and in preventing photodamage by excess light. The latter two functions are thought to involve the lumenal loop and the N-terminal domain. Their structure and mobility in an aqueous environment are only partially known. Electron paramagnetic resonance (EPR) has been used to measure the structure of these hydrophilic protein domains in detergent-solubilized LHCII. A new technique is introduced to prepare LHCII trimers in which only one monomer is spin-labeled. These heterogeneous trimers allow to measure intra-molecular distances within one LHCII monomer in the context of a trimer by using double electron-electron resonance (DEER). These data together with data from electron spin echo envelope modulation (ESEEM) allowed to model the N-terminal protein section, which has not been resolved in current crystal structures, and the lumenal loop domain. The N-terminal domain covers only a restricted area above the superhelix in LHCII, which is consistent with the “Velcro” hypothesis to explain thylakoid grana stacking (Standfuss, J., van Terwisscha Scheltinga, A. C., Lamborghini, M., and Kühlbrandt, W. (2005) EMBO J. 24, 919–928). The conformation of the lumenal loop domain is surprisingly different between LHCII monomers and trimers but not between complexes with and without neoxanthin bound. PMID:26316535

  9. Chemical Shift Assignments of the C-terminal Eps15 Homology Domain-3 EH Domain*

    PubMed Central

    Caplan, Steve; Sorgen, Paul L.

    2013-01-01

    The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation. PMID:23754701

  10. Multiple Interactions between Cytoplasmic Domains Regulate Slow Deactivation of Kv11.1 Channels*

    PubMed Central

    Ng, Chai Ann; Phan, Kevin; Hill, Adam P.; Vandenberg, Jamie I.; Perry, Matthew D.

    2014-01-01

    The intracellular domains of many ion channels are important for fine-tuning their gating kinetics. In Kv11.1 channels, the slow kinetics of channel deactivation, which are critical for their function in the heart, are largely regulated by the N-terminal N-Cap and Per-Arnt-Sim (PAS) domains, as well as the C-terminal cyclic nucleotide-binding homology (cNBH) domain. Here, we use mutant cycle analysis to probe for functional interactions between the N-Cap/PAS domains and the cNBH domain. We identified a specific and stable charge-charge interaction between Arg56 of the PAS domain and Asp803 of the cNBH domain, as well an additional interaction between the cNBH domain and the N-Cap, both of which are critical for maintaining slow deactivation kinetics. Furthermore, we found that positively charged arginine residues within the disordered region of the N-Cap interact with negatively charged residues of the C-linker domain. Although this interaction is likely more transient than the PAS-cNBD interaction, it is strong enough to stabilize the open conformation of the channel and thus slow deactivation. These findings provide novel insights into the slow deactivation mechanism of Kv11.1 channels. PMID:25074935

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweifel,M.; Leahy, D.; Barrick, D.

    Deltex is a cytosolic effector of Notch signaling thought to bind through its N-terminal domain to the Notch receptor. Here we report the structure of the Drosophila Deltex N-terminal domain, which contains two tandem WWE sequence repeats. The WWE repeats, which adopt a novel fold, are related by an approximate two-fold axis of rotation. Although the WWE repeats are structurally distinct, they interact extensively and form a deep cleft at their junction that appears well suited for ligand binding. The two repeats are thermodynamically coupled; this coupling is mediated in part by a conserved segment that is immediately C-terminal tomore » the second WWE domain. We demonstrate that although the Deltex WWE tandem is monomeric in solution, it forms a heterodimer with the ankyrin domain of the Notch receptor. These results provide structural and functional insight into how Deltex modulates Notch signaling, and how WWE modules recognize targets for ubiquitination.« less

  12. Conformational transition of membrane-associated terminally-acylated HIV-1 Nef

    PubMed Central

    Akgun, Bulent; Satija, Sushil; Nanda, Hirsh; Pirrone, Gregory F.; Shi, Xiaomeng; Engen, John R.; Kent, Michael S.

    2013-01-01

    Many proteins are post-translationally modified by acylation targetting them to lipid membranes. While methods such as X-ray crystallography and NMR are available to determine the structure of folded proteins in solution, the precise position of folded domains relative to a membrane remains largely unknown. We used neutron and X-ray reflection methods to measure the displacement of the core domain of HIV Nef from lipid membranes upon insertion of the N-terminal myristate group. Nef is one of several HIV-1 accessory proteins and an essential factor in AIDS progression. Upon insertion of the myristate and residues from the N-terminal arm, Nef transitions from a closed to open conformation that positions the core domain 70 Å from the lipid headgroups. This work rules out speculation that the Nef core remains closely associated with the membrane to optimize interactions with the cytoplasmic domain of MHC-1. PMID:24035710

  13. Role of C-Terminal Cysteine Residues of Aspergillus fumigatus Allergen Asp f 4 in Immunoglobulin E Binding

    PubMed Central

    Ramachandran, Harikrishnan; Banerjee, Banani; Greenberger, Paul A.; Kelly, Kevin J.; Fink, Jordan N.; Kurup, Viswanath P.

    2004-01-01

    Among the several allergens cloned and expressed from Aspergillus fumigatus, Asp f 4 is a major one associated with allergic bronchopulmonary aspergillosis (ABPA). The structure-function relationship of allergens is important in understanding the immunopathogenesis, diagnosis, and treatment of allergic diseases. These include the epitopes, conformational or linear, deletion of the N or C terminus or both N and C termini, and glycosylation or nonglycosylation, all of which affect immune responses. Similarly, the role of cysteine residues present in allergens may yield useful information regarding the conformational structure of allergens and the immunoglobulin E (IgE) epitope interaction. Such information may help in developing new strategies towards immunotherapy. In order to define the role of cysteine in the interaction of the antibody with Asp f 4, we have constructed mutants by selectively deleting cysteine residues from the C-terminal region of the Asp f 4. Immunological evaluation of these engineered recombinant constructs was conducted by using sera from patients with ABPA, Aspergillus skin test-positive asthmatics, and healthy controls. The results demonstrate strong IgE binding with Asp f 4 and two truncated mutants, Asp f 41-234 (amino acids [aa] 1 to 234) and Asp f 41-241 (aa 1 to 241), while another mutant, Asp f 41-196 (aa 1 to 196), showed reactivity with fewer patients. The result suggests that deletion of cysteines and the alteration of IgE epitopes at the C-terminal end resulted in conformational changes, which may have a potential role in the immunomodulation of the disease. PMID:15013973

  14. Isolation, cloning, and characterization of the 2S albumin: a new allergen from hazelnut.

    PubMed

    Garino, Cristiano; Zuidmeer, Laurian; Marsh, Justin; Lovegrove, Alison; Morati, Maria; Versteeg, Serge; Schilte, Piet; Shewry, Peter; Arlorio, Marco; van Ree, Ronald

    2010-09-01

    2S albumins are the major allergens involved in severe food allergy to nuts, seeds, and legumes. We aimed to isolate, clone, and express 2S albumin from hazelnut and determine its allergenicity. 2S albumin from hazelnut extract was purified using size exclusion chromatography and RP-HPLC. After N-terminal sequencing, degenerated and poly-d(T) primers were used to clone the 2S albumin sequence from hazelnut cDNA. After expression in Escherichia coli and affinity purification, IgE reactivity was evaluated by Immunoblot/ImmunoCAP (inhibition) analyses using sera of nut-allergic patients. N-terminal sequencing of a approximately 10 kDa peak from size exclusion chromatography/RP-HPLC gave two sequences highly homologous to pecan 2S albumin, an 11 amino acid (aa) N-terminal and a 10 aa internal peptide. The obtained clone (441 bp) encoded a 147 aa hazelnut 2S albumin consisting of a putative signal peptide (22 aa), a linker peptide (20 aa), and the mature protein sequence (105 aa). The latter was successfully expressed in E. coli. Both recombinant and natural 2S albumin demonstrated similar IgE reactivity in Immunoblot/ImmunoCAP (inhibition) analyses. We confirmed the postulated role of hazelnut 2S albumin as an allergen. The availability of recombinant molecules will allow establishing the importance of hazelnut 2S albumin for hazelnut allergy.

  15. Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1-POPC Discoidal Particles

    PubMed Central

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Arleth, Lise

    2015-01-01

    Structural and functional aspects of high-density lipoproteins have been studied for over half a century. Due to the plasticity of this highly complex system, new aspects continue to be discovered. Here, we present a structural study of the human Apolipoprotein A1 (ApoA1) and investigate the role of its N-terminal domain, the so-called globular domain of ApoA1, in discoidal complexes with phospholipids and increasing amounts of cholesterol. Using a combination of solution-based small-angle x-ray scattering (SAXS) and molecular constrained data modeling, we show that the ApoA1-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-based particles are disk shaped with an elliptical cross section and composed by a central lipid bilayer surrounded by two stabilizing ApoA1 proteins. This structure is very similar to the particles formed in the so-called nanodisc system, which is based on N-terminal truncated ApoA1 protein. Although it is commonly agreed that the nanodisc is plain disk shaped, several more advanced structures have been proposed for the full-length ApoA1 in combination with POPC and cholesterol. This prompted us to make a detailed comparative study of the ApoA1 and nanodisc systems upon cholesterol uptake. Based on the presented SAXS analysis it is found that the N-terminal domains of ApoA1-POPC-cholesterol particles are not globular but instead an integrated part of the protein belt stabilizing the particles. Upon incorporation of increasing amounts of cholesterol, the presence of the N-terminal domain allows the bilayer thickness to increase while maintaining an overall flat bilayer structure. This is contrasted by the energetically more strained and less favorable lens shape required to fit the SAXS data from the N-terminal truncated nanodisc system upon cholesterol incorporation. This suggests that the N-terminal domain of ApoA1 actively participates in the stabilization of the ApoA1-POPC-cholesterol discoidal particle and allows for a more optimal lipid packing upon cholesterol uptake. PMID:26200866

  16. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  17. Comparative analysis of the XopD T3S effector family in plant pathogenic bacteria

    PubMed Central

    Kim, Jung-Gun; Taylor, Kyle W.; Mudgett, Mary Beth

    2011-01-01

    SUMMARY XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two EAR transcriptional repressor motifs, and a C-terminal SUMO protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defense responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologs are limited to species within three Genera of Proteobacteria – Xanthomonas, Acidovorax, and Pseudomonas. While the EAR motif(s) and SUMO protease domain are conserved in all the XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760 amino acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from Xanthomonas campestris pathovar campestris strain B100 were fully virulent in tomato demonstrating that the N-terminus of XopD controls specificity in tomato. PMID:21726373

  18. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation.

    PubMed

    Kang, H; Sayner, S L; Gross, K L; Russell, L C; Chinkers, M

    2001-09-04

    Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.

  19. Contribution of trimeric autotransporter C-terminal domains of oligomeric coiled-coil adhesin (Oca) family members YadA, UspA1, EibA, and Hia to translocation of the YadA passenger domain and virulence of Yersinia enterocolitica.

    PubMed

    Ackermann, Nikolaus; Tiller, Maximilian; Anding, Gisela; Roggenkamp, Andreas; Heesemann, Jürgen

    2008-07-01

    The Oca family is a novel class of autotransporter-adhesins with highest structural similarity in their C-terminal transmembrane region, which supposedly builds a beta-barrel pore in the outer membrane (OM). The prototype of the Oca family is YadA, an adhesin of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA forms a homotrimeric lollipop-like structure on the bacterial surface. The C-terminal regions of three YadA monomers form a barrel in the OM and translocate the trimeric N-terminal passenger domain, consisting of stalk, neck, and head region to the exterior. To elucidate the structural and functional role of the C-terminal translocator domain (TLD) and to assess its promiscuous capability with respect to transport of related passenger domains, we constructed chimeric YadA proteins, which consist of the N-terminal YadA passenger domain and C-terminal TLDs of Oca family members UspA1 (Moraxella catarrhalis), EibA (Escherichia coli), and Hia (Haemophilus influenzae). These constructs were expressed in Y. enterocolitica and compared for OM localization, surface exposure, oligomerization, adhesion properties, serum resistance, and mouse virulence. We demonstrate that all chimeric YadA proteins translocated the YadA passenger domain across the OM. Y. enterocolitica strains producing YadA chimeras or wild-type YadA showed comparable binding to collagen and epithelial cells. However, strains producing YadA chimeras were attenuated in serum resistance and mouse virulence. These results demonstrate for the first time that TLDs of Oca proteins of different origin are efficient translocators of the YadA passenger domain and that the cognate TLD of YadA is essential for bacterial survival in human serum and mouse virulence.

  20. A Structure of a Collagen VI VWA Domain Displays N and C Termini at Opposite Sides of the Protein

    PubMed Central

    Becker, Ann-Kathrin A.; Mikolajek, Halina; Paulsson, Mats; Wagener, Raimund; Werner, Jörn M.

    2014-01-01

    Summary Von Willebrand factor A (VWA) domains are versatile protein interaction domains with N and C termini in close proximity placing spatial constraints on overall protein structure. The 1.2 Å crystal structures of a collagen VI VWA domain and a disease-causing point mutant show C-terminal extensions that place the N and C termini at opposite ends. This allows a “beads-on-a-string” arrangement of multiple VWA domains as observed for ten N-terminal domains of the collagen VI α3 chain. The extension is linked to the core domain by a salt bridge and two hydrophobic patches. Comparison of the wild-type and a muscular dystrophy-associated mutant structure identifies a potential perturbation of a protein interaction interface and indeed, the secretion of mutant collagen VI tetramers is affected. Homology modeling is used to locate a number of disease-associated mutations and analyze their structural impact, which will allow mechanistic analysis of collagen-VI-associated muscular dystrophy phenotypes. PMID:24332716

  1. Constitutive production of catalytic antibodies to a Staphylococcus aureus virulence factor and effect of infection.

    PubMed

    Brown, Eric L; Nishiyama, Yasuhiro; Dunkle, Jesse W; Aggarwal, Shreya; Planque, Stephanie; Watanabe, Kenji; Csencsits-Smith, Keri; Bowden, M Gabriela; Kaplan, Sheldon L; Paul, Sudhir

    2012-03-23

    Antibodies that recognize microbial B lymphocyte superantigenic epitopes are produced constitutively with no requirement for adaptive immune maturation. We report cleavage of the Staphylococcus aureus virulence factor extracellular fibrinogen-binding protein (Efb) by catalytic antibodies produced with no exposure to the bacterium and reduction of the catalytic antibody activity following infection. IgG catalytic antibodies that specifically hydrolyzed Efb via a nucleophilic catalytic mechanism were found in the blood of healthy humans and aseptic mice free of S. aureus infection. IgG hydrolyzed peptide bonds on the C-terminal side of basic amino acids, including a bond located within the C3b-binding domain of Efb. Efb digested with the IgG lost its ability to bind C3b and inhibit complement-dependent antibody-mediated red blood cell lysis. In addition to catalysis, the IgG expressed saturable Efb binding activity. IgG from S. aureus-infected mice displayed reduced Efb cleaving activity and increased Efb binding activity compared with uninfected controls, suggesting differing effects of the infection on the antibody subsets responsible for the two activities. IgG from children hospitalized for S. aureus infection also displayed reduced Efb cleavage compared with healthy children. These data suggest a potential defense function for constitutively produced catalytic antibodies to a putative superantigenic site of Efb, but an adaptive catalytic response appears to be proscribed.

  2. The Nudix Hydrolase CDP-Chase, a CDP-Choline Pyrophosphatase, Is an Asymmetric Dimer with Two Distinct Enzymatic Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duong-Ly, Krisna C.; Gabelli, Sandra B.; Xu, WenLian

    2011-09-06

    A Nudix enzyme from Bacillus cereus catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Here, we show that in addition, the enzyme has a 3{prime} {yields} 5{prime} RNA exonuclease activity. The structure of the free enzyme, determined to a 1.8-{angstrom} resolution, shows that the enzyme is an asymmetric dimer. Each monomer consists of two domains, an N-terminal helical domain and a C-terminal Nudix domain. The N-terminal domain is placed relative to the C-terminal domain such as to result in an overall asymmetric arrangement with two distinct catalytic sites: one with an 'enclosed' Nudix pyrophosphatase site and the othermore » with a more open, less-defined cavity. Residues that may be important for determining the asymmetry are conserved among a group of uncharacterized Nudix enzymes from Gram-positive bacteria. Our data support a model where CDP-choline hydrolysis is catalyzed by the enclosed Nudix site and RNA exonuclease activity is catalyzed by the open site. CDP-Chase is the first identified member of a novel Nudix family in which structural asymmetry has a profound effect on the recognition of substrates.« less

  3. Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae

    PubMed Central

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2012-01-01

    Telomere is a nucleoprotein complex that plays important role in stability and their maintenance and consists of random repeats of species specific motifs. In budding Saccharomyces cerevisiae, Repressor Activator Protein 1 (Rap1) is a sequence specific protein that involved in transcriptional regulation. Rap1 consist of three active domains like N-terminal BRCT-domain, DNA-binding domain and C-terminal RCT-domain. In this study the unknown 3D structure of Myb-type domain (having 61 residues) within DNAbinding domain was modeled by Modeller7, and verified using different online bioinformatics tools (ProCheck, WhatIf, Verify3D). Dynamics of Myb-type domain of Rap1was carried out through simulation studies using GROMACS software. Time dependent interactions among the molecules were analyzed by Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) plots. Motional properties in reduced dimension were also performed by Principal Component Analysis (PCA). Result indicated that Rap1 interacts with DNA major groove through its Helix Turn Helix motifs. Helix 3 was rigid, less amount of fluctuation was found as it interacts with DNA major groove. Helix2 and N-terminal having considerable fluctuation in the time scale. PMID:23144544

  4. Molecular Dynamics Simulation of Rap1 Myb-type domain in Saccharomyces cerevisiae.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2012-01-01

    Telomere is a nucleoprotein complex that plays important role in stability and their maintenance and consists of random repeats of species specific motifs. In budding Saccharomyces cerevisiae, Repressor Activator Protein 1 (Rap1) is a sequence specific protein that involved in transcriptional regulation. Rap1 consist of three active domains like N-terminal BRCT-domain, DNA-binding domain and C-terminal RCT-domain. In this study the unknown 3D structure of Myb-type domain (having 61 residues) within DNAbinding domain was modeled by Modeller7, and verified using different online bioinformatics tools (ProCheck, WhatIf, Verify3D). Dynamics of Myb-type domain of Rap1was carried out through simulation studies using GROMACS software. Time dependent interactions among the molecules were analyzed by Root Mean Square Deviation (RMSD), Radius of Gyration (Rg) and Root Mean Square Fluctuation (RMSF) plots. Motional properties in reduced dimension were also performed by Principal Component Analysis (PCA). Result indicated that Rap1 interacts with DNA major groove through its Helix Turn Helix motifs. Helix 3 was rigid, less amount of fluctuation was found as it interacts with DNA major groove. Helix2 and N-terminal having considerable fluctuation in the time scale.

  5. Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein.

    PubMed

    Gely, Stéphane; Lowry, David F; Bernard, Cédric; Jensen, Malene R; Blackledge, Martin; Costanzo, Stéphanie; Bourhis, Jean-Marie; Darbon, Hervé; Daughdrill, Gary; Longhi, Sonia

    2010-01-01

    In this report, the solution structure of the nucleocapsid-binding domain of the measles virus phosphoprotein (XD, aa 459-507) is described. A dynamic description of the interaction between XD and the disordered C-terminal domain of the nucleocapsid protein, (N(TAIL), aa 401-525), is also presented. XD is an all alpha protein consisting of a three-helix bundle with an up-down-up arrangement of the helices. The solution structure of XD is very similar to the crystal structures of both the free and bound form of XD. One exception is the presence of a highly dynamic loop encompassing XD residues 489-491, which is involved in the embedding of the alpha-helical XD-binding region of N(TAIL). Secondary chemical shift values for full-length N(TAIL) were used to define the precise boundaries of a transient helical segment that coincides with the XD-binding domain, thus shedding light on the pre-recognition state of N(TAIL). Titration experiments with unlabeled XD showed that the transient alpha-helical conformation of N(TAIL) is stabilized upon binding. Lineshape analysis of NMR resonances revealed that residues 483-506 of N(TAIL) are in intermediate exchange with XD, while the 475-482 and 507-525 regions are in fast exchange. The N(TAIL) resonance behavior in the titration experiments is consistent with a complex binding model with more than two states.

  6. Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy

    PubMed Central

    Kashiwakura, Jun-ichi; Ando, Tomoaki; Matsumoto, Kenji; Kimura, Miho; Kitaura, Jiro; Matho, Michael H.; Zajonc, Dirk M.; Ozeki, Tomomitsu; Ra, Chisei; MacDonald, Susan M.; Siraganian, Reuben P.; Broide, David H.; Kawakami, Yuko; Kawakami, Toshiaki

    2011-01-01

    IgE-mediated activation of mast cells and basophils underlies allergic diseases such as asthma. Histamine-releasing factor (HRF; also known as translationally controlled tumor protein [TCTP] and fortilin) has been implicated in late-phase allergic reactions (LPRs) and chronic allergic inflammation, but its functions during asthma are not well understood. Here, we identified a subset of IgE and IgG antibodies as HRF-interacting molecules in vitro. HRF was able to dimerize and bind to Igs via interactions of its N-terminal and internal regions with the Fab region of Igs. Therefore, HRF together with HRF-reactive IgE was able to activate mast cells in vitro. In mouse models of asthma and allergy, Ig-interacting HRF peptides that were shown to block HRF/Ig interactions in vitro inhibited IgE/HRF-induced mast cell activation and in vivo cutaneous anaphylaxis and airway inflammation. Intranasally administered HRF recruited inflammatory immune cells to the lung in naive mice in a mast cell– and Fc receptor–dependent manner. These results indicate that HRF has a proinflammatory role in asthma and skin immediate hypersensitivity, leading us to suggest HRF as a potential therapeutic target. PMID:22133880

  7. Role of the Cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) Domain in Trafficking and Stabilization of Kv11.1 Channels*

    PubMed Central

    Ke, Ying; Hunter, Mark J.; Ng, Chai Ann; Perry, Matthew D.; Vandenberg, Jamie I.

    2014-01-01

    The N-terminal cytoplasmic region of the Kv11.1a potassium channel contains a Per-Arnt-Sim (PAS) domain that is essential for the unique slow deactivation gating kinetics of the channel. The PAS domain has also been implicated in the assembly and stabilization of the assembled tetrameric channel, with many clinical mutants in the PAS domain resulting in reduced stability of the domain and reduced trafficking. Here, we use quantitative Western blotting to show that the PAS domain is not required for normal channel trafficking nor for subunit-subunit interactions, and it is not necessary for stabilizing assembled channels. However, when the PAS domain is present, the N-Cap amphipathic helix must also be present for channels to traffic to the cell membrane. Serine scan mutagenesis of the N-Cap amphipathic helix identified Leu-15, Ile-18, and Ile-19 as residues critical for the stabilization of full-length proteins when the PAS domain is present. Furthermore, mutant cycle analysis experiments support recent crystallography studies, indicating that the hydrophobic face of the N-Cap amphipathic helix interacts with a surface-exposed hydrophobic patch on the core of the PAS domain to stabilize the structure of this critical gating domain. Our data demonstrate that the N-Cap amphipathic helix is critical for channel stability and trafficking. PMID:24695734

  8. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination

    PubMed Central

    Zahn, Astrid; Eranki, Anil K.; Patenaude, Anne-Marie; Methot, Stephen P.; Fifield, Heather; Cortizas, Elena M.; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E.; Di Noia, Javier M.

    2014-01-01

    Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR. PMID:24591601

  9. Conservation and variability in the structure and function of the Cas5d endoribonuclease in the CRISPR-mediated microbial immune system.

    PubMed

    Koo, Yoon; Ka, Donghyun; Kim, Eun-Jin; Suh, Nayoung; Bae, Euiyoung

    2013-10-23

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins form an RNA-mediated microbial immune system against invading foreign genetic elements. Cas5 proteins constitute one of the most prevalent Cas protein families in CRISPR-Cas systems and are predicted to have RNA recognition motif (RRM) domains. Cas5d is a subtype I-C-specific Cas5 protein that can be divided into two distinct subgroups, one of which has extra C-terminal residues while the other contains a longer insertion in the middle of its N-terminal RRM domain. Here, we report crystal structures of Cas5d from Streptococcus pyogenes and Xanthomonas oryzae, which respectively represent the two Cas5d subgroups. Despite a common domain architecture consisting of an N-terminal RRM domain and a C-terminal β-sheet domain, the structural differences between the two Cas5d proteins are highlighted by the presence of a unique extended helical region protruding from the N-terminal RRM domain of X. oryzae Cas5d. We also demonstrate that Cas5d proteins possess not only specific endoribonuclease activity for CRISPR RNAs but also nonspecific double-stranded DNA binding affinity. These findings suggest that Cas5d may play multiple roles in CRISPR-mediated immunity. Furthermore, the specific RNA processing was also observed between S. pyogenes Cas5d protein and X. oryzae CRISPR RNA and vice versa. This cross-species activity of Cas5d provides a special opportunity for elucidating conserved features of the CRISPR RNA processing event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Recombinant human B7.2 IgV-like domain expressed in bacteria maintains its co-stimulatory activity in vitro.

    PubMed

    Yan, Xiaocai; Ma, Jun; Zheng, Jin; Lai, Baochang; Geng, Yiping; Wang, Yili; Si, Lüsheng

    2002-07-01

    To investigate which of the two immunoglobulin (Ig)-like domains, the immunoglobulin variable region homologous domain IgV (hB7.2 IgV) and the immunoglobulin constant region homologous domain IgC (hB7.2 IgC) on the human B7.2 molecule contains receptor binding sites, and to evaluate whether the B7.2 protein expressed in bacteria has biological activity in vitro. Three fragments of hB7.2 IgV,hB7.2 IgC and the complete extracellular region of human B7.2 containing both the IgV and IgC domains,hB7.2 Ig (V+C), were amplified by PCR and subcloned into pGEM-Teasy. Three recombinants,pGEX-4T-3-hB7.2 IgV,pGEX-4T-3-hB7.2 IgC and pGEX-4T-3-hB7.2 Ig (V+C), were generated by cloning the fragments into a prokaryote expression plasmid (pGEX-4T-3) and transformed into the host strain E. coli DH5alpha. The relevant target fusion proteins consisting of GST and hB7.2 IgV,hB7.2 IgC and hB7.2 Ig (V+C), were identified by SDS-PAGE and Western blotting. With the presence of the first signal imitated by anti-CD3 antibody, T cell activation was observed by exposing purified T lymphocytes to each soluble form of the three bacterially-produced human B7.2 fusion proteins by [(3)H]-TdR incorporation. Three recombinant fusion proteins of human B7.2, GST-hB7.2 IgV, GST-hB7.2 IgC and GST-hB7.2 Ig (V+C) were produced and detected in inclusion body form from engineered bacteria. With the first signal present,T lymphocytes proliferated when co-stimulated by bacterially-produced either GST-hB7.2 Ig (V+C) or GST-hB7.2 IgV fusion proteins, but not by GST-hB7.2 IgC. Functional human B7.2 fusion protein can be produced in bacteria. The IgV-like domain of human B7.2 is sufficient for B7.2 to interact with its counter-receptors and co-stimulate T lymphocytes.

  11. Glycan-independent binding and internalization of human IgM to FCMR, its cognate cellular receptor

    NASA Astrophysics Data System (ADS)

    Lloyd, Katy A.; Wang, Jiabin; Urban, Britta C.; Czajkowsky, Daniel M.; Pleass, Richard J.

    2017-02-01

    IgM is the first antibody to be produced in immune responses and plays an important role in the neutralization of bacteria and viruses. Human IgM is heavily glycosylated, featuring five N-linked glycan sites on the μ chain and one on the J-chain. Glycosylation of IgG is known to modulate the effector functions of Fcγ receptors. In contrast, little is known about the effect of glycosylation on IgM binding to the human Fcμ receptor (hFCMR). In this study, we identify the Cμ4 domain of IgM as the target of hFCMR, and show that binding and internalization of IgM by hFCMR is glycan-independent. We generated a homology-based structure for hFCMR and used molecular dynamic simulations to show how this interaction with IgM may occur. Finally, we reveal an inhibitory function for IgM in the proliferation of T cells.

  12. Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis

    PubMed Central

    Kida, Yuichiro; Morimoto, Fumiko; Sakaguchi, Masao

    2007-01-01

    During protein integration into the endoplasmic reticulum, the N-terminal domain preceding the type I signal-anchor sequence is translocated through a translocon. By fusing a streptavidin-binding peptide tag to the N terminus, we created integration intermediates of multispanning membrane proteins. In a cell-free system, N-terminal domain (N-domain) translocation was arrested by streptavidin and resumed by biotin. Even when N-domain translocation was arrested, the second hydrophobic segment mediated translocation of the downstream hydrophilic segment. In one of the defined intermediates, two hydrophilic segments and two hydrophobic segments formed a transmembrane disposition in a productive state. Both of the translocating hydrophilic segments were crosslinked with a translocon subunit, Sec61α. We conclude that two translocating hydrophilic segment in a single membrane protein can span the membrane during multispanning topogenesis flanking the translocon. Furthermore, even after six successive hydrophobic segments entered the translocon, N-domain translocation could be induced to restart from an arrested state. These observations indicate the remarkably flexible nature of the translocon. PMID:18166653

  13. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    PubMed

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  14. Structure of the first representative of Pfam family PF09410 (DUF2006) reveals a structural signature of the calycin superfamily that suggests a role in lipid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Hsiu-Ju; Bakolitsa, Constantina; Skerra, Arne

    The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.

  15. NMR assignment of a PDZ domain in complex with a HPV51 E6 derived N-terminally pyroglutamic acid modified peptide.

    PubMed

    Mischo, André; Ohlenschläger, Oliver; Ramachandran, Ramadurai; Görlach, Matthias

    2013-04-01

    The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include (1)H, (13)C and (15)N resonances for the protein and peptide in the complex and all of the peptide's pyroglutamic acid nuclei.

  16. PRRSV strain VR-2332 Nsp2 deletion mutants attenuate clinical symptoms in swine

    USDA-ARS?s Scientific Manuscript database

    PRRSV nonstructural protein 2 (nsp2) contains a N-terminal cysteine proteinase (PL2) domain, a middle hypervariable region and C-terminal putative transmembrane domain. Prior studies had shown that as much as 403 amino acids could be removed from the hypervariable region without losing virus viabil...

  17. Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: Insights into Nucleotide Specificity, Dimerization, and cGMP-Dependent Conformational Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.

    2008-08-15

    Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.

  18. Extending Serum Half-life of Albumin by Engineering Neonatal Fc Receptor (FcRn) Binding*

    PubMed Central

    Andersen, Jan Terje; Dalhus, Bjørn; Viuff, Dorthe; Ravn, Birgitte Thue; Gunnarsen, Kristin Støen; Plumridge, Andrew; Bunting, Karen; Antunes, Filipa; Williamson, Rebecca; Athwal, Steven; Allan, Elizabeth; Evans, Leslie; Bjørås, Magnar; Kjærulff, Søren; Sleep, Darrell; Sandlie, Inger; Cameron, Jason

    2014-01-01

    A major challenge for the therapeutic use of many peptides and proteins is their short circulatory half-life. Albumin has an extended serum half-life of 3 weeks because of its size and FcRn-mediated recycling that prevents intracellular degradation, properties shared with IgG antibodies. Engineering the strictly pH-dependent IgG-FcRn interaction is known to extend IgG half-life. However, this principle has not been extensively explored for albumin. We have engineered human albumin by introducing single point mutations in the C-terminal end that generated a panel of variants with greatly improved affinities for FcRn. One variant (K573P) with 12-fold improved affinity showed extended serum half-life in normal mice, mice transgenic for human FcRn, and cynomolgus monkeys. Importantly, favorable binding to FcRn was maintained when a single-chain fragment variable antibody was genetically fused to either the N- or the C-terminal end. The engineered albumin variants may be attractive for improving the serum half-life of biopharmaceuticals. PMID:24652290

  19. Theoretical Insights Reveal Novel Motions in Csk’s SH3 Domain That Control Kinase Activation

    PubMed Central

    Barkho, Sulyman; Pierce, Levi C. T.; Li, Sheng; Adams, Joseph A.; Jennings, Patricia A.

    2015-01-01

    The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD) simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS) and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk’s activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk. PMID:26030592

  20. Efficient subgroup C avian sarcoma and leukosis virus receptor activity requires the IgV domain of the Tvc receptor and proper display on the cell membrane.

    PubMed

    Munguia, Audelia; Federspiel, Mark J

    2008-11-01

    We recently identified and cloned the receptor for subgroup C avian sarcoma and leukosis viruses [ASLV(C)], i.e., Tvc, a protein most closely related to mammalian butyrophilins, which are members of the immunoglobulin protein family. The extracellular domain of Tvc contains two immunoglobulin-like domains, IgV and IgC, which presumably each contain a disulfide bond important for native function of the protein. In this study, we have begun to identify the functional determinants of Tvc responsible for ASLV(C) receptor activity. We found that the IgV domain of the Tvc receptor is responsible for interacting with the glycoprotein of ASLV(C). Additional experiments demonstrated that a domain was necessary as a spacer between the IgV domain and the membrane-spanning domain for efficient Tvc receptor activity, most likely to orient the IgV domain a proper distance from the cell membrane. The effects on ASLV(C) glycoprotein binding and infection efficiency were also studied by site-directed mutagenesis of the cysteine residues of Tvc as well as conserved amino acid residues of the IgV Tvc domain compared to other IgV domains. In this initial analysis of Tvc determinants important for interacting with ASLV(C) glycoproteins, at least two aromatic amino acid residues in the IgV domain of Tvc, Trp-48 and Tyr-105, were identified as critical for efficient ASLV(C) infection. Interestingly, one or more aromatic amino acid residues have been identified as critical determinants in the other ASLV(A-E) receptors for a proper interaction with ASLV glycoproteins. This suggests that the ASLV glycoproteins may share a common mechanism of receptor interaction with an aromatic residue(s) on the receptor critical for triggering conformational changes in SU that initiate the fusion process required for efficient virus infection.

  1. Efficient Subgroup C Avian Sarcoma and Leukosis Virus Receptor Activity Requires the IgV Domain of the Tvc Receptor and Proper Display on the Cell Membrane▿

    PubMed Central

    Munguia, Audelia; Federspiel, Mark J.

    2008-01-01

    We recently identified and cloned the receptor for subgroup C avian sarcoma and leukosis viruses [ASLV(C)], i.e., Tvc, a protein most closely related to mammalian butyrophilins, which are members of the immunoglobulin protein family. The extracellular domain of Tvc contains two immunoglobulin-like domains, IgV and IgC, which presumably each contain a disulfide bond important for native function of the protein. In this study, we have begun to identify the functional determinants of Tvc responsible for ASLV(C) receptor activity. We found that the IgV domain of the Tvc receptor is responsible for interacting with the glycoprotein of ASLV(C). Additional experiments demonstrated that a domain was necessary as a spacer between the IgV domain and the membrane-spanning domain for efficient Tvc receptor activity, most likely to orient the IgV domain a proper distance from the cell membrane. The effects on ASLV(C) glycoprotein binding and infection efficiency were also studied by site-directed mutagenesis of the cysteine residues of Tvc as well as conserved amino acid residues of the IgV Tvc domain compared to other IgV domains. In this initial analysis of Tvc determinants important for interacting with ASLV(C) glycoproteins, at least two aromatic amino acid residues in the IgV domain of Tvc, Trp-48 and Tyr-105, were identified as critical for efficient ASLV(C) infection. Interestingly, one or more aromatic amino acid residues have been identified as critical determinants in the other ASLV(A-E) receptors for a proper interaction with ASLV glycoproteins. This suggests that the ASLV glycoproteins may share a common mechanism of receptor interaction with an aromatic residue(s) on the receptor critical for triggering conformational changes in SU that initiate the fusion process required for efficient virus infection. PMID:18768966

  2. An Extended Structure of the APOBEC3G Catalytic Domain Suggests a Unique Holoenzyme Model

    PubMed Central

    Harjes, Elena; Gross, Phillip J.; Chen, Kuan-Ming; Lu, Yongjian; Shindo, Keisuke; Nowarski, Roni; Gross, John D.; Kotler, Moshe; Harris, Reuben S.; Matsuo, Hiroshi

    2009-01-01

    Summary Human APOBEC3G (A3G) belongs to a family of polynucleotide cytidine deaminases. This family includes APOBEC1 and AID, which edit APOB mRNA and antibody gene DNA, respectively. A3G deaminates cytidines to uridines in single-strand DNA and inhibits the replication of HIV-1, other retroviruses and retrotransposons. Although the mechanism of A3G-catalyzed DNA deamination has been investigated genetically and biochemically, atomic details are just starting to emerge. Here, we compare the DNA cytidine deaminase activities and NMR structures of two A3G catalytic domain constructs. The longer A3G191-384 protein is considerably more active than the shorter A3G198-384 variant. The longer structure has an α1 helix (residues 201–206) that was not apparent in the shorter protein and it contributes to catalytic activity through interactions with hydrophobic core structures (β1, β3, α5 and α6). Both A3G catalytic domain solution structures have a discontinuous β2 region that is clearly different than the continuous β2 strand of another family member APOBEC2. In addition, the longer A3G191-384 structure revealed part of the N-terminal pseudo-catalytic domain including the inter-domain linker and some of the last α-helix. These structured residues (191–196) enabled a novel full-length A3G model by providing physical overlap between the N-terminal pseudo-catalytic domain and the new C-terminal catalytic domain structure. Contrary to predictions, this structurally constrained model suggested that the two domains are tethered by structured residues and that the N- and C-terminal β2 regions are too distant from one another to participate in this interaction. PMID:19389408

  3. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    PubMed

    Macedo-Ribeiro, Sandra; Almeida, Carla; Calisto, Bárbara M; Friedrich, Thomas; Mentele, Reinhard; Stürzebecher, Jörg; Fuentes-Prior, Pablo; Pereira, Pedro José Barbosa

    2008-02-20

    Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1) pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1) residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  4. A common antigenic motif recognized by naturally occurring human VH5-51/VL4-1 anti-tau antibodies with distinct functionalities.

    PubMed

    Apetri, Adrian; Crespo, Rosa; Juraszek, Jarek; Pascual, Gabriel; Janson, Roosmarijn; Zhu, Xueyong; Zhang, Heng; Keogh, Elissa; Holland, Trevin; Wadia, Jay; Verveen, Hanneke; Siregar, Berdien; Mrosek, Michael; Taggenbrock, Renske; Ameijde, Jeroenvan; Inganäs, Hanna; van Winsen, Margot; Koldijk, Martin H; Zuijdgeest, David; Borgers, Marianne; Dockx, Koen; Stoop, Esther J M; Yu, Wenli; Brinkman-van der Linden, Els C; Ummenthum, Kimberley; van Kolen, Kristof; Mercken, Marc; Steinbacher, Stefan; de Marco, Donata; Hoozemans, Jeroen J; Wilson, Ian A; Koudstaal, Wouter; Goudsmit, Jaap

    2018-05-31

    Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG + memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated V H 5-51/V L 4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of V H 5-51 and V L 4-1 recognizes a common Pro-X n -Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.

  5. Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipavirus.

    PubMed

    Habchi, Johnny; Blangy, Stéphanie; Mamelli, Laurent; Jensen, Malene Ringkjøbing; Blackledge, Martin; Darbon, Hervé; Oglesbee, Michael; Shu, Yaoling; Longhi, Sonia

    2011-04-15

    The Henipavirus genome is encapsidated by the nucleoprotein (N) within a helical nucleocapsid that recruits the polymerase complex via the phosphoprotein (P). In a previous study, we reported that in henipaviruses, the N-terminal domain of the phosphoprotein and the C-terminal domain of the nucleoprotein (N(TAIL)) are both intrinsically disordered. Here we show that Henipavirus N(TAIL) domains are also disordered in the context of full-length nucleoproteins. We also report the cloning, purification, and characterization of the C-terminal X domains (P(XD)) of Henipavirus phosphoproteins. Using isothermal titration calorimetry, we show that N(TAIL) and P(XD) form a 1:1 stoichiometric complex that is stable under NaCl concentrations as high as 1 M and has a K(D) in the μM range. Using far-UV circular dichroism and nuclear magnetic resonance, we show that P(XD) triggers an increase in the α-helical content of N(TAIL). Using fluorescence spectroscopy, we show that P(XD) has no impact on the chemical environment of a Trp residue introduced at position 527 of the Henipavirus N(TAIL) domain, thus arguing for the lack of stable contacts between the C termini of N(TAIL) and P(XD). Finally, we present a tentative structural model of the N(TAIL)-P(XD) interaction in which a short, order-prone region of N(TAIL) (α-MoRE; amino acids 473-493) adopts an α-helical conformation and is embedded between helices α2 and α3 of P(XD), leading to a relatively small interface dominated by hydrophobic contacts. The present results provide the first detailed experimental characterization of the N-P interaction in henipaviruses and designate the N(TAIL)-P(XD) interaction as a valuable target for rational antiviral approaches.

  6. Extensive interactions between HIV TAT and TAF(II)250.

    PubMed

    Weissman, J D; Hwang, J R; Singer, D S

    2001-03-09

    The HIV transactivator, Tat, has been shown to be capable of potent repression of transcription initiation. Repression is mediated by the C-terminal segment of Tat, which binds the TFIID component, TAF(II)250, although the site(s) of interaction were not defined previously. We now report that the interaction between Tat and TAF(II)250 is extensive and involves multiple contacts between the Tat protein and TAF(II)250. The C-terminal domain of Tat, which is necessary for repression of transcription initiation, binds to a segment of TAF(II)250 that encompasses its acetyl transferase (AT) domain (885-1034 amino acids (aa)). Surprisingly, the N-terminal segment of Tat, which contains its activation domains, also binds to TAF(II)250 and interacts with two discontinuous segments of TAF(II)250 located between 885 and 984 aa and 1120 and 1279 aa. Binding of Tat to the 885-984 aa segment of TAF(II)250 requires the cysteine-rich domain of Tat, but not the acidic or glutamine-rich domains. Binding by the N-terminal domain of Tat to the 1120-1279 aa TAF(II)250 segment does not involve the acidic, cysteine- or glutamine-rich domains. Repression of transcription initiation by Tat requires functional TAF(II)250. We now demonstrate that transcription of the HIV LTR does not depend on TAF(II)250 which may account for its resistance to Tat mediated repression.

  7. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains.

    PubMed

    Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid

    2014-05-13

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.

  8. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting.

    PubMed

    Lin, Pei-Hsuan; Lin, Hsien-Yi; Kuo, Cheng-Chin; Yang, Liang-Tung

    2015-06-24

    The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on mitochondria.

  9. The TDP-43 N-terminal domain structure at high resolution.

    PubMed

    Mompeán, Miguel; Romano, Valentina; Pantoja-Uceda, David; Stuani, Cristiana; Baralle, Francisco E; Buratti, Emanuele; Laurents, Douglas V

    2016-04-01

    Transactive response DNA-binding protein 43 kDa (TDP-43) is an RNA transporting and processing protein whose aberrant aggregates are implicated in neurodegenerative diseases. The C-terminal domain of this protein plays a key role in mediating this process. However, the N-terminal domain (residues 1-77) is needed to effectively recruit TDP-43 monomers into this aggregate. In the present study, we report, for the first time, the essentially complete (1) H, (15) N and (13) C NMR assignments and the structure of the N-terminal domain determined on the basis of 26 hydrogen-bond, 60 torsion angle and 1058 unambiguous NOE structural restraints. The structure consists of an α-helix and six β-strands. Two β-strands form a β-hairpin not seen in the ubiquitin fold. All Pro residues are in the trans conformer and the two Cys are reduced and distantly separated on the surface of the protein. The domain has a well defined hydrophobic core composed of F35, Y43, W68, Y73 and 17 aliphatic side chains. The fold is topologically similar to the reported structure of axin 1. The protein is stable and no denatured species are observed at pH 4 and 25 °C. At 4 kcal·mol(-1) , the conformational stability of the domain, as measured by hydrogen/deuterium exchange, is comparable to ubiquitin (6 kcal·mol(-1) ). The β-strands, α-helix, and three of four turns are generally rigid, although the loop formed by residues 47-53 is mobile, as determined by model-free analysis of the (15) N{(1) H}NOE, as well as the translational and transversal relaxation rates. Structural data have been deposited in the Protein Data Bank under accession code: 2n4p. The NMR assignments have been deposited in the BMRB database under access code: 25675. © 2016 Federation of European Biochemical Societies.

  10. A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B.

    PubMed

    Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H J; Snel, Berend; Perrakis, Anastassis; Kops, Geert J P L

    2013-04-15

    The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B-dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization.

  11. Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53

    PubMed Central

    Zanier, Katia; Sidi, Abdellahi ould M’hamed ould; Boulade-Ladame, Charlotte; Rybin, Vladimir; Chappelle, Anne; Atkinson, Andrew; Kieffer, Bruno; Travé, Gilles

    2012-01-01

    The viral oncoprotein E6 is an essential factor for cervical cancers induced by “high-risk” mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise the first structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the poly-ubiquitination of p53 by E6AP. PMID:22483108

  12. Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death.

    PubMed

    Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P

    2018-01-22

    Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.

  13. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    PubMed

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2018-06-01

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  14. A comparative study of the N-linked oligosaccharide structures of human IgG subclass proteins.

    PubMed Central

    Jefferis, R; Lund, J; Mizutani, H; Nakagawa, H; Kawazoe, Y; Arata, Y; Takahashi, N

    1990-01-01

    Quantitative oligosaccharide profiles were determined for each of 18 human IgG paraproteins representing the four subclasses. Each paraprotein exhibits a unique profile that may be substantially different from that observed for polyclonal IgG. The IgG2 and some IgG3 proteins analysed exhibit a predominance of oligosaccharide moieties having galactose on the Man(alpha 1----3) arm rather than the Man(alpha 1----6) arm; it was previously held that galactosylation of the Man(alpha 1----6) arm is preferred, as observed for IgG1, IgG4 and polyclonal IgG. An IgG4 protein is reported that has galactosylated Man(alpha 1----3) and Man(alpha 1----6) arms on both Fc-localized carbohydrate moieties; previous findings suggested that such fully glycosylated structures could not be accommodated within the internal space of the C gamma 2 domains. Unusual monoantennary oligosaccharides present in IgG2 and IgG3 proteins were isolated and their structures determined. Images Fig. 1. PMID:2363690

  15. Taming C-terminal peptides of Staphylococcus aureus leukotoxin M for B-cell response: Implication in improved subclinical bovine mastitis diagnosis and protective efficacy in vitro.

    PubMed

    Padmaja, Radhakrishnan Jayasree; Halami, Prakash Motiram

    2016-09-01

    Leukotoxin M/F'-PV (LukM/F'-PV) produced by bovine mastitis causing Staphylococcus aureus structurally comprises three domains, the β-sandwich, rim and stem domain. The rim and stem domains interacting with target cell membrane lipid rafts contributes to the virulent trait of the toxin. In the present study, two facts were hypothesized that neutralization of these domains will ebb LukM/F'-PV leukotoxicity. Secondly, the neutralizing antibodies can improve the leukotoxin detection sensitivity in bovine mastitis milk samples. The in silico mapping of S. aureus LukM C-termini comprising these domains predicted seven linear B-cell antigenic epitopes. The immune response of C-terminal truncated recombinant peptides rCtM19 (19 kDa; near carboxy-terminal) having four epitopes and rCtM15 (15 kDa; C-terminal) with three epitopes were evaluated for their diagnostic and neutralization potential. Anti-rCtM19 and anti-rCtM15 antibodies with enhanced immunogenicity had the most striking outcome in IgG-ELISA for detecting native determinants of leukotoxin. For the obtained ELISA values, ROC curve inferred a cut-off score of >0.102 OD405. The assay sensitivity in the range of 90-96% along with 100% specificity and AUC of 0.93-0.98 categorized subclinical and clinical from healthy bovine milk samples. As observed through in vitro neutralization and LDH assays, C-terminus specific antibodies (1:42 titer) deactivating leukotoxicity abolished LukM from interacting with lipid bilayer and LukF for forming pores on bovine neutrophil membrane. As a proof of concept, it was proved that peptide antibodies can be a more specific serodiagnostic and passive therapeutic molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Insights from Molecular Dynamics Simulations: Structural Basis for the V567D Mutation-Induced Instability of Zebrafish Alpha-Dystroglycan and Comparison with the Murine Model

    PubMed Central

    Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina

    2014-01-01

    A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies. PMID:25078606

  17. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model.

    PubMed

    Pirolli, Davide; Sciandra, Francesca; Bozzi, Manuela; Giardina, Bruno; Brancaccio, Andrea; De Rosa, Maria Cristina

    2014-01-01

    A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.

  18. Dominant-Negative Inhibition of Prion Formation Diminished by Deletion Mutagenesis of the Prion Protein

    PubMed Central

    Zulianello, Laurence; Kaneko, Kiyotoshi; Scott, Michael; Erpel, Susanne; Han, Dong; Cohen, Fred E.; Prusiner, Stanley B.

    2000-01-01

    Polymorphic basic residues near the C terminus of the prion protein (PrP) in humans and sheep appear to protect against prion disease. In heterozygotes, inhibition of prion formation appears to be dominant negative and has been simulated in cultured cells persistently infected with scrapie prions. The results of nuclear magnetic resonance and mutagenesis studies indicate that specific substitutions at the C-terminal residues 167, 171, 214, and 218 of PrPC act as dominant-negative, inhibitors of PrPSc formation (K. Kaneko et al., Proc. Natl. Acad. Sci. USA 94:10069–10074, 1997). Trafficking of substituted PrPC to caveaola-like domains or rafts by the glycolipid anchor was required for the dominant-negative phenotype; interestingly, amino acid replacements at multiple sites were less effective than single-residue substitutions. To elucidate which domains of PrPC are responsible for dominant-negative inhibition of PrPSc formation, we analyzed whether N-terminally truncated PrP(Q218K) molecules exhibited dominant-negative effects in the conversion of full-length PrPC to PrPSc. We found that the C-terminal domain of PrP is not sufficient to impede the conversion of the full-length PrPC molecule and that N-terminally truncated molecules (with residues 23 to 88 and 23 to 120 deleted) have reduced dominant-negative activity. Whether the N-terminal region of PrP acts by stabilizing the C-terminal domain of the molecule or by modulating the binding of PrPC to an auxiliary molecule that participates in PrPSc formation remains to be established. PMID:10756050

  19. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system

    PubMed Central

    Zoltner, Martin; Ng, Wui M.A.V.; Money, Jillian J.; Fyfe, Paul K.; Kneuper, Holger; Palmer, Tracy; Hunter, William N.

    2016-01-01

    The membrane-bound protein EssC is an integral component of the bacterial Type VII secretion system (T7SS), which is a determinant of virulence in important Gram-positive pathogens. The protein is predicted to consist of an intracellular repeat of forkhead-associated (FHA) domains at the N-terminus, two transmembrane helices and three P-loop-containing ATPase-type domains, D1–D3, forming the C-terminal intracellular segment. We present crystal structures of the N-terminal FHA domains (EssC-N) and a C-terminal fragment EssC-C from Geobacillus thermodenitrificans, encompassing two of the ATPase-type modules, D2 and D3. Module D2 binds ATP with high affinity whereas D3 does not. The EssC-N and EssC-C constructs are monomeric in solution, but the full-length recombinant protein, with a molecular mass of approximately 169 kDa, forms a multimer of approximately 1 MDa. The observation of protomer contacts in the crystal structure of EssC-C together with similarity to the DNA translocase FtsK, suggests a model for a hexameric EssC assembly. Such an observation potentially identifies the key, and to date elusive, component of pore formation required for secretion by this recently discovered secretion system. The juxtaposition of the FHA domains suggests potential for interacting with other components of the secretion system. The structural data were used to guide an analysis of which domains are required for the T7SS machine to function in pathogenic Staphylococcus aureus. The extreme C-terminal ATPase domain appears to be essential for EssC activity as a key part of the T7SS, whereas D2 and FHA domains are required for the production of a stable and functional protein. PMID:27130157

  20. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels.

    PubMed

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-02-15

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2 Delta 2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2 Delta 2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.

  1. The STAT3 HIES mutation is a gain-of-function mutation that activates genes via AGG-element carrying promoters.

    PubMed

    Xu, Li; Ji, Jin-Jun; Le, Wangping; Xu, Yan S; Dou, Dandan; Pan, Jieli; Jiao, Yifeng; Zhong, Tianfei; Wu, Dehong; Wang, Yumei; Wen, Chengping; Xie, Guan-Qun; Yao, Feng; Zhao, Heng; Fan, Yong-Sheng; Chin, Y Eugene

    2015-10-15

    Cytokine or growth factor activated STAT3 undergoes multiple post-translational modifications, dimerization and translocation into nuclei, where it binds to serum-inducible element (SIE, 'TTC(N3)GAA')-bearing promoters to activate transcription. The STAT3 DNA binding domain (DBD, 320-494) mutation in hyper immunoglobulin E syndrome (HIES), called the HIES mutation (R382Q, R382W or V463Δ), which elevates IgE synthesis, inhibits SIE binding activity and sensitizes genes such as TNF-α for expression. However, the mechanism by which the HIES mutation sensitizes STAT3 in gene induction remains elusive. Here, we report that STAT3 binds directly to the AGG-element with the consensus sequence 'AGG(N3)AGG'. Surprisingly, the helical N-terminal region (1-355), rather than the canonical STAT3 DBD, is responsible for AGG-element binding. The HIES mutation markedly enhances STAT3 AGG-element binding and AGG-promoter activation activity. Thus, STAT3 is a dual specificity transcription factor that promotes gene expression not only via SIE- but also AGG-promoter activity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    PubMed

    Friberg, Anders; Thumann, Sybille; Hennig, Janosch; Zou, Peijian; Nössner, Elfriede; Ling, Paul D; Sattler, Michael; Kempkes, Bettina

    2015-05-01

    Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  3. A high-resolution structure of the DNA-binding domain of AhrC, the arginine repressor/activator protein from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The structure of the winged helix–turn–helix DNA-binding domain of AhrC has been determined at 1.0 Å resolution. The largely hydrophobic β-wing shows high B factors and may mediate the dimer interface in operator complexes. In Bacillus subtilis the concentration of l-arginine is controlled by the transcriptional regulator AhrC, which interacts with 18 bp DNA operator sites called ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a 100 kDa homohexamer, with each subunit having two domains. The C-terminal domains form the core, mediating intersubunit interactions and binding of the co-repressor l-arginine, whilst the N-terminal domains containmore » a winged helix–turn–helix DNA-binding motif and are arranged around the periphery. The N-terminal domain of AhrC has been expressed, purified and characterized and it has been shown that the fragment still binds DNA operators as a recombinant monomer. The DNA-binding domain has also been crystallized and the crystal structure refined to 1.0 Å resolution is presented.« less

  4. RNAP-II transcribes two small RNAs at the promoter and terminator regions of the RNAP-I gene in Saccharomyces cerevisiae.

    PubMed

    Mayán, Maria D

    2013-01-01

    Three RNA polymerases coexist in the ribosomal DNA of Saccharomyces cerevisiae. RNAP-I transcribes the 35S rRNA, RNAP-III transcribes the 5S rRNA and RNAP-II is found in both intergenic non-coding regions. Previously, we demonstrated that RNAP-II molecules bound to the intergenic non-coding regions (IGS) of the ribosomal locus are mainly found in a stalled conformation, and the stalled polymerase mediates chromatin interactions, which isolate RNAP-I from the RNAP-III transcriptional domain. Besides, RNAP-II transcribes both IGS regions at low levels, using different cryptic promoters. This report demonstrates that RNAP-II also transcribes two sequences located in the 5'- and 3'-ends of the 35S rRNA gene that overlap with the sequences of the 35S rRNA precursor transcribed by RNAP-I. The sequence located at the promoter region of RNAP-I, called the p-RNA transcript, binds to the transcription termination-related protein, Reb1p, while the T-RNA sequence, located in the termination sites of RNAP-I gene, contains the stem-loop recognized by Rtn1p, which is necessary for proper termination of RNAP-I. Because of their location, these small RNAs may play a key role in the initiation and termination of RNAP-I transcription. To correctly synthesize proteins, eukaryotic cells may retain a mechanism that connects the three main polymerases. This report suggests that cryptic transcription by RNAP-II may be required for normal transcription by RNAP-I in the ribosomal locus of S. cerevisiae. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site

    PubMed Central

    Rico-Lastres, Palma; Pérez-Cañadillas, José Manuel

    2011-01-01

    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role. PMID:21931728

  6. Anti-dengue virus envelope protein domain III IgG ELISA among infants with primary dengue virus infections.

    PubMed

    Libraty, Daniel H; Zhang, Lei; Obcena, AnaMae; Brion, Job D; Capeding, Rosario Z

    2015-02-01

    Dengue is the most prevalent arthropod-borne viral illness in humans. The current gold standard serologic test for dengue virus (DENV) infection is a neutralizing antibody assay. We examined a DENV recombinant (r)E protein domain III IgG ELISA among infants with primary DENV infections. Infants experience a primary DENV infection in the presence of maternally derived anti-DENV IgG. The estimated DENV rE protein domain III IgG levels to the infecting serotype at the time of infant primary symptomatic DENV2 and DENV3 infections correlated with the 50% plaque reduction neutralization reciprocal antibody titers (PRNT50). Anti-DENVs 1-4 rE protein domain III IgG levels all correlated with each other, and the estimated rE protein domain III IgG level to the infecting serotype at the time of infection inversely correlated with dengue disease severity. The anti-DENV rE protein domain III IgG ELISA may be a useful and potentially high-throughput alternative to traditional DENV neutralizing antibody assays. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Glycosylation of IgG B cell receptor (IgG BCR) in multiple myeloma: relationship between sialylation and the signal activity of IgG BCR.

    PubMed

    Ilić, Vesna; Milosević-Jovcić, Nadezda; Petrović, Sonja; Marković, Dragana; Stefanović, Gordana; Ristić, Tatjana

    2008-05-01

    Little is known about the glycosylation of the isotype switched B cell receptor (BCR) in multiple myeloma, and the way it might affect receptor function. In this work IgG BCRs isolated from the individual lysates of peripheral blood lymphocytes (PBL) of 32 patients with IgG multiple myeloma and healthy controls were investigated for the expression of sialic acid (SA), galactose (Gal) and N-acetylglucosamine (GlcNAc), the sugars known to specify the glycoforms of human serum IgG. The degree of glycosylation and signaling status of all 32 isolated myeloma IgG BCRs were correlated and compared with the glycosylation of the IgG paraproteins isolated from sera of the same patients. It was shown that BCR IgG in myeloma is more heavily sialylated when compared with normal controls, that the increased sialylation of IgG BCR is associated with higher levels of tyrosine phosphorylation (signaling activity) of the IgG BCR supramolecular complex and that BCR IgG and serum IgG paraprotein from the same patient differed in all cases in the levels of terminal sugar expression. The results suggest that the development of the malignant clone in MM from post-switch B cells expressing IgG BCR at their surfaces to plasma cells secreting IgG paraprotein may be followed by permanent glycosylation changes in the IgG molecules.

  8. The C-Terminal Domain of the Virulence Factor MgtC Is a Divergent ACT Domain

    PubMed Central

    Yang, Yinshan; Labesse, Gilles; Carrère-Kremer, Séverine; Esteves, Kevin; Kremer, Laurent

    2012-01-01

    MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg2+ deprivation, but previous work suggested that MgtC is not a Mg2+ transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg2+ deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg2+ concentration, indicating that it does not bind Mg2+. The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg2+ uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain. PMID:22984256

  9. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense.

    PubMed

    Nishikawa, C Y; Araújo, L M; Kadowaki, M A S; Monteiro, R A; Steffens, M B R; Pedrosa, F O; Souza, E M; Chubatsu, L S

    2012-02-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ(54) co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH(4)Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

  10. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense

    PubMed Central

    Nishikawa, C.Y.; Araújo, L.M.; Kadowaki, M.A.S.; Monteiro, R.A.; Steffens, M.B.R.; Pedrosa, F.O.; Souza, E.M.; Chubatsu, L.S.

    2012-01-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription. PMID:22267004

  11. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation

    PubMed Central

    Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung

    2004-01-01

    In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156

  12. Bruton's tyrosine kinase and SLP-65 regulate pre-B cell differentiation and the induction of Ig light chain gene rearrangement.

    PubMed

    Kersseboom, Rogier; Ta, Van B T; Zijlstra, A J Esther; Middendorp, Sabine; Jumaa, Hassan; van Loo, Pieter Fokko; Hendriks, Rudolf W

    2006-04-15

    Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.

  13. Structure of the N-terminal domain of the protein Expansion: an ‘Expansion’ to the Smad MH2 fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beich-Frandsen, Mads; Aragón, Eric; Llimargas, Marta

    2015-04-01

    Expansion is a modular protein that is conserved in protostomes. The first structure of the N-terminal domain of Expansion has been determined at 1.6 Å resolution and the new Nα-MH2 domain was found to belong to the Smad/FHA superfamily of structures. Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of proteinmore » belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.« less

  14. The N Domain of Human Angiotensin-I-converting Enzyme

    PubMed Central

    Anthony, Colin S.; Corradi, Hazel R.; Schwager, Sylva L. U.; Redelinghuys, Pierre; Georgiadis, Dimitris; Dive, Vincent; Acharya, K. Ravi; Sturrock, Edward D.

    2010-01-01

    Angiotensin-I-converting enzyme (ACE) plays a critical role in the regulation of blood pressure through its central role in the renin-angiotensin and kallikrein-kinin systems. ACE contains two domains, the N and C domains, both of which are heavily glycosylated. Structural studies of ACE have been fraught with severe difficulties because of surface glycosylation of the protein. In order to investigate the role of glycosylation in the N domain and to create suitable forms for crystallization, we have investigated the importance of the 10 potential N-linked glycan sites using enzymatic deglycosylation, limited proteolysis, and mass spectrometry. A number of glycosylation mutants were generated via site-directed mutagenesis, expressed in CHO cells, and analyzed for enzymatic activity and thermal stability. At least eight of 10 of the potential glycan sites are glycosylated; three C-terminal sites were sufficient for expression of active N domain, whereas two N-terminal sites are important for its thermal stability. The minimally glycosylated Ndom389 construct was highly suitable for crystallization studies. The structure in the presence of an N domain-selective phosphinic inhibitor RXP407 was determined to 2.0 Å resolution. The Ndom389 structure revealed a hinge region that may contribute to the breathing motion proposed for substrate binding. PMID:20826823

  15. Structural and temporal requirements of Wnt/PCP protein Vangl2 function for convergence and extension movements and facial branchiomotor neuron migration in zebrafish.

    PubMed

    Pan, Xiufang; Sittaramane, Vinoth; Gurung, Suman; Chandrasekhar, Anand

    2014-02-01

    Van gogh-like 2 (Vangl2), a core component of the Wnt/planar cell polarity (PCP) signaling pathway, is a four-pass transmembrane protein with N-terminal and C-terminal domains located in the cytosol, and is structurally conserved from flies to mammals. In vertebrates, Vangl2 plays an essential role in convergence and extension (CE) movements during gastrulation and in facial branchiomotor (FBM) neuron migration in the hindbrain. However, the roles of specific Vangl2 domains, of membrane association, and of specific extracellular and intracellular motifs have not been examined, especially in the context of FBM neuron migration. Through heat shock-inducible expression of various Vangl2 transgenes, we found that membrane associated functions of the N-terminal and C-terminal domains of Vangl2 are involved in regulating FBM neuron migration. Importantly, through temperature shift experiments, we found that the critical period for Vangl2 function coincides with the initial stages of FBM neuron migration out of rhombomere 4. Intriguingly, we have also uncovered a putative nuclear localization motif in the C-terminal domain that may play a role in regulating CE movements. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Identification of the gene transcription repressor domain of Gli3.

    PubMed

    Tsanev, Robert; Tiigimägi, Piret; Michelson, Piret; Metsis, Madis; Østerlund, Torben; Kogerman, Priit

    2009-01-05

    Gli transcription factors are downstream targets of the Hedgehog signaling pathway. Two of the three Gli proteins harbor gene transcription repressor function in the N-terminal half. We have analyzed the sequences and identified a potential repressor domain in Gli2 and Gli3 and have tested this experimentally. Overexpression studies confirm that the N-terminal parts harbor gene repression activity and we mapped the minimal repressor to residues 106 till 236 in Gli3. Unlike other mechanisms that inhibit Gli induced gene transcription, the repressor domain identified here does not utilize Histone deacetylases (HDACs) to achieve repression, as confirmed by HDAC inhibition studies and pull-down assays. This distinguishes the identified domain from other regulatory parts with negative influence on transcription.

  17. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    DOE PAGES

    Sychantha, David; Jones, Carys S.; Little, Dustin J.; ...

    2017-10-27

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less

  18. Insights from the Structure of Mycobacterium tuberculosis Topoisomerase I with a Novel Protein Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Kemin; Cao, Nan; Cheng, Bokun

    The DNA topoisomerase I enzyme of Mycobacterium tuberculosis (MtTOP1) is essential for the viability of the organism and survival in a murine model. This topoisomerase is being pursued as a novel target for the discovery of new therapeutic agents for the treatment of drug-resistant tuberculosis. In this study, we succeeded in obtaining a structure of MtTOP1 by first predicting that the C-terminal region of MtTOP1 contains four repeated domains that do not involve the Zn-binding tetracysteine motifs seen in the C-terminal domains of Escherichia coli topoisomerase I. A construct (amino acids A2-T704), MtTOP1-704t, that includes the N-terminal domains (D1-D4) andmore » the first predicted C-terminal domain (D5) of MtTOP1 was expressed and found to retain DNA cleavage-religation activity and catalyze single-stranded DNA catenation. MtTOP1-704t was crystallized, and a structure of 2.52 angstrom resolution limit was obtained. The structure of the MtTOP1 N-terminal domains has features that have not been observed in other previously available bacterial topoisomerase I crystal structures. The first C-terminal domain D5 forms a novel protein fold of a four-stranded antiparallel beta-sheet stabilized by a crossing-over alpha-helix. Since there is only one type IA topoisomerase present in Mycobacteriaceae and related Actinobacteria, this subfamily of type IA topoisomerase may be required for multiple functions in DNA replication, transcription, recombination, and repair. The unique structural features observed for MtTOP1 may allow these topoisomerase I enzymes to carry out physiological functions associated with topoisomerase III enzyme in other bacteria.« less

  19. The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded

    PubMed Central

    Bourhis, Jean-Marie; Receveur-Bréchot, Véronique; Oglesbee, Michael; Zhang, Xinsheng; Buccellato, Matthew; Darbon, Hervé; Canard, Bruno; Finet, Stéphanie; Longhi, Sonia

    2005-01-01

    Measles virus is a negative-sense, single-stranded RNA virus within theMononegavirales order,which includes several human pathogens, including rabies, Ebola, Nipah, and Hendra viruses. Themeasles virus nucleoprotein consists of a structured N-terminal domain, and of an intrinsically disordered C-terminal domain, NTAIL (aa 401–525), which undergoes induced folding in the presence of the C-terminal domain (XD, aa 459–507) of the viral phosphoprotein. With in NTAIL, an α-helical molecular recognition element (α-MoRE, aa 488–499) involved in binding to P and in induced folding was identified and then observed in the crystal structure of XD. Using small-angle X-ray scattering, we have derived a low-resolution structural model of the complex between XD and NTAIL, which shows that most of NTAIL remains disordered in the complex despite P-induced folding within the α-MoRE. The model consists of an extended shape accommodating the multiple conformations adopted by the disordered N-terminal region of NTAIL, and of a bulky globular region, corresponding to XD and to the C terminus of NTAIL (aa 486–525). Using surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and heteronuclear magnetic resonance, we show that NTAIL has an additional site (aa 517–525) involved in binding to XD but not in the unstructured-to-structured transition. This work provides evidence that intrinsically disordered domains can establish complex interactions with their partners, and can contact them through multiple sites that do not all necessarily gain regular secondary structure. PMID:16046624

  20. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sychantha, David; Jones, Carys S.; Little, Dustin J.

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less

  1. Mapping of the binding sites involved in PSP94-CRISP-3 interaction by molecular dissection of the complex.

    PubMed

    Breed, Ananya A; Gomes, Amanda; Roy, Binita Sur; Mahale, Smita D; Pathak, Bhakti R

    2013-04-01

    Human Prostate Secretory Protein of 94 amino acids (PSP94) has been shown to bind human CRISP-3 (cysteine-rich secretory protein 3) with very high affinity. CRISP-3 belongs to the CRISP family of proteins having a PR-1 (pathogenesis related protein 1) domain at its N-terminal and ion channel regulatory (ICR) domain at its C-terminal connected by a hinge region. Functional significance of this complex is not yet known. In order to identify the residues and/or regions involved in PSP94-CRISP-3 interaction, site-directed mutagenesis was employed. Effect of the mutations on the interaction was studied by co-immunoprecipitation (Co-IP). For PSP94, amino acids Y(3), F(4), P(56) and the C-terminal β-strand were found to be crucial for interacting with CRISP-3. A disulfide bond between the two domains of PSP94 (C(37)A-C(73)A) was also important for this interaction. In case of CRISP-3, the N-terminal domain alone could not maintain a strong interaction with PSP94 but it required presence of the hinge region and not the C-terminal domain. Apart from CRISP-3, CRISP-2 was also found to interact with human PSP94. Based on our findings the most likely model of PSP94-CRISP-3 complex has been proposed. The terminal β-strands of PSP94 contact the first α-helix and the hinge region of CRISP-3. Involvement of the hinge region of CRISPs in interaction with PSP94 may affect the domain movement of CRISPs essential for the ion-channel regulatory activity resulting in inhibition of this activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    PubMed Central

    Sychantha, David; Jones, Carys S.; Little, Dustin J.; Howell, P. Lynne

    2017-01-01

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens. PMID:29077761

  3. Characterization of Runella slithyformis HD-Pnk, a bifunctional DNA/RNA end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase domain.

    PubMed

    Munir, Annum; Shuman, Stewart

    2016-11-28

    5' and 3' end healing are key steps in nucleic acid break repair in which 5' -OH ends are phosphorylated by a polynucleotide kinase and 3' -PO 4 or 2',3' -cyclic-PO 4 ends are hydrolyzed by a phosphoesterase to generate the 5' -PO 4 and 3' -OH termini required for sealing by classic polynucleotide ligases. End healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5' -OH polynucleotides (9-mers or longer) in the presence of magnesium and any NTP donor. HD-Pnk dephosphorylates RNA 2',3' -cyclic phosphate, RNA 3' -phosphate, RNA 2' -phosphate, and DNA 3' -phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper or cobalt. HD-Pnkp homologs are present in genera from eleven bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. The present study provides insights to the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnkp as the exemplar of a novel clade of dual 5' and 3' end-healing enzymes that phosphorylate 5' -OH termini and dephosphorylate 2',3' -cyclic-PO 4 , 3' -PO 4 , and 2' -PO 4 ends. The distinctive feature of HD-Pnk is its domain composition: a fusion of an N-terminal HD phosphohydrolase module to a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, domain order, and similar polypeptide size are distributed widely among genera from eleven bacterial phyla. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Rongjin; Aiyer, Sriram; Cote, Marie L.

    The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N-terminal domain (NTD), the catalytic core domain, and the C-terminal domain. The NTD includes an HHCC zinc finger-like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M-MuLV) IN N-terminal region (NTR) constructs that both include an N-terminal extension domain (NED, residues 1–44) and an HHCC zinc-finger NTD (residues 45–105), in two crystal forms are reported. The structuresmore » of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti-parallel β-strands and an α-helix, similar to the NED of prototype foamy virus (PFV) IN. These three β-strands form an extended β-sheet with another β-strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M-MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M-MuLV. Proteins 2017; 85:647–656.« less

  5. Structure-Function Analysis of Rgs1 in Magnaporthe oryzae: Role of DEP Domains in Subcellular Targeting

    PubMed Central

    Ramanujam, Ravikrishna; Yishi, Xu; Liu, Hao; Naqvi, Naweed I.

    2012-01-01

    Background Rgs1, a prototypical Regulator of G protein Signaling, negatively modulates the cyclic AMP pathway thereby influencing various aspects of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. Rgs1 possesses tandem DEP motifs (termed DEP-A and DEP-B; for Dishevelled, Egl-10, Pleckstrin) at the N-terminus, and a Gα-GTP interacting RGS catalytic core domain at the C-terminus. In this study, we focused on gaining further insights into the mechanisms of Rgs1 regulation and subcellular localization by characterizing the role(s) of the individual domains and the full-length protein during asexual development and pathogenesis in Magnaporthe. Methodology/Principal Findings Utilizing western blot analysis and specific antisera against the N- and C-terminal halves of Rgs1, we identify and report the in vivo endoproteolytic processing/cleavage of full-length Rgs1 that yields an N-terminal DEP and a RGS core domain. Independent expression of the resultant DEP-DEP half (N-Rgs1) or RGS core (C-Rgs1) fragments, failed to complement the rgs1Δ defects in colony morphology, aerial hyphal growth, surface hydrophobicity, conidiation, appressorium formation and infection. Interestingly, the full-length Rgs1-mCherry, as well as the tagged N-terminal DEP domains (individually or in conjunction) localized to distinct punctate vesicular structures in the cytosol, while the catalytic RGS core motif was predominantly vacuolar. Conclusions/Significance Based on our data from sequence alignments, immuno-blot and microscopic analysis, we propose that the post-translational proteolytic processing of Rgs1 and the vacuolar sequestration of the catalytic RGS domain represents an important means of down regulating Rgs1 function and thus forming an additional and alternative means of regulating G protein signaling in Magnaporthe. We further hypothesize the prevalence of analogous mechanisms functioning in other filamentous fungi. Furthermore, we conclusively assign a specific vesicular/membrane targeting function for the N-terminal DEP domains of Rgs1 in the rice-blast fungus. PMID:22927898

  6. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis.

    PubMed

    Ma, Lu; Rebane, Aleksander A; Yang, Guangcan; Xi, Zhiqun; Kang, Yuhao; Gao, Ying; Zhang, Yongli

    2015-12-23

    Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun -Ki; Chung, Daehwan; Himmel, Michael E.

    Here, CelA is the most abundant enzyme secreted by Caldicellulosiruptor bescii and has been shown to outperform mixtures of commercially available exo- and endoglucanases in vitro. CelA contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. Here, repeated aspartate residues were introduced into the N-terminal ends of CelA GH9 and GH48 domains to improve secretion efficiency and/or catalytic efficiency of CelA. Among several constructs, the highest activity on carboxymethylcellulose (CMC), 0.81 ± 0.03 mg/mL was observed for the C.more » bescii strain containing CelA with 5-aspartate tag at the N-terminal end of GH9 domain – an 82% increase over wild type CelA. In addition, Expression of CelA with N-terminal repeated aspartate residues in C. bescii results in a dramatic increase in its ability to grow on Avicel.« less

  8. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA

    PubMed Central

    Doritchamou, Justin; Sabbagh, Audrey; Jespersen, Jakob S.; Renard, Emmanuelle; Salanti, Ali; Nielsen, Morten A.; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-01-01

    The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development. PMID:26393516

  9. Potyvirus helper component-proteinase self-interaction in the yeast two-hybrid system and delineation of the interaction domain involved.

    PubMed

    Urcuqui-Inchima, S; Walter, J; Drugeon, G; German-Retana, S; Haenni, A L; Candresse, T; Bernardi, F; Le Gall, O

    1999-05-25

    Using the yeast two-hybrid system, a screen was performed for possible interactions between the proteins encoded by the 5' region of potyviral genomes [P1, helper component-proteinase (HC-Pro), and P3]. A positive self-interaction involving HC-Pro was detected with lettuce mosaic virus (LMV) and potato virus Y (PVY). The possibility of heterologous interaction between the HC-Pro of LMV and of PVY was also demonstrated. No interaction involving either the P1 or the P3 proteins was detected. A series of ordered deletions from either the N- or C-terminal end of the LMV HC-Pro was used to map the domain involved in interaction to the 72 N-terminal amino acids of the protein, a region known to be dispensable for virus viability but necessary for aphid transmission. A similar but less detailed analysis mapped the interacting domain to the N-terminal half of the PVY HC-Pro. Copyright 1999 Academic Press.

  10. The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels.

    PubMed

    Chen, Haijun; Kronengold, Jack; Yan, Yangyang; Gazula, Valeswara-Rao; Brown, Maile R; Ma, Liqun; Ferreira, Gonzalo; Yang, Youshan; Bhattacharjee, Arin; Sigworth, Fred J; Salkoff, Larry; Kaczmarek, Leonard K

    2009-04-29

    Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.

  11. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.

    PubMed

    Lu, H; Isralewitz, B; Krammer, A; Vogel, V; Schulten, K

    1998-08-01

    Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.

  12. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers

    PubMed Central

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-01

    Background Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Results Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Conclusion Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies. PMID:19154605

  13. Domain duplication, divergence, and loss events in vertebrate Msx paralogs reveal phylogenomically informed disease markers.

    PubMed

    Finnerty, John R; Mazza, Maureen E; Jezewski, Peter A

    2009-01-20

    Msx originated early in animal evolution and is implicated in human genetic disorders. To reconstruct the functional evolution of Msx and inform the study of human mutations, we analyzed the phylogeny and synteny of 46 metazoan Msx proteins and tracked the duplication, diversification and loss of conserved motifs. Vertebrate Msx sequences sort into distinct Msx1, Msx2 and Msx3 clades. The sister-group relationship between MSX1 and MSX2 reflects their derivation from the 4p/5q chromosomal paralogon, a derivative of the original "MetaHox" cluster. We demonstrate physical linkage between Msx and other MetaHox genes (Hmx, NK1, Emx) in a cnidarian. Seven conserved domains, including two Groucho repression domains (N- and C-terminal), were present in the ancestral Msx. In cnidarians, the Groucho domains are highly similar. In vertebrate Msx1, the N-terminal Groucho domain is conserved, while the C-terminal domain diverged substantially, implying a novel function. In vertebrate Msx2 and Msx3, the C-terminal domain was lost. MSX1 mutations associated with ectodermal dysplasia or orofacial clefting disorders map to conserved domains in a non-random fashion. Msx originated from a MetaHox ancestor that also gave rise to Tlx, Demox, NK, and possibly EHGbox, Hox and ParaHox genes. Duplication, divergence or loss of domains played a central role in the functional evolution of Msx. Duplicated domains allow pleiotropically expressed proteins to evolve new functions without disrupting existing interaction networks. Human missense sequence variants reside within evolutionarily conserved domains, likely disrupting protein function. This phylogenomic evaluation of candidate disease markers will inform clinical and functional studies.

  14. Overlapping and Specific Functions of the Hsp104 N Domain Define Its Role in Protein Disaggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jungsoon; Sung, Nuri; Mercado, Jonathan M.

    Hsp104 is a ring-forming protein disaggregase that rescues stress-damaged proteins from an aggregated state. To facilitate protein disaggregation, Hsp104 cooperates with Hsp70 and Hsp40 chaperones (Hsp70/40) to form a bi-chaperone system. How Hsp104 recognizes its substrates, particularly the importance of the N domain, remains poorly understood and multiple, seemingly conficting mechanisms have been proposed. Although the N domain is dispensable for protein disaggregation, it is sensitive to point mutations that abolish the function of the bacterial Hsp104 homolog in vitro, and is essential for curing yeast prions by Hsp104 overexpression in vivo. Here, we present the crystal structure of anmore » N-terminal fragment of Saccharomyces cerevisiae Hsp104 with the N domain of one molecule bound to the C-terminal helix of the neighboring D1 domain. Consistent with mimicking substrate interaction, mutating the putative substrate-binding site in a constitutively active Hsp104 variant impairs the recovery of functional protein from aggregates. We fnd that the observed substrate-binding defect can be rescued by Hsp70/40 chaperones, providing a molecular explanation as to why the N domain is dispensable for protein disaggregation when Hsp70/40 is present, yet essential for the dissolution of Hsp104-specifc substrates, such as yeast prions, which likely depends on a direct N domain interaction.« less

  15. Overlapping and Specific Functions of the Hsp104 N Domain Define Its Role in Protein Disaggregation

    DOE PAGES

    Lee, Jungsoon; Sung, Nuri; Mercado, Jonathan M.; ...

    2017-09-11

    Hsp104 is a ring-forming protein disaggregase that rescues stress-damaged proteins from an aggregated state. To facilitate protein disaggregation, Hsp104 cooperates with Hsp70 and Hsp40 chaperones (Hsp70/40) to form a bi-chaperone system. How Hsp104 recognizes its substrates, particularly the importance of the N domain, remains poorly understood and multiple, seemingly conficting mechanisms have been proposed. Although the N domain is dispensable for protein disaggregation, it is sensitive to point mutations that abolish the function of the bacterial Hsp104 homolog in vitro, and is essential for curing yeast prions by Hsp104 overexpression in vivo. Here, we present the crystal structure of anmore » N-terminal fragment of Saccharomyces cerevisiae Hsp104 with the N domain of one molecule bound to the C-terminal helix of the neighboring D1 domain. Consistent with mimicking substrate interaction, mutating the putative substrate-binding site in a constitutively active Hsp104 variant impairs the recovery of functional protein from aggregates. We fnd that the observed substrate-binding defect can be rescued by Hsp70/40 chaperones, providing a molecular explanation as to why the N domain is dispensable for protein disaggregation when Hsp70/40 is present, yet essential for the dissolution of Hsp104-specifc substrates, such as yeast prions, which likely depends on a direct N domain interaction.« less

  16. A novel junctional adhesion molecule A (CgJAM-A-L) from oyster (Crassostrea gigas) functions as pattern recognition receptor and opsonin.

    PubMed

    Liu, Conghui; Wang, Mengqiang; Jiang, Shuai; Wang, Lingling; Chen, Hao; Liu, Zhaoqun; Qiu, Limei; Song, Linsheng

    2016-02-01

    Junctional adhesion molecule (JAM), a subfamily of immunoglobulin superfamily (IgSF) with a couple of immunoglobulin domains, can act as regulator in homeostasis and inflammation of vertebrates. In the present study, a structural homolog of JAM-A (designated CgJAM-A-L) was screened out from oyster, Crassostrea gigas, through a search of JAM-A D1 domain (N-terminal Ig domain in JAM-A). The cDNA of CgJAM-A-L was of 1188 bp encoding a predicted polypeptide of 395 amino acids. The immunoreactive area of CgJAM-A-L mainly distributed over the plasma membrane of hemocytes. After Vibro splendidus or tumor necrosis factor (CgTNF-1) stimulation, the mRNA transcripts of CgJAM-A-L in hemocytes increased significantly by 4.46-fold and 9.00-fold (p < 0.01) of those in control group, respectively. The recombinant CgJAM-A-L protein (rCgJAM-A-L) could bind multiple PAMPs including lipopolysaccharides (LPS), peptidoglycan (PGN), lipoteichoic acid (LTA), mannose (MAN), β-glucan (GLU) and poly(I:C), and various microorganisms including Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Vibro anguillarum, V. splendidus, Pastoris pastoris and Yarrowia lipolytica. The phagocytic rates of oyster hemocytes towards Gram-negative bacteria V. anguillarum and yeast P. pastoris were significantly enhanced after the incubation of rCgJAM-A-L, and even increased more significantly after the pre-incubation of rCgJAM-A-L with microbes (p < 0.01). The results collectively indicated that CgJAM-A-L functioned as an important pattern recognition receptor (PRR) and opsonin in the immune defense against invading pathogen in oyster. Moreover, as the most primitive specie with homolog of JAMs, the information of CgJAM-A-L in oyster would provide useful clues for the evolutionary study of JAMs and immunoglobulins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae

    PubMed Central

    Kaizer, Hannah; Connelly, Carla J.; Bettridge, Kelsey; Viggiani, Christopher; Greider, Carol W.

    2015-01-01

    The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation. PMID:26294668

  18. Persistence of evolutionary memory: primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling.

    PubMed

    Kream, Richard M; Sheehan, Melinda; Cadet, Patrick; Mantione, Kirk J; Zhu, Wei; Casares, Federico; Stefano, George B

    2007-12-01

    Biochemical, molecular and pharmacological evidence for two unique six-transmembrane helical (TMH) domain opiate receptors expressed from the micro opioid receptor (MOR) gene have been shown. Designated micro3 and micro4 receptors, both protein species are Class A rhodopsin-like members of the superfamily of G-protein coupled receptors but are selectively tailored to mediate the cellular regulatory effects of endogenous morphine and related morphinan alkaloids via stimulation of nitric oxide (NO) production and release. Both micro3 and micro4 receptors lack an amino acid sequence of approximately 90 amino acids that constitute the extracellular N-terminal and TMH1 domains and part of the first intracellular loop of the micro1 receptor, but retain the empirically defined ligand binding pocket distributed across conserved TMH2, TMH3, and TMH7 domains of the micro1 sequence. Additionally, the receptor proteins are terminated by unique intracellular C-terminal amino acid sequences that serve as putative coupling or docking domains required for constitutive NO synthase activation. Because the recognition profile of micro3 and micro4 receptors is restricted to rigid benzylisoquinoline alkaloids typified by morphine and its extended family of chemical congeners, it is hypothesized that conformational stabilization provided by interaction of extended extracellular N-terminal protein domains and the extracellular loops is required for binding of endogenous opioid peptides as well as synthetic flexible opiate alkaloids.

  19. Molecular modeling study of CodX reveals importance of N-terminal and C-terminal domain in the CodWX complex structure of Bacillus subtilis.

    PubMed

    Krishnamoorthy, Navaneethakrishnan; Gajendrarao, Poornima; Eom, Soo Hyun; Kwon, Yong Jung; Cheong, Gang-Won; Lee, Keun Woo

    2008-08-01

    In Bacillus subtilis, CodW peptidase and CodX ATPase function together as a distinctive ATP-dependent protease called CodWX, which participates in protein degradation and regulates cell division. The molecular structure of CodX and the assembly structure of CodW-CodX have not yet been resolved. Here we present the first three-dimensional structure of CodX N-terminal (N) and C-terminal (C) domain including possible structure of intermediate (I) domain based on the crystal structure of homologous Escherichia coli HslU ATPase. Moreover, the biologically relevant CodWX (W(6)W(6)X(6)) octadecamer complex structure was constructed using the recently identified CodW-HslU hybrid crystal structure. Molecular dynamics (MD) simulation shows a reasonably stable structure of modeled CodWX and explicit behavior of key segments in CodX N and C domain: nucleotide binding residues, GYVG pore motif and CodW-CodX interface. Predicted structure of the possible I domain is flexible in nature with highly coiled hydrophobic region (M153-M206) that could favor substrate binding and entry. Electrostatic surface potential observation unveiled charge complementarity based CodW-CodX interaction pattern could be a possible native interaction pattern in the interface of CodWX. CodX GYVG pore motif structural features, flexible nature of glycine (G92 and G95) residues and aromatic ring conformation preserved Y93 indicated that it may follow the similar mode during the proteolysis mechanism as in the HslU closed state. This molecular modeling study uncovers the significance of CodX N and C domain in CodWX complex and provides possible explanations which would be helpful to understand the CodWX-dependent proteolysis mechanism of B. subtilis.

  20. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminusmore » is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.« less

  1. NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1.

    PubMed

    Wang, Wei; Lim, Liangzhong; Baskaran, Yohendran; Manser, Ed; Song, Jianxing

    2013-08-16

    Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residuescomposed of an N-terminal α-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Crystal Structures of Active Fully Assembled Substrate- and Product-Bound Complexes of UDP-N-Acetylmuramic Acid:l-Alanine Ligase (MurC) from Haemophilus influenzae

    PubMed Central

    Mol, Clifford D.; Brooun, Alexei; Dougan, Douglas R.; Hilgers, Mark T.; Tari, Leslie W.; Wijnands, Robert A.; Knuth, Mark W.; McRee, Duncan E.; Swanson, Ronald V.

    2003-01-01

    UDP-N-acetylmuramic acid:l-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg2+ and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-l-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn2+ have been determined to 1.85- and 1.7-Å resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the γ-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates. PMID:12837790

  3. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae.

    PubMed

    Mol, Clifford D; Brooun, Alexei; Dougan, Douglas R; Hilgers, Mark T; Tari, Leslie W; Wijnands, Robert A; Knuth, Mark W; McRee, Duncan E; Swanson, Ronald V

    2003-07-01

    UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.

  4. Bidirectional motility of the fission yeast kinesin-5, Cut7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules,more » but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.« less

  5. Multiplexing detection of IgG against Plasmodium falciparum pregnancy-specific antigens

    PubMed Central

    Fonseca, Ana Maria; Quinto, Llorenç; Jiménez, Alfons; González, Raquel; Bardají, Azucena; Maculuve, Sonia; Dobaño, Carlota; Rupérez, Maria; Vala, Anifa; Aponte, John J.; Sevene, Esperanza; Macete, Eusebio; Menéndez, Clara

    2017-01-01

    Background Pregnant women exposed to Plasmodium falciparum generate antibodies against VAR2CSA, the parasite protein that mediates adhesion of infected erythrocytes to the placenta. There is a need of high-throughput tools to determine the fine specificity of these antibodies that can be used to identify immune correlates of protection and exposure. Here we aimed at developing a multiplex-immunoassay to detect antibodies against VAR2CSA antigens. Methods and findings We constructed two multiplex-bead arrays, one composed of 3 VAR2CSA recombinant-domains (DBL3X, DBL5Ɛ and DBL6Ɛ) and another composed of 46 new peptides covering VAR2CSA conserved and semi-conserved regions. IgG reactivity was similar in multiplexed and singleplexed determinations (Pearson correlation, protein array: R2 = 0.99 and peptide array: R2 = 0.87). IgG recognition of 25 out of 46 peptides and all recombinant-domains was higher in pregnant Mozambican women (n = 106) than in Mozambican men (n = 102) and Spanish individuals (n = 101; p<0.05). Agreement of IgG levels detected in cryopreserved plasma and in elutions from dried blood spots was good after exclusion of inappropriate filter papers. Under heterogeneous levels of exposure to malaria, similar seropositivity cutoffs were obtained using finite mixture models applied to antibodies measured on pregnant Mozambican women and average of antibodies measured on pregnant Spanish women never exposed to malaria. The application of the multiplex-bead array developed here, allowed the assessment of higher IgG levels and seroprevalences against VAR2CSA-derived antigens in women pregnant during 2003–2005 than during 2010–2012, in accordance with the levels of malaria transmission reported for these years in Mozambique. Conclusions The multiplex bead-based immunoassay to detect antibodies against selected 25 VAR2CSA new-peptides and recombinant-domains was successfully implemented. Analysis of field samples showed that responses were specific among pregnant women and dependent on the level of exposure to malaria. This platform provides a high-throughput approach to investigating correlates of protection and identifying serological markers of exposure for malaria in pregnancy. PMID:28715465

  6. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    PubMed

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  7. The C-terminal extension of human RTEL1, mutated in Hoyeraal-Hreidarsson syndrome, contains harmonin-N-like domains.

    PubMed

    Faure, Guilhem; Revy, Patrick; Schertzer, Michael; Londono-Vallejo, Arturo; Callebaut, Isabelle

    2014-06-01

    Several studies have recently shown that germline mutations in RTEL1, an essential DNA helicase involved in telomere regulation and DNA repair, cause Hoyeraal-Hreidarsson syndrome (HHS), a severe form of dyskeratosis congenita. Using original new softwares, facilitating the delineation of the different domains of the protein and the identification of remote relationships for orphan domains, we outline here that the C-terminal extension of RTEL1, downstream of its catalytic domain and including several HHS-associated mutations, contains a yet unidentified tandem of harmonin-N-like domains, which may serve as a hub for partner interaction. This finding highlights the potential critical role of this region for the function of RTEL1 and gives insights into the impact that the identified mutations would have on the structure and function of these domains. © 2013 Wiley Periodicals, Inc.

  8. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi

    Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation.more » To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.« less

  9. cDNA cloning and immunological characterization of a newly identified enolase allergen from Penicillium citrinum and Aspergillus fumigatus.

    PubMed

    Lai, Hsiu-Yu; Tam, Ming F; Tang, Ren-Bin; Chou, Hong; Chang, Ching-Yun; Tsai, Jaw-Ji; Shen, Horng-Der

    2002-03-01

    Penicillium citrinum and Aspergillus fumigatus are prevalent indoor airborne fungal species that have been implicated in human respiratory allergic disorders. It is important to understand the allergenic profile of these fungal species. The purpose of the present study is to characterize a newly identified enolase allergen from P. citrinum and A. fumigatus. Fungal proteins were separated by two-dimensional (2D) gel electrophoresis and blotted onto polyvinylidene difluoride membranes. Protein spots that reacted with IgE antibodies in serum samples from asthmatic patients were identified and the N-terminal amino acid sequences were determined by Edman degradation. The peptide sequences obtained were utilized in cloning the cDNA of the allergen genes by reverse transcriptase-polymerase chain reaction and the 5'- and 3'-rapid amplification cDNA end reactions. Our results from 2D immunoblotting identified a 47-kD IgE-reactive component in the extracts of P. citrinum and A. fumigatus. The N-terminal amino acid sequences of the 47-kD proteins are homologous to those of fungal enolases. The corresponding enolase cDNA from P. citrinum contains 1,552 bp and encodes a protein of 438 residues. In A. fumigatus, the isolated enolase cDNA has 1,649 bp and contains a 438-amino acid open reading frame. The deduced amino acid sequences of these two enolases have 94% identity. These enolases from P. citrinum and A. fumigatus were expressed in Escherichia coli as a His-tagged protein and designated as rPen c 22 and rAsp f 22, respectively. Sera from 7 (30%) of the 23 Penicillium-sensitized asthmatic patients showed IgE binding to the 47-kD P. citrinum component (Pen c 22) and rPen c 22. In addition, six of seven Pen c 22-positive serum samples have IgE immunoblot reactivity to the 47-kD A. fumigatus component (Asp f 22) and rAsp f 22. A polyclonal rabbit antiserum generated against the N-terminal peptide of Pen c 22 can react with Pen c 22, rPen c 22, Asp f 22 and rAsp f 22. In addition, the presence of IgE cross-reactivity between rPen c 22 and rAsp f 22 and between enolases from A. fumigatus and Alternaria alternata was also detected by immunoblot inhibition. These results demonstrated that a novel enolase allergen from P. citrinum (Pen c 22) and A. fumigatus (Asp f 22) was identified. In addition, IgE cross-reactivity between enolase allergens from A. fumigatus and P. citrinum and between enolases from A. fumigatus and A. alternata was also detected. Results obtained provide more information on fungal enolase allergens. Copyright 2002 S. Karger AG, Basel

  10. The N-terminal domain of substance P is required for complete homologous desensitization but not phosphorylation of the rat neurokinin-1 receptor.

    PubMed

    Vigna, S R

    2001-02-01

    The agonist activity of substance P (SP) is a function of the C-terminal domain of the peptide. A C-terminal SP fragment (SP(6-11)) and analog (septide) and neurokinin A (NKA; a related tachykinin with a divergent N-terminal amino acid sequence) were found to be full neurokinin-1 receptor (NK-1R) agonists, but were not able to desensitize the receptor maximally as much as SP. Substance P caused 95.6 +/- 0.9% maximal desensitization of the NK-1R whereas SP(6-11), septide, and NKA(only)caused 74 +/- 3.5, 50.6 +/- 8, and 71.5 +/- 4.4% maximal desensitization, respectively (mean +/- SEM; P < 0.001 vs SP). When a series of SP C-terminal fragment peptides were tested for their NK-1R desensitizing activity, it was found that SP(5-11)and SP(6-11)caused significantly less maximal NK-1R desensitization than SP. SP N-terminal fragment peptides had no effect on the ability of SP(6-11)to compete with(3)H-SP binding, generate an IP(3)response, or cause NK-1R desensitization when tested with or without SP(6-11). SP, SP(6-11), septide, and NKA all maximally stimulated 8-9-fold increases in NK-1R phosphorylation. When attached to the C-terminal domain of SP responsible for NK-1R binding and agonism, the N-terminus of SP is responsible for 25-50% of homologous desensitization and this may occur via a mechanism other than NK-1R phosphorylation. Copyright 2001 Harcourt Publishers Ltd.

  11. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.

    PubMed

    Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J; Halfmann, Peter; Bornholdt, Zachary A; Abelson, Dafna M; Armbrust, Tammy; Stahelin, Robert V; Kawaoka, Yoshihiro; Saphire, Erica Ollmann

    2016-02-15

    Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion

    PubMed Central

    Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.

    2013-01-01

    An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357

  13. Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during development.

    PubMed

    Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J

    2010-05-15

    We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.

  14. Structures of three polycystic kidney disease-like domains from Clostridium histolyticum collagenases ColG and ColH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Ryan; Janowska, Katarzyna; Taylor, Kelly

    Clostridium histolyticumcollagenases ColG and ColH are segmental enzymes that are thought to be activated by Ca 2+-triggered domain reorientation to cause extensive tissue destruction. The collagenases consist of a collagenase module (s1), a variable number of polycystic kidney disease-like (PKD-like) domains (s2a and s2b in ColH and s2 in ColG) and a variable number of collagen-binding domains (s3 in ColH and s3a and s3b in ColG). The X-ray crystal structures of Ca 2+-bound holo s2b (1.4 Å resolution,R= 15.0%,R free= 19.1%) and holo s2a (1.9 Å resolution,R= 16.3%,R free= 20.7%), as well as of Ca 2+-free apo s2a (1.8 Åmore » resolution,R= 20.7%,R free= 27.2%) and two new forms of N-terminally truncated apo s2 (1.4 Å resolution,R= 16.9%,R free= 21.2%; 1.6 Å resolution,R= 16.2%,R free= 19.2%), are reported. The structurally similar PKD-like domains resemble the V-set Ig fold. In addition to a conserved β-bulge, the PKD-like domains feature a second bulge that also changes the allegiance of the subsequent β-strand. This β-bulge and the genesis of a Ca 2+pocket in the archaeal PKD-like domain suggest a close kinship between bacterial and archaeal PKD-like domains. Different surface properties and indications of different dynamics suggest unique roles for the PKD-like domains in ColG and in ColH. Surface aromatic residues found on ColH s2a-s2b, but not on ColG s2, may provide the weak interaction in the biphasic collagen-binding mode previously found in s2b-s3.B-factor analyses suggest that in the presence of Ca 2+the midsection of s2 becomes more flexible but the midsections of s2a and s2b stay rigid. The different surface properties and dynamics of the domains suggest that the PKD-like domains of M9B bacterial collagenase can be grouped into either a ColG subset or a ColH subset. The conserved properties of PKD-like domains in ColG and in ColH include Ca 2+binding. Conserved residues not only interact with Ca 2+, but also position the Ca 2+-interacting water molecule. Ca 2+aligns the N-terminal linker approximately parallel to the major axis of the domain. Ca 2+binding also increases stability against heat and guanidine hydrochloride, and may improve the longevity in the extracellular matrix. The results of this study will further assist in developing collagen-targeting vehicles for various signal molecules.« less

  15. Structures of three polycystic kidney disease-like domains from Clostridium histolyticum collagenases ColG and ColH

    DOE PAGES

    Bauer, Ryan; Janowska, Katarzyna; Taylor, Kelly; ...

    2015-03-01

    Clostridium histolyticumcollagenases ColG and ColH are segmental enzymes that are thought to be activated by Ca 2+-triggered domain reorientation to cause extensive tissue destruction. The collagenases consist of a collagenase module (s1), a variable number of polycystic kidney disease-like (PKD-like) domains (s2a and s2b in ColH and s2 in ColG) and a variable number of collagen-binding domains (s3 in ColH and s3a and s3b in ColG). The X-ray crystal structures of Ca 2+-bound holo s2b (1.4 Å resolution,R= 15.0%,R free= 19.1%) and holo s2a (1.9 Å resolution,R= 16.3%,R free= 20.7%), as well as of Ca 2+-free apo s2a (1.8 Åmore » resolution,R= 20.7%,R free= 27.2%) and two new forms of N-terminally truncated apo s2 (1.4 Å resolution,R= 16.9%,R free= 21.2%; 1.6 Å resolution,R= 16.2%,R free= 19.2%), are reported. The structurally similar PKD-like domains resemble the V-set Ig fold. In addition to a conserved β-bulge, the PKD-like domains feature a second bulge that also changes the allegiance of the subsequent β-strand. This β-bulge and the genesis of a Ca 2+pocket in the archaeal PKD-like domain suggest a close kinship between bacterial and archaeal PKD-like domains. Different surface properties and indications of different dynamics suggest unique roles for the PKD-like domains in ColG and in ColH. Surface aromatic residues found on ColH s2a-s2b, but not on ColG s2, may provide the weak interaction in the biphasic collagen-binding mode previously found in s2b-s3.B-factor analyses suggest that in the presence of Ca 2+the midsection of s2 becomes more flexible but the midsections of s2a and s2b stay rigid. The different surface properties and dynamics of the domains suggest that the PKD-like domains of M9B bacterial collagenase can be grouped into either a ColG subset or a ColH subset. The conserved properties of PKD-like domains in ColG and in ColH include Ca 2+binding. Conserved residues not only interact with Ca 2+, but also position the Ca 2+-interacting water molecule. Ca 2+aligns the N-terminal linker approximately parallel to the major axis of the domain. Ca 2+binding also increases stability against heat and guanidine hydrochloride, and may improve the longevity in the extracellular matrix. The results of this study will further assist in developing collagen-targeting vehicles for various signal molecules.« less

  16. The role of the GAF and central domains of the transcriptional activator VnfA in Azotobacter vinelandii.

    PubMed

    Yoshimitsu, Kyohei; Takatani, Nobuyuki; Miura, Yukio; Watanabe, Yoshihito; Nakajima, Hiroshi

    2011-09-01

    VnfA is a transcriptional activator that is required for the expression of the structural genes encoding nitrogenase-2 in Azotobacter vinelandii. VnfA consists of three domains: an N-terminal regulatory domain termed GAF, including a Cys-rich motif; a central domain from the AAA+ family; and a C-terminal domain for DNA binding. Previously, we reported that transcriptionally active VnfA harboring an Fe-S cluster (presumably of the 3Fe-4S type) as a prosthetic group and the Cys-rich motif were possibly associated with coordination of the Fe-S cluster. In the present study, we have investigated the roles of the GAF and central domains in the regulatory function of VnfA using truncated variants: ΔN15(VnfA) and ΔGAF(VnfA) that lack the N-terminal 15 residues and whole GAF domain, respectively, and GAF(VnfA) consisting of only the GAF domain. ΔN15(VnfA) and ΔGAF(VnfA) lost the ability to bind the Fe-S cluster, whereas GAF(VnfA) was still able to bind to the cluster, consistent with the hypothesis that the Cys-rich motif is essential for Fe-S cluster binding. The GAF domain showed an inhibitory effect on the transcriptional activity of VnfA, which was reversed in the presence of the Fe-S cluster, and reactivated upon disassembly of the cluster. The inhibitory activity of the GAF domain acts on the NTPase activity of the central domain, whereas the binding ability of VnfA to DNA was not significantly affected, when VnfA retains its tetrameric conformation. The results imply that a major pathway, by which VnfA function is regulated, operates via the control of NTPase activity by the GAF domain. © 2011 The Authors Journal compilation © 2011 FEBS.

  17. The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase PAR-1b.

    PubMed

    Yamashita, Kazunari; Suzuki, Atsushi; Satoh, Yoshinori; Ide, Mariko; Amano, Yoshiko; Masuda-Hirata, Maki; Hayashi, Yukiko K; Hamada, Keisuke; Ogata, Kazuhiro; Ohno, Shigeo

    2010-01-01

    Utrophin is a widely expressed paralogue of dystrophin, the protein responsible for Duchenne muscular dystrophy. Utrophin is a large spectrin-like protein whose C-terminal domain mediates anchorage to a laminin receptor, dystroglycan (DG). The rod domain, composed of 22 spectrin-like repeats, connects the N-terminal actin-binding domain and the C-terminal DG binding domain, and thus mediates molecular linkage between intracellular F-actin and extracellular basement membrane. Previously, we demonstrated that a cell polarity-regulating kinase, PAR-1b, interacts with the utrophin-DG complex, and positively regulates the interaction between utrophin and DG. In this study, we demonstrate that the 8th and 9th spectrin-like repeats (R8 and R9) of utrophin cooperatively form a PAR-1b-interacting domain, and that Ser1258 within R9 is specifically phosphorylated by PAR-1b. Substitution of Ser1258 to alanine reduces the interaction between utrophin and DG, suggesting that the Ser1258 phosphorylation contributes to the stabilization of the utrophin-DG complex. Interestingly, PAR-1b also binds and phosphorylates R8-9 of dystrophin, and colocalizes with dystrophin at the skeletal muscle membrane. These results reveal a novel function of the rod domain of utrophin beyond that of a passive structural linker connecting the N- and C-terminal domain. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Crystallographic studies of the anthrax lethal toxin. Final report, 1 July 1994-31 December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, C.A.

    1997-01-01

    Protective Antigen (PA) is the central component of the three-part protein toxin secreted by Bacillus anthraces, the organism responsible for anthrax. Following proteolytic activation on the host cell surface, PA forms a membrane-inserting heptamer that translocates the toxic enzymes into the cytosol. We have solved the crystal structure of monomeric PA at 2.1 A resolution and the water-soluble heptamer at 4.5 A resolution. The monomer is organized mainly into antiparallel b-sheets and has four domains: an N-terminal domain containing two calcium ions; a heptamerization domain containing a large flexible loop implicated in membrane insertion; a small domain of unknown function;more » and a C-terminal receptor-binding domain. Removal of a 20 kDa fragment from the N-terminal domain permits assembly of the heptamer, a ring-shaped structure with a negatively charged lumen, and exposes a large hydrophobic surface for binding the toxic enzymes. We present a model of pH-dependent membrane insertion involving formation of a porin-like membrane-spanning b barrel. These studies greatly enhance current understanding of the mechanism of anthrax intoxication, and will be useful in the design of recombinant anthrax vaccines.« less

  19. Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering.

    PubMed

    Yu, Xiaojie; Marshall, Michael J E; Cragg, Mark S; Crispin, Max

    2017-06-01

    Antibody-based therapeutics has emerged as a major tool in cancer treatment. Guided by the superb specificity of the antibody variable domain, it allows the precise targeting of tumour markers. Recently, eliciting cellular effector functions, mediated by the Fc domain, has gained traction as a means by which to generate more potent antibody therapeutics. Extensive mutagenesis studies of the Fc protein backbone has enabled the generation of Fc variants that more optimally engage the Fcγ receptors known to mediate cellular effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and cellular phagocytosis. In addition to the protein backbone, the homodimeric Fc domain contains two opposing N-linked glycans, which represent a further point of potential immunomodulation, independent of the Fc protein backbone. For example, a lack of core fucose usually attached to the IgG Fc glycan leads to enhanced ADCC activity, whereas a high level of terminal sialylation is associated with reduced inflammation. Significant growth in knowledge of Fc glycosylation over the last decade, combined with advancement in genetic engineering, has empowered glyco-engineering to fine-tune antibody therapeutics. This has culminated in the approval of two glyco-engineered antibodies for cancer therapy: the anti-CCR4 mogamulizumab approved in 2012 and the anti-CD20 obinutuzumab in 2013. We discuss here the technological platforms for antibody glyco-engineering and review the current clinical landscape of glyco-engineered antibodies.

  20. The mouse neuronal cell surface protein F3: a phosphatidylinositol- anchored member of the immunoglobulin superfamily related to chicken contactin

    PubMed Central

    1989-01-01

    Several members of the Ig superfamily are expressed on neural cells where they participate in surface interactions between cell bodies and processes. Their Ig domains are more closely related to each other than to Ig variable and constant domains and have been grouped into the C2 set. Here, we report the cloning and characterization of another member of this group, the mouse neuronal cell surface antigen F3. The F3 cDNA sequence contains an open reading frame that could encode a 1,020-amino acid protein consisting of a signal sequence, six Ig-like domains of the C2 type, a long premembrane region containing two segments that exhibit sequence similarity to fibronectin type III repeats and a moderately hydrophobic COOH-terminal sequence. The protein does not contain a typical transmembrane segment but appears to be attached to the membrane by a phosphatidylinositol anchor. Antibodies against the F3 protein recognize a prominent 135-kD protein in mouse brain. In fetal brain cultures, they stain the neuronal cell surface and, in cultures maintained in chemically defined medium, most prominently neurites and neurite bundles. The mouse f3 gene maps to band F of chromosome 15. The gene transcripts detected in the brain by F3 cDNA probes are developmentally regulated, the highest amounts being expressed between 1 and 2 wk after birth. The F3 nucleotide and deduced amino acid sequence show striking similarity to the recently published sequence of the chicken neuronal cell surface protein contactin. However, there are important differences between the two molecules. In contrast to F3, contactin has a transmembrane and a cytoplasmic domain. Whereas contactin is insoluble in nonionic detergent and is tightly associated with the cytoskeleton, about equal amounts of F3 distribute between buffer-soluble, nonionic detergent-soluble, and detergent- insoluble fractions. Among other neural cell surface proteins, F3 most resembles the neuronal cell adhesion protein L1, with 25% amino acid identity between their extracellular domains. Based on its structural similarity with known cell adhesion proteins of nervous tissue and with L1 in particular, we propose that F3 mediates cell surface interactions during nervous system development. PMID:2474555

  1. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  2. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Fang; Yep, Alejandra; Feng, Lei

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of themore » enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.« less

  3. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Mitchell; J Smith; M Mason

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that ismore » directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.« less

  4. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains.

    PubMed

    Harper, Stephen; Besong, Tabot M D; Emsley, Jonas; Scott, David J; Dreveny, Ingrid

    2011-09-20

    Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily. © 2011 American Chemical Society

  5. The C-terminal region of Ge-1 presents conserved structural features required for P-body localization.

    PubMed

    Jinek, Martin; Eulalio, Ana; Lingel, Andreas; Helms, Sigrun; Conti, Elena; Izaurralde, Elisa

    2008-10-01

    The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.

  6. Serological diagnosis of pneumocystosis: production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii.

    PubMed

    Tomás, A L; Cardoso, F; Esteves, F; Matos, O

    2016-11-08

    Diagnosis of Pneumocystis pneumonia (PcP) relies on the detection of P. jirovecii in respiratory specimens obtained by invasive techniques. Thus, the development of a serological test is urgently needed as it will allow the diagnosis of PcP using blood, an inexpensive and non-invasive specimen. This study aims to combine the production of a multi-epitope synthetic recombinant antigen (RSA) and an ELISA test for detection of anti-P. jirovecii antibodies, in order to develop a new approach for PcP diagnosis. The RSA was selected and designed based on the study of the immunogenicity of the carboxyl-terminal domain of the major surface glycoprotein. This antigen was purified and used as an antigenic tool in an ELISA technique for detection of Ig, IgG and IgM antibodies anti-P. jirovecii (patent-pending no. PT109078). Serum specimens from 88 patients previously categorized in distinct clinical subgroups and 17 blood donors, were analysed. The IgM anti-P. jirovecii levels were statistically increased in patients with PcP (p = 0.001) and the ELISA IgM anti-P. jirovecii test presented a sensitivity of 100% and a specificity of 80.8%, when associated with the clinical diagnosis criteria. This innovative approach, provides good insights about what can be done in the future serum testing for PcP diagnosis.

  7. Serological diagnosis of pneumocystosis: production of a synthetic recombinant antigen for immunodetection of Pneumocystis jirovecii

    PubMed Central

    Tomás, A. L.; Cardoso, F.; Esteves, F.; Matos, O.

    2016-01-01

    Diagnosis of Pneumocystis pneumonia (PcP) relies on the detection of P. jirovecii in respiratory specimens obtained by invasive techniques. Thus, the development of a serological test is urgently needed as it will allow the diagnosis of PcP using blood, an inexpensive and non-invasive specimen. This study aims to combine the production of a multi-epitope synthetic recombinant antigen (RSA) and an ELISA test for detection of anti-P. jirovecii antibodies, in order to develop a new approach for PcP diagnosis. The RSA was selected and designed based on the study of the immunogenicity of the carboxyl-terminal domain of the major surface glycoprotein. This antigen was purified and used as an antigenic tool in an ELISA technique for detection of Ig, IgG and IgM antibodies anti-P. jirovecii (patent-pending no. PT109078). Serum specimens from 88 patients previously categorized in distinct clinical subgroups and 17 blood donors, were analysed. The IgM anti-P. jirovecii levels were statistically increased in patients with PcP (p = 0.001) and the ELISA IgM anti-P. jirovecii test presented a sensitivity of 100% and a specificity of 80.8%, when associated with the clinical diagnosis criteria. This innovative approach, provides good insights about what can be done in the future serum testing for PcP diagnosis. PMID:27824115

  8. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    PubMed

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  9. Engineering an improved IgG4 molecule with reduced disulfide bond heterogeneity and increased Fab domain thermal stability.

    PubMed

    Peters, Shirley J; Smales, C Mark; Henry, Alistair J; Stephens, Paul E; West, Shauna; Humphreys, David P

    2012-07-13

    The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.

  10. Elongation of the Poly-γ-glutamate Tail of F420 Requires Both Domains of the F420:γ-Glutamyl Ligase (FbiB) of Mycobacterium tuberculosis*

    PubMed Central

    Bashiri, Ghader; Rehan, Aisyah M.; Sreebhavan, Sreevalsan; Baker, Heather M.; Baker, Edward N.; Squire, Christopher J.

    2016-01-01

    Cofactor F420 is an electron carrier with a major role in the oxidoreductive reactions of Mycobacterium tuberculosis, the causative agent of tuberculosis. A γ-glutamyl ligase catalyzes the final steps of the F420 biosynthesis pathway by successive additions of l-glutamate residues to F420-0, producing a poly-γ-glutamate tail. The enzyme responsible for this reaction in archaea (CofE) comprises a single domain and produces F420-2 as the major species. The homologous M. tuberculosis enzyme, FbiB, is a two-domain protein and produces F420 with predominantly 5–7 l-glutamate residues in the poly-γ-glutamate tail. The N-terminal domain of FbiB is homologous to CofE with an annotated γ-glutamyl ligase activity, whereas the C-terminal domain has sequence similarity to an FMN-dependent family of nitroreductase enzymes. Here we demonstrate that full-length FbiB adds multiple l-glutamate residues to F420-0 in vitro to produce F420-5 after 24 h; communication between the two domains is critical for full γ-glutamyl ligase activity. We also present crystal structures of the C-terminal domain of FbiB in apo-, F420-0-, and FMN-bound states, displaying distinct sites for F420-0 and FMN ligands that partially overlap. Finally, we discuss the features of a full-length structural model produced by small angle x-ray scattering and its implications for the role of N- and C-terminal domains in catalysis. PMID:26861878

  11. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  12. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies.

    PubMed

    Skegro, Darko; Stutz, Cian; Ollier, Romain; Svensson, Emelie; Wassmann, Paul; Bourquin, Florence; Monney, Thierry; Gn, Sunitha; Blein, Stanislas

    2017-06-09

    Bispecific antibodies (bsAbs) are of significant importance to the development of novel antibody-based therapies, and heavy chain (Hc) heterodimers represent a major class of bispecific drug candidates. Current technologies for the generation of Hc heterodimers are suboptimal and often suffer from contamination by homodimers posing purification challenges. Here, we introduce a new technology based on biomimicry wherein the protein-protein interfaces of two different immunoglobulin (Ig) constant domain pairs are exchanged in part or fully to design new heterodimeric domains. The method can be applied across Igs to design Fc heterodimers and bsAbs. We investigated interfaces from human IgA CH3, IgD CH3, IgG1 CH3, IgM CH4, T-cell receptor (TCR) α/β, and TCR γ/δ constant domain pairs, and we found that they successfully drive human IgG1 CH3 or IgM CH4 heterodimerization to levels similar to or above those of reference methods. A comprehensive interface exchange between the TCR α/β constant domain pair and the IgG1 CH3 homodimer was evidenced by X-ray crystallography and used to engineer examples of bsAbs for cancer therapy. Parental antibody pairs were rapidly reformatted into scalable bsAbs that were free of homodimer traces by combining interface exchange, asymmetric Protein A binding, and the scFv × Fab format. In summary, we successfully built several new CH3- or CH4-based heterodimers that may prove useful for designing new bsAb-based therapeutics, and we anticipate that our approach could be broadly implemented across the Ig constant domain family. To our knowledge, CH4-based heterodimers have not been previously reported. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu

    PubMed Central

    Das, Debanu; Finn, Robert D; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-01-01

    Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam. PMID:20836087

  14. A conserved region of leptospiral immunoglobulin-like A and B proteins as a DNA vaccine elicits a prophylactic immune response against leptospirosis.

    PubMed

    Forster, Karine M; Hartwig, Daiane D; Seixas, Fabiana K; Bacelo, Kátia L; Amaral, Marta; Hartleben, Cláudia P; Dellagostin, Odir A

    2013-05-01

    The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine.

  15. A Conserved Region of Leptospiral Immunoglobulin-Like A and B Proteins as a DNA Vaccine Elicits a Prophylactic Immune Response against Leptospirosis

    PubMed Central

    Forster, Karine M.; Hartwig, Daiane D.; Seixas, Fabiana K.; Bacelo, Kátia L.; Amaral, Marta; Hartleben, Cláudia P.

    2013-01-01

    The leptospiral immunoglobulin-like (Lig) proteins LigA and LigB possess immunoglobulin-like domains with 90-amino-acid repeats and are adhesion molecules involved in pathogenicity. They are conserved in pathogenic Leptospira spp. and thus are of interest for use as serodiagnostic antigens and in recombinant vaccine formulations. The N-terminal amino acid sequences of the LigA and LigB proteins are identical, but the C-terminal sequences vary. In this study, we evaluated the protective potential of five truncated forms of LigA and LigB proteins from Leptospira interrogans serovar Canicola as DNA vaccines using the pTARGET mammalian expression vector. Hamsters immunized with the DNA vaccines were subjected to a heterologous challenge with L. interrogans serovar Copenhageni strain Spool via the intraperitoneal route. Immunization with a DNA vaccine encoding LigBrep resulted in the survival of 5/8 (62.5%) hamsters against lethal infection (P < 0.05). None of the control hamsters or animals immunized with the other vaccine preparations survived. The vaccine induced an IgG antibody response and, additionally, conferred sterilizing immunity in 80% of the surviving animals. Our results indicate that the LigBrep DNA vaccine is a promising candidate for inclusion in a protective leptospiral vaccine. PMID:23486420

  16. Nucleoplasmin-like domain of FKBP39 from Drosophila melanogaster forms a tetramer with partly disordered tentacle-like C-terminal segments

    PubMed Central

    Kozłowska, Małgorzata; Tarczewska, Aneta; Jakób, Michał; Bystranowska, Dominika; Taube, Michał; Kozak, Maciej; Czarnocki-Cieciura, Mariusz; Dziembowski, Andrzej; Orłowski, Marek; Tkocz, Katarzyna; Ożyhar, Andrzej

    2017-01-01

    Nucleoplasmins are a nuclear chaperone family defined by the presence of a highly conserved N-terminal core domain. X-ray crystallographic studies of isolated nucleoplasmin core domains revealed a β-propeller structure consisting of a set of five monomers that together form a stable pentamer. Recent studies on isolated N-terminal domains from Drosophila 39-kDa FK506-binding protein (FKBP39) and from other chromatin-associated proteins showed analogous, nucleoplasmin-like (NPL) pentameric structures. Here, we report that the NPL domain of the full-length FKBP39 does not form pentameric complexes. Multi-angle light scattering (MALS) and sedimentation equilibrium ultracentrifugation (SE AUC) analyses of the molecular mass of the full-length protein indicated that FKBP39 forms homotetrameric complexes. Molecular models reconstructed from small-angle X-ray scattering (SAXS) revealed that the NPL domain forms a stable, tetrameric core and that FK506-binding domains are linked to it by intrinsically disordered, flexible chains that form tentacle-like segments. Analyses of full-length FKBP39 and its isolated NPL domain suggested that the distal regions of the polypeptide chain influence and determine the quaternary conformation of the nucleoplasmin-like protein. These results provide new insights regarding the conserved structure of nucleoplasmin core domains and provide a potential explanation for the importance of the tetrameric structural organization of full-length nucleoplasmins. PMID:28074868

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Martin; Enemark, Eric J.

    The crystal structure of the N-terminal domain of thePyrococcus furiosusminichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.

  18. Plasticity in interactions of fibroblast growth factor 1 (FGF1) N terminus with FGF receptors underlies promiscuity of FGF1.

    PubMed

    Beenken, Andrew; Eliseenkova, Anna V; Ibrahimi, Omar A; Olsen, Shaun K; Mohammadi, Moosa

    2012-01-27

    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1-3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the "universal FGFR ligand" because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the "b" and "c" splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.

  19. Induction of filopodia-like protrusions in N1E-115 neuroblastoma cells by diacylglycerol kinase γ independent of its enzymatic activity: potential novel function of the C-terminal region containing the catalytic domain of diacylglycerol kinase γ.

    PubMed

    Tanino, Fumihiko; Maeda, Yuki; Sakai, Hiromichi; Sakane, Fumio

    2013-01-01

    Type I diacylglycerol kinase (DGK) isozymes (α, β, and γ) contain recoverin homology domains and calcium-binding EF-hand motifs at their N-termini. The γ-isoform of DGK is abundantly expressed in retinal and Purkinje cells; however, its function in neuronal cells remains unknown. Here, we report that the mRNA and protein levels of DGKγ, but not DGKα or β, were markedly increased in N1E-115 neuroblastoma cells upon cellular differentiation by serum starvation. Interestingly, overexpression of wild-type DGKγ, which was partially located at the plasma membrane, considerably induced the formation of slender, filopodia-like cytoplasmic projections from N1E-115 cell bodies. Deletion of the recoverin homology domain and the EF-hand motifs, which potentiated the plasma membrane localization of the isozyme, significantly enhanced the formation of the filopodia-like protrusions. Intriguingly, the catalytic activity of the isozyme is not essential for the protrusion formation. The N-terminal half of the catalytic domain and a short stretch of amino acid residues at the C-terminus are responsible for plasma membrane localization and filopodia-like process formation. Taken together, we have described a potentially novel morphological function of the C-terminal DGKγ catalytic region that is independent of its enzymatic activity.

  20. The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis.

    PubMed

    Qiao, Kun; Gong, Liang; Tian, Yanbao; Wang, Hong; Chai, Tuanyao

    2018-06-23

    Cysteine in the N-terminal metal-binding domain (N-MBD) of TaHMA2 participates in Zn 2+ /Cd 2+ binding and translocation in Arabidopsis. Wheat heavy metal ATPase 2 (TaHMA2) can transport Zn 2+ and Cd 2+ across membranes. A previous study showed that cysteine (Cys) and glutamate residues in the N-terminal metal-binding domain (N-MBD) were necessary for metal-binding and translocation of TaHMA2 in yeast. However, the function of TaHMA2 in plants was not fully revealed. In this study, we investigated the roles of the CCxxE and CPC motifs in the N-MBD and the N/C-terminal regions of TaHMA2 in Zn 2+ /Cd 2+ translocation in root and shoot of Arabidopsis. Compared with the wild type, overexpression of TaHMA2 and the TaHMA2 derivative (glutamic substituted for alanine from CCxxE) in Arabidopsis increased root length, fresh weight and enhanced Zn 2+ /Cd 2+ root-to-shoot translocation. The plants with a truncated N/C-terminal of TaHMA2 were impaired in Zn 2+ /Cd 2+ tolerance and translocation, while mutagenesis of Cys in the N-MBD reduced the tolerance and transport activity of TaHMA2, suggesting the involvement of Cys in Zn 2+ /Cd 2+ binding and translocation in Arabidopsis. This study therefore provides a theoretical possibility for the application of TaHMA2 in transgenic breeding to regulate metal element balance in crop plants.

  1. Antibodies to B7.1 define the GFCC'C" face of the N-terminal domain as critical for co-stimulatory interactions.

    PubMed

    Wang, Suyue; Veldman, Geertruida M; Stahl, Mark; Xing, Yuzhe; Tobin, James F; Erbe, David V

    2002-09-02

    Antagonists of the B7 family of co-stimulatory molecules have the potential for altering immune responses therapeutically. To better define the requirements for such inhibitors, we have mapped the binding of an entire panel of blocking antibodies specific for human B7.1. By mutagenesis, each of the residues critical for blocking antibody binding appeared to fall entirely within the N-terminal V-set domain of B7.1. Thus, although antibody-antigen interacting surfaces can be quite large, these results indicate that a relatively small portion of the GFCC'C" face of this domain is crucial for further antagonist development.

  2. Analyse sérologique de la toxoplasmose pergravidique: évaluation des risques et perspectives du dépistage prénatal au centre hospitalier universitaire de Bobo Dioulasso au Burkina Faso

    PubMed Central

    Bamba, Sanata; Some, Der Adolphe; Chemla, Cathy; Geers, Régine; Guiguemde, Tinga Robert; Villena, Isabelle

    2012-01-01

    Introduction La présente étude rapporte les données sérologiques de 306 sérums collectés chez des parturientes au CHU de Bobo Dioulasso et analysés rétrospectivement au CHU de Reims en 2011. Le but était de déterminer le statut sérologique de ces parturientes et d'en déduire la conduite à tenir. Méthodes La recherche des IgG et des IgM anti toxoplasmiques était systématique. Les techniques d'agglutination haute sensibilisée et celle d'Immunocapture M ont servi à la recherche respective des anticorps spécifiques IgG et des IgM. Résultats Sur 306 sérums analysés, 95 (31%) avaient des IgG positifs et aucun n'avait des IgM. Deux cent onze (211) sérums (69%) des sérums n'avaient ni IgG, ni IgM. Conclusion Nos résultats montrent que 31% des femmes en dehors d'une immunodépression sous jacente, possèdent une immunité résiduelle vis à vis de Toxoplasma gondii et n'ont pas la nécessité d'avoir une surveillance sérologique pendant la grossesse. Cependant, 69% (211) des parturientes sont à risque d'une séroconversion, et devraient bénéficier de conseils hygiéno diététiques, associés à une surveillance sérologique durant la grossesse. Ces résultats montrent l'intérêt de mettre en place des mesures de prévention contre la toxoplasmose congénitale, étant l'une des affections materno - foetales les plus fréquentes par la mise en place d'un diagnostic prénatal de la toxoplasmose en routine dans notre hôpital. PMID:22937183

  3. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody

    PubMed Central

    Honey, Denise M.; Best, Annie; Qiu, Huawei

    2018-01-01

    ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938

  4. A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in Arabidopsis[W][OPEN

    PubMed Central

    Ng, Sophia; Ivanova, Aneta; Duncan, Owen; Law, Simon R.; Van Aken, Olivier; De Clercq, Inge; Wang, Yan; Carrie, Chris; Xu, Lin; Kmiec, Beata; Walker, Hayden; Van Breusegem, Frank; Whelan, James; Giraud, Estelle

    2013-01-01

    Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ∼33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions. PMID:24045017

  5. [Vaccination of rhesus monkeys with recombinant antigen fragments and protection from hepatitis E virus infection].

    PubMed

    Ma, Yan-bing; Xie, Tian-hong; Zhang, Guang-ming; Li, Chun-hong; Dai, Xie-Jie; Dai, Chang-bai; Sun, Mao-sheng; Lu, Jian; Bi, Sheng-li

    2002-12-01

    To observe anti-HEV IgG response to vaccination of recombinant antigen fragments and evaluate its protection from Hepatitis E Virus infection in rhesus monkeys (Macaca mulatta). Twelve monkeys were divided into three groups and immunized respectively with three different recombinant antigens: namely Ag1 (carboxyl terminal 431 amino acids of ORF2), Ag2 (128aa fragment at the carboxyl terminal of ORF2), and Ag3 (full length ORF3 ligated with two ORF2 fragments encoded by 6743-7126nt and 6287-6404nt). The monkeys were challenged intravenously with fecal suspension from experimentally infected rhesus monkeys, and the other three monkeys served as the placebo group for challenge with HEV. The dynamic changes of the levels of ALT and anti-HEV IgG were examined. Pathological changes of liver tissue were observed by light microscope. Excretion of virus was detected by RT-nPCR. Hepatic histopathology of two monkeys in the placebo group was consistent with acute viral hepatitis, and ALT was elevated 3-4 weeks after inoculated with virus, up to 10-20 times higher than normal level. The liver tissue of monkeys immunized with antigen kept normal, ALT in several monkeys elevated mildly, and anti-HEV IgG conversation occurred at 1-2 weeks after vaccination, with the titer reaching 1:12,800. The virus RNA could be detected by RT-nPCR from days 7 to 50 in monkeys of control group, and from days 7 to 21 in vaccinated monkeys after challenged with virus. The recombinant antigens could induce the production of anti-HEV IgG, which protected rhesus monkeys from acute Hepatitis symptoms related to HEV infection.

  6. Coiled-Coil Antagonism Regulates Activity of Venus Flytrap-Domain-Containing Sensor Kinases of the BvgS Family

    PubMed Central

    Lesne, Elodie; Dupré, Elian; Lensink, Marc F.; Locht, Camille

    2018-01-01

    ABSTRACT Bordetella pertussis controls the expression of its virulence regulon through the two-component system BvgAS. BvgS is a prototype for a family of multidomain sensor kinases. In BvgS, helical linkers connect periplasmic Venus flytrap (VFT) perception domains to a cytoplasmic Per-Arnt-Sim (PAS) domain and the PAS domain to the dimerization/histidine phosphotransfer (DHp) domain of the kinase. The two linkers can adopt coiled-coil structures but cannot do so simultaneously. The first linker forms a coiled coil in the kinase mode and the second in the phosphatase mode, with the other linker in both cases showing an increase in dynamic behavior. The intervening PAS domain changes its quaternary structure between the two modes. In BvgS homologues without a PAS domain, a helical “X” linker directly connects the VFT and DHp domains. Here, we used BvgS as a platform to characterize regulation in members of the PAS-less subfamily. BvgS chimeras of homologues with natural X linkers displayed various regulation phenotypes. We identified two distinct coiled-coil registers in the N- and C-terminal portions of the X linkers. Stable coil formation in the C-terminal moiety determines the phosphatase mode, similarly to BvgS; in contrast, coil formation in the N-terminal moiety along the other register leads to the kinase mode. Thus, antagonism between two registers in the VFT-DHp linker forms the basis for activity regulation in the absence of the PAS domain. The N and C moieties of the X linker play roles similar to those played by the two independent linkers in sensor kinases with a PAS domain, providing a unified mechanism of regulation for the entire family. PMID:29487240

  7. Functional analysis of the NH{sub 2}-terminal hydrophobic region and BRICHOS domain of GKN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jung Hwan; Choi, Yoo Jin; Choi, Won Suk

    2013-11-01

    Highlights: •NH{sub 2}-terminal and BRICHOS domain of GKN1 inhibited tumor cell growth. •NH{sub 2}-terminal and BRICHOS domain of GKN1 regulated cell cycle. •NH{sub 2}-terminal and BRICHOS domain of GKN1 inhibited epigenetic regulators. -- Abstract: Gastrokine 1 (GKN1) protects the gastric antral mucosa and promotes healing by facilitating restitution and proliferation after injury. GKN1 is down-regulated in Helicobacter pylori-infected gastric epithelial cells and loss of GKN1 expression is tightly associated with gastric carcinogenesis. However, the underlying mechanisms as a tumor suppressor are largely unknown. Presently, the hydrophobic region and BRICHOS domain of GKN1, pGKN1{sup D13N}, pGKN1{sup Δ68–199}, and pGKN1{sup Δ1–67,165–199} weremore » shown to suppress gastric cancer cell growth and recapitulate GKN1 functions. As well, the hydrophobic region and BRICHOS domain of GKN1 had a synergistic anti-cancer effect with 5-FU on tumor cell growth, implying that the NH{sub 2}-terminal hydrophobic region and BRICHOS domain of GKN1 are sufficient for tumor suppression, thereby suggesting a therapeutic intervention for gastric cancer. Also, its domain inducing endogenous miR-185 directly targeted the epigenetic effectors DNMT1 and EZH2 in gastric cancer cells. Our results suggest that the NH{sub 2}-terminal hydrophobic region and BRICHOS domain of GKN1 are sufficient for its tumor suppressor activities.« less

  8. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structuremore » was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.« less

  9. Lipid Sulfates and Sulfonates Are Allosteric Competitive Inhibitors of the N-Terminal Phosphatase Activity of the Mammalian Soluble Epoxide Hydrolase†

    PubMed Central

    Tran, Katherine L.; Aronov, Pavel A.; Tanaka, Hiromasa; Newman, John W.; Hammock, Bruce D.; Morisseau, Christophe

    2006-01-01

    The EPXH2 gene encodes for the soluble epoxide hydrolase (sEH), a homodimeric enzyme with each monomer containing two domains with distinct activities. The C-terminal domain, containing the epoxide hydrolase activity (Cterm-EH), is involved in the metabolism of arachidonic acid epoxides, endogenous chemical mediators that play important roles in blood pressure regulation, cell growth, and inflammation. We recently demonstrated that the N-terminal domain contains a Mg2+-dependent lipid phosphate phosphatase activity (Nterm-phos). However, the biological role of this activity is unknown. The inability of known phosphatase inhibitors to inhibit the Nterm-phos constitutes a significant barrier to the elucidation of its function. We describe herein sulfate, sulfonate, and phosphonate lipids as novel potent inhibitors of Nterm-phos. These compounds are allosteric competitive inhibitors with KI in the hundred nanomolar range. These inhibitors may provide a valuable tool to investigate the biological role of the Nterm-phos. We found that polyisoprenyl phosphates are substrates of Nterm-phos, suggesting a possible role in sterol synthesis or inflammation. Furthermore, some of these compounds inhibit the C-terminal sEH activity through a noncompetitive inhibition mechanism involving a new binding site on the C-terminal domain. This novel site may play a role in the natural in vivo regulation of epoxide hydrolysis by sEH. PMID:16142916

  10. Structural relationship of curcumin derivatives binding to the BRCT domain of human DNA polymerase lambda.

    PubMed

    Takeuchi, Toshifumi; Ishidoh, Tomomi; Iijima, Hiroshi; Kuriyama, Isoko; Shimazaki, Noriko; Koiwai, Osamu; Kuramochi, Kouji; Kobayashi, Susumu; Sugawara, Fumio; Sakaguchi, Kengo; Yoshida, Hiromi; Mizushina, Yoshiyuki

    2006-03-01

    We previously reported that phenolic compounds, petasiphenol and curcumin (diferuloylmethane), were a selective inhibitor of DNA polymerase lambda (pol lambda) in vitro. The purpose of this study was to investigate the molecular structural relationship of curcumin and 13 chemically synthesized derivatives of curcumin. The inhibitory effect on pol lambda (full-length, i.e. intact pol lambda including the BRCA1 C- terminal [BRCT] domain) by some derivatives was stronger than that by curcumin, and monoacetylcurcumin (compound 13) was the strongest pol lambda inhibitor of all the compounds tested, achieving 50% inhibition at a concentration of 3.9 microm. The compound did not influence the activities of replicative pols such as alpha, delta, and epsilon. It had no effect on pol beta activity either, although the three-dimensional structure of pol beta is thought to be highly similar to that of pol lambda. Compound 13 did not inhibit the activity of the C-terminal catalytic domain of pol lambda including the pol beta-like core, in which the BRCT motif was deleted from its N-terminal region. MALDI-TOF MS analysis demonstrated that compound 13 bound selectively to the N-terminal domain of pol lambda, but did not bind to the C-terminal region. Based on these results, the pol lambda-inhibitory mechanism of compound 13 is discussed.

  11. Arabidopsis F-box protein containing a Nictaba-related lectin domain interacts with N-acetyllactosamine structures.

    PubMed

    Stefanowicz, Karolina; Lannoo, Nausicaä; Proost, Paul; Van Damme, Els J M

    2012-01-01

    The Arabidopsis thaliana genome contains a small group of bipartite F-box proteins, consisting of an N-terminal F-box domain and a C-terminal domain sharing sequence similarity with Nictaba, the jasmonate-induced glycan-binding protein (lectin) from tobacco. Based on the high sequence similarity between the C-terminal domain of these proteins and Nictaba, the hypothesis was put forward that the so-called F-box-Nictaba proteins possess carbohydrate-binding activity and accordingly can be considered functional homologs of the mammalian sugar-binding F-box or Fbs proteins which are involved in proteasomal degradation of glycoproteins. To obtain experimental evidence for the carbohydrate-binding activity and specificity of the A. thaliana F-box-Nictaba proteins, both the complete F-box-Nictaba sequence of one selected Arabidopsis F-box protein (in casu At2g02360) as well as the Nictaba-like domain only were expressed in Pichia pastoris and analyzed by affinity chromatography, agglutination assays and glycan micro-array binding assays. These results demonstrated that the C-terminal Nictaba-like domain provides the F-box-protein with a carbohydrate-binding activity that is specifically directed against N- and O-glycans containing N-acetyllactosamine (Galβ1-3GlcNAc and Galβ1-4GlcNAc) and poly-N-acetyllactosamine ([Galβ1-4GlcNAc]n) as well as Lewis A (Galβ1-3(Fucα1-4)GlcNAc), Lewis X (Galβ1-4(Fucα1-3)GlcNAc, Lewis Y (Fucα1-2Galβ1-4(Fucα1-3)GlcNAc) and blood type B (Galα1-3(Fucα1-2)Galβ1-3GlcNAc) motifs. Based on these findings one can reasonably conclude that at least the A. thaliana F-box-Nictaba protein encoded by At2g02360 can act as a carbohydrate-binding protein. The results from the glycan array assays revealed differences in sugar-binding specificity between the F-box protein and Nictaba, indicating that the same carbohydrate-binding motif can accommodate unrelated oligosaccharides.

  12. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-03-15

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions.

  13. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination.

    PubMed Central

    Evers, R; Smid, A; Rudloff, U; Lottspeich, F; Grummt, I

    1995-01-01

    Termination of mouse ribosomal gene transcription by RNA polymerase I (Pol I) requires the specific interaction of a DNA binding protein, mTTF-I, with an 18 bp sequence element located downstream of the rRNA coding region. Here we describe the molecular cloning and functional characterization of the cDNA encoding this transcription termination factor. Recombinant mTTF-I binds specifically to the murine terminator elements and terminates Pol I transcription in a reconstituted in vitro system. Deletion analysis has defined a modular structure of mTTF-I comprising a dispensable N-terminal half, a large C-terminal DNA binding region and an internal domain which is required for transcription termination. Significantly, the C-terminal region of mTTF-I reveals striking homology to the DNA binding domains of the proto-oncogene c-Myb and the yeast transcription factor Reb1p. Site-directed mutagenesis of one of the tryptophan residues that is conserved in the homology region of c-Myb, Reb1p and mTTF-I abolishes specific DNA binding, a finding which underscores the functional relevance of these residues in DNA-protein interactions. Images PMID:7720715

  14. Two Variants of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) with Additional Protein Domains: Synthesis in an Escherichia coli Heterologous Expression System.

    PubMed

    Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G

    2017-05-01

    Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.

  15. The N-terminal domain of the mammalian nucleoporin p62 interacts with other nucleoporins of the FXFG family during interphase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stochaj, Ursula; Banski, Piotr; Kodiha, Mohamed

    2006-08-01

    Nuclear pore complexes (NPCs) provide the only sites for macromolecular transport between nucleus and cytoplasm. The nucleoporin p62, a component of higher eukaryotic NPCs, is located at the central gated channel and involved in nuclear trafficking of various cargos. p62 is organized into an N-terminal segment that contains FXFG repeats and binds the soluble transport factor NTF2, whereas the C-terminal portion associates with other nucleoporins and importin-{beta}1. We have now identified new components that interact specifically with the p62 N-terminal domain. Using the p62 N-terminal segment as bait, we affinity-purified nucleoporins Nup358, Nup214 and Nup153 from crude cell extracts. Inmore » ligand binding assays, the N-terminal p62 segment associated with Nup358 and p62, suggesting their direct binding to the p62 N-terminal portion. Furthermore, p62 was isolated in complex with Nup358, Nup214 and Nup153 from growing HeLa cells, indicating that the interactions Nup358/p62, Nup214/p62 and p62/Nup153 also occur in vivo. The formation of Nup358/p62 and p62/Nup153 complexes was restricted to interphase cells, whereas Nup214/p62 binding was detected in interphase as well as during mitosis. Our results support a model of complex interactions between FXFG containing nucleoporins, and we propose that some of these interactions may contribute to the movement of cargo across the NPC.« less

  16. Biochemical Characterization of a Mycobacteriophage Derived DnaB Ortholog Reveals New Insight into the Evolutionary Origin of DnaB Helicases

    PubMed Central

    Bhowmik, Priyanka; Das Gupta, Sujoy K.

    2015-01-01

    The bacterial replicative helicases known as DnaB are considered to be members of the RecA superfamily. All members of this superfamily, including DnaB, have a conserved C- terminal domain, known as the RecA core. We unearthed a series of mycobacteriophage encoded proteins in which the RecA core domain alone was present. These proteins were phylogenetically related to each other and formed a distinct clade within the RecA superfamily. A mycobacteriophage encoded protein, Wildcat Gp80 that roots deep in the DnaB family, was found to possess a core domain having significant sequence homology (Expect value < 10-5) with members of this novel cluster. This indicated that Wildcat Gp80, and by extrapolation, other members of the DnaB helicase family, may have evolved from a single domain RecA core polypeptide belonging to this novel group. Biochemical investigations confirmed that Wildcat Gp80 was a helicase. Surprisingly, our investigations also revealed that a thioredoxin tagged truncated version of the protein in which the N-terminal sequences were removed was fully capable of supporting helicase activity, although its ATP dependence properties were different. DnaB helicase activity is thus, primarily a function of the RecA core although additional N-terminal sequences may be necessary for fine tuning its activity and stability. Based on sequence comparison and biochemical studies we propose that DnaB helicases may have evolved from single domain RecA core proteins having helicase activities of their own, through the incorporation of additional N-terminal sequences. PMID:26237048

  17. Molecular architecture of the human protein deacetylase Sirt1 and its regulation by AROS and resveratrol

    PubMed Central

    Lakshminarasimhan, Mahadevan; Curth, Ute; Moniot, Sebastien; Mosalaganti, Shyamal; Raunser, Stefan; Steegborn, Clemens

    2013-01-01

    Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses and ageing processes. Among the seven mammalian Sirtuins, Sirt1 is the physiologically best-studied isoform. It regulates nuclear functions such as chromatin remodelling and gene transcription, and it appears to mediate beneficial effects of a low calorie diet which can partly be mimicked by the Sirt1 activating polyphenol resveratrol. The molecular details of Sirt1 domain architecture and regulation, however, are little understood. It has a unique N-terminal domain and CTD (C-terminal domain) flanking a conserved Sirtuin catalytic core and these extensions are assumed to mediate Sirt1-specific features such as homo-oligomerization and activation by resveratrol. To analyse the architecture of human Sirt1 and functions of its N- and C-terminal extensions, we recombinantly produced Sirt1 and Sirt1 deletion constructs as well as the AROS (active regulator of Sirt1) protein. We then studied Sirt1 features such as molecular size, secondary structure and stimulation by small molecules and AROS. We find that Sirt1 is monomeric and has extended conformations in its flanking domains, likely disordered especially in the N-terminus, resulting in an increased hydrodynamic radius. Nevertheless, both termini increase Sirt1 deacetylase activity, indicating a regulatory function. We also find an unusual but defined conformation for AROS protein, which fails, however, to stimulate Sirt1. Resveratrol, in contrast, activates the Sirt1 catalytic core independent of the terminal domains, indicating a binding site within the catalytic core and suggesting that small molecule activators for other isoforms might also exist. PMID:23548308

  18. Carrier protein influences immunodominance of a known epitope: implication in peptide vaccine design.

    PubMed

    Ghosh, Moumita; Solanki, Ashish K; Roy, Koushik; Dhoke, Reema R; Ashish; Roy, Syamal

    2013-09-23

    We investigated how the processing of a given antigen by antigen presenting cells (APC) is dictated by the conformation of the antigen and how this governs the immunodominance hierarchy. To address the question, a known immunodominant sequence of bacteriophage lambda repressor N-terminal sequence 12-26 [λR(12-26)] was engineered at the N and C termini of a heterologous leishmanial protein, Kinetoplastid membrane protein-11 (KMP-11); the resulting proteins were defined as N-KMP-11 and C-KMP-11 respectively. The presence of λR(12-26) in N-KMP-11 and C-KMP-11 was established by western blot analysis with antibody to λR(12-26) peptide. N-KMP-11 but not C-KMP-11 could stimulate the anti λR(12-26) T-cell clonal population very efficiently in the presence of APCs. Priming of BALB/c mice with N-KMP-11 or C-KMP-11 generated similar levels of anti-KMP-11 IgG, but anti-λR(12-26) specific IgG was observed only upon priming with N-KMP-11. Interestingly, uptake of both N-KMP-11 and C-KMP-11 by APCs was similar but catabolism of N-KMP-11 but not C-KMP-11 was biphasic and fast at the initial time point. Kratky plots of small angle X-ray scattering showed that while N-KMP-11 adopts flexible Gaussian type of topology, C-KMP-11 prefers Globular nature. To show that KMP-11 is not unique as a carrier protein, an epitope (SPITBTNLBTMBK) of Plasmodium yoelii (PY) apical membrane protein 1[AMA-1 (136-148)], is placed at the C and N terminals of a dominant T-cell epitope of ovalbumin protein OVA(323-339) and the resulting peptides are defined as PY-OVA and OVA-PY respectively. Interestingly, only OVA-PY could stimulate anti-OVA T-cells and produce IgG response upon priming of BALB/c mice with it. Thus for rational design of peptide vaccine it is important to place the dominant epitope appropriately in the context of the carrier protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Intramolecular interactions regulate SAP97 binding to GKAP

    PubMed Central

    Wu, Hongju; Reissner, Carsten; Kuhlendahl, Sven; Coblentz, Blake; Reuver, Susanne; Kindler, Stefan; Gundelfinger, Eckart D.; Garner, Craig C.

    2000-01-01

    Membrane-associated guanylate kinase homologs (MAGUKs) are multidomain proteins found to be central organizers of cellular junctions. In this study, we examined the molecular mechanisms that regulate the interaction of the MAGUK SAP97 with its GUK domain binding partner GKAP (GUK-associated protein). The GKAP–GUK interaction is regulated by a series of intramolecular interactions. Specifically, the association of the Src homology 3 (SH3) domain and sequences situated between the SH3 and GUK domains with the GUK domain was found to interfere with GKAP binding. In contrast, N-terminal sequences that precede the first PDZ domain in SAP97, facilitated GKAP binding via its association with the SH3 domain. Utilizing crystal structure data available for PDZ, SH3 and GUK domains, molecular models of SAP97 were generated. These models revealed that SAP97 can exist in a compact U-shaped conformation in which the N-terminal domain folds back and interacts with the SH3 and GUK domains. These models support the biochemical data and provide new insights into how intramolecular interactions may regulate the association of SAP97 with its binding partners. PMID:11060025

  20. Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function

    PubMed Central

    Previs, Michael J.; Mun, Ji Young; Michalek, Arthur J.; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger

    2016-01-01

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C’s N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain’s extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C’s inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C’s calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C’s phosphorylation state. PMID:26908872

  1. Elevated immunoglobulin G antibodies to the proline-rich amino-terminal region of Epstein-Barr virus nuclear antigen-2 in sera from patients with systemic connective tissue diseases and from a subgroup of Sjögren's syndrome patients with pulmonary involvements.

    PubMed

    Yamazaki, M; Kitamura, R; Kusano, S; Eda, H; Sato, S; Okawa-Takatsuji, M; Aotsuka, S; Yanagi, K

    2005-03-01

    Associations of Epstein-Barr virus (EBV) and autoimmune diseases have been hypothesized. We have analysed IgG antibodies to EBV nuclear antigen (EBNA)-2 in sera from Japanese patients with autoimmune systemic connective tissue diseases (CTD), exemplified by systemic lupus erythematosus (SLE), primary Sjogren's syndrome (SS), rheumatoid arthritis (RA), systemic sclerosis (SSc) and secondary SS (classical CTDs complicated with SS). An enzyme-linked immunosorbent assay (ELISA) which uses glutathione-S-transferase polypeptides fused to EBV nuclear antigen (EBNA)-2 and EBNA-1 was developed. Ratios of IgG antibody reactivity to whole IgG concentrations of sera were calculated to normalize EBNA-2 and EBNA-1 antibody levels to the hypergammaglobulinaemia that occurs in CTD. The ELISA optical density OD(450) readings of IgG antibodies to both the amino-terminal aa 1-116 of EBNA-2 and carboxyl-terminal aa 451-641 of EBNA-1 were elevated significantly in patients with SLE, primary SS, RA, SSc and secondary SS when compared to EBNA-1. The OD readings were divided by serum IgG concentrations to normalize for the hypergammaglobulinaemia. The specific levels of IgG antibodies to the amino-terminal region of EBNA-2 were elevated in patients with SLE, primary SS or RA, as well as those with secondary SS complicated with SLE or RA. The EBNA-2 amino-terminal region contains a polyproline tract and a proline-rich sequence and has considerable amino acid sequence homology with many cellular proline-rich proteins. High ratios of EBNA-2 aa 1-116 to EBNA-1 aa 451-641 IgG antibody levels which probably suggest reactivation of EBV latent infection were associated significantly with pulmonary involvement in SS patients. These results are consistent with the hypothesis that the sequence similarity between the amino-terminal region of EBNA-2 and proline-rich cellular proteins is associated with pathogenesis in a subpopulation of CTD patients, possibly by the molecular mimicry-epitope shift mechanism.

  2. Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin.

    PubMed

    Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D

    2005-03-15

    We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.

  3. A signal-arrest-release sequence mediates export and control of the phage P1 endolysin

    PubMed Central

    Xu, Min; Struck, Douglas K.; Deaton, John; Wang, Ing-Nang; Young, Ry

    2004-01-01

    The Lyz endolysin of bacteriophage P1 was found to cause lysis of the host without a holin. Induction of a plasmid-cloned lyz resulted in lysis, and the lytic event could be triggered prematurely by treatments that dissipate the proton-motive force. Instead of requiring a holin, export was mediated by an N-terminal transmembrane domain (TMD) and required host sec function. Exported Lyz of identical SDS/PAGE mobility was found in both the membrane and periplasmic compartments, indicating that periplasmic Lyz was not generated by the proteolytic cleavage of the membrane-associated form. In gene fusion experiments, the Lyz TMD directed PhoA to both the membrane and periplasmic compartments, whereas the TMD of the integral membrane protein FtsI restricts Lyz to the membrane. Thus, the N-terminal domain of Lyz is both necessary and sufficient not only for export of this endolysin to the membrane but also for its release into the periplasm. The unusual N-terminal domain, rich in residues that are weakly hydrophobic, thus functions as a signal-arrest-release sequence, which first acts as a normal signal-arrest domain to direct the endolysin to the periplasm in membrane-tethered form and then allows it to be released as a soluble active enzyme in the periplasm. Examination of the protein sequences of related bacteriophage endolysins suggests that the presence of an N-terminal signal-arrest-release sequence is not unique to Lyz. These observations are discussed in relation to the role of holins in the control of host lysis by bacteriophage encoding a secretory endolysin. PMID:15090650

  4. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix® vaccination

    PubMed Central

    Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus

    2015-01-01

    A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813

  5. Biochemical and Functional Analysis of Drosophila-Sciara Chimeric Sex-Lethal Proteins

    PubMed Central

    Ruiz, María Fernanda; Sarno, Francesca; Zorrilla, Silvia; Rivas, Germán; Sánchez, Lucas

    2013-01-01

    Background The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. Methodology Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. Conclusions The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate folding of SXL to carry out its sex-specific functions. PMID:23762307

  6. Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulfer, Stacie L.; Scott, Erin M.; Couture, Jean-François

    2010-01-12

    Homocitrate synthase (HCS) catalyzes the first and committed step in lysine biosynthesis in many fungi and certain Archaea and is a potential target for antifungal drugs. Here we report the crystal structure of the HCS apoenzyme from Schizosaccharomyces pombe and two distinct structures of the enzyme in complex with the substrate 2-oxoglutarate (2-OG). The structures reveal that HCS forms an intertwined homodimer stabilized by domain-swapping between the N- and C-terminal domains of each monomer. The N-terminal catalytic domain is composed of a TIM barrel fold in which 2-OG binds via hydrogen bonds and coordination to the active site divalent metalmore » ion, whereas the C-terminal domain is composed of mixed {alpha}/{beta} topology. In the structures of the HCS apoenzyme and one of the 2-OG binary complexes, a lid motif from the C-terminal domain occludes the entrance to the active site of the neighboring monomer, whereas in the second 2-OG complex the lid is disordered, suggesting that it regulates substrate access to the active site through its apparent flexibility. Mutations of the active site residues involved in 2-OG binding or implicated in acid-base catalysis impair or abolish activity in vitro and in vivo. Together, these results yield new insights into the structure and catalytic mechanism of HCSs and furnish a platform for developing HCS-selective inhibitors.« less

  7. Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, James M.; Korzhnev, Dmitry M.; Ceccarelli, Derek F.

    2012-10-23

    The Par-1/MARK protein kinases play a pivotal role in establishing cellular polarity. This family of kinases contains a unique domain architecture, in which a ubiquitin-associated (UBA) domain is located C-terminal to the kinase domain. We have used a combination of x-ray crystallography and NMR dynamics experiments to understand the interaction of the human (h) MARK3 UBA domain with the adjacent kinase domain as compared with ubiquitin. The x-ray crystal structure of the linked hMARK3 kinase and UBA domains establishes that the UBA domain forms a stable intramolecular interaction with the N-terminal lobe of the kinase domain. However, solution-state NMR studiesmore » of the isolated UBA domain indicate that it is highly dynamic, undergoing conformational transitions that can be explained by a folding-unfolding equilibrium. NMR titration experiments indicated that the hMARK3 UBA domain has a detectable but extremely weak affinity for mono ubiquitin, which suggests that conformational instability of the isolated hMARK3 UBA domain attenuates binding to ubiquitin despite the presence of residues typically involved in ubiquitin recognition. Our data identify a molecular mechanism through which the hMARK3 UBA domain has evolved to bind the kinase domain, in a fashion that stabilizes an open conformation of the N- and C-terminal lobes, at the expense of its capacity to engage ubiquitin. These results may be relevant more generally to the 30% of UBA domains that lack significant ubiquitin-binding activity, and they suggest a unique mechanism by which interaction domains may evolve new binding properties.« less

  8. Autoinhibition of a calmodulin-dependent calcium pump involves a structure in the stalk that connects the transmembrane domain to the ATPase catalytic domain

    NASA Technical Reports Server (NTRS)

    Curran, A. C.; Hwang, I.; Corbin, J.; Martinez, S.; Rayle, D.; Sze, H.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.

  9. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells.

    PubMed

    Shirakawa, Aiko-Konno; Nagakubo, Daisuke; Hieshima, Kunio; Nakayama, Takashi; Jin, Zhe; Yoshie, Osamu

    2008-03-01

    In the B cell lineage, CCR10 is known to be selectively expressed by plasma cells, especially those secreting IgA. In this study, we examined the regulation of CCR10 expression in terminally differentiating human B cells. As reported previously, IL-21 efficiently induced the differentiation of activated human CD19+ B cells into IgD-CD38+ plasma cells in vitro. A minor proportion of the resulting CD19+IgD-CD38+ cells expressed CCR10 at low levels. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the active metabolite of vitamine D3, dramatically increased the proportion of CD19+IgD-CD38+ cells expressing high levels of CCR10. The 1,25-(OH)2D3 also increased the number of CCR10+ cells expressing surface IgA, although the majority of CCR10+ cells remained negative for surface IgA. Thus, 1,25-(OH)2D3 alone may not be sufficient for the induction of IgA expression in terminally differentiating human B cells. To further determine whether 1,25-(OH)2D3 directly induces CCR10 expression in terminally differentiating B cells, we next performed the analysis on the human CCR10 promoter. We identified a proximal Ets-1 site and an upstream potential vitamin D response element to be critical for the inducible expression of CCR10 by 1,25-(OH)2D3. We confirmed the specific binding of Ets-1 and 1,25-(OH)2D3-activated vitamin D receptor to the respective sites. In conclusion, 1,25-(OH)2D3 efficiently induces CCR10 expression in terminally differentiating human B cells in vitro. Furthermore, the human CCR10 promoter is cooperatively activated by Ets-1 and vitamin D receptor in the presence of 1,25-(OH)2D3.

  10. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel

    PubMed Central

    Lidell, Martin E.; Moncada, Darcy M.; Chadee, Kris; Hansson, Gunnar C.

    2006-01-01

    In order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism. We hypothesized that cysteine proteases secreted from the amoeba disrupt the mucin polymeric network, thereby overcoming the protective mucus barrier. The MUC2 mucin is the major structural component of the colonic mucus gel. Heavily O-glycosylated and protease-resistant mucin domains characterize gel-forming mucins. Their N- and C-terminal cysteine-rich domains are involved in mucin polymerization, and these domains are likely to be targeted by proteases because they are less glycosylated, thereby exposing their peptide chains. By treating recombinant cysteine-rich domains of MUC2 with proteases from E.h. trophozoites, we showed that the C-terminal domain was specifically targeted at two sites by cysteine proteases, whereas the N-terminal domain was resistant to proteolysis. The major cleavage site is predicted to depolymerize the MUC2 polymers, thereby disrupting the protective mucus gel. The ability of the cysteine proteases to dissolve mucus gels was confirmed by treating mucins from a MUC2-producing cell line with amoeba proteases. These findings suggest a major role for E.h. cysteine proteases in overcoming the protective mucus barrier in the pathogenesis of invasive amoebiasis. In this report, we identify a specific cleavage mechanism used by an enteric pathogen to disrupt the polymeric nature of the mucin gel. PMID:16754877

  11. Entamoeba histolytica cysteine proteases cleave the MUC2 mucin in its C-terminal domain and dissolve the protective colonic mucus gel.

    PubMed

    Lidell, Martin E; Moncada, Darcy M; Chadee, Kris; Hansson, Gunnar C

    2006-06-13

    In order for the protozoan parasite Entamoeba histolytica (E.h.) to cause invasive intestinal and extraintestinal infection, which leads to significant morbidity and mortality, it must disrupt the protective mucus layer by a previously unknown mechanism. We hypothesized that cysteine proteases secreted from the amoeba disrupt the mucin polymeric network, thereby overcoming the protective mucus barrier. The MUC2 mucin is the major structural component of the colonic mucus gel. Heavily O-glycosylated and protease-resistant mucin domains characterize gel-forming mucins. Their N- and C-terminal cysteine-rich domains are involved in mucin polymerization, and these domains are likely to be targeted by proteases because they are less glycosylated, thereby exposing their peptide chains. By treating recombinant cysteine-rich domains of MUC2 with proteases from E.h. trophozoites, we showed that the C-terminal domain was specifically targeted at two sites by cysteine proteases, whereas the N-terminal domain was resistant to proteolysis. The major cleavage site is predicted to depolymerize the MUC2 polymers, thereby disrupting the protective mucus gel. The ability of the cysteine proteases to dissolve mucus gels was confirmed by treating mucins from a MUC2-producing cell line with amoeba proteases. These findings suggest a major role for E.h. cysteine proteases in overcoming the protective mucus barrier in the pathogenesis of invasive amoebiasis. In this report, we identify a specific cleavage mechanism used by an enteric pathogen to disrupt the polymeric nature of the mucin gel.

  12. Interaction between the C-terminal domains of measles virus nucleoprotein and phosphoprotein: a tight complex implying one binding site.

    PubMed

    Blocquel, David; Habchi, Johnny; Costanzo, Stéphanie; Doizy, Anthony; Oglesbee, Michael; Longhi, Sonia

    2012-10-01

    The intrinsically disordered C-terminal domain (N(TAIL) ) of the measles virus (MeV) nucleoprotein undergoes α-helical folding upon binding to the C-terminal X domain (XD) of the phosphoprotein. The N(TAIL) region involved in binding coupled to folding has been mapped to a conserved region (Box2) encompassing residues 489-506. In the previous studies published in this journal, we obtained experimental evidence supporting a K(D) for the N(TAIL) -XD binding reaction in the nM range and also showed that an additional N(TAIL) region (Box3, aa 517-525) plays a role in binding to XD. In striking contrast with these data, studies published in this journal by Kingston and coworkers pointed out a much less stable complex (K(D) in the μM range) and supported lack of involvement of Box3 in complex formation. The objective of this study was to critically re-evaluate the role of Box3 in N(TAIL) -XD binding. Since our previous studies relied on N(TAIL) -truncated forms possessing an irrelevant Flag sequence appended at their C-terminus, we, herein, generated an N(TAIL) devoid of Box3 and any additional C-terminal residues, as well as a form encompassing only residues 482-525. We then used isothermal titration calorimetry to characterize the binding reactions between XD and these N(TAIL) forms. Results effectively argue for the presence of a single XD-binding site located within Box2, in agreement with the results by Kingston et al., while providing clear experimental support for a high-affinity complex. Altogether, the present data provide mechanistic insights into the replicative machinery of MeV and clarify a hitherto highly debated point. Copyright © 2012 The Protein Society.

  13. Structural Determinants at the Interface of the ARC2 and Leucine-Rich Repeat Domains Control the Activation of the Plant Immune Receptors Rx1 and Gpa21[C][W][OA

    PubMed Central

    Slootweg, Erik J.; Spiridon, Laurentiu N.; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska

    2013-01-01

    Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins. PMID:23660837

  14. Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and Gpa2.

    PubMed

    Slootweg, Erik J; Spiridon, Laurentiu N; Roosien, Jan; Butterbach, Patrick; Pomp, Rikus; Westerhof, Lotte; Wilbers, Ruud; Bakker, Erin; Bakker, Jaap; Petrescu, Andrei-José; Smant, Geert; Goverse, Aska

    2013-07-01

    Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.

  15. A TPR domain–containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B

    PubMed Central

    Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H.J.; Snel, Berend

    2013-01-01

    The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B–dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization. PMID:23569217

  16. Overexpression, crystallization and preliminary X-ray crystallographic analysis of β-N-acetylglucosaminidase from Thermotoga maritima encoded by the Tm0809 gene.

    PubMed

    Lee, Hyung Ho; Jung, Sang Taek

    2013-02-01

    β-N-acetylglucosaminidase (NagA) protein hs a chitin-degrading activity and chitin is one of the most abundant polymers in nature. NagA contains a family 3 glycoside (GH3)-type N-terminal domain and a unique C-terminal domain. The structurally uncharacterized C-terminal domain of NagA may be involved in substrate specificity. To provide a structural basis for the substrate specificity of NagA, structural analysis of NagA from Thermotoga maritima encoded by the Tm0809 gene was initiated. NagA from T. maritima has been overexpressed in Escherichia coli and crystallized at 296 K using ammonium sulfate as a precipitant. Crystals of T. maritima NagA diffracted to 3.80 Å resolution and belonged to the monoclinic space group C2, with unit-cell parameters a = 231.15, b = 133.62, c = 140.88 Å, β = 89.97°. The crystallization of selenomethionyl-substituted protein is in progress to solve the crystal structure of T. maritima NagA.

  17. Pushing the limits of sulfur SAD phasing: de novo structure solution of the N-terminal domain of the ectodomain of HCV E1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Omari, Kamel; Iourin, Oleg; Kadlec, Jan

    2014-08-01

    The sulfur SAD phasing method was successfully used to determine the structure of the N-terminal domain of HCV E1 from low-resolution diffracting crystals by combining data from 32 crystals. Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffractedmore » very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Å resolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Å resolution model building was achievable.« less

  18. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Qiaozhen; Kim, Dong Hyun; Dereli, Ihsan

    Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed “closure motifs”. The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain–closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet. We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 “poremore » loops”, which then unfold MAD2 in the presence of ATP. N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain–closure motif complexes by TRIP13.« less

  19. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail

    PubMed Central

    Ludwigsen, Johanna; Pfennig, Sabrina; Singh, Ashish K; Schindler, Christina; Harrer, Nadine; Forné, Ignasi; Zacharias, Martin; Mueller-Planitz, Felix

    2017-01-01

    ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1. DOI: http://dx.doi.org/10.7554/eLife.21477.001 PMID:28109157

  20. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolicmore » sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.« less

Top