Sample records for n-terminal kinase phosphorylation

  1. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence.

    PubMed

    Gupta, Rajeev; Ghosh, Subhendu

    2017-06-01

    Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.

  2. Auto-phosphorylation Represses Protein Kinase R Activity.

    PubMed

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  3. Site-specific Phosphorylation Protects Glycogen Synthase Kinase-3β from Calpain-mediated Truncation of Its N and C Termini*

    PubMed Central

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-01-01

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38–Thr-39 and Ile-384–Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39–420), ΔC-GSK-3β (amino acids 1–384), and ΔN/ΔC-GSK-3β (amino acids 39–384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity. PMID:22496446

  4. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini.

    PubMed

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-06-29

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38-Thr-39 and Ile-384-Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39-420), ΔC-GSK-3β (amino acids 1-384), and ΔN/ΔC-GSK-3β (amino acids 39-384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity.

  5. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localisation of polycystin-2 in vivo and in vitro

    PubMed Central

    Streets, Andrew J; Moon, David J; Kane, Michelle E; Obara, Tomoko; Ong, Albert CM

    2008-01-01

    PKD2 is mutated in 15% of patients with autosomal dominant polycystic kidney disease (ADPKD). Polycystin-2 (PC2), the PKD2 protein, is a nonselective Ca2+-permeable cation channel which may function at the cell surface and ER. Nevertheless, the factors that regulate the dynamic translocation of PC2 between the ER and other compartments are not well understood. Constitutive phosphorylation of PC2 at a single C-terminal site (Ser812) has been previously reported. Since we were unable to abolish phospholabelling of PC2 in HEK293 cells by site-directed mutagenesis of Ser812 or all 5 predicted phosphorylation sites in the C-terminus, we hypothesised that PC2 could also be phosphorylated at the N-terminus. In this paper, we report the identification of a new phosphorylation site for PC2 within its N-terminal domain (Ser76) and demonstrate that this residue is phosphorylated by glycogen synthase kinase 3 (GSK-3). The consensus recognition sequence for GSK-3 (Ser76/Ser80) is evolutionarily conserved down to lower vertebrates. In the presence of specific GSK-3 inhibitors, the lateral plasma membrane pool of endogenous PC2 redistributes into an intracellular compartment in MDCK cells without a change in primary cilia localization. Finally, co-injection of wild-type but not a S76A/S80A mutant PKD2 capped mRNA could rescue the cystic phenotype induced by an antisense morpholino oligonucleotide to pkd2 in zebrafish pronephric kidney. We conclude that surface localization of PC2 is regulated by phosphorylation at a unique GSK-3 site in its N-terminal domain in vivo and in vitro. This site is functionally significant for the maintenance of normal glomerular and tubular morphology. PMID:16551655

  6. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic {sup 32}P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate intomore » Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains.« less

  7. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II.

    PubMed

    Dubois, M F; Vincent, M; Vigneron, M; Adamczewski, J; Egly, J M; Bensaude, O

    1997-02-15

    The C-terminal domain (CTD) of the RNA polymerase II largest subunit (RPB1) plays a central role in transcription. The CTD is unphosphorylated when the polymerase assembles into a preinitiation complex of transcription and becomes heavily phosphorylated during promoter clearance and entry into elongation of transcription. A kinase associated to the general transcription factor TFIIH, in the preinitiation complex, phosphorylates the CTD. The TFIIH-associated CTD kinase activity was found to decrease in extracts from heat-shocked HeLa cells compared to unstressed cells. This loss of activity correlated with a decreased solubility of the TFIIH factor. The TFIIH-kinase impairment during heat-shock was accompanied by the disappearance of a particular phosphoepitope (CC-3) on the RPB1 subunit. The CC-3 epitope was localized on the C-terminal end of the CTD and generated in vitro when the RPB1 subunit was phosphorylated by the TFIIH-associated kinase but not by another CTD kinase such as MAP kinase. In apparent discrepancy, the overall RPB1 subunit phosphorylation increased during heat-shock. The decreased activity in vivo of the TFIIH kinase might be compensated by a stress-activated CTD kinase such as MAP kinase. These results also suggest that heat-shock gene transcription may have a weak requirement for TFIIH kinase activity.

  8. Acceleration of Smad2 and Smad3 phosphorylation via c-Jun NH(2)-terminal kinase during human colorectal carcinogenesis.

    PubMed

    Yamagata, Hideo; Matsuzaki, Koichi; Mori, Shigeo; Yoshida, Katsunori; Tahashi, Yoshiya; Furukawa, Fukiko; Sekimoto, Go; Watanabe, Toshihiko; Uemura, Yoshiko; Sakaida, Noriko; Yoshioka, Kazuhiko; Kamiyama, Yasuo; Seki, Toshihito; Okazaki, Kazuichi

    2005-01-01

    Conversion of normal epithelial cells to tumors is associated with a shift in transforming growth factor-beta (TGF-beta) function: reduction of tumor suppressor activity and increase of oncogenic activity. However, specific mechanisms of this functional alteration during human colorectal carcinogenesis remain to be elucidated. TGF-beta signaling involves Smad2/3 phosphorylated at linker regions (pSmad2/3L) and COOH-terminal regions (pSmad2/3C). Using antibodies specific to each phosphorylation site, we herein showed that Smad2 and Smad3 were phosphorylated at COOH-terminal regions but not at linker regions in normal colorectal epithelial cells and that pSmad2/3C were located predominantly in their nuclei. However, the linker regions of Smad2 and Smad3 were phosphorylated in 31 sporadic colorectal adenocarcinomas. In particular, late-stage invasive and metastatic cancers typically showed a high degree of phosphorylation of Smad2/3L. Their extent of phosphorylation in 11 adenomas was intermediate between those in normal epithelial cells and adenocarcinomas. Whereas pSmad2L remained in the cytoplasm, pSmad3L was located exclusively in the nuclei of Ki-67-immunoreactive adenocarcinomas. In contrast, pSmad3C gradually decreased as the tumor stage progressed. Activated c-Jun NH(2)-terminal kinase in cancers could directly phosphorylate Smad2/3L. Although Mad homology 2 region sequencing in the Smad4 gene revealed a G/A substitution at codon 361 in one adenocarcinoma, the mutation did not correlate with phosphorylation. No mutations in the type II TGF-beta receptor and Smad2 genes were observed in the tumors. In conclusion, pSmad3C, which favors tumor suppressor activity of TGF-beta, was found to decrease, whereas c-Jun NH(2)-terminal kinase tended to induce the phosphorylation of Smad2/3L in human colorectal adenoma-carcinoma sequence.

  9. Heat-shock inactivation of the TFIIH-associated kinase and change in the phosphorylation sites on the C-terminal domain of RNA polymerase II.

    PubMed Central

    Dubois, M F; Vincent, M; Vigneron, M; Adamczewski, J; Egly, J M; Bensaude, O

    1997-01-01

    The C-terminal domain (CTD) of the RNA polymerase II largest subunit (RPB1) plays a central role in transcription. The CTD is unphosphorylated when the polymerase assembles into a preinitiation complex of transcription and becomes heavily phosphorylated during promoter clearance and entry into elongation of transcription. A kinase associated to the general transcription factor TFIIH, in the preinitiation complex, phosphorylates the CTD. The TFIIH-associated CTD kinase activity was found to decrease in extracts from heat-shocked HeLa cells compared to unstressed cells. This loss of activity correlated with a decreased solubility of the TFIIH factor. The TFIIH-kinase impairment during heat-shock was accompanied by the disappearance of a particular phosphoepitope (CC-3) on the RPB1 subunit. The CC-3 epitope was localized on the C-terminal end of the CTD and generated in vitro when the RPB1 subunit was phosphorylated by the TFIIH-associated kinase but not by another CTD kinase such as MAP kinase. In apparent discrepancy, the overall RPB1 subunit phosphorylation increased during heat-shock. The decreased activity in vivo of the TFIIH kinase might be compensated by a stress-activated CTD kinase such as MAP kinase. These results also suggest that heat-shock gene transcription may have a weak requirement for TFIIH kinase activity. PMID:9016617

  10. Casein kinase 2 promotes interaction between Rad17 and the 9-1-1 complex through constitutive phosphorylation of the C-terminal tail of human Rad17.

    PubMed

    Fukumoto, Yasunori; Takahashi, Kazuaki; Suzuki, Noriyuki; Ogra, Yasumitsu; Nakayama, Yuji; Yamaguchi, Naoto

    2018-06-15

    An interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential for ATR-Chk1 signaling, which is one of the major DNA damage checkpoints. Recently, we showed that the polyanionic C-terminal tail of human Rad17 and the embedded conserved sequence iVERGE are important for the interaction with 9-1-1 complex. Here, we show that Rad17-S667 in the C-terminal tail is constitutively phosphorylated in vivo in a casein kinase 2-dependent manner, and the phosphorylation is important for 9-1-1 interaction. The serine phosphorylation of Rad17 could be seen in the absence of exogenous genotoxic stress, and was mostly abolished by S667A substitution. Rad17-S667 was also phosphorylated when the C-terminal tail was fused with EGFP, but the phosphorylation was inhibited by two casein kinase 2 inhibitors. Furthermore, interaction between Rad17 and the 9-1-1 complex was inhibited by the casein kinase 2 inhibitor CX-4945/Silmitasertib, and the effect was dependent on the Rad17-S667 residue, indicating that S667 phosphorylation is the only role of casein kinase 2 in the 9-1-1 interaction. Our data raise the possibility that the C-terminal tail of vertebrate Rad17 regulates ATR-Chk1 signaling through multi-site phosphorylation in the iVERGE. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Src kinase regulation by phosphorylation and dephosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roskoski, Robert

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shownmore » to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.« less

  12. Phosphorylation of rat brain purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal kinase-3 modifies open-channel noise.

    PubMed

    Gupta, Rajeev

    2017-09-02

    The drift kinetic energy of ionic flow through single ion channels cause vibrations of the pore walls which are observed as open-state current fluctuations (open-channel noise) during single-channel recordings. Vibration of the pore wall leads to transitions among different conformational sub-states of the channel protein in the open-state. Open-channel noise analysis can provide important information about the different conformational sub-state transitions and how biochemical modifications of ion channels would affect their transport properties. It has been shown that c-Jun N-terminal kinase-3 (JNK3) becomes activated by phosphorylation in various neurodegenerative diseases and phosphorylates outer mitochondrion associated proteins leading to neuronal apoptosis. In our earlier work, JNK3 has been reported to phosphorylate purified rat brain mitochondrial voltage-dependent anion channel (VDAC) in vitro and modify its conductance and opening probability. In this article we have compared the open-state noise profile of the native and the JNK3 phosphorylated VDAC using Power Spectral Density vs frequency plots. Power spectral density analysis of open-state noise indicated power law with average slope value α ≈1 for native VDAC at both positive and negative voltage whereas average α value < 0.5 for JNK3 phosphorylated VDAC at both positive and negative voltage. It is proposed that 1/f 1 power law in native VDAC open-state noise arises due to coupling of ionic transport and conformational sub-states transitions in open-state and this coupling is perturbed as a result of channel phosphorylation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3.

    PubMed

    Velden, Jos L J van der; Alcorn, John F; Guala, Amy S; Badura, Elsbeth C H L; Janssen-Heininger, Yvonne M W

    2011-04-01

    Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.

  14. Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM)-mediated Inhibitory Signaling is Regulated by Sequential Phosphorylation Mediated by Distinct Nonreceptor Tyrosine Kinases: A Case Study Involving PECAM-1

    PubMed Central

    Tourdot, Benjamin E.; Brenner, Michelle K.; Keough, Kathleen C.; Holyst, Trudy; Newman, Peter J.; Newman, Debra K.

    2013-01-01

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing non-receptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton’s tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk, and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  15. Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury.

    PubMed

    Yoshida, Katsunori; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yamagata, Hideo; Furukawa, Fukiko; Seki, Toshihito; Nishizawa, Mikio; Fujisawa, Junichi; Okazaki, Kazuichi

    2005-04-01

    After liver injury, transforming growth factor-beta (TGF-beta) and platelet-derived growth factor (PDGF) regulate the activation of hepatic stellate cells (HSCs) and tissue remodeling. Mechanisms of PDGF signaling in the TGF-beta-triggered cascade are not completely understood. TGF-beta signaling involves phosphorylation of Smad2 and Smad3 at linker and C-terminal regions. Using antibodies to distinguish Smad2/3 phosphorylated at linker regions from those phosphorylated at C-terminal regions, we investigated Smad2/3-mediated signaling in rat liver injured by CCl(4) administration and in cultured HSCs. In acute liver injury, Smad2/3 were transiently phosphorylated at both regions. Although linker-phosphorylated Smad2 remained in the cytoplasm of alpha-smooth muscle actin-immunoreactive mesenchymal cells adjacent to necrotic hepatocytes in centrilobular areas, linker-phosphorylated Smad3 accumulated in the nuclei. c-Jun N-terminal kinase (JNK) in the activated HSCs directly phosphorylated Smad2/3 at linker regions. Co-treatment of primary cultured HSCs with TGF-beta and PDGF activated the JNK pathway, subsequently inducing endogenous linker phosphorylation of Smad2/3. The JNK pathway may be involved in migration of resident HSCs within the space of Disse to the sites of tissue damage because the JNK inhibitor SP600125 inhibited HSC migration induced by TGF-beta and PDGF signals. Moreover, treatment of HSCs with both TGF-beta and PDGF increased transcriptional activity of plasminogen activator inhibitor-1 through linker phosphorylation of Smad3. In conclusion, TGF-beta and PDGF activate HSCs by transmitting their signals through JNK-mediated Smad2/3 phosphorylation at linker regions, both in vivo and in vitro.

  16. Tau phosphorylation and kinase activation in familial tauopathy linked to deln296 mutation.

    PubMed

    Ferrer, I; Pastor, P; Rey, M J; Muñoz, E; Puig, B; Pastor, E; Oliva, R; Tolosa, E

    2003-02-01

    Tau phosphorylation has been examined by immunohistochemistry in the brain of a patient affected with familial tauopathy with progressive supranuclear palsy-like phenotype linked to the delN296 mutation in the tau gene. Phospho-specific tau antibodies Thr181, Ser202, Ser214, Ser396 and Ser422, and antibodies to glycogen synthase kinase-3alpha/beta (GSK-3alpha/beta) and to phosphorylated (P) mitogen-activated protein kinase/extracellular signal-regulated kinases (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p38 kinase (p38) and GSK-3betaSer9 have been used to gain understanding of the identification of phosphorylation sites, as well as of the specific kinases that regulate tau phosphorylation at those specific sites, in a familial tauopathy. The neuropathological examination disclosed atrophy of the right precentral gyrus and the brainstem. Neurone loss and gliosis were observed in the substantia nigra, several nuclei of the brainstem and diencephalon. Hyper-phosphorylated tau accumulated in neurones with neurofibrillary tangles and in neurones with pretangles in the substantia nigra, locus ceruleus, peri-aqueductal grey matter, reticular formation, motor nuclei of the brainstem, and thalamus, amygdala and hippocampus. tau-immunoreactive astrocytes and, particularly, oligodendrocytes with coiled bodies were widespread in the brainstem, diencephalons, cerebral white matter and cerebral cortex. Increased expression of MAPK/ERK-P, SAPK/JNK-P, p-38-P and GSK-3beta-P was observed in select subpopulations of neurones with neurofibrillary tangles and in neurones with pretangles. MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3beta-P were also expressed in tau-containing astrocytes and in oligodendrocytes with coiled bodies. These findings show, for the first time, activation of precise kinases that regulate tau phosphorylation at specific sites in familial tauopathy.

  17. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with amore » Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.« less

  18. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response

    PubMed Central

    Chan, Tung O.; Zhang, Jin; Tiegs, Brian C.; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M.; Armen, Roger S.; Rodeck, Ulrich; Penn, Raymond B.

    2015-01-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr308 in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr308 dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser473) increased phosphatase resistance of the phosphorylated activation loop (pThr308) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr308 phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. PMID:26201515

  19. Huntingtin-Interacting Protein 1 Phosphorylation by Receptor Tyrosine Kinases

    PubMed Central

    Ames, Heather M.; Wang, Anmin A.; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W.; Soyombo, Abigail A.

    2013-01-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine “HIP1 phosphorylation motif” (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival. PMID:23836884

  20. Huntingtin-interacting protein 1 phosphorylation by receptor tyrosine kinases.

    PubMed

    Ames, Heather M; Wang, Anmin A; Coughran, Alanna; Evaul, Kristen; Huang, Sha; Graves, Chiron W; Soyombo, Abigail A; Ross, Theodora S

    2013-09-01

    Huntingtin-interacting protein 1 (HIP1) binds inositol lipids, clathrin, actin, and receptor tyrosine kinases (RTKs). HIP1 is elevated in many tumors, and its expression is prognostic in prostate cancer. HIP1 overexpression increases levels of the RTK epidermal growth factor receptor (EGFR) and transforms fibroblasts. Here we report that HIP1 is tyrosine phosphorylated in the presence of EGFR and platelet-derived growth factor β receptor (PDGFβR) as well as the oncogenic derivatives EGFRvIII, HIP1/PDGFβR (H/P), and TEL/PDGFβR (T/P). We identified a four-tyrosine "HIP1 phosphorylation motif" (HPM) in the N-terminal region of HIP1 that is required for phosphorylation mediated by both EGFR and PDGFβR but not by the oncoproteins H/P and T/P. We also identified a tyrosine residue (Y152) within the HPM motif of HIP1 that inhibits HIP1 tyrosine phosphorylation. The HPM tyrosines are conserved in HIP1's only known mammalian relative, HIP1-related protein (HIP1r), and are also required for HIP1r phosphorylation. Tyrosine-to-phenylalanine point mutations in the HPM of HIP1 result in proapoptotic activity, indicating that an intact HPM may be necessary for HIP1's role in cellular survival. These data suggest that phosphorylation of HIP1 by RTKs in an N-terminal region contributes to the promotion of cellular survival.

  1. Serine Phosphorylation of the Insulin-like Growth Factor I (IGF-1) Receptor C-terminal Tail Restrains Kinase Activity and Cell Growth*

    PubMed Central

    Kelly, Geraldine M.; Buckley, Deirdre A.; Kiely, Patrick A.; Adams, David R.; O'Connor, Rosemary

    2012-01-01

    Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the 1248SFYYS1252 motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling. PMID:22685298

  2. Stimulation of spinal dorsal horn β2-adrenergic receptor ameliorates neuropathic mechanical hypersensitivity through a reduction of phosphorylation of microglial p38 MAP kinase and astrocytic c-jun N-terminal kinase.

    PubMed

    Zhang, Fang Fang; Morioka, Norimitsu; Abe, Hiromi; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-12-01

    The noradrenaline-adrenergic system has a crucial role in controlling nociceptive transduction at the spinal level. While α-adrenergic receptors are known to regulate nociceptive neurotransmitter release at the spinal presynaptic level, it is not entirely clear whether β-adrenergic receptors are involved in controlling pain transduction at the spinal level as well. The current study elucidated a role of β-adrenergic receptors in neuropathic pain in mice following a partial sciatic nerve ligation (PSNL). In addition, the cellular and intracellular signaling cascade induced by β-adrenergic receptors in neuropathic mice was elaborated. Intrathecal injection of isoproterenol (1 nmol), a nonselective β-adrenergic receptor agonist, briefly ameliorated hind paw mechanical hypersensitivity of PSNL mice. Isoproterenol's antinociceptive effect was mediated through β2-adrenergic receptors since pretreatment with ICI118551, a selective β2-adrenergic receptor antagonist, but not with CGP20712A, a selective β1-adrenergic receptor antagonist, significantly attenuated isoproterenol's effect. Furthermore, intrathecal treatment with a selective β2-adrenergic receptor agonist, terbutaline, but not a selective β1-adrenergic receptor agonist, dobutamine, also significantly ameliorated neuropathic pain. Fourteen days after PSNL, increased phosphorylation of both p38 Mitogen-activated protein kinase (MAPK) in microglia and c-jun N-terminal kinase (JNK) in astrocytes of ipsilateral spinal dorsal horn were observed. Phosphorylation of both microglial p38 MAPK and astrocytic JNK were downregulated by stimulation of the β2-adrenergic receptor. Together, these results suggest that spinal β2-adrenergic receptor have an inhibitory role in neuropathic nociceptive transduction at the spinal level through a downregulation of glial activity, perhaps through modulation of MAP kinases phosphorylation. Thus, targeting of β2-adrenergic receptors could be an effective therapeutic strategy

  3. Tonoplast-Bound Protein Kinase Phosphorylates Tonoplast Intrinsic Protein 1

    PubMed Central

    Johnson, Kenneth D.; Chrispeels, Maarten J.

    1992-01-01

    Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16653198

  4. Akt kinase C-terminal modifications control activation loop dephosphorylation and enhance insulin response.

    PubMed

    Chan, Tung O; Zhang, Jin; Tiegs, Brian C; Blumhof, Brian; Yan, Linda; Keny, Nikhil; Penny, Morgan; Li, Xue; Pascal, John M; Armen, Roger S; Rodeck, Ulrich; Penn, Raymond B

    2015-10-01

    The Akt protein kinase, also known as protein kinase B, plays key roles in insulin receptor signalling and regulates cell growth, survival and metabolism. Recently, we described a mechanism to enhance Akt phosphorylation that restricts access of cellular phosphatases to the Akt activation loop (Thr(308) in Akt1 or protein kinase B isoform alpha) in an ATP-dependent manner. In the present paper, we describe a distinct mechanism to control Thr(308) dephosphorylation and thus Akt deactivation that depends on intramolecular interactions of Akt C-terminal sequences with its kinase domain. Modifications of amino acids surrounding the Akt1 C-terminal mTORC2 (mammalian target of rapamycin complex 2) phosphorylation site (Ser(473)) increased phosphatase resistance of the phosphorylated activation loop (pThr(308)) and amplified Akt phosphorylation. Furthermore, the phosphatase-resistant Akt was refractory to ceramide-dependent dephosphorylation and amplified insulin-dependent Thr(308) phosphorylation in a regulated fashion. Collectively, these results suggest that the Akt C-terminal hydrophobic groove is a target for the development of agents that enhance Akt phosphorylation by insulin. © 2015 Authors; published by Portland Press Limited.

  5. Phosphatidylinositol-3-kinase-dependent phosphorylation of SLP-76 by the lymphoma-associated ITK-SYK fusion-protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Alamdar, E-mail: alamdar.hussain@ki.se; Department of Biosciences, COMSATS Institute of Information Technology, Chak Shazad Campus, Islamabad; Faryal, Rani

    Recurrent chromosomal translocations have long been implicated in various types of lymphomas and other malignancies. Novel recurrent t(5;9)(q33;q22) has been recently discovered in un-specified peripheral T-cell lymphoma. To elucidate the role of this translocation, the corresponding fusion construct encoding the N-terminal portion of the ITK kinase and the C-terminal catalytic region of the SYK kinase was generated. We herein show that the ITK-SYK fusion-protein is constitutively active. Moreover, we demonstrate that ITK-SYK is phosphorylated on key tyrosine residues and is capable of potently phosphorylating the related adapter proteins BLNK and SLP-76. In transiently transfected cells, SYK was phosphorylated at Y352more » but not detectably at the activation-loop tyrosines Y525/Y526. In contrast, ITK-SYK was phosphorylated both at Y212 and the activation-loop tyrosines Y385/Y386, corresponding to Y352 and Y525/Y526 in SYK, respectively. In resting primary lymphocytes, ITK-SYK predominantly localizes to the cell surface. In addition, we demonstrate that following stimulation, the ITK-SYK fusion-protein in cell lines translocates to the cell membrane and, moreover, that this phenomenon as well as SLP-76 phosphorylation are blocked upon phosphatidylinositol-3-kinase (PI3-kinase) inhibition.« less

  6. Identification of C-terminal phosphorylation sites of N-formyl peptide receptor-1 (FPR1) in human blood neutrophils.

    PubMed

    Maaty, Walid S; Lord, Connie I; Gripentrog, Jeannie M; Riesselman, Marcia; Keren-Aviram, Gal; Liu, Ting; Dratz, Edward A; Bothner, Brian; Jesaitis, Algirdas J

    2013-09-20

    Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu(312)-Arg(322) and Arg(323)-Lys(350)) and extracellular FPR1 peptide (Ile(191)-Arg(201)) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala(323)-Lys(350) only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr(325), Ser(328), Thr(329), Thr(331), Ser(332), Thr(334), and Thr(339). No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nM. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites

  7. Nck-Interacting Ste20 Kinase Couples Eph Receptors to c-Jun N-Terminal Kinase and Integrin Activation

    PubMed Central

    Becker, Elena; Huynh-Do, Uyen; Holland, Sacha; Pawson, Tony; Daniel, Tom O.; Skolnik, Edward Y.

    2000-01-01

    The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62dok, RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62dok most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs. PMID:10669731

  8. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution.

    PubMed Central

    Colwill, K; Pawson, T; Andrews, B; Prasad, J; Manley, J L; Bell, J C; Duncan, P I

    1996-01-01

    Mammalian Clk/Sty is the prototype for a family of dual specificity kinases (termed LAMMER kinases) that have been conserved in evolution, but whose physiological substrates are unknown. In a yeast two-hybrid screen, the Clk/Sty kinase specifically interacted with RNA binding proteins, particularly members of the serine/arginine-rich (SR) family of splicing factors. Clk/Sty itself has an serine/arginine-rich non-catalytic N-terminal region which is important for its association with SR splicing factors. In vitro, Clk/Sty efficiently phosphorylated the SR family member ASF/SF2 on serine residues located within its serine/arginine-rich region (the RS domain). Tryptic phosphopeptide mapping demonstrated that the sites on ASF/SF2 phosphorylated in vitro overlap with those phosphorylated in vivo. Immunofluorescence studies showed that a catalytically inactive form of Clk/Sty co-localized with SR proteins in nuclear speckles. Overexpression of the active Clk/Sty kinase caused a redistribution of SR proteins within the nucleus. These results suggest that Clk/Sty kinase directly regulates the activity and compartmentalization of SR splicing factors. Images PMID:8617202

  9. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain

    PubMed Central

    2011-01-01

    Background The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. Results In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). Conclusions Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain. PMID:21320329

  10. β-Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppression by Omega-3 Fatty Acids and Curcumin

    PubMed Central

    Ma, Qiu-Lan; Yang, Fusheng; Rosario, Emily R.; Ubeda, Oliver J.; Beech, Walter; Gant, Dana J.; Chen, Ping Ping; Hudspeth, Beverly; Chen, Cory; Zhao, Yongle; Vinters, Harry V.; Frautschy, Sally A.

    2009-01-01

    Both insulin resistance (type II diabetes) and β-amyloid (Aβ) oligomers are implicated in Alzheimer's disease (AD). Here, we investigate the role of Aβ oligomer-induced c-Jun N-terminal kinase (JNK) activation leading to phosphorylation and degradation of the adaptor protein insulin receptor substrate-1 (IRS-1). IRS-1 couples insulin and other trophic factor receptors to downstream kinases and neuroprotective signaling. Increased phospho-IRS-1 is found in AD brain and insulin-resistant tissues from diabetics. Here, we report Aβ oligomers significantly increased active JNK and phosphorylation of IRS-1 (Ser616) and tau (Ser422) in cultured hippocampal neurons, whereas JNK inhibition blocked these responses. The omega-3 fatty acid docosahexaenoic acid (DHA) similarly inhibited JNK and the phosphorylation of IRS-1 and tau in cultured hippocampal neurons. Feeding 3xTg-AD transgenic mice a diet high in saturated and omega-6 fat increased active JNK and phosphorylated IRS-1 and tau. Treatment of the 3xTg-AD mice on high-fat diet with fish oil or curcumin or a combination of both for 4 months reduced phosphorylated JNK, IRS-1, and tau and prevented the degradation of total IRS-1. This was accompanied by improvement in Y-maze performance. Mice fed with fish oil and curcumin for 1 month had more significant effects on Y-maze, and the combination showed more significant inhibition of JNK, IRS-1, and tau phosphorylation. These data indicate JNK mediates Aβ oligomer inactivation of IRS-1 and phospho-tau pathology and that dietary treatment with fish oil/DHA, curcumin, or a combination of both has the potential to improve insulin/trophic signaling and cognitive deficits in AD. PMID:19605645

  11. Applying the Brakes to Multi-Site SR Protein Phosphorylation: Substrate-Induced Effects on the Splicing Kinase SRPK1†

    PubMed Central

    Aubol, Brandon E.; Adams, Joseph A.

    2011-01-01

    To investigate how a protein kinase interacts with its protein substrate during extended, multi-site phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates approximately 10 serines in the arginine-serine-rich domain (RS domain) of the SR protein SRSF1 in a C-to-N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t1/2 = 0.1 sec) followed by slower, multi-site phosphorylation at the remaining serines (t1/2 = 15 sec). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multi-site phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension and termination events associated with prolonged, multi-site phosphorylation. PMID:21728354

  12. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    PubMed Central

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  13. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    PubMed

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. In vitro characterization of the RS motif in N-terminal head domain of goldfish germinal vesicle lamin B3 necessary for phosphorylation of the p34cdc2 target serine by SRPK1☆

    PubMed Central

    Yamaguchi, Akihiko; Iwatani, Miho; Ogawa, Mariko; Kitano, Hajime; Matsuyama, Michiya

    2013-01-01

    The nuclear envelopes surrounding the oocyte germinal vesicles of lower vertebrates (fish and frog) are supported by the lamina, which consists of the protein lamin B3 encoded by a gene found also in birds but lost in the lineage leading to mammals. Like other members of the lamin family, goldfish lamin B3 (gfLB3) contains two putative consensus phosphoacceptor p34cdc2 sites (Ser-28 and Ser-398) for the M-phase kinase to regulate lamin polymerization on the N- and C-terminal regions flanking a central rod domain. Partial phosphorylation of gfLB3 occurs on Ser-28 in the N-terminal head domain in immature oocytes prior to germinal vesicle breakdown, which suggests continual rearrangement of lamins by a novel lamin kinase in fish oocytes. We applied the expression-screening method to isolate lamin kinases by using phosphorylation site Ser-28-specific monoclonal antibody and a vector encoding substrate peptides from a goldfish ovarian cDNA library. As a result, SRPK1 was screened as a prominent lamin kinase candidate. The gfLB3 has a short stretch of the RS repeats (9-SRASTVRSSRRS-20) upstream of the Ser-28, within the N-terminal head. This stretch of repeats is conserved among fish lamin B3 but is not found in other lamins. In vitro phosphorylation studies and GST-pull down assay revealed that SRPK1 bound to the region of sequential RS repeats (9–20) with affinity and recruited serine into the active site by a grab-and-pull manner. These results indicate SRPK1 may phosphorylate the p34cdc2 site in the N-terminal head of GV-lamin B3 at the RS motifs, which have the general property of aggregation. PMID:23772390

  15. Angiotensin II stimulates calcium-dependent activation of c-Jun N-terminal kinase.

    PubMed Central

    Zohn, I E; Yu, H; Li, X; Cox, A D; Earp, H S

    1995-01-01

    In GN4 rat liver epithelial cells, angiotensin II (Ang II) and other agonists which activate phospholipase C stimulate tyrosine kinase activity in a calcium-dependent, protein kinase C (PKC)-independent manner. Since Ang II also produces a proliferative response in these cells, we investigated downstream signaling elements traditionally linked to growth control by tyrosine kinases. First, Ang II, like epidermal growth factor (EGF), stimulated AP-1 binding activity in a PKC-independent manner. Because increases in AP-1 can reflect induction of c-Jun and c-Fos, we examined the activity of the mitogen-activated protein (MAP) kinase family members Erk-1 and -2 and the c-Jun N-terminal kinase (JNK), which are known to influence c-Jun and c-Fos transcription. Ang II stimulated MAP kinase (MAPK) activity but only approximately 50% as effectively as EGF; again, these effects were independent of PKC. Ang II also produced a 50- to 200-fold activation of JNK in a PKC-independent manner. Unlike its smaller effect on MAPK, Ang II was approximately four- to sixfold more potent in activating JNK than EGF was. Although others had reported a lack of calcium ionophore-stimulated JNK activity in lymphocytes and several other cell lines, we examined the role of calcium in GN4 cells. The following results suggest that JNK activation in rat liver epithelial cells is at least partially Ca(2+) dependent: (i) norepinephrine and vasopressin hormones that increase inositol 1,4,5-triphosphate stimulated JNK; (ii) both thapsigargin, a compound that produces an intracellular Ca(2+) signal, and Ca(2+) ionophores stimulated a dramatic increase in JNK activity (up to 200-fold); (iii) extracellular Ca(2+) chelation with ethylene glycol tetraacetic acid (EGTA) inhibited JNK activation by ionophore and intracellular chelation with 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl-ester (BAPTA-AM) partially inhibited JNK activation by Ang II or thapsigargin; and (iv) JNK

  16. Distinctive functions of Syk N-terminal and C-terminal SH2 domains in the signaling cascade elicited by oxidative stress in B cells.

    PubMed

    Ding, J; Takano, T; Hermann, P; Gao, S; Han, W; Noda, C; Yanagi, S; Yamamura, H

    2000-05-01

    Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.

  17. The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1.

    PubMed

    Bustos, Victor H; Ferrarese, Anna; Venerando, Andrea; Marin, Oriano; Allende, Jorge E; Pinna, Lorenzo A

    2006-12-26

    Multiple phosphorylation of beta-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38-64 of beta-catenin are phosphorylated by CK1 on Ser-45 with low affinity (K(m) approximately 1 mM), whereas intact beta-catenin is phosphorylated at Ser-45 with very high affinity (K(m) approximately 200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70-74 positions or a F74AA mutation in full-length beta-catenin had no significant effect on CK1 phosphorylation efficiency. beta-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131-181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in K(m) value. Implication of the first armadillo repeat in beta-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of beta-catenin from alpha-catenin, further improves CK1 phosphorylation efficiency, lowering the K(m) value to <50 nM, approximating the physiological concentration of beta-catenin. In contrast, alpha-catenin, which interacts with the N-terminal region of beta-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that beta-catenin association with alpha-catenin and beta-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive.

  18. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH

  19. Hydrophobic Motif Phosphorylation Coordinates Activity and Polar Localization of the Neurospora crassa Nuclear Dbf2-Related Kinase COT1

    PubMed Central

    Maerz, Sabine; Dettmann, Anne

    2012-01-01

    Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2. PMID:22451488

  20. Crystal Structure of Human Dual-Specificity Tyrosine-Regulated Kinase 3 Reveals New Structural Features and Insights into its Auto-phosphorylation.

    PubMed

    Kim, Kuglae; Cha, Jeong Seok; Cho, Yong-Soon; Kim, Hoyoung; Chang, Nienping; Kim, Hye-Jung; Cho, Hyun-Soo

    2018-05-11

    Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Vincristine activates c-Jun N-terminal kinase in chronic lymphocytic leukaemia in vivo

    PubMed Central

    Bates, Darcy J P; Lewis, Lionel D; Eastman, Alan; Danilov, Alexey V

    2015-01-01

    Aims The authors’ aim was to conduct a proof-of-principle study to test whether c-Jun N-terminal kinase (JNK) phosphorylation and Noxa induction occur in peripheral blood chronic lymphocytic leukaemia (CLL) cells in patients receiving a vincristine infusion. Methods Patients with CLL received 2 mg vincristine by a 5-min intravenous infusion. Blood samples were collected at baseline and up to 6 h after the vincristine infusion, and assayed for JNK activation, Noxa induction and vincristine plasma concentrations. Results Ex vivo treated peripheral CLL cells activated JNK in response to 10–100 nM vincristine in 6 h. Noxa protein expression, while variable, was also observed over this time frame. In CLL patients, vincristine infusion led to rapid (<1 h) JNK phosphorylation in peripheral blood CLL cells which was sustained for at least 4–6 h after the vincristine infusion. Noxa protein expression was not observed in response to vincristine infusion. Conclusions This study confirmed that vincristine can activate JNK but not induce Noxa in CLL cells in vivo. The results suggest that novel JNK-dependent drug combinations with vincristine warrant further investigation. PMID:25753324

  2. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt.

    PubMed

    Zhang, Q-G; Han, D; Xu, J; Lv, Q; Wang, R; Yin, X-H; Xu, T-L; Zhang, G-Y

    2006-12-01

    Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.

  3. Influence of phosphorylation of THR-3, SER-11, and SER-15 on deoxycytidine kinase activity and stability.

    PubMed

    Smal, C; Ntamashimikiro, S; Arts, A; Van Den Neste, E; Bontemps, F

    2010-06-01

    Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxyribonucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We have recently shown that dCK is a phosphoprotein. Four in vivo phosphorylation sites were identified: Thr-3, Ser-11, Ser-15, and Ser-74. Site-directed mutagenesis demonstrated that phosphorylation of Ser-74, the major phosphorylated residue, strongly influences dCK activity in eucaryotic cells. Here, we show that phosphorylation of the three other sites, located in the N-terminal extremity of the protein, does not significantly modify dCK activity, but phosphorylation of Thr-3 could promote dCK stability.

  4. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.

    PubMed

    Hsieh, Ching-Liang; Ho, Tin-Yun; Su, Shan-Yu; Lo, Wan-Yu; Liu, Chung-Hsiang; Tang, Nou-Ying

    2009-01-01

    Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-kappaB (NF-kappaB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-kappaB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-kappaB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-kappaB activation.

  5. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence uniquemore » in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.« less

  7. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  8. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  9. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  10. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  11. Characterization of Runella slithyformis HD-Pnk, a bifunctional DNA/RNA end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase domain.

    PubMed

    Munir, Annum; Shuman, Stewart

    2016-11-28

    5' and 3' end healing are key steps in nucleic acid break repair in which 5' -OH ends are phosphorylated by a polynucleotide kinase and 3' -PO 4 or 2',3' -cyclic-PO 4 ends are hydrolyzed by a phosphoesterase to generate the 5' -PO 4 and 3' -OH termini required for sealing by classic polynucleotide ligases. End healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2',3' -phosphoesterase HD domain and a C-terminal 5' -OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5' -OH polynucleotides (9-mers or longer) in the presence of magnesium and any NTP donor. HD-Pnk dephosphorylates RNA 2',3' -cyclic phosphate, RNA 3' -phosphate, RNA 2' -phosphate, and DNA 3' -phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper or cobalt. HD-Pnkp homologs are present in genera from eleven bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. The present study provides insights to the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnkp as the exemplar of a novel clade of dual 5' and 3' end-healing enzymes that phosphorylate 5' -OH termini and dephosphorylate 2',3' -cyclic-PO 4 , 3' -PO 4 , and 2' -PO 4 ends. The distinctive feature of HD-Pnk is its domain composition: a fusion of an N-terminal HD phosphohydrolase module to a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, domain order, and similar polypeptide size are distributed widely among genera from eleven bacterial phyla. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    PubMed Central

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933

  13. Prokaryotic expression of bone sialoprotein and identification of casein kinase II phosphorylation sites.

    PubMed

    Saad, Fawzy A; Salih, Erdjan; Wunderlich, Livius; Flückiger, Rudolf; Glimcher, Melvin J

    2005-07-29

    Bone sialoprotein is an extracellular noncollagenous acidic protein that plays a role in bone mineralization and remodeling. Its expression is restricted to mineralized tissues and is subjected to variety of posttranslational modifications including phosphorylation and glycosylation. We have expressed the full-length and half domains of bovine bone sialoprotein in a prokaryotic system and identified the phosphorylation sites of casein kinase II. The N-terminal automated solid-phase sequencing defined four phosphorylated peptides: residues 28-38 (LEDS(P)EENGVFK), 51-86 (FYPELKRFAVQSSS(P)DS(P)S(P)EENGNGDS(P)S(P)EEEEEEEETS(P)), 151-165 (EDES(P)DEEEEEEEEEE), and 295-305 (GRGYDS(P)YDGQD). Nine phosphoserines were identified within the four peptides. Seven of them were in the N-terminus (S31, S64, S66, S67, S75, S76, and S86) and two were in the C-terminus (S154 and S300) of the protein.

  14. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  15. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation.

    PubMed

    Panneton, Vincent; Nath, Apurba; Sader, Fadi; Delaunay, Nathalie; Pelletier, Ariane; Maier, Dominic; Oh, Karen; Hipfner, David R

    2015-08-21

    Protein kinases carry out important functions in cells both by phosphorylating substrates and by means of regulated non-catalytic activities. Such non-catalytic functions have been ascribed to many kinases, including some members of the Ste20 family. The Drosophila Ste20 kinase Slik phosphorylates and activates Moesin in developing epithelial tissues to promote epithelial tissue integrity. It also functions non-catalytically to promote epithelial cell proliferation and tissue growth. We carried out a structure-function analysis to determine how these two distinct activities of Slik are controlled. We find that the conserved C-terminal coiled-coil domain of Slik, which is necessary and sufficient for apical localization of the kinase in epithelial cells, is not required for Moesin phosphorylation but is critical for the growth-promoting function of Slik. Slik is auto- and trans-phosphorylated in vivo. Phosphorylation of at least two of three conserved sites in the activation segment is required for both efficient catalytic activity and non-catalytic signaling. Slik function is thus dependent upon proper localization of the kinase via the C-terminal coiled-coil domain and activation via activation segment phosphorylation, which enhances both phosphorylation of substrates like Moesin and engagement of effectors of its non-catalytic growth-promoting activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Interactions and phosphorylation of postsynaptic density 93 (PSD-93) by extracellular signal-regulated kinase (ERK).

    PubMed

    Guo, Ming-Lei; Xue, Bing; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2012-07-17

    Postsynaptic density 93 (PSD-93) is a protein enriched at postsynaptic sites. As a key scaffolding protein, PSD-93 forms complexes with the clustering of various synaptic proteins to construct postsynaptic signaling networks and control synaptic transmission. Extracellular signal-regulated kinase (ERK) is a prototypic member of a serine/threonine protein kinase family known as mitogen-activated protein kinase (MAPK). This kinase, especially ERK2 isoform, noticeably resides in peripheral structures of neurons, such as dendritic spines and postsynaptic density areas, in addition to its distribution in the cytoplasm and nucleus, although little is known about specific substrates of ERK at synaptic sites. In this study, we found that synaptic PSD-93 is a direct target of ERK. This was demonstrated by direct protein-protein interactions between purified ERK2 and PSD-93 in vitro. The accurate ERK2-binding region seems to locate at an N-terminal region of PSD-93. In adult rat striatal neurons in vivo, native ERK from synaptosomal fractions also associated with PSD-93. In phosphorylation assays, active ERK2 phosphorylated PSD-93. An accurate phosphorylation site was identified at a serine site (S323). In striatal neurons, immunoprecipitated PSD-93 showed basal phosphorylation at an ERK-sensitive site. Our data provide evidence supporting PSD-93 as a new substrate of the synaptic species of ERK. ERK2 possesses the ability to interact with PSD-93 and phosphorylate PSD-93 at a specific site. Published by Elsevier B.V.

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER... Lateral   Sclerosis ”   Final  Report:  Project  Period  Sept  2012-­‐Dec  2014     Personnel  List:     Feng,  Yangbo

  19. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. Copyright © 2015 by the Genetics Society of America.

  20. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    PubMed

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  2. Neurofilament tail phosphorylation: identity of the RT-97 phosphoepitope and regulation in neurons by cross-talk among proline-directed kinases.

    PubMed

    Veeranna; Lee, Ju-Hyun; Pareek, Tej K; Jaffee, Howard; Boland, Barry; Vinod, K Yaragudri; Amin, Niranjana; Kulkarni, Ashok B; Pant, Harish C; Nixon, Ralph A

    2008-10-01

    As axons myelinate, establish a stable neurofilament network, and expand in caliber, neurofilament proteins are extensively phosphorylated along their C-terminal tails, which is recognized by the monoclonal antibody, RT-97. Here, we demonstrate in vivo that RT-97 immunoreactivity (IR) is generated by phosphorylation at KSPXK or KSPXXXK motifs and requires flanking lysines at specific positions. extracellular signal regulated kinase 1,2 (ERK1,2) and pERK1,2 levels increase in parallel with phosphorylation at the RT-97 epitope during early postnatal brain development. Purified ERK1,2 generated RT-97 on both KSP motifs on recombinant NF-H tail domain proteins, while cdk5 phosphorylated only KSPXK motifs. RT-97 epitope generation in primary hippocampal neurons was regulated by extensive cross-talk among ERK1,2, c-Jun N-terminal kinase 1,2 (JNK1,2) and cdk5. Inhibition of both ERK1,2 and JNK1,2 completely blocked RT-97 generation. Cdk5 influenced RT-97 generation indirectly by modulating JNK activation. In mice, cdk5 gene deletion did not significantly alter RT-97 IR or ERK1,2 and JNK activation. In mice lacking the cdk5 activator P35, the partial suppression of cdk5 activity increased RT-97 IR by activating ERK1,2. Thus, cdk5 influences RT-97 epitope generation partly by modulating ERKs and JNKs, which are the two principal kinases regulating neurofilament phosphorylation. The regulation of a single target by multiple protein kinases underscores the importance of monitoring other relevant kinases when the activity of a particular one is blocked.

  3. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    PubMed

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  4. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    PubMed

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  5. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. Characterization of Runella slithyformis HD-Pnk, a Bifunctional DNA/RNA End-Healing Enzyme Composed of an N-Terminal 2′,3′-Phosphoesterase HD Domain and a C-Terminal 5′-OH Polynucleotide Kinase Domain

    PubMed Central

    Munir, Annum

    2016-01-01

    ABSTRACT 5′- and 3′-end-healing reactions are key steps in nucleic acid break repair in which 5′-OH ends are phosphorylated by a polynucleotide kinase (Pnk) and 3′-PO4 or 2′,3′-cyclic-PO4 ends are hydrolyzed by a phosphoesterase to generate the 5′-PO4 and 3′-OH termini required for sealing by classic polynucleotide ligases. End-healing and sealing enzymes are present in diverse bacterial taxa, often organized as modular units within a single multifunctional polypeptide or as subunits of a repair complex. Here we identify and characterize Runella slithyformis HD-Pnk as a novel bifunctional end-healing enzyme composed of an N-terminal 2′,3′-phosphoesterase HD domain and a C-terminal 5′-OH polynucleotide kinase P-loop domain. HD-Pnk phosphorylates 5′-OH polynucleotides (9-mers or longer) in the presence of magnesium and any nucleoside triphosphate donor. HD-Pnk dephosphorylates RNA 2′,3′-cyclic phosphate, RNA 3′-phosphate, RNA 2′-phosphate, and DNA 3′-phosphate ends in the presence of a transition metal cofactor, which can be nickel, copper, or cobalt. HD-Pnk homologs are present in genera from 11 bacterial phyla and are often encoded in an operon with a putative ATP-dependent polynucleotide ligase. IMPORTANCE The present study provides insights regarding the diversity of nucleic acid repair strategies via the characterization of Runella slithyformis HD-Pnk as the exemplar of a novel clade of dual 5′- and 3′-end-healing enzymes that phosphorylate 5′-OH termini and dephosphorylate 2′,3′-cyclic-PO4, 3′-PO4, and 2′-PO4 ends. The distinctive feature of HD-Pnk is its domain composition, i.e., a fusion of an N-terminal HD phosphohydrolase module and a C-terminal P-loop polynucleotide kinase module. Homologs of Runella HD-Pnk with the same domain composition, same domain order, and similar polypeptide sizes are distributed widely among genera from 11 bacterial phyla. PMID:27895092

  7. PSEA: Kinase-specific prediction and analysis of human phosphorylation substrates

    NASA Astrophysics Data System (ADS)

    Suo, Sheng-Bao; Qiu, Jian-Ding; Shi, Shao-Ping; Chen, Xiang; Liang, Ru-Ping

    2014-03-01

    Protein phosphorylation catalysed by kinases plays crucial regulatory roles in intracellular signal transduction. With the increasing number of kinase-specific phosphorylation sites and disease-related phosphorylation substrates that have been identified, the desire to explore the regulatory relationship between protein kinases and disease-related phosphorylation substrates is motivated. In this work, we analysed the kinases' characteristic of all disease-related phosphorylation substrates by using our developed Phosphorylation Set Enrichment Analysis (PSEA) method. We evaluated the efficiency of our method with independent test and concluded that our approach is reliable for identifying kinases responsible for phosphorylated substrates. In addition, we found that Mitogen-activated protein kinase (MAPK) and Glycogen synthase kinase (GSK) families are more associated with abnormal phosphorylation. It can be anticipated that our method might be helpful to identify the mechanism of phosphorylation and the relationship between kinase and phosphorylation related diseases. A user-friendly web interface is now freely available at http://bioinfo.ncu.edu.cn/PKPred_Home.aspx.

  8. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase weremore » enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.« less

  9. Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.

    PubMed

    Bentley, J Kelley

    2005-01-01

    A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.

  10. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival.

    PubMed

    McDonald, Paul C; Oloumi, Arusha; Mills, Julia; Dobreva, Iveta; Maidan, Mykola; Gray, Virginia; Wederell, Elizabeth D; Bally, Marcel B; Foster, Leonard J; Dedhar, Shoukat

    2008-03-15

    An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions. Coimmunoprecipitation analyses confirmed this interaction, and ILK and rictor colocalized in membrane ruffles and leading edges of cancer cells. Yeast two-hybrid assays showed a direct interaction between the NH(2)- and COOH-terminal domains of rictor and the ILK kinase domain. Depletion of ILK and rictor in breast and prostate cancer cell lines resulted in inhibition of Akt Ser(473) phosphorylation and induction of apoptosis, whereas, in several cell lines, depletion of mTOR increased Akt phosphorylation. Akt and Ser(473)P-Akt were detected in ILK immunoprecipitates and small interfering RNA-mediated depletion of rictor, but not mTOR, inhibited the amount of Ser(473)P-Akt in the ILK complex. Expression of the NH(2)-terminal (1-398 amino acids) rictor domain also resulted in the inhibition of ILK-associated Akt Ser(473) phosphorylation. These data show that rictor regulates the ability of ILK to promote Akt phosphorylation and cancer cell survival.

  11. Cdc15 Phosphorylates the C-terminal Domain of RNA Polymerase II for Transcription during Mitosis.

    PubMed

    Singh, Amit Kumar; Rastogi, Shivangi; Shukla, Harish; Asalam, Mohd; Rath, Srikanta Kumar; Akhtar, Md Sohail

    2017-03-31

    In eukaryotes, the basal transcription in interphase is orchestrated through the regulation by kinases (Kin28, Bur1, and Ctk1) and phosphatases (Ssu72, Rtr1, and Fcp1), which act through the post-translational modification of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. The CTD comprises the repeated Tyr-Ser-Pro-Thr-Ser-Pro-Ser motif with potential epigenetic modification sites. Despite the observation of transcription and periodic expression of genes during mitosis with entailing CTD phosphorylation and dephosphorylation, the associated CTD specific kinase(s) and its role in transcription remains unknown. Here we have identified Cdc15 as a potential kinase phosphorylating Ser-2 and Ser-5 of CTD for transcription during mitosis in the budding yeast. The phosphorylation of CTD by Cdc15 is independent of any prior Ser phosphorylation(s). The inactivation of Cdc15 causes reduction of global CTD phosphorylation during mitosis and affects the expression of genes whose transcript levels peak during mitosis. Cdc15 also influences the complete transcription of clb2 gene and phosphorylates Ser-5 at the promoter and Ser-2 toward the 3' end of the gene. The observation that Cdc15 could phosphorylate Ser-5, as well as Ser-2, during transcription in mitosis is in contrast to the phosphorylation marks put by the kinases in interphase (G 1 , S, and G 2 ), where Cdck7/Kin28 phosphorylates Ser-5 at promoter and Bur1/Ctk1 phosphorylates Ser-2 at the 3' end of the genes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. AMP-activated protein kinase-mediated feedback phosphorylation controls the Ca2+/calmodulin (CaM) dependence of Ca2+/CaM-dependent protein kinase kinase β.

    PubMed

    Nakanishi, Akihiro; Hatano, Naoya; Fujiwara, Yuya; Sha'ri, Arian; Takabatake, Shota; Akano, Hiroki; Kanayama, Naoki; Magari, Masaki; Nozaki, Naohito; Tokumitsu, Hiroshi

    2017-12-01

    The Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ)/5'-AMP-activated protein kinase (AMPK) phosphorylation cascade affects various Ca 2+ -dependent metabolic pathways and cancer growth. Unlike recombinant CaMKKβ that exhibits higher basal activity (autonomous activity), activation of the CaMKKβ/AMPK signaling pathway requires increased intracellular Ca 2+ concentrations. Moreover, the Ca 2+ /CaM dependence of CaMKKβ appears to arise from multiple phosphorylation events, including autophosphorylation and activities furnished by other protein kinases. However, the effects of proximal downstream kinases on CaMKKβ activity have not yet been evaluated. Here, we demonstrate feedback phosphorylation of CaMKKβ at multiple residues by CaMKKβ-activated AMPK in addition to autophosphorylation in vitro , leading to reduced autonomous, but not Ca 2+ /CaM-activated, CaMKKβ activity. MS analysis and site-directed mutagenesis of AMPK phosphorylation sites in CaMKKβ indicated that Thr 144 phosphorylation by activated AMPK converts CaMKKβ into a Ca 2+ /CaM-dependent enzyme as shown by completely Ca 2+ /CaM-dependent CaMKK activity of a phosphomimetic T144E CaMKKβ mutant. CaMKKβ mutant analysis indicated that the C-terminal domain (residues 471-587), including the autoinhibitory region, plays an important role in stabilizing an inactive conformation in a Thr 144 phosphorylation-dependent manner. Furthermore, immunoblot analysis with anti-phospho-Thr 144 antibody revealed phosphorylation of Thr 144 in CaMKKβ in transfected COS-7 cells that was further enhanced by exogenous expression of AMPKα. These results indicate that AMPK-mediated feedback phosphorylation of CaMKKβ regulates the CaMKKβ/AMPK signaling cascade and may be physiologically important for intracellular maintenance of Ca 2+ -dependent AMPK activation by CaMKKβ. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    PubMed

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  14. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    PubMed

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  15. Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family.

    PubMed

    Yu, J S; Chen, W J; Ni, M H; Chan, W H; Yang, S D

    1998-08-15

    Autophosphorylation-dependent protein kinase (auto-kinase) was identified from pig brain and liver on the basis of its unique autophosphorylation/activation property [Yang, Fong, Yu and Liu (1987) J. Biol. Chem. 262, 7034-7040; Yang, Chang and Soderling (1987) J. Biol. Chem. 262, 9421-9427]. Its substrate consensus sequence motif was determined as being -R-X-(X)-S*/T*-X3-S/T-. To characterize auto-kinase further, we partly sequenced the kinase purified from pig liver. The N-terminal sequence (VDGGAKTSDKQKKKAXMTDE) and two internal peptide sequences (EKLRTIV and LQNPEK/ILTP/FI) of auto-kinase were obtained. These sequences identify auto-kinase as a C-terminal catalytic fragment of p21-activated protein kinase 2 (PAK2 or gamma-PAK) lacking its N-terminal regulatory region. Auto-kinase can be recognized by an antibody raised against the C-terminal peptide of human PAK2 by immunoblotting. Furthermore the autophosphorylation site sequence of auto-kinase was successfully predicted on the basis of its substrate consensus sequence motif and the known PAK2 sequence, and was further demonstrated to be RST(P)MVGTPYWMAPEVVTR by phosphoamino acid analysis, manual Edman degradation and phosphopeptide mapping via the help of phosphorylation site analysis of a synthetic peptide corresponding to the sequence of PAK2 from residues 396 to 418. During the activation process, auto-kinase autophosphorylates mainly on a single threonine residue Thr402 (according to the sequence numbering of human PAK2). In addition, a phospho-specific antibody against a synthetic phosphopeptide containing this identified sequence was generated and shown to be able to differentially recognize the activated auto-kinase autophosphorylated at Thr402 but not the non-phosphorylated/inactive auto-kinase. Immunoblot analysis with this phospho-specific antibody further revealed that the change in phosphorylation level of Thr402 of auto-kinase was well correlated with the activity change of the kinase during both

  16. Identification of the regulatory autophosphorylation site of autophosphorylation-dependent protein kinase (auto-kinase). Evidence that auto-kinase belongs to a member of the p21-activated kinase family.

    PubMed Central

    Yu, J S; Chen, W J; Ni, M H; Chan, W H; Yang, S D

    1998-01-01

    Autophosphorylation-dependent protein kinase (auto-kinase) was identified from pig brain and liver on the basis of its unique autophosphorylation/activation property [Yang, Fong, Yu and Liu (1987) J. Biol. Chem. 262, 7034-7040; Yang, Chang and Soderling (1987) J. Biol. Chem. 262, 9421-9427]. Its substrate consensus sequence motif was determined as being -R-X-(X)-S*/T*-X3-S/T-. To characterize auto-kinase further, we partly sequenced the kinase purified from pig liver. The N-terminal sequence (VDGGAKTSDKQKKKAXMTDE) and two internal peptide sequences (EKLRTIV and LQNPEK/ILTP/FI) of auto-kinase were obtained. These sequences identify auto-kinase as a C-terminal catalytic fragment of p21-activated protein kinase 2 (PAK2 or gamma-PAK) lacking its N-terminal regulatory region. Auto-kinase can be recognized by an antibody raised against the C-terminal peptide of human PAK2 by immunoblotting. Furthermore the autophosphorylation site sequence of auto-kinase was successfully predicted on the basis of its substrate consensus sequence motif and the known PAK2 sequence, and was further demonstrated to be RST(P)MVGTPYWMAPEVVTR by phosphoamino acid analysis, manual Edman degradation and phosphopeptide mapping via the help of phosphorylation site analysis of a synthetic peptide corresponding to the sequence of PAK2 from residues 396 to 418. During the activation process, auto-kinase autophosphorylates mainly on a single threonine residue Thr402 (according to the sequence numbering of human PAK2). In addition, a phospho-specific antibody against a synthetic phosphopeptide containing this identified sequence was generated and shown to be able to differentially recognize the activated auto-kinase autophosphorylated at Thr402 but not the non-phosphorylated/inactive auto-kinase. Immunoblot analysis with this phospho-specific antibody further revealed that the change in phosphorylation level of Thr402 of auto-kinase was well correlated with the activity change of the kinase during both

  17. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  18. Ketamine inhibits tumor necrosis factor-{alpha} and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, G.-J.; Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-{alpha} (TNF-{alpha}) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 {mu}M ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 {mu}M of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-{alpha}more » and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-{alpha} and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 {mu}M) significantly inhibited LPS-induced TNF-{alpha} and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-{alpha} and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-{alpha} and IL-6 gene expressions in LPS-activated macrophages. The suppressive

  19. Ketamine inhibits tumor necrosis factor-alpha and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation.

    PubMed

    Wu, Gone-Jhe; Chen, Ta-Liang; Ueng, Yune-Fang; Chen, Ruei-Ming

    2008-04-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-alpha (TNF-alpha) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 microM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 microM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-alpha and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-alpha and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 microM) significantly inhibited LPS-induced TNF-alpha and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-alpha and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-alpha and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through

  20. CHLAMYDIA TRACHOMATIS TARP IS PHOSPHORYLATED BY SRC FAMILY TYROSINE KINASES

    PubMed Central

    Jewett, Travis J.; Dooley, Cheryl A.; Mead, David J.; Hackstadt, Ted

    2008-01-01

    The translocated actin recruiting phosphoprotein (Tarp) is injected into the cytosol shortly after Chlamydia trachomatis attachment to a target cell and subsequently phosphorylated by an unidentified tyrosine kinase. A role for Tarp phosphorylation in bacterial entry is unknown. In this study, recombinant C. trachomatis Tarp was employed to identify the host cell kinase(s) required for phosphorylation. Each tyrosine rich repeat of L2 Tarp harbors a sequence similar to a Src and Abl kinase consensus target. Furthermore, purified p60-src, Yes, Fyn, and Abl kinases were able to phosphorylate Tarp. Mutagenesis of potential tyrosines within a single tyrosine rich repeat peptide indicated that both Src and Abl kinases phosphorylate the same residues suggesting that C. trachomatis Tarp may serve as a substrate for multiple host cell kinases. Surprisingly, chemical inhibition of Src and Abl kinases prevented Tarp phosphorylation in culture and had no measurable effect on bacterial entry into host cells. PMID:18442471

  1. Daphnoretin modulates differentiation and maturation of human dendritic cells through down-regulation of c-Jun N-terminal kinase.

    PubMed

    Chen, Chien-An; Liu, Chien-Kuo; Hsu, Ming-Ling; Chi, Chih-Wen; Ko, Chun-Chuan; Chen, Jian-Syun; Lai, Cheng-Ta; Chang, Hen-Hong; Lee, Tzung-Yan; Lai, Yuen-Liang; Chen, Yu-Jen

    2017-10-01

    Daphnoretin, an active constituent of Wikstroemia indica C.A. Meys, has been shown possessing anti-cancer activity. In this study, we examined the effect of daphnoretin on differentiation and maturation of human myeloid dendritic cells (DCs). After treatment with daphnoretin (0, 1.1, 3.3, 10 and 30μM) to initiate monocytes, the recovery rate of DCs was reduced in a dose-dependent manner. The mature DCs differentiated in the presence of daphnoretin had fewer and shorter dendrites. Daphnoretin modulated DCs differentiation and maturation in terms of lower expression of CD1a, CD40, CD83, DC-SIGN, and HLA-DR. Daphnoretin inhibited the allostimulatory activity of DCs on proliferation of naive CD4 + CD45 + RA + T cell. On the mitogen-activated protein kinase, daphnoretin down-regulated the lipopolysaccharide-augmented expression of phosphorylated c-Jun N-terminal kinase (pJNK), but not p38 and extracellular signal-regulated kinase 1/2 (ERK1/2). Activation of JNK by anisomycin reversed the effect of daphnoretin on daphnoretin-inhibited pJNK expression and dendrite formation of DCs. In disease model related to maturation of DCs, daphnoretin suppressed the acute rejection of skin allografts in mice. Our results suggest that daphnoretin modulated differentiation and maturation of DCs toward a state of atypical maturation with impaired allostimulatory function and this effect may go through down-regulation of phosphorylated JNK. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-09-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an inmore » vitro assay containing ({gamma}-{sup 32}P)ATP. The same glycoprotein was phosphorylated when ({sup 32}P)GTP was substituted for ({sup 32}P)ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.« less

  3. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6.

    PubMed

    Stamos, Jennifer L; Chu, Matthew Ling-Hon; Enos, Michael D; Shah, Niket; Weis, William I

    2014-03-18

    Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/β-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.

  4. Coupled motions in the SH2 and kinase domains of Csk control Src phosphorylation.

    PubMed

    Wong, Lilly; Lieser, Scot A; Miyashita, Osamu; Miller, Meghan; Tasken, Kjetil; Onuchic, Josè N; Adams, Joseph A; Woods, Virgil L; Jennings, Patricia A

    2005-08-05

    The C-terminal Src kinase (Csk) phosphorylates and down-regulates Src family tyrosine kinases. The Csk-binding protein (Cbp) localizes Csk close to its substrates at the plasma membrane, and increases the specific activity of the kinase. To investigate this long-range catalytic effect, the phosphorylation of Src and the conformation of Csk were investigated in the presence of a high-affinity phosphopeptide derived from Cbp. This peptide binds tightly to the SH2 domain and enhances Src recognition (lowers K(m)) by increasing the apparent phosphoryl transfer rate in the Csk active site, a phenomenon detected in rapid quench flow experiments. Previous studies demonstrated that the regulation of Csk activity is linked to conformational changes in the enzyme that can be probed with hydrogen-deuterium exchange methods. We show that the Cbp peptide impacts deuterium incorporation into its binding partner (the SH2 domain), and into the SH2-kinase linker and several sequences in the kinase domain, including the glycine-rich loop in the active site. These findings, along with computational data from normal mode analyses, suggest that the SH2 domain moves in a cantilever fashion with respect to the small lobe of the kinase domain, ordering the active site for catalysis. The binding of a small Cbp-derived peptide to the SH2 domain of Csk modifies these motions, enhancing Src recognition.

  5. Sustained activation of c-Jun N-terminal and extracellular signal-regulated kinases in port-wine stain blood vessels.

    PubMed

    Tan, Wenbin; Chernova, Margarita; Gao, Lin; Sun, Victor; Liu, Huaxu; Jia, Wangcun; Langer, Stephanie; Wang, Gang; Mihm, Martin C; Nelson, J Stuart

    2014-11-01

    Port-wine stain (PWS) is a congenital, progressive vascular malformation but the pathogenesis remains incompletely understood. We sought to investigate the activation status of various kinases, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, AKT, phosphatidylinositol 3-kinase, P70 ribosomal S6 kinase, and phosphoinositide phospholipase C γ subunit, in PWS biopsy tissues. Immunohistochemistry was performed on 19 skin biopsy samples from 11 patients with PWS. c-Jun N-terminal kinase, extracellular signal-regulated kinase, and P70 ribosomal S6 kinase in pediatric and adult PWS blood vessels were consecutively activated. Activation of AKT and phosphatidylinositol 3-kinase was found in many adult hypertrophic PWS blood vessels but not in infants. Phosphoinositide phospholipase C γ subunit showed strong activation in nodular PWS blood vessels. Infantile PWS sample size was small. Our data suggest a subsequent activation profile of various kinases during different stages of PWS: (1) c-Jun N-terminal and extracellular signal-regulated kinases are firstly and consecutively activated in all PWS tissues, which may contribute to both the pathogenesis and progressive development of PWS; (2) AKT and phosphatidylinositol 3-kinase are subsequently activated, and are involved in the hypertrophic development of PWS blood vessels; and (3) phosphoinositide phospholipase C γ subunit is activated in the most advanced stage of PWS and may participate in nodular formation. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  6. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    PubMed

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  7. Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity.

    PubMed

    Szczepankiewicz, Bruce G; Kosogof, Christi; Nelson, Lissa T J; Liu, Gang; Liu, Bo; Zhao, Hongyu; Serby, Michael D; Xin, Zhili; Liu, Mei; Gum, Rebecca J; Haasch, Deanna L; Wang, Sanyi; Clampit, Jill E; Johnson, Eric F; Lubben, Thomas H; Stashko, Michael A; Olejniczak, Edward T; Sun, Chaohong; Dorwin, Sarah A; Haskins, Kristi; Abad-Zapatero, Cele; Fry, Elizabeth H; Hutchins, Charles W; Sham, Hing L; Rondinone, Cristina M; Trevillyan, James M

    2006-06-15

    The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.

  8. Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint.

    PubMed

    Combes, Guillaume; Barysz, Helena; Garand, Chantal; Gama Braga, Luciano; Alharbi, Ibrahim; Thebault, Philippe; Murakami, Luc; Bryne, Dominic P; Stankovic, Stasa; Eyers, Patrick A; Bolanos-Garcia, Victor M; Earnshaw, William C; Maciejowski, John; Jallepalli, Prasad V; Elowe, Sabine

    2018-03-19

    Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a "prone-to-autophosphorylate" Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms.

    PubMed

    Kuhar, Jamie Rose; Bedini, Andrea; Melief, Erica J; Chiu, Yen-Chen; Striegel, Heather N; Chavkin, Charles

    2015-09-01

    G protein-coupled receptor desensitization is typically mediated by receptor phosphorylation by G protein-coupled receptor kinase (GRK) and subsequent arrestin binding; morphine, however, was previously found to activate a c-Jun N-terminal kinase (JNK)-dependent, GRK/arrestin-independent pathway to produce mu opioid receptor (MOR) inactivation in spinally-mediated, acute anti-nociceptive responses [Melief et al.] [1]. In the current study, we determined that JNK2 was also required for centrally-mediated analgesic tolerance to morphine using the hotplate assay. We compared JNK activation by morphine and fentanyl in JNK1(-/-), JNK2(-/-), JNK3(-/-), and GRK3(-/-) mice and found that both compounds specifically activate JNK2 in vivo; however, fentanyl activation of JNK2 was GRK3-dependent, whereas morphine activation of JNK2 was GRK3-independent. In MOR-GFP expressing HEK293 cells, treatment with either arrestin siRNA, the Src family kinase inhibitor PP2, or the protein kinase C (PKC) inhibitor Gö6976 indicated that morphine activated JNK2 through an arrestin-independent Src- and PKC-dependent mechanism, whereas fentanyl activated JNK2 through a Src-GRK3/arrestin-2-dependent and PKC-independent mechanism. This study resolves distinct ligand-directed mechanisms of JNK activation by mu opioid agonists and understanding ligand-directed signaling at MOR may improve opioid therapeutics. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Retention of Chs2p in the ER requires N-terminal CDK1-phosphorylation sites.

    PubMed

    Teh, Ee Mei; Chai, Chuan Chung; Yeong, Foong May

    2009-09-15

    In budding yeast, the secretory pathway is constitutively transporting cargoes such as invertase and alpha-factor throughout the cell division cycle. However, chitin synthase 2 (Chs2p), another cargo of the secretory pathway, is retained at the endoplasmic reticulum (ER) during mitosis when the mitotic kinase activity is high. Chs2p is exported from the ER to the mother-daughter neck only upon mitotic kinase destruction, indicating that the mitotic kinase activity is critical for the ER retention of Chs2p. However, a key question is whether the mitotic kinase acts directly upon Chs2p to prevent its ER export. We report here that mutation of Ser residues to Glu at 4 perfect CDK1-phosphorylation sites at the N-terminus of Chs2p leads to its retention in the ER when the mitotic kinase activity is absent. Conversely, Ser-to-Ala mutations result in the loss of Chs2p ER retention even when mitotic kinase activity is high. The mere overexpression of the non-destructible form of the mitotic cyclin in G(1) cells can confine the wild-type Chs2p but not the Ser-to-Ala mutant in the ER. Furthermore, overexpression of the Ser-to-Ala mutant kills cells. Time-lapsed imaging revealed that Chs2p is exported from the ER rapidly and synchronously to the Golgi upon metaphase release. Our data indicate that direct phosphorylation of Chs2p by the mitotic CDK1 helps restrain it in the ER during mitosis to prevent its rapid export in an untimely manner until after sister chromatid occurs and mitotic exit executed.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  12. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    PubMed

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  13. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain

    PubMed Central

    Ampah-Korsah, Henry; Anderberg, Hanna I.; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  14. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    PubMed

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  15. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity.

    PubMed

    Jayaraman, Dhileepkumar; Richards, Alicia L; Westphall, Michael S; Coon, Joshua J; Ané, Jean-Michel

    2017-06-01

    Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. Changes in tau phosphorylation in hibernating rodents.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; García-Escudero, Vega; Hernández, Félix; Defelipe, Javier; Avila, Jesús

    2013-07-01

    Tau is a cytoskeletal protein present mainly in the neurons of vertebrates. By comparing the sequence of tau molecule among different vertebrates, it was found that the variability of the N-terminal sequence in tau protein is higher than that of the C-terminal region. The N-terminal region is involved mainly in the binding of tau to cellular membranes, whereas the C-terminal region of the tau molecule contains the microtubule-binding sites. We have compared the sequence of Syrian hamster tau with the sequences of other hibernating and nonhibernating rodents and investigated how differences in the N-terminal region of tau could affect the phosphorylation level and tau binding to cell membranes. We also describe a change, in tau phosphorylation, on a casein kinase 1 (ck1)-dependent site that is found only in hibernating rodents. This ck1 site seems to play an important role in the regulation of tau binding to membranes. Copyright © 2013 Wiley Periodicals, Inc.

  17. A grammar inference approach for predicting kinase specific phosphorylation sites.

    PubMed

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2015-01-01

    Kinase mediated phosphorylation site detection is the key mechanism of post translational mechanism that plays an important role in regulating various cellular processes and phenotypes. Many diseases, like cancer are related with the signaling defects which are associated with protein phosphorylation. Characterizing the protein kinases and their substrates enhances our ability to understand the mechanism of protein phosphorylation and extends our knowledge of signaling network; thereby helping us to treat such diseases. Experimental methods for predicting phosphorylation sites are labour intensive and expensive. Also, manifold increase of protein sequences in the databanks over the years necessitates the improvement of high speed and accurate computational methods for predicting phosphorylation sites in protein sequences. Till date, a number of computational methods have been proposed by various researchers in predicting phosphorylation sites, but there remains much scope of improvement. In this communication, we present a simple and novel method based on Grammatical Inference (GI) approach to automate the prediction of kinase specific phosphorylation sites. In this regard, we have used a popular GI algorithm Alergia to infer Deterministic Stochastic Finite State Automata (DSFA) which equally represents the regular grammar corresponding to the phosphorylation sites. Extensive experiments on several datasets generated by us reveal that, our inferred grammar successfully predicts phosphorylation sites in a kinase specific manner. It performs significantly better when compared with the other existing phosphorylation site prediction methods. We have also compared our inferred DSFA with two other GI inference algorithms. The DSFA generated by our method performs superior which indicates that our method is robust and has a potential for predicting the phosphorylation sites in a kinase specific manner.

  18. A Conserved Acidic Motif in the N-Terminal Domain of Nitrate Reductase Is Necessary for the Inactivation of the Enzyme in the Dark by Phosphorylation and 14-3-3 Binding1

    PubMed Central

    Pigaglio, Emmanuelle; Durand, Nathalie; Meyer, Christian

    1999-01-01

    It has previously been shown that the N-terminal domain of tobacco (Nicotiana tabacum) nitrate reductase (NR) is involved in the inactivation of the enzyme by phosphorylation, which occurs in the dark (L. Nussaume, M. Vincentz, C. Meyer, J.P. Boutin, and M. Caboche [1995] Plant Cell 7: 611–621). The activity of a mutant NR protein lacking this N-terminal domain was no longer regulated by light-dark transitions. In this study smaller deletions were performed in the N-terminal domain of tobacco NR that removed protein motifs conserved among higher plant NRs. The resulting truncated NR-coding sequences were then fused to the cauliflower mosaic virus 35S RNA promoter and introduced in NR-deficient mutants of the closely related species Nicotiana plumbaginifolia. We found that the deletion of a conserved stretch of acidic residues led to an active NR protein that was more thermosensitive than the wild-type enzyme, but it was relatively insensitive to the inactivation by phosphorylation in the dark. Therefore, the removal of this acidic stretch seems to have the same effects on NR activation state as the deletion of the N-terminal domain. A hypothetical explanation for these observations is that a specific factor that impedes inactivation remains bound to the truncated enzyme. A synthetic peptide derived from this acidic protein motif was also found to be a good substrate for casein kinase II. PMID:9880364

  19. Oxidative Unfolding of the Rubredoxin Domain and the Natively Disordered N-terminal Region Regulate the Catalytic Activity of Mycobacterium tuberculosis Protein Kinase G*

    PubMed Central

    Wittwer, Matthias; Luo, Qi; Kaila, Ville R. I.

    2016-01-01

    Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1–75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74–147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148–420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages. PMID:27810897

  20. Oxidative Unfolding of the Rubredoxin Domain and the Natively Disordered N-terminal Region Regulate the Catalytic Activity of Mycobacterium tuberculosis Protein Kinase G.

    PubMed

    Wittwer, Matthias; Luo, Qi; Kaila, Ville R I; Dames, Sonja A

    2016-12-30

    Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Pea DNA Topoisomerase I Is Phosphorylated and Stimulated by Casein Kinase 2 and Protein Kinase C

    PubMed Central

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-01-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg2+-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants. PMID:12913165

  2. Importance of tyrosine phosphorylation in receptor kinase complexes.

    PubMed

    Macho, Alberto P; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-05-01

    Tyrosine phosphorylation is an important post-translational modification that is known to regulate receptor kinase (RK)-mediated signaling in animals. Plant RKs are annotated as serine/threonine kinases, but recent work has revealed that tyrosine phosphorylation is also crucial for the activation of RK-mediated signaling in plants. These initial observations have paved the way for subsequent detailed studies on the mechanism of activation of plant RKs and the biological relevance of tyrosine phosphorylation for plant growth and immunity. In this Opinion article we review recent reports on the contribution of RK tyrosine phosphorylation in plant growth and immunity; we propose that tyrosine phosphorylation plays a major regulatory role in the initiation and transduction of RK-mediated signaling in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. N-terminal regions of Mps1 kinase determine functional bifurcation.

    PubMed

    Araki, Yasuhiro; Gombos, Linda; Migueleti, Suellen P S; Sivashanmugam, Lavanya; Antony, Claude; Schiebel, Elmar

    2010-04-05

    Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2-Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.

  4. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    PubMed Central

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  5. The contribution of c-Jun N-terminal kinase activation and subsequent Bcl-2 phosphorylation to apoptosis induction in human B-cells is dependent on the mode of action of specific stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muscarella, Donna E.; Bloom, Stephen E.

    2008-04-01

    The c-Jun N-terminal kinase (JNK) pathway can play paradoxical roles as either a pro-survival or a pro-cell death pathway depending on type of stress and cell type. The goal of the present study was to determine the role of JNK pathway signaling for regulating B-cell apoptosis in two important but contrasting situations-global proteotoxic damage, induced by arsenite and hyperthermia, versus specific microtubule inhibition, induced by the anti-cancer drug vincristine, using the EW36 B-cell line. This cell line over-expresses the Bcl-2 protein and is a useful model to identify treatments that can overcome multi-drug resistance in lymphoid cells. Exposure of EW36more » B-cells to arsenite or lethal hyperthermia resulted in activation of the JNK pathway and induction of apoptosis. However, pharmacological inhibition of the JNK pathway did not inhibit apoptosis, indicating that JNK pathway activation is not required for apoptosis induction by these treatments. In contrast, vincristine treatment of EW36 B-cells resulted in JNK activation and apoptosis that was suppressed by JNK inhibition. A critical difference between the two types of stress treatments was that only vincristine-induced JNK activation resulted in phosphorylation of Bcl-2 at threonine-56, a modification that can block its anti-apoptotic function. Importantly, Bcl-2 phosphorylation was attenuated by JNK inhibition implicating JNK as the upstream kinase. Furthermore, arsenite and hyperthermia treatments activated a p53/p21 pathway associated with apoptosis induction, whereas vincristine did not activate this pathway. These results reveal two stress-activated pathways, one JNK-dependent and another JNK-independent, either of which can bypass Bcl-2 mediated resistance, resulting in cell death.« less

  6. Cell biology of Smad2/3 linker region phosphorylation in vascular smooth muscle.

    PubMed

    Rezaei, Hossein B; Kamato, Danielle; Ansari, Ghazaleh; Osman, Narin; Little, Peter J

    2012-08-01

    The transforming growth factor (TGF)-β superfamily of ligands regulates a diverse set of cellular functions. Transforming growth factor-β induces its biological effects through Type I and Type II transmembrane receptors that have serine/threonine kinase activities and weak tyrosine kinase activity. In vascular smooth muscle, TGF-β binds to the TGF-β Type II receptor (TβRII) at the cell surface, recruiting the Type I receptor (TβRI) to form a heterocomplex. Consequently, after phosphorylation and activation of TβRI, the transcription factors receptor activated (R-) Smad2 and Smad3 are recruited and activated through phosphorylation of C terminal residues. Overall, Smad2/3 and co-Smad4 have similar structures consisting of three regions an N-terminal MH1 domain, a C-terminal MH2 domain and a central linker region. Phosphorylation of the Smad linker region appears to have an important role in the regulation of Smad activity and function. The mitogen-activated protein kinase (MAPK) family, CDK2, CDK4 and calcium-calmodulin dependent kinase are the main kinases that phosphorylate sites in the linker region. The role of the linker region includes enabling the formation of Smad homo-oligomers and provision of phosphorylation sites for MAPK and other kinases. In some instances, linker region phosphorylation regulates the inhibition of the nuclear translocation of Smads. In the present review, we describe TGF-β signalling through Smad2/3 and the importance of the linker region in the regulation and expression of genes induced by TGF-β superfamily ligands in the context of vascular smooth muscle. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  7. Mitomycin-C induces the apoptosis of human Tenon's capsule fibroblast by activation of c-Jun N-terminal kinase 1 and caspase-3 protease.

    PubMed

    Seong, Gong Je; Park, Channy; Kim, Chan Yoon; Hong, Young Jae; So, Hong-Seob; Kim, Sang-Duck; Park, Raekil

    2005-10-01

    To investigate whether mitochondrial dysfunction and mitogen-activated protein kinase family proteins are implicated in apoptotic signaling of human Tenon's capsule fibroblasts (HTCFs) by mitomycin-C. Apoptosis was determined by Hoechst nuclei staining, agarose gel electrophoresis, and flow cytometry in HTCFs treated with 0.4 mg/mL mitomycin-C for 5 minutes. Enzymatic digestion of florigenic biosubstrate assessed the catalytic activity of caspase proteases, including caspase-3, caspase-8, and caspase-9. Phosphotransferase activity of c-Jun N-terminal kinase (JNK) 1 was measured by in vitro immune complex kinase assay using c-Jun(1-79) protein as a substrate. Mitochondrial membrane potential transition (MPT) was measured by flow cytometric analysis of JC-1 staining. Mitomycin-C (0.4 mg/mL) induced the apoptosis of HTCFs, which was characterized as nucleic acid and genomic DNA fragmentation, chromatin condensation, and sub-G(0)/G(1) fraction of cell cycle increase. The catalytic activity of caspase-3 and caspase-9 was significantly increased and was accompanied by cytosolic release of cytochrome c and MPT in response to mitomycin-C. Treatment with mitomycin-C resulted in the increased expression of Fas, FasL, Bad, and phosphorylated p53 and a decreased level of phosphorylated AKT. Treatment with mitomycin-C also increased the phosphotransferase activity and tyrosine phosphorylation of JNK1, whose inhibitor significantly suppressed the cytotoxicity of mitomycin-C. Mitomycin-C induced the apoptosis of HTCFs through the activation of intrinsic and extrinsic caspase cascades with mitochondrial dysfunction. It also activated Fas-mediated apoptotic signaling of fibroblasts. Furthermore, the activation of JNK1 played a major role in the cytotoxicity of mitomycin-C.

  8. The N-terminal Region of the DNA-dependent Protein Kinase Catalytic Subunit Is Required for Its DNA Double-stranded Break-mediated Activation*

    PubMed Central

    Davis, Anthony J.; Lee, Kyung-Jong; Chen, David J.

    2013-01-01

    DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1–2713), termed N-PKcs, and the C terminus (amino acids 2714–4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity. PMID:23322783

  9. c-Jun N-terminal kinase 3 (JNK3) Mediates Paraquat- and Rotenone-Induced Dopaminergic Neuron Death

    PubMed Central

    Choi, Won Seok; Abel, Glen; Klintworth, Heather; Flavell, Richard A.; Xia, Zhengui

    2011-01-01

    Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease (PD). Epidemiological studies have linked pesticide exposure to increased risk for sporadic PD. Here, we investigated the role of c-Jun N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat. The role of JNK3 was evaluated using RNA silencing and gene deletion to block JNK3 signaling. Using an antibody that recognizes all isoforms of activated JNKs, we found that paraquat and rotenone stimulate JNK phosphorylation in primary cultured dopaminergic neurons. In cultured neurons transfected with Jnk3-specific siRNA and in neurons from Jnk3−/− mice, JNK phosphorylation was nearly abolished, suggesting that JNK3 is the main JNK isoform activated in dopaminergic neurons by these pesticides. Paraquat- and rotenone-induced death of dopaminergic neurons was also significantly reduced by Jnk3 siRNA or Jnk3 gene deletion and deletion of the Jnk3 gene completely attenuated paraquat-induced dopaminergic neuron death and motor-deficits in vivo. Our data identify JNK3 as a common and critical mediator of dopaminergic neuron death induced by paraquat and rotenone, suggesting that it is a potential drug target for PD treatment. PMID:20418776

  10. Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Wei; Wernimont, Amy; Tang, Keliang

    2009-09-29

    Serine/threonine kinases secreted from rhoptry organelles constitute important virulence factors of Toxoplasma gondii. Rhoptry kinases are highly divergent and their structures and regulatory mechanism are hitherto unknown. Here, we report the X-ray crystal structures of two related pseudokinases named ROP2 and ROP8, which differ primarily in their substrate-binding site. ROP kinases contain a typical bilobate kinase fold and a novel N-terminal extension that both stabilizes the N-lobe and provides a unique means of regulation. Although ROP2 and ROP8 were catalytically inactive, they provided a template for homology modelling of the active kinase ROP18, a major virulence determinant of T. gondii.more » Autophosphorylation of key residues in the N-terminal extension resulted in ROP18 activation, which in turn phosphorylated ROP2 and ROP8. Mutagenesis and mass spectrometry experiments revealed that ROP18 was maximally activated when this phosphorylated N-terminus relieved autoinhibition resulting from extension of aliphatic side chains into the ATP-binding pocket. This novel means of regulation governs ROP kinases implicated in parasite virulence.« less

  11. Tangeretin inhibits extracellular-signal-regulated kinase (ERK) phosphorylation.

    PubMed

    Van Slambrouck, Séverine; Parmar, Virinder S; Sharma, Sunil K; De Bondt, Bart; Foré, Fleur; Coopman, Peter; Vanhoecke, Barbara W; Boterberg, Tom; Depypere, Herman T; Leclercq, Guy; Bracke, Marc E

    2005-03-14

    Tangeretin is a methoxyflavone from citrus fruits, which inhibits growth of human mammary cancer cells and cytolysis by natural killer cells. Attempting to unravel the flavonoid's action mechanism, we found that it inhibited extracellular-signal-regulated kinases 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent way. In human T47D mammary cancer cells this inhibition was optimally observed after priming with estradiol. The spectrum of the intracellular signalling kinase inhibition was narrow and comparison of structural congeners showed that inhibition of ERK phosphorylation was not unique for tangeretin. Our data add tangeretin to the list of small kinase inhibitors with a restricted intracellular inhibition profile.

  12. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    PubMed Central

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  13. Resveratrol alleviates diabetes-induced testicular dysfunction by inhibiting oxidative stress and c-Jun N-terminal kinase signaling in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faid, Iman; Al-Hussaini, Heba; Kilarkaje, Narayana, E-mail: knarayana@hsc.edu.kw

    Diabetes adversely affects reproductive functions in humans and animals. The present study investigated the effects of Resveratrol on diabetes-induced alterations in oxidative stress, c-Jun N-terminal kinase (JNK) signaling and apoptosis in the testis. Adult male Wistar rats (13–15 weeks; n = 6/group) were segregated into 1) normal control, 2) Resveratrol-treated (5 mg/kg; ip; given during last 3 weeks), 3) Streptozotocin-induced diabetic and, 4) Resveratrol-treated diabetic groups, and euthanized on day 42 after the confirmation of diabetes. Resveratrol did not normalize blood glucose levels in diabetic rats. Resveratrol supplementation recovered diabetes-induced decreases in reproductive organ weights, sperm count and motility, intra-testicularmore » levels of superoxide dismutase, catalase, and glutathione peroxidase and an increase in 4-hydroxynonenal activities (P < 0.05). Resveratrol also recovered diabetes-induced increases in JNK signaling pathway proteins, namely, ASK1 (apoptosis signal-regulating kinase 1), JNKs (46 and 54 kDa isoforms) and p-JNK to normal control levels (P < 0.05). Interestingly, the expression of a down-stream target of ASK1, MKK4 (mitogen-activated protein kinase kinase 4) and its phosphorylated form (p-MKK4) did not change in experimental groups. Resveratrol inhibited diabetes-induced increases in AP-1 (activator protein-1) components, c-Jun and ATF2 (activating transcription factor 2), but not their phosphorylated forms, to normal control levels (P < 0.05). Further, Resveratrol inhibited diabetes-induced increase in cleaved-caspase-3 to normal control levels. In conclusion, Resveratrol alleviates diabetes-induced apoptosis in testis by modulating oxidative stress, JNK signaling pathway and caspase-3 activities, but not by inhibiting hyperglycemia, in rats. These results suggest that Resveratrol supplementation may be a useful strategy to treat diabetes-induced testicular dysfunction. - Highlights: • Resveratrol up

  14. Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function

    PubMed Central

    Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.

    2010-01-01

    Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316

  15. JNK-Interacting Protein 3 Mediates the Retrograde Transport of Activated c-Jun N-Terminal Kinase and Lysosomes

    PubMed Central

    Drerup, Catherine M.; Nechiporuk, Alex V.

    2013-01-01

    Retrograde axonal transport requires an intricate interaction between the dynein motor and its cargo. What mediates this interaction is largely unknown. Using forward genetics and a novel in vivo imaging approach, we identified JNK-interacting protein 3 (Jip3) as a direct mediator of dynein-based retrograde transport of activated (phosphorylated) c-Jun N-terminal Kinase (JNK) and lysosomes. Zebrafish jip3 mutants (jip3nl7) displayed large axon terminal swellings that contained high levels of activated JNK and lysosomes, but not other retrograde cargos such as late endosomes and autophagosomes. Using in vivo analysis of axonal transport, we demonstrated that the terminal accumulations of activated JNK and lysosomes were due to a decreased frequency of retrograde movement of these cargos in jip3nl7, whereas anterograde transport was largely unaffected. Through rescue experiments with Jip3 engineered to lack the JNK binding domain and exogenous expression of constitutively active JNK, we further showed that loss of Jip3–JNK interaction underlies deficits in pJNK retrograde transport, which subsequently caused axon terminal swellings but not lysosome accumulation. Lysosome accumulation, rather, resulted from loss of lysosome association with dynein light intermediate chain (dynein accessory protein) in jip3nl7, as demonstrated by our co-transport analyses. Thus, our results demonstrate that Jip3 is necessary for the retrograde transport of two distinct cargos, active JNK and lysosomes. Furthermore, our data provide strong evidence that Jip3 in fact serves as an adapter protein linking these cargos to dynein. PMID:23468645

  16. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  17. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    PubMed

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-kinase Inhibitors

    PubMed Central

    Marlowe, Timothy A.; Lenzo, Felicia L.; Figel, Sheila A.; Grapes, Abigail T.; Cance, William G.

    2016-01-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms which drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTKs) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK’s critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. Additionally, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: 1) the rapid phosphorylation and activation of RTK signaling pathways in RTKHigh cells and 2) the long-term acquisition of RTKs novel to the parental cell line in RTKLow cells. Finally, HER2+ cancer cells displayed resistance to FAK-kinase inhibition in 3D–growth assays using a HER2 isogenic system and HER2+ cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. PMID:27638858

  20. Signal transduction and phosphoryl transfer by a FixL hybrid kinase with low oxygen affinity: importance of the vicinal PAS domain and receiver aspartate.

    PubMed

    Sousa, Eduardo H S; Tuckerman, Jason R; Gondim, Ana C S; Gonzalez, Gonzalo; Gilles-Gonzalez, Marie-Alda

    2013-01-22

    FixL is a prototype for heme-based sensors, multidomain proteins that typically couple a histidine protein kinase activity to a heme-binding domain for sensing of diatomic gases such as oxygen, carbon monoxide, and nitric oxide. Despite the relatively well-developed understanding of FixL, the importance of some of its domains has been unclear. To explore the impact of domain-domain interactions on oxygen sensing and signal transduction, we characterized and investigated Rhizobium etli hybrid sensor ReFixL. In ReFixL, the core heme-containing PAS domain and kinase region is preceded by an N-terminal PAS domain of unknown function and followed by a C-terminal receiver domain. The latter resembles a target substrate domain that usually occurs independently of the kinase and contains a phosphorylatable aspartate residue. We isolated the full-length ReFixL as a soluble holoprotein with a single heme b cofactor. Despite a low affinity for oxygen (K(d) for O₂ of 738 μM), the kinase activity was completely switched off by O₂ at concentrations well below the K(d). A deletion of the first PAS domain strongly increased the oxygen affinity but essentially prohibited autophosphorylation, although the truncated protein was competent to accept phosphoryl groups in trans. These studies provide new insights into histidyl-aspartyl phosphoryl transfers in two-component systems and suggest that the control of ligand affinity and signal transduction by PAS domains can be direct or indirect.

  1. Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K.V.; Peralta, W.D.; Greene, G.L.

    1987-08-14

    Progesterone receptors were immunoprecipitated with monoclonal antibodies KD68 from lysates of human breast carcinoma T47D cells labelled to steady state specific activity with /sup 32/Pi. The 120 kDa /sup 32/P-labelled progesterone receptor band was resolved by polyacrylamide gel electrophoresis and identified by autoradiography. Phosphoamino acid analysis revealed serine phosphorylation, but no threonine or tyrosine phosphorylation. Treatment of the /sup 32/Pi-labelled cells with EGF, TPA or dibutyryl cAMP had no significant quantitative effect on progesterone receptor phosphorylation, though the EGF receptor and the cAMP-dependent protein kinases have been reported to catalyze phosphorylation of purified avian progesterone receptor preparations in cell freemore » systems. Progesterone receptor phosphorylation on serine residues was increased by 2-fold in cells treated with 10 nM progesterone; EGF had no effect on progesterone-mediated progesterone receptor phosphorylation.« less

  2. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    PubMed

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Termination of second messenger signaling in olfaction.

    PubMed Central

    Boekhoff, I; Breer, H

    1992-01-01

    By using isolated rat olfactory cilia and a fast kinetics methodology, it has been demonstrated that odorant-induced second messenger signaling in the millisecond time range is terminated via phosphorylation reactions catalyzed by specific protein kinases. The cyclic adenosine nucleotide pathway is turned off by kinase A activity, whereas the inositol trisphosphate cascade is terminated by kinase C. The data support the concept that desensitization of odorant responses involves phosphorylation of key elements in the transduction cascade. PMID:1370581

  4. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    PubMed

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  5. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

    PubMed

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-08

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Ami; Katayama, Syouichi; Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed amore » typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.« less

  7. Phosphorylation of Dopamine Transporter Serine 7 Modulates Cocaine Analog Binding*

    PubMed Central

    Moritz, Amy E.; Foster, James D.; Gorentla, Balachandra K.; Mazei-Robison, Michelle S.; Yang, Jae-Won; Sitte, Harald H.; Blakely, Randy D.; Vaughan, Roxanne A.

    2013-01-01

    As an approach to elucidating dopamine transporter (DAT) phosphorylation characteristics, we examined in vitro phosphorylation of a recombinant rat DAT N-terminal peptide (NDAT) using purified protein kinases. We found that NDAT becomes phosphorylated at single distinct sites by protein kinase A (Ser-7) and calcium-calmodulin-dependent protein kinase II (Ser-13) and at multiple sites (Ser-4, Ser-7, and Ser-13) by protein kinase C (PKC), implicating these residues as potential sites of DAT phosphorylation by these kinases. Mapping of rat striatal DAT phosphopeptides by two-dimensional thin layer chromatography revealed basal and PKC-stimulated phosphorylation of the same peptide fragments and comigration of PKC-stimulated phosphopeptide fragments with NDAT Ser-7 phosphopeptide markers. We further confirmed by site-directed mutagenesis and mass spectrometry that Ser-7 is a site for PKC-stimulated phosphorylation in heterologously expressed rat and human DATs. Mutation of Ser-7 and nearby residues strongly reduced the affinity of rat DAT for the cocaine analog (−)-2β-carbomethoxy-3β-(4-fluorophenyl) tropane (CFT), whereas in rat striatal tissue, conditions that promote DAT phosphorylation caused increased CFT affinity. Ser-7 mutation also affected zinc modulation of CFT binding, with Ala and Asp substitutions inducing opposing effects. These results identify Ser-7 as a major site for basal and PKC-stimulated phosphorylation of native and expressed DAT and suggest that Ser-7 phosphorylation modulates transporter conformational equilibria, shifting the transporter between high and low affinity cocaine binding states. PMID:23161550

  8. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    PubMed

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  9. Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C.

    PubMed Central

    Maizels, E T; Peters, C A; Kline, M; Cutler, R E; Shanmugam, M; Hunzicker-Dunn, M

    1998-01-01

    Small heat-shock proteins (sHSPs) are widely expressed 25-28 kDa proteins whose functions are dynamically regulated by phosphorylation. While recent efforts have clearly delineated a stress-responsive p38 mitogen-activated protein-kinase (MAPK)-dependent kinase pathway culminating in activation of the heat-shock (HSP)-kinases, mitogen-activated protein-kinase-activated protein kinase-2 and -3, not all sHSP phosphorylation events can be explained by the p38 MAPK-dependent pathway. The contribution of protein kinase C (PKC) to sHSP phosphorylation was suggested by early studies but later questioned on the basis of the reported poor ability of purified PKC to phosphorylate sHSP in vitro. The current study re-evaluates the role of PKC in sHSP phosphorylation in the light of the isoform complexity of the PKC family. We evaluated the sHSP phosphorylation status in rat corpora lutea obtained from two stages of pregnancy, mid-pregnancy and late-pregnancy, which express different levels of the novel PKC isoform, PKC-delta. Two-dimensional Western blot analysis showed that HSP-27 was more highly phosphorylated in vivo in corpora lutea of late pregnancy, corresponding to the developmental stage in which PKC-delta is abundant and active. Late-pregnant luteal extracts contained a lipid-sensitive HSP-kinase activity which exactly co-purified with PKC-delta using hydroxyapatite and S-Sepharose column chromatography. To determine whether there might be preferential phosphorylation of sHSP by a particular PKC isoform, purified recombinant PKC isoforms corresponding to those PKC isoforms detected in rat corpora lutea were evaluated for HSP-kinase activity in vitro. Recombinant PKC-delta effectively catalysed the phosphorylation of sHSP in vitro, and PKC-alpha was 30-50% as effective as an HSP-kinase; other PKCs tested (beta1, beta2, epsilon and zeta) were poor HSP-kinases. These results show that select PKC family members can function as direct HSP-kinases in vitro. Moreover, the

  10. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer.

    PubMed

    Matsuzaki, Koichi; Kitano, Chiaki; Murata, Miki; Sekimoto, Go; Yoshida, Katsunori; Uemura, Yoshiko; Seki, Toshihito; Taketani, Shigeru; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2009-07-01

    Transforming growth factor (TGF)-beta initially inhibits growth of mature epithelial cells. Later, however, autocrine TGF-beta signaling acts in concert with the Ras pathway to induce a proliferative and invasive phenotype. TGF-beta activates not only TGF-beta type I receptor (TbetaRI) but also Ras-associated kinases, which differentially phosphorylate the mediators Smad2 and Smad3 to create distinct phosphorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C) and both linker and COOH-terminally phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). In this study, we investigated actions of pSmad2L/C and pSmad3L/C in cancer progression. TGF-beta inhibited cell growth by down-regulating c-Myc oncoprotein through the pSmad2C and pSmad3C pathway; TGF-beta signaling, in turn, enhanced cell growth by up-regulating c-Myc through the cyclin-dependent kinase (CDK) 4-dependent pSmad2L/C and pSmad3L/C pathways in cell nuclei. Alternatively, TbetaRI and c-Jun NH2-terminal kinase (JNK) together created cytoplasmic pSmad2L/C, which entered the nucleus and stimulated cell invasion, partly by up-regulating matrix metalloproteinase-9. In 20 clinical samples, pSmad2L/C and pSmad3L/C showed nuclear localization at invasion fronts of all TGF-beta-producing human metastatic colorectal cancers. In vitro kinase assay confirmed that nuclear CDK4 and cytoplasmic JNK obtained from the tumor tissue could phosphorylate Smad2 or Smad3 at their linker regions. We suggest that CDK4, together with JNK, alters tumor-suppressive TGF-beta signaling to malignant characteristics in later stages of human colorectal cancer. The linker phosphorylation of Smad2 and Smad3 may represent a target for intervention in human metastatic cancer.

  11. Mapping of p140Cap Phosphorylation Sites: The EPLYA and EGLYA Motifs Have a Key Role in Tyrosine Phosphorylation and Csk Binding, and Are Substrates of the Abl Kinase

    PubMed Central

    Sharma, Nanaocha; Grasso, Silvia; Russo, Isabella; Jensen, Ole N.; Cabodi, Sara; Turco, Emilia; Di Stefano, Paola; Defilippi, Paola

    2013-01-01

    Protein phosphorylation tightly regulates specific binding of effector proteins that control many diverse biological functions of cells (e. g. signaling, migration and proliferation). p140Cap is an adaptor protein, specifically expressed in brain, testis and epithelial cells, that undergoes phosphorylation and tunes its interactions with other regulatory molecules via post-translation modification. In this work, using mass spectrometry, we found that p140Cap is in vivo phosphorylated on tyrosine (Y) within the peptide GEGLpYADPYGLLHEGR (from now on referred to as EGLYA) as well as on three serine residues. Consistently, EGLYA has the highest score of in silico prediction of p140Cap phosphorylation. To further investigate the p140Cap function, we performed site specific mutagenesis on tyrosines inserted in EGLYA and EPLYA, a second sequence with the same highest score of phosphorylation. The mutant protein, in which both EPLYA/EGLYA tyrosines were converted to phenylalanine, was no longer tyrosine phosphorylated, despite the presence of other tyrosine residues in p140Cap sequence. Moreover, this mutant lost its ability to bind the C-terminal Src kinase (Csk), previously shown to interact with p140Cap by Far Western analysis. In addition, we found that in vitro and in HEK-293 cells, the Abelson kinase is the major kinase involved in p140Cap tyrosine phosphorylation on the EPLYA and EGLYA sequences. Overall, these data represent an original attempt to in vivo characterise phosphorylated residues of p140Cap. Elucidating the function of p140Cap will provide novel insights into its biological activity not only in normal cells, but also in tumors. PMID:23383002

  12. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin-dependent kinase 2 phosphorylation orchestrating 2 oncogenic pathways.

    PubMed

    Li, Hui; Yang, Duxiao; Ning, Shanglei; Xu, Yinghui; Yang, Fan; Yin, Rusha; Feng, Taihu; Han, Shouqing; Guo, Lu; Zhang, Pengju; Qu, Wenjie; Guo, Renbo; Song, Chen; Xiao, Peng; Zhou, Chengjun; Xu, Zhigang; Sun, Jin-Peng; Yu, Xiao

    2018-01-01

    The protein tyrosine phosphatase nonreceptor type 12 (PTPN12) is a multifunctional protein and has elicited much research attention because its decreased protein level has been associated with poor prognosis of several types of cancers. Recently, we have solved the crystal structure of the phosphatase domain of PTPN12, which disclosed a specific PTPN12-insert-loop harboring a cyclin-dependent kinase 2 (CDK2) phosphorylation site. However, the functional significance of this phosphorylation is undefined. In the present study, we found that S19 site phosphorylation of PTPN12 by CDK2 discharged its antitumor activity by down-regulation of its inhibitory role in cell migration, but not affecting its other regulatory functions. Phosphorylation of PTPN12 at the S19 site changed its substrate interface, and by doing so, selectively decreased its activity toward the human epidermal growth factor receptor 2 (HER2)- pY 1196 site, but not other HER2 phosphorylation sites or other known PTPN12 substrates. A further in-depth mechanism study revealed that the phosphorylation of PTPN12 by CDK2 impaired recruitment of the serine/threonine-protein kinase 1 (PAK1) to HER2, resulted in the blockade of the HER2-pY 1196 -PAK1-T 423 signaling pathway, thus increased tumor cell motility. Taken together, our results identified a new phosphorylation-based substrate recognition mechanism of PTPN12 by CDK2, which orchestrated signaling crosstalk between the oncogenic CDK2 and HER2 pathways. The newly identified governing mechanism of the substrate selectivity of a particular phosphatase was previously unappreciated and exemplifies how a phospho-network is precisely controlled in different cellular contexts.-Li, H., Yang, D., Ning, S., Xu, Y., Yang, F., Yin, R., Feng, T., Han, S., Guo, L., Zhang, P., Qu, W., Guo, R., Song, C., Xiao, P., Zhou, C., Xu, Z., Sun, J.-P., Yu, X. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin-dependent kinase 2 phosphorylation

  13. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death

    PubMed Central

    2012-01-01

    Background Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/ mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. Results An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague–Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73

  14. Pro-life role for c-Jun N-terminal kinase and p38 mitogen-activated protein kinase at rostral ventrolateral medulla in experimental brain stem death.

    PubMed

    Chang, Alice Y W

    2012-11-17

    Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/ mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague-Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73, rather than Elk-1 at

  15. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2013-10-01

    Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR: Dr. Philip LoGrasso CONTRACTING ORGANIZATION: The Scripps Research... Lateral Sclerosis ” 5a. CONTRACT NUMBER W81XWH-12-1-0431 5b. GRANT NUMBER W81XWH-12-1-0431 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip...Annual 3. DATES COVERED 30September2012-29September2013 4. TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic

  16. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axialmore » distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.« less

  17. Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis.

    PubMed

    Labbe, Benjamin D; Kristich, Christopher J

    2017-11-01

    Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo Enterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis , the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivo IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The

  18. Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis

    PubMed Central

    Labbe, Benjamin D.

    2017-01-01

    ABSTRACT Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes. Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo. Enterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivo. IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical

  19. Synthesis and SAR of piperazine amides as novel c-jun N-terminal kinase (JNK) inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Youseung; Chen, Weiming; Habel, Jeff

    2009-09-14

    A novel series of c-jun N-terminal kinase (JNK) inhibitors were designed and developed from a high-throughput-screening hit. Through the optimization of the piperazine amide 1, several potent compounds were discovered. The X-ray crystal structure of 4g showed a unique binding mode different from other well known JNK3 inhibitors.

  20. Deciphering kinase-substrate relationships by analysis of domain-specific phosphorylation network.

    PubMed

    Damle, Nikhil Prakash; Mohanty, Debasisa

    2014-06-15

    In silico prediction of site-specific kinase-substrate relationships (ssKSRs) is crucial for deciphering phosphorylation networks by linking kinomes to phosphoproteomes. However, currently available predictors for ssKSRs give rise to a large number of false-positive results because they use only a short sequence stretch around phosphosite as determinants of kinase specificity and do not consider the biological context of kinase-substrate recognition. Based on the analysis of domain-specific kinase-substrate relationships, we have constructed a domain-level phosphorylation network that implicitly incorporates various contextual factors. It reveals preferential phosphorylation of specific domains by certain kinases. These novel correlations have been implemented in PhosNetConstruct, an automated program for predicting target kinases for a substrate protein. PhosNetConstruct distinguishes cognate kinase-substrate pairs from a large number of non-cognate combinations. Benchmarking on independent datasets using various statistical measures demonstrates the superior performance of PhosNetConstruct over ssKSR-based predictors. PhosNetConstruct is freely available at http://www.nii.ac.in/phosnetconstruct.html. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  2. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  3. Specific inhibition of c-Jun N-terminal kinase delays preterm labour and reduces mortality

    PubMed Central

    Pirianov, Grisha; MacIntyre, David A; Lee, Yun; Waddington, Simon N; Terzidou, Vasso; Mehmet, Huseyin; Bennett, Phillip R

    2015-01-01

    Preterm labour (PTL) is commonly associated with infection and/or inflammation. Lipopolysaccharide (LPS) from different bacteria can be used to independently or mutually activate Jun N-terminal kinase (JNK)/AP1- or NF-κB-driven inflammatory pathways that lead to PTL. Previous studies using Salmonella abortus LPS, which activates both JNK/AP-1 and NF-κB, showed that selective inhibition of NF-κB delays labour and improves pup outcome. Where labour is induced using Escherichia coli LPS (O111), which upregulates JNK/AP-1 but not NF-κB, inhibition of JNK/AP-1 activation also delays labour. In this study, to determine the potential role of JNK as a therapeutic target in PTL, we investigated the specific contribution of JNK signalling to S. Abortus LPS-induced PTL in mice. Intrauterine administration of S. Abortus LPS to pregnant mice resulted in the activation of JNK in the maternal uterus and fetal brain, upregulation of pro-inflammatory proteins COX-2, CXCL1, and CCL2, phosphorylation of cPLA2 in myometrium, and induction of PTL. Specific inhibition of JNK by co-administration of specific D-JNK inhibitory peptide (D-JNKI) delayed LPS-induced preterm delivery and reduced fetal mortality. This is associated with inhibition of myometrial cPLA2 phosphorylation and proinflammatory proteins synthesis. In addition, we report that D-JNKI inhibits the activation of JNK/JNK3 and caspase-3, which are important mediators of neural cell death in the neonatal brain. Our data demonstrate that specific inhibition of TLR4-activated JNK signalling pathways has potential as a therapeutic approach in the management of infection/inflammation-associated PTL and prevention of the associated detrimental effects to the neonatal brain. PMID:26183892

  4. Musite, a tool for global prediction of general and kinase-specific phosphorylation sites.

    PubMed

    Gao, Jianjiong; Thelen, Jay J; Dunker, A Keith; Xu, Dong

    2010-12-01

    Reversible protein phosphorylation is one of the most pervasive post-translational modifications, regulating diverse cellular processes in various organisms. High throughput experimental studies using mass spectrometry have identified many phosphorylation sites, primarily from eukaryotes. However, the vast majority of phosphorylation sites remain undiscovered, even in well studied systems. Because mass spectrometry-based experimental approaches for identifying phosphorylation events are costly, time-consuming, and biased toward abundant proteins and proteotypic peptides, in silico prediction of phosphorylation sites is potentially a useful alternative strategy for whole proteome annotation. Because of various limitations, current phosphorylation site prediction tools were not well designed for comprehensive assessment of proteomes. Here, we present a novel software tool, Musite, specifically designed for large scale predictions of both general and kinase-specific phosphorylation sites. We collected phosphoproteomics data in multiple organisms from several reliable sources and used them to train prediction models by a comprehensive machine-learning approach that integrates local sequence similarities to known phosphorylation sites, protein disorder scores, and amino acid frequencies. Application of Musite on several proteomes yielded tens of thousands of phosphorylation site predictions at a high stringency level. Cross-validation tests show that Musite achieves some improvement over existing tools in predicting general phosphorylation sites, and it is at least comparable with those for predicting kinase-specific phosphorylation sites. In Musite V1.0, we have trained general prediction models for six organisms and kinase-specific prediction models for 13 kinases or kinase families. Although the current pretrained models were not correlated with any particular cellular conditions, Musite provides a unique functionality for training customized prediction models

  5. Emerging role of the Jun N-terminal kinase interactome in human health.

    PubMed

    Guo, Xiao-Xi; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Tang, Tao; Xu, Tian-Rui

    2018-02-08

    The c-Jun N-terminal kinases (JNKs) are located downstream of Ras-mitogen activated protein kinase signaling cascades. More than 20 years of study has shown that JNKs control cell fate and many cellular functions. JNKs and their interacting proteins form a complicated network with diverse biological functions and physiological effects. Members of the JNK interactome include Jun, amyloid precursor protein, and insulin receptor substrate. Recent studies have shown that the JNK interactome is involved in tumorigenesis, neuron development, and insulin resistance. In this review, we summarize the features of the JNK interactome and classify its members into three groups: upstream regulators, downstream effectors, and scaffold partners. We also highlight the unique cellular signaling mechanisms of JNKs and provide more insights into the roles of the JNK interactome in human diseases. © 2018 International Federation for Cell Biology.

  6. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle.

    PubMed

    Hong, Feng; Brizendine, Richard K; Carter, Michael S; Alcala, Diego B; Brown, Avery E; Chattin, Amy M; Haldeman, Brian D; Walsh, Michael P; Facemyer, Kevin C; Baker, Josh E; Cremo, Christine R

    2015-10-01

    Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle. © 2015 Hong et al.

  7. Specific binding of the WASP N-terminal domain to Btk is critical for TLR2 signaling in macrophages.

    PubMed

    Sakuma, Chisato; Sato, Mitsuru; Takenouchi, Takato; Kitani, Hiroshi

    2015-02-01

    Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we revealed that WASP is involved in lipopolysaccharide-TLR4 signaling in macrophages by association of Bruton's tyrosine kinase (Btk) with the WASP N-terminal domain. Btk has been shown to play important roles in the signaling of several TLRs and to modulate the inflammatory response in macrophages. In this study, we evaluated the importance of the interaction between Btk and WASP in TLR2 signaling by using bone marrow-derived macrophage cell lines from transgenic (Tg) mice expressing anti-WASP N-terminal domain single-chain variable fragment (scFv) or VL single-domain intrabodies. In this Tg bone marrow-derived macrophages, specific interaction between WASP and Btk were strongly inhibited by masking of the binding site in the WASP N-terminal domain. There was impairment of gene expression of TNF-α, IL-6, and IL-1β and phosphorylation of inhibitor of κB α/β (IKKα/β) and nuclear factor (NF)-κB upon stimulation with TLR2 ligands. Furthermore, tyrosine phosphorylation of WASP following TLR2-ligand stimulation was severely inhibited in the Tg bone marrow-derived macrophages, as shown by the impairment in WASP tyrosine phosphorylation following lipopolysaccharide stimulation. These results strongly suggest that the association between the WASP N-terminal domain and Btk plays an important role in the TLR2-signaling pathway in macrophages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity

    PubMed Central

    Burmeister, Brian T.; Wang, Li; Gold, Matthew G.; Skidgel, Randal A.; O'Bryan, John P.; Carnegie, Graeme K.

    2015-01-01

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. PMID:25802336

  9. Protein Kinase A (PKA) Phosphorylation of Shp2 Protein Inhibits Its Phosphatase Activity and Modulates Ligand Specificity.

    PubMed

    Burmeister, Brian T; Wang, Li; Gold, Matthew G; Skidgel, Randal A; O'Bryan, John P; Carnegie, Graeme K

    2015-05-08

    Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function because mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the protein kinase A anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates PKA phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We identified two key amino acids in Shp2 that are phosphorylated by PKA. Thr-73 contributes a helix cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser-189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phosphodeficient (T73A/S189A) and phosphomimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein-tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Therefore, although induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    PubMed

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  11. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Iwasaki, Jun-ichi; Shiina, Masaaki; Ogata, Kazuhiro; Hunter, Tony; Osada, Hiroyuki

    2005-01-01

    At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is down-regulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCFβ-TrCP. The F-box protein β-TrCP (β-transducin repeat-containing protein), the substrate recognition component of the ubiquitin ligase, binds to its substrates through a conserved binding motif (phosphodegron) containing two phosphoserines, DpSGXXpS. Although Wee1A lacks this motif, phosphorylation of serines 53 and 123 (S53 and S123) of Wee1A by polo-like kinase 1 (Plk1) and CDK, respectively, are required for binding to β-TrCP. The sequence surrounding phosphorylated S53 (DpSAFQE) is similar to the conserved β-TrCP-binding motif; however, the role of S123 phosphorylation (EEGFGSSpSPVK) in β-TrCP binding was not elucidated. In the present study, we show that phosphorylation of S123 (pS123) by CDK promoted the binding of Wee1A to β-TrCP through three independent mechanisms. The pS123 not only directly interacted with basic residues in the WD40 repeat domain of β-TrCP but also primed phosphorylation by two independent protein kinases, Plk1 and CK2 (formerly casein kinase 2), to create two phosphodegrons on Wee1A. In the case of Plk1, S123 phosphorylation created a polo box domain-binding motif (SpSP) on Wee1A to accelerate phosphorylation of S53 by Plk1. CK2 could phosphorylate S121, but only if S123 was phosphorylated first, thereby generating the second β-TrCP-binding site (EEGFGpS121). Using a specific inhibitor of CK2, we showed that the phosphorylation-dependent degradation of Wee1A is important for the proper onset of mitosis. PMID:16085715

  12. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  13. Phosphorylation of spore coat proteins by a family of atypical protein kinases

    DOE PAGES

    Nguyen, Kim B.; Sreelatha, Anju; Durrant, Eric S.; ...

    2016-05-16

    The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis;more » however, the mechanism by which CotH affects germination is unclear. In this paper, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Finally and collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.« less

  14. Rotavirus NSP1 Requires Casein Kinase II-Mediated Phosphorylation for Hijacking of Cullin-RING Ligases.

    PubMed

    Davis, Kaitlin A; Morelli, Marco; Patton, John T

    2017-08-29

    The rotavirus nonstructural protein NSP1 repurposes cullin-RING E3 ubiquitin ligases (CRLs) to antagonize innate immune responses. By functioning as substrate adaptors of hijacked CRLs, NSP1 causes ubiquitination and proteasomal degradation of host proteins that are essential for expression of interferon (IFN) and IFN-stimulated gene products. The target of most human and porcine rotaviruses is the β-transducin repeat-containing protein (β-TrCP), a regulator of NF-κB activation. β-TrCP recognizes a phosphorylated degron (DSGΦXS) present in the inhibitor of NF-κB (IκB); phosphorylation of the IκB degron is mediated by IκB kinase (IKK). Because NSP1 contains a C-terminal IκB-like degron (ILD; DSGXS) that recruits β-TrCP, we investigated whether the NSP1 ILD is similarly activated by phosphorylation and whether this modification is required to trigger the incorporation of NSP1 into CRLs. Based on mutagenesis and phosphatase treatment studies, we found that both serine residues of the NSP1 ILD are phosphorylated, a pattern mimicking phosphorylation of IκB. A three-pronged approach using small-molecule inhibitors, small interfering RNAs, and mutagenesis demonstrated that NSP1 phosphorylation is mediated by the constitutively active casein kinase II (CKII), rather than IKK. In coimmunoprecipitation assays, we found that this modification was essential for NSP1 recruitment of β-TrCP and induced changes involving the NSP1 N-terminal RING motif that allowed formation of Cul3-NSP1 complexes. Taken together, our results indicate a highly regulated stepwise process in the formation of NSP1-Cul3 CRLs that is initiated by CKII phosphorylation of NSP1, followed by NSP1 recruitment of β-TrCP and ending with incorporation of the NSP1-β-TrCP complex into the CRL via interactions dependent on the highly conserved NSP1 RING motif. IMPORTANCE Rotavirus is a segmented double-stranded RNA virus that causes severe diarrhea in young children. A primary mechanism used by the

  15. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  16. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy

    PubMed Central

    Das, Falguni; Mariappan, Meenalakshmi M.; Kasinath, Balakuntalam S.; Choudhury, Goutam Ghosh

    2016-01-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  17. Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation*

    PubMed Central

    Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.

    2016-01-01

    PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612

  18. High hydrostatic pressure induces ERK and PI3 kinase phosphorylation in human HCS-2/8 chondrosarcoma cells.

    PubMed

    Kopakkala-Tani, M; Elo, M A; Sironen, R K; Helminen, H J; Lammi, M J

    2004-06-01

    High continuous hydrostatic pressure has been shown to affect many cellular functions within the pressurised cells, for instance, accumulation of heat shock protein 70 occurs during pressurisation. Various signal transduction pathways are likely to mediate these changes, however, at the present time our knowledge of the pathways involved is rather limited. The aim of this study was to investigate whether some of the well known transduction pathways are activated by the exposure of human chondrosarcoma cells to 15-30 MPa hydrostatic pressure. The results showed an increased presence of the active, phosphorylated forms of extracellular signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K) in cells exposed to 15 and 30 MPa continuous hydrostatic pressure, while 0.5 Hz cyclic loading had weaker effects. Inhibition of ERK-pathway with UO126 did not prevent the accumulation of heat shock protein 70. No activation of c-Jun N-terminal protein kinase (JNK) or p38 could be noticed in pressurised cells. In conclusion, we could identify at least two different signal transduction pathways that are activated under high continuous hydrostatic pressure. Accumulation of heat shock protein 70 was independent of ERK-activation.

  19. OsBRI1 Activates BR Signaling by Preventing Binding between the TPR and Kinase Domains of OsBSK3 via Phosphorylation.

    PubMed

    Zhang, Baowen; Wang, Xiaolong; Zhao, Zhiying; Wang, Ruiju; Huang, Xiahe; Zhu, Yali; Yuan, Li; Wang, Yingchun; Xu, Xiaodong; Burlingame, Alma L; Gao, Yingjie; Sun, Yu; Tang, Wenqiang

    2016-02-01

    Many plant receptor kinases transduce signals through receptor-like cytoplasmic kinases (RLCKs); however, the molecular mechanisms that create an effective on-off switch are unknown. The receptor kinase BR INSENSITIVE1 (BRI1) transduces brassinosteroid (BR) signal by phosphorylating members of the BR-signaling kinase (BSK) family of RLCKs, which contain a kinase domain and a C-terminal tetratricopeptide repeat (TPR) domain. Here, we show that the BR signaling function of BSKs is conserved in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) and that the TPR domain of BSKs functions as a "phospho-switchable" autoregulatory domain to control BSKs' activity. Genetic studies revealed that OsBSK3 is a positive regulator of BR signaling in rice, while in vivo and in vitro assays demonstrated that OsBRI1 interacts directly with and phosphorylates OsBSK3. The TPR domain of OsBSK3, which interacts directly with the protein's kinase domain, serves as an autoinhibitory domain to prevent OsBSK3 from interacting with bri1-SUPPRESSOR1 (BSU1). Phosphorylation of OsBSK3 by OsBRI1 disrupts the interaction between its TPR and kinase domains, thereby increasing the binding between OsBSK3's kinase domain and BSU1. Our results not only demonstrate that OsBSK3 plays a conserved role in regulating BR signaling in rice, but also provide insight into the molecular mechanism by which BSK family proteins are inhibited under basal conditions but switched on by the upstream receptor kinase BRI1. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Cardiac ryanodine receptor phosphorylation by CaM Kinase II: keeping the balance right.

    PubMed

    Currie, Susan

    2009-06-01

    Phosphorylation of the cardiac ryanodine receptor (RyR2) is a key mechanism regulating sarcoplasmic reticulum (SR) Ca2+ release. Differences in opinion have arisen over the importance assigned to specific phosphorylation sites on RyR2, over the kinase (s) suggested to directly phosphorylate RyR2 and surrounding the possibility that altered phosphorylation of RyR2 is associated with contractile dysfunction observed in heart failure. Ca2+/calmodulin dependent protein kinase II (CaMKII) can phosphorylate RyR2 and modulate its activity. This phosphorylation positively modulates cardiac inotropic function but in extreme situations such as heart failure, elevated CaMKII activity can adversely increase Ca2+ release from the SR and lead to arrhythmogenesis. Although other kinases can phosphorylate RyR2, most notably cAMP-dependent protein kinase (PKA), evidence for a key role of CaMKII in mediating RyR2-dependent Ca2+ release is emerging. Future challenges include (i) fully identifying mechanisms of CaMKII interaction with the RyR2 complex and (ii) given the ubiquitous expression of CaMKII, developing selective strategies to modulate RyR2-targeted CaMKII activity and allow improved understanding of its role in normal and diseased heart.

  1. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus.

    PubMed

    Hong, S K; Matsumoto, A; Horinouchi, S; Beppu, T

    1993-01-01

    In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and gamma-[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism.

  2. The N-terminal domain of substance P is required for complete homologous desensitization but not phosphorylation of the rat neurokinin-1 receptor.

    PubMed

    Vigna, S R

    2001-02-01

    The agonist activity of substance P (SP) is a function of the C-terminal domain of the peptide. A C-terminal SP fragment (SP(6-11)) and analog (septide) and neurokinin A (NKA; a related tachykinin with a divergent N-terminal amino acid sequence) were found to be full neurokinin-1 receptor (NK-1R) agonists, but were not able to desensitize the receptor maximally as much as SP. Substance P caused 95.6 +/- 0.9% maximal desensitization of the NK-1R whereas SP(6-11), septide, and NKA(only)caused 74 +/- 3.5, 50.6 +/- 8, and 71.5 +/- 4.4% maximal desensitization, respectively (mean +/- SEM; P < 0.001 vs SP). When a series of SP C-terminal fragment peptides were tested for their NK-1R desensitizing activity, it was found that SP(5-11)and SP(6-11)caused significantly less maximal NK-1R desensitization than SP. SP N-terminal fragment peptides had no effect on the ability of SP(6-11)to compete with(3)H-SP binding, generate an IP(3)response, or cause NK-1R desensitization when tested with or without SP(6-11). SP, SP(6-11), septide, and NKA all maximally stimulated 8-9-fold increases in NK-1R phosphorylation. When attached to the C-terminal domain of SP responsible for NK-1R binding and agonism, the N-terminus of SP is responsible for 25-50% of homologous desensitization and this may occur via a mechanism other than NK-1R phosphorylation. Copyright 2001 Harcourt Publishers Ltd.

  3. Modulation of Protein Phosphorylation, N-Glycosylation and Lys-Acetylation in Grape (Vitis vinifera) Mesocarp and Exocarp Owing to Lobesia botrana Infection*

    PubMed Central

    Melo-Braga, Marcella N.; Verano-Braga, Thiago; León, Ileana R.; Antonacci, Donato; Nogueira, Fábio C. S.; Thelen, Jay J.; Larsen, Martin R.; Palmisano, Giuseppe

    2012-01-01

    Grapevine (Vitis vinifera) is an economically important fruit crop that is subject to many types of insect and pathogen attack. To better elucidate the plant response to Lobesia botrana pathogen infection, we initiated a global comparative proteomic study monitoring steady-state protein expression as well as changes in N-glycosylation, phosphorylation, and Lys-acetylation in control and infected mesocarp and exocarp from V. vinifera cv Italia. A multi-parallel, large-scale proteomic approach employing iTRAQ labeling prior to three peptide enrichment techniques followed by tandem mass spectrometry led to the identification of a total of 3059 proteins, 1135 phosphorylation sites, 323 N-linked glycosylation sites and 138 Lys-acetylation sites. Of these, we could identify changes in abundance of 899 proteins. The occupancy of 110 phosphorylation sites, 10 N-glycosylation sites and 20 Lys-acetylation sites differentially changed during L. botrana infection. Sequence consensus analysis for phosphorylation sites showed eight significant motifs, two of which containing up-regulated phosphopeptides (X-G-S-X and S-X-X-D) and two containing down-regulated phosphopeptides (R-X-X-S and S-D-X-E) in response to pathogen infection. Topographical distribution of phosphorylation sites within primary sequences reveal preferential phosphorylation at both the N- and C termini, and a clear preference for C-terminal phosphorylation in response to pathogen infection suggesting induction of region-specific kinase(s). Lys-acetylation analysis confirmed the consensus X-K-Y-X motif previously detected in mammals and revealed the importance of this modification in plant defense. The importance of N-linked protein glycosylation in plant response to biotic stimulus was evident by an up-regulated glycopeptide belonging to the disease resistance response protein 206. This study represents a substantial step toward the understanding of protein and PTMs-mediated plant-pathogen interaction shedding

  4. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  5. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J

    2015-02-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Multisite tyrosine phosphorylation of the N-terminus of Mint1/X11α by Src kinase regulates the trafficking of amyloid precursor protein.

    PubMed

    Dunning, Christopher J R; Black, Hannah L; Andrews, Katie L; Davenport, Elizabeth C; Conboy, Michael; Chawla, Sangeeta; Dowle, Adam A; Ashford, David; Thomas, Jerry R; Evans, Gareth J O

    2016-05-01

    Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β-amyloid peptide, a key player in the pathology of Alzheimer's disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2-binding motif ((202) YEEI) was identified in the N-terminus of Mint1 that is phosphorylated on tyrosine by C-Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N-terminus inhibits C-Src binding and tyrosine phosphorylation. Previous studies observed that co-expression of wild-type Mint1 and APP causes accumulation of APP in the trans-Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans-Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild-type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP. The regulation of amyloid precursor protein (APP) trafficking is poorly understood. We have discovered that the APP adapter, Mint1, is phosphorylated by C-Src kinase. Mint1 causes APP accumulation in the trans-Golgi network, whereas inhibition of Src or mutation of Mint1-Y202 permits APP recycling. The phosphorylation status of Mint1 could impact on the pathological trafficking of APP in Alzheimer's disease. © 2016 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  7. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis

    PubMed Central

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H.; Hickson, Gilles R.

    2014-01-01

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks. PMID:25332165

  8. Syk Inhibits the Activity of Protein Kinase A by Phosphorylating Tyrosine 330 of the Catalytic Subunit*

    PubMed Central

    Yu, Shuai; Huang, He; Iliuk, Anton; Wang, Wen-Horng; Jayasundera, Keerthi B.; Tao, W. Andy; Post, Carol B.; Geahlen, Robert L.

    2013-01-01

    The Syk protein-tyrosine kinase can have multiple effects on cancer cells, acting in some as a tumor suppressor by inhibiting motility and in others as a tumor promoter by enhancing survival. Phosphoproteomic analyses identified PKA as a Syk-specific substrate. Syk catalyzes the phosphorylation of the catalytic subunit of PKA (PKAc) both in vitro and in cells on Tyr-330. Tyr-330 lies within the adenosine-binding motif in the C-terminal tail of PKAc within a cluster of acidic amino acids (DDYEEEE), which is a characteristic of Syk substrates. The phosphorylation of PKAc on Tyr-330 by Syk strongly inhibits its catalytic activity. Molecular dynamics simulations suggest that this additional negative charge prevents the C-terminal tail from interacting with the substrate and the nucleotide-binding site to stabilize the closed conformation of PKAc, thus preventing catalysis from occurring. Phosphoproteomic analyses and Western blotting studies indicate that Tyr-330 can be phosphorylated in a Syk-dependent manner in MCF7 breast cancer cells and DT40 B cells. The phosphorylation of a downstream substrate of PKAc, cAMP-responsive element-binding protein (CREB), is inhibited in cells expressing Syk but can be rescued by a selective inhibitor of Syk. Modulation of CREB activity alters the expression of the CREB-regulated gene BCL2 and modulates cellular responses to genotoxic agents. Thus, PKA is a novel substrate of Syk, and its phosphorylation on Tyr-330 inhibits its participation in downstream signaling pathways. PMID:23447535

  9. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates

    NASA Technical Reports Server (NTRS)

    Biermann, B. J.; Pao, L. I.; Feldman, L. J.

    1994-01-01

    Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

  10. Okadaic acid-induced, naringin-sensitive phosphorylation of glycine N-methyltransferase in isolated rat hepatocytes.

    PubMed Central

    Møller, Michael T N; Samari, Hamid R; Fengsrud, Monica; Strømhaug, Per E; øStvold, Anne C; Seglen, Per O

    2003-01-01

    Glycine N-methyltransferase (GNMT) is an abundant cytosolic enzyme that catalyses the methylation of glycine into sarcosine, coupled with conversion of the methyl donor, S -adenosylmethionine (AdoMet), into S -adenosylhomocysteine (AdoHcy). GNMT is believed to play a role in monitoring the AdoMet/AdoHcy ratio, and hence the cellular methylation capacity, but regulation of the enzyme itself is not well understood. In the present study, treatment of isolated rat hepatocytes with the protein phosphatase inhibitor okadaic acid, was found to induce an overphosphorylation of GNMT, as shown by proteomic analysis. The analysis comprised two-dimensional gel electrophoretic separation of (32)P-labelled phosphoproteins and identification of individual protein spots by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry. The identity of GNMT was verified by N-terminal Edman sequencing of tryptic peptides. Chromatographic separation of proteolytic peptides and (32)P-labelled amino acids suggested that GNMT was phosphorylated within a limited region, and only at serine residues. GNMT phosphorylation could be suppressed by naringin, an okadaic acid-antagonistic flavonoid. To assess the possible functional role of GNMT phosphorylation, the effect of okadaic acid on hepatocytic AdoMet and AdoHcy levels was examined, using HPLC separation for metabolite analysis. Surprisingly, okadaic acid was found to have no effect on the basal levels of AdoMet or AdoHcy. An accelerated AdoMet-AdoHcy flux, induced by the addition of methionine (1 mM), was likewise unaffected by okadaic acid. 5-Aminoimidazole-4-carboxamide riboside, an activator of the hepatocytic AMP-activated protein kinase, similarly induced GNMT phosphorylation without affecting AdoMet and AdoHcy levels. Activation of cAMP-dependent protein kinase by dibutyryl-cAMP, reported to cause GNMT phosphorylation under cell-free conditions, also had little effect on hepatocytic AdoMet and AdoHcy levels

  11. Genetic Variation of the Kinases That Phosphorylate Tenofovir and Emtricitabine in Peripheral Blood Mononuclear Cells.

    PubMed

    Figueroa, Dominique B; Madeen, Erin P; Tillotson, Joseph; Richardson, Paul; Cottle, Leslie; McCauley, Marybeth; Landovitz, Raphael J; Andrade, Adriana; Hendrix, Craig W; Mayer, Kenneth H; Wilkin, Timothy; Gulick, Roy M; Bumpus, Namandjé N

    2018-05-01

    Tenofovir (TFV) disoproxil fumarate and emtricitabine (FTC) are used in combination for HIV treatment and pre-exposure prophylaxis (PrEP). TFV disoproxil fumarate is a prodrug that undergoes diester hydrolysis to TFV. FTC and TFV are nucleoside/nucleotide reverse transcriptase inhibitors that upon phosphorylation to nucleotide triphosphate analogs competitively inhibit HIV reverse transcriptase. We previously demonstrated that adenylate kinase 2, pyruvate kinase, muscle and pyruvate kinase, liver and red blood cell phosphorylate TFV in peripheral blood mononuclear cells (PBMC). To identify the kinases that phosphorylate FTC in PBMC, siRNAs targeted toward kinases that phosphorylate compounds structurally similar to FTC were delivered to PBMC, followed by incubation with FTC and the application of a matrix-assisted laser desorption ionization-mass spectrometry method and ultra high performance liquid chromatography-UV to detect the formation of FTC phosphates. Knockdown of deoxycytidine kinase decreased the formation of FTC-monophosphate, while siRNA targeted toward thymidine kinase 1 decreased the abundance of FTC-diphosphate. Knockdown of either cytidine monophosphate kinase 1 or phosphoglycerate kinase 1 decreased the abundance of FTC-triphosphate. Next-generation sequencing of genomic DNA isolated from 498 HIV-uninfected participants in the HIV Prevention Trials Network 069/AIDS Clinical Trials Group A5305 clinical study, revealed 17 previously unreported genetic variants of TFV or FTC phosphorylating kinases. Of note, four individuals were identified as simultaneous carriers of variants of both TFV and FTC activating kinases. These results identify the specific kinases that activate FTC in PBMC, while also providing further insight into the potential for genetic variation to impact TFV and FTC activation.

  12. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  13. Cloning and characterization of full-length mouse thymidine kinase 2: the N-terminal sequence directs import of the precursor protein into mitochondria.

    PubMed Central

    Wang, L; Eriksson, S

    2000-01-01

    The subcellular localization of mitochondrial thymidine kinase (TK2) has been questioned, since no mitochondrial targeting sequences have been found in cloned human TK2 cDNAs. Here we report the cloning of mouse TK2 cDNA from a mouse full-length enriched cDNA library. The mouse TK2 cDNA codes for a protein of 270 amino acids, with a 40-amino-acid presumed N-terminal mitochondrial targeting signal. In vitro translation and translocation experiments with purified rat mitochondria confirmed that the N-terminal sequence directed import of the precursor TK2 into the mitochondrial matrix. A single 2.4 kb mRNA transcript was detected in most tissues examined, except in liver, where an additional shorter (1.0 kb) transcript was also observed. There was no correlation between the tissue distribution of TK2 activity and the expression of TK2 mRNA. Full-length mouse TK2 protein and two N-terminally truncated forms, one of which corresponds to the mitochondrial form of TK2 and a shorter form corresponding to the previously characterized recombinant human TK2, were expressed in Escherichia coli and affinity purified. All three forms of TK2 phosphorylated thymidine, deoxycytidine and 2'-deoxyuridine, but with different kinetic efficiencies. A number of cytostatic pyrimidine nucleoside analogues were also tested and shown to be good substrates for the various forms of TK2. The active form of full-length mouse TK2 was a dimer, as judged by Superdex 200 chromatography. These results enhance our understanding of the structure and function of TK2, and may help to explain the mitochondrial disorder, mitochondrial neurogastrointestinal encephalomyopathy. PMID:11023833

  14. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    PubMed

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  15. Modulation of GABAergic receptor binding by activation of calcium and calmodulin-dependent kinase II membrane phosphorylation.

    PubMed

    Churn, S B; DeLorenzo, R J

    1998-10-26

    gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.

  16. Phosphorylation of Krüppel-like factor 3 (KLF3/BKLF) and C-terminal binding protein 2 (CtBP2) by homeodomain-interacting protein kinase 2 (HIPK2) modulates KLF3 DNA binding and activity.

    PubMed

    Dewi, Vitri; Kwok, Alister; Lee, Stella; Lee, Ming Min; Tan, Yee Mun; Nicholas, Hannah R; Isono, Kyo-ichi; Wienert, Beeke; Mak, Ka Sin; Knights, Alexander J; Quinlan, Kate G R; Cordwell, Stuart J; Funnell, Alister P W; Pearson, Richard C M; Crossley, Merlin

    2015-03-27

    Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiss, Brian J.; Cano, Gina L.; Tavis, John E.

    2004-12-05

    Phosphorylation of the herpes simplex virus (HSV) VP22 protein is regulated by cellular kinases and the UL13 viral kinase, but the sites at which these enzymes induce phosphorylation of HSV-2 VP22 are not known. Using serine-to-alanine mutants to map phosphorylation sites on HSV-2 VP22 in cells, we made three major observations. First, phosphorylation by a cellular kinase mapped to serines 70, 71, and/or 72 within CKII consensus sites analogous to previously identified phosphorylation sites in HSV-1 VP22. Second, we mapped UL13-mediated phosphorylation of HSV-2 VP22 to serines 28 and 34, describing for the first time UL13-dependent phosphorylation sites on VP22.more » Third, previously identified VP22-associated cellular kinase sites in HSV-1 VP22 (serines 292 and 294) were not phosphorylated in HSV-2 VP22 (serines 291 and 293). VP22 expressed alone accumulated in the cytoplasm and to a lesser extent in the nucleus. Phosphorylation by endogenous cellular kinase(s) did not alter the localization of VP22. Co-expression of HSV-2 VP22 with active UL13, but not with enzymatically inactive UL13, resulted in nuclear accumulation of VP22 and altered nuclear morphology. Surprisingly, redistribution of VP22 to the nucleus occurred independently of UL13-induced phosphorylation of VP22. The altered nuclear morphology of UL13-expressing cells was not due to apoptosis. These results demonstrate that phosphorylation of HSV-2 VP22 at multiple serine residues is induced by UL13 and cellular kinase(s), and that the nuclear/cytoplasmic distribution of VP22 is independent of its phosphorylation status but is controlled indirectly by UL13 kinase activity.« less

  18. Human Protein Kinases and Obesity.

    PubMed

    Engin, Atilla

    2017-01-01

    The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity, and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified by the target amino acid in their substrates. Some protein kinases can phosphorylate both serine/threonine, as well as tyrosine residues. This group of kinases has been known as dual specificity kinases. Unlike the dual specificity kinases, a heterogeneous group of protein phosphatases are known as dual-specificity phosphatases. These phosphatases remove phosphate groups from tyrosine and serine/threonine residues on their substrate. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases. The protein kinase-phosphoproteins interactions play an important role in obesity . In obesity, the pro- and anti-inflammatory effects of adipokines and cytokines through intracellular signaling pathways mainly involve the nuclear factor kappa B (NF-kappaB) and the c-Jun N-terminal kinase (JNK) systems as well as the inhibitor of kappaB-kinase beta (IKK beta). Impairment of insulin signaling in obesity is largely mediated by the activation of the IKKbeta and the JNK. Furthermore, oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2alpha kinase (PERK) and activating transcription factor-6. The transcriptional regulation of

  19. NIK and Cot cooperate to trigger NF-kappaB p65 phosphorylation.

    PubMed

    Wittwer, Tobias; Schmitz, M Lienhard

    2008-06-27

    The serine/threonine kinase Cot triggers NF-kappaB-dependent transactivation and activation of various MAPKinases. Here we identify Cot as a novel p65 interacting protein kinase. Cot expression induces p65 phosphorylation at serines 536 and 468 in dependence from its kinase function. Accordingly, shRNA-mediated knockdown of Cot expression interferes with TNF-induced NF-kappaB-dependent gene expression. Also the C-terminally truncated, oncogenic form of Cot is able to trigger p65 phosphorylation. In vitro kinase assays and dominant negative mutants revealed that NIK functions downstream of Cot to mediate p65 phosphorylation.

  20. In vivo phosphorylation of WRKY transcription factor by MAPK.

    PubMed

    Ishihama, Nobuaki; Adachi, Hiroaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2014-01-01

    Plants activate signaling networks in response to diverse pathogen-derived signals, facilitating transcriptional reprogramming through mitogen-activated protein kinase (MAPK) cascades. Identification of phosphorylation targets of MAPK and in vivo detection of the phosphorylated substrates are important processes to elucidate the signaling pathway in plant immune responses. We have identified a WRKY transcription factor, which is phosphorylated by defense-related MAPKs, SIPK and WIPK. Recent evidence demonstrated that some group I WRKY transcription factors, which contain a conserved motif in the N-terminal region, are activated by MAPK-dependent phosphorylation. In this chapter, we describe protocols for preparation of anti-phosphopeptide antibodies, detection of activated MAPKs using anti-phospho-MAPK antibody, and activated WRKY using anti-phospho-WRKY antibody, respectively.

  1. Aluminum interaction with human brain tau protein phosphorylation by various kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Sebae; Abou Zeid, M.M.; Saleh, M.A.

    1993-01-01

    Phosphorylation is an indispensable process for energy and signal transduction in biological systems. AlCl[sub 3] at 10 nM to 10 [mu]M range activated in-vitro [[gamma][sup [minus]32]P]ATP phosphorylation of the brain ([tau]) [Gamma] protein in both normal human or E.coli expressed [Gamma] forms; in the presence of the kinases P34,PKP, and PKC. However, higher concentrations of AlCl[sub 3] inhibited the [Gamma] phosphorylation with P34, PKP, and PKC to a maximum at 1 mM level. AlCl[sub 3] at 100 [mu]M to 500 [mu]M range induced non-enzymatic phosphorylation of [Gamma] with [gamma]-ATP, [gamma]-GTP, and [alpha]-GRP. AlCl[sub 3] activated histone phosphorylation by P34 inmore » a similar pattern. The hyperphosphorylation of [Gamma] by Al[sup 3+] was accompanied in molecular shift and mobility retardation in SDS-PAGE. This may demonstrate the mechanism of the long term neurological effect of Al[sub 3+] in human brain leading to the formation of the neutrofibrillary tangles related to Alzeheimer's disease.« less

  2. A CK2 site is reversibly phosphorylated in the photosystem II subunit CP29.

    PubMed

    Testi, M G; Croce, R; Polverino-De Laureto, P; Bassi, R

    1996-12-16

    Protein phosphorylation is a major mechanism in the regulation of protein function. In chloroplast thylakoids several photosystem II subunits, including the major antenna light-harvesting complex II and several core complex components, are reversibly phosphorylated depending on the redox state of the electron carriers. A previously unknown reversible phosphorylation event has recently been described on the CP29 subunit which leads to conformational changes and protection from cold stress (Bergantino, E., Dainese, P., Cerovic, Z. Sechi, S. and Bassi, R. (1995) J. Biol Chem. 270, 8474-8481). In this study, we have identified the phosphorylation site on the N-terminal, stroma-exposed domain, showing that it is located in a sequence not homologous to the other members of the Lhc family. The phosphorylated sequence is unique in chloroplast membranes since it meets the requirements for CK2 (casein kinase II) kinases. The possibility that this phosphorylation is involved in a signal transduction pathway is discussed.

  3. Identification and Characterization of a Novel Class of c-Jun N-terminal Kinase Inhibitors

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Hanks, Tracey S.; Kochetkova, Irina; Pascual, David W.; Jutila, Mark A.

    2012-01-01

    In efforts to identify novel small molecules with anti-inflammatory properties, we discovered a unique series of tetracyclic indenoquinoxaline derivatives that inhibited lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 activation. Compound IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) was found to be a potent, noncytotoxic inhibitor of pro-inflammatory cytokine [interleukin (IL)-1α, IL-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, interferon-γ, and granulocyte-macrophage colony-stimulating factor] and nitric oxide production by human and murine monocyte/macrophages. Three additional potent inhibitors of cytokine production were identified through further screening of IQ-1 analogs. The sodium salt of IQ-1 inhibited LPS-induced TNF-α and IL-6 production in MonoMac-6 cells with IC50 values of 0.25 and 0.61 μM, respectively. Screening of 131 protein kinases revealed that derivative IQ-3 [11H-indeno[1,2-b]quinoxalin-11-one-O-(2-furoyl)oxime]was a specific inhibitor of the c-Jun N-terminal kinase (JNK) family, with preference for JNK3. This compound, as well as IQ-1 and three additional oxime indenoquinoxalines, were found to be high-affinity JNK inhibitors with nanomolar binding affinity and ability to inhibit c-Jun phosphorylation. Furthermore, docking studies showed that hydrogen bonding interactions of the active indenoquinoxalines with Asn152, Gln155, and Met149 of JNK3 played an important role in enzyme binding activity. Finally, we showed that the sodium salt of IQ-1 had favorable pharmacokinetics and inhibited the ovalbumin-induced CD4+ T-cell immune response in a murine delayed-type hypersensitivity model in vivo. We conclude that compounds with an indenoquinoxaline nucleus can serve as specific small-molecule modulators for mechanistic studies of JNKs as well as a potential leads for the development of anti-inflammatory drugs. PMID:22434859

  4. Polo-like Kinase 2 (PLK2) Phosphorylates α-Synuclein at Serine 129 in Central Nervous System*S⃞

    PubMed Central

    Inglis, Kelly J.; Chereau, David; Brigham, Elizabeth F.; Chiou, San-San; Schöbel, Susanne; Frigon, Normand L.; Yu, Mei; Caccavello, Russell J.; Nelson, Seth; Motter, Ruth; Wright, Sarah; Chian, David; Santiago, Pamela; Soriano, Ferdie; Ramos, Carla; Powell, Kyle; Goldstein, Jason M.; Babcock, Michael; Yednock, Ted; Bard, Frederique; Basi, Guriqbal S.; Sham, Hing; Chilcote, Tamie J.; McConlogue, Lisa; Griswold-Prenner, Irene; Anderson, John P.

    2009-01-01

    Several neurological diseases, including Parkinson disease and dementia with Lewy bodies, are characterized by the accumulation of α-synuclein phosphorylated at Ser-129 (p-Ser-129). The kinase or kinases responsible for this phosphorylation have been the subject of intense investigation. Here we submit evidence that polo-like kinase 2 (PLK2, also known as serum-inducible kinase or SNK) is a principle contributor to α-synuclein phosphorylation at Ser-129 in neurons. PLK2 directly phosphorylates α-synuclein at Ser-129 in an in vitro biochemical assay. Inhibitors of PLK kinases inhibited α-synuclein phosphorylation both in primary cortical cell cultures and in mouse brain in vivo. Finally, specific knockdown of PLK2 expression by transduction with short hairpin RNA constructs or by knock-out of the plk2 gene reduced p-Ser-129 levels. These results indicate that PLK2 plays a critical role in α-synuclein phosphorylation in central nervous system. PMID:19004816

  5. Novel Autophosphorylation Sites of Src Family Kinases Regulate Kinase Activity and SH2 Domain Binding Capacity

    PubMed Central

    Weir, Marion E.; Mann, Jacqueline E.; Corwin, Thomas; Fulton, Zachary W.; Hao, Jennifer M.; Maniscalco, Jeanine F.; Kenney, Marie C.; Roque, Kristal M. Roman; Chapdelaine, Elizabeth F.; Stelzl, Ulrich; Deming, Paula B.; Ballif, Bryan A.; Hinkle, Karen L.

    2016-01-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly-regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly-phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the site C-terminal to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. PMID:27001024

  6. Regulation of Neurite Outgrowth in N1E-115 Cells through PDZ-Mediated Recruitment of Diacylglycerol Kinase ζ

    PubMed Central

    Yakubchyk, Yury; Abramovici, Hanan; Maillet, Jean-Christian; Daher, Elias; Obagi, Christopher; Parks, Robin J.; Topham, Matthew K.; Gee, Stephen H.

    2005-01-01

    Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase ζ (DGK-ζ), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-ζ and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells. Overexpression of DGK-ζ in N1E-115 cells induced neurite formation in the presence of serum, which normally prevents neurite outgrowth. This effect was independent of DGK-ζ kinase activity but dependent on a functional C-terminal PDZ-binding motif, which specifically interacts with syntrophin PDZ domains. DGK-ζ mutants with a blocked C terminus acted as dominant-negative inhibitors of outgrowth from serum-deprived N1E-115 cells and cortical neurons. Several lines of evidence suggest DGK-ζ promotes neurite outgrowth through association with the GTPase Rac1. DGK-ζ colocalized with Rac1 in neuronal processes and DGK-ζ-induced outgrowth was inhibited by dominant-negative Rac1. Moreover, DGK-ζ directly interacts with Rac1 through a binding site located within its C1 domains. Together with syntrophin, these proteins form a tertiary complex in N1E-115 cells. A DGK-ζ mutant that mimics phosphorylation of the MARCKS domain was unable to bind an activated Rac1 mutant (Rac1V12) and phorbol myristate acetate-induced protein kinase C activation inhibited the interaction of DGK-ζ with Rac1V12, suggesting protein kinase C-mediated phosphorylation of the MARCKS domain negatively regulates DGK-ζ binding to active Rac1. Collectively, these findings suggest DGK-ζ, syntrophin, and Rac1 form a regulated signaling complex that controls polarized outgrowth in neuronal cells. PMID:16055737

  7. DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors.

    PubMed

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser(1048) of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser(1048) hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser(1048) increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons.

  8. DYRK1A-mediated phosphorylation of GluN2A at Ser1048 regulates the surface expression and channel activity of GluN1/GluN2A receptors

    PubMed Central

    Grau, Cristina; Arató, Krisztina; Fernández-Fernández, José M.; Valderrama, Aitana; Sindreu, Carlos; Fillat, Cristina; Ferrer, Isidre; de la Luna, Susana; Altafaj, Xavier

    2014-01-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) play a pivotal role in neural development and synaptic plasticity, as well as in neurological disease. Since NMDARs exert their function at the cell surface, their density in the plasma membrane is finely tuned by a plethora of molecules that regulate their production, trafficking, docking and internalization in response to external stimuli. In addition to transcriptional regulation, the density of NMDARs is also influenced by post-translational mechanisms like phosphorylation, a modification that also affects their biophysical properties. We previously described the increased surface expression of GluN1/GluN2A receptors in transgenic mice overexpressing the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), suggesting that DYRK1A regulates NMDARs. Here we have further investigated whether the density and activity of NMDARs were modulated by DYRK1A phosphorylation. Accordingly, we show that endogenous DYRK1A is recruited to GluN2A-containing NMDARs in the adult mouse brain, and we identify a DYRK1A phosphorylation site at Ser1048 of GluN2A, within its intracellular C-terminal domain. Mechanistically, the DYRK1A-dependent phosphorylation of GluN2A at Ser1048 hinders the internalization of GluN1/GluN2A, causing an increase of surface GluN1/GluN2A in heterologous systems, as well as in primary cortical neurons. Furthermore, GluN2A phosphorylation at Ser1048 increases the current density and potentiates the gating of GluN1/GluN2A receptors. We conclude that DYRK1A is a direct regulator of NMDA receptors and we propose a novel mechanism for the control of NMDAR activity in neurons. PMID:25368549

  9. Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway.

    PubMed

    Castro-Caldas, Margarida; Carvalho, Andreia Neves; Rodrigues, Elsa; Henderson, Colin; Wolf, C Roland; Gama, Maria João

    2012-06-01

    Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.

  10. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.

    PubMed

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-06-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.

  11. Phosphorylation and nuclear localization of the varicella-zoster virus gene 63 protein.

    PubMed Central

    Stevenson, D; Xue, M; Hay, J; Ruyechan, W T

    1996-01-01

    The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization. PMID:8523589

  12. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    PubMed

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  13. An Unbiased Approach to Identifying Tau Kinases That Phosphorylate Tau at Sites Associated with Alzheimer Disease

    PubMed Central

    Cavallini, Annalisa; Brewerton, Suzanne; Bell, Amanda; Sargent, Samantha; Glover, Sarah; Hardy, Clare; Moore, Roger; Calley, John; Ramachandran, Devaki; Poidinger, Michael; Karran, Eric; Davies, Peter; Hutton, Michael; Szekeres, Philip; Bose, Suchira

    2013-01-01

    Neurofibrillary tangles, one of the hallmarks of Alzheimer disease (AD), are composed of paired helical filaments of abnormally hyperphosphorylated tau. The accumulation of these proteinaceous aggregates in AD correlates with synaptic loss and severity of dementia. Identifying the kinases involved in the pathological phosphorylation of tau may identify novel targets for AD. We used an unbiased approach to study the effect of 352 human kinases on their ability to phosphorylate tau at epitopes associated with AD. The kinases were overexpressed together with the longest form of human tau in human neuroblastoma cells. Levels of total and phosphorylated tau (epitopes Ser(P)-202, Thr(P)-231, Ser(P)-235, and Ser(P)-396/404) were measured in cell lysates using AlphaScreen assays. GSK3α, GSK3β, and MAPK13 were found to be the most active tau kinases, phosphorylating tau at all four epitopes. We further dissected the effects of GSK3α and GSK3β using pharmacological and genetic tools in hTau primary cortical neurons. Pathway analysis of the kinases identified in the screen suggested mechanisms for regulation of total tau levels and tau phosphorylation; for example, kinases that affect total tau levels do so by inhibition or activation of translation. A network fishing approach with the kinase hits identified other key molecules putatively involved in tau phosphorylation pathways, including the G-protein signaling through the Ras family of GTPases (MAPK family) pathway. The findings identify novel tau kinases and novel pathways that may be relevant for AD and other tauopathies. PMID:23798682

  14. Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE

    DOE PAGES

    Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping; ...

    2014-12-08

    Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. In this paper, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1more » acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1AS122A/T162A, but not the phosphomimetic form, RACK1AS122D/T162E, rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1AS122D/T162E accumulated at similar levels as those of RACK1S122A/T162A. However, although the steady-state level of the RACK1AS122A/T162A protein was similar to wild-type RACK1A protein, the RACK1AS122D/T162E protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. In conclusion, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.« less

  15. Inhibition of the Jun N-Terminal Protein Kinase Pathway by SHIP-1, a Lipid Phosphatase That Interacts with the Adaptor Molecule Dok-3

    PubMed Central

    Robson, Jeffrey D.; Davidson, Dominique; Veillette, André

    2004-01-01

    Dok-3 is a Dok-related adaptor expressed in B cells and macrophages. Previously, we reported that Dok-3 is an inhibitor of B-cell activation in A20 B cells and that it associates with SHIP-1, a 5′ inositol-specific lipid phosphatase, as well as Csk, a negative regulator of Src kinases. Here, we demonstrate that Dok-3 suppresses B-cell activation by way of its interaction with SHIP-1, rather than Csk. Our biochemical analyses showed that the Dok-3-SHIP-1 complex acts by selectively inhibiting the B-cell receptor (BCR)-evoked activation of the Jun N-terminal protein kinase (JNK) cascade without affecting overall protein tyrosine phosphorylation or activation of previously described SHIP-1 targets like Btk and Akt/PKB. Studies of B cells derived from SHIP-1-deficient mice showed that BCR-triggered activation of JNK is enhanced in the absence of SHIP-1, implying that the Dok-3-SHIP-1 complex (or a related mechanism) is a physiological negative regulator of the JNK cascade in normal B cells. Together, these data elucidate the mechanism by which Dok-3 inhibits B-cell activation. Furthermore, they provide evidence that SHIP-1 can be a negative regulator of JNK signaling in B cells. PMID:14993273

  16. A dynamic mechanism for allosteric activation of Aurora kinase A by activation loop phosphorylation.

    PubMed

    Ruff, Emily F; Muretta, Joseph M; Thompson, Andrew R; Lake, Eric W; Cyphers, Soreen; Albanese, Steven K; Hanson, Sonya M; Behr, Julie M; Thomas, David D; Chodera, John D; Levinson, Nicholas M

    2018-02-21

    Many eukaryotic protein kinases are activated by phosphorylation on a specific conserved residue in the regulatory activation loop, a post-translational modification thought to stabilize the active DFG-In state of the catalytic domain. Here we use a battery of spectroscopic methods that track different catalytic elements of the kinase domain to show that the ~100 fold activation of the mitotic kinase Aurora A (AurA) by phosphorylation occurs without a population shift from the DFG-Out to the DFG-In state, and that the activation loop of the activated kinase remains highly dynamic. Instead, molecular dynamics simulations and electron paramagnetic resonance experiments show that phosphorylation triggers a switch within the DFG-In subpopulation from an autoinhibited DFG-In substate to an active DFG-In substate, leading to catalytic activation. This mechanism raises new questions about the functional role of the DFG-Out state in protein kinases. © 2018, Ruff et al.

  17. Checkpoint kinase 1-induced phosphorylation of O-linked β-N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis.

    PubMed

    Li, Zhe; Li, Xueyan; Nai, Shanshan; Geng, Qizhi; Liao, Ji; Xu, Xingzhi; Li, Jing

    2017-12-01

    Checkpoint kinase 1 (Chk1) is a kinase instrumental for orchestrating DNA replication, DNA damage checkpoints, the spindle assembly checkpoint, and cytokinesis. Despite Chk1's pivotal role in multiple cellular processes, many of its substrates remain elusive. Here, we identified O- linked β- N -acetylglucosamine ( O -GlcNAc)-transferase (OGT) as one of Chk1's substrates. We found that Chk1 interacts with and phosphorylates OGT at Ser-20, which not only stabilizes OGT, but also is required for cytokinesis. Phospho-specific antibodies of OGT-pSer-20 exhibited specific signals at the midbody of the cell, consistent with midbody localization of OGT as reported previously. Moreover, phospho-deficient OGT (S20A) cells attenuated cellular O -GlcNAcylation levels and also reduced phosphorylation of Ser-71 in the cytoskeletal protein vimentin, a modification critical for severing vimentin filament during cytokinesis. Consequently, elongated vimentin bridges were observed in cells depleted of OGT via an si OGT- based approach. Lastly, expression of plasmids resistant to si OGT efficiently rescued the vimentin bridge phenotype, but the OGT-S20A rescue plasmids did not. Our results suggest a Chk1-OGT-vimentin pathway that regulates the intermediate filament network during cytokinesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The RISC component VIG is a target for dsRNA-independent protein kinase activity in Drosophila S2 cells.

    PubMed

    Ivanov, Konstantin I; Tselykh, Timofey V; Heino, Tapio I; Mäkinen, Kristiina

    2005-07-27

    RNA interference (RNAi) is mediated by a multicomponent RNA-induced silencing complex (RISC). Here we examine the phosphorylation state of three Drosophila RISC-associated proteins, VIG, R2D2 and a truncated form of Argonaute2 devoid of the nonconserved N-terminal glutamine-rich domain. We show that of the three studied proteins, only VIG is phosphorylated in cultured Drosophila cells. We also demonstrate that the phosphorylation state of VIG remains unchanged after cell transfection with exogenous dsRNA. A sequence similarity search revealed that VIG shares significant similarity with the human phosphoprotein Ki-1/57, a known in vivo substrate for protein kinase C (PKC). In vitro kinase assays followed by tryptic phosphopeptide mapping showed that PKC could efficiently phosphorylate VIG on multiple sites, suggesting PKC as a candidate kinase for VIG phosphorylation in vivo. Taken together, our results identify the RISC component VIG as a novel kinase substrate in cultured Drosophila cells and suggest a possible involvement of PKC in its phosphorylation.

  19. Phosphorylation and mRNA Splicing of Collapsin Response Mediator Protein-2 Determine Inhibition of Rho-associated Protein Kinase (ROCK) II Function in Carcinoma Cell Migration and Invasion*

    PubMed Central

    Morgan-Fisher, Marie; Couchman, John R.; Yoneda, Atsuko

    2013-01-01

    The Rho-associated protein kinases (ROCK I and II) are central regulators of important cellular processes such as migration and invasion downstream of the GTP-Rho. Recently, we reported collapsin response mediator protein (CRMP)-2 as an endogenous ROCK II inhibitor. To reveal how the CRMP-2-ROCK II interaction is controlled, we further mapped the ROCK II interaction site of CRMP-2 and examined whether phosphorylation states of CRMP-2 affected the interaction. Here, we show that an N-terminal fragment of the long CRMP-2 splice variant (CRMP-2L) alone binds ROCK II and inhibits colon carcinoma cell migration and invasion. Furthermore, the interaction of CRMP-2 and ROCK II is partially regulated by glycogen synthase kinase (GSK)-3 phosphorylation of CRMP-2, downstream of PI3K. Inhibition of PI3K reduced interaction of CRMP-2 with ROCK II, an effect rescued by simultaneous inhibition of GSK3. Inhibition of PI3K also reduced colocalization of ROCK II and CRMP-2 at the cell periphery in human breast carcinoma cells. Mimicking GSK3 phosphorylation of CRMP-2 significantly reduced CRMP-2 binding of recombinant full-length and catalytic domain of ROCK II. These data implicate GSK3 in the regulation of ROCK II-CRMP-2 interactions. Using phosphorylation-mimetic and -resistant CRMP-2L constructs, it was revealed that phosphorylation of CRMP-2L negatively regulates its inhibitory function in ROCK-dependent haptotactic cell migration, as well as invasion of human colon carcinoma cells. Collectively, the presented data show that CRMP-2-dependent regulation of ROCK II activity is mediated through interaction of the CRMP-2L N terminus with the ROCK II catalytic domain as well as by GSK3-dependent phosphorylation of CRMP-2. PMID:24036111

  20. Mitogen-activated protein kinase inhibitors suppress prostaglandin F(2alpha)-induced myosin-light chain phosphorylation and contraction in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Gao, G; Abdel-Latif, A A

    2000-10-27

    The purpose of this study was to investigate the potential role of mitogen-activated protein (MAP) kinase in contraction by monitoring MAP kinase phosphorylation (activation) and contraction during agonist stimulation of cat iris sphincter smooth muscle. Changes in tension in response to prostaglandin F(2alpha), latanoprost, a prostaglandin F(2alpha) analog used as an anti-glaucoma drug, and carbachol were recorded isometrically, and MAP kinase activation was monitored by Western blot using a phosphospecific p42/p44 MAP kinase antibody. We found that treatment of the muscle with 2'-Amino-3'-methoxyflavone (PD98059) (10 microM), a specific inhibitor of MAP kinase kinase (MEK), inhibited significantly prostaglandin F(2alpha)- and latanoprost-induced phosphorylation and contraction, but had little effect on those evoked by carbachol. Prostaglandin F(2alpha) increased MAP kinase phosphorylation in a concentration-dependent manner with EC(50) value of 1.1 x 10(-8) M and increased contraction with EC(50) of 0.92 x 10(-9) M. The MAP kinase inhibitors PD98059, Apigenin and 1,4-Diamino-2,3-dicyano-1, 4bis(2-aminophenylthio)butadiene (UO126) inhibited prostaglandin F(2alpha)-induced contraction in a concentration-dependent manner with IC(50) values of 2.4, 3.0 and 4.8 microM, respectively. PD98059 had no effect on prostaglandin F(2alpha)- or on carbachol-stimulated inositol-1,4,5-trisphosphate (IP(3)) production. In contrast, the MAP kinase inhibitor inhibited prostaglandin F(2alpha)-induced myosin-light chain (MLC) phosphorylation, but had no effect on that of carbachol. N-[2-(N-(4-Chloro-cinnamyl)-N-methylaminomethyl)phenyl]-N-[2- hydroxyethyl]-4-methoxybenzenesulfonamide (KN-93) (10 microM), a Ca(2+)-calmodulin-dependent protein kinase inhibitor, and Wortmannin (10 microM), an MLC kinase inhibitor, inhibited significantly (by 80%) prostaglandin F(2alpha)- and carbachol-induced contraction. It can be concluded that in this smooth muscle p42/p44 MAP kinases are involved in

  1. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256.

    PubMed

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak

    2014-07-15

    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  2. Regulation of the Interaction between Glycogen Synthase Kinase 3 and the Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen

    PubMed Central

    Fujimuro, Masahiro; Liu, Jianyong; Zhu, Jian; Yokosawa, Hideyoshi; Hayward, S. Diane

    2005-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein stabilizes β-catenin by the novel mechanism of binding to the negative regulator, glycogen synthase kinase 3 (GSK-3), and depleting cytoplasmic GSK-3 levels. The two domains of LANA required for interaction with GSK-3 were further characterized. Evidence for similarity between the C-terminal LANA interaction domain and the axin GSK-3 interaction domain was obtained using GSK-3 and LANA mutants. GSK-3(F291L), which does not interact with axin, also failed to bind to LANA, and a mutation in the axin homology domain of LANA, L1132P, destroyed binding to GSK-3. The N-terminal LANA interaction domain was found to mediate interaction by acting as a substrate for GSK-3. GSK-3(R96A), a priming pocket mutant, did not bind to LANA, suggesting that LANA was a primed GSK-3 substrate. Phosphorylation of endogenous LANA precipitated from primary effusion lymphoma cells was inhibited by the GSK-3 inhibitor LiCl. GST-LANA(1-340) was phosphorylated by GSK-3, and mitogen-activated protein kinase (MAPK) and casein kinase I functioned as priming kinases in vitro. Mutation of consensus GSK-3 sites revealed that sites between LANA amino acids 219 and 268 were important for GSK-3 phosphorylation. Immunoprecipitation assays revealed that loss of GSK-3 phosphorylation of this N-terminal domain correlated with loss of GSK-3 interaction. Although LANA-associated GSK-3 actively phosphorylated LANA, GSK-3 coprecipitated with LANA was unable to phosphorylate an exogenous peptide substrate. LANA sequestration of GSK-3 may explain the ability of KSHV-infected cells to tolerate increased levels of nuclear GSK-3. PMID:16051835

  3. Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase

    NASA Technical Reports Server (NTRS)

    Bachmann, M.; Shiraishi, N.; Campbell, W. H.; Yoo, B. C.; Harmon, A. C.; Huber, S. C.; Davies, E. (Principal Investigator)

    1996-01-01

    Spinach leaf NADH:nitrate reductase (NR) responds to light/dark signals and photosynthetic activity in part as a result of rapid regulation by reversible protein phosphorylation. We have identified the major regulatory phosphorylation site as Ser-543, which is located in the hinge 1 region connecting the cytochrome b domain with the molybdenum-pterin cofactor binding domain of NR, using recombinant NR fragments containing or lacking the phosphorylation site sequence. Studies with NR partial reactions indicated that the block in electron flow caused by phosphorylation also could be localized to the hinge 1 region. A synthetic peptide (NR6) based on the phosphorylation site sequence was phosphorylated readily by NR kinase (NRk) in vitro. NR6 kinase activity tracked the ATP-dependent inactivation of NR during several chromatographic steps and completely inhibited inactivation/phosphorylation of native NR in vitro. Two forms of NRk were resolved by using anion exchange chromatography. Studies with synthetic peptide analogs indicated that both forms of NRk had similar specificity determinants, requiring a basic residue at P-3 (i.e., three amino acids N-terminal to the phosphorylated serine) and a hydrophobic residue at P-5. Both forms are strictly calcium dependent but belong to distinct families of protein kinases because they are distinct immunochemically.

  4. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  5. Novel autophosphorylation sites of Src family kinases regulate kinase activity and SH2 domain-binding capacity.

    PubMed

    Weir, Marion E; Mann, Jacqueline E; Corwin, Thomas; Fulton, Zachary W; Hao, Jennifer M; Maniscalco, Jeanine F; Kenney, Marie C; Roman Roque, Kristal M; Chapdelaine, Elizabeth F; Stelzl, Ulrich; Deming, Paula B; Ballif, Bryan A; Hinkle, Karen L

    2016-04-01

    Src family tyrosine kinases (SFKs) are critical players in normal and aberrant biological processes. While phosphorylation importantly regulates SFKs at two known tyrosines, large-scale phosphoproteomics have revealed four additional tyrosines commonly phosphorylated in SFKs. We found these novel tyrosines to be autophosphorylation sites. Mimicking phosphorylation at the C-terminal site to the activation loop decreased Fyn activity. Phosphomimetics and direct phosphorylation at the three SH2 domain sites increased Fyn activity while reducing phosphotyrosine-dependent interactions. While 68% of human SH2 domains exhibit conservation of at least one of these tyrosines, few have been found phosphorylated except when found in cis to a kinase domain. © 2016 Federation of European Biochemical Societies.

  6. DNA Replication Checkpoint Signaling Depends on a Rad53–Dbf4 N-Terminal Interaction in Saccharomyces cerevisiae

    PubMed Central

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-01-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53–Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4–Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53–Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity. PMID:23564203

  7. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.

    PubMed

    Korneeva, Nadejda L; Song, Anren; Gram, Hermann; Edens, Mary Ann; Rhoads, Robert E

    2016-02-12

    The MAPK-interacting kinases 1 and 2 (MNK1 and MNK2) are activated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) or p38 in response to cellular stress and extracellular stimuli that include growth factors, cytokines, and hormones. Modulation of MNK activity affects translation of mRNAs involved in the cell cycle, cancer progression, and cell survival. However, the mechanism by which MNK selectively affects translation of these mRNAs is not understood. MNK binds eukaryotic translation initiation factor 4G (eIF4G) and phosphorylates the cap-binding protein eIF4E. Using a cell-free translation system from rabbit reticulocytes programmed with mRNAs containing different 5'-ends, we show that an MNK inhibitor, CGP57380, affects translation of only those mRNAs that contain both a cap and a hairpin in the 5'-UTR. Similarly, a C-terminal fragment of human eIF4G-1, eIF4G(1357-1600), which prevents binding of MNK to intact eIF4G, reduces eIF4E phosphorylation and inhibits translation of only capped and hairpin-containing mRNAs. Analysis of proteins bound to m(7)GTP-Sepharose reveals that both CGP and eIF4G(1357-1600) decrease binding of eIF4E to eIF4G. These data suggest that MNK stimulates translation only of mRNAs containing both a cap and 5'-terminal RNA duplex via eIF4E phosphorylation, thereby enhancing the coupled cap-binding and RNA-unwinding activities of eIF4F. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    PubMed

    Schlaepfer, D D; Hunter, T

    1996-10-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is required for Grb2 binding to FAK. Using a tryptic phosphopeptide mapping approach, the in vivo phosphorylation of the Grb2 binding site on FAK (Tyr-925) was detected after fibronectin stimulation of NIH 3T3 cells and was constitutively phosphorylated in v-Src-transformed NIH 3T3 cells. In vitro, c-Src phosphorylated FAK Tyr-925 in a glutathione S-transferase-FAK C-terminal domain fusion protein, whereas FAK did not. Using epitope-tagged FAK constructs, transiently expressed in human 293 cells, we determined the effect of site-directed mutations on c-Src and Grb2 binding to FAK. Mutation of FAK Tyr-925 disrupted Grb2 binding, whereas mutation of the c-Src binding site on FAK (Tyr-397) disrupted both c-Src and Grb2 binding to FAK in vivo. These results support a model whereby Src-family PTKs are recruited to FAK and focal adhesions following integrin-induced autophosphorylation and exposure of FAK Tyr-397. Src-family binding and phosphorylation of FAK at Tyr-925 creates a Grb2 SH2-domain binding site and provides a link to the activation of the Ras signal transduction pathway. In Src-transformed cells, this pathway may be constitutively activated as a result of FAK Tyr-925 phosphorylation in the absence of integrin stimulation.

  9. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  10. A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride.

    PubMed

    Li, Xue; Zhou, Yunlei; Xu, Yan; Xu, Huijie; Wang, Minghui; Yin, Huanshun; Ai, Shiyun

    2016-08-31

    Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr(4+) ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Phosphorylation and mutations of Ser(16) in human phenylalanine hydroxylase. Kinetic and structural effects.

    PubMed

    Miranda, Frederico Faria; Teigen, Knut; Thórólfsson, Matthías; Svebak, Randi M; Knappskog, Per M; Flatmark, Torgeir; Martínez, Aurora

    2002-10-25

    Phosphorylation of phenylalanine hydroxylase (PAH) at Ser(16) by cyclic AMP-dependent protein kinase is a post-translational modification that increases its basal activity and facilitates its activation by the substrate l-Phe. So far there is no structural information on the flexible N-terminal tail (residues 1-18), including the phosphorylation site. To get further insight into the molecular basis for the effects of phosphorylation on the catalytic efficiency and enzyme stability, molecular modeling was performed using the crystal structure of the recombinant rat enzyme. The most probable conformation and orientation of the N-terminal tail thus obtained indicates that phosphorylation of Ser(16) induces a local conformational change as a result of an electrostatic interaction between the phosphate group and Arg(13) as well as a repulsion by Glu(280) in the loop at the entrance of the active site crevice structure. The modeled reorientation of the N-terminal tail residues (Met(1)-Leu(15)) on phosphorylation is in agreement with the observed conformational change and increased accessibility of the substrate to the active site, as indicated by circular dichroism spectroscopy and the enzyme kinetic data for the full-length phosphorylated and nonphosphorylated human PAH. To further validate the model we have prepared and characterized mutants substituting Ser(16) with a negatively charged residue and found that S16E largely mimics the effects of phosphorylation of human PAH. Both the phosphorylated enzyme and the mutants with acidic side chains instead of Ser(16) revealed an increased resistance toward limited tryptic proteolysis and, as indicated by circular dichroism spectroscopy, an increased content of alpha-helical structure. In agreement with the modeled structure, the formation of an Arg(13) to Ser(16) phosphate salt bridge and the conformational change of the N-terminal tail also explain the higher stability toward limited tryptic proteolysis of the

  12. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    PubMed

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  13. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chainmore » kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially

  14. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  15. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A.; De Wever, Veerle; Morrice, Nick A.; Meek, Katheryn; Lees-Miller, Susan P.

    2014-01-01

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ. PMID:24844881

  16. Role of inhibitory κB kinase and c-Jun NH2-terminal kinase in the development of hepatic insulin resistance in critical illness diabetes.

    PubMed

    Jiang, Shaoning; Messina, Joseph L

    2011-09-01

    Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH(2)-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.

  17. Role of inhibitory κB kinase and c-Jun NH2-terminal kinase in the development of hepatic insulin resistance in critical illness diabetes

    PubMed Central

    Jiang, Shaoning

    2011-01-01

    Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH2-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver. PMID:21680774

  18. Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios.

    PubMed

    Roder, H M; Ingram, V M

    1991-11-01

    We have identified, purified, and characterized two neurofilament/tau kinases from bovine brain, PK36 and PK40, with apparent Mr of 36,000 and 40,000 and with novel biochemical properties. A specially designed immunoassay for phosphorylated epitopes in neurofilament (NF) proteins was used in the early stages of the purification. Neither kinase is closely associated with the cytoskeleton. Both kinases phosphorylate bovine intermediate (NF-M) and heavy (NF-H) NF subunits and also bovine tau at the expected KSP sequences, though other sites cannot be ruled out. In human paired helical filaments, tau, phosphorylated at these same KSP sites, is a major characterized constituent. Neither kinase is activated by the usual second messengers. Tau and the above NF subunits are phosphorylated in high stoichiometric ratios. In the intermediate NF subunit, all the expected sites appear to be phosphorylated, but in the heavy NF subunit only 7 out of the greater than 40 expected sites can be phosphorylated by our kinases. We demonstrate that both kinases can induce considerable shifts of apparent Mr with SDS-PAGE for tau and, for the first time in vitro, also for the intermediate NF subunit. Interestingly, PK36 and particularly PK40 are strongly inhibited by an excess of free ATP. We propose that during normal aging, and in Alzheimer's disease, age-related mitochondrial dysfunction would reduce ATP levels, which in turn might release the neurofilament/tau kinase from inhibition with consequent paired helical filament formation.

  19. An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates.

    PubMed

    Molle, Virginie; Leiba, Jade; Zanella-Cléon, Isabelle; Becchi, Michel; Kremer, Laurent

    2010-11-01

    Identification of the phosphorylated residues of bacterial Ser/Thr protein kinase (STPK) substrates still represents a challenging task. Herein, we present a new strategy allowing the rapid determination of phosphoacceptors in kinase substrates, essentially based on the dual expression of the kinase with its substrate in the surrogate E. coli, followed by MS analysis in a single-step procedure. The performance of this strategy is illustrated using two distinct proteins from Mycobacterium tuberculosis as model substrates, the GroEL2 and HspX chaperones. A comparative analysis with a standard method that includes mass spectrometry analysis of in vitro phosphorylated substrates is also addressed.

  20. Identification of a Kinase in Wheat Germ that Phosphorylates the Large Subunit of Initiation Factor 4F 1

    PubMed Central

    Humphreys, Jean; Browning, Karen S.; Ravel, Joanne M.

    1988-01-01

    A kinase has been isolated from wheat (Triticum aestivum) germ that phosphorylates the 220 kilodaltons (kD) subunit of wheat germ initiation factor (eIF) 4F, the 80 kD subunit of eIF-4B (an isozyme form of eIF-4F) and eIF-4G (the functional equivalent to mammalian eIF-4B). The kinase elutes from Sephacryl S-200 slightly in front of ovalbumin. The kinase phosphorylates casein and histone IIA to a small extent, but does not phosphorylate phosvitin. Of the wheat germ initiation factors, elongation factors, and small and large ribosomal subunits, only eIF-4F, eIF-4B, and eIF-4G are phosphorylated to a significant extent. The kinase phosphorylates eIF-4F to the extent of two phosphates per mole of the 220 kD subunit and phosphorylates eIF-4B to the extent of one phosphate per mole of the 80 kD subunit. The 26 kD subunit of eIF-4F and the 28 kD subunit of eIF-4B are not phosphorylated by the kinase. The kinase phosphorylates the 59 kD component of eIF-4G to the extent of 0.25 phosphate per mole of eIF-4G. Phosphorylation of eIF-4F and eIF-4B does not affect their ability to support the binding of mRNA to small ribosomal subunits in vitro. Images Fig. 2 Fig. 3 PMID:16666331

  1. Regulatory Phosphorylation of Ikaros by Bruton's Tyrosine Kinase

    PubMed Central

    Zhang, Jian; Ishkhanian, Rita; Uckun, Fatih M.

    2013-01-01

    Diminished Ikaros function has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL), the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros is of paramount importance for normal lymphocyte ontogeny. Here we provide genetic and biochemical evidence for a previously unknown function of Bruton's tyrosine kinase (BTK) as a partner and posttranslational regulator of Ikaros, a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis. We demonstrate that BTK phosphorylates Ikaros at unique phosphorylation sites S214 and S215 in the close vicinity of its zinc finger 4 (ZF4) within the DNA binding domain, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Our results further demonstrate that BTK-induced activating phosphorylation is critical for the optimal transcription factor function of Ikaros. PMID:23977012

  2. Spermine stimulation of a nuclear NII kinase from pea plumules and its role in the phosphorylation of a nuclear polypeptide

    NASA Technical Reports Server (NTRS)

    Datta, N.; Schell, M. B.; Roux, S. J.

    1987-01-01

    We have previously demonstrated that spermine stimulates the phosphorylation of a 47 kilodalton nuclear polypeptide from pea plumules (N Datta, LK Hardison, SJ Roux 1986 Plant Physiol 82: 681-684). In this paper we report that spermine stimulates the activity of a cyclic AMP independent casein kinase, partially purified from a chromatin fraction of pea plumule nuclei. This effect of spermine was substrate specific; i.e. with casein as substrate, spermine stimulated the kinase activity, and with phosvitin as substrate, spermine completely inhibited the activity. The stimulation by spermine of the casein kinase was, in part, due to the lowering of the Mg2+ requirement of the kinase. Heparin could partially inhibit this casein kinase activity and spermine completely overcame this inhibition. By further purification of the casein kinase extract on high performance liquid chromatography, we fractionated it into an NI and an NII kinase. Spermine stimulated the NII kinase by 5- to 6-fold but had no effect on the NI kinase. Using [gamma-32P]GTP, we have shown that spermine promotes the phosphorylation of the 47 kilodalton polypeptide(s) in isolated nuclei, at least in part by stimulating an NII kinase.

  3. Crystal Structure of a Human IκB Kinase β Asymmetric Dimer

    PubMed Central

    Liu, Shenping; Misquitta, Yohann R.; Olland, Andrea; Johnson, Mark A.; Kelleher, Kerry S.; Kriz, Ron; Lin, Laura L.; Stahl, Mark; Mosyak, Lidia

    2013-01-01

    Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKβ, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKβ (hIKKβ), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKβ protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKβ): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKβ and xIKKβ utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKβ, hIKKβ exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKβ may represent trans-phosphorylation steps that accompany IKKβ activation. PMID:23792959

  4. Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1.

    PubMed

    Husain, Shahrukh; Kumar, Vijay; Hassan, Md Imtaiyaz

    2018-07-14

    Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and α-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

    PubMed

    Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-10-01

    Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.

  6. RAFTK, a novel member of the focal adhesion kinase family, is phosphorylated and associates with signaling molecules upon activation of mature T lymphocytes.

    PubMed

    Ganju, R K; Hatch, W C; Avraham, H; Ona, M A; Druker, B; Avraham, S; Groopman, J E

    1997-03-17

    The related adhesion focal tyrosine kinase (RAFTK), a recently discovered member of the focal adhesion kinase family, has previously been reported to participate in signal transduction in neuronal cells, megakaryocytes, and B lymphocytes. We have found that RAFTK is constitutively expressed in human T cells and is rapidly phosphorylated upon the activation of the T cell receptor (TCR). This activation also results in an increase in the autophosphorylation and kinase activity of RAFTK. After its stimulation, there was an increase in the association of the src cytoplasmic tyrosine kinase Fyn and the adapter protein Grb2. This association was mediated through the SH2 domains of Fyn and Grb2. RAFTK also co-immunoprecipitates with the SH2 domain of Lck and with the cytoskeletal protein paxillin through its COOH-terminal proline-rich domain. The tyrosine phosphorylation of RAFTK after T cell receptor-mediated stimulation was reduced by the pretreatment of cells with cytochalasin D, suggesting the role of the cytoskeleton in this process. These observations indicate that RAFTK participates in T cell receptor signaling and may act to link signals from the cell surface to the cytoskeleton and thereby affect the host immune response.

  7. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Kap; Pullalarevu, Sadhana; Surabian, Karen Talin

    2010-03-12

    Glycocyamine kinase (GK), a member of the phosphagen kinase family, catalyzes the Mg{sup 2+}-dependent reversible phosphoryl group transfer of the N-phosphoryl group of phosphoglycocyamine to ADP to yield glycocyamine and ATP. This reaction helps to maintain the energy homeostasis of the cell in some multicelullar organisms that encounter high and variable energy turnover. GK from the marine worm Namalycastis sp. is heterodimeric, with two homologous polypeptide chains, {alpha} and {beta}, derived from a common pre-mRNA by mutually exclusive N-terminal alternative exons. The N-terminal exon of GK{beta} encodes a peptide that is different in sequence and is 16 amino acids longermore » than that encoded by the N-terminal exon of GK{alpha}. The crystal structures of recombinant GK{alpha}{beta} and GK{beta}{beta} from Namalycastis sp. were determined at 2.6 and 2.4 {angstrom} resolution, respectively. In addition, the structure of the GK{beta}{beta} was determined at 2.3 {angstrom} resolution in complex with a transition state analogue, Mg{sup 2+}-ADP-NO{sub 3}{sup -}-glycocyamine. Consistent with the sequence homology, the GK subunits adopt the same overall fold as that of other phosphagen kinases of known structure (the homodimeric creatine kinase (CK) and the monomeric arginine kinase (AK)). As with CK, the GK N-termini mediate the dimer interface. In both heterodimeric and homodimeric GK forms, the conformations of the two N-termini are asymmetric, and the asymmetry is different than that reported previously for the homodimeric CKs from several organisms. The entire polypeptide chains of GK{alpha}{beta} are structurally defined, and the longer N-terminus of the {beta} subunit is anchored at the dimer interface. In GK{beta}{beta} the 24 N-terminal residues of one subunit and 11 N-terminal residues of the second subunit are disordered. This observation is consistent with a proposal that the GK{alpha}{beta} amino acids involved in the interface formation were

  8. A negative feedback control of transforming growth factor-beta signaling by glycogen synthase kinase 3-mediated Smad3 linker phosphorylation at Ser-204.

    PubMed

    Millet, Caroline; Yamashita, Motozo; Heller, Mary; Yu, Li-Rong; Veenstra, Timothy D; Zhang, Ying E

    2009-07-24

    Through the action of its membrane-bound type I receptor, transforming growth factor-beta (TGF-beta) elicits a wide range of cellular responses that regulate cell proliferation, differentiation, and apo ptosis. Many of these signaling responses are mediated by Smad proteins. As such, controlling Smad activity is crucial for proper signaling by TGF-beta and its related factors. Here, we show that TGF-beta induces phosphorylation at three sites in the Smad3 linker region in addition to the two C-terminal residues, and glycogen synthase kinase 3 is responsible for phosphorylation at one of these sites, namely Ser-204. Alanine substitution at Ser-204 and/or the neighboring Ser-208, the priming site for glycogen synthase kinase 3 in vivo activity, strengthened the affinity of Smad3 to CREB-binding protein, suggesting that linker phosphorylation may be part of a negative feedback loop that modulates Smad3 transcriptional activity. Thus, our findings reveal a novel aspect of the Smad3 signaling mechanism that controls the final amplitude of cellular responses to TGF-beta.

  9. Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation.

    PubMed

    Hunter, Gerald O; Fox, Melanie J; Smith-Kinnaman, Whitney R; Gogol, Madelaine; Fleharty, Brian; Mosley, Amber L

    2016-09-01

    In eukaryotes, the C-terminal domain (CTD) of Rpb1 contains a heptapeptide repeat sequence of (Y1S2P3T4S5P6S7)n that undergoes reversible phosphorylation through the opposing action of kinases and phosphatases. Rtr1 is a conserved protein that colocalizes with RNA polymerase II (RNAPII) and has been shown to be important for the transition from elongation to termination during transcription by removing RNAPII CTD serine 5 phosphorylation (Ser5-P) at a selection of target genes. In this study, we show that Rtr1 is a global regulator of the CTD code with deletion of RTR1 causing genome-wide changes in Ser5-P CTD phosphorylation and cotranscriptional histone H3 lysine 36 trimethylation (H3K36me3). Using chromatin immunoprecipitation and high-resolution microarrays, we show that RTR1 deletion results in global changes in RNAPII Ser5-P levels on genes with different lengths and transcription rates consistent with its role as a CTD phosphatase. Although Ser5-P levels increase, the overall occupancy of RNAPII either decreases or stays the same in the absence of RTR1 Additionally, the loss of Rtr1 in vivo leads to increases in H3K36me3 levels genome-wide, while total histone H3 levels remain relatively constant within coding regions. Overall, these findings suggest that Rtr1 regulates H3K36me3 levels through changes in the number of binding sites for the histone methyltransferase Set2, thereby influencing both the CTD and histone codes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Tyrosine kinase activity of EphA2 promotes its S897 phosphorylation and glioblastoma cell proliferation.

    PubMed

    Hamaoka, Yuho; Negishi, Manabu; Katoh, Hironori

    2018-05-23

    EphA2, a member of the Eph family of receptor tyrosine kinases, has been reported to promote tumor malignancy through phosphorylation of serine 897 (S897). Here, we found that overexpression of wild-type EphA2 induced S897 phosphorylation through ERK activation without growth factors or cytokines and promoted glioblastoma cell proliferation. However, overexpression of a kinase-inactive mutant of EphA2 failed to induce ERK activation, S897 phosphorylation, and promotion of glioblastoma cell proliferation. These data suggest that when overexpressed, EphA2 induces ERK activation through its tyrosine kinase activity, leading to S897 phosphorylation and promotion of glioblastoma cell proliferation. Our findings provide a new insight into how EphA2 mediates glioblastoma progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Communication between the N and C Termini Is Required for Copper-stimulated Ser/Thr Phosphorylation of Cu(I)-ATPase (ATP7B)*

    PubMed Central

    Braiterman, Lelita T.; Gupta, Arnab; Chaerkady, Raghothama; Cole, Robert N.; Hubbard, Ann L.

    2015-01-01

    The Wilson disease protein ATP7B exhibits copper-dependent trafficking. In high copper, ATP7B exits the trans-Golgi network and moves to the apical domain of hepatocytes where it facilitates elimination of excess copper through the bile. Copper levels also affect ATP7B phosphorylation. ATP7B is basally phosphorylated in low copper and becomes more phosphorylated (“hyperphosphorylated”) in elevated copper. The functional significance of hyperphosphorylation remains unclear. We showed that hyperphosphorylation occurs even when ATP7B is restricted to the trans-Golgi network. We performed comprehensive phosphoproteomics of ATP7B in low versus high copper, which revealed that 24 Ser/Thr residues in ATP7B could be phosphorylated, and only four of these were copper-responsive. Most of the phosphorylated sites were found in the N- and C-terminal cytoplasmic domains. Using truncation and mutagenesis, we showed that inactivation or elimination of all six N-terminal metal binding domains did not block copper-dependent, reversible, apical trafficking but did block hyperphosphorylation in hepatic cells. We showed that nine of 15 Ser/Thr residues in the C-terminal domain were phosphorylated. Inactivation of 13 C-terminal phosphorylation sites reduced basal phosphorylation and eliminated hyperphosphorylation, suggesting that copper binding at the N terminus propagates to the ATP7B C-terminal region. C-terminal mutants with either inactivating or phosphomimetic substitutions showed little effect upon copper-stimulated trafficking, indicating that trafficking does not depend on phosphorylation at these sites. Thus, our studies revealed that copper-dependent conformational changes in the N-terminal region lead to hyperphosphorylation at C-terminal sites, which seem not to affect trafficking and may instead fine-tune copper sequestration. PMID:25666620

  12. Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.

    2001-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.

  13. Cancer Osaka thyroid (Cot) phosphorylates Polo-like kinase (PLK1) at Ser137 but not at Thr210.

    PubMed

    Wu, Binhui; Jiang, Ping; Mu, Yuguang; Wilmouth, Rupert C

    2009-12-01

    Cancer Osaka thyroid (Cot) is a proto-oncogenic kinase which belongs to the MAP3K family. A peptide-based substrate screening assay revealed that Cot has the ability to phosphorylate Polo-like kinase 1 (Plk1) at Ser137. Kinase assays with intact Plk1 and peptides surrounding Ser137 and Thr210 indicated further that Cot phosphorylates Ser137 but not Thr210. Additional support came from 3D peptide structure prediction and Cot-Plk1 interaction modeling. In vivo experiments demonstrated that wild type Cot, but not a kinase-dead mutant, has the ability to phosphorylate Ser137. Knockdown of Cot in Hela showed a reduction in the level of phosphorylation of Ser137. These results imply for the first time that Cot might be an upstream kinase of Plk1 and suggest a new mechanism for the regulation of the cellular function of Plk1.

  14. Regulation of N-formyl peptide-mediated degranulation by receptor phosphorylation.

    PubMed

    Vines, Charlotte M; Xue, Mei; Maestas, Diane C; Cimino, Daniel F; Prossnitz, Eric R

    2002-12-15

    One of the major functions of the N-formyl peptide receptor (FPR) is to mediate leukocyte degranulation. Phosphorylation of the C-terminal domain of the FPR is required for receptor internalization and desensitization. Although arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of novel signaling cascades for a number of G protein-coupled receptors, their roles in FPR regulation and signaling remain unclear. CXCR1-mediated degranulation of RBL-2H3 cells is promoted by arrestin binding. To determine whether receptor phosphorylation or arrestin binding is required to promote FPR-mediated degranulation, we used RBL-2H3 cells stably transfected with either the wild-type FPR or a mutant form, DeltaST, which is incapable of undergoing ligand-stimulated phosphorylation. We observed that stimulation of wild-type FPR resulted in very low levels of degranulation compared with that mediated by cross-linking of the Fc(epsilon)RI receptor. Stimulation of the DeltaST mutant, however, resulted in levels of degranulation comparable to those of the Fc(epsilon)RI receptor, demonstrating that neither receptor phosphorylation nor arrestin binding was necessary to initiate FPR-mediated degranulation. Degranulation initiated by the DeltaST mutant was proportional to the level of active cell surface receptor, suggesting that either receptor internalization or desensitization may be responsible for terminating degranulation of the wild-type FPR. To distinguish between these possibilities, we used a partially phosphorylation-deficient mutant of the FPR that can undergo internalization, but not desensitization. Degranulation by this mutant FPR was indistinguishable from that of the DeltaST mutant, indicating that FPR phosphorylation or binding of arrestin but not internalization terminates the degranulation response.

  15. Microsecond molecular dynamics simulations provide insight into the ATP-competitive inhibitor-induced allosteric protection of Akt kinase phosphorylation.

    PubMed

    Mou, Linkai; Cui, Tongwei; Liu, Weiguang; Zhang, Hong; Cai, Zhanxiu; Lu, Shaoyong; Gao, Guojun

    2017-05-01

    Akt is a serine/threonine protein kinase, a critical mediator of growth factor-induced survival in key cellular pathways. Allosteric signaling between protein intramolecular domains requires long-range communication mediated by hotspot residues, often triggered by ligand binding. Here, based on extensive 3 μs explicit solvent molecular dynamics (MD) simulations of Akt1 kinase domain in the unbound (apo) and ATP-competitive inhibitor, GDC-0068-bound states, we propose a molecular mechanism for allosteric regulation of Akt1 kinase phosphorylation by GDC-0068 binding to the ATP-binding site. MD simulations revealed that the apo Akt1 is flexible with two disengaged N- and C-lobes, equilibrated between the open and closed conformations. GDC-0068 occupancy of the ATP-binding site shifts the conformational equilibrium of Akt1 from the open conformation toward the closed conformation and stabilizes the closed state. This effect enables allosteric signal propagation from the GDC-0068 to the phosphorylated T308 (pT308) in the activation loop and restrains phosphatase access to pT308, thereby protecting the pT308 in the GDC-0068-bound Akt1. Importantly, functional hotspots involved in the allosteric communication from the GDC-0068 to the pT308 are identified. Our analysis of GDC-0068-induced allosteric protection of Akt kinase phosphorylation yields important new insights into the molecular mechanism of allosteric regulation of Akt kinase activity. © 2016 John Wiley & Sons A/S.

  16. Inhibition of adrenergic human prostate smooth muscle contraction by the inhibitors of c-Jun N-terminal kinase, SP600125 and BI-78D3.

    PubMed

    Strittmatter, F; Walther, S; Gratzke, C; Göttinger, J; Beckmann, C; Roosen, A; Schlenker, B; Hedlund, P; Andersson, K E; Stief, C G; Hennenberg, M

    2012-07-01

    BACKGROUND AND PURPOSE α(1) -Adrenoceptor-induced contraction of prostate smooth muscle is mediated by calcium- and Rho kinase-dependent mechanisms. In addition, other mechanisms, such as activation of c-jun N-terminal kinase (JNK) may be involved. Here, we investigated whether JNK participates in α(1)-adrenoceptor-induced contraction of human prostate smooth muscle. EXPERIMENTAL APPROACH Prostate tissue was obtained from patients undergoing radical prostatectomy. Effects of the JNK inhibitors SP600125 (50 µM) and BI-78D3 (30 µM) on contractions induced by phenylephrine, noradrenaline and electric field stimulation (EFS) were studied in myographic measurements. JNK activation by noradrenaline (30 µM) and phenylephrine (10 µM), and the effects of JNK inhibitors of c-Jun phosphorylation were assessed by Western blot analyses with phospho-specific antibodies. Expression of JNK was studied by immunohistochemistry and fluorescence double staining. KEY RESULTS The JNK inhibitors SP600125 and BI-78D3 reduced phenylephrine- and noradrenaline-induced contractions of human prostate strips. In addition, SP600125 reduced EFS-induced contraction of prostate strips. Stimulation of prostate tissue with noradrenaline or phenylephrine in vitro resulted in activation of JNK. Incubation of prostate tissue with SP600125 or BI-78D3 reduced the phosphorylation state of c-Jun. Immunohistochemical staining demonstrated the expression of JNK in smooth muscle cells of human prostate tissue. Fluorescence staining showed that α(1A)-adrenoceptors and JNK are expressed in the same cells. CONCLUSIONS AND IMPLICATIONS Activation of JNK is involved in α(1)-adrenoceptor-induced prostate smooth muscle contraction. Models of α(1)-adrenoceptor-mediated prostate smooth muscle contraction should include this JNK-dependent mechanism. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src

    PubMed Central

    Samarasekera, G. D. N. Gayathri; Auld, Vanessa Jane

    2018-01-01

    Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein. PMID:29167383

  18. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle*

    PubMed Central

    Li, Jia; Wang, Ruping; Gannon, Olivia J.; Rezey, Alyssa C.; Jiang, Sixin; Gerlach, Brennan D.; Liao, Guoning

    2016-01-01

    Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma. PMID:27662907

  19. Locking the Active Conformation of c-Src Kinase through the Phosphorylation of the Activation Loop

    PubMed Central

    Meng, Yilin; Roux, Benoît

    2013-01-01

    Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexiblity of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially “locks” the kinase into its catalytically competent conformation. PMID:24103328

  20. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    PubMed

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  1. Dual Phosphorylation of Btk by Akt/Protein Kinase B Provides Docking for 14-3-3ζ, Regulates Shuttling, and Attenuates both Tonic and Induced Signaling in B Cells

    PubMed Central

    Nore, Beston F.; Hussain, Alamdar; Gustafsson, Manuela O.; Mohamed, Abdalla J.

    2013-01-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation. PMID:23754751

  2. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1.

    PubMed

    DeMille, Desiree; Badal, Bryan D; Evans, J Brady; Mathis, Andrew D; Anderson, Joseph F; Grose, Julianne H

    2015-02-01

    We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low. © 2015 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage.

    PubMed

    Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk

    2015-05-19

    Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. In vitro phosphorylation of insulin receptor substrate 1 by protein kinase C-zeta: functional analysis and identification of novel phosphorylation sites.

    PubMed

    Sommerfeld, Mark R; Metzger, Sabine; Stosik, Magdalene; Tennagels, Norbert; Eckel, Jürgen

    2004-05-18

    Protein kinase C-zeta (PKC-zeta) participates both in downstream insulin signaling and in the negative feedback control of insulin action. Here we used an in vitro approach to identify PKC-zeta phosphorylation sites within insulin receptor substrate 1 (IRS-1) and to characterize the functional implications. A recombinant IRS-1 fragment (rIRS-1(449)(-)(664)) containing major tyrosine motifs for interaction with phosphatidylinositol (PI) 3-kinase strongly associated to the p85alpha subunit of PI 3-kinase after Tyr phosphorylation by the insulin receptor. Phosphorylation of rIRS-1(449)(-)(664) by PKC-zeta induced a prominent inhibition of this process with a mixture of classical PKC isoforms being less effective. Both PKC-zeta and the classical isoforms phosphorylated rIRS-1(449)(-)(664) on Ser(612). However, modification of this residue did not reduce the affinity of p85alpha binding to pTyr-containing peptides (amino acids 605-615 of rat IRS-1), as determined by surface plasmon resonance. rIRS-1(449)(-)(664) was then phosphorylated by PKC-zeta using [(32)P]ATP and subjected to tryptic phosphopeptide mapping based on two-dimensional HPLC coupled to mass spectrometry. Ser(498) and Ser(570) were identified as novel phosphoserine sites targeted by PKC-zeta. Both sites were additionally confirmed by phosphopeptide mapping of the corresponding Ser --> Ala mutants of rIRS-1(449)(-)(664). Ser(570) was specifically targeted by PKC-zeta, as shown by immunoblotting with a phosphospecific antiserum against Ser(570) of IRS-1. Binding of p85alpha to the S570A mutant was less susceptible to inhibition by PKC-zeta, when compared to the S612A mutant. In conclusion, our in vitro data demonstrate a strong inhibitory action of PKC-zeta at the level of IRS-1/PI 3-kinase interaction involving multiple serine phosphorylation sites. Whereas Ser(612) appears not to participate in the negative control of insulin signaling, Ser(570) may at least partly contribute to this process.

  5. The domain architecture of the PtkA, the first tyrosine kinase from Mycobacterium tuberculosis differs from the conventional kinase architecture.

    PubMed

    Niesteruk, Anna; Jonker, Hendrik R A; Richter, Christian; Linhard, Verena; Sreeramulu, Sridhar; Schwalbe, Harald

    2018-06-08

    The discovery that MptpA (low-molecular-weight protein tyrosine phosphatase A) from Mycobacterium tuberculosis ( Mtb ) has an essential role for Mtb virulence has motivated research of tyrosine-specific phosphorylation in Mtb and other pathogenic bacteria. The phosphatase activity of MptpA is regulated via phosphorylation on Tyr-128 and Tyr-129. Thus far, only a single tyrosine-specific kinase, protein tyrosine kinase A (PtkA), encoded by the Rv2232 gene has been identified within the Mtb genome. MptpA undergoes phosphorylation by PtkA. PtkA is an atypical bacterial tyrosine kinase, as its sequence differs from the sequence consensus within this family. The lack of structural information on PtkA hampers the detailed characterization of the MptpA-PtkA interaction. Here, using NMR spectroscopy, we provide a detailed structural characterization of the PtkA architecture and describe its intra- and intermolecular interactions with MptpA. We found that PtkA's domain architecture differs from the conventional kinase architecture and is composed of two domains, the N-terminal highly flexible IDD PtkA and the C-terminal rigid KCD PtkA The interaction studies between the two domains together with the structural model of the IDD-KCD complex proposed in this study reveals that the IDD is unstructured and highly dynamic, allowing for a "fly-casting" like mechanism of transient interactions with the rigid KCD. This interaction modulates the accessibility of the KCD active site. In general, the structural and functional knowledge of PtkA gained in this study, is crucial for understanding the MptpA-PtkA interactions, catalytic mechanism and the role of kinase-phosphatase regulatory system in Mtb virulence. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3-kinase.

    PubMed Central

    Yoakim, M; Hou, W; Liu, Y; Carpenter, C L; Kapeller, R; Schaffhausen, B S

    1992-01-01

    The binding of phosphatidylinositol-3-kinase to the polyomavirus middle T antigen is facilitated by tyrosine phosphorylation of middle T on residue 315. The pp85 subunit of phosphatidylinositol-3-kinase contains two SH2 domains, one in the middle of the molecule and one at the C terminus. When assayed by blotting with phosphorylated middle T, the more N-terminal SH2 domain is responsible for binding to middle T. When assayed in solution with glutathione S transferase fusions, both SH2s are capable of binding phosphorylated middle T. While both SH2 fusions can compete with intact pp85 for binding to middle T, the C-terminal SH2 is the more efficient of the two. Interaction between pp85 or its SH2 domains and middle T can be blocked by a synthetic peptide comprising the tyrosine phosphorylation sequence around middle T residue 315. Despite the fact that middle T can interact with both SH2s, these domains are not equivalent. Only the C-terminal SH2-middle T interaction was blocked by anti-SH2 antibody; the two SH2 fusions also interact with different cellular proteins. Images PMID:1380095

  7. HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains.

    PubMed

    Hyun, Teresa S; Rao, Dinesh S; Saint-Dic, Djenann; Michael, L Evan; Kumar, Priti D; Bradley, Sarah V; Mizukami, Ikuko F; Oravecz-Wilson, Katherine I; Ross, Theodora S

    2004-04-02

    Huntingtin-interacting protein 1-related (HIP1r) is the only known mammalian relative of huntingtin-interacting protein 1 (HIP1), a protein that transforms fibroblasts via undefined mechanisms. Here we demonstrate that both HIP1r and HIP1 bind inositol lipids via their epsin N-terminal homology (ENTH) domains. In contrast to other ENTH domain-containing proteins, lipid binding is preferential to the 3-phosphate-containing inositol lipids, phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,5-bisphosphate. Furthermore, the HIP1r ENTH domain, like that of HIP1, is necessary for lipid binding, and expression of an ENTH domain-deletion mutant, HIP1r/deltaE, induces apoptosis. Consistent with the ability of HIP1r and HIP1 to affect cell survival, full-length HIP1 and HIP1r stabilize pools of growth factor receptors by prolonging their half-life following ligand-induced endocytosis. Although HIP1r and HIP1 display only a partially overlapping pattern of protein interactions, these data suggest that both proteins share a functional homology by binding 3-phosphorylated inositol lipids and stabilizing receptor tyrosine kinases in a fashion that may contribute to their ability to alter cell growth and survival.

  8. Puerarin reduces apoptosis in rat hippocampal neurons culturea in high glucose medium by modulating the p38 mitogen activated protein kinase and c-Jun N-terminal kinase signaling pathways.

    PubMed

    Xu, Xiaohan; Wang, Jingbo; Zhang, Hong; Tian, Guoqing; Liu, Yuqin

    2016-02-01

    To investigate the neuroprotective etfect of puerarin on rat hippocampal neurons cultured in high glucose medium, and to examine the role of the p38 mitogen activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways in this effect. Primary cultures of hippocampal neurons were prepared from newborn Sprague Dawley rats. Neuron-specific enolase immunocytochemistry was used to identify neurons. The neurons were cultured with normal medium (control group) or with high-glucose medium (high-glucose group), and puerarin (puerarin group), a p38 MAPK inhibitor (SB239063; p38 MAPK inhibitor group) or a JNK inhibitor (SP600125; JNK inhibitor group) were added. After 72 h of treatment, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was performed to detect apoptosis, and western blotting was used to assess protein levels of p-p38, p38, p-JNK and JNK. In the high-glucose group, the neuronal apoptosis rate and the p-p38/p38 and p-JNK/JNK ratios were higher than in the control group. The p38 MAPK and JNK inhibitors prevented this increase in the apoptosis rate. The apoptosis rates in the puerarin group, the p38 MAPK inhibitor group and the JNK inhibitor group were significantly decreased compared with the high-glucose group. Moreover, protein levels of p-p38 and p-JNK were significantly reduced, and the p-p38/p38 and p-JNK/JNK ratios were decreased in the puerarin group compared with the high-glucose group. In addition, compared with the high-glucose group, p-p38 levels and the p-p38/p38 ratio were reduced in the p38 MAPK inhibitor group, and p-JNK levels and the p-JNK/JNK ratio were decreased in the JNK inhibitor group. Puerarin attenuates neuronal apoptosis induced by high glucose by reducing the phosphorylation of p38 and JNK.

  9. Inhibition of spinal astrocytic c-Jun N-terminal kinase (JNK) activation correlates with the analgesic effects of ketamine in neuropathic pain

    PubMed Central

    2011-01-01

    Background We have previously reported that inhibition of astrocytic activation contributes to the analgesic effects of intrathecal ketamine on spinal nerve ligation (SNL)-induced neuropathic pain. However, the underlying mechanisms are still unclear. c-Jun N-terminal kinase (JNK), a member of mitogen-activated protein kinase (MAPK) family, has been reported to be critical for spinal astrocytic activation and neuropathic pain development after SNL. Ketamine can decrease lipopolysaccharide (LPS)-induced phosphorylated JNK (pJNK) expression and could thus exert its anti-inflammatory effect. We hypothesized that inhibition of astrocytic JNK activation might be involved in the suppressive effect of ketamine on SNL-induced spinal astrocytic activation. Methods Immunofluorescence histochemical staining was used to detect SNL-induced spinal pJNK expression and localization. The effects of ketamine on SNL-induced mechanical allodynia were confirmed by behavioral testing. Immunofluorescence histochemistry and Western blot were used to quantify the SNL-induced spinal pJNK expression after ketamine administration. Results The present study showed that SNL induced ipsilateral pJNK up-regulation in astrocytes but not microglia or neurons within the spinal dorsal horn. Intrathecal ketamine relieved SNL-induced mechanical allodynia without interfering with motor performance. Additionally, intrathecal administration of ketamine attenuated SNL-induced spinal astrocytic JNK activation in a dose-dependent manner, but not JNK protein expression. Conclusions The present results suggest that inhibition of JNK activation may be involved in the suppressive effects of ketamine on SNL-induced spinal astrocyte activation. Therefore, inhibition of spinal JNK activation may be involved in the analgesic effects of ketamine on SNL-induced neuropathic pain. PMID:21255465

  10. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    PubMed

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  11. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes

    PubMed Central

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation. PMID:28736554

  12. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes.

    PubMed

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.

  13. Phosphorylation of Tat-interactive protein 60 kDa by protein kinase C epsilon is important for its subcellular localisation.

    PubMed

    Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N

    2008-01-01

    Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.

  14. Phosphorylation Interferes with Maturation of Amyloid-β Fibrillar Structure in the N Terminus.

    PubMed

    Rezaei-Ghaleh, Nasrollah; Kumar, Sathish; Walter, Jochen; Zweckstetter, Markus

    2016-07-29

    Neurodegeneration is characterized by the ubiquitous presence of modifications in protein deposits. Despite their potential significance in the initiation and progression of neurodegenerative diseases, the effects of posttranslational modifications on the molecular properties of protein aggregates are largely unknown. Here, we study the Alzheimer disease-related amyloid-β (Aβ) peptide and investigate how phosphorylation at serine 8 affects the structure of Aβ aggregates. Serine 8 is shown to be located in a region of high conformational flexibility in monomeric Aβ, which upon phosphorylation undergoes changes in local conformational dynamics. Using hydrogen-deuterium exchange NMR and fluorescence quenching techniques, we demonstrate that Aβ phosphorylation at serine 8 causes structural changes in the N-terminal region of Aβ aggregates in favor of less compact conformations. Structural changes induced by serine 8 phosphorylation can provide a mechanistic link between phosphorylation and other biological events that involve the N-terminal region of Aβ aggregates. Our data therefore support an important role of posttranslational modifications in the structural polymorphism of amyloid aggregates and their modulatory effect on neurodegeneration. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation.

    PubMed

    Koh, Phil-Ok

    2013-10-25

    Ferulic acid exhibits neuroprotective effects against focal cerebral ischemia. PI3/K and Akt signaling pathways play an essential role in protecting against cerebral ischemia. Mammalian target of rapamycin (mTOR), a major downstream target of Akt, regulates p70S6 kinase and S6, both of which are involved in ribosomal biogenesis and protein synthesis. I investigated whether ferulic acid regulates mTOR, p70S6 kinase, and S6 phosphorylation during brain ischemic injury. Rats were treated immediately with vehicle or ferulic acid (100mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brains tissues were removed at 24h after the onset of MCAO and the cerebral cortex regions were collected. Ferulic acid reduced the MCAO-induced infarct volume. I showed previously that ferulic acid prevents the MCAO injury-induced decrease of Akt phosphorylation. In this study, MCAO injury induced decreases in mTOR, p70S6 kinase, and S6 phosphorylation levels, while ferulic acid attenuated the injury-induced decreases. Immunohistochemical staining demonstrated that ferulic acid prevented the MCAO-induced reduction in the number of positive cells for phosphorylated p70S6 kinase and phosphorylated S6. These findings suggest that ferulic acid has a neuroprotective function against focal cerebral ischemia by modulating p70S6 kinase expression and S6 phosphorylation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutscher, J.; Sauerwald, H.

    1986-06-01

    Recently a report was given of the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system. The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The K/sub m/s were found to 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 MM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitivemore » manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following (/sup 32/P)PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, the authors isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.« less

  17. Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis.

    PubMed

    Grant, Nicola J; Coates, Philip J; Woods, Yvonne L; Bray, Susan E; Morrice, Nicholas A; Hastie, C James; Lamont, Douglas J; Carey, Francis A; Sutherland, Calum

    2015-11-10

    Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls. However the identity of physiological and pathophysiological CDK5 substrates remains the subject of debate, making the choice of CDK5 activity biomarkers difficult. Here we use in vitro and in cell phosphorylation assays to identify novel features of CDK5 target sequence determinants that confer enhanced CDK5 selectivity, providing means to select substrate biomarkers of CDK5 activity with more confidence. We then characterize tools for the best CDK5 substrate we identified to monitor its phosphorylation in human tissue and use these to interrogate human tumour arrays. The close proximity of Arg/Lys amino acids and a proline two residues N-terminal to the phosphorylated residue both improve recognition of the substrate by CDK5. In contrast the presence of a proline two residues C-terminal to the target residue dramatically reduces phosphorylation rate. Serine-522 of Collapsin Response Mediator-2 (CRMP2) is a validated CDK5 substrate with many of these structural criteria. We generate and characterise phosphospecific antibodies to Ser522 and show that phosphorylation appears in human tumours (lung, breast, and lymphoma) in stark contrast to surrounding non-neoplastic tissue. In lung cancer the anti-phospho-Ser522 signal is positive in squamous cell carcinoma more frequently than adenocarcinoma. Finally we demonstrate that it is a specific and unusual splice variant of CRMP2 (CRMP2A) that is phosphorylated in tumour cells. For the first time this data associates altered CDK5 substrate phosphorylation with

  18. β-subunit myristoylation functions as an energy sensor by modulating the dynamics of AMP-activated Protein Kinase.

    PubMed

    Ali, Nada; Ling, Naomi; Krishnamurthy, Srinath; Oakhill, Jonathan S; Scott, John W; Stapleton, David I; Kemp, Bruce E; Anand, Ganesh Srinivasan; Gooley, Paul R

    2016-12-21

    The heterotrimeric AMP-activated protein kinase (AMPK), consisting of α, β and γ subunits, is a stress-sensing enzyme that is activated by phosphorylation of its activation loop in response to increases in cellular AMP. N-terminal myristoylation of the β-subunit has been shown to suppress Thr172 phosphorylation, keeping AMPK in an inactive state. Here we use amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the structural and dynamic properties of the mammalian myristoylated and non-myristoylated inactivated AMPK (D139A) in the presence and absence of nucleotides. HDX MS data suggests that the myristoyl group binds near the first helix of the C-terminal lobe of the kinase domain similar to other kinases. Our data, however, also shows that ATP.Mg 2+ results in a global stabilization of myristoylated, but not non-myristoylated AMPK, and most notably for peptides of the activation loop of the α-kinase domain, the autoinhibitory sequence (AIS) and the βCBM. AMP does not have that effect and HDX measurements for myristoylated and non-myristoylated AMPK in the presence of AMP are similar. These differences in dynamics may account for a reduced basal rate of phosphorylation of Thr172 in myristoylated AMPK in skeletal muscle where endogenous ATP concentrations are very high.

  19. Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells

    PubMed Central

    Sela, Meirav; Bogin, Yaron; Beach, Dvora; Oellerich, Thomas; Lehne, Johanna; Smith-Garvin, Jennifer E; Okumura, Mariko; Starosvetsky, Elina; Kosoff, Rachelle; Libman, Evgeny; Koretzky, Gary; Kambayashi, Taku; Urlaub, Henning; Wienands, Jürgen; Chernoff, Jonathan; Yablonski, Deborah

    2011-01-01

    Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-γ1 (PLC-γ1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-γ1. PMID:21725281

  20. Sequential phosphorylation of SLP-76 at tyrosine 173 is required for activation of T and mast cells.

    PubMed

    Sela, Meirav; Bogin, Yaron; Beach, Dvora; Oellerich, Thomas; Lehne, Johanna; Smith-Garvin, Jennifer E; Okumura, Mariko; Starosvetsky, Elina; Kosoff, Rachelle; Libman, Evgeny; Koretzky, Gary; Kambayashi, Taku; Urlaub, Henning; Wienands, Jürgen; Chernoff, Jonathan; Yablonski, Deborah

    2011-07-01

    Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-γ1 (PLC-γ1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-γ1.

  1. Recombinant production of enzymatically active male contraceptive drug target hTSSK2 - Localization of the TSKS domain phosphorylated by TSSK2.

    PubMed

    Shetty, Jagathpala; Sinville, Rondedrick; Shumilin, Igor A; Minor, Wladek; Zhang, Jianhai; Hawkinson, Jon E; Georg, Gunda I; Flickinger, Charles J; Herr, John C

    2016-05-01

    The testis-specific serine/threonine kinase 2 (TSSK2) has been proposed as a candidate male contraceptive target. Development of a selective inhibitor for this kinase first necessitates the production of highly purified, soluble human TSSK2 and its substrate, TSKS, with high yields and retention of biological activity for crystallography and compound screening. Strategies to produce full-length, soluble, biologically active hTSSK2 in baculovirus expression systems were tested and refined. Soluble preparations of TSSK2 were purified by immobilized-metal affinity chromatography (IMAC) followed by gel filtration chromatography. The biological activities of rec.hTSSK2 were verified by in vitro kinase and mobility shift assays using bacterially produced hTSKS (isoform 2), casein, glycogen synthase peptide (GS peptide) and various TSKS peptides as target substrates. Purified recombinant hTSSK2 showed robust kinase activity in the in vitro kinase assay by phosphorylating hTSKS isoform 2 and casein. The ATP Km values were similar for highly and partially purified fractions of hTSSK2 (2.2 and 2.7 μM, respectively). The broad spectrum kinase inhibitor staurosporine was a potent inhibitor of rec.hTSSK2 (IC50 = 20 nM). In vitro phosphorylation experiments carried out with TSKS (isoform 1) fragments revealed particularly strong phosphorylation of a recombinant N-terminal region representing aa 1-150 of TSKS, indicating that the N-terminus of human TSKS is phosphorylated by human TSSK2. Production of full-length enzymatically active recombinant TSSK2 kinase represents the achievement of a key benchmark for future discovery of TSSK inhibitors as male contraceptive agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A peptide representing the carboxyl-terminal tail of the met receptor inhibits kinase activity and invasive growth.

    PubMed

    Bardelli, A; Longati, P; Williams, T A; Benvenuti, S; Comoglio, P M

    1999-10-08

    Interaction of the hepatocyte growth factor (HGF) with its receptor, the Met tyrosine kinase, results in invasive growth, a genetic program essential to embryonic development and implicated in tumor metastasis. Met-mediated invasive growth requires autophosphorylation of the receptor on tyrosines located in the kinase activation loop (Tyr(1234)-Tyr(1235)) and in the carboxyl-terminal tail (Tyr(1349)-Tyr(1356)). We report that peptides derived from the Met receptor tail, but not from the activation loop, bind the receptor and inhibit the kinase activity in vitro. Cell delivery of the tail receptor peptide impairs HGF-dependent Met phosphorylation and downstream signaling. In normal and transformed epithelial cells, the tail receptor peptide inhibits HGF-mediated invasive growth, as measured by cell migration, invasiveness, and branched morphogenesis. The Met tail peptide inhibits the closely related Ron receptor but does not significantly affect the epidermal growth factor, platelet-derived growth factor, or vascular endothelial growth factor receptor activities. These experiments show that carboxyl-terminal sequences impair the catalytic properties of the Met receptor, thus suggesting that in the resting state the nonphosphorylated tail acts as an intramolecular modulator. Furthermore, they provide a strategy to selectively target the MET proto-oncogene by using small, cell-permeable, peptide derivatives.

  3. H2AX phosphorylation and DNA damage kinase activity are dispensable for herpes simplex virus replication.

    PubMed

    Botting, Carolyn; Lu, Xu; Triezenberg, Steven J

    2016-01-27

    Herpes simplex virus type 1 (HSV-1) can establish both lytic and latent infections in humans. The phosphorylation of histone H2AX, a common marker of DNA damage, during lytic infection by HSV-1 is well established. However, the role(s) of H2AX phosphorylation in lytic infection remain unclear. Following infection of human foreskin fibroblasts by HSV-1 or HSV-2, we assayed the phosphorylation of H2AX in the presence of inhibitors of transcription, translation, or viral DNA replication, or in the presence of inhibitors of ATM and ATR kinases (KU-55933 and VE-821, respectively). We also assayed viral replication in fibroblasts in the presence of the kinase inhibitors or siRNAs specific for ATM and ATR, as well as in cell lines deficient for either ATR or ATM. The expression of viral immediate-early and early proteins (including the viral DNA polymerase), but not viral DNA replication or late protein expression, were required for H2AX phosphorylation following HSV-1 infection. Inhibition of ATM kinase activity prevented HSV-stimulated H2AX phosphorylation but had only a minor effect on DNA replication and virus yield in HFF cells. These results differ from previous reports of a dramatic reduction in viral yield following chemical inhibition of ATM in oral keratinocytes or following infection of ATM(-/-) cells. Inhibition of the closely related kinase ATR (whether by chemical inhibitor or siRNA disruption) had no effect on H2AX phosphorylation and reduced viral DNA replication only moderately. During infection by HSV-2, H2AX phosphorylation was similarly dispensable but was dependent on both ATM activity and viral DNA replication. H2AX phosphorylation represents a cell type-specific and virus type-specific host response to HSV infection with little impact on viral infection.

  4. Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice.

    PubMed

    Carvalho-Filho, M A; Carvalho, B M; Oliveira, A G; Guadagnini, D; Ueno, M; Dias, M M; Tsukumo, D M; Hirabara, S M; Reis, L F; Curi, R; Carvalheira, J B C; Saad, Mario J A

    2012-11-01

    The molecular integration of nutrient- and pathogen-sensing pathways has become of great interest in understanding the mechanisms of insulin resistance in obesity. The double-stranded RNA-dependent protein kinase (PKR) is one candidate molecule that may provide cross talk between inflammatory and metabolic signaling. The present study was performed to determine, first, the role of PKR in modulating insulin action and glucose metabolism in physiological situations, and second, the role of PKR in insulin resistance in obese mice. We used Pkr(-/-) and Pkr(+/+) mice to investigate the role of PKR in modulating insulin sensitivity, glucose metabolism, and insulin signaling in liver, muscle, and adipose tissue in response to a high-fat diet. Our data show that in lean Pkr(-/-) mice, there is an improvement in insulin sensitivity, and in glucose tolerance, and a reduction in fasting blood glucose, probably related to a decrease in protein phosphatase 2A activity and a parallel increase in insulin-induced thymoma viral oncogene-1 (Akt) phosphorylation. PKR is activated in tissues of obese mice and can induce insulin resistance by directly binding to and inducing insulin receptor substrate (IRS)-1 serine307 phosphorylation or indirectly through modulation of c-Jun N-terminal kinase and inhibitor of κB kinase β. Pkr(-/-) mice were protected from high-fat diet-induced insulin resistance and glucose intolerance and showed improved insulin signaling associated with a reduction in c-Jun N-terminal kinase and inhibitor of κB kinase β phosphorylation in insulin-sensitive tissues. PKR may have a role in insulin sensitivity under normal physiological conditions, probably by modulating protein phosphatase 2A activity and serine-threonine kinase phosphorylation, and certainly, this kinase may represent a central mechanism for the integration of pathogen response and innate immunity with insulin action and metabolic pathways that are critical in obesity.

  5. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    PubMed

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  6. Maize plasma membrane aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo phosphorylated.

    PubMed

    Van Wilder, Valérie; Miecielica, Urszula; Degand, Hervé; Derua, Rita; Waelkens, Etienne; Chaumont, François

    2008-09-01

    Aquaporins are channel proteins that facilitate transmembrane water movement. In this study, we showed that plasma membrane intrinsic proteins (PIPs) from maize shoots are in vitro and in vivo phosphorylated on serine residues by a calcium-dependent kinase associated with the membrane fraction. Mass spectrometry identified phosphorylated peptides corresponding to the C-terminal region of (i) ZmPIP2;1, ZmPIP2;2 and/or ZmPIP2;7; (ii) ZmPIP2;3 and/or ZmPIP2;4; (iii) ZmPIP2;6; together with (iv) a phosphorylated peptide located in the N-terminal region of ZmPIP1;1, ZmPIP1;2, ZmPIP1;3 and/or ZmPIP1;4. The role of phosphorylation in the water channel activity of wild-type and mutant ZmPIP2;1 was studied in Xenopus laevis oocytes. Activation of endogenous protein kinase A increased the osmotic water permeability coefficient of ZmPIP2;1-expressing oocytes, suggesting that phosphorylation activates its channel activity. Mutation of S126 or S203, putative phosphorylated serine residues conserved in all plant PIPs, to alanine decreased ZmPIP2;1 activity by 30-50%, without affecting its targeting to the plasma membrane. Mutation of S285, which is phosphorylated in planta, to alanine or glutamate did not affect the water channel activity. These results indicate that, in oocytes, S126 and S203 play an important role in ZmPIP2;1 activity and that phosphorylation of S285 is not required for its activity.

  7. Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1.

    PubMed

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan

    2014-08-01

    A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation

  8. Activation of c-jun N-Terminal Kinase upon Influenza A Virus (IAV) Infection Is Independent of Pathogen-Related Receptors but Dependent on Amino Acid Sequence Variations of IAV NS1

    PubMed Central

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina

    2014-01-01

    ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that

  9. Functional hierarchy of the N-terminal tyrosines of SLP-76.

    PubMed

    Jordan, Martha S; Sadler, Jeffrey; Austin, Jessica E; Finkelstein, Lisa D; Singer, Andrew L; Schwartzberg, Pamela L; Koretzky, Gary A

    2006-02-15

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a central role in T cell activation and T cell development. SLP-76 has three functional modules: an acidic domain with three key tyrosines, a central proline-rich domain, and a C-terminal Src homology 2 domain. Of these, mutation of the three N-terminal tyrosines (Y112, Y128, and Y145) results in the most profound effects on T cell development and function. Y112 and Y128 associate with Vav and Nck, two proteins shown to be important for TCR-induced phosphorylation of proximal signaling substrates, Ca(2+) flux, and actin reorganization. Y145 has been shown to be important for optimal association of SLP-76 with inducible tyrosine kinase, a key regulator of T cell function. To investigate further the role of the phosphorylatable tyrosines of SLP-76 in TCR signaling, cell lines and primary T cells expressing SLP-76 with mutations in individual or paired tyrosine residues were analyzed. These studies show that Tyr(145) of SLP-76 is the most critical tyrosine for both T cell function in vitro and T cell development in vivo.

  10. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways.

    PubMed

    Xiong, Wen; Zhang, Wei; Yuan, Wenjuan; Du, Hongxu; Ming, Ke; Yao, Fangke; Bai, Jingying; Chen, Yun; Liu, Jiaguo; Wang, Deyun; Hu, Yuanliang; Wu, Yi

    2017-01-01

    The duck virus hepatitis (DVH) caused by the duck hepatitis virus A (DHAV) has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA) and its phosphorylated derivative (pICA) possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo , and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo , the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2) as an intervention method in vitro . pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs) viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2) and c-Jun N-terminal kinase (JNK), which were related to mitogen-activated protein kinases (MAPKs) signaling pathways. Ultimately, compared to ICA, pICA exhibited more

  11. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1.

    PubMed

    Kang, Jungseog; Yang, Maojun; Li, Bing; Qi, Wei; Zhang, Chao; Shokat, Kevan M; Tomchick, Diana R; Machius, Mischa; Yu, Hongtao

    2008-11-07

    In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.

  12. Involvement of the Tyr kinase/JNK pathway in carbachol-induced bronchial smooth muscle contraction in the rat.

    PubMed

    Sakai, Hiroyasu; Watanabe, Yu; Honda, Mai; Tsuiki, Rika; Ueda, Yusuke; Nagai, Yuki; Narita, Minoru; Misawa, Miwa; Chiba, Yoshihiko

    2013-05-01

    Tyrosine (Tyr) kinases and mitogen-activated protein kinases have been thought to participate in the contractile response in various smooth muscles. The aim of the current study was to investigate the involvement of the Tyr kinase pathway in the contraction of bronchial smooth muscle. Ring preparations of bronchi isolated from rats were suspended in an organ bath. Isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine the phosphorylation of c-Jun N-terminal kinasess (JNKs) in bronchial smooth muscle. To examine the role of mitogen-activated protein kinase(s) in bronchial smooth muscle contraction, the effects of MPAK inhibitors were investigated in this study. The contraction induced by carbachol (CCh) was significantly inhibited by pretreatment with selective Tyr kinase inhibitors (genistein and ST638, n = 6, respectively), and a JNK inhibitor (SP600125, n = 6). The contractions induced by high K depolarization (n = 4), orthovanadate (a potent Tyr phosphatase inhibitor) and sodium fluoride (a G protein activator; NaF) were also significantly inhibited by selective Tyr kinase inhibitors and a JNK inhibitor (n = 4, respectively). However, the contraction induced by calyculin-A was not affected by SP600125. On the other hand, JNKs were phosphorylated by CCh (2.2 ± 0,4 [mean±SEM] fold increase). The JNK phosphorylation induced by CCh was significantly inhibited by SP600125 (n = 4). These findings suggest that the Tyr kinase/JNK pathway may play a role in bronchial smooth muscle contraction. Strategies to inhibit JNK activation may represent a novel therapeutic approach for diseases involving airway obstruction, such as asthma and chronic obstructive pulmonary disease.

  13. Phosphorylation of Synaptic GTPase-activating Protein (synGAP) by Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII) and Cyclin-dependent Kinase 5 (CDK5) Alters the Ratio of Its GAP Activity toward Ras and Rap GTPases*

    PubMed Central

    Walkup, Ward G.; Washburn, Lorraine; Sweredoski, Michael J.; Carlisle, Holly J.; Graham, Robert L.; Hess, Sonja; Kennedy, Mary B.

    2015-01-01

    synGAP is a neuron-specific Ras and Rap GTPase-activating protein (GAP) found in high concentrations in the postsynaptic density (PSD) fraction from the mammalian forebrain. We have previously shown that, in situ in the PSD fraction or in recombinant form in Sf9 cell membranes, synGAP is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaMKII), another prominent component of the PSD. Here, we show that recombinant synGAP (r-synGAP), lacking 102 residues at the N terminus, can be purified in soluble form and is phosphorylated by cyclin-dependent kinase 5 (CDK5) as well as by CaMKII. Phosphorylation of r-synGAP by CaMKII increases its HRas GAP activity by 25% and its Rap1 GAP activity by 76%. Conversely, phosphorylation by CDK5 increases r-synGAP's HRas GAP activity by 98% and its Rap1 GAP activity by 20%. Thus, phosphorylation by both kinases increases synGAP activity; CaMKII shifts the relative GAP activity toward inactivation of Rap1, and CDK5 shifts the relative activity toward inactivation of HRas. GAP activity toward Rap2 is not altered by phosphorylation by either kinase. CDK5 phosphorylates synGAP primarily at two sites, Ser-773 and Ser-802. Phosphorylation at Ser-773 inhibits r-synGAP activity, and phosphorylation at Ser-802 increases it. However, the net effect of concurrent phosphorylation of both sites, Ser-773 and Ser-802, is an increase in GAP activity. synGAP is phosphorylated at Ser-773 and Ser-802 in the PSD fraction, and its phosphorylation by CDK5 and CaMKII is differentially regulated by activation of NMDA-type glutamate receptors in cultured neurons. PMID:25533468

  14. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells*

    PubMed Central

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T.; Friedman, Henry; Bigner, Darell D.; Ali-Osman, Francis

    2015-01-01

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. PMID:26429914

  15. Phosphorylation of Glutathione S-Transferase P1 (GSTP1) by Epidermal Growth Factor Receptor (EGFR) Promotes Formation of the GSTP1-c-Jun N-terminal kinase (JNK) Complex and Suppresses JNK Downstream Signaling and Apoptosis in Brain Tumor Cells.

    PubMed

    Okamura, Tatsunori; Antoun, Gamil; Keir, Stephen T; Friedman, Henry; Bigner, Darell D; Ali-Osman, Francis

    2015-12-25

    Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Pulsed radiofrequency reduced complete Freund's adjuvant-induced mechanical hyperalgesia via the spinal c-Jun N-terminal kinase pathway.

    PubMed

    Chen, Kuan-Hung; Yang, Chien-Hui; Juang, Sin-Ei; Huang, Hui-Wen; Cheng, Jen-Kun; Sheen-Chen, Shyr-Ming; Cheng, Jiin-Tsuey; Lin, Chung-Ren

    2014-03-01

    Pulsed radiofrequency (PRF) treatment involves the pulsed application of a radiofrequency electric field to a nerve. The technology offers pain relief for patients suffering from chronic pain who do not respond well to conventional treatments. We tested whether PRF treatment attenuated complete Freund's adjuvant (CFA) induced inflammatory pain. The profile of spinal c-Jun N-terminal kinases (JNKs) phosphorylation was evaluated to elucidate the potential mechanism. Injection of CFA into the unilateral hind paw of rats induced mechanical hyperalgesia in both the ipsilateral and contralateral hind paws. We administered 500-kHz PRF treatment in 20-ms pulses, at a rate of 2 Hz (2 pulses per second) either to the sciatic nerve in the mid-thigh, or to the L4 anterior primary ramus just distal to the intervertebral foramen in both the CFA group and no-PRF group rats. Tissue samples were examined at 1, 3, 7, and 14 days following PRF treatments. Behavioral studies showed that PRF applied close to the dorsal root ganglion (DRG) significantly attenuated CFA-induced mechanical hyperalgesia compared to no-PRF group (P < .05). And western blotting revealed significant attenuation of the activation of JNK in the spinal dorsal horn compared to no-PRF group animals (P < .05). Application of PRF close to DRG provides an effective treatment for CFA-induced persistent mechanical hyperalgesia by attenuating JNK activation in the spinal dorsal horn.

  17. Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity.

    PubMed

    Smal, Caroline; Vertommen, Didier; Amsailale, Rachid; Arts, Angélique; Degand, Hervé; Morsomme, Pierre; Rider, Mark H; Neste, Eric Van Den; Bontemps, Françoise

    2010-10-01

    Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

    2002-01-01

    Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

  19. Effects of c-Jun N-terminal kinase on Activin A/Smads signaling in PC12 cell suffered from oxygen-glucose deprivation.

    PubMed

    Wang, J Q; Xu, Z H; Liang, W Z; He, J T; Cui, Y; Liu, H Y; Xue, L X; Shi, W; Shao, Y K; Mang, J; Xu, Z X

    2016-02-29

    Activin A (Act A), a member of transforming growth factor-β (TGF-β) superfamily, is an early gene in response to cerebral ischemia. Growing evidences confirm the neuroprotective effect of Act A in ischemic injury through Act A/Smads signal activation. In this process, regulation networks are involved in modulating the outcomes of Smads signaling. Among these regulators, crosstalk between c-Jun N-terminal kinase (JNK) and Smads signaling has been found in the TGF-β induced epithelial-mesenchymal transition. However, in neural ischemia, the speculative regulation between JNK and Act A/Smads signaling pathways has not been clarified. To explore this issue, an Oxygen Glucose Deprivation (OGD) model was introduced to nerve-like PC12 cells. We found that JNK signal activation occurred at the early time of OGD injury (1 h). Act A administration suppressed JNK phosphorylation. In addition, JNK inhibition could elevate the strength of Smads signaling and attenuate neural apoptosis after OGD injury. Our results indicated a negative regulation effect of JNK on Smads signaling in ischemic injury. Taken together, JNK, as a critical site for neural apoptosis and negative regulator for Act A/Smads signaling, was presumed to be a molecular therapeutic target for ischemia.

  20. Casein Kinase 2-Mediated Phosphorylation of Respiratory Syncytial Virus Phosphoprotein P Is Essential for the Transcription Elongation Activity of the Viral Polymerase; Phosphorylation by Casein Kinase 1 Occurs Mainly at Ser215 and Is without Effect

    PubMed Central

    Dupuy, Lesley C.; Dobson, Sean; Bitko, Vira; Barik, Sailen

    1999-01-01

    The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser232 in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser232 was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser215. In vitro, P protein could be phosphorylated by purified CK1 at Ser215 but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser215, Ser232, and Ser237 were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase. PMID:10482589

  1. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220.

    PubMed

    Whiting, Jennifer L; Nygren, Patrick J; Tunquist, Brian J; Langeberg, Lorene K; Seternes, Ole-Morten; Scott, John D

    2015-08-07

    The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  3. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  4. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways.

    PubMed

    Sapkota, Gopal; Knockaert, Marie; Alarcón, Claudio; Montalvo, Ermelinda; Brivanlou, Ali H; Massagué, Joan

    2006-12-29

    Smad proteins transduce bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFbeta) signals upon phosphorylation of their C-terminal SXS motif by receptor kinases. The activity of Smad1 in the BMP pathway and Smad2/3 in the TGFbeta pathway is restricted by pathway cross-talk and feedback through protein kinases, including MAPK, CDK2/4, p38MAPK, JNK, and others. These kinases phosphorylate Smads 1-3 at the region that links the N-terminal DNA-binding domain and the C-terminal transcriptional domain. Phosphatases that dephosphorylate the linker region are therefore likely to play an integral part in the regulation of Smad activity. We reported previously that small C-terminal domain phosphatases 1, 2, and 3 (SCP1-3) dephosphorylate Smad1 C-terminal tail, thereby attenuating BMP signaling. Here we provide evidence that SCP1-3 also dephosphorylate the linker regions of Smad1 and Smad2/3 in vitro, in mammalian cells and in Xenopus embryos. Overexpression of SCP 1, 2, or 3 decreased linker phosphorylation of Smads 1, 2 and 3. Moreover, RNA interference-mediated knockdown of SCP1/2 increased the BMP-dependent phosphorylation of the Smad1 linker region as well as the C terminus. In contrast, SCP1/2 knockdown increased the TGFbeta-dependent linker phosphorylation of Smad2/3 but not the C-terminal phosphorylation. Consequently, SCP1/2 knockdown inhibited TGFbeta transcriptional responses, but it enhanced BMP transcriptional responses. Thus, by dephosphorylating Smad2/3 at the linker (inhibitory) but not the C-terminal (activating) site, the SCPs enhance TGFbeta signaling, and by dephosphorylating Smad1 at both sites, the SCPs reset Smad1 to the basal unphosphorylated state.

  5. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain.

    PubMed

    Abe, Tetsuya; Matsumura, Shinji; Katano, Tayo; Mabuchi, Tamaki; Takagi, Kunio; Xu, Li; Yamamoto, Akitsugu; Hattori, Kotaro; Yagi, Takeshi; Watanabe, Masahiko; Nakazawa, Takanobu; Yamamoto, Tadashi; Mishina, Masayoshi; Nakai, Yoshihide; Ito, Seiji

    2005-09-01

    Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.

  6. Differential phosphorylation signals control endocytosis of GPR15

    PubMed Central

    Okamoto, Yukari; Shikano, Sojin

    2017-01-01

    GPR15 is an orphan G protein–coupled receptor (GPCR) that serves for an HIV coreceptor and was also recently found as a novel homing receptor for T-cells implicated in colitis. We show that GPR15 undergoes a constitutive endocytosis in the absence of ligand. The endocytosis was clathrin dependent and partially dependent on β-arrestin in HEK293 cells, and nearly half of the internalized GPR15 receptors were recycled to the plasma membrane. An Ala mutation of the distal C-terminal Arg-354 or Ser-357, which forms a consensus phosphorylation site for basophilic kinases, markedly reduced the endocytosis, whereas phosphomimetic mutation of Ser-357 to Asp did not. Ser-357 was phosphorylated in vitro by multiple kinases, including PKA and PKC, and pharmacological activation of these kinases enhanced both phosphorylation of Ser-357 and endocytosis of GPR15. These results suggested that Ser-357 phosphorylation critically controls the ligand-independent endocytosis of GPR15. The functional role of Ser-357 in endocytosis was distinct from that of a conserved Ser/Thr cluster in the more proximal C-terminus, which was responsible for the β-arrestin– and GPCR kinase–dependent endocytosis of GPR15. Thus phosphorylation signals may differentially control cell surface density of GPR15 through endocytosis. PMID:28615320

  7. Species differences in the effects of prostanoids on MAP kinase phosphorylation, myosin light chain phosphorylation and contraction in bovine and cat iris sphincter smooth muscle.

    PubMed

    Kaddour-Djebbar, I; Ansari, H R; Akhtar, R A; Abdel-Latif, A A

    2005-01-01

    There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.

  8. Structural and mechanistic insights into Mps1 kinase activation.

    PubMed

    Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong

    2009-08-01

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.

  9. Structural and mechanistic insights into Mps1 kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Yang, Yuting; Gao, Yuefeng

    2010-11-05

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation.more » Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.« less

  10. Phosphorylation and regulation of a Gq/11-coupled receptor by casein kinase 1alpha.

    PubMed

    Budd, D C; McDonald, J E; Tobin, A B

    2000-06-30

    Agonist-mediated receptor phosphorylation by one or more of the members of the G-protein receptor kinase (GRK) family is an established model for G-protein-coupled receptor (GPCR) phosphorylation resulting in receptor desensitization. Our recent studies have, however, suggested that an alternative route to GPCR phosphorylation may be an operation involving casein kinase 1alpha (CK1alpha). In the current study we investigate the involvement of CK1alpha in the phosphorylation of the human m3-muscarinic receptor in intact cells. We show that expression of a catalytically inactive mutant of CK1alpha, designed to act in a dominant negative manner, inhibits agonist-mediated receptor phosphorylation by approximately 40% in COS-7 and HEK-293 cells. Furthermore, we present evidence that a peptide corresponding to the third intracellular loop of the m3-muscarinic receptor (Ser(345)-Leu(463)) is an inhibitor of CK1alpha due to its ability to both act as a pseudo-substrate for CK1alpha and form a high affinity complex with CK1alpha. Expression of this peptide was able to reduce both basal and agonist-mediated m3-muscarinic receptor phosphorylation in intact cells. These results support the notion that CK1alpha is able to mediate GPCR phosphorylation in an agonist-dependent manner and that this may provide a novel mechanism for GPCR phosphorylation. The functional role of phosphorylation was investigated using a mutant of the m3-muscarinic receptor that showed an approximately 80% reduction in agonist-mediated phosphorylation. Surprisingly, this mutant underwent agonist-mediated desensitization suggesting that, unlike many GPCRs, desensitization of the m3-muscarinic receptor is not mediated by receptor phosphorylation. The inositol (1,4, 5)-trisphosphate response did, however, appear to be dramatically potentiated in the phosphorylation-deficient mutant indicating that phosphorylation may instead control the magnitude of the initial inositol phosphate response.

  11. Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation.

    PubMed

    Chan, Siew Wee; Lim, Chun Jye; Guo, Fusheng; Tan, Ivan; Leung, Thomas; Hong, Wanjin

    2013-12-27

    Whether the Hippo pathway has downstream targets other than YAP and TAZ is unknown. In this report, we have identified angiomotin (Amot) family members as novel substrates of Hippo core kinases. The N-terminal regions of Amot proteins contain a conserved HXRXXS consensus site for LATS1/2-mediated phosphorylation. Phospho-specific antibodies showed that Hippo core kinases could mediate phosphorylation of endogenous as well as exogenous Amot family members. Knockdown of LATS1 and LATS2 endogenously reduced the phosphorylation of Amots detected by the phospho-specific antibodies. Mutation of the serine to alanine within this HXRXXS site in Amot and AmotL2 established that this site was essential for Hippo core kinase-mediated phosphorylation. Wild-type and non-phosphorylated Amot (Amot-S175A) were targeted to actin filaments, whereas phospho-mimic Amot (Amot-S175D) failed to be localized with actin. Overexpression of LATS2 caused dissociation of Amot from actin but not Amot-S175A. Mapping of the actin-binding site of Amot showed that serine 175 of Amot was important for the actin-binding activity. Amot-S175A promoted, whereas Amot and Amot-S175D inhibited, cell proliferation. These results collectively suggest that the Hippo pathway negatively regulates the actin-binding activity of Amot family members through direct phosphorylation.

  12. Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis

    PubMed Central

    Alderwick, Luke J.; Molle, Virginie; Kremer, Laurent; Cozzone, Alain J.; Dafforn, Timothy R.; Besra, Gurdyal S.; Fütterer, Klaus

    2006-01-01

    Ser/Thr phosphorylation has emerged as a critical regulatory mechanism in a number of bacteria, including Mycobacterium tuberculosis. This problematic pathogen encodes 11 eukaryotic-like Ser/Thr kinases, yet few substrates or signaling targets have been characterized. Here, we report the structure of EmbR (2.0 Å), a putative transcriptional regulator of key arabinosyltransferases (EmbC, -A, and -B), and an endogenous substrate of the Ser/Thr-kinase PknH. EmbR presents a unique domain architecture: the N-terminal winged-helix DNA-binding domain forms an extensive interface with the all-helical central bacterial transcriptional activation domain and is positioned adjacent to the regulatory C-terminal forkhead-associated (FHA) domain, which mediates binding to a Thr-phosphorylated site in PknH. The structure in complex with a phospho-peptide (1.9 Å) reveals a conserved mode of phospho-threonine recognition by the FHA domain and evidence for specific recognition of the cognate kinase. The present structures suggest hypotheses as to how EmbR might propagate the phospho-relay signal from its cognate kinase, while serving as a template for the structurally uncharacterized Streptomyces antibiotic regulatory protein family of transcription factors. PMID:16477027

  13. Phosphorylation of threonine 290 in the activation loop of Tpl2/Cot is necessary but not sufficient for kinase activity.

    PubMed

    Luciano, Brenda S; Hsu, Sang; Channavajhala, Padma L; Lin, Lih-Ling; Cuozzo, John W

    2004-12-10

    Cot/Tpl2/MAP3K8 is a serine/threonine kinase known to activate the ERK, p38, and JNK kinase pathways. Studies of Tpl2 knock-out mice reveal a clear defect in tumor necrosis factor-alpha production, although very little detail is known about its regulation and the signaling events involved. In the present study we demonstrated that phosphorylation of Cot was required for its maximal activity as phosphatase treatment of Cot decreased its kinase activity. The Cot sequence contains a conserved threonine at position 290 in the activation loop of the kinase domain. We found that mutation of this residue to alanine eliminated its ability to activate MEK/ERK and NF-kappaB pathways, whereas a phosphomimetic mutation to aspartic acid could rescue the ability to activate MEK. Thr-290 was also required for robust autophosphorylation of Cot. Antibody generated to phospho-Thr-290-Cot recognized both wild-type and kinase-dead Cot, suggesting that phosphorylation of Thr-290 did not occur through autophosphorylation but via another kinase. We showed that Cot was constitutively phosphorylated at Thr-290 in transfected human embryonic kidney 293T cells as well as human monocytes as this residue was phosphorylated in unstimulated and lipopolysaccharide-stimulated cells to the same degree. Treatment with herbimycin A inhibited Cot activity in the MEK/ERK pathway but did not inhibit phosphorylation at Thr-290. Together these results showed that phosphorylation of Cot at Thr-290 is necessary but not sufficient for full kinase activity in the MEK/ERK pathway.

  14. Phosphorylation-induced conformation of β2-adrenoceptor related to arrestin recruitment revealed by NMR.

    PubMed

    Shiraishi, Yutaro; Natsume, Mei; Kofuku, Yutaka; Imai, Shunsuke; Nakata, Kunio; Mizukoshi, Toshimi; Ueda, Takumi; Iwaï, Hideo; Shimada, Ichio

    2018-01-15

    The C-terminal region of G-protein-coupled receptors (GPCRs), stimulated by agonist binding, is phosphorylated by GPCR kinases, and the phosphorylated GPCRs bind to arrestin, leading to the cellular responses. To understand the mechanism underlying the formation of the phosphorylated GPCR-arrestin complex, we performed NMR analyses of the phosphorylated β 2 -adrenoceptor (β 2 AR) and the phosphorylated β 2 AR-β-arrestin 1 complex, in the lipid bilayers of nanodisc. Here we show that the phosphorylated C-terminal region adheres to either the intracellular side of the transmembrane region or lipids, and that the phosphorylation of the C-terminal region allosterically alters the conformation around M215 5.54 and M279 6.41 , located on transemembrane helices 5 and 6, respectively. In addition, we found that the conformation induced by the phosphorylation is similar to that corresponding to the β-arrestin-bound state. The phosphorylation-induced structures revealed in this study propose a conserved structural motif of GPCRs that enables β-arrestin to recognize dozens of GPCRs.

  15. Btk regulation in human and mouse B cells via protein kinase C phosphorylation of IBtkγ.

    PubMed

    Janda, Elzbieta; Palmieri, Camillo; Pisano, Antonio; Pontoriero, Marilena; Iaccino, Enrico; Falcone, Cristina; Fiume, Giuseppe; Gaspari, Marco; Nevolo, Maria; Di Salle, Emanuela; Rossi, Annalisa; De Laurentiis, Annamaria; Greco, Adelaide; Di Napoli, Daniele; Verheij, Elwin; Britti, Domenico; Lavecchia, Luca; Quinto, Ileana; Scala, Giuseppe

    2011-06-16

    The inhibitor of Bruton tyrosine kinase γ (IBtkγ) is a negative regulator of the Bruton tyrosine kinase (Btk), which plays a major role in B-cell differentiation; however, the mechanisms of IBtkγ-mediated regulation of Btk are unknown. Here we report that B-cell receptor (BCR) triggering caused serine-phosphorylation of IBtkγ at protein kinase C consensus sites and dissociation from Btk. By liquid chromatography and mass-mass spectrometry and functional analysis, we identified IBtkγ-S87 and -S90 as the critical amino acid residues that regulate the IBtkγ binding affinity to Btk. Consistently, the mutants IBtkγ carrying S87A and S90A mutations bound constitutively to Btk and down-regulated Ca(2+) fluxes and NF-κB activation on BCR triggering. Accordingly, spleen B cells from Ibtkγ(-/-) mice showed an increased activation of Btk, as evaluated by Y551-phosphorylation and sustained Ca(2+) mobilization on BCR engagement. These findings identify a novel pathway of Btk regulation via protein kinase C phosphorylation of IBtkγ.

  16. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-07

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  17. Inhibition of protein kinase C α/βII and activation of c-Jun NH2-terminal kinase mediate glycyrrhetinic acid induced apoptosis in non-small cell lung cancer NCI-H460 cells.

    PubMed

    Song, Junho; Ko, Hyun-suk; Sohn, Eun Jung; Kim, Bonglee; Kim, Jung Hyo; Kim, Hee Jeong; Kim, Chulwoo; Kim, Jai-eun; Kim, Sung-Hoon

    2014-02-15

    Though glycyrrhetinic acid (GA) from Glycyrrhiza glabra was known to exert antioxidant, antifilarial, hepatoprotective, anti-inflammatory and anti-tumor effects, the antitumor mechanism of GA was not clearly elucidated in non-small cell lung cancer cells (NSCLCCs). Thus, in the present study, the underlying apoptotic mechanism of GA was examined in NCI-H460 NSCLCCs. GA significantly suppressed the viability of NCI-H460 and A549 non-small lung cancer cells. Also, GA significantly increased the sub G1 population by cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells in a concentration dependent manner in NCI-H460 non-small lung cancer cells. Consistently, GA cleaved poly (ADP-ribosyl) polymerase (PARP), caspase 9/3, attenuated the expression of Bcl-XL, Bcl-2, Cyclin D1 and Cyclin E in NCI-H460 cells. Interestingly, GA attenuated the phosphorylation of protein kinase C (PKC) α/βII and extracellular activated protein kinase (ERK) as well as activated the phosphorylation of PKC δ and c-Jun NH2-terminal kinase in NCI-H460 cells. Conversely, PKC promoter phorbol 12-myristate 13-acetate (PMA) and JNK inhibitor SP600125 reversed the cleavages of caspase 3 and PARP induced by GA in NCI-H460 cells. Overall, our findings suggest that GA induces apoptosis via inhibition of PKC α/βII and activation of JNK in NCI-H460 non-small lung cancer cells as a potent anticancer candidate for lung cancer treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.

    PubMed

    Wang, Duolin; Zeng, Shuai; Xu, Chunhui; Qiu, Wangren; Liang, Yanchun; Joshi, Trupti; Xu, Dong

    2017-12-15

    Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. xudong@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  19. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  20. The Arabidopsis TOR Kinase Specifically Regulates the Expression of Nuclear Genes Coding for Plastidic Ribosomal Proteins and the Phosphorylation of the Cytosolic Ribosomal Protein S6

    PubMed Central

    Dobrenel, Thomas; Mancera-Martínez, Eder; Forzani, Céline; Azzopardi, Marianne; Davanture, Marlène; Moreau, Manon; Schepetilnikov, Mikhail; Chicher, Johana; Langella, Olivier; Zivy, Michel; Robaglia, Christophe; Ryabova, Lyubov A.; Hanson, Johannes; Meyer, Christian

    2016-01-01

    Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5′ untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5′ terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase. PMID:27877176

  1. Quokka: a comprehensive tool for rapid and accurate prediction of kinase family-specific phosphorylation sites in the human proteome.

    PubMed

    Li, Fuyi; Li, Chen; Marquez-Lago, Tatiana T; Leier, André; Akutsu, Tatsuya; Purcell, Anthony W; Smith, A Ian; Lithgow, Trevor; Daly, Roger J; Song, Jiangning; Chou, Kuo-Chen

    2018-06-27

    Kinase-regulated phosphorylation is a ubiquitous type of post-translational modification (PTM) in both eukaryotic and prokaryotic cells. Phosphorylation plays fundamental roles in many signalling pathways and biological processes, such as protein degradation and protein-protein interactions. Experimental studies have revealed that signalling defects caused by aberrant phosphorylation are highly associated with a variety of human diseases, especially cancers. In light of this, a number of computational methods aiming to accurately predict protein kinase family-specific or kinase-specific phosphorylation sites have been established, thereby facilitating phosphoproteomic data analysis. In this work, we present Quokka, a novel bioinformatics tool that allows users to rapidly and accurately identify human kinase family-regulated phosphorylation sites. Quokka was developed by using a variety of sequence scoring functions combined with an optimized logistic regression algorithm. We evaluated Quokka based on well-prepared up-to-date benchmark and independent test datasets, curated from the Phospho.ELM and UniProt databases, respectively. The independent test demonstrates that Quokka improves the prediction performance compared with state-of-the-art computational tools for phosphorylation prediction. In summary, our tool provides users with high-quality predicted human phosphorylation sites for hypothesis generation and biological validation. The Quokka webserver and datasets are freely available at http://quokka.erc.monash.edu/. Supplementary data are available at Bioinformatics online.

  2. The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase.

    PubMed

    Dodd, Dana A; Worth, Randall G; Rosen, Michael K; Grinstein, Sergio; van Oers, Nicolai S C; Hansen, Eric J

    2014-05-20

    Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for

  3. Interactions between Casein Kinase Iε (CKIε) and Two Substrates from Disparate Signaling Pathways Reveal Mechanisms for Substrate-Kinase Specificity

    PubMed Central

    Dahlberg, Caroline Lund; Nguyen, Elizabeth Z.; Goodlett, David; Kimelman, David

    2009-01-01

    Background Members of the Casein Kinase I (CKI) family of serine/threonine kinases regulate diverse biological pathways. The seven mammalian CKI isoforms contain a highly conserved kinase domain and divergent amino- and carboxy-termini. Although they share a preferred target recognition sequence and have overlapping expression patterns, individual isoforms often have specific substrates. In an effort to determine how substrates recognize differences between CKI isoforms, we have examined the interaction between CKIε and two substrates from different signaling pathways. Methodology/Principal Findings CKIε, but not CKIα, binds to and phosphorylates two proteins: Period, a transcriptional regulator of the circadian rhythms pathway, and Disheveled, an activator of the planar cell polarity pathway. We use GST-pull-down assays data to show that two key residues in CKIα's kinase domain prevent Disheveled and Period from binding. We also show that the unique C-terminus of CKIε does not determine Dishevelled's and Period's preference for CKIε nor is it essential for binding, but instead plays an auxillary role in stabilizing the interactions of CKIε with its substrates. We demonstrate that autophosphorylation of CKIε's C-terminal tail prevents substrate binding, and use mass spectrometry and chemical crosslinking to reveal how a phosphorylation-dependent interaction between the C-terminal tail and the kinase domain prevents substrate phosphorylation and binding. Conclusions/Significance The biochemical interactions between CKIε and Disheveled, Period, and its own C-terminus lead to models that explain CKIε's specificity and regulation. PMID:19274088

  4. Alterations in GluR2 AMPA receptor phosphorylation at serine 880 following group I metabotropic glutamate receptor stimulation in the rat dorsal striatum.

    PubMed

    Ahn, Sung Min; Choe, Eun Sang

    2010-04-01

    Phosphorylation of ionotropic glutamate receptors in the brain plays a crucial role in the regulation of synaptic plasticity. In this study, we investigated the regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor phosphorylation by the stimulation of group I metabotropic glutamate receptors (mGluRs) in the dorsal striatum in vivo. The results showed that intrastriatal infusion of the group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG, 250 nmol), enhanced the sensitivity of GluR2 subunit in its phosphorylation at serine 880 (S880) in the dorsal striatum. This enhancement of the sensitivity of GluR2-S880 phosphorylation was reduced by blocking group I mGluRs and N-methyl-D-aspartate (NMDA) receptors. Similar reduction of the enhancement was also induced by inhibiting phospholipase C (PLC), calcium/calmodulin-dependent protein kinase (CaMK), c-Jun N-terminal kinase (JNK), and protein kinase C (PKC). Inhibition of protein phosphatase (PP) 1/2A and calcineurin (PP2B) alone enhanced GluR2-S880 phosphorylation in the dorsal striatum, whereas inhibition of these phosphatases did not further enhance the S880 phosphorylation by DHPG stimulation. In addition, inhibition of PP1/2A or PP2B also enhanced the phosphorylation of CaMKII, JNK and PKC. These data suggest that the phosphorylation of AMPA receptor GluR2 subunit at S880 is subject to the upregulation by the stimulation of group I mGluRs. Interactions among glutamate receptors, protein kinases, and PPs participate in this upregulation. (c) 2009 Wiley-Liss, Inc.

  5. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

    PubMed

    Hizli, Asli A; Chi, Yong; Swanger, Jherek; Carter, John H; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G; Clurman, Bruce E

    2013-02-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A-cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity.

  6. Structures of human Bruton's tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcotte, Douglas J.; Liu, Yu-Ting; Arduini, Robert M.

    Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 {angstrom} resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 {angstrom} resolution. This data providesmore » information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.« less

  7. [Effects of dihydroartiminisin on proliferation and phosphorylation of mitogen-activated protein kinase in epithelial ovarian cancer cell lines].

    PubMed

    Tan, Xian-Jie; Plouet, Jean; Lang, Jing-He; Wu, Ming; Shen, Keng

    2008-09-01

    To determine the effect of dihydroartiminisin on the proliferation and phosphorylation of mitogen-activated protein kinase (MAPK) in SKOV3 and OVCAR3 ovarian cancer cell lines. Methyl thiazolyl tetrazolium assay was performed to evaluate the anti-proliferative effect of dihydroartiminisin in SKOV3 and OVCAR3 cells, and Western blot was used to determine its effect on phosphorylation level of MAPK, including extra-cell regulated kinase (ERK) 1/2 and p38 protein kinase, in the two cell lines. Dihydroartiminisin inhibited the proliferation of ovarian cancer cells in vitro, with a mean of 50% inhibition concentration (IC(50)) at 72 h of (9.0 +/- 1.4) micromol/L for SKOV3 and (5.5 +/- 1.2) micromol/L for OVCAR3 respectively. Compared to cells without dihydroartiminisin treatment, phosphorylation level of ERK 1/2 in SKOV3 and OVCAR3 cells treated with dihydroartiminisin decreased by 64.2% and 75.3% respectively (P < 0.05), while phosphorylation of p38 protein kinase in SKOV3 and OVCAR3 only decreased by 8.5%and 6.4%respectively (P > 0.05). Dihydroartiminisin can inhibit the proliferation of ovarian cancer cell in vitro, probably through down-regulation of the phosphorylation of ERK 1/2 in ovarian cancer cells.

  8. Ca2+-independent Activation of Ca2+/Calmodulin-dependent Protein Kinase II Bound to the C-terminal Domain of CaV2.1 Calcium Channels*

    PubMed Central

    Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.

    2013-01-01

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606

  9. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  10. c-Jun N-terminal kinase in pancreatic tumor stroma augments tumor development in mice.

    PubMed

    Sato, Takeshi; Shibata, Wataru; Hikiba, Yohko; Kaneta, Yoshihiro; Suzuki, Nobumi; Ihara, Sozaburo; Ishii, Yasuaki; Sue, Soichiro; Kameta, Eri; Sugimori, Makoto; Yamada, Hiroaki; Kaneko, Hiroaki; Sasaki, Tomohiko; Ishii, Tomohiro; Tamura, Toshihide; Kondo, Masaaki; Maeda, Shin

    2017-11-01

    Pancreatic ductal adenocarcinoma (PDAC) is a life-threatening disease and there is an urgent need to develop improved therapeutic approaches. The role of c-Jun N-terminal kinase (JNK) in PDAC stroma is not well defined even though dense desmoplastic reactions are characteristic of PDAC histology. We aimed to explore the role of JNK in PDAC stroma in mice. We crossed Ptf1a Cre/+ ;Kras G12D/+ mice with JNK1 -/- mice to generate Ptf1a Cre/+ ;Kras G12D/+ ;JNK1 -/- (Kras;JNK1 -/- ) mice. Tumor weight was significantly lower in Kras;JNK1 -/- mice than in Kras;JNK1 +/- mice, whereas histopathological features were similar. We also transplanted a murine PDAC cell line (mPC) with intact JNK1 s.c. into WT and JNK1 -/- mice. Tumor diameters were significantly smaller in JNK1 -/- mice. Phosphorylated JNK (p-JNK) was activated in α-smooth muscle actin (SMA)-positive cells in tumor stroma, and mPC-conditioned medium activated p-JNK in tumor-associated fibroblasts (TAF) in vitro. Relative expression of Ccl20 was downregulated in stimulated TAF. Ccl20 is an important chemokine that promotes CD8 + T-cell infiltration by recruitment of dendritic cells, and the number of CD8 + T cells was decreased in Kras;JNK1 +/- mice compared with Kras;JNK1 -/- mice. These results suggest that the cancer secretome decreases Ccl20 secretion from TAF by activation of JNK, and downregulation of Ccl20 secretion might be correlated with reduction of infiltrating CD8 + T cells. Therefore, we concluded that inhibition of activated JNK in pancreatic tumor stroma could be a potential therapeutic target to increase Ccl20 secretion from TAF and induce accumulation of CD8 + T cells, which would be expected to enhance antitumor immunity. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  11. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23

    PubMed Central

    Wei, Yao; Wang, Dong; Jin, Fangfang; Bian, Zhen; Li, Limin; Liang, Hongwei; Li, Mingzhen; Shi, Lei; Pan, Chaoyun; Zhu, Dihan; Chen, Xi; Hu, Gang; Liu, Yuan; Zhang, Chen-Yu; Zen, Ke

    2017-01-01

    Tumour cells secrete exosomes that are involved in the remodelling of the tumour–stromal environment and promoting malignancy. The mechanisms governing tumour exosome release, however, remain incompletely understood. Here we show that tumour cell exosomes secretion is controlled by pyruvate kinase type M2 (PKM2), which is upregulated and phosphorylated in tumours. During exosome secretion, phosphorylated PKM2 serves as a protein kinase to phosphorylate synaptosome-associated protein 23 (SNAP-23), which in turn enables the formation of the SNARE complex to allow exosomes release. Direct phosphorylation assay and mass spectrometry confirm that PKM2 phosphorylates SNAP-23 at Ser95. Ectopic expression of non-phosphorylated SNAP-23 mutant (Ser95→Ala95) significantly reduces PKM2-mediated exosomes release whereas expression of selective phosphomimetic SNAP-23 mutants (Ser95→Glu95 but not Ser20→Glu20) rescues the impaired exosomes release induced by PKM2 knockdown. Our findings reveal a non-metabolic function of PKM2, an enzyme associated with tumour cell reliance on aerobic glycolysis, in promoting tumour cell exosome release. PMID:28067230

  12. Phosphopeptide occupancy and photoaffinity cross-linking of the v-Src SH2 domain attenuates tyrosine kinase activity.

    PubMed

    Garcia, P; Shoelson, S E; Drew, J S; Miller, W T

    1994-12-02

    Phosphorylation of c-Src at carboxyl-terminal Tyr-527 suppresses tyrosine kinase activity and transforming potential, presumably by facilitating the intramolecular interaction of the C terminus of Src with its SH2 domain. In addition, it has been shown previously that occupancy of the c-Src SH2 domain with a phosphopeptide stimulates c-Src kinase catalytic activity. We have performed analogous studies with v-Src, the transforming protein from Rous sarcoma virus, which has extensive homology with c-Src. v-Src lacks an autoregulatory phosphorylation site, and its kinase domain is constitutively active. Phosphopeptides corresponding to the sequences surrounding c-Src Tyr-527 and a Tyr-Glu-Glu-Ile motif from the hamster polyoma virus middle T antigen inhibit tyrosine kinase activity of baculovirus-expressed v-Src 2- and 4-fold, respectively. To determine the mechanism of this regulation, the Tyr-527 phosphopeptide was substituted with the photoactive amino acid p-benzoylphenylalanine at the adjacent positions (N- and C-terminal) to phosphotyrosine. These peptides photoinactivate the v-Src tyrosine kinase 5-fold in a time- and concentration-dependent manner. Furthermore, the peptides cross-link an isolated Src SH2 domain with similar rates and specificity. These data indicate that occupancy of the v-Src SH2 domain induces a conformational change that is transmitted to the kinase domain and attenuates tyrosine kinase activity.

  13. Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase

    PubMed Central

    Hizli, Asli A.; Chi, Yong; Swanger, Jherek; Carter, John H.; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G.

    2013-01-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A–cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity. PMID:23184662

  14. Agonist-dependent phosphorylation of N-formylpeptide and activation peptide from the fifth component of C (C5a) chemoattractant receptors in differentiated HL60 cells.

    PubMed

    Tardif, M; Mery, L; Brouchon, L; Boulay, F

    1993-04-15

    Attenuation of signaling is a key step in controlling the cytotoxic potential of leukocyte responses to chemotactic factors. Antipeptide antibodies, directed against the N-formyl chemotactic peptide receptor (FPR) and the activation peptide from the fifth component of C (C5a) anaphylatoxin receptor (C5aR) of human neutrophils, were used to analyze the ability of these receptors to be phosphorylated. Our data show that, in granulocyte-like differentiated HL-60 cells, both FPR and C5aR undergo an agonist dose-dependent phosphorylation that reaches completion in less than 2 to 3 min, consistent with the rate and the dose-dependent attenuation of signaling in phagocytes. Therefore, phosphorylation might be one of the possible mechanisms involved in the desensitization process of FPR and C5aR. Addition of either C5a or the protein kinase C activator (PMA) did not appear to induce the phosphorylation of FPR in the absence of FMLP or to modulate the phosphorylation of the latter at low concentrations of agonist. In contrast, although FMLP at a saturating concentration barely stimulated the phosphorylation of unoccupied C5aR, it markedly potentiated C5aR phosphorylation in cells exposed to low concentrations of C5a. Moreover, PMA was able to induce C5aR phosphorylation in the absence of agonist, indicating that protein kinase C or protein kinase C-activated kinase(s) could be involved in the phosphorylation of C5aR. Pretreatment of cells with staurosporine, a potent but nonspecific inhibitor of protein kinase C, resulted in the partial inhibition of both FPR and C5aR phosphorylation induced by saturating concentrations of agonist, suggesting that a kinase different from protein kinase C might be mainly responsible for the phosphorylation of these chemotactic receptors.

  15. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    PubMed Central

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  16. Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Samantha J.; Parthasarathy, Gopal; Darke, Paul L.

    G-protein-coupled receptor (GPCR) kinases (GRKs) bind to and phosphorylate GPCRs, initiating the process of GPCR desensitization and internalization. GRK4 is implicated in the regulation of blood pressure, and three GRK4 polymorphisms (R65L, A142V, and A486V) are associated with hypertension. Here, we describe the 2.6 Å structure of human GRK4α A486V crystallized in the presence of 5'-adenylyl β,γ-imidodiphosphate. The structure of GRK4α is similar to other GRKs, although slight differences exist within the RGS homology (RH) bundle subdomain, substrate-binding site, and kinase C-tail. The RH bundle subdomain and kinase C-terminal lobe form a strikingly acidic surface, whereas the kinase N-terminal lobemore » and RH terminal subdomain surfaces are much more basic. In this respect, GRK4α is more similar to GRK2 than GRK6. A fully ordered kinase C-tail reveals interactions linking the C-tail with important determinants of kinase activity, including the αB helix, αD helix, and the P-loop. Autophosphorylation of wild-type GRK4α is required for full kinase activity, as indicated by a lag in phosphorylation of a peptide from the dopamine D1 receptor without ATP preincubation. In contrast, this lag is not observed in GRK4α A486V. Phosphopeptide mapping by mass spectrometry indicates an increased rate of autophosphorylation of a number of residues in GRK4α A486V relative to wild-type GRK4α, including Ser-485 in the kinase C-tail.« less

  17. Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans.

    PubMed

    Devi, Seram Nganbiton; Kiehler, Brittany; Haggett, Lindsey; Fujita, Masaya

    2015-08-01

    Entry into sporulation in Bacillus subtilis is governed by a multicomponent phosphorelay, a complex version of a two-component system which includes at least three histidine kinases (KinA to KinC), two phosphotransferases (Spo0F and Spo0B), and a response regulator (Spo0A). Among the three histidine kinases, KinA is known as the major sporulation kinase; it is autophosphorylated with ATP upon starvation and then transfers a phosphoryl group to the downstream components in a His-Asp-His-Asp signaling pathway. Our recent study demonstrated that KinA forms a homotetramer, not a dimer, mediated by the N-terminal domain, as a functional unit. Furthermore, when the N-terminal domain was overexpressed in the starving wild-type strain, sporulation was impaired. We hypothesized that this impairment of sporulation could be explained by the formation of a nonfunctional heterotetramer of KinA, resulting in the reduced level of phosphorylated Spo0A (Spo0A∼P), and thus, autophosphorylation of KinA could occur in trans. To test this hypothesis, we generated a series of B. subtilis strains expressing homo- or heterogeneous KinA protein complexes consisting of various combinations of the phosphoryl-accepting histidine point mutant protein and the catalytic ATP-binding domain point mutant protein. We found that the ATP-binding-deficient protein was phosphorylated when the phosphorylation-deficient protein was present in a 1:1 stoichiometry in the tetramer complex, while each of the mutant homocomplexes was not phosphorylated. These results suggest that ATP initially binds to one protomer within the tetramer complex and then the γ-phosphoryl group is transmitted to another in a trans fashion. We further found that the sporulation defect of each of the mutant proteins is complemented when the proteins are coexpressed in vivo. Taken together, these in vitro and in vivo results reinforce the evidence that KinA autophosphorylation is able to occur in a trans fashion

  18. Cholecystokinin (CCK) stimulates S6 phosphorylation and induced activation of S6 protein kinase in rat pancreatic acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, C.; Okabayashi, Y.; Williams, J.

    CCK and insulin stimulate pancreatic protein synthesis at a post transcriptional step. To better understand this regulation the authors evaluated the phosphorylation state of ribosomal protein S6 and the presence of a specific S6 protein kinase in pancreatic acini from diabetic rats. Both CCK and insulin increased S6 phosphorylation by up to 400% in intact TSP-labelled acini. The phorbol ester 12-0-tetradecanoylphorbol 13-acetate also stimulated both protein synthesis and S6 phosphorlyation suggesting a role for protein kinase C in mediating the effect of CCK. By contrast, the CaS ionophore ionomycin had no effect on either parameter. Recently, insulin has been shownmore » to activate a unique S6 kinase in various cells. To test for its presence, cytosolic extracts were prepared from acini stimulated with CCK and insulin by homogenization in US -glycerophosphate buffer and assayed for the kinase using el-TSP ATP and rat pancreatic ribosomes followed by SDS-polyacrylamide gel electrophoresis. CCK and insulin both increased S6 kinase activity which required neither CaS or phospholipid. The dose response for CCk was similar to S6 phosphorlyation in the intact acini. TPA did not stimulate the S6 kinase. Thus, CCK may induce S6 phosphorylation both via C kinase and by activation of a unique S6 kinase.« less

  19. Role of Arg228 in the phosphorylation of galactokinase: the mechanism of GHMP kinases by quantum mechanics/molecular mechanics studies.

    PubMed

    Huang, Meilan; Li, Xiaozhou; Zou, Jian-Wei; Timson, David J

    2013-07-16

    GHMP kinases are a group of structurally related small molecule kinases. They have been found in all kingdoms of life and are mostly responsible for catalyzing the ATP-dependent phosphorylation of intermediary metabolites. Although the GHMP kinases are of clinical, pharmaceutical, and biotechnological importance, the mechanism of GHMP kinases is controversial. A catalytic base mechanism was suggested for mevalonate kinase that has a structural feature of the γ-phosphate of ATP close to an aspartate residue; however, for one GHMP family member, homoserine kinase, where the residue acting as general base is absent, a direct phosphorylation mechanism was suggested. Furthermore, it was proposed by some authors that all the GHMP kinases function by a similar mechanism. This controversy in mechanism has limited our ability to exploit these enzymes as drug targets and in biotechnology. Here the phosphorylation reaction mechanism of the human galactokinase, a member of the GHMP kinase family, was investigated using molecular dynamics simulations and density functional theory-based quantum mechanics/molecular mechanics calculations (B3LYP-D/AMBER99). The reaction coordinates were localized by potential energy scan using an adiabatic mapping method. Our results indicate that a highly conserved Glu174 captures Arg105 in the proximity of the α-phosphate of ATP, forming a H-bond network; therefore, the mobility of ATP in the large oxyanion hole is restricted. Arg228 functions to stabilize the negative charge developed at the β,γ-bridging oxygen of the ATP during bond cleavage. The reaction occurs via a direct phosphorylation mechanism, and the Asp186 in the proximity of ATP does not directly participate in the reaction pathway. Because Arg228 is not conserved among GHMP kinases, reagents which form interactions with Arg228, and therefore can interrupt its function in phosphorylation, may be developed into potential selective inhibitors for galactokinase.

  20. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT α BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  1. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.

    PubMed

    Gulati, Anthony P; Yang, Yang-Ming; Harter, David; Mukhopadhyay, Asok; Aggarwal, Bharat B; Aggarwal, Bharat A; Benzil, Deborah L; Whysner, John; Albino, Anthony P; Murali, Raj; Jhanwar-Uniyal, Meena

    2006-01-01

    The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF

  2. Taurolithocholate-induced MRP2 retrieval involves MARCKS phosphorylation by protein kinase Cϵ in HUH-NTCP Cells.

    PubMed

    Schonhoff, Christopher M; Webster, Cynthia R L; Anwer, M Sawkat

    2013-07-01

    Taurolithocholate (TLC) acutely inhibits the biliary excretion of multidrug-resistant associated protein 2 (Mrp2) substrates by inducing Mrp2 retrieval from the canalicular membrane, whereas cyclic adenosine monophosphate (cAMP) increases plasma membrane (PM)-MRP2. The effect of TLC may be mediated via protein kinase Cϵ (PKCϵ). Myristoylated alanine-rich C kinase substrate (MARCKS) is a membrane-bound F-actin crosslinking protein and is phosphorylated by PKCs. MARCKS phosphorylation has been implicated in endocytosis, and the underlying mechanism appears to be the detachment of phosphorylated myristoylated alanine-rich C kinase substrate (pMARCKS) from the membrane. The aim of the present study was to test the hypothesis that TLC-induced MRP2 retrieval involves PKCϵ-mediated MARCKS phosphorylation. Studies were conducted in HuH7 cells stably transfected with sodium taurocholate cotransporting polypeptide (HuH-NTCP cells) and in rat hepatocytes. TLC increased PM-PKCϵ and decreased PM-MRP2 in both HuH-NTCP cells and hepatocytes. cAMP did not affect PM-PKCϵ and increased PM-MRP2 in these cells. In HuH-NTCP cells, dominant-negative (DN) PKCϵ reversed TLC-induced decreases in PM-MRP2 without affecting cAMP-induced increases in PM-MRP2. TLC, but not cAMP, increased MARCKS phosphorylation in HuH-NTCP cells and hepatocytes. TLC and phorbol myristate acetate increased cytosolic pMARCKS and decreased PM-MARCKS in HuH-NTCP cells. TLC failed to increase MARCKS phosphorylation in HuH-NTCP cells transfected with DN-PKCϵ, and this suggested PKCϵ-mediated phosphorylation of MARCKS by TLC. In HuH-NTCP cells transfected with phosphorylation-deficient MARCKS, TLC failed to increase MARCKS phosphorylation or decrease PM-MRP2. Taken together, these results support the hypothesis that TLC-induced MRP2 retrieval involves TLC-mediated activation of PKCϵ followed by MARCKS phosphorylation and consequent detachment of MARCKS from the membrane. Copyright © 2013 American Association

  3. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators.

    PubMed

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N

    2017-03-01

    Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis. © 2016 WILEY

  4. Tyrosine Phosphorylation of the Guanine Nucleotide Exchange Factor GIV Promotes Activation of PI3K During Cell Migration

    PubMed Central

    Lin, Changsheng; Ear, Jason; Pavlova, Yelena; Mittal, Yash; Kufareva, Irina; Ghassemian, Majid; Abagyan, Ruben; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2014-01-01

    GIV (Gα-interacting vesicle-associated protein; also known as Girdin), enhances Akt activation downstream of multiple growth factor– and G-protein–coupled receptors to trigger cell migration and cancer invasion. Here we demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at Tyr1764 and Tyr1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the N- and C-terminal SH2 domains of p85α, a regulatory subunit of PI3K, stabilized receptor association with PI3K, and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIVPI3K interaction a potential therapeutic target within the PI3K-Akt pathway. PMID:21954290

  5. The Parkinson's disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human

    PubMed Central

    Mir, Rafeeq; Tonelli, Francesca; Lis, Pawel; Macartney, Thomas; Polinski, Nicole K.; Martinez, Terina N.; Chou, Meng-Yun; Howden, Andrew J.M.; König, Theresa; Hotzy, Christoph; Milenkovic, Ivan; Brücke, Thomas; Zimprich, Alexander; Sammler, Esther; Alessi, Dario R.

    2018-01-01

    Missense mutations in the LRRK2 (Leucine-rich repeat protein kinase-2) and VPS35 genes result in autosomal dominant Parkinson's disease. The VPS35 gene encodes for the cargo-binding component of the retromer complex, while LRRK2 modulates vesicular trafficking by phosphorylating a subgroup of Rab proteins. Pathogenic mutations in LRRK2 increase its kinase activity. It is not known how the only thus far described pathogenic VPS35 mutation, [p.D620N] exerts its effects. We reveal that the VPS35[D620N] knock-in mutation strikingly elevates LRRK2-mediated phosphorylation of Rab8A, Rab10, and Rab12 in mouse embryonic fibroblasts. The VPS35[D620N] mutation also increases Rab10 phosphorylation in mouse tissues (the lung, kidney, spleen, and brain). Furthermore, LRRK2-mediated Rab10 phosphorylation is increased in neutrophils as well as monocytes isolated from three Parkinson's patients with a heterozygous VPS35[D620N] mutation compared with healthy donors and idiopathic Parkinson's patients. LRRK2-mediated Rab10 phosphorylation is significantly suppressed by knock-out or knock-down of VPS35 in wild-type, LRRK2[R1441C], or VPS35[D620N] cells. Finally, VPS35[D620N] mutation promotes Rab10 phosphorylation more potently than LRRK2 pathogenic mutations. Available data suggest that Parkinson's patients with VPS35[D620N] develop the disease at a younger age than those with LRRK2 mutations. Our observations indicate that VPS35 controls LRRK2 activity and that the VPS35[D620N] mutation results in a gain of function, potentially causing PD through hyperactivation of the LRRK2 kinase. Our findings suggest that it may be possible to elaborate compounds that target the retromer complex to suppress LRRK2 activity. Moreover, patients with VPS35[D620N] associated Parkinson's might benefit from LRRK2 inhibitor treatment that have entered clinical trials in humans. PMID:29743203

  6. Protein kinase A can block EphA2 receptor–mediated cell repulsion by increasing EphA2 S897 phosphorylation

    PubMed Central

    Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M.; Pasquale, Elena B.

    2016-01-01

    The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 “canonical” signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 “noncanonical” signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1–induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein–coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. PMID:27385333

  7. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    PubMed

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  8. Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity☆

    PubMed Central

    Wang, Aimei; Hou, Ning; Bao, Dongyan; Liu, Shuangyue; Xu, Tao

    2012-01-01

    In view of the theory that alpha-lipoic acid effectively prevents cochlear cells from injury caused by various factors such as cisplatin and noise, this study examined whether alpha-lipoic acid can prevent kanamycin-induced ototoxicity. To this end, healthy BALB/c mice were injected subcutaneously with alpha-lipoic acid and kanamycin for 14 days. Auditory brainstem response test showed that increased auditory brainstem response threshold shifts caused by kanamycin were significantly inhibited. Immunohistochemical staining and western blot analysis showed that the expression of phosphorylated p38 mitogen-activated protein kinase and phosphorylated c-Jun N-terminal kinase in mouse cochlea was significantly decreased. The experimental findings suggest that phosphorylated p38 and phosphorylated c-Jun N-terminal kinase mediated kanamycin-induced ototoxic injury in BALB/c mice. Alpha-lipoic acid effectively attenuated kanamycin ototoxicity by inhibiting the kanamycin-induced high expression of phosphorylated p38 and phosphorylated c-Jun N-terminal kinase. PMID:25317129

  9. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases

    PubMed Central

    Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W.

    2014-01-01

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21Cip1, p27Kip1 and p57Kip2. Their kinase inhibitory activities are mediated by a homologous N-terminal kinase-inhibitory domain (KID). The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the KID and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, and its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. PMID:25463440

  10. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    PubMed Central

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  11. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4.

    PubMed

    Klaus-Heisen, Dörte; Nurisso, Alessandra; Pietraszewska-Bogiel, Anna; Mbengue, Malick; Camut, Sylvie; Timmers, Ton; Pichereaux, Carole; Rossignol, Michel; Gadella, Theodorus W J; Imberty, Anne; Lefebvre, Benoit; Cullimore, Julie V

    2011-04-01

    Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.

  12. Novel Non-phosphorylated Serine 9/21 GSK3β/α Antibodies: Expanding the Tools for Studying GSK3 Regulation

    PubMed Central

    Grabinski, Tessa; Kanaan, Nicholas M.

    2016-01-01

    Glycogen synthase kinase 3 (GSK3) β and α are serine/threonine kinases involved in many biological processes. A primary mechanism of GSK3 activity regulation is phosphorylation of N-terminal serine (S) residues (S9 in GSK3β, S21 in GSK3α). Phosphorylation is inhibitory to GSK3 kinase activity because the phosphorylated N-terminus acts as a competitive inhibitor for primed substrates. Despite widespread interest in GSK3 across most fields of biology, the research community does not have reagents that specifically react with nonphosphoS9/21 GSK3β/α (the so-called “active” form). Here, we describe two novel monoclonal antibodies that specifically react with nonphosphoS9/21 GSK3β/α in multiple species (human, mouse, and rat). One of the antibodies is specific for nonphospho-S9 GSK3β (clone 12B2) and one for nonphospho-S9/21 GSK3β/α (clone 15C2). These reagents were validated for specificity and reactivity in several biochemical and immunochemical assays, and they show linear detection of nonphosphoS GSK3. Finally, these reagents provide significant advantages in studying GSK3β regulation. We used both antibodies to study the regulation of S9 phosphorylation by Akt and protein phosphatases. We used 12B2 (due to its specificity for GSK3β) and to demonstrate that protein phosphatase inhibition reduces nonphospho-S9 GSK3β levels and lowers kinase activity within cells. The ability to use the same reagent across biochemical, immunohistological and kinase activity assays provides a powerful approach for studying serine-dependent regulation of GSK3β/α. PMID:27909397

  13. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases.

    PubMed

    Huang, Yongqi; Yoon, Mi-Kyung; Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W

    2015-01-30

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21(Cip1), p27(Kip1) and p57(Kip2). Their kinase inhibitory activities are mediated by a homologous N-terminal kinase inhibitory domain. The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the kinase inhibitory domain and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, as well as its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    PubMed Central

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  15. A novel protein kinase D phosphorylation site in the tumor suppressor Rab interactor 1 is critical for coordination of cell migration.

    PubMed

    Ziegler, Susanne; Eiseler, Tim; Scholz, Rolf-Peter; Beck, Alexander; Link, Gisela; Hausser, Angelika

    2011-03-01

    The multifunctional signal adapter protein Ras and Rab interactor 1 (RIN1) is a Ras effector protein involved in the regulation of epithelial cell processes such as cell migration and endocytosis. RIN1 signals via two downstream pathways, namely the activation of Rab5 and Abl family kinases. Protein kinase D (PKD) phosphorylates RIN1 at serine 351 in vitro, thereby regulating interaction with 14-3-3 proteins. Here, we report the identification of serine 292 in RIN1 as an in vivo PKD phosphorylation site. PKD-mediated phosphorylation at this site was confirmed with a phospho-specific antibody and by mass spectrometry. We demonstrate that phosphorylation at serine 292 controls RIN1-mediated inhibition of cell migration by modulating the activation of Abl kinases. We further provide evidence that RIN1 in vivo phosphorylation at serine 351 occurs independently of PKD. Collectively, our data identify a novel PKD signaling pathway through RIN1 and Abl kinases that is involved in the regulation of actin remodeling and cell migration.

  16. Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation.

    PubMed

    Tang, Xiaoling; Jang, Sung-Wuk; Wang, Xuerong; Liu, Zhixue; Bahr, Scott M; Sun, Shi-Yong; Brat, Daniel; Gutmann, David H; Ye, Keqiang

    2007-10-01

    The neurofibromatosis-2 (NF2) tumour-suppressor gene encodes an intracellular membrane-associated protein, called merlin, whose growth-suppressive function is dependent on its ability to form interactions through its intramolecular amino-terminal domain (NTD) and carboxy-terminal domain (CTD). Merlin phosphorylation plays a critical part in dictating merlin NTD/CTD interactions as well as in controlling binding to its effector proteins. Merlin is partially regulated by phosphorylation of Ser 518, such that hyperphosphorylated merlin is inactive and fails to form productive intramolecular and intermolecular interactions. Here, we show that the protein kinase Akt directly binds to and phosphorylates merlin on residues Thr 230 and Ser 315, which abolishes merlin NTD/CTD interactions and binding to merlin's effector protein PIKE-L and other binding partners. Furthermore, Akt-mediated phosphorylation leads to merlin degradation by ubiquitination. These studies demonstrate that Akt-mediated merlin phosphorylation regulates the function of merlin in the absence of an inactivating mutation.

  17. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML.

    PubMed

    Liyanage, Sanduni U; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D; Bader, Gary D; Laposa, Rebecca; Schimmer, Aaron D

    2017-05-11

    Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2'3'-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2'3'-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. © 2017 by The American Society of Hematology.

  18. Leveraging increased cytoplasmic nucleoside kinase activity to target mtDNA and oxidative phosphorylation in AML

    PubMed Central

    Liyanage, Sanduni U.; Hurren, Rose; Voisin, Veronique; Bridon, Gaëlle; Wang, Xiaoming; Xu, ChangJiang; MacLean, Neil; Siriwardena, Thirushi P.; Gronda, Marcela; Yehudai, Dana; Sriskanthadevan, Shrivani; Avizonis, Daina; Shamas-Din, Aisha; Minden, Mark D.; Bader, Gary D.; Laposa, Rebecca

    2017-01-01

    Mitochondrial DNA (mtDNA) biosynthesis requires replication factors and adequate nucleotide pools from the mitochondria and cytoplasm. We performed gene expression profiling analysis of 542 human acute myeloid leukemia (AML) samples and identified 55% with upregulated mtDNA biosynthesis pathway expression compared with normal hematopoietic cells. Genes that support mitochondrial nucleotide pools, including mitochondrial nucleotide transporters and a subset of cytoplasmic nucleoside kinases, were also increased in AML compared with normal hematopoietic samples. Knockdown of cytoplasmic nucleoside kinases reduced mtDNA levels in AML cells, demonstrating their contribution in maintaining mtDNA. To assess cytoplasmic nucleoside kinase pathway activity, we used a nucleoside analog 2′3′-dideoxycytidine (ddC), which is phosphorylated to the activated antimetabolite, 2′3′-dideoxycytidine triphosphate by cytoplasmic nucleoside kinases. ddC is a selective inhibitor of the mitochondrial DNA polymerase γ. ddC was preferentially activated in AML cells compared with normal hematopoietic progenitor cells. ddC treatment inhibited mtDNA replication, oxidative phosphorylation, and induced cytotoxicity in a panel of AML cell lines. Furthermore, ddC preferentially inhibited mtDNA replication in a subset of primary human leukemia cells and selectively targeted leukemia cells while sparing normal progenitor cells. In animal models of human AML, treatment with ddC decreased mtDNA, electron transport chain proteins, and induced tumor regression without toxicity. ddC also targeted leukemic stem cells in secondary AML xenotransplantation assays. Thus, AML cells have increased cytidine nucleoside kinase activity that regulates mtDNA biogenesis and can be leveraged to selectively target oxidative phosphorylation in AML. PMID:28283480

  19. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshihide, E-mail: toshi-su@pharm.teikyo-u.ac.j; Miyazaki, Koichi; Kita, Kayoko

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvementmore » of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.« less

  20. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase.

    PubMed

    Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Sun, Xuedong; Honjoh, Chisato; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao

    2015-09-04

    Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330). © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The O-β-linked N-acetylglucosaminylation of the Lamin B receptor and its impact on DNA binding and phosphorylation.

    PubMed

    Smet-Nocca, Caroline; Page, Adeline; Cantrelle, François-Xavier; Nikolakaki, Eleni; Landrieu, Isabelle; Giannakouros, Thomas

    2018-04-01

    Lamin B Receptor (LBR) is an integral protein of the interphase inner nuclear membrane that is implicated in chromatin anchorage to the nuclear envelope. Phosphorylation of a stretch of arginine-serine (RS) dipeptides in the amino-terminal nucleoplasmic domain of LBR regulates the interactions of the receptor with other nuclear proteins, DNA and RNA and thus modulates tethering of heterochromatin to the nuclear envelope. While phosphorylation has been extensively studied, very little is known about other post-translational modifications of the protein. There is only one report on the O-β-linked N-acetyl-glucosaminylation (O-GlcNAcylation) of a serine residue downstream of the RS domain of rat LBR. In the present study we identify additional O-GlcNAcylation sites by using as substrates of O-β-N-acetylglucosaminyltransferase (OGT) a set of peptides containing the entire LBR RS domain or parts of it as well as flanking sequences. The in vitro activity of OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Furthermore, we provide evidence that O-GlcNAcylation hampers DNA binding while it marginally affects RS domain phosphorylation mediated by SRPK1, Akt2 and cdk1 kinases. Our methodology providing a quantitative description of O-GlcNAc patterns based on a combination of mass spectrometry and high resolution NMR spectroscopy on short peptide substrates allows subsequent functional analyses. Hence, our approach is of general interest to a wide audience of biologists aiming at deciphering the functional role of O-GlcNAc glycosylation and its crosstalk with phosphorylation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen.

    PubMed

    Levin, Rebecca S; Hertz, Nicholas T; Burlingame, Alma L; Shokat, Kevan M; Mukherjee, Shaeri

    2016-08-16

    TGF-β activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.

  3. Inhibition of c-Jun NH2-terminal kinase switches Smad3 signaling from oncogenesis to tumor- suppression in rat hepatocellular carcinoma.

    PubMed

    Nagata, Hiromitsu; Hatano, Etsuro; Tada, Masaharu; Murata, Miki; Kitamura, Koji; Asechi, Hiroyuki; Narita, Masato; Yanagida, Atsuko; Tamaki, Nobuyuki; Yagi, Shintaro; Ikai, Iwao; Matsuzaki, Koichi; Uemoto, Shinji

    2009-06-01

    Transforming growth factor beta (TGF-beta) signaling involves both tumor-suppression and oncogenesis. TGF-beta activates the TGF-beta type I receptor (TbetaRI) and c-Jun N-terminal kinase (JNK), which differentially phosphorylate the mediator Smad3 to become COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). TbetaRI-dependent pSmad3C transmits a tumor-suppressive TGF-beta signal, while JNK-dependent pSmad3L promotes carcinogenesis in human chronic liver disorders. The aim of this study is to elucidate how SP600125, a JNK inhibitor, affected rat hepatocellular carcinoma (HCC) development, while focusing on the domain-specific phosphorylation of Smad3. The rats received subcutaneous injections of either SP600125 or vehicle 11 times weekly together with 100 ppm N-diethylnitrosamine (DEN) administration for 56 days and were sacrificed in order to evaluate HCC development 28 days after the last DEN administration. The number of tumor nodules greater than 3 mm in diameter and the liver weight/body weight ratio were significantly lower in the SP600125-treated rats than those in the vehicle-treated rats (7.9 +/- 0.8 versus 17.7 +/- 0.9: P < 0.001; 6.3 +/- 1.2 versus 7.1 +/- 0.2%: P < 0.05). SP600125 significantly prolonged the median survival time in rats with DEN-induced HCC (113 versus 97 days: log-rank P = 0.0018). JNK/pSmad3L/c-Myc was enhanced in the rat hepatocytes exposed to DEN. However, TbetaRI/pSmad3C/p21(WAF1) was impaired as DEN-induced HCC developed and progressed. The specific inhibition of JNK activity by SP600125 suppressed pSmad3L/c-Myc in the damaged hepatocytes and enhanced pSmad3C/p21(WAF1), acting as a tumor suppressor in normal hepatocytes. Administration of SP600125 to DEN-treated rats shifted hepatocytic Smad3-mediated signal from oncogenesis to tumor suppression, thus suggesting that JNK could be a therapeutic target of human HCC development and progression.

  4. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines.

    PubMed

    Thaker, Youg R; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E

    2017-04-14

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4 + primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines

    PubMed Central

    Thaker, Youg R.; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E.

    2017-01-01

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, “3Y”) as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4+ primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. PMID:28188290

  6. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop.

    PubMed

    Quintero, Omar A; Unrath, William C; Stevens, Stanley M; Manor, Uri; Kachar, Bechara; Yengo, Christopher M

    2013-12-27

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells.

  7. Myosin 3A Kinase Activity Is Regulated by Phosphorylation of the Kinase Domain Activation Loop*

    PubMed Central

    Quintero, Omar A.; Unrath, William C.; Stevens, Stanley M.; Manor, Uri; Kachar, Bechara; Yengo, Christopher M.

    2013-01-01

    Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. PMID:24214986

  8. Regulation of Ca(2+)/calmodulin-dependent protein kinase kinase alpha by cAMP-dependent protein kinase: I. Biochemical analysis.

    PubMed

    Okuno, S; Kitani, T; Fujisawa, H

    2001-10-01

    Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) I and IV are activated upon phosphorylation of their Thr(177) and Thr(196), respectively, by the upstream Ca(2+)/calmodulin-dependent protein kinases CaM-kinase kinase alpha and beta, and deactivated upon dephosphorylation by protein phosphatases such as CaM-kinase phosphatase. Recent studies demonstrated that the activity of CaM-kinase kinase alpha is decreased upon phosphorylation by cAMP-dependent protein kinase (PKA), and the relationship between the inhibition and phosphorylation of CaM-kinase kinase alpha by PKA has been studied. In the present study, we demonstrate that the activity of CaM-kinase kinase alpha toward PKIV peptide, which contains the sequence surrounding Thr(196) of CaM-kinase IV, is increased by incubation with PKA in the presence of Ca(2+)/calmodulin but decreased in its absence, while the activity toward CaM-kinase IV is decreased by incubation with PKA in both the presence and absence of Ca(2+)/calmodulin. Six phosphorylation sites on CaM-kinase kinase alpha, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA, were identified by amino acid sequence analysis of the phosphopeptides purified from the tryptic digest of the phosphorylated enzymes. The presence of Ca(2+)/calmodulin suppresses phosphorylation on Ser(52), Ser(74), Thr(108), and Ser(458) by PKA, but accelerates phosphorylation on Ser(475). The changes in the activity of the enzyme upon phosphorylation appear to occur as a result of conformational changes induced by phosphorylation on several sites.

  9. Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer

    PubMed Central

    2012-01-01

    Background The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes. Results A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH2 of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile. Conclusions The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety

  10. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  11. PKC-ι promotes glioblastoma cell survival by phosphorylating and inhibiting BAD through a phosphatidylinositol 3-kinase pathway.

    PubMed

    Desai, S; Pillai, P; Win-Piazza, H; Acevedo-Duncan, M

    2011-06-01

    The focus of this research was to investigate the role of protein kinase C-iota (PKC-ι) in regulation of Bad, a pro-apoptotic BH3-only molecule of the Bcl-2 family in glioblastoma. Robust expression of PKC-ι is a hallmark of human glioma and benign and malignant meningiomas. The results were obtained from the two human glial tumor derived cell lines, T98G and U87MG. In these cells, PKC-ι co-localized and directly associated with Bad, as shown by immunofluorescence, immunoprecipitation, and Western blotting. Furthermore, in-vitro kinase activity assay showed that PKC-ι directly phosphorylated Bad at phospho specific residues, Ser-112, Ser-136 and Ser-155 which in turn induced inactivation of Bad and disruption of Bad/Bcl-XL dimer. Knockdown of PKC-ι by siRNA exhibited a corresponding reduction in Bad phosphorylation suggesting that PKC-ι may be a Bad kinase. PKC-ι knockdown also induced apoptosis in both the cell lines. Since, PKC-ι is an essential downstream mediator of the PI (3)-kinase, we hypothesize that glioma cell survival is mediated via a PI (3)-kinase/PDK1/PKC-ι/Bad pathway. Treatment with PI (3)-kinase inhibitors Wortmannin and LY294002, as well as PDK1 siRNA, inhibited PKC-ι activity and subsequent phosphorylation of Bad suggesting that PKC-ι regulates the activity of Bad in a PI (3)-kinase dependent manner. Thus, our data suggest that glioma cell survival occurs through a novel PI (3)-kinase/PDK1/PKC-ι/BAD mediated pathway. Published by Elsevier B.V.

  12. Role for Tyrosine Phosphorylation of A-kinase Anchoring Protein 8 (AKAP8) in Its Dissociation from Chromatin and the Nuclear Matrix.

    PubMed

    Kubota, Sho; Morii, Mariko; Yuki, Ryuzaburo; Yamaguchi, Noritaka; Yamaguchi, Hiromi; Aoyama, Kazumasa; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto

    2015-04-24

    Protein-tyrosine phosphorylation regulates a wide variety of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine kinases induce global nuclear structure changes, which we called chromatin structural changes. However, the mechanisms are not fully understood. In this study we identify protein kinase A anchoring protein 8 (AKAP8/AKAP95), which associates with chromatin and the nuclear matrix, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of AKAP8 is induced by several tyrosine kinases, such as Src, Fyn, and c-Abl but not Syk. Nucleus-targeted Lyn and c-Src strongly dissociate AKAP8 from chromatin and the nuclear matrix in a kinase activity-dependent manner. The levels of tyrosine phosphorylation of AKAP8 are decreased by substitution of multiple tyrosine residues on AKAP8 into phenylalanine. Importantly, the phenylalanine mutations of AKAP8 inhibit its dissociation from nuclear structures, suggesting that the association/dissociation of AKAP8 with/from nuclear structures is regulated by its tyrosine phosphorylation. Furthermore, the phenylalanine mutations of AKAP8 suppress the levels of nuclear tyrosine kinase-induced chromatin structural changes. In contrast, AKAP8 knockdown increases the levels of chromatin structural changes. Intriguingly, stimulation with hydrogen peroxide induces chromatin structural changes accompanied by the dissociation of AKAP8 from nuclear structures. These results suggest that AKAP8 is involved in the regulation of chromatin structural changes through nuclear tyrosine phosphorylation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Anesthetics inhibit extracellular signal-regulated Kinase1/2 phosphorylation via NMDA receptor, phospholipase C and protein kinase C in mouse hippocampal slices.

    PubMed

    Haiying, Gao; Mingjie, Han; Lingyu, Zhang; Qingxiang, Wang; Haisong, Wang; Bingxi, Zhang

    2017-02-01

    Extracellular signal-regulated kinase 1/2 (ERK1/2) has been implicated in learning and memory; however, whether intravenous anesthetics modulate ERK1/2 remains unknown. The aim of this study was to examine the effect of several intravenous anesthetics on the phosphorylation of ERK1/2 in the hippocampus of adult mice. Western blotting was used to examine cellular levels of phosphorylated and unphosphorylated ERK1/2 in mouse hippocampus slices, which were incubated with or without anesthetics including propofol, etomidate, ketamine and midazolam, a protein kinase C (PKC) activator or inhibitor, or phospholipase C (PLC) activator or inhibitor. Propofol, etomidate, ketamine and midazolam reduced phosphorylation of ERK1/2 in a time-dependent manner. Washing out propofol after 5 min increased ERK1/2 phosphorylation. The anesthetic-induced depression of ERK1/2 phosphorylation was blocked by 0.1 μM phorbol-12-myristate 13-acetate (an activator of PKC), 50 μM U73122 (an inhibitor of PLC). The anesthetic-induced depression of ERK1 phosphorylation was blocked by 1 mMN-methyl-d-aspartate (NMDA). Whereas 100 μM chelerythrine (an inhibitor of PKC) and 100 μM carbachol (an activator of PLC) and 20 μM PD-98059 (an inhibitor of MEK) had additive effects on propofol-induced inhibition of ERK1/2 phosphorylation. In contrast, 10 μM MK801 (a NMDA receptor antagonist) did not block anesthetic-induced inhibition of ERK1/2 phosphorylation. Intravenous anesthetics markedly decreased phosphorylation of ERK1/2 in mouse hippocampal slices, most likely via the NMDA receptor, and PLC- and PKC-dependent pathways. Thus, ERK1/2 represents a target for anesthetics in the brain. Copyright © 2016. Published by Elsevier Ltd.

  14. Interaction of the p85 subunit of PI 3-kinase and its N-terminal SH2 domain with a PDGF receptor phosphorylation site: structural features and analysis of conformational changes.

    PubMed Central

    Panayotou, G; Bax, B; Gout, I; Federwisch, M; Wroblowski, B; Dhand, R; Fry, M J; Blundell, T L; Wollmer, A; Waterfield, M D

    1992-01-01

    Circular dichroism and fluorescence spectroscopy were used to investigate the structure of the p85 alpha subunit of the PI 3-kinase, a closely related p85 beta protein, and a recombinant SH2 domain-containing fragment of p85 alpha. Significant spectral changes, indicative of a conformational change, were observed on formation of a complex with a 17 residue peptide containing a phosphorylated tyrosine residue. The sequence of this peptide is identical to the sequence surrounding Tyr751 in the kinase-insert region of the platelet-derived growth factor beta-receptor (beta PDGFR). The rotational correlation times measured by fluorescence anisotropy decay indicated that phosphopeptide binding changed the shape of the SH2 domain-containing fragment. The CD and fluorescence spectroscopy data support the secondary structure prediction based on sequence analysis and provide evidence for flexible linker regions between the various domains of the p85 proteins. The significance of these results for SH2 domain-containing proteins is discussed. Images PMID:1330535

  15. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn sup 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratka, M.; Lackmann, M.; Ueckermann, C.

    1989-09-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg{sup 2+}. In this paper, the effect of Zn{sup 2+} on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg{sup 2+}. In the presence of Zn{sup 2+}, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn{sup 2+}. The ion-dependentmore » behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn{sup 2+}. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.« less

  16. Phosphorylation of HSP27 by Protein Kinase D is Essential for Mediating Neuroprotection Against Ischemic Neuronal Injury

    PubMed Central

    Stetler, R. Anne; Gao, Yanqin; Zhang, Lili; Weng, Zhongfang; Zhang, Feng; Hu, Xiaoming; Wang, Suping; Vosler, Peter; Cao, Guodong; Sun, Dandan; Graham, Steven H.; Chen, Jun

    2012-01-01

    Heat shock protein 27 (HSP27, or HSPB1) exerts cytoprotection against many cellular insults, including cerebral ischemia. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical downstream target of HSP27 conferring the neuroprotective effects of HSP27 against neuronal ischemia. However, the function of HSP27 is highly influenced by post-translational modification, with differential cellular effects based on phosphorylation at specific serine residues. The role of phosphorylation in neuronal ischemic neuroprotection is currently unknown. We have created transgenic mice and viral vectors containing HSP27 mutated at three critical serine residues (Ser15, Ser78 and Ser82) to either alanine (HSP27-A, non-phosphorylatable) or aspartate (HSP27-D, phospho-mimetic) residues. Under both in vitro and in vivo neuronal ischemic settings, overexpression of wild-type HSP27 (HSP27) and HSP27-D, but not HSP27-A, was neuroprotective and inhibited downstream ASK1 signaling pathways. Consistently, overexpressed HSP27 was phosphorylated by endogenous mechanisms when neurons were under ischemic stress, and single point mutations identified Ser15 and Ser82 as critical for neuroprotection. Using a panel of inhibitors and gene knockdown approaches, we identified the upstream kinase protein kinase D (PKD) as the primary kinase targeting HSP27 directly for phosphorylation. PKD and HSP27 co-immunoprecipitated, and inhibition or knockdown of PKD abrogated the neuroprotective effects of HSP27 as well as the interaction with and inhibition of ASK1 signaling. Taken together, these data demonstrate that HSP27 requires PKD-mediated phosphorylation for its suppression of ASK1 cell death signaling and neuroprotection against ischemic injury. PMID:22357851

  17. Differential phosphorylation signals control endocytosis of GPR15.

    PubMed

    Okamoto, Yukari; Shikano, Sojin

    2017-08-15

    GPR15 is an orphan G protein-coupled receptor (GPCR) that serves for an HIV coreceptor and was also recently found as a novel homing receptor for T-cells implicated in colitis. We show that GPR15 undergoes a constitutive endocytosis in the absence of ligand. The endocytosis was clathrin dependent and partially dependent on β-arrestin in HEK293 cells, and nearly half of the internalized GPR15 receptors were recycled to the plasma membrane. An Ala mutation of the distal C-terminal Arg-354 or Ser-357, which forms a consensus phosphorylation site for basophilic kinases, markedly reduced the endocytosis, whereas phosphomimetic mutation of Ser-357 to Asp did not. Ser-357 was phosphorylated in vitro by multiple kinases, including PKA and PKC, and pharmacological activation of these kinases enhanced both phosphorylation of Ser-357 and endocytosis of GPR15. These results suggested that Ser-357 phosphorylation critically controls the ligand-independent endocytosis of GPR15. The functional role of Ser-357 in endocytosis was distinct from that of a conserved Ser/Thr cluster in the more proximal C-terminus, which was responsible for the β-arrestin- and GPCR kinase-dependent endocytosis of GPR15. Thus phosphorylation signals may differentially control cell surface density of GPR15 through endocytosis. © 2017 Okamoto and Shikano. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene.

    PubMed Central

    Cross, F R; Garber, E A; Hanafusa, H

    1985-01-01

    We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein. Images PMID:2426576

  19. Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourdi, Mohammed; Korrapati, Midhun C.; Chakraborty, Mala

    2008-09-12

    Recent studies in mice suggest that stress-activated c-Jun N-terminal protein kinase 2 (JNK2) plays a pathologic role in acetaminophen (APAP)-induced liver injury (AILI), a major cause of acute liver failure (ALF). In contrast, we present evidence that JNK2 can have a protective role against AILI. When male C57BL/6J wild type (WT) and JNK2{sup -/-} mice were treated with 300 mg APAP/kg, 90% of JNK2{sup -/-} mice died of ALF compared to 20% of WT mice within 48 h. The high susceptibility of JNK2{sup -/-} mice to AILI appears to be due in part to deficiencies in hepatocyte proliferation and repair.more » Therefore, our findings are consistent with JNK2 signaling playing a protective role in AILI and further suggest that the use of JNK inhibitors as a potential treatment for AILI, as has been recommended by other investigators, should be reconsidered.« less

  20. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice.

    PubMed

    El Khoury, Noura B; Gratuze, Maud; Petry, Franck; Papon, Marie-Amélie; Julien, Carl; Marcouiller, François; Morin, Françoise; Nicholls, Samantha B; Calon, Frédéric; Hébert, Sébastien S; Marette, André; Planel, Emmanuel

    2016-04-01

    Accumulating evidence from epidemiological studies suggest that type 2 diabetes is linked to an increased risk of Alzheimer's disease (AD). However, the consequences of type 2 diabetes on AD pathologies, such as tau hyperphosphorylation, are not well understood. Here, we evaluated the impact of type 2 diabetes on tau phosphorylation in db/db diabetic mice aged 4 and 26weeks. We found increased tau phosphorylation at the CP13 epitope correlating with a deregulation of c-Jun. N-terminal kinase (JNK) and Protein Phosphatase 2A (PP2A) in 4-week-old db/db mice. 26-week-old db/db mice displayed tau hyperphosphorylation at multiple epitopes (CP13, AT8, PHF-1), but no obvious change in kinases or phosphatases, no cleavage of tau, and no deregulation of central insulin signaling pathways. In contrast to younger animals, 26-week-old db/db mice were hypothermic and restoration of normothermia rescued phosphorylation at most epitopes. Our results suggest that, at early stages of type 2 diabetes, changes in tau phosphorylation may be due to deregulation of JNK and PP2A, while at later stages hyperphosphorylation is mostly a consequence of hypothermia. These results provide a novel link between diabetes and tau pathology, and underlie the importance of recording body temperature to better understand the relationship between diabetes and AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase

    PubMed Central

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase. PMID:26867010

  2. Factor Xa Inhibitor Suppresses the Release of Phosphorylated HSP27 from Collagen-Stimulated Human Platelets: Inhibition of HSP27 Phosphorylation via p44/p42 MAP Kinase.

    PubMed

    Tsujimoto, Masanori; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kito, Yuko; Enomoto, Yukiko; Iida, Hiroki; Ogura, Shinji; Otsuka, Takanobu; Tokuda, Haruhiko; Kozawa, Osamu; Iwama, Toru

    2016-01-01

    Selective inhibitors of factor Xa (FXa) are widely recognized as useful therapeutic tools for stroke prevention in non-valvular atrial fibrillation or venous thrombosis. Thrombin, which is rapidly generated from pro-thrombin through the activation of factor X to FXa, acts as a potent activator of human platelets. Thus, the reduction of thrombin generation by FXa inhibitor eventually causes a suppressive effect on platelet aggregation. However, little is known whether FXa inhibitors directly affect the function of human platelets. We have previously reported that collagen induces the phosphorylation of heat shock protein 27 (HSP27), a low-molecular weight heat shock protein via Rac-dependent activation of p44/p42 mitogen-activated protein (MAP) kinase in human platelets, eventually resulting in the release of HSP27. In the present study, we investigated the direct effect of FXa inhibitor on the collagen-induced human platelet activation. Rivaroxaban as well as edoxaban significantly reduced the collagen-induced phosphorylation of both HSP27 and p44/p42 MAP kinase without affecting the platelet aggregation. Rivaroxaban significantly inhibited the release of phosphorylated HSP27 from collagen-stimulated platelets but not the secretion of platelet derived growth factor-AB. In patients administrated with rivaroxaban, the collagen-induced levels of phosphorylated HSP27 were markedly diminished after 2 days of administration, which failed to affect the platelet aggregation. These results strongly suggest that FXa inhibitor reduces the collagen-stimulated release of phosphorylated HSP27 from human platelets due to the inhibition of HSP27 phosphorylation via p44/p42 MAP kinase.

  3. Rho-associated kinase plays a role in rabbit urethral smooth muscle contraction, but not via enhanced myosin light chain phosphorylation.

    PubMed

    Walsh, Michael P; Thornbury, Keith; Cole, William C; Sergeant, Gerard; Hollywood, Mark; McHale, Noel

    2011-01-01

    The involvement of Rho-associated kinase (ROK) in activation of rabbit urethral smooth muscle contraction was investigated by examining the effects of two structurally distinct inhibitors of ROK, Y27632 and H1152, on the contractile response to electric field stimulation, membrane depolarization with KCl, and α1-adrenoceptor stimulation with phenylephrine. Both compounds inhibited contractions elicited by all three stimuli. The protein kinase C inhibitor GF109203X, on the other hand, had no effect. Urethral smooth muscle strips were analyzed for phosphorylation of three potential direct or indirect substrates of ROK: 1) myosin regulatory light chains (LC20) at S19, 2) the myosin-targeting subunit of myosin light chain phosphatase (MYPT1) at T697 and T855, and 3) cofilin at S3. The following results were obtained: 1) under resting tension, LC20 was phosphorylated to 0.65±0.02 mol Pi/mol LC20 (n=21) at S19; 2) LC20 phosphorylation did not change in response to KCl or phenylephrine; 3) ROK inhibition had no effect on LC20 phosphorylation in the absence or presence of contractile stimuli; 4) under resting conditions, MYPT1 was partially phosphorylated at T697 and T855 and cofilin at S3; 5) phosphorylation of MYPT1 and cofilin was unaffected by KCl or phenylephrine; and 6) KCl- and phenylephrine-induced contraction-relaxation cycles did not correlate with actin polymerization-depolymerization. We conclude that ROK plays an important role in urethral smooth muscle contraction, but not via inhibition of MLCP or polymerization of actin.

  4. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor.

    PubMed

    Liu, Jun; Elmore, James Mitch; Lin, Zuh-Jyh Daniel; Coaker, Gitta

    2011-02-17

    Plants have evolved sophisticated surveillance systems to recognize pathogen effectors delivered into host cells. RPM1 is an NB-LRR immune receptor that recognizes the Pseudomonas syringae effectors AvrB and AvrRpm1. Both effectors associate with and affect the phosphorylation of RIN4, an immune regulator. Although the kinase and the specific mechanisms involved are unclear, it has been hypothesized that RPM1 recognizes phosphorylated RIN4. Here, we identify RIPK as a RIN4-interacting receptor-like protein kinase that phosphorylates RIN4. In response to bacterial effectors, RIPK phosphorylates RIN4 at amino acid residues T21, S160, and T166. RIN4 phosphomimetic mutants display constitutive activation of RPM1-mediated defense responses and RIN4 phosphorylation is induced by AvrB and AvrRpm1 during P. syringae infection. RIPK knockout lines exhibit reduced RIN4 phosphorylation and blunted RPM1-mediated defense responses. Taken together, our results demonstrate that the RIPK kinase associates with and modifies an effector-targeted protein complex to initiate host immunity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Serum- and Glucocorticoid-Inducible Kinase 1 Confers Protection in Cell-Based and in In Vivo Neurotoxin Models via the c-Jun N-Terminal Kinase Signaling Pathway

    PubMed Central

    Iqbal, Sarah; Howard, Shannon

    2015-01-01

    Serum glucocorticoid kinase 1 (SGK1) has been shown to be protective in models of Parkinson's disease, but the details by which it confers benefit is unknown. The current study was designed to investigate the details by which SGK1 confers neuroprotection. To do this we employed a cellular neurodegeneration model to investigate c-Jun N-terminal kinase (JNK) signaling and endoplasmic reticulum (ER) stress induced by 6-hydroxydopamine. SGK1-expressing adenovirus was created and used to overexpress SGK1 in SH-SY5Y cells, and dexamethasone was used to increase endogenous expression of SGK1. Oxidative stress, mitochondrial dysfunction, and cell death were monitored to test the protective effect of SGK1. To investigate the effect of SGK1 overexpression in vivo, SGK1-expressing adenovirus was injected into the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and protection of dopaminergic neurons was quantitatively assessed by tyrosine hydroxylase immunohistochemistry. SGK1 overexpression was found to decrease reactive oxygen species generation, alleviate mitochondrial dysfunction, and rescue cell death in vitro and in vivo by inactivating mitogen-activated protein kinase kinase 4 (MKK4), JNK, and glycogen synthase kinase 3β (GSK3β) and thereby decreasing ER and oxidative stress. These results suggest that therapeutic strategies for activation of SGK1 may have the potential to be neuroprotective by deactivating the JNK and GSK3β pathways. PMID:25825522

  6. Expression and purification of functional JNK2beta2: perspectives on high-level production of recombinant MAP kinases.

    PubMed

    Savopoulos, John W; Dowd, Stephen; Armour, Carolyn; Carter, Paul S; Greenwood, Catherine J; Mills, David; Powell, David; Pettman, Gary R; Jenkins, Owen; Walsh, Frank S; Philpott, Karen L

    2002-02-01

    The mitogen-activated protein (MAP) kinases are a group of serine/threonine kinases that mediate intracellular signal transduction in response to environmental stimuli including stress, growth factors, and various cytokines. Of this family, the c-Jun N-terminal kinases (JNKs) are members which, depending on cell type, have been shown to activate the transcription of genes involved in the inflammatory response, apoptosis, and hypertrophy. Here we report the use Baculovirus/Sf9 cells to produce milligram quantities of recombinant JNK2beta2 substrate which could be purified to >90% as judged by SDS-PAGE. In addition, we report a novel method for the site-specific biotinylation for this enzyme and demonstrate that the biotinylated product is an authentic substrate of the upstream kinases MKK4 and 7 and can phosphorylate a downstream target, ATF-2. We also show that the phosphorylated product can be captured efficiently on streptavidin-coated beads for use in scintillation proximity assays. Copyright 2002 Elsevier Science (USA).

  7. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    PubMed

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  8. Structural Basis for Activation of ZAP-70 by Phosphorylation of the SH2-Kinase Linker

    PubMed Central

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R.; Deindl, Sebastian; Kadlecek, Theresa A.; Weiss, Arthur

    2013-01-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck. PMID:23530057

  9. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker.

    PubMed

    Yan, Qingrong; Barros, Tiago; Visperas, Patrick R; Deindl, Sebastian; Kadlecek, Theresa A; Weiss, Arthur; Kuriyan, John

    2013-06-01

    Serial activation of the tyrosine kinases Lck and ZAP-70 initiates signaling downstream of the T cell receptor. We previously reported the structure of an autoinhibited ZAP-70 variant in which two regulatory tyrosine residues (315 and 319) in the SH2-kinase linker were replaced by phenylalanine. We now present a crystal structure of ZAP-70 in which Tyr 315 and Tyr 319 are not mutated, leading to the recognition of a five-residue sequence register error in the SH2-kinase linker of the original crystallographic model. The revised model identifies distinct roles for these two tyrosines. As seen in a recently reported structure of the related tyrosine kinase Syk, Tyr 315 of ZAP-70 is part of a hydrophobic interface between the regulatory apparatus and the kinase domain, and the integrity of this interface would be lost upon engagement of doubly phosphorylated peptides by the SH2 domains. Tyr 319 is not necessarily dislodged by SH2 engagement, which activates ZAP-70 only ∼5-fold in vitro. In contrast, phosphorylation by Lck activates ZAP-70 ∼100-fold. This difference is due to the ability of Tyr 319 to suppress ZAP-70 activity even when the SH2 domains are dislodged from the kinase domain, providing stringent control of ZAP-70 activity downstream of Lck.

  10. Differential regulation of the transcriptional activity of the glucocorticoid receptor through site-specific phosphorylation.

    PubMed

    Kumar, Raj; Calhoun, William J

    2008-12-01

    Post-translational modifications such as phosphorylation are known to play an important role in the gene regulation by the transcription factors including the nuclear hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein phosphorylation often switches cellular activity from one state to another. Like many other transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of the GR and its associated proteins are important determinants of GR function under various physiological conditions. While the role of many phosphorylation sites in the GR is still not fully understood, the role of others is clearer. Several aspects of transcription factor function, including DNA binding affinity, interaction of transactivation domains with the transcription initiation complex, and shuttling between the cytoplasmic compartments, have all been linked to site-specific phosphorylation. All major phosphorylation sites in the human GR are located in the N-terminal domain including the major transactivation domain, AF1. Available literature clearly indicates that many of these potential phosphorylation sites are substrates for multiple kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional activity. In addition, the activities and specificities of coregulators may be subject to similar regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to be site-specific and dependent upon specific cell signaling cascade. Taken together, site-specific phosphorylation and related kinase pathways play an important role in the action of the GR, and more precise mechanistic information will lead to fuller understanding of the complex nature of gene regulation by the GR- and

  11. Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiev, Marat; Yang, Jie; Adams, Joseph

    2007-11-29

    Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfermore » of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.« less

  12. ERK2-mediated C-terminal serine phosphorylation of p300 is vital to the regulation of epidermal growth factor-induced keratin 16 gene expression.

    PubMed

    Chen, Yun-Ju; Wang, Ying-Nai; Chang, Wen-Chang

    2007-09-14

    We previously reported that the epidermal growth factor (EGF) regulates the gene expression of keratin 16 by activating the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling which in turn enhances the recruitment of p300 to the keratin 16 promoter. The recruited p300 functionally cooperates with Sp1 and c-Jun to regulate the gene expression of keratin 16. This study investigated in detail the molecular events incurred upon p300 whereby EGF caused an enhanced interaction between p300 and Sp1. EGF apparently induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. The six potential ERK2 phosphorylation sites, including three threonine and three serine residues as revealed by sequential analysis, were first identified in vitro. Confirmation of these six sites in vivo indicated that these three serine residues (Ser-2279, Ser-2315, and Ser-2366) on the C terminus of p300 were the major signaling targets of EGF. Furthermore, the C-terminal serine phosphorylation of p300 stimulated its histone acetyltransferase activity and enhanced its interaction with Sp1. These serine phosphorylation sites on p300 controlled the p300 recruitment to the keratin 16 promoter. When all three serine residues on p300 were replaced by alanine, EGF could no longer induce the gene expression of keratin 16. Taken together, these results strongly suggested that the ERK2-mediated C-terminal serine phosphorylation of p300 was a key event in the regulation of EGF-induced keratin 16 expression. These results also constituted the first report identifying the unique p300 phosphorylation sites induced by ERK2 in vivo.

  13. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity

    PubMed Central

    Danson, Christopher M.; Pocha, Shirin M.; Bloomberg, Graham B.; Cory, Giles O.

    2009-01-01

    Summary The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration. PMID:18032787

  14. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity.

    PubMed

    Danson, Christopher M; Pocha, Shirin M; Bloomberg, Graham B; Cory, Giles O

    2007-12-01

    The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2. The cells exhibited an increase in migration speed, a decrease in the persistence of migration, and disruption of polarisation of the Golgi apparatus. All these effects could be mimicked by acute knockdown of endogenous WAVE2 expression with RNAi, indicating that phosphorylation of WAVE2 by MAP kinases regulates cell polarity during migration.

  15. Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1β through blocking nuclear factor κB, Akt, and mitogen-activated protein kinase activation in macrophages.

    PubMed

    Kim, Ji-Hee; Bae, Chang Hwan; Park, Sun Young; Lee, Sang Joon; Kim, YoungHee

    2010-10-01

    The stems with hook of Uncaria rhynchophylla have been used in traditional medicine as an antipyretic, antihypertensive, and anticonvulsant in China and Korea. In this study, we investigated the mechanism responsible for anti-inflammatory effects of U. rhynchophylla in RAW 264.7 macrophages. The aqueous extract of U. rhynchophylla inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin (IL)-1β secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Furthermore, U. rhynchophylla suppressed LPS-induced nuclear factor κB (NF-κB) activation, phosphorylation, and degradation of inhibitory protein IκB (IκB)-α, phosphorylation of Akt, extracellular signal-regulated kinase 1/2, p38 kinase, and c-Jun N-terminal kinase. These results suggest that U. rhynchophylla has the inhibitory effects on LPS-induced NO and IL-1β production in macrophages through blockade in the phosphorylation of Akt and mitogen-activated protein kinases, following IκB-α degradation and NF-κB activation.

  16. Human T-Cell Leukemia Virus Type 1 Tax Induction of NF-κB Involves Activation of the IκB Kinase α (IKKα) and IKKβ Cellular Kinases

    PubMed Central

    Geleziunas, Romas; Ferrell, Sharon; Lin, Xin; Mu, Yajun; Cunningham, Emmett T.; Grant, Mark; Connelly, Margery A.; Hambor, John E.; Marcu, Kenneth B.; Greene, Warner C.

    1998-01-01

    Tax corresponds to a 40-kDa transforming protein from the pathogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) that activates nuclear expression of the NF-κB/Rel family of transcription factors by an unknown mechanism. Tax expression promotes N-terminal phosphorylation and degradation of IκBα, a principal cytoplasmic inhibitor of NF-κB. Our studies now demonstrate that HTLV-1 Tax activates the recently identified cellular kinases IκB kinase α (IKKα) and IKKβ, which normally phosphorylate IκBα on both of its N-terminal regulatory serines in response to tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) stimulation. In contrast, a mutant of Tax termed M22, which does not induce NF-κB, fails to activate either IKKα or IKKβ. Furthermore, endogenous IKK enzymatic activity was significantly elevated in HTLV-1-infected and Tax-expressing T-cell lines. Transfection of kinase-deficient mutants of IKKα and IKKβ into either human Jurkat T or 293 cells also inhibits NF-κB-dependent reporter gene expression induced by Tax. Similarly, a kinase-deficient mutant of NIK (NF-κB-inducing kinase), which represents an upstream kinase in the TNF-α and IL-1 signaling pathways leading to IKKα and IKKβ activation, blocks Tax induction of NF-κB. However, plasma membrane-proximal elements in these proinflammatory cytokine pathways are apparently not involved since dominant negative mutants of the TRAF2 and TRAF6 adaptors, which effectively block signaling through the cytoplasmic tails of the TNF-α and IL-1 receptors, respectively, do not inhibit Tax induction of NF-κB. Together, these studies demonstrate that HTLV-1 Tax exploits a distal part of the proinflammatory cytokine signaling cascade leading to induction of NF-κB. The pathological alteration of this cytokine pathway leading to NF-κB activation by Tax may play a central role in HTLV-1-mediated transformation of human T cells, clinically manifested as the adult T-cell leukemia. PMID

  17. A TPR domain–containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B

    PubMed Central

    Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H.J.; Snel, Berend

    2013-01-01

    The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B–dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization. PMID:23569217

  18. A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B.

    PubMed

    Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H J; Snel, Berend; Perrakis, Anastassis; Kops, Geert J P L

    2013-04-15

    The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B-dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization.

  19. Phosphoproteomic Analysis of Protein Kinase C Signaling in Saccharomyces cerevisiae Reveals Slt2 Mitogen-activated Protein Kinase (MAPK)-dependent Phosphorylation of Eisosome Core Components*

    PubMed Central

    Mascaraque, Victoria; Hernáez, María Luisa; Jiménez-Sánchez, María; Hansen, Rasmus; Gil, Concha; Martín, Humberto; Cid, Víctor J.; Molina, María

    2013-01-01

    The cell wall integrity (CWI) pathway of the model organism Saccharomyces cerevisiae has been thoroughly studied as a paradigm of the mitogen-activated protein kinase (MAPK) pathway. It consists of a classic MAPK module comprising the Bck1 MAPK kinase kinase, two redundant MAPK kinases (Mkk1 and Mkk2), and the Slt2 MAPK. This module is activated under a variety of stimuli related to cell wall homeostasis by Pkc1, the only member of the protein kinase C family in budding yeast. Quantitative phosphoproteomics based on stable isotope labeling of amino acids in cell culture is a powerful tool for globally studying protein phosphorylation. Here we report an analysis of the yeast phosphoproteome upon overexpression of a PKC1 hyperactive allele that specifically activates CWI MAPK signaling in the absence of external stimuli. We found 82 phosphopeptides originating from 43 proteins that showed enhanced phosphorylation in these conditions. The MAPK S/T-P target motif was significantly overrepresented in these phosphopeptides. Hyperphosphorylated proteins provide putative novel targets of the Pkc1–cell wall integrity pathway involved in diverse functions such as the control of gene expression, protein synthesis, cytoskeleton maintenance, DNA repair, and metabolism. Remarkably, five components of the plasma-membrane-associated protein complex known as eisosomes were found among the up-regulated proteins. We show here that Pkc1-induced phosphorylation of the eisosome core components Pil1 and Lsp1 was not exerted directly by Pkc1, but involved signaling through the Slt2 MAPK module. PMID:23221999

  20. Cell Adhesion-dependent Serine 85 Phosphorylation of Paxillin Modulates Focal Adhesion Formation and Haptotactic Migration via Association with the C-terminal Tail Domain of Talin*

    PubMed Central

    Kwak, Tae Kyoung; Lee, Mi-Sook; Ryu, Jihye; Choi, Yoon-Ju; Kang, Minkyung; Jeong, Doyoung; Lee, Jung Weon

    2012-01-01

    Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration. PMID:22761432

  1. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones.

    PubMed

    Tachibanaki, Shuji; Arinobu, Daisuke; Shimauchi-Matsukawa, Yoshie; Tsushima, Sawae; Kawamura, Satoru

    2005-06-28

    Cone photoreceptors show briefer photoresponses than rod photoreceptors. Our previous study showed that visual pigment phosphorylation, a quenching mechanism of light-activated visual pigment, is much more rapid in cones than in rods. Here, we measured the early time course of this rapid phosphorylation with good time resolution and directly compared it with the photoresponse time course in cones. At the time of photoresponse recovery, almost two phosphates were incorporated into a bleached cone pigment molecule, which indicated that the visual pigment phosphorylation coincides with the photoresponse recovery. The rapid phosphorylation in cones is attributed to very high activity of visual pigment kinase [G protein-coupled receptor kinase (GRK) 7] in cones. Because of this high activity, cone pigment is readily phosphorylated at very high bleach levels, which probably explains why cone photoresponses recover quickly even after a very bright light and do not saturate under intense background light. The high GRK7 activity is brought about by high content of a highly potent enzyme. The expression level of GRK7 was 10 times higher than that of rod kinase (GRK1), and the specific activity of a single GRK7 molecule was approximately 10 times higher than that of GRK1. The specific activity of GRK7 is the highest among the GRKs so far known. Our result seems to explain the response characteristics of cone photoreceptors in many aspects, including the nonsaturation of the cone responses during daylight vision.

  2. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    PubMed

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  3. Rab11 is phosphorylated by classical and novel protein kinase C isoenzymes upon sustained phorbol ester activation.

    PubMed

    Pavarotti, Martín; Capmany, Anahí; Vitale, Nicolas; Colombo, María Isabel; Damiani, María Teresa

    2012-02-01

    Rab11 is a small GTPase that controls diverse intracellular trafficking pathways. However, the molecular machinery that regulates the participation of Rab11 in those different transport events is poorly understood. In resting cells, Rab11 localizes at the endocytic recycling compartment (ERC), whereas the different protein kinase C (PKC) isoforms display a cytosolic distribution. Sustained phorbol ester stimulation induces the translocation of the classical PKCα and PKCβII isoenzymes to the ERC enriched in Rab11, and results in transferrin recycling inhibition. In contrast, novel PKCε and atypical PKCζ isoenzymes neither redistribute to the perinucleus nor modify transferrin recycling transport after phorbol ester stimulation. Although several Rabs have been shown to be phosphorylated, there is to date no evidence indicating Rab11 as a kinase substrate. In this report, we show that Rab11 appears phosphorylated in vivo in phorbol ester-stimulated cells. A bioinformatic analysis of Rab11 allowed us to identify several high-probability Ser/Thr kinase phosphorylation sites. Our results demonstrate that classical PKC (PKCα and PKCβII but not PKCβI) directly phosphorylate Rab11 in vitro. In addition, novel PKCε and PKCη but not PKCδ isoenzymes also phosphorylate Rab11. Mass spectrometry analysis revealed that Ser 177 is the Rab11 residue to be phosphorylated in vitro by either PKCβII or PKCε. In agreement, the phosphomimetic mutant, Rab11 S177D, retains transferrin at the ERC in the absence of phorbol-12-myristate-13-acetate stimulus. This report shows for the first time that Rab11 is differentially phosphorylated by distinct PKC isoenzymes and that this post-translational modification might be a regulatory mechanism of intracellular trafficking. Copyright © 2012 Soçiété Francaise des Microscopies and Société de Biologie Cellulaire de France.

  4. delta opioid receptors stimulate Akt-dependent phosphorylation of c-jun in T cells.

    PubMed

    Shahabi, Nahid A; McAllen, Kathy; Sharp, Burt M

    2006-02-01

    Activation of naive T cells markedly up-regulates the expression of delta opioid receptors (DORs). These receptors are bound by DOR peptides released by T cells, modulating T cell functions such as interleukin-2 production, cellular proliferation, and chemotaxis. Previous studies have shown that DOR agonists [e.g., [D-Ala(2)-D-Leu(5)]-enkephalin (DADLE)] modulate T cell antigen receptor signaling through mitogen-activated protein kinases (MAPKs; i.e., extracellular signal-regulated kinases 1 and 2) and that DORs directly induce phosphorylation of activating transcription factor-2 (implicated in cytokine gene transcription) and its association with the MAPK c-jun1 NH(2)-terminal kinase (JNK). Such observations suggest that DORs may induce the phosphorylation of c-jun. These experiments were performed to test this hypothesis and determine the potential roles of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B). DADLE (10(-10) to 10(-6) M) dose-dependently induced c-jun phosphorylation. This was blocked by pertussis toxin and the DOR-specific antagonist naltindole. Fluorescence flow cytometry showed that DADLE significantly stimulated c-jun phosphorylation by T cells. DADLE stimulated phosphorylation of membrane-associated Akt; wortmannin and LY294002 ([2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]), specific inhibitors of PI3K, abolished the DADLE-induced phosphorylation of c-jun. Finally, inhibitors of Akt and JNK blocked DADLE-induced phosphorylation of c-jun. Thus, activated DORs directly stimulate c-jun phosphorylation through a PI3K-dependent pathway in T cells, apparently involving Akt. This implies that DORs activate JNK through a novel pathway dependent on PI3K and Akt, thereby regulating the function of activator protein-1 transcription complexes containing c-jun and other transcription partners.

  5. IκB Kinase γ/Nuclear Factor-κB-Essential Modulator (IKKγ/NEMO) Facilitates RhoA GTPase Activation, which, in Turn, Activates Rho-associated Kinase (ROCK) to Phosphorylate IKKβ in Response to Transforming Growth Factor (TGF)-β1*

    PubMed Central

    Kim, Hee-Jun; Kim, Jae-Gyu; Moon, Mi-Young; Park, Seol-Hye; Park, Jae-Bong

    2014-01-01

    Transforming growth factor (TGF)-β1 plays several roles in a variety of cellular functions. TGF-β1 transmits its signal through Smad transcription factor-dependent and -independent pathways. It was reported that TGF-β1 activates NF-κB and RhoA, and RhoA activates NF-κB in several kinds of cells in a Smad-independent pathway. However, the activation molecular mechanism of NF-κB by RhoA upon TGF-β1 has not been clearly elucidated. We observed that RhoA-GTP level was increased by TGF-β1 in RAW264.7 cells. RhoA-GDP and RhoGDI were bound to N- and C-terminal domains of IKKγ, respectively. Purified IKKγ facilitated GTP binding to RhoA complexed with RhoGDI. Furthermore, Dbs, a guanine nucletotide exchange factor of RhoA much more enhanced GTP binding to RhoA complexed with RhoGDI in the presence of IKKγ. Indeed, si-IKKγ abolished RhoA activation in response to TGF-β1 in cells. However, TGF-β1 stimulated the release of RhoA-GTP from IKKγ and Rho-associated kinase (ROCK), an active RhoA effector protein, directly phosphorylated IKKβ in vitro, whereas TGF-β1-activated kinase 1 activated RhoA upon TGF-β1 stimulation. Taken together, our data indicate that IKKγ facilitates RhoA activation via a guanine nucletotide exchange factor, which in turn activates ROCK to phosphorylate IKKβ, leading to NF-κB activation that induced the chemokine expression and cell migration upon TGF-β1. PMID:24240172

  6. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation.

    PubMed

    Barquilla, Antonio; Lamberto, Ilaria; Noberini, Roberta; Heynen-Genel, Susanne; Brill, Laurence M; Pasquale, Elena B

    2016-09-01

    The EphA2 receptor tyrosine kinase plays key roles in tissue homeostasis and disease processes such as cancer, pathological angiogenesis, and inflammation through two distinct signaling mechanisms. EphA2 "canonical" signaling involves ephrin-A ligand binding, tyrosine autophosphorylation, and kinase activity; EphA2 "noncanonical" signaling involves phosphorylation of serine 897 (S897) by AKT and RSK kinases. To identify small molecules counteracting EphA2 canonical signaling, we developed a high-content screening platform measuring inhibition of ephrin-A1-induced PC3 prostate cancer cell retraction. Surprisingly, most hits from a screened collection of pharmacologically active compounds are agents that elevate intracellular cAMP by activating G protein-coupled receptors such as the β2-adrenoceptor. We found that cAMP promotes phosphorylation of S897 by protein kinase A (PKA) as well as increases the phosphorylation of several nearby serine/threonine residues, which constitute a phosphorylation hotspot. Whereas EphA2 canonical and noncanonical signaling have been viewed as mutually exclusive, we show that S897 phosphorylation by PKA can coexist with EphA2 tyrosine phosphorylation and block cell retraction induced by EphA2 kinase activity. Our findings reveal a novel paradigm in EphA2 function involving the interplay of canonical and noncanonical signaling and highlight the ability of the β2-adrenoceptor/cAMP/PKA axis to rewire EphA2 signaling in a subset of cancer cells. © 2016 Barquilla et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation

    PubMed Central

    Ovejero, Sara; Ayala, Patricia; Bueno, Avelino; Sacristán, María P.

    2012-01-01

    The activity of Cdk1–cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1–cyclin B1 activity through Wee1 dephosphorylation. PMID:23051732

  8. Protein kinase D1 phosphorylates HDAC7 and induces its nuclear export after T-cell receptor activation.

    PubMed

    Parra, Maribel; Kasler, Herbert; McKinsey, Timothy A; Olson, Eric N; Verdin, Eric

    2005-04-08

    HDAC7, a class II histone deacetylase that is highly expressed in thymocytes, inhibits both transcription of the orphan steroid nuclear receptor Nur77 and induction of apoptosis in response to activation of the T-cell receptor (TCR). Here, we report that HDAC7 is exported to the cytoplasm by a calcium-independent signaling pathway after TCR activation. Protein kinase D1 (PKD1) was activated after TCR engagement, interacted with HDAC7, and phosphorylated three serines (Ser155, Ser318, and Ser448) at its N terminus, leading to its export from the nucleus. Mutation of Ser155, Ser318, and Ser448 blocked the nucleocytoplasmic shuttling of HDAC7 in response to TCR activation, as did overexpression of a kinase-inactive form of PKD1. Consistent with the regulatory role of HDAC7 in Nur77 expression, PKD1 activation led to the transcriptional activation of Nur77 via myocyte enhancer factor 2-binding sites in its promoter. In a mouse model of negative selection, PKD1 was activated during thymocyte activation. These observations indicate that PKD1 regulates the expression of Nur77 during thymocyte activation at least in part by phosphorylating HDAC7.

  9. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.

    PubMed

    Kajikawa, Masataka; Sawaragi, Yuri; Shinkawa, Haruka; Yamano, Takashi; Ando, Akira; Kato, Misako; Hirono, Masafumi; Sato, Naoki; Fukuzawa, Hideya

    2015-06-01

    Although microalgae accumulate triacylglycerol (TAG) and starch in response to nutrient-deficient conditions, the regulatory mechanisms are poorly understood. We report here the identification and characterization of a kinase, triacylglycerol accumulation regulator1 (TAR1), that is a member of the yeast (Saccharomyces cerevisiae) Yet another kinase1 (Yak1) subfamily in the dual-specificity tyrosine phosphorylation-regulated kinase family in a green alga (Chlamydomonas reinhardtii). The kinase domain of TAR1 showed auto- and transphosphorylation activities. A TAR1-defective mutant, tar1-1, accumulated TAG to levels 0.5- and 0.1-fold of those of a wild-type strain in sulfur (S)- and nitrogen (N)-deficient conditions, respectively. In N-deficient conditions, tar1-1 showed more pronounced arrest of cell division than the wild type, had increased cell size and cell dry weight, and maintained chlorophyll and photosynthetic activity, which were not observed in S-deficient conditions. In N-deficient conditions, global changes in expression levels of N deficiency-responsive genes in N assimilation and tetrapyrrole metabolism were noted between tar1-1 and wild-type cells. These results indicated that TAR1 is a regulator of TAG accumulation in S- and N-deficient conditions, and it functions in cell growth and repression of photosynthesis in conditions of N deficiency. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability.

    PubMed

    Aman, Teresa K; Maki, Bruce A; Ruffino, Thomas J; Kasperek, Eileen M; Popescu, Gabriela K

    2014-07-04

    Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca(2+) flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca(2+) permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca(2+) conductance, because neither Na(+) conductance nor Ca(2+)-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca(2+) permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca(2+) permeability. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Separate Intramolecular Targets for Protein Kinase A Control N-Methyl-d-aspartate Receptor Gating and Ca2+ Permeability*

    PubMed Central

    Aman, Teresa K.; Maki, Bruce A.; Ruffino, Thomas J.; Kasperek, Eileen M.; Popescu, Gabriela K.

    2014-01-01

    Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability. PMID:24847051

  12. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  13. Coenzyme Q10 inhibits the release of glutamate in rat cerebrocortical nerve terminals by suppression of voltage-dependent calcium influx and mitogen-activated protein kinase signaling pathway.

    PubMed

    Chang, Yi; Huang, Shu-Kuei; Wang, Su-Jane

    2012-12-05

    This study investigates the effects and possible mechanism of coenzyme Q10 (CoQ10) on endogenous glutamate release in the cerebral cortex nerve terminals of rats. CoQ10 inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). CoQ10 reduced the depolarization-induced increase in cytosolic [Ca2+]c but did not alter the 4-AP-mediated depolarization. The effect of CoQ10 on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels and mitogen-activated protein kinase kinase (MEK). In addition, CoQ10 decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK. Moreover, the inhibition of glutamate release by CoQ10 was strongly attenuated in mice without synapsin I. These results suggest that CoQ10 inhibits glutamate release from cortical synaptosomes in rats through the suppression of the presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway.

  14. H-Ras Modulates N-Methyl-d-aspartate Receptor Function via Inhibition of Src Tyrosine Kinase Activity*

    PubMed Central

    Thornton, Claire; Yaka, Rami; Dinh, Son; Ron, Dorit

    2005-01-01

    Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hip-pocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction. PMID:12695509

  15. SLP-76 mediates and maintains activation of the Tec family kinase ITK via the T cell antigen receptor-induced association between SLP-76 and ITK.

    PubMed

    Bogin, Yaron; Ainey, Carmit; Beach, Dvora; Yablonski, Deborah

    2007-04-17

    ITK (IL-2-inducible T cell kinase), a Tec family protein tyrosine kinase (PTK), is one of three PTKs required for T cell antigen receptor (TCR)-induced activation of phospholipase C-gamma1 (PLC-gamma1). Like Src and Abl family PTKs, ITK adopts an inactive, "closed" conformation, and its conversion to the active conformation is not well understood, nor have its direct substrates been identified. In a side-by-side comparison of ITK and ZAP-70 (zeta chain-associated protein kinase of 70 kDa), ITK efficiently phosphorylated Y(783) and Y(775) of PLC-gamma1, two phosphorylation sites that are critical for its activation, whereas ZAP-70 did not. SLP-76 (SH2-domain-containing leukocyte protein of 76 kDa), an adaptor required for TCR-induced activation of PLC-gamma1, was required for the phosphorylation of both PLC-gamma1 sites in intact cells. Furthermore, this event depended on the N-terminal tyrosines of SLP-76. Likewise, SLP-76, particularly its N-terminal tyrosines, was required for TCR-induced tyrosine phosphorylation and activation of ITK but was not required for the phosphorylation or activation of ZAP-70. Both ZAP-70 and ITK phosphorylated SLP-76 in vitro; thus, both PTKs are potential regulators of SLP-76, but only ITK is regulated by SLP-76. Upon TCR stimulation, a small fraction of ITK bound to SLP-76. This fraction, however, encompassed most of the catalytically active ITK. Catalytic activity was lost upon mild elution of ITK from the SLP-76-nucleated complex but was restored upon reconstitution of the complex. We propose that SLP-76 is required for ITK activation; furthermore, an ongoing physical interaction between SLP-76 and ITK is required to maintain ITK in an active conformation.

  16. Protein Tyrosine Phosphatase 1B Regulates Pyruvate Kinase M2 Tyrosine Phosphorylation*

    PubMed Central

    Bettaieb, Ahmed; Bakke, Jesse; Nagata, Naoto; Matsuo, Kosuke; Xi, Yannan; Liu, Siming; AbouBechara, Daniel; Melhem, Ramzi; Stanhope, Kimber; Cummings, Bethany; Graham, James; Bremer, Andrew; Zhang, Sheng; Lyssiotis, Costas A.; Zhang, Zhong-Yin; Cantley, Lewis C.; Havel, Peter J.; Haj, Fawaz G.

    2013-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and adiposity and is a drug target for the treatment of obesity and diabetes. Here we identify pyruvate kinase M2 (PKM2) as a novel PTP1B substrate in adipocytes. PTP1B deficiency leads to increased PKM2 total tyrosine and Tyr105 phosphorylation in cultured adipocytes and in vivo. Substrate trapping and mutagenesis studies identify PKM2 Tyr-105 and Tyr-148 as key sites that mediate PTP1B-PKM2 interaction. In addition, in vitro analyses illustrate a direct effect of Tyr-105 phosphorylation on PKM2 activity in adipocytes. Importantly, PTP1B pharmacological inhibition increased PKM2 Tyr-105 phosphorylation and decreased PKM2 activity. Moreover, PKM2 Tyr-105 phosphorylation is regulated nutritionally, decreasing in adipose tissue depots after high-fat feeding. Further, decreased PKM2 Tyr-105 phosphorylation correlates with the development of glucose intolerance and insulin resistance in rodents, non-human primates, and humans. Together, these findings identify PKM2 as a novel substrate of PTP1B and provide new insights into the regulation of adipose PKM2 activity. PMID:23640882

  17. Cadmium induces phosphorylation and stabilization of c-Fos in HK-2 renal proximal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwatsuki, Mamiko; Inageda, Kiyoshi; Matsuoka, Masato, E-mail: matsuoka@research.twmu.ac.jp

    2011-03-15

    We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the expression and phosphorylation status of members of the Fos family, components of the activator protein-1 transcription factor, in HK-2 human renal proximal tubular cells. Following the exposure to CdCl{sub 2}, the expression of c-fos, fosB, fra-1, and fra-2 increased markedly, with different magnitudes and time courses. The levels of Fos family proteins (c-Fos, FosB, Fra-1, and Fra-2) also increased in response to CdCl{sub 2} exposure. Although the elevation of c-fos transcripts was transient, c-Fos protein levels increased progressively with lower electrophoretic mobility, suggesting stabilization of c-Fos through post-translationalmore » modifications. Consistently, we observed phosphorylation of c-Fos at Ser362 and Ser374 in HK-2 cells treated with CdCl{sub 2}. Phosphorylated forms of mitogen-activated protein kinases (MAPKs)-including extracellular signal-regulated protein kinase (ERK), c-Jun NH{sub 2}-terminal kinase, and p38-increased after CdCl{sub 2} exposure, whereas treatment with the MAPK/ERK kinase inhibitor U0126 and the p38 inhibitor SB203580 suppressed the accumulation and phosphorylation of c-Fos. We mutated Ser362 to alanine (S362A), Ser374 to alanine (S374A), and both residues to alanines (S362A/S374A) to inhibit potential phosphorylation of c-Fos at these sites. S374A or double S362A/S374A mutations reduced c-Fos level markedly, but S362A mutation did not. On the other hand, S362A/S374A mutations induced a more pronounced reduction in c-Fos DNA-binding activity than S374A mutation. These results suggest that while Ser374 phosphorylation seems to play a role in c-Fos stabilization, phosphorylation at two C-terminal serine residues is required for the transcriptional activation of c-Fos in HK-2 cells treated with CdCl{sub 2}.« less

  18. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    PubMed

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  19. Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn.

    PubMed

    Miyamoto, Yuki; Yamauchi, Junji; Tanoue, Akito

    2008-08-13

    Myelin formation of the CNS is a complex and dynamic process. Before the onset of myelination, oligodendrocytes (OLs), the myelin-forming glia of the CNS, proliferate and migrate along axons. Little is known about the molecular mechanisms underlying the early myelination processes. Here, we show that platelet-derived growth factor (PDGF), the crucial physiological ligand in early OL development, controls the migration of oligodendrocyte precursor cells (OPCs) through cyclin-dependent kinase 5 (Cdk5). PDGF stimulates Cdk5 activity in a time-dependent manner, whereas suppression of Cdk5 by the specific inhibitor roscovitine or by the retrovirus encoding short-hairpin RNA for Cdk5 impairs PDGF-dependent OPC migration. The activation of Cdk5 by PDGF is mediated by the phosphorylation of the nonreceptor tyrosine kinase, Fyn, whose inhibition reduces PDGF-dependent OPC migration. Furthermore, Cdk5 regulates PDGF-dependent OPC migration through the direct phosphorylation of WASP (Wiskott-Aldrich syndrome protein)-family verprolin-homologous protein 2 (WAVE2). Cdk5 phosphorylates WAVE2 at Ser-137 in vitro. Infection of the WAVE2 construct harboring the Ser-137-to-Ala reduces PDGF-dependent migration. Together, PDGF regulates OPC migration through an as-yet-unidentified signaling cascade coupling Fyn kinase to Cdk5 phosphorylation of WAVE2. These results provide new insights into both the role of Cdk5 in glial cells and the molecular mechanisms controlling the early developmental stage of OLs.

  20. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling.

    PubMed

    Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L; Hille, Bertil; Koh, Duk-Su

    2016-03-01

    Activated Gq protein-coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein-tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein-coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to secondary

  1. Contributions of protein kinases and β-arrestin to termination of protease-activated receptor 2 signaling

    PubMed Central

    Jung, Seung-Ryoung; Seo, Jong Bae; Deng, Yi; Asbury, Charles L.; Hille, Bertil

    2016-01-01

    Activated Gq protein–coupled receptors (GqPCRs) can be desensitized by phosphorylation and β-arrestin binding. The kinetics and individual contributions of these two mechanisms to receptor desensitization have not been fully distinguished. Here, we describe the shut off of protease-activated receptor 2 (PAR2). PAR2 activates Gq and phospholipase C (PLC) to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol and inositol trisphosphate (IP3). We used fluorescent protein–tagged optical probes to monitor several consequences of PAR2 signaling, including PIP2 depletion and β-arrestin translocation in real time. During continuous activation of PAR2, PIP2 was depleted transiently and then restored within a few minutes, indicating fast receptor activation followed by desensitization. Knockdown of β-arrestin 1 and 2 using siRNA diminished the desensitization, slowing PIP2 restoration significantly and even adding a delayed secondary phase of further PIP2 depletion. These effects of β-arrestin knockdown on PIP2 recovery were prevented when serine/threonine phosphatases that dephosphorylate GPCRs were inhibited. Thus, PAR2 may continuously regain its activity via dephosphorylation when there is insufficient β-arrestin to trap phosphorylated receptors. Similarly, blockers of protein kinase C (PKC) and G protein–coupled receptor kinase potentiated the PIP2 depletion. In contrast, an activator of PKC inhibited receptor activation, presumably by augmenting phosphorylation of PAR2. Our interpretations were strengthened by modeling. Simulations supported the conclusions that phosphorylation of PAR2 by protein kinases initiates receptor desensitization and that recruited β-arrestin traps the phosphorylated state of the receptor, protecting it from phosphatases. Speculative thinking suggested a sequestration of phosphatidylinositol 4-phosphate 5 kinase (PIP5K) to the plasma membrane by β-arrestin to explain why knockdown of β-arrestin led to

  2. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  3. Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway

    PubMed Central

    Xing, Feiyue; Liu, Jing; Mo, Yongyan; Liu, Zhifeng; Qin, Qinghe; Wang, Jingzhen; Fan, Zhenhua; Long, Yutian; Liu, Na; Zhao, Kesen; Jiang, Yong

    2009-01-01

    Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway. PMID:18624763

  4. N-terminal acetylation modulates Bax targeting to mitochondria.

    PubMed

    Alves, Sara; Neiri, Leire; Chaves, Susana Rodrigues; Vieira, Selma; Trindade, Dário; Manon, Stephen; Dominguez, Veronica; Pintado, Belen; Jonckheere, Veronique; Van Damme, Petra; Silva, Rui Duarte; Aldabe, Rafael; Côrte-Real, Manuela

    2018-02-01

    The pro-apoptotic Bax protein is the main effector of mitochondrial permeabilization during apoptosis. Bax is controlled at several levels, including post-translational modifications such as phosphorylation and S-palmitoylation. However, little is known about the contribution of other protein modifications to Bax activity. Here, we used heterologous expression of human Bax in yeast to study the involvement of N-terminal acetylation by yNaa20p (yNatB) on Bax function. We found that human Bax is N-terminal (Nt-)acetylated by yNaa20p and that Nt-acetylation of Bax is essential to maintain Bax in an inactive conformation in the cytosol of yeast and Mouse Embryonic Fibroblast (MEF) cells. Bax accumulates in the mitochondria of yeast naa20Δ and Naa25 -/- MEF cells, but does not promote cytochrome c release, suggesting that an additional step is required for full activation of Bax. Altogether, our results show that Bax N-terminal acetylation by NatB is involved in its mitochondrial targeting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development.

    PubMed

    Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng

    2016-05-27

    Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Caspases and Kinases in a Death Grip

    PubMed Central

    Kurokawa, Manabu; Kornbluth, Sally

    2011-01-01

    The complex process of apoptosis is orchestrated by caspases, a family of cysteine proteases with unique substrate specificities. Accumulating evidence suggests that cell death pathways are finely tuned by multiple signaling events, including direct phosphorylation of caspases, whereas kinases are often substrates of active caspases. Importantly, caspase-mediated cleavage of kinases can terminate prosurvival signaling or generate proapoptotic peptide fragments that help to execute the death program and facilitate packaging of the dying cells. Here, we review caspases as kinase substrates and kinases as caspase substrates and discuss how the balance between cell survival and cell death can be shifted through crosstalk between these two enzyme families. PMID:19737514

  7. Role of Plant-Specific N-Terminal Domain of Maize CK2β1 Subunit in CK2β Functions and Holoenzyme Regulation

    PubMed Central

    Vélez-Bermúdez, Isabel C.; Carretero-Paulet, Lorenzo; Lumbreras, Victoria; Pagès, Montserrat

    2011-01-01

    Protein kinase CK2 is a highly pleiotropic Ser/Thr kinase ubiquituous in eukaryotic organisms. CK2 is organized as a heterotetrameric enzyme composed of two types of subunits: the catalytic (CK2α) and the regulatory (CK2β). The CK2β subunits enhance the stability, activity and specificity of the holoenzyme, but they can also perform functions independently of the CK2 tetramer. CK2β regulatory subunits in plants differ from their animal or yeast counterparts, since they present an additional specific N-terminal extension of about 90 aminoacids that shares no homology with any previously characterized functional domain. Sequence analysis of the N-terminal domain of land plant CK2β subunit sequences reveals its arrangement through short, conserved motifs, some of them including CK2 autophosphorylation sites. By using maize CK2β1 and a deleted version (ΔNCK2β1) lacking the N-terminal domain, we have demonstrated that CK2β1 is autophosphorylated within the N-terminal domain. Moreover, the holoenzyme composed with CK2α1/ΔNCK2β1 is able to phosphorylate different substrates more efficiently than CK2α1/CK2β1 or CK2α alone. Transient overexpression of CK2β1 and ΔNCK2β1 fused to GFP in different plant systems show that the presence of N-terminal domain enhances aggregation in nuclear speckles and stabilizes the protein against proteasome degradation. Finally, bimolecular fluorescence complementation (BiFC) assays show the nuclear and cytoplasmic location of the plant CK2 holoenzyme, in contrast to the individual CK2α/β subunits mainly observed in the nucleus. All together, our results support the hypothesis that the plant-specific N-terminal domain of CK2β subunits is involved in the down-regulation of the CK2 holoenzyme activity and in the stabilization of CK2β1 protein. In summary, the whole amount of data shown in this work suggests that this domain was acquired by plants for regulatory purposes. PMID:21789193

  8. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.

    PubMed

    Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor

    2016-11-01

    Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.

  9. Crystal structure of an SH2-kinase construct of c-Abl and effect of the SH2 domain on kinase activity.

    PubMed

    Lorenz, Sonja; Deng, Patricia; Hantschel, Oliver; Superti-Furga, Giulio; Kuriyan, John

    2015-06-01

    Constitutive activation of the non-receptor tyrosine kinase c-Abl (cellular Abelson tyrosine protein kinase 1, Abl1) in the Bcr (breakpoint cluster region)-Abl1 fusion oncoprotein is the molecular cause of chronic myeloid leukaemia (CML). Recent studies have indicated that an interaction between the SH2 (Src-homology 2) domain and the N-lobe (N-terminal lobe) of the c-Abl kinase domain (KD) has a critical role in leukaemogenesis [Grebien et al. (2011) Cell 147, 306-319; Sherbenou et al. (2010) Blood 116, 3278-3285]. To dissect the structural basis of this phenomenon, we studied c-Abl constructs comprising the SH2 and KDs in vitro. We present a crystal structure of an SH2-KD construct bound to dasatinib, which contains the relevant interface between the SH2 domain and the N-lobe of the KD. We show that the presence of the SH2 domain enhances kinase activity moderately and that this effect depends on contacts in the SH2/N-lobe interface and is abrogated by specific mutations. Consistently, formation of the interface decreases slightly the association rate of imatinib with the KD. That the effects are small compared with the dramatic in vivo consequences suggests an important function of the SH2-N-lobe interaction might be to help disassemble the auto-inhibited conformation of c-Abl and promote processive phosphorylation, rather than substantially stimulate kinase activity.

  10. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Yong-Whan; Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr; Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly,more » OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.« less

  11. Structural Characterizations of Glycerol Kinase: Unraveling Phosphorylation-Induced Long-Range Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Joanne I.; Kettering, Regina; Saxl, Ruth

    2009-09-11

    Glycerol metabolism provides a central link between sugar and fatty acid catabolism. In most bacteria, glycerol kinase plays a crucial role in regulating channel/facilitator-dependent uptake of glycerol into the cell. In the firmicute Enterococcus casseliflavus, this enzyme's activity is enhanced by phosphorylation of the histidine residue (His232) located in its activation loop, approximately 25 A from its catalytic cleft. We reported earlier that some mutations of His232 altered enzyme activities; we present here the crystal structures of these mutant GlpK enzymes. The structure of a mutant enzyme with enhanced enzymatic activity, His232Arg, reveals that residues at the catalytic cleft aremore » more optimally aligned to bind ATP and mediate phosphoryl transfer. Specifically, the position of Arg18 in His232Arg shifts by approximately 1 A when compared to its position in wild-type (WT), His232Ala, and His232Glu enzymes. This new conformation of Arg18 is more optimally positioned at the presumed gamma-phosphate location of ATP, close to the glycerol substrate. In addition to structural changes exhibited at the active site, the conformational stability of the activation loop is decreased, as reflected by an approximately 35% increase in B factors ('thermal factors') in a mutant enzyme displaying diminished activity, His232Glu. Correlating conformational changes to alteration of enzymatic activities in the mutant enzymes identifies distinct localized regions that can have profound effects on intramolecular signal transduction. Alterations in pairwise interactions across the dimer interface can communicate phosphorylation states over 25 A from the activation loop to the catalytic cleft, positioning Arg18 to form favorable interactions at the beta,gamma-bridging position with ATP. This would offset loss of the hydrogen bonds at the gamma-phosphate of ATP during phosphoryl transfer to glycerol, suggesting that appropriate alignment of the second substrate of glycerol

  12. Regulation of Ca(2+)/calmodulin-dependent protein kinase kinase alpha by cAMP-dependent protein kinase: II. Mutational analysis.

    PubMed

    Kitani, T; Okuno, S; Fujisawa, H

    2001-10-01

    We previously reported that rat brain Ca(2+)/calmodulin-dependent protein kinase (CaM-kinase) IV is inactivated by cAMP-dependent protein kinase (PKA) [Kameshita, I. and Fujisawa, H. (1991) Biochem. Biophys. Res. Commun. 180, 191-196]. In the preceding paper, we demonstrated that changes in the activity of CaM-kinase IV by PKA results from the phosphorylation of CaM-kinase kinase alpha by PKA and identified six phosphorylation sites, Ser(24) for autophosphorylation, and Ser(52), Ser(74), Thr(108), Ser(458), and Ser(475) for phosphorylation by PKA. In the present study, a causal relationship between the phosphorylation and change in the activity toward PKIV peptide has been studied using mutant enzymes with amino acid substitutions at the six phosphorylation sites. The following conclusions can be drawn from the experimental results: (i) Phosphorylation of Ser74 and/or unidentified sites causes an increase in activity; (ii) phosphorylation of Thr(108) or Ser(458) causes a decrease in the activity; (iii) the inhibitory effect of the phosphorylation of Thr(108) is canceled by the stimulatory effect of the phosphorylation, but that of Ser(458) is not; and (iv) the inhibitory effects of Thr(108) and Ser(458) are synergistic. In contrast to the activity toward PKIV peptide, the activity toward CaM-kinase IV appears to be decreased by the phosphorylation of Thr(108), but not significantly affected by the phosphorylation of Ser(458).

  13. Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.

    PubMed

    Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama

    2010-02-01

    The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.

  14. cAMP-dependent protein kinase phosphorylates and activates nuclear Ca2+-ATPase

    PubMed Central

    Rogue, Patrick J.; Humbert, Jean-Paul; Meyer, Alphonse; Freyermuth, Solange; Krady, Marie-Marthe; Malviya, Anant N.

    1998-01-01

    A Ca2+-pump ATPase, similar to that in the endoplasmic reticulum, has been located on the outer membrane of rat liver nuclei. The effect of cAMP-dependent protein kinase (PKA) on nuclear Ca2+-ATPase (NCA) was studied by using purified rat liver nuclei. Treatment of isolated nuclei with the catalytic unit of PKA resulted in the phosphorylation of a 105-kDa band that was recognized by antibodies specific for sarcoplasmic reticulum Ca2+-ATPase type 2b. Partial purification and immunoblotting confirmed that the 105-kDa protein band phosphorylated by PKA is NCA. The stoichiometry of phosphorylation was 0.76 mol of phosphate incorporated/mol of partially purified enzyme. Measurement of ATP-dependent 45Ca2+ uptake into purified nuclei showed that PKA phosphorylation enhanced the Ca2+-pumping activity of NCA. We show that PKA phosphorylation of Ca2+-ATPase enhances the transport of 10-kDa fluorescent-labeled dextrans across the nuclear envelope. The findings reported in this paper are consistent with the notion that the crosstalk between the cAMP/PKA- and Ca2+-dependent signaling pathways identified at the cytoplasmic level extends to the nucleus. Furthermore, these data support a function for crosstalk in the regulation of calcium-dependent transport across the nuclear envelope. PMID:9689054

  15. Glycogen synthase kinase-3 levels and phosphorylation undergo large fluctuations in mouse brain during development

    PubMed Central

    Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S

    2012-01-01

    Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932

  16. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.

    PubMed

    Madan, Esha; Gogna, Rajan; Kuppusamy, Periannan; Bhatt, Madan; Mahdi, Abbas Ali; Pati, Uttam

    2013-04-01

    p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.

  17. Use of 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates having poly(ethylene glycol) spacers in kinase-catalyzed phosphorylations.

    PubMed

    Martić, Sanela; Rains, Meghan K; Freeman, Daniel; Kraatz, Heinz-Bernhard

    2011-08-17

    The 5'-γ-ferrocenyl adenosine triphosphate (Fc-ATP) bioconjugates (3 and 4), containing the poly(ethylene glycol) spacers, were synthesized and compared to a hydrophobic analogue as co-substrates for the following protein kinases: sarcoma related kinase (Src), cyclin-dependent kinase (CDK), casein kinase II (CK2α), and protein kinase A (PKA). Electrochemical kinase assays indicate that the hydrophobic Fc-ATP analogue was an optimal co-substrate for which K(M) values were determined to be in the 30-200 μM range, depending on the particular protein kinase. The luminescence kinase assay demonstrated the kinase utility for all Fc-ATP conjugates, which is in line with the electrochemical data. Moreover, Fc-ATP bioconjugates exhibit competitive behavior with respect to ATP. Relatively poor performance of the polar Fc-ATP bioconjugates as co-substrates for protein kinases was presumably due to the additional H-bonding and electrostatic interactions of the poly(ethylene glycol) linkers of Fc-ATP with the kinase catalytic site and the target peptides. Phosphorylation of the full-length protein, His-tagged pro-caspase-3, was demonstrated through Fc-phosphoamide transfer to the Ser residues of the surface-bound protein by electrochemical means. These results suggest that electrochemical detection of the peptide and protein Fc-phosphorylation via tailored Fc-ATP co-substrates may be useful for probing protein-protein interactions.

  18. Identification of Tyrosine 972 as a Novel Site of Jak2 Tyrosine Kinase Phosphorylation and its Role in Jak2 Activation

    PubMed Central

    McDoom, Issam; Ma, Xianyue; Kirabo, Annet; Lee, Kuang-Yung; Ostrov, David A.; Sayeski, Peter P.

    2013-01-01

    Jak2 is a 130 kDa tyrosine kinase that is important in a number of cellular signaling pathways. Its function is intrinsically regulated by the phosphorylation of a handful of its 49 tyrosines. Here, we report that tyrosine 972 (Y972) is a novel site of Jak2 phosphorylation, and hence auto-regulation. Specifically, we found that Y972 is phosphorylated and confirmed that this residue resides on the surface of the protein. Using expression plasmids that expressed either wild type Jak2 or a full length Jak2 cDNA containing a single Y972F substitution mutation, we investigated the consequences of losing Y972 phosphorylation on Jak2 function. We determined that the loss of Y972 phosphorylation significantly reduced both Jak2 total tyrosine phosphorylation and phosphorylation of Y1007/Y1008. Additionally, Y972 phosphorylation was shown to be important for maximal kinase function. Interestingly, in response to classical cytokine activation, the Jak2-Y972F mutant exhibited a moderately impaired level of activation when compared to wild type protein. However, when Jak2 was activated via a GPCR ligand, the ability of the Y972F mutant to activate was completely lost, therefore suggesting a differential role of Y972 in Jak2 activation. Finally, we found that phosphorylation of Y972 enhances Jak2 kinase function via a mechanism that appears to stabilize the active conformation of the protein. Collectively, our results suggest that Y972 is a novel site of Jak2 phosphorylation and plays an important differential role in ligand-dependent Jak2 activation via a mechanism that involves stabilization of the Jak2 active conformation. PMID:18636744

  19. Phosphorylation of microtubule-binding protein Hec1 by mitotic kinase Aurora B specifies spindle checkpoint kinase Mps1 signaling at the kinetochore.

    PubMed

    Zhu, Tongge; Dou, Zhen; Qin, Bo; Jin, Changjiang; Wang, Xinghui; Xu, Leilei; Wang, Zhaoyang; Zhu, Lijuan; Liu, Fusheng; Gao, Xinjiao; Ke, Yuwen; Wang, Zhiyong; Aikhionbare, Felix; Fu, Chuanhai; Ding, Xia; Yao, Xuebiao

    2013-12-13

    The spindle assembly checkpoint (SAC) is a quality control device to ensure accurate chromosome attachment to spindle microtubule for equal segregation of sister chromatid. Aurora B is essential for SAC function by sensing chromosome bi-orientation via spatial regulation of kinetochore substrates. However, it has remained elusive as to how Aurora B couples kinetochore-microtubule attachment to SAC signaling. Here, we show that Hec1 interacts with Mps1 and specifies its kinetochore localization via its calponin homology (CH) domain and N-terminal 80 amino acids. Interestingly, phosphorylation of the Hec1 by Aurora B weakens its interaction with microtubules but promotes Hec1 binding to Mps1. Significantly, the temporal regulation of Hec1 phosphorylation orchestrates kinetochore-microtubule attachment and Mps1 loading to the kinetochore. Persistent expression of phosphomimetic Hec1 mutant induces a hyperactivation of SAC, suggesting that phosphorylation-elicited Hec1 conformational change is used as a switch to orchestrate SAC activation to concurrent destabilization of aberrant kinetochore attachment. Taken together, these results define a novel role for Aurora B-Hec1-Mps1 signaling axis in governing accurate chromosome segregation in mitosis.

  20. Phosphorylation of Microtubule-binding Protein Hec1 by Mitotic Kinase Aurora B Specifies Spindle Checkpoint Kinase Mps1 Signaling at the Kinetochore*

    PubMed Central

    Zhu, Tongge; Dou, Zhen; Qin, Bo; Jin, Changjiang; Wang, Xinghui; Xu, Leilei; Wang, Zhaoyang; Zhu, Lijuan; Liu, Fusheng; Gao, Xinjiao; Ke, Yuwen; Wang, Zhiyong; Aikhionbare, Felix; Fu, Chuanhai; Ding, Xia; Yao, Xuebiao

    2013-01-01

    The spindle assembly checkpoint (SAC) is a quality control device to ensure accurate chromosome attachment to spindle microtubule for equal segregation of sister chromatid. Aurora B is essential for SAC function by sensing chromosome bi-orientation via spatial regulation of kinetochore substrates. However, it has remained elusive as to how Aurora B couples kinetochore-microtubule attachment to SAC signaling. Here, we show that Hec1 interacts with Mps1 and specifies its kinetochore localization via its calponin homology (CH) domain and N-terminal 80 amino acids. Interestingly, phosphorylation of the Hec1 by Aurora B weakens its interaction with microtubules but promotes Hec1 binding to Mps1. Significantly, the temporal regulation of Hec1 phosphorylation orchestrates kinetochore-microtubule attachment and Mps1 loading to the kinetochore. Persistent expression of phosphomimetic Hec1 mutant induces a hyperactivation of SAC, suggesting that phosphorylation-elicited Hec1 conformational change is used as a switch to orchestrate SAC activation to concurrent destabilization of aberrant kinetochore attachment. Taken together, these results define a novel role for Aurora B-Hec1-Mps1 signaling axis in governing accurate chromosome segregation in mitosis. PMID:24187132

  1. Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function.

    PubMed

    Bubeck Wardenburg, J; Fu, C; Jackman, J K; Flotow, H; Wilkinson, S E; Williams, D H; Johnson, R; Kong, G; Chan, A C; Findell, P R

    1996-08-16

    Two families of tyrosine kinases, the Src and Syk families, are required for T-cell receptor activation. While the Src kinases are responsible for phosphorylation of receptor-encoded signaling motifs and for up-regulation of ZAP-70 activity, the downstream substrates of ZAP-70 are unknown. Evidence is presented herein that the Src homology 2 (SH2) domain-containing leukocyte protein of 76 kDa (SLP-76) is a substrate of ZAP-70. Phosphorylation of SLP-76 is diminished in T cells that express a catalytically inactive ZAP-70. Moreover, SLP-76 is preferentially phosphorylated by ZAP-70 in vitro and in heterologous cellular systems. In T cells, overexpression of wild-type SLP-76 results in a hyperactive receptor, while expression of a SLP-76 molecule that is unable to be tyrosine-phosphorylated attenuates receptor function. In addition, the SH2 domain of SLP-76 is required for T-cell receptor function, although its role is independent of the ability of SLP-76 to undergo tyrosine phosphorylation. As SLP-76 interacts with both Grb2 and phospholipase C-gamma1, these data indicate that phosphorylation of SLP-76 by ZAP-70 provides an important functional link between the T-cell receptor and activation of ras and calcium pathways.

  2. [Effect of Acupuncture Intervention on c-jun N-terminal Kinase Signaling in the Hippocampus in Rats with Forced Swimming Stress].

    PubMed

    Guo, Yu; Xu, Ke; Bao, Wu-ye; Wang, Yu; Zhang, Xu-hui; Xu, Ming-min; Yu, Miao; Zhang, Chun-tao; Zhao, Bing-cong; Wu, Ji-hong; Tu, Ya

    2016-02-01

    To observe the effect of acupuncture on c-jun N-terminal Kinase (JNK) signaling in the hippocampus in rats with forced-swimming stress, so as to reveal its underlying mechanism in relieving depression-like motor response. Forty-eight Sprague-Dawley rats were randomly divided into 8 groups as control, control + JNK inhibitor (SP 600125) , model, model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine (an anti-depressant) , and Fluoxetine + SP 600125 (n = 6 in each group). The depression-like behavior (immobility) model was established by forcing the rat to swim in a glass-cylinder and solitary raise. Acupuncture stimulation was applied to "Baihui" (GV-20) and "Yintang" (GV 29) for 20 min before forced swimming and once again 24 h later.. The rats of the Fluoxetine and Fluoxetine+ SP 600125 groups were treated by intragastric administration of fluoxetine 10 mL (1.8 mg)/kg before forced swimming and once again 24 h thereafter. The rats of the model + SP 600125 and acupuncture + SP 600125 groups were treated by intraperitoneal injection of SP 600125 (10 mg/kg) 90 min before forced swimming and 30 min before acupuncture intervention, respectively. The immobility duration of rats in the water glass-cylinder was used to assess their depression-like behavior response. The expression levels of protein kinase kinase 4 (MKK 4), MKK 7, JNK, and phosphorylated JNK (p-JNK) in the hippocampus were detected by Western blot. Compared to the control group, the duration of immobility, and the expression levels of hippocampal MKK 4, MKK 7, and p-JNK proteins were significantly increased in the model group (P < 0.01). While in comparison with the model group, the duration of immobility in the model + SP 600125, acupuncture, acupuncture + SP 600125, Fluoxetine and Fluoxetine + SP 600125 groups, the expression levels of hippocampal MKK 4 and MKK 7 proteins in the Fluoxetine + SP 600125 group, and those of p-JNK protein in the acupuncture, acupuncture + SP 600125, model + SP

  3. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction.

    PubMed

    Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

  4. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction

    PubMed Central

    Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A.; Tomàs, Josep

    2017-01-01

    Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release. PMID:28890686

  5. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Chieko; Lemasters, John J.; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425

    Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10 mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1 h before 600 mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12 h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT releasemore » and necrosis) were partially attenuated by the vehicle (- 65%) and completely eliminated by SP600125 (- 98%) at 6 and 12 h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite + nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.« less

  6. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium.

    PubMed

    Palanisamy, Arun P; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D; Kuppuswamy, Dhandapani

    2015-12-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src's adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24-48 h PO myocardium. Our studies indicate that c-Src's adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. © 2015 Wiley Periodicals, Inc.

  7. A Kinase-Independent Function of c-Src Mediates p130Cas Phosphorylation at the Serine-639 Site in Pressure Overloaded Myocardium

    PubMed Central

    Palanisamy, Arun P.; Suryakumar, Geetha; Panneerselvam, Kavin; Willey, Christopher D.; Kuppuswamy, Dhandapani

    2017-01-01

    Early work in pressure overloaded (PO) myocardium shows that integrins mediate focal adhesion complex formation by recruiting the adaptor protein p130Cas (Cas) and nonreceptor tyrosine kinase c-Src. To explore c-Src role in Cas-associated changes during PO, we used a feline right ventricular in vivo PO model and a three-dimensional (3D) collagen-embedded adult cardiomyocyte in vitro model that utilizes a Gly-Arg-Gly-Asp-Ser (RGD) peptide for integrin stimulation. Cas showed slow electrophoretic mobility (band-shifting), recruitment to the cytoskeleton, and tyrosine phosphorylation at 165, 249, and 410 sites in both 48 h PO myocardium and 1 h RGD-stimulated cardiomyocytes. Adenoviral mediated expression of kinase inactive (negative) c-Src mutant with intact scaffold domains (KN-Src) in cardiomyocytes did not block the RGD stimulated changes in Cas. Furthermore, expression of KN-Src or kinase active c-Src mutant with intact scaffold function (A-Src) in two-dimensionally (2D) cultured cardiomyocytes was sufficient to cause Cas band-shifting, although tyrosine phosphorylation required A-Src. These data indicate that c-Src’s adaptor function, but not its kinase function, is required for a serine/threonine specific phosphorylation(s) responsible for Cas band-shifting. To explore this possibility, Chinese hamster ovary cells that stably express Cas were infected with either β-gal or KN-Src adenoviruses and used for Cas immunoprecipitation combined with mass spectrometry analysis. In the KN-Src expressing cells, Cas showed phosphorylation at the serine-639 (human numbering) site. A polyclonal antibody raised against phospho-serine-639 detected Cas phosphorylation in 24–48 h PO myocardium. Our studies indicate that c-Src’s adaptor function mediates serine-639 phosphorylation of Cas during integrin activation in PO myocardium. PMID:25976166

  8. Oxysterol-binding protein-related protein (ORP) 9 is a PDK-2 substrate and regulates Akt phosphorylation.

    PubMed

    Lessmann, Eva; Ngo, Mike; Leitges, Michael; Minguet, Susana; Ridgway, Neale D; Huber, Michael

    2007-02-01

    The oxysterol-binding protein and oxysterol-binding protein-related protein family has been implicated in lipid transport and metabolism, vesicle trafficking and cell signaling. While investigating the phosphorylation of Akt/protein kinase B in stimulated bone marrow-derived mast cells, we observed that a monoclonal antibody directed against phospho-S473 Akt cross-reacted with oxysterol-binding protein-related protein 9 (ORP9). Further analysis revealed that mast cells exclusively express ORP9S, an N-terminal truncated version of full-length ORP9L. A PDK-2 consensus phosphorylation site in ORP9L and OPR9S at S287 (VPEFS(287)Y) was confirmed by site-directed mutagenesis. In contrast to Akt, increased phosphorylation of ORP9S S287 in stimulated mast cells was independent of phosphatidylinositol 3-kinase but sensitive to inhibition of conventional PKC isotypes. PKC-beta dependence was confirmed by lack of ORP9S phosphorylation at S287 in PKC-beta-deficient, but not PKC-alpha-deficient, mast cells. Moreover, co-immunoprecipitation of PKC-beta and ORP9S, and in vitro phosphorylation of ORP9S in this complex, argued for direct phosphorylation of ORP9S by PKC-beta, introducing ORP9S as a novel PKC-beta substrate. Akt was also detected in a PKC-beta/ORP9S immune complex and phosphorylation of Akt on S473 was delayed in PKC-deficient mast cells. In HEK293 cells, RNAi experiments showed that depletion of ORP9L increased Akt S473 phosphorylation 3-fold without affecting T308 phosphorylation in the activation loop. Furthermore, mammalian target of rapamycin was implicated in ORP9L phosphorylation in HEK293 cells. These studies identify ORP9 as a PDK-2 substrate and negative regulator of Akt phosphorylation at the PDK-2 site.

  9. c-Jun N-terminal kinase inhibitors: a patent review (2010 - 2014).

    PubMed

    Gehringer, Matthias; Muth, Felix; Koch, Pierre; Laufer, Stefan A

    2015-01-01

    c-Jun N-terminal kinases (JNKs) are involved in the emergence and progression of diverse pathologies such as neurodegenerative, cardiovascular and metabolic disorders as well as inflammation and cancer. In recent years, several highly selective pan-JNK inhibitors have been characterized and three chemical entities targeting JNKs have been investigated in clinical trials. This review summarizes patents claiming inhibitors of all JNK isoforms published between 2010 and 2014. Although primarily focusing on the patent literature, relevant peer-reviewed publications related to the covered patents have also been included. Moreover, key patents claiming novel applications of previously published chemical entities are reviewed. The article highlights a total of 28 patents from nine pharmaceutical companies and academic research groups. Although some selective pan-JNK inhibitors with reasonable in vivo profiles are now available, little is known about the isoform selectivity required for each particular indication and the development of isoform-selective JNK inhibitors still represents a challenge in JNK drug discovery. Moreover, isoform-selective tool compounds are a prerequisite to a comprehensive understanding of the biology of each JNK isoform. Potential approaches towards such compounds include the design of type-II and type-I(1)/2 binders, which are absent in the current JNK inhibitor portfolios, as well as the design of novel allosteric inhibitors. Furthermore, covalent inhibition, which already led to the first high-quality probe for JNKs, might be further exploited for gaining selectivity and in vivo efficacy. With regard to a potential therapeutic application, the recently proposed concept of covalent reversible inhibitors is expected to be attractive.

  10. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5).

    PubMed

    Erwig, Jan; Ghareeb, Hassan; Kopischke, Michaela; Hacke, Ronja; Matei, Alexandra; Petutschnig, Elena; Lipka, Volker

    2017-07-01

    To detect potential pathogens, plants perceive the fungal polysaccharide chitin through receptor complexes containing lysin motif receptor-like kinases (LysM-RLKs). To investigate the ligand-induced spatial dynamics of chitin receptor components, we studied the subcellular behaviour of two Arabidopsis thaliana LysM-RLKs involved in chitin signalling, CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) and LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5. We performed standard and quantitative confocal laser scanning microscopy on stably transformed A. thaliana plants expressing fluorescently tagged CERK1 and LYK5 from their native promoters. Microscopy approaches were complemented by biochemical analyses in plants and in vitro. Both CERK1 and LYK5 localized to the plasma membrane and showed constitutive endomembrane trafficking. After chitin treatment, however, CERK1 remained at the plasma membrane while LYK5 relocalized into mobile intracellular vesicles. Detailed analyses revealed that chitin perception transiently induced the internalization of LYK5 into late endocytic compartments. Plants that lacked CERK1 or expressed an enzymatically inactive CERK1 variant did not exhibit chitin-induced endocytosis of LYK5. CERK1 could phosphorylate LYK5 in vitro and chitin treatment induced CERK1-dependent phosphorylation of LYK5 in planta. Our results suggest that chitin-induced phosphorylation by CERK1 triggers LYK5 internalization. Thus, our work identifies phosphorylation as a key regulatory step in endocytosis of plant RLKs and also provides evidence for receptor complex dissociation after ligand perception. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. A peptide fragment of ependymin neurotrophic factor uses protein kinase C and the mitogen-activated protein kinase pathway to activate c-Jun N-terminal kinase and a functional AP-1 containing c-Jun and c-Fos proteins in mouse NB2a cells.

    PubMed

    Adams, David S; Hasson, Brendan; Boyer-Boiteau, Anne; El-Khishin, Adam; Shashoua, Victor E

    2003-05-01

    Ependymin (EPN) is a goldfish brain neurotrophic factor previously shown to function in a variety of cellular events related to long-term memory formation and neuronal regeneration. CMX-8933, an 8-amino-acid synthetic peptide fragment of EPN, was designed for aiding an investigation of the biological properties of this glycoprotein. We reported from previous studies that treatment of mouse neuroblastoma (NB2a) cultures with CMX-8933 promotes activation of transcription factor AP-1, a characteristic previously associated with the following full-length neurotrophic factors: nerve growth factor, neurotropin-3, and brain-derived neurotrophic factor. The CMX-8933-activated AP-1 specifically bound an AP-1 consensus probe and appeared to contain c-Jun and c-Fos protein components in antibody supershift experiments. Because AP-1 influences a variety of positive and negative cellular processes, determined in part by its exact protein composition and mechanism of activation, we extended these initial AP-1 observations in the current study to confirm the identity of the CMX-8933-activated c-Jun and c-Fos components. CMX-8933 increases the enzymatic activity of c-Jun N-terminal kinase (JNK), increases the phosphorylation of JNK and c-Jun proteins, and increases the cellular titers of c-Jun and c-Fos mRNAs. Furthermore, the AP-1 activated by CMX-8933 is functional, insofar as it transactivates both synthetic and natural AP-1-dependent reporter plasmids. Inhibition studies indicate that activation of the 8933-induced AP-1 occurs via the mitogen-activated protein kinase pathway. These data are in agreement with the recently proposed model for the conversion of short- to long-term synaptic plasticity and memory, in which a JNK-activated transcription factor AP-1, containing c-Jun and c-Fos components, functions at the top of a hierarchy of transcription factors known to regulate long-term neural plasticity. Copyright 2003 Wiley-Liss, Inc.

  12. Differential Regulation of MAPK Phosphorylation in the Dorsal Hippocampus in Response to Prolonged Morphine Withdrawal-Induced Depressive-Like Symptoms in Mice

    PubMed Central

    Shi, Jianguo; Wu, Bin; Dang, Wei; Du, Ying; Zhou, Qiong; Wang, Jianhua; Zhang, Rui

    2013-01-01

    Depression is one of the most frequent neuropsychiatric comorbidities associated with opiate addiction. Mitogen activated protein kinase (MAPK) and MAPK phosphatase (MKP) are involved in drug addiction and depression. However, the potential role of MAPK and MKP in depression caused by morphine withdrawal remains unclear. We utilized a mouse model of repeated morphine administration to examine the molecular mechanisms that contribute to prolonged withdrawal induced depressive-like behaviors. Depressive-like behaviors were significant at 1 week after withdrawal and worsened over time. Phospho-ERK (extracellular signal-regulated protein kinase) was decreased and MKP-1 was elevated in the hippocampus, and JNK (c-Jun N-terminal protein kinase), p38 (p38 protein kinase) and MKP-3 were unaffected. A pharmacological blockade of MKP-1 by intra-hippocampal sanguinarine (SA) infusion prevented the development of depressive-like behaviors and resulted in relatively normal levels of MKP-1 and phospho-ERK after withdrawal. Our findings support the association between hippocampal MAPK phosphorylation and prolonged morphine withdrawal-induced depression, and emphasize the MKP-1 as an negative regulator of the ERK phosphorylation that contributes to depression. PMID:23823128

  13. Lopinavir Impairs Protein Synthesis and Induces eEF2 Phosphorylation via the Activation of AMP-Activated Protein Kinase

    PubMed Central

    Hong-Brown, Ly Q.; Brown, C. Randell; Huber, Danuta S.; Lang, Charles H.

    2008-01-01

    HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K. PMID:18712774

  14. Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases

    PubMed Central

    Schmidt-Arras, Dirk-E.; Böhmer, Annette; Markova, Boyka; Choudhary, Chunaram; Serve, Hubert; Böhmer, Frank-D.

    2005-01-01

    Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPα promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. PMID:15831474

  15. Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation

    PubMed Central

    Miyazaki, Hiroaki

    2012-01-01

    Shrinkage-induced inhibition of the Caenorhabditis elegans cell volume and cell cycle-dependent CLC anion channel CLH-3b occurs by concomitant phosphorylation of S742 and S747, which are located on a 175 amino acid linker domain between cystathionine-β-synthase 1 (CBS1) and CBS2. Phosphorylation is mediated by the SPAK kinase homolog GCK-3 and is mimicked by substituting serine residues with glutamate. Type 1 serine/threonine protein phosphatases mediate swelling-induced channel dephosphorylation. S742E/S747E double mutant channels are constitutively inactive and cannot be activated by cell swelling. S742E and S747E mutant channels were fully active in the absence of GCK-3 and were inactive when coexpressed with the kinase. Both channels responded to cell volume changes. However, the S747E mutant channel activated and inactivated in response to cell swelling and shrinkage, respectively, much more slowly than either wild-type or S742E mutant channels. Slower activation and inactivation of S747E was not due to altered rates of dephosphorylation or dephosphorylation-dependent conformational changes. GCK-3 binds to the 175 amino acid inter-CBS linker domain. Coexpression of wild-type CLH-3b and GCK-3 with either wild-type or S742E linkers gave rise to similar channel activity and regulation. In contrast, coexpression with the S747E linker greatly enhanced basal channel activity and increased the rate of shrinkage-induced channel inactivation. Our findings suggest the intriguing possibility that the phosphorylation state of S742 in S747E mutant channels modulates GCK-3/channel interaction and hence channel phosphorylation. These results provide a foundation for further detailed studies of the role of multisite phosphorylation in regulating CLH-3b and GCK-3 activity. PMID:22357738

  16. Anks3 alters the sub-cellular localization of the Nek7 kinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, Haribaskar; Engel, Christina; Müller, Barbara

    2015-08-28

    Nephronophthisis (NPH) is an autosomal recessive cystic kidney disease, and a frequent cause of end-stage renal failure in children. To date, 17 NPH-associated gene products (NPHPs) have been identified. Most NPHPs participate in large multi-protein complexes that localize to the cilium and/or basal body; however, the precise composition of these complexes and their biological function remain largely unknown. We recently observed that the ankyrin repeat protein Anks3 interacts with the NPH family member Anks6. Both Anks3 and Anks6 form complexes with multiple other NPHPs, suggesting that both proteins function in similar or overlapping signaling pathways. Here, we show that Anks3,more » but not Anks6 interacted with the NIMA-related kinase Nek7, and was heavily modified in the presence of Nek7, resulting in an approximately 20 kD increase in molecular weight. Although mass spectrometry revealed increased serine and threonine phosphorylation of Anks3 primarily within the N-terminal ankyrin repeats also required for Nek7 interaction, the molecular weight increase occurred even in the presence of a kinase-dead Nek7 mutant, indicating that this modification was not caused by Nek7-dependent Anks3 phosphorylation. Furthermore, the Anks3 modification was specific for Nek7, and did not occur in the presence of Nek8. Importantly, Anks3 retained Nek7 in the cytoplasm, suggesting that, Nek7 triggers the modification of Anks3, which in turn prevents the nuclear localization of Nek7. - Highlights: • Anks3 interacted with Nek7 kinase, and was heavily modified in the presence of Nek7. • Anks3 N-terminal ankyrin repeats, but not SAM domain required for Nek7 interaction. • Nek7 increased Ser/Thr phosphorylation of Anks3 primarily within ankyrin domain. • Interaction with Anks3 led to cytoplasmic retention and nuclear exclusion of Nek7.« less

  17. Trovafloxacin potentiation of lipopolysaccharide-induced tumor necrosis factor release from RAW 264.7 cells requires extracellular signal-regulated kinase and c-Jun N-Terminal Kinase.

    PubMed

    Poulsen, Kyle L; Albee, Ryan P; Ganey, Patricia E; Roth, Robert A

    2014-05-01

    Trovafloxacin (TVX) is a fluoroquinolone antibiotic known to cause idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanism underlying this toxicity remains unknown. Previously, an animal model of IDILI in mice revealed that TVX synergizes with inflammatory stress from bacterial lipopolysaccharide (LPS) to produce a hepatotoxic interaction. The liver injury required prolongation of the appearance of tumor necrosis factor-α (TNF) in the plasma. The results presented here describe a model of TVX/LPS coexposure in RAW 264.7 cells acting as a surrogate for TNF-releasing cells in vivo. Pretreating cells with TVX for 2 hours before LPS addition led to increased TNF protein release into culture medium in a concentration- and time-dependent manner relative to cells treated with LPS or TVX alone. During the pretreatment period, TVX increased TNF mRNA, but this was less apparent when cells were exposed to TVX after LPS addition, suggesting that the pivotal signaling events that increase TNF expression occurred during the TVX pretreatment period. Indeed, TVX exposure increased activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase. Inhibition of either ERK or JNK decreased the TVX-mediated increase in TNF mRNA and LPS-induced TNF protein release, but p38 inhibition did not. These results demonstrated that the increased TNF appearance from TVX-LPS interaction in vivo can be reproduced in vitro and occurs in an ERK- and JNK-dependent manner.

  18. Tyrosine Phosphorylation of the Pioneer Transcription Factor FoxA1 Promotes Activation of Estrogen Signaling.

    PubMed

    Yamaguchi, Noritaka; Shibazaki, Misato; Yamada, Chiaki; Anzai, Erina; Morii, Mariko; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2017-06-01

    The pioneer transcription factor FoxA1 plays an important role in estrogen signaling by opening closed chromatin and promoting recruitment of the estrogen receptor to its target regions in DNA. In this study, we analyzed tyrosine phosphorylation of FoxA1 by the non-receptor-type tyrosine kinase c-Abl. c-Abl was shown to phosphorylate FoxA1 at multiple sites, especially in the N- and C-terminal regions. Tyr429 and Tyr464 were identified as the major phosphorylation sites in the FoxA1 C-terminal region. The phosphomimetic and nonphosphorylatable FoxA1 mutants were generated by glutamic acid and phenylalanine substitutions at these tyrosine residues, respectively. The phosphomimetic FoxA1 promoted the activation of estrogen signaling, whereas the nonphosphorylatable FoxA1 suppressed its activation. Stimulation with the epidermal growth factor, which activates c-Abl, enhanced the activation of estrogen signaling. In contrast, the c-Abl inhibitor imatinib reduced its activation. The phosphomimetic FoxA1 mutant showed a higher affinity toward histone H3 than the wild-type. These results suggest that c-Abl-mediated phosphorylation of FoxA1 promotes the activation of estrogen signaling by inducing its binding to histones. J. Cell. Biochem. 118: 1453-1461, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing

    PubMed Central

    Shinde, Mansi Y.; Sidoli, Simone; Kulej, Katarzyna; Mallory, Michael J.; Radens, Caleb M.; Reicherter, Amanda L.; Myers, Rebecca L.; Barash, Yoseph; Lynch, Kristen W.; Garcia, Benjamin A.; Klein, Peter S.

    2017-01-01

    Glycogen synthase kinase-3 (GSK-3) is a constitutively active, ubiquitously expressed protein kinase that regulates multiple signaling pathways. In vitro kinase assays and genetic and pharmacological manipulations of GSK-3 have identified more than 100 putative GSK-3 substrates in diverse cell types. Many more have been predicted on the basis of a recurrent GSK-3 consensus motif ((pS/pT)XXX(S/T)), but this prediction has not been tested by analyzing the GSK-3 phosphoproteome. Using stable isotope labeling of amino acids in culture (SILAC) and MS techniques to analyze the repertoire of GSK-3–dependent phosphorylation in mouse embryonic stem cells (ESCs), we found that ∼2.4% of (pS/pT)XXX(S/T) sites are phosphorylated in a GSK-3–dependent manner. A comparison of WT and Gsk3a;Gsk3b knock-out (Gsk3 DKO) ESCs revealed prominent GSK-3–dependent phosphorylation of multiple splicing factors and regulators of RNA biosynthesis as well as proteins that regulate transcription, translation, and cell division. Gsk3 DKO reduced phosphorylation of the splicing factors RBM8A, SRSF9, and PSF as well as the nucleolar proteins NPM1 and PHF6, and recombinant GSK-3β phosphorylated these proteins in vitro. RNA-Seq of WT and Gsk3 DKO ESCs identified ∼190 genes that are alternatively spliced in a GSK-3–dependent manner, supporting a broad role for GSK-3 in regulating alternative splicing. The MS data also identified posttranscriptional regulation of protein abundance by GSK-3, with ∼47 proteins (1.4%) whose levels increased and ∼78 (2.4%) whose levels decreased in the absence of GSK-3. This study provides the first unbiased analysis of the GSK-3 phosphoproteome and strong evidence that GSK-3 broadly regulates alternative splicing. PMID:28916722

  20. The molecular architecture of human N-acetylgalactosamine kinase.

    PubMed

    Thoden, James B; Holden, Hazel M

    2005-09-23

    Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.

  1. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis.

    PubMed

    Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A

    2005-01-01

    Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that

  2. Insulin induces alpha1B-adrenergic receptor phosphorylation and desensitization.

    PubMed

    García-Sáinz, J Adolfo; Romero-Avila, M Teresa; Molina-Muñoz, Tzindilú; Medina, Luz del Carmen

    2004-09-03

    The ability of insulin to induce alpha1B-adrenoceptor phosphorylation and desensitization was tested in two model systems: rat-1 cells that stably express alpha1B-adrenoceptors, through transfection, and endogenously express insulin receptors and DDT1 MF2 cells that endogenously express both receptors. Insulin induced concentration-dependent increases in the phosphorylation state of the adrenergic receptors in the two models with similar EC50 values (0.5-2 nM). The effect was rapid in the two systems but it was sustained in rat-1 cells and transient in DDT1 MF2 cells. In both cell lines, the insulin-mediated phosphorylation of alpha1B-adrenoceptors was blocked by wortmannin and LY 294002, and by staurosporine and bisindolylmaleimide I, indicating that the effect involved phosphoinositide 3-kinase and protein kinase C activities. The adrenoceptor phosphorylation induced by insulin was associated to desensitization as evidences by a diminished elevation of intracellular calcium in response to noradrenaline. Inhibitors of phosphoinositide 3-kinase and protein kinase C blocked the functional desensitization induced by insulin.

  3. Combining biophysical methods to analyze the disulfide bond in SH2 domain of C-terminal Src kinase.

    PubMed

    Liu, Dongsheng; Cowburn, David

    2016-01-01

    The Src Homology 2 (SH2) domain is a structurally conserved protein domain that typically binds to a phosphorylated tyrosine in a peptide motif from the target protein. The SH2 domain of C-terminal Src kinase (Csk) contains a single disulfide bond, which is unusual for most SH2 domains. Although the global motion of SH2 domain regulates Csk function, little is known about the relationship between the disulfide bond and binding of the ligand. In this study, we combined X-ray crystallography, solution NMR, and other biophysical methods to reveal the interaction network in Csk. Denaturation studies have shown that disulfide bond contributes significantly to the stability of SH2 domain, and crystal structures of the oxidized and C122S mutant showed minor conformational changes. We further investigated the binding of SH2 domain to a phosphorylated peptide from Csk-binding protein upon reduction and oxidation using both NMR and fluorescence approaches. This work employed NMR, X-ray cryptography, and other biophysical methods to study a disulfide bond in Csk SH2 domain. In addition, this work provides in-depth understanding of the structural dynamics of Csk SH2 domain.

  4. Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways.

    PubMed

    Shambharkar, Prashant B; Blonska, Marzenna; Pappu, Bhanu P; Li, Hongxiu; You, Yun; Sakurai, Hiroaki; Darnay, Bryant G; Hara, Hiromitsu; Penninger, Josef; Lin, Xin

    2007-04-04

    The IkappaB kinase (IKK) complex serves as the master regulator for the activation of NF-kappaB by various stimuli. It contains two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, IKKgamma/NEMO. The activation of IKK complex is dependent on the phosphorylation of IKKalpha/beta at its activation loop and the K63-linked ubiquitination of NEMO. However, the molecular mechanism by which these inducible modifications occur remains undefined. Here, we demonstrate that CARMA1, a key scaffold molecule, is essential to regulate NEMO ubiquitination upon T-cell receptor (TCR) stimulation. However, the phosphorylation of IKKalpha/beta activation loop is independent of CARMA1 or NEMO ubiquitination. Further, we provide evidence that TAK1 is activated and recruited to the synapses in a CARMA1-independent manner and mediate IKKalpha/beta phosphorylation. Thus, our study provides the biochemical and genetic evidence that phosphorylation of IKKalpha/beta and ubiquitination of NEMO are regulated by two distinct pathways upon TCR stimulation.

  5. Inflammation kinase PKR phosphorylates α-synuclein and causes α-synuclein-dependent cell death.

    PubMed

    Reimer, Lasse; Vesterager, Louise Buur; Betzer, Cristine; Zheng, Jin; Nielsen, Lærke Dalsgaard; Kofoed, Rikke Hahn; Lassen, Louise Berkhoudt; Bølcho, Ulrik; Paludan, Søren Riis; Fog, Karina; Jensen, Poul Henning

    2018-07-01

    Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy comprise a group of neurodegenerative diseases termed synucleinopathies. Synucleinopathie are, characterized by presence of inclusion bodies in degenerating brain cells which contain aggregated α-synuclein phosphorylated on Ser129. Although the inflammation-associated serine-threonine kinase, PKR (EIF2AK2), promotes cellular protection against infection, we demonstrate a pro-degenerative role of activated PKR in an α-synuclein-dependent cell model of multiple system atrophy, where inhibition and silencing of PKR decrease cellular degeneration. In vitro phosphorylation demonstrates that PKR can directly bind and phosphorylate monomeric and filamenteous α-synuclein on Ser129. Inhibition and knockdown of PKR reduce Ser129 phosphorylation in different models (SH-SY5Y ASYN cells, OLN-AS7 cells, primary mouse hippocampal neurons, and acute brain slices), while overexpression of constitutively active PKR increases Ser129 α-syn phosphorylation. Treatment with pre-formed α-synuclein fibrils, proteostatic stress-promoting MG-132 and known PKR activators, herpes simplex virus-1-∆ICP34.5 and LPS, as well as PKR inducer, IFN-β-1b, lead to increased levels of phosphorylated Ser129 α-synuclein that is completely blocked by simultaneous PKR inhibition. These results reveal a direct link between PKR and the phosphorylation and toxicity of α-synuclein, and they support that neuroinflammatory processes play a role in modulating the pathogenicity of α-synuclein. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. The new indirubin derivative inhibitors of glycogen synthase kinase-3, 6-BIDECO and 6-BIMYEO, prevent tau phosphorylation and apoptosis induced by the inhibition of protein phosphatase-2A by okadaic acid in cultured neurons.

    PubMed

    Martin, Ludovic; Magnaudeix, Amandine; Wilson, Cornelia M; Yardin, Catherine; Terro, Faraj

    2011-11-01

    Alterations in glycogen synthase kinase-3β (GSK3β) and protein phosphatase-2A (PP2A) have been proposed to be involved in the abnormal tau phosphorylation and aggregation linked to Alzheimer's disease (AD). Interconnections between GSK3β and PP2A signaling pathways are well established. Targeting tau kinases was proposed to represent a therapeutic strategy for AD. However, which tau kinases should be blocked and to what extent, keeping in mind that kinases have physiological roles? Because most kinase inhibitors are relatively specific and many of them interfere with the cell cycle, it is necessary to develop more specific tau kinase inhibitors devoid of cell toxicity. Here, we used the PP2A inhibition by okadaic acid (OKA) in primary cultured cortical neurons as an in vitro model of increased tau phosphorylation and apoptosis. We tested the effects of two newly characterized indirubin derivative inhibitors of GSK3, 6-BIDECO (6-bromoindirubin-3'-[O-(N,N-diethylcarbamyl)-oxime] and 6-BIMYEO (6-bromoindirubin-3'-[O-(2-morpholin-1-ylethyl)-oxime] hydrochloride) on OKA-induced tau phosphorylation and neuronal apoptosis. Both compounds exhibit higher selectivity toward GSK3 compared with other tau kinases (for 6-BIDECO, IC50 is 0.03 μM for GSK3, >10 μM for CDK1, and 10 μM for CDK5; for 6-BIMYEO, IC50 is 0.11 μM for GSK3, 1.8 μM for CDK1, and 0.9 μM for CDK5). We show that 6-BIDECO and 6-BIMYEO used at micromolar concentrations are not neurotoxic and potently reversed tau phosphorylation and apoptosis induced by OKA. The neuroprotection by these compounds should be further validated in animal models of AD. Copyright © 2011 Wiley-Liss, Inc.

  7. Eukaryotic-like Ser/Thr Protein Kinases SpkC/F/K Are Involved in Phosphorylation of GroES in the Cyanobacterium Synechocystis

    PubMed Central

    Zorina, Anna; Stepanchenko, Natalia; Novikova, Galina V.; Sinetova, Maria; Panichkin, Vladimir B.; Moshkov, Igor E.; Zinchenko, Vladislav V.; Shestakov, Sergey V.; Suzuki, Iwane; Murata, Norio; Los, Dmitry A.

    2011-01-01

    Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES. PMID:21551175

  8. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  9. Decreased glucagon responsiveness by bile acids: a role for protein kinase Calpha and glucagon receptor phosphorylation.

    PubMed

    Ikegami, Tadashi; Krilov, Lada; Meng, Jianping; Patel, Bhumika; Chapin-Kennedy, Kelli; Bouscarel, Bernard

    2006-11-01

    Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA. Desensitization was evaluated by measuring adenylyl cyclase activity. Receptor phosphorylation was assayed by metabolic labeling with [gamma-(32)P] ATP. Protein kinase C (PKC) translocation and activation was visualized by fluorescence microscopy. CDCA decreased cAMP production induced by glucagon in a dose-dependent manner without affecting cAMP synthesis through stimulation of either stimulatory GTP-binding protein (Gs) by NaF or adenylyl cyclase by forskolin. The CDCA-induced inhibition of adenylyl cyclase activity was potentiated by the phosphatase inhibitor, okadaic acid. The desensitizing effect of CDCA was bile acid-specific and was significantly reduced in the presence of PKC inhibitors and after PKC down-regulation by phorbol 12-myristate 13-acetate. CDCA increased glucagon receptor phosphorylation more than 3-fold at concentrations as low as 25 mum. Furthermore, CDCA significantly stimulated human recombinant PKCalpha autophosphorylation in vitro, as well as PKCalpha translocation to the plasma membrane and phosphorylation in vivo at concentrations as low as 25 mum. CDCA also stimulated PKCdelta translocation to the perinuclear region. Activated PKCalpha, PKCzeta, and to a lesser extent, PKCdelta, phosphorylated the glucagon receptor in vitro. This study demonstrates that certain bile acids, such as CDCA, stimulate phosphorylation and heterologous desensitization of the glucagon receptor, involving at least PKCalpha activation.

  10. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura

    2015-01-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. PMID:25986610

  11. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors.

    PubMed

    Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho

    2005-12-01

    The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.

  12. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    PubMed

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation. © 2015 International Society for Neurochemistry.

  13. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    PubMed

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.

  14. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  15. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    PubMed Central

    Wu, Chunlai; Daniels, Richard W; DiAntonio, Aaron

    2007-01-01

    Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK). To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses. PMID:17697379

  17. Multiple Protein Kinases Determine the Phosphorylated State of the Small Heat Shock Protein, HSP27, in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Dokas, Linda A.; Malone, Amy M.; Williams, Frederick E.; Nauli, Surya M.; Messer, William S.

    2011-01-01

    In SH-SY5Y human neuroblastoma cells, the cholinergic agonist, carbachol, stimulates phosphorylation of the small heat shock protein 27 (HSP27). Carbachol increases phosphorylation of both Ser-82 and Ser-78 while the phorbol ester, phorbol-12, 13-dibutyrate (PDB) affects only Ser-82. Muscarinic receptor activation by carbachol was confirmed by sensitivity of Ser-82 phosphorylation to hyoscyamine with no effect of nicotine or bradykinin. This response to carbachol is partially reduced by inhibition of protein kinase C (PKC) with GF 109203X and p38 mitogen-activated protein kinase (MAPK) with SB 203580. In contrast, phosphorylation produced by PDB is completely reversed by GF 109203X or CID 755673, an inhibitor of PKD. Inhibition of phosphatidylinositol 3-kinase or Akt with LY 294002 or Akti-1/2 stimulates HSP27 phosphorylation while rapamycin, which inhibits mTORC1, does not. The stimulatory effect of Akti-1/2 is reversed by SB 203580 and correlates with increased p38 MAPK phosphorylation. SH-SY5Y cells differentiated with a low concentration of PDB and basic fibroblast growth factor to a more neuronal phenotype retain carbachol-, PDB- and Akti-1/2-responsive HSP27 phosphorylation. Immunofluorescence microscopy confirms increased HSP27 phosphorylation in response to carbachol or PDB. At cell margins, PDB causes f-actin to reorganize forming lamellipodial structures from which phospho-HSP27 is segregated. The resultant phenotypic change in cell morphology is dependent upon PKC, but not PKD, activity. The major conclusion from this study is that the phosphorylated state of HSP27 in SH-SY5Y cells results from integrated signaling involving PKC, p38 MAPK and Akt. PMID:21338617

  18. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta.

    PubMed

    Nishihara, Masahiro; Miura, Tetsuji; Miki, Takayuki; Sakamoto, Jun; Tanno, Masaya; Kobayashi, Hironori; Ikeda, Yoshihiro; Ohori, Katsuhiko; Takahashi, Akari; Shimamoto, Kazuaki

    2006-08-01

    The aim of this study was to determine whether erythropoietin (EPO) affords additional cardioprotection to the preconditioned myocardium by enhanced phosphorylation of Akt, STAT3, or glycogen synthase kinase-3beta (GSK-3 beta). Preconditioning (PC) with 5-min ischemia/5-min reperfusion and EPO (5,000 U/kg iv) reduced infarct size (as % of area at risk, %IS/AR) after 20-min ischemia in rat hearts in situ from 56.5 +/- 1.8% to 25.2 +/- 2.1% and to 36.2 +/- 2.8%, respectively. PC-induced protection was significantly inhibited by a protein kinase C inhibitor, chelerythrine (5 mg/kg), and slightly blunted by a phosphatidylinositol-3-kinase inhibitor, wortmannin (15 microg/kg). The opposite pattern of inhibition was observed for EPO-induced protection. The combination of PC and EPO further reduced %IS/AR to 8.9 +/- 1.9%, and this protection was inhibited by chelerythrine and wortmannin. The additive effects of PC and EPO on infarct size were mirrored by their effects on the level of phosphorylated GSK-3 beta at 5 min after reperfusion but not their effects on the level of phospho-Akt or phospho-STAT3. To mimic phosphorylation-induced inhibition of GSK-3 beta activity, SB-216763 (SB), a GSK-3 beta inhibitor, was administered before ischemia or 5 min before reperfusion. Infarct size was significantly reduced by preischemic injection (%IS/AR = 40.4 +/- 2.2% by 0.6 mg/kg SB and 34.0 +/- 1.8% by 1.2 mg/kg SB) and also by prereperfusion injection (%IS/AR = 32.0 +/- 2.0% by 1.2 mg/kg SB). These results suggest that EPO and PC afford additive infarct size-limiting effects by additive phosphorylation of GSK-3beta at the time of reperfusion by Akt-dependent and -independent mechanisms.

  19. Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration.

    PubMed

    Bianchi, Mariarita; De Lucchini, Stefania; Marin, Oriano; Turner, David L; Hanks, Steven K; Villa-Moruzzi, Emma

    2005-10-15

    In addition to tyrosine sites, FAK (focal adhesion kinase) is phosphorylated on multiple serine residues. In the present study, the regulation of two of these sites, Ser-722 (S1) and Ser-911 (S4), was investigated. Phosphorylation of S1 (but not S4) decreased in resuspended cells, and recovered during spreading on fibronectin, indicating adhesion-dependent regulation. GSK3 (glycogen synthase kinase 3) inhibitors decreased S1 phosphorylation, and siRNA (short interfering RNA) silencing indicated further the involvement of GSK3beta. Furthermore, GSK3beta was found to become activated during cell spreading on fibronectin, and to physically associate with FAK. S1 phosphorylation was observed to decrease in wounded cell monolayers, while GSK3beta underwent inactivation and later was observed to increase to the original level within 24 h. Direct phosphorylation of S1, requiring pre-phosphorylation of Ser-726 in the +4 position, was demonstrated using purified GSK3 and a synthetic peptide containing FAK residues 714-730. An inhibitory role for S1 phosphorylation in FAK signalling was indicated by findings that both alanine substitution for S1 and dephosphorylation of S1 by PP1 (serine/threonine protein phosphatase type-1) resulted in an increase in FAK kinase activity; likewise, this role was also shown by cell treatment with the GSK3 inhibitor LiCl. The inhibitory role was confirmed by the finding that cells expressing FAK with alanine substitution for S1 displayed improved cell spreading and faster migration in wound-healing and trans-well assays. Finally, the finding that S1 phosphorylation increased in cells treated with the PP1 inhibitor okadaic acid indicated targeting of this site by PP1. These results indicate an additional mechanism for regulation of FAK activity during cell spreading and migration, involving Ser-722 phosphorylation modulated through the competing actions of GSK3beta and PP1.

  20. Abl N-terminal Cap stabilization of SH3 domain dynamics†

    PubMed Central

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E.; Engen, John R.

    2008-01-01

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears important for locking the SH3/SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2-kinase linker, providing a unique assay to test NCap-induced stabilization of the SH3 domain in various constructs. The results showed that NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2-kinase linker. The stabilization effect was absent in constructs of just NCap + SH3 but was obvious when the SH2 domain and the SH2-kinase linker were present. These results suggest that interactions between NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases. PMID:18452309

  1. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex.

    PubMed

    Hiraga, Shin-Ichiro; Alvino, Gina M; Chang, Fujung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J; Weinreich, Michael; Raghuraman, M K; Donaldson, Anne D

    2014-02-15

    Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.

  2. Mechanism of Ribonuclease III Catalytic Regulation by Serine Phosphorylation

    NASA Astrophysics Data System (ADS)

    Gone, Swapna; Alfonso-Prieto, Mercedes; Paudyal, Samridhdi; Nicholson, Allen W.

    2016-05-01

    Ribonuclease III (RNase III) is a conserved, gene-regulatory bacterial endonuclease that cleaves double-helical structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control, reflective of its global regulatory functions. Escherichia coli (Ec) RNase III catalytic activity is known to increase during bacteriophage T7 infection, reflecting the expression of the phage-encoded protein kinase, T7PK. However, the mechanism of catalytic enhancement is unknown. This study shows that Ec-RNase III is phosphorylated on serine in vitro by purified T7PK, and identifies the targets as Ser33 and Ser34 in the N-terminal catalytic domain. Kinetic experiments reveal a 5-fold increase in kcat and a 1.4-fold decrease in Km following phosphorylation, providing a 7.4-fold increase in catalytic efficiency. Phosphorylation does not change the rate of substrate cleavage under single-turnover conditions, indicating that phosphorylation enhances product release, which also is the rate-limiting step in the steady-state. Molecular dynamics simulations provide a mechanism for facilitated product release, in which the Ser33 phosphomonoester forms a salt bridge with the Arg95 guanidinium group, thereby weakening RNase III engagement of product. The simulations also show why glutamic acid substitution at either serine does not confer enhancement, thus underscoring the specific requirement for a phosphomonoester.

  3. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance.

    PubMed

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2017-02-01

    Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.

  4. Characterization of a phorbol ester-stimulated S6 kinase from MDCK renal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, K.E.; Krebs, E.G.

    Increased phosphorylation of S6, a 40S ribosomal subunit protein, is observed in mammalian cells in response to growth factors and phorbol esters. The goal of this study was to identify the S6 kinase that is stimulated by phorbol ester treatment of MDCK cells. MDCK clone D1 cells express high levels of protein kinase C(PKC). PKC and S6 kinase activities were measured following DEAE-Sephacel fractionation of cytosol; this procedure separated the two kinase activities. When confluent MDCK-D1 cells were exposed to 100 nM phorbol 12-myristate 13-acetate (PMA), 95% of the total cellular PKC activity became associated with the particulate fraction withinmore » 1 hour. Cytosolic S6 kinase activity was maximal by 1 hour and then declined thereafter, preceding any detectable loss of total cellular PKC. The PMA-responsive S6 kinase was partially purified from MDCK-D1 cytosol by consecutive steps of DEAE-Sephacel, ammonium sulfate precipitation, Ultrogel AcA 34, heparin-agarose, and Ultrogel AcA 34. The partially-purified enzyme had an apparent molecular size of approximately 80 kDa. In addition to S6, the enzyme phosphorylated synthetic peptides based on the carboxyl terminal sequence of S6. S6 kinase activity utilized ATP but not GTP, and was inhibited by heparin, NaCl, and ..beta..-glycerophosphate. In conclusion, a phorbol ester-stimulated S6 kinase has been partially purified from an epithelial cell line. This kinase is distinct from PKC.« less

  5. Reperfusion kinase phosphorylation is essential but not sufficient in the mediation of pharmacological preconditioning: Characterisation in the bi-phasic profile of early and late protection.

    PubMed

    Bell, Robert M; Clark, James E; Hearse, David J; Shattock, Michael J

    2007-01-01

    Pharmacological preconditioning (PPC) triggers early (ePPC) and delayed protection (dPPC), occurring within 1 h or after 24 h following the preconditioning stimulus, respectively, through recruitment of protein kinase signalling. Angiotensin II (ATII) is a recognised trigger of PPC, recruiting kinases and transcription factors known to be involved in both phases of protection. Our objectives were to determine whether ATII is capable of triggering dPPC and whether recruitment of pro-survival kinases, Akt and extracellular signal-regulated kinase (ERK), following the injurious ischaemic insult is essential for the mediation of PPC. In a mouse Langendorff model of ischaemia/reperfusion injury, we undertook to determine whether ATII triggers both ePPC and dPPC. Western blot analysis was used to determine kinase phosphorylation at reperfusion, and kinase inhibitors wortmannin and PD98059 were used to ascertain the significance of kinase regulation. We demonstrated that ATII triggered PPC with attenuation of infarction at 1 and 24 h (19+/-4% and 25+/-4% versus control, 35+/-4% of risk zone, p < 0.05), consistent with the ePPC and dPPC time-course. This bi-phasic protection was associated with significant post-ischaemic phosphorylation of both Akt and ERK within the first 5 min of reperfusion. Akt and ERK phosphorylation was increased following ePPC by 4.5+/-0.5 and 1.9+/-0.6 fold, respectively (p < 0.001), and dPPC by 24+/-2.0 and 2.1+/-0.1 fold, respectively (p < 0.001). Both wortmannin and PD98059 administered during reperfusion ameliorated the phosphorylation of Akt and ERK and abrogated the resistance to infarction resulting from both ePPC and dPPC (33+/-3% and 35+/-4%, respectively, versus controls 33+/-4% and 33+/-5%, p = NS). There was no evidence of augmented phosphorylation of either p38 kinase or JNK at either time point. We demonstrate that PPC results in a clearly delineated time-course of bi-phasic protection against injurious ischemic injury that is

  6. Membrane depolarization-induced RhoA/Rho-associated kinase activation and sustained contraction of rat caudal arterial smooth muscle involves genistein-sensitive tyrosine phosphorylation

    PubMed Central

    Mita, Mitsuo; Tanaka, Hitoshi; Yanagihara, Hayato; Nakagawa, Jun-ichi; Hishinuma, Shigeru; Sutherland, Cindy; Walsh, Michael P.; Shoji, Masaru

    2013-01-01

    Rho-associated kinase (ROK) activation plays an important role in K+-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40). The present study investigated a potential role for tyrosine kinase activity in K+-induced RhoA activation and contraction. The non-selective tyrosine kinase inhibitor genistein, but not the src family tyrosine kinase inhibitor PP2, inhibited K+-induced sustained contraction (IC50 = 11.3 ± 2.4 µM). Genistein (10 µM) inhibited the K+-induced increase in myosin light chain (LC20) phosphorylation without affecting the Ca2+ transient. The tyrosine phosphatase inhibitor vanadate induced contraction that was reversed by genistein (IC50 = 6.5 ± 2.3 µM) and the ROK inhibitor Y-27632 (IC50 = 0.27 ± 0.04 µM). Vanadate also increased LC20 phosphorylation in a genistein- and Y-27632-dependent manner. K+ stimulation induced translocation of RhoA to the membrane, which was inhibited by genistein. Phosphorylation of MYPT1 (myosin-targeting subunit of myosin light chain phosphatase) was significantly increased at Thr855 and Thr697 by K+ stimulation in a genistein- and Y-27632-sensitive manner. Finally, K+ stimulation induced genistein-sensitive tyrosine phosphorylation of proteins of ∼55, 70 and 113 kDa. We conclude that a genistein-sensitive tyrosine kinase, activated by the membrane depolarization-induced increase in [Ca2+]i, is involved in the RhoA/ROK activation and sustained contraction induced by K+. Ca2+ sensitization, myosin light chain phosphatase, RhoA, Rho-associated kinase, tyrosine kinase PMID:24133693

  7. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast

    PubMed Central

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R.; Drubin, David G.

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin–Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism. PMID:27068241

  8. Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation.

    PubMed

    Phadnis, Naina; Cipak, Lubos; Polakova, Silvia; Hyppa, Randy W; Cipakova, Ingrid; Anrather, Dorothea; Karvaiova, Lucia; Mechtler, Karl; Smith, Gerald R; Gregan, Juraj

    2015-05-01

    Proper meiotic chromosome segregation, essential for sexual reproduction, requires timely formation and removal of sister chromatid cohesion and crossing-over between homologs. Early in meiosis cohesins hold sisters together and also promote formation of DNA double-strand breaks, obligate precursors to crossovers. Later, cohesin cleavage allows chromosome segregation. We show that in fission yeast redundant casein kinase 1 homologs, Hhp1 and Hhp2, previously shown to regulate segregation via phosphorylation of the Rec8 cohesin subunit, are also required for high-level meiotic DNA breakage and recombination. Unexpectedly, these kinases also mediate phosphorylation of a different meiosis-specific cohesin subunit Rec11. This phosphorylation in turn leads to loading of linear element proteins Rec10 and Rec27, related to synaptonemal complex proteins of other species, and thereby promotes DNA breakage and recombination. Our results provide novel insights into the regulation of chromosomal features required for crossing-over and successful reproduction. The mammalian functional homolog of Rec11 (STAG3) is also phosphorylated during meiosis and appears to be required for fertility, indicating wide conservation of the meiotic events reported here.

  9. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    PubMed

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  10. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  11. C-terminal splicing of NTPDase2 provides distinctive catalytic properties, cellular distribution and enzyme regulation

    PubMed Central

    2004-01-01

    The present study provides functional characterization of alternative splicing of the NTPDase2 (ecto-nucleoside triphosphate diphosphohydrolase-2) involved in the regulation of extracellular nucleotide concentrations in a range of organ systems. A novel NTPDase2β isoform produced by alternative splicing of the rat NTPDase2 gene provides an extended intracellular C-terminus and distinguishes itself from NTPDase2α isoform in gaining several intracellular protein kinase CK2 (casein kinase 2) phosphorylation sites and losing the intracellular protein kinase C motif. The plasmids containing NTPDase2α or NTPDase2β cDNA were used to stably transfect Chinese-hamster ovary-S cells. Imaging studies showed that NTPDase2α was predominantly membrane-bound, whereas NTPDase2β had combined cell surface and intracellular localization. α and β isoforms showed variations in divalent cation dependence and substrate specificity for nucleoside-5′-triphosphates and nucleoside-5′-diphosphates. NTPDase2β exhibited reduced ATPase activity and no apparent ADPase activity. NTPDase2 isoforms demonstrated similar sensitivity to inhibitors such as suramin and pyridoxal phosphate-6-azophenyl-2′,4′-disulphonic acid, and differential regulation by protein kinases. NTPDase2β was up-regulated by intracellular protein kinase CK2 phosphorylation, whereas NTPDase2α activity was down-regulated by protein kinase C phosphorylation. The results demonstrate that alternative coding of the intracellular C-terminal domain contributes distinctive phenotypic variation with respect to extracellular nucleotide specificity, hydrolysis kinetics, protein kinase-dependent intracellular regulation and protein trafficking. These findings advance the molecular physiology of this enzyme system by characterizing the contribution of the C-terminal domain to many of the enzyme's signature properties. PMID:15362980

  12. Cyclin-dependent kinase regulates the length of S phase through TICRR/TRESLIN phosphorylation.

    PubMed

    Sansam, Courtney G; Goins, Duane; Siefert, Joseph C; Clowdus, Emily A; Sansam, Christopher L

    2015-03-01

    S-phase cyclin-dependent kinases (CDKs) stimulate replication initiation and accelerate progression through the replication timing program, but it is unknown which CDK substrates are responsible for these effects. CDK phosphorylation of the replication factor TICRR (TopBP1-interacting checkpoint and replication regulator)/TRESLIN is required for DNA replication. We show here that phosphorylated TICRR is limiting for S-phase progression. Overexpression of a TICRR mutant with phosphomimetic mutations at two key CDK-phosphorylated residues (TICRR(TESE)) stimulates DNA synthesis and shortens S phase by increasing replication initiation. This effect requires the TICRR region that is necessary for its interaction with MDM two-binding protein. Expression of TICRR(TESE) does not grossly alter the spatial organization of replication forks in the nucleus but does increase replication clusters and the number of replication forks within each cluster. In contrast to CDK hyperactivation, the acceleration of S-phase progression by TICRR(TESE) does not induce DNA damage. These results show that CDK can stimulate initiation and compress the replication timing program by phosphorylating a single protein, suggesting a simple mechanism by which S-phase length is controlled. © 2015 Sansam et al.; Published by Cold Spring Harbor Laboratory Press.

  13. A novel DYRK1A (dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer's disease: effect on Tau and amyloid pathologies in vitro.

    PubMed

    Coutadeur, Séverine; Benyamine, Hélène; Delalonde, Laurence; de Oliveira, Catherine; Leblond, Bertrand; Foucourt, Alicia; Besson, Thierry; Casagrande, Anne-Sophie; Taverne, Thierry; Girard, Angélique; Pando, Matthew P; Désiré, Laurent

    2015-05-01

    The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9-(2,4-dichlorophenylamino) thiazolo[5,4-f]quinazoline-2-carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over-expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation at multiple AD-relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ-induced Tau phosphorylation and DYRK1A-stimulated Aβ production. DYRK1A is thus as a key element of Aβ-mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high-potential therapy for AD and other Tau opathies. Inhibition of the dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is a new high-potential therapeutic approach for Alzheimer disease. Here we describe EHT 5372, a novel potent and selective DYRK1A inhibitor. EHT 5372 inhibits DYRK1A-induced Tau phosphorylation, Aβ production and Aβ effects on phospho-Tau, including Tau aggregation. © 2014 International Society for Neurochemistry.

  14. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent proteinmore » kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.« less

  15. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  16. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a beta1 integrin viability signaling pathway.

    PubMed

    Nho, Richard Seonghun; Xia, Hong; Kahm, Judy; Kleidon, Jill; Diebold, Deanna; Henke, Craig A

    2005-07-15

    A beta1 integrin phosphatidylinositol 3-kinase/Akt pathway regulates fibroblast survival in collagen matrices. When fibroblasts attach to collagen, Akt becomes phosphorylated, providing a survival signal. In contrast, in response to mechanical forces generated during collagen contraction, Akt is dephosphorylated and fibroblasts undergo apoptosis. The kinase(s) responsible for regulating Akt phosphorylation in response to matrix-derived mechanical signals are unclear. Integrin-linked kinase (ILK) is associated with the beta1 integrin in the focal adhesion complex and as such is a candidate kinase that may regulate Akt phosphorylation and fibroblast viability. Nevertheless, there is no direct evidence that matrix-derived mechanical forces regulate cell viability by modulating ILK activity. Here, we show that ILK activity decreased in response to collagen matrix contraction, which correlated with Akt dephosphorylation and induction of fibroblast apoptosis. In contrast, enforced activation of beta1 integrin by activating antibody preserved ILK and Akt activity during collagen matrix contraction, and this is associated with protection from collagen contraction-induced apoptosis. Knock-down of ILK by small, interfering RNA (siRNA) attenuated Akt phosphorylation in response to ligation of beta1 integrin by collagen or activating antibody and enhanced fibroblast apoptosis in response to collagen contraction. Kinase dead ILK attenuated Akt phosphorylation and enhanced fibroblast apoptosis, whereas hyperactive and wild type ILK augmented Akt phosphorylation and protected fibroblasts from apoptosis. Constitutively active Akt preserved Akt activity and rescued ILK siRNA-treated fibroblasts from collagen contraction-induced apoptosis. These data establish that matrix-derived mechanical forces sensed by beta1 integrin are capable of modulating ILK activity which regulates fibroblast viability via an Akt-dependent mechanism.

  17. The c-Jun N-terminal kinase pathway is critical for cell transformation by the latent membrane protein 1 of Epstein-Barr virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutz, Helmut; Reisbach, Gilbert; Schultheiss, Ute

    The latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) transforms cells activating signal transduction pathways such as NF-{kappa}B, PI3-kinase, or c-Jun N-terminal kinase (JNK). Here, we investigated the functional role of the LMP1-induced JNK pathway in cell transformation. Expression of a novel dominant-negative JNK1 allele caused a block of proliferation in LMP1-transformed Rat1 fibroblasts. The JNK-specific inhibitor SP600125 reproduced this effect in Rat1-LMP1 cells and efficiently interfered with proliferation of EBV-transformed lymphoblastoid cells (LCLs). Inhibition of the LMP1-induced JNK pathway in LCLs caused the downregulation of c-Jun and Cdc2, the essential G2/M cell cycle kinase, which was accompanied bymore » a cell cycle arrest of LCLs at G2/M phase transition. Moreover, SP600125 retarded tumor growth of LCLs in a xenograft model in SCID mice. Our data support a critical role of the LMP1-induced JNK pathway for proliferation of LMP1-transformed cells and characterize JNK as a potential target for intervention against EBV-induced malignancies.« less

  18. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Mosquito Protein Kinase G Phosphorylates Flavivirus NS5 and Alters Flight Behavior in Aedes aegypti and Anopheles gambiae

    PubMed Central

    Keating, Julie A.; Bhattacharya, Dipankar; Rund, Samuel S.C.; Hoover, Spencer; Dasgupta, Ranjit; Lee, Samuel J.; Duffield, Giles E.

    2013-01-01

    Abstract Many arboviral proteins are phosphorylated in infected mammalian cells, but it is unknown if the same phosphorylation events occur when insects are similarly infected. One of the mammalian kinases responsible for phosphorylation, protein kinase G (PKG), has been implicated in the behavior of multiple nonvector insects, but is unstudied in mosquitoes. PKG from Aedes aegypti was cloned, and phosphorylation of specific viral sites was monitored by mass spectrometry from biochemical and cell culture experiments. PKG from Aedes mosquitoes is able to phosphorylate dengue nonstructural protein 5 (NS5) at specific sites in cell culture and cell-free systems and autophosphorylates its own regulatory domain in a cell-free system. Injecting Aedes aegypti and Anopheles gambiae mosquitoes with a pharmacological PKG activator resulted in increased Aedes wing activity during periods of their natural diurnal/crepuscular activity and increased Anopheles nocturnal locomotor/flight activity. Thus, perturbation of the PKG signaling pathway in mosquitoes alters flight behavior. The demonstrated effect of PKG alterations is consistent with a viral PKG substrate triggering increased PKG activity. This increased PKG activity could be the mechanism by which dengue virus increases flight behavior and possibly facilitates transmission. Whether or not PKG is part of the mechanism by which dengue increases flight behavior, this report is the first to show PKG can modulate behavior in hematophagous disease vectors. PMID:23930976

  20. Involvement of 4E-BP phosphorylation in embryonic development of the silkworm, Bombyx mori.

    PubMed

    Gu, Shi-Hong; Young, Shun-Chieh; Tsai, Wen-Hsien; Lin, Ju-Ling; Lin, Pei-Ling

    2011-07-01

    Phosphorylation of the translational repressor 4E-binding protein (4E-BP) plays a critical role in regulating the overall translation levels in cells. In the present study, we investigated 4E-BP phosphorylation of Bombyx mori eggs by an immunoblot analysis of a conserved phospho-specific antibody to 4E-BP and demonstrated its role during embryonic development. When HCl treatment was applied to diapause-destined eggs at 20 h after oviposition, a dramatic increase in the phosphorylation of 4E-BP occurred 5 min after treatment with HCl, and high phosphorylation levels were maintained throughout embryonic stage in HCl-treated eggs compared to those in diapause (control) eggs. When HCl treatment was applied to diapause eggs on day 10 after oviposition, no dramatic activation in 4E-BP phosphorylation occurred, indicating stage-specific effects of HCl treatment. In both non-diapause eggs and eggs whose diapause had been terminated by chilling of diapausing eggs at 5°C for 70 days and then were transferred to 25°C, high phosphorylation levels of 4E-BP were also detected. Moreover, 4E-BP phosphorylation dramatically increased when dechorionated eggs were incubated in medium. The addition of rapamycin, a specific inhibitor of mammalian target of rapamycin (TOR) signaling, and LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, but not the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor, U0126, dose-dependently inhibited 4E-BP phosphorylation in dechorionated eggs, indicating that PI3K/TOR signaling is an upstream signaling event involved in 4E-BP phosphorylation. Examination of 4E-BP gene expression levels showed no differences between treatments with HCl and water in the first hour after treatment, indicating that changes in phosphorylation of 4E-BP upon HCl treatment are mainly regulated at the post-transcriptional level. In addition, MAPK pathways and glycogen synthase kinase (GSK)-3β phosphorylation were

  1. Activation of MTK1/MEKK4 by GADD45 through induced N-C dissociation and dimerization-mediated trans autophosphorylation of the MTK1 kinase domain.

    PubMed

    Miyake, Zenshi; Takekawa, Mutsuhiro; Ge, Qingyuan; Saito, Haruo

    2007-04-01

    The mitogen-activated protein kinase (MAPK) module, composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK), is a cellular signaling device that is conserved throughout the eukaryotic world. In mammalian cells, various extracellular stresses activate two major subfamilies of MAPKs, namely, the Jun N-terminal kinases and the p38/stress-activated MAPK (SAPK). MTK1 (also called MEKK4) is a stress-responsive MAPKKK that is bound to and activated by the stress-inducible GADD45 family of proteins (GADD45alpha/beta/gamma). Here, we dissected the molecular mechanism of MTK1 activation by GADD45 proteins. The MTK1 N terminus bound to its C-terminal segment, thereby inhibiting the C-terminal kinase domain. This N-C interaction was disrupted by the binding of GADD45 to the MTK1 N-terminal GADD45-binding site. GADD45 binding also induced MTK1 dimerization via a dimerization domain containing a coiled-coil motif, which is essential for the trans autophosphorylation of MTK1 at Thr-1493 in the kinase activation loop. An MTK1 alanine substitution mutant at Thr-1493 has a severely reduced activity. Thus, we conclude that GADD45 binding induces MTK1 N-C dissociation, dimerization, and autophosphorylation at Thr-1493, leading to the activation of the kinase catalytic domain. Constitutively active MTK1 mutants induced the same events, but in the absence of GADD45.

  2. Abl N-terminal cap stabilization of SH3 domain dynamics.

    PubMed

    Chen, Shugui; Dumitrescu, Teodora Pene; Smithgall, Thomas E; Engen, John R

    2008-05-27

    Crystal structures and other biochemical data indicate that the N-terminal cap (NCap) region of the Abelson tyrosine kinase (c-Abl) is important for maintaining the downregulated conformation of the kinase domain. The exact contributions that the NCap makes in stabilizing the various intramolecular interactions within c-Abl are less clear. While the NCap appears to be important for locking the SH3 and SH2 domains to the back of the kinase domain, there may be other more subtle elements of regulation. Hydrogen exchange (HX) and mass spectrometry (MS) were used to determine if the NCap contributes to intramolecular interactions involving the Abl SH3 domain. Under physiological conditions, the Abl SH3 domain underwent partial unfolding and its unfolding half-life was slowed during binding to the SH2 kinase linker, providing a unique assay for testing NCap-induced stabilization of the SH3 domain in various constructs. The results showed that the NCap stabilizes the dynamics of the SH3 domain in certain constructs but does not increase the relative affinity of the SH3 domain for the native SH2 kinase linker. The stabilization effect was absent in constructs of just the NCap and SH3 but was obvious when the SH2 domain and the SH2 kinase linker were present. These results suggest that interactions between the NCap and the SH3 domain can contribute to c-Abl stabilization in constructs that contain at least the SH2 domain, an effect that may partially compensate for the absence of the negative regulatory C-terminal tail found in the related Src family of kinases.

  3. Heat-shock-specific phosphorylation and transcriptional activity of RNA polymerase II.

    PubMed

    Egyházi, E; Ossoinak, A; Lee, J M; Greenleaf, A L; Mäkelä, T P; Pigon, A

    1998-07-10

    The carboxyl-terminal domain (CTD) of the largest RNA polymerase II (pol II) subunit is a target for extensive phosphorylation in vivo. Using in vitro kinase assays it was found that several different protein kinases can phosphorylate the CTD including the transcription factor IIH-associated CDK-activating CDK7 kinase (R. Roy, J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. H. Hoeijmakers, and J. M. Egly, 1994, Cell 79, 1093-1101). Here we report the colocalization of CDK7 and the phosphorylated form of CTD (phosphoCTD) to actively transcribing genes in intact salivary gland cells of Chironomus tentans. Following a heat-shock treatment, both CDK7 and pol II staining disappear from non-heat-shock genes concomitantly with the abolishment of transcriptional activity of these genes. In contrast, the actively transcribing heat-shock genes, manifested as chromosomal puff 5C on chromosome IV (IV-5C), stain intensely for phosphoCTD, but are devoid of CDK7. Furthermore, the staining of puff IV-5C with anti-PCTD antibodies was not detectably influenced by the TFIIH kinase and transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Following heat-shock treatment, the transcription of non-heat-shock genes was completely eliminated, while newly formed heat-shock gene transcripts emerged in a DRB-resistant manner. Thus, heat shock in these cells induces a rapid clearance of CDK7 from the non-heat-shock genes, indicating a lack of involvement of CDK7 in the induction and function of the heat-induced genes. The results taken together suggest the existence of heat-shock-specific CTD phosphorylation in living cells. This phosphorylation is resistant to DRB treatment, suggesting that not only phosphorylation but also transcription of heat-shock genes is DRB resistant and that CDK7 in heat shock cells is not associated with TFIIH.

  4. Positive regulation of deoxycytidine kinase activity by phosphorylation of Ser-74 in B-cell chronic lymphocytic leukaemia lymphocytes.

    PubMed

    Smal, Caroline; Van Den Neste, Eric; Maerevoet, Marie; Poiré, Xavier; Théate, Ivan; Bontemps, Françoise

    2007-08-08

    Deoxycytidine kinase (dCK) activates several antileukaemic nucleoside analogues. We have recently reported that the activity of dCK, overexpressed in HEK 293T cells, correlates with its phosphorylation level on Ser-74. Here, we show that dCK from B-cell chronic lymphocytic leukaemia (B-CLL) lymphocytes can be detected by an anti-phospho-Ser-74 antibody and that interindividual variability in dCK activity is related to its phosphorylation level on Ser-74. Moreover, pharmacological intervention modified Ser-74 phosphorylation, in close parallel with changes in dCK activity. These results suggest that activation of dCK via phosphorylation of Ser-74 might constitute a new therapeutic strategy to enhance activation and efficacy of nucleoside analogues.

  5. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats

    PubMed Central

    Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang

    2013-01-01

    Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period. PMID:24381640

  6. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats.

    PubMed

    Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang; Hsieh, Ching-Liang

    2013-01-01

    Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1 β , IL-6, and tumor necrosis factor- α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.

  7. An N-terminally truncated form of cyclic GMP-dependent protein kinase Iα (PKG Iα) is monomeric and autoinhibited and provides a model for activation.

    PubMed

    Moon, Thomas M; Sheehe, Jessica L; Nukareddy, Praveena; Nausch, Lydia W; Wohlfahrt, Jessica; Matthews, Dwight E; Blumenthal, Donald K; Dostmann, Wolfgang R

    2018-05-25

    The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. TNFα- and IKKβ-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKγ and NF-κB activation

    PubMed Central

    Bonif, Marianne; Meuwis, Marie-Alice; Close, Pierre; Benoit, Valérie; Heyninck, Karen; Chapelle, Jean-Paul; Bours, Vincent; Merville, Marie-Paule; Piette, Jacques; Beyaert, Rudi; Chariot, Alain

    2005-01-01

    Pro-inflammatory cytokines trigger signalling cascades leading to NF-κB (nuclear factor-κB)-dependent gene expression through IKK [IκB (inhibitory κB) kinase]-dependent phosphorylation and subsequent degradation of the IκB proteins and via induced phosphorylation of p65. These signalling pathways rely on sequentially activated kinases which are assembled by essential and non-enzymatic scaffold proteins into functional complexes. Here, we show that the pro-inflammatory cytokine TNFα (tumour necrosis factor α) promotes TANK [TRAF (TNF receptor-associated factor) family member associated NF-κB activator] recruitment to the IKK complex via a newly characterized C-terminal zinc finger. Moreover, we show that TANK is phosphorylated by IKKβ upon TNFα stimulation and that this modification negatively regulates TANK binding to NEMO (NF-κB essential modulator). Interestingly, reduced TANK expression by RNA interference attenuates TNFα-mediated induction of a subset of NF-κB target genes through decreased p65 transactivation potential. Therefore the scaffold protein TANK is required for the cellular response to TNFα by connecting upstream signalling molecules to the IKKs and p65, and its subsequent IKKβ-mediated phosphorylation may be a mechanism to terminate the TANK-dependent wave of NF-κB activation. PMID:16336209

  9. p38α phosphorylates serine 258 within the cytoplasmic domain of tissue factor and prevents its incorporation into cell-derived microparticles.

    PubMed

    Ettelaie, Camille; Elkeeb, Azza M; Maraveyas, Anthony; Collier, Mary Elizabeth W

    2013-03-01

    We previously showed that the phosphorylation of Ser253 within the cytoplasmic domain of human tissue factor (TF) initiates the incorporation and release of this protein into cell-derived microparticles. Furthermore, subsequent phosphorylation of Ser258 terminates this process. However, the identity of the kinase responsible for the phosphorylation of Ser258 and mode of action of this enzyme remain unknown. In this study, p38α was identified as the proline-directed kinase capable of phosphorylating Ser258 specifically, and without any detectable activity towards Ser253. Furthermore, using synthetic peptides, it was shown that the Km for the reaction decreased by approximately 10 fold on substitution of Ser253 with phospho-Ser253. Either inhibition of p38 using SB202190 or knockdown of p38α expression in coronary artery endothelial cells overexpressing wild-type TF, resulted in decreased phosphorylation of Ser258, following activation of cells with PAR2-agonist peptide (PAR2-AP). In agreement with our previous data, inhibition of phosphorylation of this residue maintained the release of TF. Activation of PAR2 in cells transfected to overexpress TF, resulted in two separate peaks of p38 activity at approximately 40 and 120 min post-activation. Furthermore, overexpression of Ala253-substituted TF enhanced the second p38 activation peak. However, the second peak was absent in cells devoid of TF or in cells overexpressing the Asp253-substituted TF. Our data clearly identifies p38α as a kinase capable of phosphorylating Ser258 within the cytoplasmic domain of TF. Moreover, it appears that the presence of TF within the cells regulates the late activation of p38 and consequently the termination of TF release into microparticles. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.

    PubMed

    Li, Ran; Yuan, Fengjie; Fu, Wan; Zhang, Luyao; Zhang, Nan; Wang, Yanan; Ma, Ke; Li, Xue; Wang, Lina; Zhu, Wei-Guo; Zhao, Ying

    2017-02-17

    The serine/threonine kinase Unc-51-like kinase-1 (Ulk1) is thought to be essential for induction of autophagy, an intracellular bulk degradation process that is activated by various stresses. Although several proteins have been suggested as Ulk1 substrates during autophagic process, it still remains largely unknown about Ulk1's physiological substrates. Here, by performing in vitro and in vivo phosphorylation assay, we report that the co-chaperone cell division cycle protein 37 (Cdc37) is a Ulk1 substrate. Ulk1-mediated phosphorylation of Ser-339 in Cdc37 compromised the recruitment of client kinases to a complex comprising Cdc37 and heat shock protein 90 (Hsp90) but only modestly affected Cdc37 binding to Hsp90. Because the recruitment of protein kinase clients to the Hsp90 complex is essential for their stability and functions, Ser-339 phosphorylation of Cdc37 disrupts its ability as a co-chaperone to coordinate Hsp90. Hsp90 inhibitors are cancer chemotherapeutic agents by inducing depletion of clients, many of which are oncogenes. Upon treatment with an Hsp90 inhibitor in cancer cells, Ulk1 promoted the degradation of Hsp90-Cdc37 client kinases, resulting in increased cellular sensitivity to Hsp90 inhibitors. Thus, our study provides evidence for an anti-proliferative role of Ulk1 in response to Hsp90 inhibition in cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.

    PubMed

    Saunders, P P; Tan, M T; Spindler, C D; Robins, R K

    1989-12-01

    The growth inhibitory activity of 3-deazaguanosine toward a mutant line (TGR-3) of Chinese hamster ovary cells deficient in hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) was substantially reversed by the simultaneous addition of nicotinamide riboside. The activities of most other ribonucleoside analogues tested were unaffected. The formation of cellular 3-deazaGMP and 3-deazaGTP from the ribonucleoside analogue, as measured by high-pressure liquid chromatography, was inhibited by the presence of nicotinamide riboside. The inhibition was dependent on concentration of 3-deazaguanosine and could also be demonstrated by following the metabolism of 3-deazaguanosine, labeled with 14C in the ribose moiety, to [14C]3-deazaGTP. In the presence of 100 microM nicotinamide riboside formation of the labeled triphosphate derivative of 3-deazaguanosine was undetectable. A 3-deazaguanosine phosphorylating activity was separated from other cellular kinases by DEAE-cellulose chromatography. Contaminating purine nucleoside phosphorylase (EC 2.4.2.1) was subsequently removed by sucrose density gradient centrifugation. The resulting enzyme preparation demonstrated the greatest activities with nicotinamide riboside and 3-deazaguanosine and, in addition, could also phosphorylate tiazofurin and guanosine to lesser, but significant, degrees. These and other observations suggest that 3-deazaguanosine, and perhaps other agents such as tiazofurin, may, at least in part, be phosphorylated by a nicotinamide ribonucleoside kinase in these cells. If so, it is possible that the activity of this agent in other types of cells in vivo could be dependent upon the presence of this enzyme and that it could be influenced by cellular concentrations of the natural pyridine nucleoside.

  12. Activation of MTK1/MEKK4 by GADD45 through Induced N-C Dissociation and Dimerization-Mediated trans Autophosphorylation of the MTK1 Kinase Domain▿ †

    PubMed Central

    Miyake, Zenshi; Takekawa, Mutsuhiro; Ge, Qingyuan; Saito, Haruo

    2007-01-01

    The mitogen-activated protein kinase (MAPK) module, composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK), is a cellular signaling device that is conserved throughout the eukaryotic world. In mammalian cells, various extracellular stresses activate two major subfamilies of MAPKs, namely, the Jun N-terminal kinases and the p38/stress-activated MAPK (SAPK). MTK1 (also called MEKK4) is a stress-responsive MAPKKK that is bound to and activated by the stress-inducible GADD45 family of proteins (GADD45α/β/γ). Here, we dissected the molecular mechanism of MTK1 activation by GADD45 proteins. The MTK1 N terminus bound to its C-terminal segment, thereby inhibiting the C-terminal kinase domain. This N-C interaction was disrupted by the binding of GADD45 to the MTK1 N-terminal GADD45-binding site. GADD45 binding also induced MTK1 dimerization via a dimerization domain containing a coiled-coil motif, which is essential for the trans autophosphorylation of MTK1 at Thr-1493 in the kinase activation loop. An MTK1 alanine substitution mutant at Thr-1493 has a severely reduced activity. Thus, we conclude that GADD45 binding induces MTK1 N-C dissociation, dimerization, and autophosphorylation at Thr-1493, leading to the activation of the kinase catalytic domain. Constitutively active MTK1 mutants induced the same events, but in the absence of GADD45. PMID:17242196

  13. Site-directed spin labeling reveals a conformational switch in the phosphorylation domain of smooth muscle myosin.

    PubMed

    Nelson, Wendy D; Blakely, Sarah E; Nesmelov, Yuri E; Thomas, David D

    2005-03-15

    We have used site-directed spin labeling and EPR spectroscopy to detect structural changes within the regulatory light chain (RLC) of smooth muscle myosin upon phosphorylation. Smooth muscle contraction is activated by phosphorylation of S19 on RLC, but the structural basis of this process is unknown. There is no crystal structure containing a phosphorylated RLC, and there is no crystal structure for the N-terminal region of any RLC. Therefore, we have prepared single-Cys mutations throughout RLC, exchanged each mutant onto smooth muscle heavy meromyosin, verified normal regulatory function, and used EPR to determine dynamics and solvent accessibility at each site. A survey of spin-label sites throughout the RLC revealed that only the N-terminal region (first 24 aa) shows a significant change in dynamics upon phosphorylation, with most of the first 17 residues showing an increase in rotational amplitude. Therefore, we focused on this N-terminal region. Additional structural information was obtained from the pattern of oxygen accessibility along the sequence. In the absence of phosphorylation, little or no periodicity was observed, suggesting a lack of secondary structural order in this region. However, phosphorylation induced a strong helical pattern (3.6-residue periodicity) in the first 17 residues, while increasing accessibility throughout the first 24 residues. We have identified a domain within RLC, the N-terminal phosphorylation domain, in which phosphorylation increases helical order, internal dynamics, and accessibility. These results support a model in which this disorder-to-order transition within the phosphorylation domain results in decreased head-head interactions, activating myosin in smooth muscle.

  14. Analysis of phosphorylated proteins and inhibition of kinase activity during Giardia intestinalis excystation.

    PubMed

    Alvarado, Magda E; Wasserman, Moisés

    2010-03-01

    The parasite Giardia intestinalis undergoes a differentiation process that allows it to infect its mammal host. That process is excystation. We examined the importance of protein phosphorylation during the passage from cyst to trophozoite. Cysts obtained from patients with giardiasis were excysted in vitro and the soluble cytoplasmic proteins were analyzed during the three phases of the process, using a specific staining for phosphoproteins. We found two phosphorylated proteins and identified them with MALDI-TOF as 14-3-3 and Hsp70. Modifications were detected in both proteins, which could indicate a role in differentiation of the parasite. In addition, the inhibition of serine-threonine kinases during excystation specifically affected the cytokinesis of the excyzoite, thus inhibiting the completion of trophozoite formation. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Phosphorylation of uridine and cytidine by uridine-cytidine kinase.

    PubMed

    Qian, Yahui; Ding, Qingbao; Li, Yanyu; Zou, Zhi; Yan, Bingkun; Ou, Ling

    2014-10-20

    Uridine 5'-monophosphate (5'-UMP) and cytidine 5'-monophosphate (5'-CMP) were biosynthesized by recombinant uridine-cytidine kinase (UCK) and acetate kinase (ACK). The ack and uck genes from Escherichia coli K12 and the uck1, uck2 and ack genes from Lactobacillus bulgaricus ATCC 11842 were cloned and inserted into the plasmid pET-28a. All of the recombinant E. coli strains were capable of overexpressing UCK and ACK, which catalyzed the reaction using guanosine 5'-triphosphate (GTP) as a phosphate intermediate that was regenerated by ACK from acetyl phosphate. The effect of several parameters, including the substrate concentration, the GTP concentration, the temperature and the reaction pH, were optimized. High efficiency was achieved if uridine or cytidine was phosphorylated by UCK encoded by uck from E. coli and ACK encoded by ack from L. bulgaricus. The maximum conversion yield of 5'-UMP and 5'-CMP was 97% at 37 °C and pH 7.5 when 30 mM uridine/cytidine and 0.5mM GTP in a total of 1 mL were used. In addition, the 5'-UMP and 5'-CMP products were very stable in the reaction system and did not undergo significant degradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling.

    PubMed

    Wrighton, Katharine H; Willis, Danielle; Long, Jianyin; Liu, Fang; Lin, Xia; Feng, Xin-Hua

    2006-12-15

    Transforming growth factor-beta (TGF-beta) controls a diverse set of cellular processes, and its canonical signaling is mediated via TGF-beta-induced phosphorylation of receptor-activated Smads (2 and 3) at the C-terminal SXS motif. We recently discovered that PPM1A can dephosphorylate Smad2/3 at the C-terminal SXS motif, implicating a critical role for phosphatases in regulating TGF-beta signaling. Smad2/3 activity is also regulated by phosphorylation in the linker region (and N terminus) by a variety of intracellular kinases, making it a critical platform for cross-talk between TGF-beta and other signaling pathways. Using a functional genomic approach, we identified the small C-terminal domain phosphatase 1 (SCP1) as a specific phosphatase for Smad2/3 dephosphorylation in the linker and N terminus. A catalytically inactive SCP1 mutant (dnSCP1) had no effect on Smad2/3 phosphorylation in vitro or in vivo. Of the other FCP/SCP family members SCP2 and SCP3, but not FCP1, could also dephosphorylate Smad2/3 in the linker/N terminus. Depletion of SCP1/2/3 enhanced Smad2/3 linker phosphorylation. SCP1 increased TGF-beta-induced transcriptional activity in agreement with the idea that phosphorylation in the Smad2/3 linker must be removed for a full transcriptional response. SCP1 overexpression also counteracts the inhibitory effect of epidermal growth factor on TGF-beta-induced p15 expression. Taken together, this work identifies the first example of a Smad2/3 linker phosphatase(s) and reveals an important new substrate for SCPs.

  17. Identification of Ski as a target for Aurora A kinase

    PubMed Central

    Mosquera, Jocelyn; Armisen, Ricardo; Zhao, Hong Ling; Rojas, Diego A.; Maldonado, Edio; Tapia, Julio C; Colombo, Alicia; Hayman, Michael J; Marcelain, Katherine

    2011-01-01

    Ski is a negative regulator of the transforming growth factor-β and other signalling pathways. The absence of SKI in mouse fibroblasts leads to chromosome segregation defects and genomic instability, suggesting a role for Ski during mitosis. At this stage, Ski is phosphorylated but to date little is known about the kinases involved in this process. Here, we show that Aurora A kinase is able to phosphorylate Ski in vitro. In vivo, Aurora A and Ski co-localized at the centrosomes and co-immunoprecipitated. Conversely, a C-terminal truncation mutant of Ski (SkiΔ491–728) lacking a coiled-coil domain, displayed decreased centrosomal localization. This mutant no longer co-immunoprecipitated with Aurora-A in vivo, but was still phosphorylated in vitro, indicating that the Ski-Aurora A interaction takes place at the centrosomes. These data identify Ski as a novel target of Aurora A and contribute to an understanding of the role of these proteins in the mitotic process. PMID:21600873

  18. Protein kinases: mechanisms and downstream targets in inflammation mediated obesity and insulin resistance

    PubMed Central

    Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K

    2016-01-01

    Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170

  19. Hsp90 N- and C-terminal double inhibition synergistically suppresses Bcr-Abl-positive human leukemia cells

    PubMed Central

    Chen, Xianling; Chen, Xiaole; Li, Ding; Fan, Yingjuan; Xu, Jianhua; Chen, Yuanzhong; Wu, Lixian

    2017-01-01

    Heat shock protein 90 (Hsp90) contains amino (N)–terminal domain, carboxyl(C)-terminal domain, and middle domains, which activate Hsp90 chaperone function cooperatively in tumor cells. One terminal occupancy might influence another terminal binding with inhibitor. The Bcr-Abl kinase is one of the Hsp90 clients implicated in the pathogenesis of chronic myeloid leukemia (CML). Present studies demonstrate that double inhibition of the N- and C-terminal termini can disrupt Hsp90 chaperone function synergistically, but not antagonistically, in Bcr-Abl-positive human leukemia cells. Furthermore, both the N-terminal inhibitor 17-AAG and the C-terminal inhibitor cisplatin (CP) have the capacity to suppress progenitor cells; however, only CP is able to inhibit leukemia stem cells (LSCs) significantly, which implies that the combinational treatment is able to suppress human leukemia in different mature states. PMID:28036294

  20. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Cheol-Hee; Department of Pharmacology, College of Medicine, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759; Lee, Byung-Hoon

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer MG132 induces the phosphorylation of GSK3{beta}{sup Ser9} and, to a lesser extent, of GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer MG132 induces dephosphorylation of p70S6K{sup Thr389} and phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 dephosphorylates GSK3{beta}{sup Ser9} and phosphorylates GSK3{beta}{sup Thr390}. Black-Right-Pointing-Pointer Inactivation of p38 phosphorylates p70S6K{sup Thr389} and increases the phosphorylation of p70S6K{sup Thr421/Ser424}. Black-Right-Pointing-Pointer Inactivation of p38 decreases autophagy and increases apoptosis induced by MG132. -- Abstract: Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy andmore » apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3{beta} (GSK3{beta}) and 70 kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3{beta} at Ser{sup 9} and, to a lesser extent, Thr{sup 390}, the dephosphorylation of p70S6K at Thr{sup 389}, and the phosphorylation of p70S6K at Thr{sup 421} and Ser{sup 424}. The specific p38 inhibitor SB203080 reduced the p-GSK3{beta}{sup Ser9} and autophagy through the phosphorylation of p70S6K{sup Thr389}; however, it augmented the levels of p-ERK, p-GSK3{beta}{sup Thr390}, and p-70S6K{sup Thr421/Ser424} induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken