Science.gov

Sample records for n-terminal truncated fragment

  1. N-terminal or signal peptide sequence engineering prevents truncation of human monoclonal antibody light chains.

    PubMed

    Gibson, S J; Bond, N J; Milne, S; Lewis, A; Sheriff, A; Pettman, G; Pradhan, R; Higazi, D R; Hatton, D

    2017-03-28

    Monoclonal antibodies (mAbs) contain short N-terminal signal peptides on each individual polypeptide that comprises the mature antibody, targeting them for export from the cell in which they are produced. The signal peptide is cleaved from each heavy chain (Hc) and light chain (Lc) polypeptide after translocation to the ER and prior to secretion. This process is generally highly efficient, producing a high proportion of correctly cleaved Hc and Lc polypeptides. However, mis-cleavage of the signal peptide can occur, resulting in truncation or elongation at the N-terminus of the Hc or Lc. This is undesirable for antibody manufacturing as it can impact efficacy and can result in product heterogeneity. Here, we describe a truncated variant of the Lc that was detected during a routine developability assessment of the recombinant human IgG1 MEDI8490 in Chinese hamster ovary cells. We found that the truncation of the Lc was caused due to the use of the murine Hc signal peptide together with a lambda Lc containing an SYE amino acid motif at the N-terminus. This truncation was not caused by mis-processing of the mRNA encoding the Lc and was not dependent on expression platform (transient or stable), the scale of the fed-batch culture or clonal lineage. We further show that using alternative signal peptides or engineering the Lc SYE N-terminal motif prevented the truncation and that this strategy will improve Lc homogeneity of other SYE lambda Lc-containing mAbs. This article is protected by copyright. All rights reserved.

  2. Discrete Molecular Dynamics Study of Oligomer Formation by N-Terminally Truncated Amyloid β-Protein

    PubMed Central

    Meral, Derya; Urbanc, Brigita

    2013-01-01

    In Alzheimer’s disease (AD), amyloid β-protein (Aβ) self–assembles into toxic oligomers. Of the two predominant Aβ alloforms, Aβ1–40 and Aβ1–42, the latter is particularly strongly linked to AD. N-terminally truncated and pyroglutamated Aβ peptides were recently shown to seed Aβ aggregation and contribute significantly to Aβ–mediated toxicity, yet their folding and assembly were not explored computationally. Discrete molecular dynamics (DMD) approach previously captured in vitro–derived distinct Aβ1–40 and Aβ1–42 oligomer size distributions and predicted that the more toxic Aβ1–42 oligomers had more flexible and solvent exposed N-termini than Aβ1–40 oligomers. Here, we examined oligomer formation of Aβ3–40, Aβ3–42, Aβ11–40, and Aβ11–42 by the DMD approach. The four N-terminally truncated peptides showed increased oligomerization propensity relative to the full–length peptides, consistent with in vitro findings. Conformations formed by Aβ3–40/42 had significantly more flexible and solvent–exposed N-termini than Aβ1–40/42 conformations. In contrast, in Aβ11–40/42 conformations the N-termini formed more contacts and were less accessible to the solvent. The compactness of the Aβ11–40/42 conformations was in part facilitated by Val12. Two single amino acid substitutions that reduced and abolished hydrophobicity at position 12, respectively, resulted in a proportionally increased structural variability. Our results suggest that Aβ11–40 and Aβ11–42 oligomers might be less toxic than Aβ1–40 and Aβ1–42 oligomers and offer a plausible explanation for the experimentally–observed increased toxicity of Aβ3–40 and Aβ3–42 and their pyroglutamated forms. PMID:23500806

  3. GPR37 Surface Expression Enhancement via N-Terminal Truncation or Protein-Protein Interactions1

    PubMed Central

    Dunham, Jill H.; Meyer, Rebecca C.; Garcia, Erin L.; Hall, Randy A.

    2009-01-01

    GPR37, also known as the parkin-associated endothelin-like receptor (Pael-R), is an orphan G protein-coupled receptor (GPCR) that exhibits poor plasma membrane expression when expressed in most cell types. We sought to find ways to enhance GPR37 trafficking to the cell surface in order to facilitate studies of GPR37 functional activity in heterologous cells. In truncation studies, we found that removing the GPR37 N-terminus (NT) dramatically enhanced the receptor’s plasma membrane insertion. Further studies on sequential NT truncations revealed that removal of the first 210 amino acids increased surface expression nearly as much as removal of the entire NT. In studies examining the effects of co-expression of GPR37 with a variety of other GPCRs, we observed significant increases in GPR37 surface expression when the receptor was co-expressed with the adenosine receptor A2AR or the dopamine receptor D2R. Co-immunoprecipitation experiments revealed that full-length GPR37 and, to a greater extent, the truncated GPR37 were capable of robustly associating with D2R, resulting in modestly-altered D2R affinity for both agonists and antagonists. In studies examining potential interactions of GPR37 with PDZ scaffolds, we observed a specific interaction between GPR37 and syntenin-1, which resulted in a dramatic increase in GPR37 surface expression in HEK-293 cells. These findings reveal three independent approaches – N-terminal truncation, co-expression with other receptors and co-expression with syntenin-1 – by which GPR37 surface trafficking in heterologous cells can be greatly enhanced to facilitate functional studies on this orphan receptor. PMID:19799451

  4. Differential isotope dansylation labeling combined with liquid chromatography mass spectrometry for quantification of intact and N-terminal truncated proteins.

    PubMed

    Tang, Yanan; Li, Liang

    2013-08-20

    The N-terminal amino acids of proteins are important structure units for maintaining the biological function, localization, and interaction networks of proteins. Under different biological conditions, one or several N-terminal amino acids could be cleaved from an intact protein due to processes, such as proteolysis, resulting in the change of protein properties. Thus, the ability to quantify the N-terminal truncated forms of proteins is of great importance, particularly in the area of development and production of protein-based drugs where the relative quantity of the intact protein and its truncated form needs to be monitored. In this work, we describe a rapid method for absolute quantification of protein mixtures containing intact and N-terminal truncated proteins. This method is based on dansylation labeling of the N-terminal amino acids of proteins, followed by microwave-assisted acid hydrolysis of the proteins into amino acids. It is shown that dansyl labeled amino acids are stable in acidic conditions and can be quantified by liquid chromatography mass spectrometry (LC-MS) with the use of isotope analog standards.

  5. Nested N-terminal megalin fragments induce high-titer autoantibody and attenuated Heymann nephritis.

    PubMed

    Tramontano, Alfonso; Knight, Thomas; Vizzuso, Domenica; Makker, Sudesh P

    2006-07-01

    It was shown previously that an N-terminal fragment (nM60) that encompasses amino acid residues 1 to 563 of megalin could induce active Heymann nephritis (AHN) as efficiently as the native protein. For delineation of a minimal structure within this fragment that is sufficient to induce AHN, smaller protein fragments that encompass residues 1 to 236 (L6), 1 to 195 (L5), 1 to 156 (L4), and 1 to 120 (L3), representing successive C-terminal truncations within ligand-binding repeats of nM60, were cloned and produced in a baculovirus insect cell expression system. Protein fragments L4, L5, and L6 clearly were glycosylated. All four fragments stimulated proliferation of megalin-sensitized lymph node cells and induced high-titer anti-megalin autoantibodies in Lewis rats. A full-blown disease, as assessed by severity of proteinuria, was observed in rats that were immunized with L6 and L5, whereas animals that were immunized with L4 and L3 developed only mild disease. The proteinuria levels correlated with staining for complement (C3, C5b-9) and IgG1 isotype in glomerular immune deposits. The results suggest that one or more molecular determinants on the region that comprises amino acid residues 157 to 236 contribute to the induction of a full-blown form of AHN. Study of the structure, conformation, and posttranslational modifications of these determinants could provide greater insight into the molecular correlates of immunopathogenesis in this disease model.

  6. Acute effects of N-terminal progastrin fragments on gastric acid secretion in man.

    PubMed

    Goetze, Jens P; Hansen, Carsten P; Rehfeld, Jens F

    2017-03-01

    We previously identified an N-terminal fragment of progastrin in human antrum and plasma, where it circulates in high concentrations. In this study, we examined the effects of N-terminal progastrin fragments on gastric acid secretion by infusion in healthy individuals. Increasing doses of progastrin fragment 1-35 were infused intravenously during constant gastric acid stimulation by gastrin-17. In addition, the effects of progastrin fragment 1-35, fragment 6-35, and fragment 1-19 on gastrin-17 stimulated acid secretion were tested. The gastrin-17 stimulated acid secretion decreased 30% after administration of a high dose of progastrin fragment 1-35 (P < 0.05). In extension, a 1-h infusion of fragment 1-35 also decreased gastric acid output. In contrast, fragment 6-35 did not affect acid secretion, and a single infusion of gastrin-17 alone did not reveal fading of gastric acid output during the time course of the experiments. The results show that N-terminal fragments of progastrin may acutely affect gastrin-stimulated gastric acid secretion in vivo. Structure-function analysis suggests that the N-terminal pentapeptide of progastrin is required for the effect.

  7. N-terminal truncated carboxypeptidase E expression is associated with poor prognosis of lung adenocarcinoma

    PubMed Central

    Sun, Jing; Meng, Dawei; Li, Li; Tian, Xin; Jia, Yunji; Wang, Hongyue; Yu, Huihui; Sun, Tiemin; Qu, Aibing; Shen, Hui; Bao, Jimin; Zhang, Guirong

    2016-01-01

    Lung cancer is a malignant tumor with high morbidity and mortality rates. To date, no suitable molecular diagnostic tool to predict disease recurrence and metastasis has been identified. The current study aimed to evaluate the potential of N-terminal truncated carboxypeptidase E (CPEΔN) to predict the recurrence and metastasis of lung adenocarcinoma. Western blotting revealed the co-expression of CPE and CPEΔN in the surgically collected pathological and pericarcinoma tissues tissues of 62.1% (59/95) lung adenocarcinoma patients. The full length CPE protein was predominantly expressed in pericarcinoma tissues and CPEΔN expression was identified in the pericarcinoma normal tissues of only 5.26% (5/95) patients. The 3-year postoperative recurrence and metastasis rates were significantly higher in patients with positive CPEΔN expression than in patients with negative CPEΔN expression (P=0.009). Furthermore, the overall survival rate of patients with predominant nuclear CPE expression was lower than that of patients with predominant cytoplasmic CPE expression (46.3 vs. 64.7%); however, no statistically significant difference was identified (P=0.125). Thus, the results of the current study indicated that CPEΔN may present a novel molecular biomarker for predicting recurrence and metastasis of lung adenocarcinoma, which may aid with stratifying patients by risk and thus, may facilitate individualized therapy. PMID:28101219

  8. N-Terminal Truncated UCH-L1 Prevents Parkinson's Disease Associated Damage

    PubMed Central

    Kim, Hee-Jung; Kim, Hyun Jung; Jeong, Jae-Eun; Baek, Jeong Yeob; Jeong, Jaeho; Kim, Sun; Kim, Young-Mee; Kim, Youhwa; Nam, Jin Han; Huh, Sue Hee; Seo, Jawon; Jin, Byung Kwan; Lee, Kong-Joo

    2014-01-01

    Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD. PMID:24959670

  9. [Chemical synthesis of lactococcin B and functional evaluation of the N-terminal domain using a truncated synthetic analogue].

    PubMed

    Lasta, S; Fajloun, Z; Mansuelle, P; Sabatier, J M; Boudabous, A; Sampieri, F

    2008-01-01

    The lactococcin B (LnB) is a hydrophobic, positively charged bacteriocin, produced by Lactococcus lactis ssp. cremoris 9B4. It consists of a peptidic chain made up of 47 amino acid residues, and inhibits Lactococcus exclusively. In order to study its biological activity a synthetic lactococcin B (LnBs) was obtained by solid-phase chemical synthesis using a Fmoc strategy. LnBs was shown to be indistinguishable from the natural peptide. In addition, a synthetic (7-47) LnBst analogue was obtained by withdrawal of peptidyl-resin after the 41 cycle of LnBs peptide chain assembly. The synthetic N-terminal truncated (7-47) LnBst analogue was found to be inactive on indicator strains. Our results strongly suggest that the first six N-terminal amino acid residues are involved in the bactericidal activity of LnB.

  10. Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment.

    PubMed

    Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A

    2014-10-22

    Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator.

  11. Evidence of Molecular Interactions of Aβ1-42 with N-Terminal Truncated Beta Amyloids by NMR.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; D'Arrigo, Cristina; Molinari, Henriette; Ragona, Laura

    2017-02-06

    Aβ peptides, the main protein components of Alzheimer's disease (AD) plaques, derive from a proteolytic cleavage of the amyloid precursor protein. Due to heterogeneous cleavage sites, a series of Aβ peptides, including the major and widely studied species Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), are produced. In addition to the C-terminal heterogeneity of Aβ peptides, significant amounts of N-terminal truncated (Aβ3-42) and pyroglutamate-modified amyloid-β peptides (AβpE3-42) have been identified in AD affected brains and shown to be more cytotoxic than unmodified Aβ peptides. Little is known about the properties of their mixtures with Aβ42. Nuclear Magnetic Resonance spectroscopy is here employed to investigate the interaction of N-truncated peptides with Aβ42 at different molar ratios. We highlight the critical concentration of N-truncated forms influencing the aggregation kinetics of Aβ42. We provide evidence, at residue level, that the C-terminal region of Aβ42 is the locus of transient specific interactions with highly aggregation prone N-truncated alloforms.

  12. Truncation of N-terminal regions of Digitalis lanata progesterone 5β-reductase alters catalytic efficiency and substrate preference.

    PubMed

    Rudolph, Kristin; Bauer, Peter; Schmid, Benedikt; Mueller-Uri, Frieder; Kreis, Wolfgang

    2014-06-01

    N-Terminal truncated forms of progesterone 5β-reductase (P5βR) were synthesized taking a full-length cDNA encoding for Digitalis lanata P5βR with a hexa-histidine tag attached at the C-terminus (rDlP5βRc) as the starting point. Four pETite-c-His/DlP5βR constructs coding for P5βR derivatives truncated in the N-terminal region, termed rDlP5βRcn-10, rDlP5βRcn-20, rDlP5βRcn-30, and rDlP5βRcn-40 were obtained by site-directed mutagenesis. The cDNAs coding for full-length rDlP5βRc, rDlP5βRcn-10 and rDlP5βRcn-20 were over-expressed in Escherichia coli and the respective enzymes were soluble and catalytically active (progesterone and 2-cyclohexen-1-one as substrates). GST-tagged recombinant DlP5βR (rDlP5βR-GST) and rDlP5βR-GSTr, with the GST-tag removed by protease treatment were produced as well and served as controls. The Km values and substrate preferences considerably differed between the various DlP5βR derivatives. As for the C-terminal His-tagged rDlP5βR the catalytic efficiency for progesterone was highest for the full-length rDlP5βRc whereas the N-terminal truncated forms preferred 2-cyclohexen-1-one as the substrate. Affinity tags and artifacts resulting from the cloning strategy used may alter substrate specificity. Therefore enzyme properties determined with recombinant proteins should not be used to infer in vivo scenarios and should be considered for each particular case.

  13. N-Terminal Prolactin-Derived Fragments, Vasoinhibins, Are Proapoptoptic and Antiproliferative in the Anterior Pituitary

    PubMed Central

    Ferraris, Jimena; Radl, Daniela Betiana; Zárate, Sandra; Jaita, Gabriela; Eijo, Guadalupe; Zaldivar, Verónica; Clapp, Carmen; Seilicovich, Adriana; Pisera, Daniel

    2011-01-01

    The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this

  14. N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor

    SciTech Connect

    Fisone, G.; Berthold, M.; Bedecs, K.; Unden, A.; Bartfai, T.; Bertorelli, R.; Consolo, S.; Crawley, J.; Martin, B.; Nilsson, S.; )

    1989-12-01

    The galanin N-terminal fragment (galanin-(1-16)) has been prepared by solid-phase synthesis and by enzymic cleavage of galanin by endoproteinase Asp-N. This peptide fragment displaced {sup 125}I-labeled galanin in receptor autoradiography experiments on rat forebrain and spinal cord and in equilibrium binding experiments from high-affinity binding sites in the ventral hippocampus with an IC50 of approximately 3 nM. In tissue slices of the same brain area, galanin-(1-16), similarly to galanin, inhibited the muscarinic agonist-stimulated breakdown of inositol phospholipids. Upon intracerebroventricular administration, galanin-(1-16) (10 micrograms/15 microliters) also inhibited the scopolamine (0.3 mg/kg, s.c.)-evoked release of acetylcholine, as studied in vivo by microdialysis. Substitution of (L-Trp2) for (D-Trp2) resulted in a 500-fold loss in affinity as compared with galanin-(1-16). It is concluded that, in the ventral hippocampus, the N-terminal galanin fragment (galanin-(1-16)) is recognized by the galanin receptors controlling acetylcholine release and muscarinic agonist-stimulated inositol phospholipid breakdown as a high-affinity agonist and that amino acid residue (Trp2) plays an important role in the receptor-ligand interactions.

  15. Atomic Force Microscopy Imaging of Filamentous Aggregates from an N-Terminal Peptide Fragment of Barnase

    NASA Astrophysics Data System (ADS)

    Shibata-Seki, Teiko; Masai, Junji; Yoshida, Kenji; Sato, Kazuki; Yanagawa, Hiroshi

    1993-06-01

    This paper reports the atomic force microscopy (AFM) imaging of filamentous aggregates derived from an N-terminal peptide fragment of barnase, a ribonuclease from Bacillus amyloliquefaciens. The sample was deposited on a freshly cleaved mica surface and observed in ambient conditions. The overall shapes of the filamentous structures imaged with two different kinds of AFMs were similar to those obtained with a transmission electron microscope (TEM), except that the filaments in AFM images were broader than those in TEM images. This broadening phenomenon characteristic of AFM images was explained in terms of the convolution-type distortion of the specimen diameter by the scanning-tip apex.

  16. Specific N-terminal CGRP fragments mitigate chronic hypoxic pulmonary hypertension in rats.

    PubMed

    Qing, Xin; Wimalawansa, Sunil J; Keith, Ingegerd M

    2003-01-31

    Chronic hypoxic pulmonary hypertension (HPH) is characterized by elevated pulmonary arterial pressure (P(PA)), right ventricular hypertrophy (RVH), pulmonary vascular remodeling, pulmonary edema and polycythemia. Currently, there is no safe and effective treatment for HPH. Calcitonin gene-related peptide (CGRP) is the most potent peptide vasodilator discovered thus far. We previously demonstrated that exogenous CGRP reversed HPH in rats. However, the CGRP1 receptor antagonist CGRP(8-37) and smaller inhibitory C-terminal CGRP fragments that can be formed by enzymatic cleavage in vivo may compromise the beneficial effects of endogenous or exogenous CGRP. We here examine the agonistic efficacy of N-terminal rat alpha-CGRP peptides containing the disulfide bridge (Cys(2)-Cys(7)) with amidated C-terminal in prevention of HPH. Chronic infusion of CGRP(1-8), CGRP(1-13), or CGRP(1-14) at 7 nmol/h/rat via the right jugular vein during 14 days of hypobaric hypoxia (10% inspired O(2)) significantly decreased the P(PA), RVH and pulmonary arterial medial thickness in comparison with controls, suggesting that these CGRP sequences can mitigate chronic HPH in rats. Systemic pressure was unchanged by infused peptides indicating no carry-over effect. In conclusion, N-terminal CGRP fragments (CGRP(1-8), CGRP(1-13) and CGRP(1-14)) may have a protective role in hypoxic pulmonary hypertension.

  17. N-terminal helix reorients in recombinant C-fragment of Clostridium botulinum type B.

    PubMed

    Jayaraman, Seetharaman; Eswaramoorthy, Subramaniam; Ahmed, S Ashraf; Smith, Leonard A; Swaminathan, Subramanyam

    2005-04-29

    Botulinum neurotoxins comprise seven distinct serotypes (A-G) produced by Clostridium botulinum. The crystal structure of the binding domain of the botulinum neurotoxin type B (BBHc) has been determined to 2A resolution. The overall structure of BBHc is well ordered and similar to that of the binding domain of the holotoxin. However, significant structural changes occur at what would be the interface of translocation and binding domains of the holotoxin. The loop 911-924 shows a maximum displacement of 14.8A at the farthest point. The N-terminal helix reorients and moves by 19.5A from its original position. BBHc is compared with the binding domain of the holotoxin of botulinum type A and B, and the tetanus C-fragment to characterize the heavy chain-carbohydrate interactions. The probable reasons for different binding affinity of botulinum and tetanus toxins are discussed.

  18. Structure of the N-terminal fragment of topoisomerase V reveals a new family of topoisomerases

    SciTech Connect

    Taneja, Bhupesh; Patel, Asmita; Slesarev, Alexei; Mondragon, Alfonso

    2010-09-02

    Topoisomerases are involved in controlling and maintaining the topology of DNA and are present in all kingdoms of life. Unlike all other types of topoisomerases, similar type IB enzymes have only been identified in bacteria and eukarya. The only putative type IB topoisomerase in archaea is represented by Methanopyrus kandleri topoisomerase V. Despite several common functional characteristics, topoisomerase V shows no sequence similarity to other members of the same type. The structure of the 61 kDa N-terminal fragment of topoisomerase V reveals no structural similarity to other topoisomerases. Furthermore, the structure of the active site region is different, suggesting no conservation in the cleavage and religation mechanism. Additionally, the active site is buried, indicating the need of a conformational change for activity. The presence of a topoisomerase in archaea with a unique structure suggests the evolution of a separate mechanism to alter DNA.

  19. Membrane effects of N-terminal fragment of apolipoprotein A-I: a fluorescent probe study.

    PubMed

    Trusova, Valeriya; Gorbenko, Galyna; Girych, Mykhailo; Adachi, Emi; Mizuguchi, Chiharu; Sood, Rohit; Kinnunen, Paavo; Saito, Hiroyuki

    2015-03-01

    The binding of monomeric and aggregated variants of 1-83 N-terminal fragment of apolipoprotein A-I with substitution mutations G26R, G26R/W@8, G26R/W@50 and G26R/W@72 to the model lipid membranes composed of phosphatidylcholine and its mixture with cholesterol has been investigated using fluorescent probes pyrene and Laurdan. Examination of pyrene spectral behavior did not reveal any marked influence of apoA-I mutants on the hydrocarbon region of lipid bilayer. In contrast, probing the membrane effects by Laurdan revealed decrease in the probe generalized polarization in the presence of aggregated proteins. suggesting that oligomeric and fibrillar apoA-I species induce increase in hydration degree and reduction of lipid packing density in the membrane interfacial region. These findings may shed light on molecular details of amyloid cytotoxicity.

  20. Structure of the N-terminal fragment of Escherichia coli Lon protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Rasulova, Fatima S.; Melnikov, Edward E.; Maurizi, Michael R.; Rotanova, Tatyana V.; Dauter, Zbigniew; Wlodawer, Alexander

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.

  1. Expressed truncated N-terminal variable surface glycoprotein (VSG) of Trypanosoma evansi in E. coli exhibits immuno-reactivity.

    PubMed

    Sengupta, P P; Balumahendiran, M; Balamurugan, V; Rudramurthy, G R; Prabhudas, K

    2012-06-08

    The variant surface glycoprotein (VSG) of trypanosome is an important part of its body surface coat, which is expressed in early, middle and late stages of infection contributing a major diagnostic value. In the present study, the 5' end of the partial VSG gene sequences (681 bp) encoding N-terminal protein of RoTat 1.2 VSG (227 amino acid) was amplified, cloned into pET32a vector, and expressed in prokaryotic system. The fused His-tagged expressed VSG protein (43 kDa) of the Trypanosoma evansi was characterized in SDS-PAGE and immunoblotting using hyperimmune/immune sera raised against buffalo, dog, lion and leopard isolates of T. evansi. The expressed protein remained immunoreactive with all the sera combinations. The animals immunized with whole cell lysate or recombinant protein showed similar antibody reactions in ELISA and CATT (Card Agglutination Test for Trypanosomiasis). This study suggests the expressed recombinant truncated VSG is having its importance for its possible use in sero-diagnosis of surra.

  2. Soluble N-terminal fragment of mutant Huntingtin protein impairs mitochondrial axonal transport in cultured hippocampal neurons.

    PubMed

    Tian, Jun; Yan, Ya-Ping; Zhou, Rui; Lou, Hui-Fang; Rong, Ye; Zhang, Bao-Rong

    2014-02-01

    Huntington's disease (HD) is an autosomal dominant, progressive, neurodegenerative disorder caused by an unstable expansion of CAG repeats (>35 repeats) within exon 1 of the interesting transcript 15 (IT15) gene. This gene encodes a protein called Huntingtin (Htt), and mutation of the gene results in a polyglutamine (polyQ) near the N-terminus of Htt. The N-terminal fragments of mutant Htt (mHtt), which tend to aggregate, are sufficient to cause HD. Whether these aggregates are causal or protective for HD remains hotly debated. Dysfunctional mitochondrial axonal transport is associated with HD. It remains unknown whether the soluble or aggregated form of mHtt is the primary cause of the impaired mitochondrial axonal transport in HD pathology. Here, we investigated the impact of soluble and aggregated N-terminal fragments of mHtt on mitochondrial axonal transport in cultured hippocampal neurons. We found that the N-terminal fragment of mHtt formed aggregates in almost half of the transfected neurons. Overexpression of the N-terminal fragment of mHtt decreased the velocity of mitochondrial axonal transport and mitochondrial mobility in neurons regardless of whether aggregates were formed. However, the impairment of mitochondrial axonal transport in neurons expressing the soluble and aggregated N-terminal fragments of mHtt did not differ. Our findings indicate that both the soluble and aggregated N-terminal fragments of mHtt impair mitochondrial axonal transport in cultured hippocampal neurons. We predict that dysfunction of mitochondrial axonal transport is an early-stage event in the progression of HD, even before mHtt aggregates are formed.

  3. N-Terminal Enrichment: Developing a Protocol to Detect Specific Proteolytic Fragments

    SciTech Connect

    Schepmoes, Athena A.; Zhang, Qibin; Petritis, Brianne O.; Qian, Weijun; Smith, Richard D.

    2009-12-01

    Proteolytic processing events are essential to physiological processes such as reproduction, development, and host responses, as well as regulating proteins in cancer; therefore, there is a significant need to develop robust approaches for characterizing such events. The current mass spectrometry (MS)-based proteomics techniques employs a “bottom-up” strategy, which does not allow for identification of different proteolytic proteins since the strategy measures all the small peptides from any given protein. The aim of this development is to enable the effective identification of specific proteolytic fragments. The protocol utilizes an acetylation reaction to block the N-termini of a protein, as well as any lysine residues. Following digestion, N-terminal peptides are enriched by removing peptides that contain free amines, using amine-reactive silica-bond succinic anhydride beads. The resulting enriched sample has one N-terminal peptide per protein, which reduces sample complexity and allows for increased analytical sensitivity compared to global proteomics.1 We initially compared the peptide identification and efficiency of blocking lysine using acetic anhydride (a 42 Da modification) or propionic anhydride (a 56 Da modification) in our protocol. Both chemical reactions resulted in comparable peptide identifications and *95 percent efficiency for blocking lysine residues. However, the use of propionic anhydride allowed us to distinguish in vivo acetylated peptides from chemically-tagged peptides.2 In an initial experiment using mouse plasma, we were able to identify *300 unique N-termini peptides, as well as many known cleavage sites. This protocol holds potential for uncovering new information related to proteolytic pathways, which will assist our understanding about cancer biology and efforts to identify potential biomarkers for various diseases.

  4. Structure of a tropomyosin N-terminal fragment at 0.98 Å resolution

    SciTech Connect

    Meshcheryakov, Vladimir A.; Krieger, Inna; Kostyukova, Alla S.; Samatey, Fadel A.

    2011-09-01

    The crystal structure of the N-terminal fragment of the short nonmuscle α-tropomyosin has been determined at a resolution of 0.98 Å. Tropomyosin (TM) is an elongated two-chain protein that binds along actin filaments. Important binding sites are localized in the N-terminus of tropomyosin. The structure of the N-terminus of the long muscle α-TM has been solved by both NMR and X-ray crystallography. Only the NMR structure of the N-terminus of the short nonmuscle α-TM is available. Here, the crystal structure of the N-terminus of the short nonmuscle α-TM (αTm1bZip) at a resolution of 0.98 Å is reported, which was solved from crystals belonging to space group P3{sub 1} with unit-cell parameters a = b = 33.00, c = 52.03 Å, α = β = 90, γ = 120°. The first five N-terminal residues are flexible and residues 6–35 form an α-helical coiled coil. The overall fold and the secondary structure of the crystal structure of αTM1bZip are highly similar to the NMR structure and the atomic coordinates of the corresponding C{sup α} atoms between the two structures superimpose with a root-mean-square deviation of 0.60 Å. The crystal structure validates the NMR structure, with the positions of the side chains being determined precisely in our structure.

  5. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    PubMed

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  6. Novel intracellular N-terminal truncated matrix metalloproteinase-2 isoform in skeletal muscle ischemia-reperfusion injury.

    PubMed

    Joshi, Sunil K; Lee, Lawrence; Lovett, David H; Kang, Heejae; Kim, Hubert T; Delgado, Cynthia; Liu, Xuhui

    2016-03-01

    Ischemia-reperfusion injury (IRI) occurs when blood returns to tissues following a period of ischemia. Reintroduction of blood flow results in the production of free radicals and reactive oxygen species that damage cells. Skeletal muscle IRI is commonly seen in orthopedic trauma patients. Experimental studies in other organ systems have elucidated the importance of extracellular and intracellular matrix metalloproteinase-2 (MMP-2) isoforms in regulating tissue damage in the setting of oxidant stress resulting from IRI. Although the extracellular full-length isoform of MMP-2 (FL-MMP-2) has been previously studied in the setting of skeletal muscle IRI, studies investigating the role of the N-terminal truncated isoform (NTT-MMP-2) in this setting are lacking. In this study, we first demonstrated significant increases in FL- and NTT-MMP-2 gene expression in C2C12 myoblast cells responding to re-oxygenation following hypoxia in vitro. We then evaluated the expression of FL- and NTT-MMP-2 in modulating skeletal muscle IRI using a previously validated murine model. NTT-MMP-2, but not FL-MMP-2 expression was significantly increased in skeletal muscle following IRI. Moreover, the expression of toll-like receptors (TLRs) -2 and -4, IL-6, OAS-1A, and CXCL1 was also significantly up-regulated following IRI. Treatment with the potent anti-oxidant pyrrolidine dithiocarbamate (PDTC) significantly suppressed NTT-MMP-2, but not FL-MMP-2 expression and improved muscle viability following IRI. This data suggests that NTT-MMP-2, but not FL-MMP-2, is the major isoform of MMP-2 involved in skeletal muscle IRI.

  7. Structure of the N-terminal fragment of Escherichia coli Lon protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Rasulova, Fatima S.; Melnikov, Edward E.; Maurizi, Michael R.; Rotanova, Tatyana V.; Dauter, Zbigniew; Wlodawer, Alexander

    2010-10-22

    The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 {angstrom} resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal {alpha}-helix. The structure of the first subdomain (residues 1-117), which consists mostly of {beta}-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.

  8. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red light-induced signaling.

    PubMed

    Ádám, Éva; Kircher, Stefan; Liu, Peng; Mérai, Zsuzsanna; González-Schain, Nahuel; Hörner, Maximilian; Viczián, András; Monte, Elena; Sharrock, Robert A; Schäfer, Eberhard; Nagy, Ferenc

    2013-10-01

    Phytochromes (phy) C, D and E are involved in the regulation of red/far-red light-induced photomorphogenesis of Arabidopsis thaliana, but only limited data are available on the mode of action and biological function of these lesser studied phytochrome species. We fused N-terminal fragments or full-length PHYC, D and E to YELLOW FLUORESCENT PROTEIN (YFP), and analyzed the function, stability and intracellular distribution of these fusion proteins in planta. The activity of the constitutively nuclear-localized homodimers of N-terminal fragments was comparable with that of full-length PHYC, D, E-YFP, and resulted in the regulation of various red light-induced photomorphogenic responses in the studied genetic backgrounds. PHYE-YFP was active in the absence of phyB and phyD, and PHYE-YFP controlled responses, as well as accumulation, of the fusion protein in the nuclei, was saturated at low fluence rates of red light and did not require functional FAR-RED ELONGATED HYPOCOTYL1 (FHY-1) and FHY-1-like proteins. Our data suggest that PHYC-YFP, PHYD-YFP and PHYE-YFP fusion proteins, as well as their truncated N-terminal derivatives, are biologically active in the modulation of red light-regulated photomorphogenesis. We propose that PHYE-YFP can function as a homodimer and that low-fluence red light-induced translocation of phyE and phyA into the nuclei is mediated by different molecular mechanisms.

  9. Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins.

    PubMed

    Lumsden, Thomas; Bentley, Amber A; Beutler, William; Ghosh, Arnab; Galkin, Oleksandr; Komar, Anton A

    2010-03-01

    Ribosomal protein (rp)S5 belongs to the family of the highly conserved rp's that contains rpS7 from prokaryotes and rpS5 from eukaryotes. Alignment of rpS5/rpS7 from metazoans (Homo sapiens), fungi (Saccharomyces cerevisiae) and bacteria (Escherichia coli) shows that the proteins contain a conserved central/C-terminal core region and possess variable N-terminal regions. Yeast rpS5 is 69 amino acids (aa) longer than the E. coli rpS7 protein; and human rpS5 is 48 aa longer than the rpS7, respectively. To investigate the function of the yeast rpS5 and in particular the role of its N-terminal region, we obtained and characterized yeast strains in which the wild-type yeast rpS5 was replaced by its truncated variants, lacking 13, 24, 30 and 46 N-terminal amino acids, respectively. All mutant yeast strains were viable and displayed only moderately reduced growth rates, with the exception of the strain lacking 46 N-terminal amino acids, which had a doubling time of about 3 h. Biochemical analysis of the mutant yeast strains suggests that the N-terminal part of the eukaryotic and, in particular, yeast rpS5 may impact the ability of 40S subunits to function properly in translation and affect the efficiency of initiation, specifically the recruitment of initiation factors eIF3 and eIF2.

  10. Light-regulated nuclear import and degradation of Arabidopsis phytochrome-A N-terminal fragments.

    PubMed

    Wolf, Iris; Kircher, Stefan; Fejes, Erzsébet; Kozma-Bognár, László; Schäfer, Eberhard; Nagy, Ferenc; Adám, Eva

    2011-02-01

    The photoreceptor phytochrome-A (phyA) regulates germination and seedling establishment by mediating very low fluence (VLFR) and far-red high irradiance (FR-HIR) responses in Arabidopsis thaliana. In darkness, phyA homodimers exist in the biologically inactive Pr form and are localized in the cytoplasm. Light induces formation of the biologically active Pfr form and subsequent rapid nuclear import. PhyA Pfr, in contrast to the Pr form, is labile and has a half-life of ∼30 min. We produced transgenic plants in a phyA-201 null background that express the PHYA-yellow fluorescent protein (YFP) or the PHYA686-YFP-dimerization domain (DD) and PHYA686-YFP-DD-nuclear localization signal (NLS) or PHYA686-YFP-DD-nuclear exclusion signal (NES) fusion proteins. The PHYA686-YFP fusion proteins contained the N-terminal domain of phyA (686 amino acid residues), a short DD and the YFP. Here we report that (i) PHYA686-YFP-DD fusion protein is imported into the nucleus in a light-dependent fashion; (ii) neither of the PHYA686 fusion proteins is functional in FR-HIR and nuclear VLFR; and (iii) the phyA-dependent, blue light-induced inhibition of hypocotyl growth is mediated by the PHYA686-YFP-DD-NES but not by the PHYA686-YFP-DD-NLS and PHYA686-YFP-DD fusion proteins. We demonstrate that (i) light induces degradation of all PHYA N-terminal-containing fusion proteins and (ii) these N-terminal domain-containing fusion proteins including the constitutively nuclear PHYA686-YFP-DD-NLS and predominantly cytoplasmic PHYA686-YFP-DD-NES degrade at comparable rates but markedly more slowly than PHYA-YFP, whereas (iii) light-induced degradation of the native phyA is faster compared with PHYA-YFP.

  11. Establishment of a highly sensitive sandwich ELISA for the N-terminal fragment of titin in urine

    PubMed Central

    Maruyama, Nobuhiro; Asai, Tsuyoshi; Abe, Chiaki; Inada, Akari; Kawauchi, Takeshi; Miyashita, Kazuya; Maeda, Masahiro; Matsuo, Masafumi; Nabeshima, Yo-ichi

    2016-01-01

    Muscle damage and loss of muscle mass are triggered by immobilization, loss of appetite, dystrophies and chronic wasting diseases. In addition, physical exercise causes muscle damage. In damaged muscle, the N-terminal and C-terminal regions of titin, a giant sarcomere protein, are cleaved by calpain-3, and the resulting fragments are excreted into the urine via glomerular filtration. Therefore, we considered titin fragments as promising candidates for reliable and non-invasive biomarkers of muscle injury. Here, we established a sandwich ELISA that can measure the titin N-terminal fragment over a biologically relevant range of concentrations, including those in urine samples from older, non-ambulatory Duchenne muscular dystrophy patients and from healthy donors under everyday life conditions and after exercise. Our results indicate that the established ELISA could be a useful tool for the screening of muscular dystrophies and also for monitoring the progression of muscle disease, evaluating the efficacy of therapeutic approaches, and investigating exercise-related sarcomeric disruption and repair processes. PMID:27991570

  12. Gas-phase Structure and Fragmentation Pathways of Singly Protonated Peptides with N-terminal Arginine

    PubMed Central

    Bythell, Benjamin J.; Csonka, István P.; Suhai, Sándor; Barofsky, Douglas F.; Paizs, Béla

    2010-01-01

    The gas-phase structures and fragmentation pathways of the singly protonated peptide arginylglycylaspartic acid (RGD) are investigated by means of collision-induced-dissociation (CID) and detailed molecular mechanics and density functional theory (DFT) calculations. It is demonstrated that despite the ionizing proton being strongly sequestered at the guanidine group, protonated RGD can easily be fragmented on charge directed fragmentation pathways. This is due to facile mobilization of the C-terminal or aspartic acid COOH protons thereby generating salt-bridge (SB) stabilized structures. These SB intermediates can directly fragment to generate b2 ions or facilely rearrange to form anhydrides from which both b2 and b2+H2O fragments can be formed. The salt-bridge stabilized and anhydride transition structures (TSs) necessary to form b2 and b2+H2O are much lower in energy than their traditional charge solvated counterparts. These mechanisms provide compelling evidence of the role of SB and anhydride structures in protonated peptide fragmentation which complements and supports our recent findings for tryptic systems (Bythell, B. J.; Suhai, S.; Somogyi, A.; Paizs, B. J. Am. Chem. Soc., 2009, 131, 14057–14065.). In addition to these findings we also report on the mechanisms for the formation of the b1 ion, neutral loss (H2O, NH3, guanidine) fragment ions and the d3 ion. PMID:20973555

  13. Effect of N-terminal truncation on antibacterial activity, cytotoxicity and membrane perturbation activity of Cc-CATH3.

    PubMed

    Jittikoon, Jiraphun; Ngamsaithong, Narumon; Pimthon, Jutarat; Vajragupta, Opa

    2015-10-01

    A series of amino-terminal truncated analogues of quail antimicrobial peptide Cc-CATH3(1-29) were created and examined antibacterial activity against Gram-positive bacteria, cytotoxicity against mouse fibroblast cell line, and membrane perturbation activity against various membrane models. Parent peptide Cc-CATH3(1-29) and the first four-residue truncated peptide Cc-CATH3(5-29) were active in all tested experiments. In contrast, the eight- and twelve-residue truncated variants Cc-CATH3(9-29) and Cc-CATH3(13-29) appeared to have lost activities. Cc-CATH3(1-29) and Cc-CATH3(5-29) possessed antibacterial activity with minimum inhibitory concentrations of 2-4 and 1-2 µM, respectively. For cytotoxicity, Cc-CATH3(1-29) and Cc-CATH3(5-29) displayed cytotoxicity with the IC50 values of 9.33 and 4.93 μM, respectively. Cc-CATH3(5-29) induced greater liposome membranes disruption than Cc-CATH3(1-29) regardless of lipid type and composition. The leakage results of Cc-CATH3(1-29) share a similar trend with that in Cc-CATH3(5-29); they exhibit no preferential binding to anionic phospholipids. In conclusion, the results suggested that the first four residues at the N-terminus "RVRR" is not essential for presenting all test activities. In contrast, residues five to eight of "FWPL" are necessary as the exclusion of this short motif in Cc-CATH3(9-29) and Cc-CATH3(13-29) leads to a loss of activities. This study will be beneficial for further design and development of Cc-CATH3 to be novel antibiotic.

  14. Characterization of an invertase with pH tolerance and truncation of its N-terminal to shift optimum activity toward neutral pH.

    PubMed

    Du, Liqin; Pang, Hao; Wang, Zilong; Lu, Jian; Wei, Yutuo; Huang, Ribo

    2013-01-01

    Most invertases identified to date have optimal activity at acidic pH, and are intolerant to neutral or alkaline environments. Here, an acid invertase named uninv2 is described. Uninv2 contained 586 amino acids, with a 100 amino acids N-terminal domain, a catalytic domain and a C-terminal domain. With sucrose as the substrate, uninv2 activity was optimal at pH 4.5 and at 45°C. Removal of N-terminal domain of uninv2 has shifted the optimum pH to 6.0 while retaining its optimum temperaure at 45°C. Both uninv2 and the truncated enzyme retained highly stable at neutral pH at 37°C, and they were stable at their optimum pH at 4°C for as long as 30 days. These characteristics make them far superior to invertase from Saccharomyces cerevisiae, which is mostly used as industrial enzyme.

  15. Two-Dimensional Gel Electrophoresis-Based Proteomic Analysis Reveals N-terminal Truncation of the Hsc70 Protein in Cotton Fibers In Vivo

    PubMed Central

    Tao, Chengcheng; Jin, Xiang; Zhu, Liping; Li, Hongbin

    2016-01-01

    On two-dimensional electrophoresis gels, six protein spots from cotton ovules and fibers were identified as heat shock cognate 70 kD protein (Hsc70). Three spots corresponded to an experimental molecular weight (MW) of 70 kD (spots 1, 2 and 3), and the remaining three spots corresponded to an experimental MW slightly greater than 45 kD (spots 4, 5 and 6). Protein spots 1, 2 and 3 were abundant on gels of 0-day (the day of anthesis) wild-type (WT) ovules, 0-day fuzzless-lintless mutant ovules and 10-day WT ovules but absent from gels of 10-day WT fibers. Three individual transcripts encoding these six protein spots were obtained by using rapid amplification of cDNA ends (RACE). Edman degradation and western blotting confirmed that the three 45 kD Hsc70 protein spots had the same N-terminal, which started from the T271 amino acid in the intact Hsc70 protein. Furthermore, quadrupole time-of-flight mass spectrometry analysis identified a methylation modification on the arginine at position 475 for protein spots 4 and 5. Our data demonstrate that site-specific in vivo N-terminal truncation of the Hsc70 protein was particularly prevalent in cotton fibers, indicating that post-translational regulation might play an important role in cotton fiber development. PMID:27833127

  16. Pyroglutamyl-N-terminal prion protein fragments in sheep brain following the development of transmissible spongiform encephalopathies

    PubMed Central

    Gielbert, Adriana; Thorne, Jemma K.; Hope, James

    2015-01-01

    Protein misfolding, protein aggregation and disruption to cellular proteostasis are key processes in the propagation of disease and, in some progressive neurodegenerative diseases of the central nervous system, the misfolded protein can act as a self-replicating template or prion converting its normal isoform into a misfolded copy of itself. We have investigated the sheep transmissible spongiform encephalopathy, scrapie, and developed a multiple selected reaction monitoring (mSRM) mass spectrometry assay to quantify brain peptides representing the “ragged” N-terminus and the core of ovine prion protein (PrPSc) by using Q-Tof mass spectrometry. This allowed us to identify pyroglutamylated N-terminal fragments of PrPSc at residues 86, 95 and 101, and establish that these fragments were likely to be the result of in vivo processes. We found that the ratios of pyroglutamylated PrPSc fragments were different in sheep of different breeds and geographical origin, and our expanded ovine PrPSc assay was able to determine the ratio and allotypes of PrP accumulating in diseased brain of PrP heterozygous sheep; it also revealed significant differences between N-terminal amino acid profiles (N-TAAPs) in other types of ovine prion disease, CH1641 scrapie and ovine BSE. Variable rates of PrP misfolding, aggregation and degradation are the likely basis for phenotypic (or strain) differences in prion-affected animals and our mass spectrometry-based approach allows the simultaneous investigation of factors such as post-translational modification (pyroglutamyl formation), conformation (by N-TAAP analysis) and amino-acid polymorphisms (allotype ratio) which affect the kinetics of these proteostatic processes. PMID:25988175

  17. Interaction of thioflavin T with amyloid fibrils of apolipoprotein A-I N-terminal fragment: resonance energy transfer study.

    PubMed

    Girych, Mykhailo; Gorbenko, Galyna; Trusova, Valeriya; Adachi, Emi; Mizuguchi, Chiharu; Nagao, Kohjiro; Kawashima, Hiroyuki; Akaji, Kenichi; Lund-Katz, Sissel; Phillips, Michael C; Saito, Hiroyuki

    2014-01-01

    Apolipoprotein A-I is amenable to a number of specific mutations associated with hereditary systemic amyloidoses. Amyloidogenic properties of apoA-I are determined mainly by its N-terminal fragment. In the present study Förster resonance energy transfer between tryptophan as a donor and Thioflavin T as an acceptor was employed to obtain structural information on the amyloid fibrils formed by apoA-I variant 1-83/G26R/W@8. Analysis of the dye-fibril binding data provided evidence for the presence of two types of ThT binding sites with similar stoichiometries (bound dye to monomeric protein molar ratio ∼10), but different association constants (∼6 and 0.1μM(-1)) and ThT quantum yields in fibril-associated state (0.08 and 0.05, respectively). A β-strand-loop-β-strand structural model of 1-83/G26R/W@8 apoA-I fibrils has been proposed, with potential ThT binding sites located in the solvent-exposed grooves of the N-terminal β-sheet layer. Reasoning from the expanded FRET analysis allowing for heterogeneity of ThT binding centers and fibril polymorphism, the most probable locations of high- and low-affinity ThT binding sites were attributed to the grooves T16_Y18 and D20_L22, respectively.

  18. Identification of N-terminally truncated pyroglutamate amyloid-β in cholesterol-enriched diet-fed rabbit and AD brain.

    PubMed

    Perez-Garmendia, Roxanna; Hernandez-Zimbron, Luis Fernando; Morales, Miguel Angel; Luna-Muñoz, José; Mena, Raul; Nava-Catorce, Miriam; Acero, Gonzalo; Vasilevko, Vitaly; Viramontes-Pintos, Amparo; Cribbs, David H; Gevorkian, Goar

    2014-01-01

    The main amyloid-β peptide (Aβ) variants detected in the human brain are Aβ1-40 and Aβ1-42; however, a significant proportion of Aβ in Alzheimer's disease (AD) brain also consists of N-terminal truncated/modified species. AβN3(pE), Aβ peptide bearing amino-terminal pyroglutamate at position 3, has been demonstrated to be a major N-truncated/modified constituent of intracellular, extracellular, and vascular Aβ deposits in AD and Down syndrome brain tissue. It has been previously demonstrated that rabbits fed a diet enriched in cholesterol and given water containing trace copper levels developed AD-like pathology including intraneuronal and extracellular Aβ accumulation, tau hyperphosphorylation, vascular inflammation, astrocytosis, microgliosis, reduced levels of acetylcholine, as well as learning deficits and thus, may be used as a non-transgenic animal model of sporadic AD. In the present study, we have demonstrated for the first time the presence of AβN3(pE) in blood vessels in cholesterol-enriched diet-fed rabbit brain. In addition, we detected AβN3(pE) immunoreactivity in all postmortem AD brain samples studied. We believe that our results are potentially important for evaluation of novel therapeutic molecules/strategies targeting Aβ peptides in a suitable non-transgenic animal model.

  19. N-terminally truncated FOXP1 protein expression and alternate internal FOXP1 promoter usage in normal and malignant B cells

    PubMed Central

    Brown, Philip J.; Gascoyne, Duncan M.; Lyne, Linden; Spearman, Hayley; Felce, Suet Ling; McFadden, Nora; Chakravarty, Probir; Barrans, Sharon; Lynham, Steven; Calado, Dinis P.; Ward, Malcolm; Banham, Alison H.

    2016-01-01

    Strong FOXP1 protein expression is a poor risk factor in diffuse large B-cell lymphoma and has been linked to an activated B-cell-like subtype, which preferentially expresses short FOXP1 (FOXP1S) proteins. However, both short isoform generation and function are incompletely understood. Here we prove by mass spectrometry and N-terminal antibody staining that FOXP1S proteins in activated B-cell-like diffuse large B-cell lymphoma are N-terminally truncated. Furthermore, a rare strongly FOXP1-expressing population of normal germinal center B cells lacking the N-terminus of the regular long protein (FOXP1L) was identified. Exon-targeted silencing and transcript analyses identified three alternate 5′ non-coding exons [FOXP1-Ex6b(s), FOXP1-Ex7b and FOXP1-Ex7c], downstream of at least two predicted promoters, giving rise to FOXP1S proteins. These were differentially controlled by B-cell activation and methylation, conserved in murine lymphoma cells, and significantly correlated with FOXP1S protein expression in primary diffuse large B-cell lymphoma samples. Alternatively spliced isoforms lacking exon 9 (e.g. isoform 3) did not encode FOXP1S, and an alternate long human FOXP1 protein (FOXP1AL) likely generated from a FOXP1-Ex6b(L) transcript was detected. The ratio of FOXP1L:FOXP1S isoforms correlated with differential expression of plasmacytic differentiation markers in U-2932 subpopulations, and altering this ratio was sufficient to modulate CD19 expression in diffuse large B-cell lymphoma cell lines. Thus, the activity of multiple alternate FOXP1 promoters to produce multiple protein isoforms is likely to regulate B-cell maturation. PMID:27056922

  20. Copper complex species within a fragment of the N-terminal repeat region in opossum PrP protein.

    PubMed

    Vagliasindi, Laura I; Arena, Giuseppe; Bonomo, Raffaele P; Pappalardo, Giuseppe; Tabbì, Giovanni

    2011-03-21

    A spectroscopic (UV-Vis, CD and EPR), thermodynamic and voltammetric study of the copper(ii) complexes with the Ac-PHPGGSNWGQ-NH(2) polypeptide (L), a fragment of the opossum PrP protein N-terminal four-repeat region, was carried out in aqueous solution. It suggests the formation of a highly distorted [Cu(L)H(-2)] complex species in the neutral region, the stereochemistry of which is ascribable to a square base pyramid and a CuN(3)O(2) chromophore, resulting from the coordination of a histidine imidazole and two peptide nitrogen atoms and probably oxygen atoms from water molecules. At basic pH values a [Cu(L)H(-3)](-) species with a pseudo-octahedral geometry was also obtained, with four nitrogen donor atoms in its equatorial plane, coming from the histidine residue and from peptidic nitrogen atoms. Interestingly, at pH values relatively higher than the neutrality, the coordination sphere of the copper complex in the [Cu(L)H(-2)] species changes its stereochemistry towards a pseudo-octahedron, as suggested by the change in the parallel copper hyperfine coupling constant of the EPR spectra at low temperature. A slight difference in the redox potentials between this two-faced [Cu(L)H(-2)] complex species seems to confirm this behaviour. Both potentiometric and spectroscopic data were compared with the analogous species obtained with the Ac-PHGGGWGQ-NH(2) peptide, belonging to the octarepeat domain of the human prion protein (hPrP) N-terminal region. The [Cu(L)H(-2)] species formed by the Ac-PHPGGSNWGQ-NH(2) decapeptide, having a slightly lower stability, turned out to be less abundant and to exist within a narrow pH range.

  1. Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703.

    PubMed

    Lu, Zhenghui; Wang, Qinhong; Jiang, Sijing; Zhang, Guimin; Ma, Yanhe

    2016-03-01

    High pH condition is of special interest for the potential applications of alkaline α-amylase in textile and detergent industries. Thus, there is a continuous demand to improve the amylase's properties to meet the requirements set by specific applications. Here we reported the systematic study of modular domain engineering to improve the specific activity and stability of the alkaline α-amylase from Bacillus pseudofirmus 703. The specific activity of the N-terminal domain truncated mutant (N-Amy) increased by ~35-fold with a significantly improved thermo-stability. Kinetic analysis demonstrated that the Kcat and Kcat/Kmof N-Amy were enhanced by 1300-fold and 425.7-fold, respectively, representing the largest catalytic activity improvement of the engineered α-amylases through the methods of domain deletion, fusion or swapping. In addition, different from the wild-type Amy703, no exogenous Ca(2+) were required for N-Amy to maintain its full catalytic activity, implying its superior potential for many industrial processes. Circular dichroism analysis and structure modeling revealed that the increased compactness and α-helical content were the main contributors for the improved thermo-stability of N-Amy, while the improved catalytic efficiency was mainly attributed by the increased conformational flexibility around the active center.

  2. Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hyphal wall protein 1

    PubMed Central

    Laín, Ana; Elguezabal, Natalia; Brena, Sonia; García-Ruiz, Juan Carlos; del Palacio, Amalia; Moragues, María D; Pontón, José

    2007-01-01

    Background The diagnosis of invasive candidiasis is difficult because there are no specific clinical manifestations of the disease and colonization and infection are difficult to distinguish. In the last decade, much effort has been made to develop reliable tests for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Results Antibodies against a recombinant N-terminal fragment of the Candida albicans germ tube-specific antigen hyphal wall protein 1 (Hwp1) generated in Escherichia coli were detected by both immunoblotting and ELISA tests in a group of 36 hematological or Intensive Care Unit patients with invasive candidiasis and in a group of 45 control patients at high risk for the mycosis who did not have clinical or microbiological data to document invasive candidiasis. Results were compared with an immunofluorescence test to detect antibodies to C. albicans germ tubes (CAGT). The sensitivity, specificity, positive and negative predictive values of a diagnostic test based on the detection of antibodies against the N-terminal fragment of Hwp1 by immunoblotting were 27.8 %, 95.6 %, 83.3 % and 62.3 %, respectively. Detection of antibodies to the N-terminal fragment of Hwp1 by ELISA increased the sensitivity (88.9 %) and the negative predictive value (90.2 %) but slightly decreased the specificity (82.6 %) and positive predictive values (80 %). The kinetics of antibody response to the N-terminal fragment of Hwp1 by ELISA was very similar to that observed by detecting antibodies to CAGT. Conclusion An ELISA test to detect antibodies against a recombinant N-terminal fragment of the C. albicans germ tube cell wall antigen Hwp1 allows the diagnosis of invasive candidiasis with similar results to those obtained by detecting antibodies to CAGT but without the need of treating the sera to adsorb the antibodies against the cell wall surface of the blastospore. PMID:17448251

  3. Effect of truncation of the N-terminal region of the viral hemorrhagic septicemia virus (VHSV) P protein on viral replication.

    PubMed

    Park, Ji Sun; Kim, Min Sun; Choi, Seung Hyuk; Kang, Yue Jai; Kim, Ki Hong

    2015-11-01

    The phosphoprotein (P) of viral hemorrhagic septicemia virus (VHSV) plays an essential role in viral replication by interconnecting the L protein and the N protein-RNA complex. In this study, to investigate the role of the N-terminal region of the P protein in viral replication, we mutated the first or the first and second or the first, second, and third ATG codon into TGA stop codons. The respective mutants were named P1, P2, and P3. Recombinant VHSVs containing each mutated P gene (rVHSV-P1, -P2, and -P3) were successfully generated by supplying the intact P protein in trans. The rVHSV-P2 and -P3 were not generated from cells expressing truncated P proteins (P1, P2 or P3 protein), but the rVHSV-P1 produced infectious viruses, even in cells without any P-protein-expressing plasmids. Nucleotide sequence analysis of the P gene of rVHSV-P1 showed that a mutation had occurred that resulted in the fourth amino acid (isoleucine, ATT) being changed to methionine (ATG) without a frameshift (P0.5), suggesting that strong selection pressure might facilitate mutations that are advantageous or essential for virus replication. Infectious rVHSV-P2 and -P3 were produced in cells expressing the P0.5 protein, suggesting that the first three amino acids of the P protein of VHSV are dispensable for viral replication. Furthermore, although the P1 protein was shorter than the P0.5 protein by only two amino acid residues, no viruses were produced when the P1 protein was supplied indicating that the fourth and the fifth amino acid residues are indispensable for normal P protein functions involved in viral replication.

  4. Crystallization and preliminary X-ray crystallographic analysis of a 40 kDa N-terminal fragment of the yeast prion-remodeling factor Hsp104

    SciTech Connect

    Lee, Sukyeong; Tsai, Francis T. F.

    2007-09-01

    An N-terminal fragment of S. cerevisiae Hsp104 has been crystallized. This is the first report of the crystallization of a eukaryotic member of the Hsp100 family of molecular chaperones. A 40 kDa N-terminal fragment of Saccharomyces cerevisiae Hsp104 was crystallized in two different crystal forms. Native 1 diffracted to 2.6 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 66.6, b = 75.8, c = 235.7 Å. Native 2 diffracted to 2.9 Å resolution and belonged to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = 179.1, b = 179.1, c = 69.7 Å. This is the first report of the crystallization of a eukaryotic member of the Hsp100 family of molecular chaperones.

  5. A Role for Galanin N-Terminal Fragment (1–15) in Anxiety- and Depression-Related Behaviors in Rats

    PubMed Central

    Millón, Carmelo; Flores-Burgess, Antonio; Narváez, Manuel; Borroto-Escuela, Dasiel O.; Santín, Luis; Parrado, Concepción; Narváez, José Angel; Fuxe, Kjell

    2015-01-01

    Background: Galanin (GAL) plays a role in mood regulation. In this study we analyzed the action of the active N-terminal fragment [GAL(1–15)] in anxiety- and depression-related behavioral tests in rats. Methods: The effect of GAL(1–15) was analyzed in the forced swimming test, tail suspension test, open field test, and light/dark test. The proximity of GAL1 and GAL2 receptors was examined with the proximity ligation assay (PLA). We tested the GAL receptors involved in GAL(1–15) effects with the GAL2 receptor antagonist M871 and with an in vivo model of siRNA GAL2 receptor knockdown or siRNA GAL1 receptor knockdown rats. The effects of GAL(1–15) were also studied in the cell line RN33B. Results: GAL(1–15) induced strong depression-like and anxiogenic-like effects in all the tests. These effects were stronger than the ones induced by GAL. The involvement of the GAL2 receptor was demonstrated with M871 and with the siRNA GAL2 receptor knockdown rats. The PLA indicated the possible existence of GAL1 and GAL2 heteroreceptor complexes in the dorsal hippocampus and especially in the dorsal raphe nucleus. In the siRNA GAL1 receptor knockdown rats the behavioral actions of GAL(1–15) disappeared, and in the siRNA GAL2 receptor knockdown rats the reductions of the behavioral actions of GAL(1–15) was linked to a disappearance of PLA. In the cell line RN33B, GAL(1–15) decreased 5-HT immunoreactivity more strongly than GAL. Conclusions: Our results indicate that GAL(1–15) exerts strong depression-related and anxiogenic-like effects and may give the basis for the development of drugs targeting GAL1 and GAL2 heteroreceptor complexes in the raphe-limbic system for the treatment of depression and anxiety. PMID:25522404

  6. N-Terminal Truncation of an Isolated Human IgG1 CH2 Domain Significantly Increases its Stability and Aggregation Resistance

    PubMed Central

    Gong, Rui; Wang, Yanping; Ying, Tianlei; Feng, Yang; Streaker, Emily; Prabakaran, Ponraj; Dimitrov, Dimiter S.

    2013-01-01

    Isolated human immunoglobulin G (IgG) CH2 domains are promising scaffolds for novel candidate therapeutics. Unlike other human IgG domains, CH2 is not involved in strong interchain interactions and isolated CH2 is relatively stable. However, isolated single CH2 is prone to aggregation. In native IgG and Fc molecules, the N-terminal residues of CH2 from the two heavy chains interact with each other and form hinge regions. By contrast, the N-terminal residues are highly disordered in isolated CH2. We have hypothesized that removal of the CH2 N-terminal residues may not only increase its stability but also its aggregation resistance. To test this hypothesis we constructed a shortened variant of IgG1 CH2 (CH2s) where the first seven residues of the N-terminus were deleted. We found that the thermal stability of CH2s was increased by 5°C compared to CH2. Importantly, we demonstrated that CH2s is significantly less prone to aggregation than CH2 as measured by Thioflavin T (ThT) fluorescence, turbidity and light scattering. We also found that the CH2s exhibited pH-dependent binding to a soluble single-chain human neonatal Fc receptor (shFcRn) which was significantly stronger than the very weak shFcRn binding to CH2 as measured by flow cytometry. Computer modeling suggested a possible mode of CH2 aggregation involving its N-terminal residues. Therefore, deletion of the N-terminal residues could increase drugability of CH2-based therapeutic candidates. This strategy to increase stability and aggregation resistance could also be applicable to other Ig-related proteins. PMID:23641816

  7. A candidate molecule for the matrix assembly receptor to the N-terminal 29-kDa fragment of fibronectin in chick myoblasts.

    PubMed

    Moon, K Y; Shin, K S; Song, W K; Chung, C H; Ha, D B; Kang, M S

    1994-03-11

    Myoblast surface proteins with binding activity toward the N-terminal 29-kDa fragment of fibronectin were identified by two different experimental techniques: one involves radioiodination of the cell surface proteins, followed by solubilization with Triton X-100 and affinity purification on a Sepharose column conjugated with the 29-kDa fragment, and the other involves cross-linking of the 29-kDa fragment to the cells metabolically labeled with [35S]methionine, followed by immunoprecipitation with anti-29-kDa IgG. Both approaches revealed that primary cultures of chick myoblasts contain the 66- and 48-kDa proteins that bind to the 29-kDa fragment. These binding proteins were then purified to apparent homogeneity by two successive chromatographies of the solubilized extracts of 12-day-old embryonic muscle on wheat germ agglutinin-agarose and 29-kDa fragment-Sepharose columns. However, the 48-kDa protein was found to be derived from contaminating fibroblasts upon immunoblot analysis of the myogenic cell lines, rat L8E63 and mouse C2A3, and cultured fibroblasts using the antibody raised against the 66-kDa protein. Anti-66-kDa IgG inhibited the binding of the 125I-29-kDa protein to the primary culture of myoblasts in a dose-dependent manner. On the other hand, the same antibody showed little or no effect on the initial binding of 125I-fibronectin to the cell surface, but dramatically inhibited its incorporation into deoxycholate-insoluble matrices. Furthermore, Fab fragments of anti-66-kDa IgG completely blocked the incorporation of fluoresceinated fibronectin into matrices but not its binding to the cell surface. These results suggest that fibronectin matrix assembly is mediated at least in part by the interaction of the 66-kDa protein with the N-terminal type I domain of fibronectin.

  8. Structural studies of the N-terminal fragments of the WW domain: Insights into co-translational folding of a beta-sheet protein

    PubMed Central

    Hanazono, Yuya; Takeda, Kazuki; Miki, Kunio

    2016-01-01

    Nascent proteins fold co-translationally because the folding speed and folding pathways are limited by the rate of ribosome biosynthesis in the living cell. In addition, though full-length proteins can fold all their residues during the folding process, nascent proteins initially fold only with the N-terminal residues. However, the transient structure and the co-translational folding pathway are not well understood. Here we report the atomic structures of a series of N-terminal fragments of the WW domain with increasing amino acid length. Unexpectedly, the structures indicate that the intermediate-length fragments take helical conformations even though the full-length protein has no helical regions. The circular dichroism spectra and theoretical calculations also support the crystallographic results. This suggests that the short-range interactions are more decisive in the structure formation than the long-range interactions for short nascent proteins. In the course of the peptide extension, the helical structure change to the structure mediated by the long-range interactions at a particular polypeptide length. Our results will provide unique information for elucidating the nature of co-translational folding. PMID:27698466

  9. Overexpression of C-terminally but not N-terminally truncated Myb induces fibrosarcomas: a novel nonhematopoietic target cell for the myb oncogene.

    PubMed Central

    Press, R D; Reddy, E P; Ewert, D L

    1994-01-01

    The myb oncogene encodes a DNA-binding transcriptional transactivator which can become a hematopoietic cell-transforming protein following the deletion of amino acid sequences from either its amino or carboxyl terminus. Although a number of hematopoietic tumors express terminally deleted variants of Myb, the involvement of truncated Myb in nonhematopoietic tumors has not been adequately investigated. To assess the full spectrum of Myb's oncogenic capability, a replication-competent retroviral vector (RCAMV) was used to express a full-length protein (C-Myb), an amino-terminally truncated protein (VCC- or delta N-Myb), a carboxyl-terminally truncated protein (T-Myb), or a doubly truncated protein (VCT-Myb) in vivo. These viruses were injected intravenously into 10-day chicken embryos, and the infected chicks were monitored for tumors. Approximately 4 to 8 weeks after hatching, the majority (30 of 39 [77%]) of animals infected with the T-Myb retrovirus (without 214 carboxyl-terminal residues) developed nodular muscle tumors which could be identified by both morphologic and immunohistochemical criteria as fibrosarcomas. Identically appearing tumors could also be found in the kidney of some T-Myb-infected animals. The T-Myb-induced fibrosarcomas expressed the appropriately sized T-Myb protein, contained an unaltered proviral T-myb gene, and showed clonal proviral integration sites. In comparison, no sarcomas were observed in any of the animals infected with the amino-terminally truncated (VCC- and delta N-Myb) or doubly truncated (VCT-Myb) viruses. A loss of carboxyl-terminal but not amino-terminal sequences can thus convert Myb into a potent in vivo transforming protein for nonhematopoietic mesenchymal cells. In comparison, a truncation of either or both ends of the protein can activate Myb into a hematopoietic cell-transforming protein. Images PMID:8139533

  10. Evidence that an N-terminal S-layer protein fragment triggers the release of a cell-associated high-molecular-weight amylase in Bacillus stearothermophilus ATCC 12980.

    PubMed Central

    Egelseer, E M; Schocher, I; Sleytr, U B; Sára, M

    1996-01-01

    During growth on starch medium, the S-layer-carrying Bacillus stearothermophilus ATCC 12980 and an S-layer-deficient variant each secreted three amylases, with identical molecular weights of 58,000, 122,000, and 184,000, into the culture fluid. Only the high-molecular-weight amylase (hmwA) was also identified as cell associated. Extraction and reassociation experiments showed that the hmwA had a high-level affinity to the peptidoglycan-containing layer and to the S-layer surface, but the interactions with the peptidoglycan-containing layer were stronger than those with the S-layer surface. For the S-layer-deficient variant, no changes in the amount of cell-associated and free hmwA could be observed during growth on starch medium, while for the S-layer-carrying strain, cell association of the hmwA strongly depended on the growth phase of the cells. The maximum amount of cell-associated hmwA was observed 3 h after inoculation, which corresponded to early exponential growth. The steady decrease in cell-associated hmwA during continued growth correlated with the appearance and the increasing intensity of a protein with an apparent molecular weight of 60,000 on sodium dodecyl sulfate gels. This protein had a high-level affinity to the peptidoglycan-containing layer and was identified as an N-terminal S-layer protein fragment which did not result from proteolytic cleavage of the whole S-layer protein but seems to be a truncated copy of the S-layer protein which is coexpressed with the hmwA under certain culture conditions. During growth on starch medium, the N-terminal S-layer protein fragment was integrated into the S-layer lattice, which led to the loss of its regular structure over a wide range and to the loss of amylase binding sites. Results obtained in the present study provide evidence that the N-terminal part of the S-layer protein is responsible for the anchoring of the subunits to the peptidoglycan-containing layer, while the surface-located C-terminal half

  11. Crystallization and Preliminary X-ray Crystallographic Analysis of a 40 kDa N-Terminal Fragment of the Yeast Prion-Remodeling Factor Hsp104

    SciTech Connect

    Lee,S.; Tsai, F.

    2007-01-01

    A 40 kDa N-terminal fragment of Saccharomyces cerevisiae Hsp104 was crystallized in two different crystal forms. Native 1 diffracted to 2.6 {angstrom} resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 66.6, b = 75.8, c = 235.7 {angstrom}. Native 2 diffracted to 2.9 {angstrom} resolution and belonged to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = 179.1, b = 179.1, c = 69.7 {angstrom}. This is the first report of the crystallization of a eukaryotic member of the Hsp100 family of molecular chaperones.

  12. Characterizations of myosin essential light chain's N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations.

    PubMed

    Wang, Li; Muthu, Priya; Szczesna-Cordary, Danuta; Kawai, Masataka

    2013-05-01

    Cross-bridge kinetics were studied at 20 °C in cardiac muscle strips from transgenic (Tg) mice expressing N-terminal 43 amino acid truncation mutation (Δ43) of myosin essential light chain (ELC), and the results were compared to those from Tg-wild type (WT) mice. Sinusoidal length changes were applied to activated skinned papillary muscle strips to induce tension transients, from which two exponential processes were deduced to characterize the cross-bridge kinetics. Their two rate constants were studied as functions of ATP, phosphate (Pi), ADP, and Ca(2+) concentrations to characterize elementary steps of the cross-bridge cycle consisting of six states. Our results demonstrate for the first time that the cross-bridge kinetics of Δ43 are accelerated owing to an acceleration of the rate constant k 2 of the cross-bridge detachment step, and that the number of strongly attached cross-bridges are decreased because of a reduction of the equilibrium constant K 4 of the force generation step. The isometric tension and stiffness of Δ43 are diminished compared to WT, but the force per cross-bridge is not changed. Stiffness measurement during rigor induction demonstrates a reduction in the stiffness in Δ43, indicating that the N-terminal extension of ELC forms an extra linkage between the myosin cross-bridge and actin. The tension-pCa study demonstrates that there is no Ca(2+) sensitivity change with Δ43, but the cooperativity is diminished. These results demonstrate the importance of the N-terminal extension of ELC in maintaining the myosin motor function during force generation and optimal cardiac performance.

  13. The serine proteinase chain of human complement component C1s. Cyanogen bromide cleavage and N-terminal sequences of the fragments.

    PubMed Central

    Carter, P E; Dunbar, B; Fothergill, J E

    1983-01-01

    Human complement component C1s was purified from fresh blood by conventional methods of precipitation and chromatography. The single-chain zymogen form was activated by treatment with C1r. Reduction and carboxymethylation then allowed the light chain and heavy chain to be separated on DEAE-Sepharose CL-6B in 8 M-urea. Liquid-phase sequencing of the light chain determined 50 residues from the N-terminus. CNBr-cleavage fragments of the light chain were separated by high-pressure liquid chromatography on gel-permeation and reverse-phase columns. N-Terminal sequencing of these fragments determined the order of a further 138 residues, giving a total of 188 residues or about 75% of the light chain. Seven of these eight sequences could be readily aligned with the amino acid sequences of other serine proteinases. The typical serine proteinase active-site residues are clearly conserved in C1s, and the specificity-related side chain of the substrate-binding pocket is aspartic acid, as in trypsin, consistent with the proteolytic action of C1s on C4 at an arginine residue. Somewhat surprisingly, when the C1s sequence is compared with that of complement subcomponent C1r, the percentage difference (59%) is approximately the same as that found between the other mammalian serine proteinases (56-71%). PMID:6362661

  14. Vasoinhibin, an N-terminal Prolactin Fragment, Directly Inhibits Cardiac Angiogenesis in Three-dimensional Heart Culture

    PubMed Central

    Nakajima, Ryojun; Nakamura, Eri; Harigaya, Toshio

    2017-01-01

    Vasoinhibins (Vi) are fragments of the growth hormone/prolactin (PRL) family and have antiangiogenic functions in many species. It is considered that Vi derived from PRL are involved in the pathogenesis of peripartum cardiomyopathy (PPCM). However, the pathogenic mechanism of PPCM, as well as heart angiogenesis, is not yet clear. Therefore, the aim of the present study is to clarify whether Vi act directly on angiogenesis inhibition in heart blood vessels. Endothelial cell viability was decreased by Vi treatment in a culture experiment. Furthermore, expression of proangiogenic genes, such as vascular endothelial growth factor, endothelial nitric oxide synthase, and VE-cadherin, were decreased. On the other hand, apoptotic factor gene, caspase 3, and inflammatory factor genes, tumor necrosis factor α and interleukin 6, were increased by Vi treatment. In three-dimensional left ventricular wall angiogenesis assay in mice, Vi treatment also inhibited cell migration, neovessel sprouting, and growth toward collagen gel. These data demonstrate that Vi treatment directly suppresses angiogenesis of the heart and support the hypothesis that Vi induce PPCM. PMID:28163696

  15. Coordination Environment of Cu(II) Ions Bound to N-Terminal Peptide Fragments of Angiogenin Protein

    PubMed Central

    Magrì, Antonio; Munzone, Alessia; Peana, Massimiliano; Medici, Serenella; Zoroddu, Maria Antonietta; Hansson, Orjan; Satriano, Cristina; Rizzarelli, Enrico; La Mendola, Diego

    2016-01-01

    Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang–actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo (“wild-type”, wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein–copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1–17) and AcAng(1–17), which encompass the sequence 1–17 of angiogenin (QDNSRYTHFLTQHYDAK-NH2), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides. PMID:27490533

  16. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  17. Massive CA1/2 Neuronal Loss with Intraneuronal and N-Terminal Truncated Aβ42 Accumulation in a Novel Alzheimer Transgenic Model

    PubMed Central

    Casas, Caty; Sergeant, Nicolas; Itier, Jean-Michel; Blanchard, Véronique; Wirths, Oliver; van der Kolk, Nicolien; Vingtdeux, Valérie; van de Steeg, Evita; Ret, Gwenaëlle; Canton, Thierry; Drobecq, Hervé; Clark, Allan; Bonici, Bruno; Delacourte, André; Benavides, Jesús; Schmitz, Christoph; Tremp, Günter; Bayer, Thomas A.; Benoit, Patrick; Pradier, Laurent

    2004-01-01

    Alzheimer’s disease (AD) is characterized by a substantial degeneration of pyramidal neurons and the appearance of neuritic plaques and neurofibrillary tangles. Here we present a novel transgenic mouse model, APPSLPS1KI that closely mimics the development of AD-related neuropathological features including a significant hippocampal neuronal loss. This transgenic mouse model carries M233T/L235P knocked-in mutations in presenilin-1 and overexpresses mutated human β-amyloid (Aβ) precursor protein. Aβx-42 is the major form of Aβ species present in this model with progressive development of a complex pattern of N-truncated variants and dimers, similar to those observed in AD brain. At 10 months of age, an extensive neuronal loss (>50%) is present in the CA1/2 hippocampal pyramidal cell layer that correlates with strong accumulation of intraneuronal Aβ and thioflavine-S-positive intracellular material but not with extracellular Aβ deposits. A strong reactive astrogliosis develops together with the neuronal loss. This loss is already detectable at 6 months of age and is PS1KI gene dosage-dependent. Thus, APPSLPS1KI mice further confirm the critical role of intraneuronal Aβ42 in neuronal loss and provide an excellent tool to investigate therapeutic strategies designed to prevent AD neurodegeneration. PMID:15466394

  18. Crystal structure of the human CD4 N-terminal two-domain fragment complexed to a class II MHC molecule.

    SciTech Connect

    Wang, J.-H.; Meijers, R.; Xiong, Y.; Liu, J.-H.; Sakihama, T.; Zhang, R.-G.; Joachimiak, A.; Reinherz, E. L.; Biosciences Division; Dana-Farber Cancer Inst.; Harvard Medical School

    2001-09-11

    The structural basis of the interaction between the CD4 coreceptor and a class II major histocompatibility complex (MHC) is described. The crystal structure of a complex containing the human CD4 N-terminal two-domain fragment and the murine I-A{sup k }class II MHC molecule with associated peptide (pMHCII) shows that only the 'top corner' of the CD4 molecule directly contacts pMHCII. The CD4 Phe-43 side chain extends into a hydrophobic concavity formed by MHC residues from both {alpha}2 and {beta}2 domains. A ternary model of the CD4-pMHCII-T-cell receptor (TCR) reveals that the complex appears V-shaped with the membrane-proximal pMHCII at the apex. This configuration excludes a direct TCR-CD4 interaction and suggests how TCR and CD4 signaling is coordinated around the antigenic pMHCII complex. Human CD4 binds to HIV gp120 in a manner strikingly similar to the way in which CD4 interacts with pMHCII. Additional contacts between gp120 and CD4 give the CD4-gp120 complex a greater affinity. Thus, ligation of the viral envelope glycoprotein to CD4 occludes the pMHCII-binding site on CD4, contributing to immunodeficiency.

  19. Copper(II), nickel(II) and zinc(II) complexes of the N-terminal nonapeptide fragment of amyloid-β and its derivatives.

    PubMed

    Grenács, Ágnes; Sóvágó, Imre

    2014-10-01

    Copper(II), nickel(II) and zinc(II) complexes of the nonapeptide fragment of amyloid-β Aβ(1-9) (NH2-DAEFRHDSG-NH2) and its two derivatives: NH2-DAAAAHAAA-NH2 and NH2-DAAAAAHAA-NH2 have been studied by potentiometric, UV-visible and CD spectroscopic methods. The results reveal the primary role of the amino terminus of peptides in copper(II) and nickel(II) binding. The formation of dinuclear complexes was also possible in the copper(II) containing systems but only the first six amino acids from the amino terminus were involved in metal binding in the physiologically relevant pH range. The coordination chemistry of the two alanine mutated peptides is almost the same as that of the native nonapeptide, but the thermodynamic stability of the copper(II) complexes of the mutants is significantly reduced. This difference probably comes from the secondary interactions of the polar side chains of Asp, Glu, Ser and Arg residues present in the native peptide. Moreover, this difference reveals that the amino acid sequence of the N-terminal domains of amyloid peptides is especially well suited for the complexation with copper(II) ions.

  20. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    SciTech Connect

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  1. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana.

    PubMed

    Wieczorek, Przemysław; Obrępalska-Stęplowska, Aleksandra

    2016-07-01

    The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus.

  2. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    PubMed

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  3. Interaction of N-terminal fragments of fibronectin with synthetic and recombinant D motifs from its binding protein on Staphylococcus aureus studied using fluorescence anisotropy.

    PubMed

    Huff, S; Matsuka, Y V; McGavin, M J; Ingham, K C

    1994-06-03

    The N-terminal 29-kDa fragment of fibronectin (Fn29K) contains five type I "finger" modules. It binds to heparin, fibrin, and bacteria and is involved in fibronectin (Fn) matrix assembly. Binding to Staphylococcus aureus involves a cell wall-associated protein that contains approximately three repeats of a 38-residue D motif (Signäs, C., Raucci, G., Jönsson, K., Lindgren, P.-E., Anantharamaiah, G.M., Höök, M., and Lindberg, M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 699-703). Synthetic peptides representing D1, D2, and D3, when labeled with fluorescein isothiocyanate (FITC), exhibited increases in fluorescence anisotropy upon addition of Fn29K but not other Fn fragments. The response could be reversed by titration with unlabeled peptides to yield inhibition constants that agreed with the dissociation constants obtained by fitting the initial response. Values of Kd ranged between 2 and 12 microM, with D3 having the highest affinity. Specificity of D3 for Fn29K was further illustrated by the fact that its C-terminal half (D3b, Lys801 to Lys821), when immobilized, selectively adsorbed Fn29K from a thermolysin digest of fibronectin. The binding site in Fn was further localized within Fn29K by analyzing smaller proteolytic or recombinant subfragments. Those containing fingers, F3-5 and F4-5, were purified on D3b-Sepharose and bound FITC-D3b with Kd values of 4-6 microM. Subfragments containing pairs of fingers 1-2, 2-3, or single fingers 1, 4, or 5 were inactive. Whole D1-3, expressed in Escherichia coli and labeled with fluorescein, bound 1.9 mol/mol of Fn29K with Kd = 1.5 nM. F4-5 and F2-3 bound with respective Kd values of 0.35 and 4.4 microM. These and other results indicate that binding of the individual D region peptides is mediated through their C-terminal halves, primarily to fingers 4 and 5 of fibronectin. The possible basis of the much higher affinity of D1-3 is discussed.

  4. Primary structure of the A chain of human complement-classical-pathway enzyme C1r. N-terminal sequences and alignment of autolytic fragments and CNBr-cleavage peptides.

    PubMed Central

    Gagnon, J; Arlaud, G J

    1985-01-01

    Activated human complement-classical-pathway enzyme C1r has previously been shown to undergo autolytic cleavages occurring in the A chain [Arlaud, Villiers, Chesne & Colomb (1980) Biochim. Biophys. Acta 616, 116-129]. Chemical analysis of the autolytic products confirms that the A chain undergoes two major cleavages, generating three fragments, which have now been isolated and characterized. The N-terminal alpha fragment (approx. 210 residues long) has a blocked N-terminus, as does the whole A chain, whereas N-terminal sequences of fragments beta and gamma (approx. 66 and 176 residues long respectively) do not, and their N-terminal sequences were determined. Fragments alpha, beta and gamma, which are not interconnected by disulphide bridges, are located in this order within C1r A chain. Fragment gamma is disulphide-linked to the B chain of C1r, which is C-terminal in the single polypeptide chain of precursor C1r. CNBr cleavage of C1r A chain yields seven major peptides, CN1b, CN4a, CN2a, CN1a, CN3, CN4b and CN2b, which were positioned in that order, on the basis of N-terminal sequences of the methionine-containing peptides generated from tryptic cleavage of the succinylated (3-carboxypropionylated) C1r A chain. About 60% of the sequence of C1r A chain (440-460 residues long) was determined, including the complete sequence of the C-terminal 95 residues. This region shows homology with the corresponding parts of plasminogen and chymotrypsinogen and, more surprisingly, with the alpha 1 chain of human haptoglobin 1-1, a serine proteinase homologue. PMID:2983658

  5. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.

    PubMed

    Díaz, Natalia; Suárez, Dimas

    2008-07-01

    Herein we use different computational methods to study the structure and energetic stability of the catalytic domain of the active MMP-2 enzyme considering two different orientations of its N-terminal coil. The first orientation is largely solvent accessible and corresponds to that observed in the 1CK7 crystal structure of the proenzyme. In the second orientation, the N-terminal coil is packed against the Omega-loop and the alpha3-helix of the MMP-2 enzyme likewise in the so-called "superactivated" form of other MMPs. Binding to the MMP-2 catalytic domain of a short peptide substrate, which mimics the sequence of the alpha1 chain of collagen type I, is also examined considering again the two configurations of the N-terminal coil. All these MMP-2 models are subject to 20 ns molecular dynamics (MD) simulations followed by MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) calculations. The positioning of the N-terminal coil in the "superactivated" form is found to be energetically favored for the MMP-2 enzyme. Moreover, this configuration of the N-terminal moiety can facilitate the binding of peptide substrates. Globally, the results obtained in this study could be relevant for the structural-based design of specific MMP inhibitors.

  6. Dynorphin 1-17 and Its N-Terminal Biotransformation Fragments Modulate Lipopolysaccharide-Stimulated Nuclear Factor-kappa B Nuclear Translocation, Interleukin-1beta and Tumor Necrosis Factor-alpha in Differentiated THP-1 Cells

    PubMed Central

    2016-01-01

    Dynorphin 1–17, (DYN 1–17) opioid peptide produces antinociception following binding to the kappa-opioid peptide (KOP) receptor. Upon synthesis and release in inflamed tissues by immune cells, DYN 1–17 undergoes rapid biotransformation and yields a unique set of opioid and non-opioid fragments. Some of these major fragments possess a role in immunomodulation, suggesting that opioid-targeted therapeutics may be effective in diminishing the severity of inflammatory disorders. This study aimed to examine the immunomodulatory effects of DYN 1–17 and major N-terminal fragments found in the inflammatory environment on nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) from lipopolysaccharide (LPS)-stimulated, differentiated THP-1 cells. The results demonstrate that NF-κB/p65 nuclear translocation was significantly attenuated following treatment with DYN 1–17 and a specific range of fragments, with the greatest reduction observed with DYN 1–7 at a low concentration (10 nM). Antagonism with a selective KOP receptor antagonist, ML-190, significantly reversed the inhibitory effects of DYN 1–17, DYN 1–6, DYN 1–7 and DYN 1–9, but not other DYN 1–17 N-terminal fragments (DYN 1–10 and 1–11) on NF-κB/p65 nuclear translocation. DYN 1–17 and selected fragments demonstrated differential modulation on the release of IL-1β and TNF-α with significant inhibition observed with DYN 1–7 at low concentrations (1 nM and 10 pM). These effects were blocked by ML-190, suggesting a KOP receptor-mediated pathway. The results demonstrate that DYN 1–17 and certain N-terminal fragments, produced in an inflamed environment, play an anti-inflammatory role by inhibiting NF-κB/p65 translocation and the subsequent cytokine release through KOP receptor-dependent and independent pathways. PMID:27055013

  7. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  8. A temperature-sensitive splicing mutation in the bimG gene of Aspergillus produces an N-terminal fragment which interferes with type 1 protein phosphatase function.

    PubMed Central

    Hughes, M; Arundhati, A; Lunness, P; Shaw, P J; Doonan, J H

    1996-01-01

    Progression through anaphase requires high levels of type 1 protein phosphatase (PP1) activity in a variety of eukaryotes, including Aspergillus nidulans. A conditional lethal, temperature-sensitive mutant in one of the Aspergillus PP1 genes, bimG, prevents the normal completion of anaphase when cells are grown at restrictive temperature and this has been shown to be due to a reduction in type 1 phosphatase activity. We show that the bimG11 allele is recessive to the wild-type allele in heterozygous diploids, implying that the mutation is due to loss of function at restrictive temperature, but molecular disruption of the wild-type bimG gene shows that the gene is not essential and has no discernable phenotype under laboratory conditions. Sequence comparison of wild-type and mutant alleles reveals a single base pair difference between the two genes, within the 5' splicing site of the second intron. We demonstrate that the conditional lethal phenotype of bimG11 strains is due to impaired splicing of the mutant mRNA and that this leads to the production of a truncated protein comprising an intact N-subdomain and a modified C-terminus. Over-expression of this truncated form of PP1 in a wild-type haploid produces a lethal phenotype and reduced PP1 activity, supporting the idea that a toxic interfering protein is produced. PP1, therefore, may have at least two spatially separated sites, both of which are required for function. Temperature-sensitive splicing mutations may provide a novel means of engineering conditional versions of other proteins, particularly other phosphatases. Images PMID:8887549

  9. Plasma Levels of Monocyte Chemoattractant Protein-1, n-Terminal Fragment of Brain Natriuretic Peptide and Calcidiol Are Independently Associated with the Complexity of Coronary Artery Disease

    PubMed Central

    Martín-Reyes, Roberto; Franco-Peláez, Juan Antonio; Lorenzo, Óscar; González-Casaus, María Luisa; Pello, Ana María; Aceña, Álvaro; Carda, Rocío; Martín-Ventura, José Luis; Blanco-Colio, Luis; Martín-Mariscal, María Luisa; Martínez-Milla, Juan; Villa-Bellosta, Ricardo; Piñero, Antonio; Navarro, Felipe; Egido, Jesús; Tuñón, José

    2016-01-01

    Background and Objectives We investigated the relationship of the Syntax Score (SS) and coronary artery calcification (CAC), with plasma levels of biomarkers related to cardiovascular damage and mineral metabolism, as there is sparse information in this field. Methods We studied 270 patients with coronary disease that had an acute coronary syndrome (ACS) six months before. Calcidiol, fibroblast growth factor-23, parathormone, phosphate and monocyte chemoattractant protein-1 [MCP-1], high-sensitivity C-reactive protein, galectin-3, and N-terminal pro-brain natriuretic peptide [NT-proBNP] levels, among other biomarkers, were determined. CAC was assessed by coronary angiogram as low-grade (0–1) and high-grade (2–3) calcification, measured with a semiquantitative scale ranging from 0 (none) to 3 (severe). For the SS study patients were divided in SS<14 and SS≥14. Multivariate linear and logistic regression analyses were performed. Results MCP-1 predicted independently the SS (RC = 1.73 [95%CI = 0.08–3.39]; p = 0.040), along with NT-proBNP (RC = 0.17 [95%CI = 0.05–0.28]; p = 0.004), male sex (RC = 4.15 [95%CI = 1.47–6.83]; p = 0.003), age (RC = 0.13 [95%CI = 0.02–0.24]; p = 0.020), hypertension (RC = 3.64, [95%CI = 0.77–6.50]; p = 0.013), hyperlipidemia (RC = 2.78, [95%CI = 0.28–5.29]; p = 0.030), and statins (RC = 6.12 [95%CI = 1.28–10.96]; p = 0.013). Low calcidiol predicted high-grade calcification independently (OR = 0.57 [95% CI = 0.36–0.90]; p = 0.013) along with ST-elevation myocardial infarction (OR = 0.38 [95%CI = 0.19–0.78]; p = 0.006), diabetes (OR = 2.35 [95%CI = 1.11–4.98]; p = 0.028) and age (OR = 1.37 [95%CI = 1.18–1.59]; p<0.001). During follow-up (1.79 [0.94–2.86] years), 27 patients developed ACS, stroke, or transient ischemic attack. A combined score using SS and CAC predicted independently the development of the outcome. Conclusions MCP-1 and NT-proBNP are independent predictors of SS, while low calcidiol plasma levels

  10. The N-terminal half of membrane CD14 is a functional cellular lipopolysaccharide receptor.

    PubMed

    Viriyakosol, S; Kirkland, T N

    1996-02-01

    CD14, a glycosylphosphatidylinositol-anchored protein on the surface of monocytes, macrophages, and polymorphonuclear leukocytes, is a receptor for lipopolysaccharide (LPS). It was recently reported that an N-terminal 152-amino-acid fragment of soluble CD14 was an active soluble lipopolysaccharide receptor (T. S. -C. Juan, M. J. Kelley, D. A. Johnson, L. A. Busse, E. Hailman, S. D. Wright, and H. S. Lichenstein, J. Biol. Chem. 270:1382-1387, 1995). To determine whether the N-terminal half of the membrane CD14 was a functional LPS receptor on the cell membrane, we engineered a chimeric gene coding for amino acids 1 to 151 of CD14 fused to the C-terminal region of decay-accelerating factor and expressed it in Chinese hamster ovary cells and 70Z/3 cells. We found that the chimeric, truncated CD14 is a fully functional LPS receptor in both cell lines.

  11. An Intrabody Drug (rAAV6-INT41) Reduces the Binding of N-Terminal Huntingtin Fragment(s) to DNA to Basal Levels in PC12 Cells and Delays Cognitive Loss in the R6/2 Animal Model

    PubMed Central

    2016-01-01

    Huntington's disease (HD) is a fatal progressive disease linked to expansion of glutamine repeats in the huntingtin protein and characterized by the progressive loss of cognitive and motor function. We show that expression of a mutant human huntingtin exon-1-GFP fusion construct results in nonspecific gene dysregulation that is significantly reduced by 50% due to coexpression of INT41, an intrabody specific for the proline-rich region of the huntingtin protein. Using stable PC12 cell lines expressing either inducible human mutant huntingtin (mHtt, Q73) or normal huntingtin (nHtt, Q23), we investigated the effect of rAAV6-INT41, an adeno-associated virus vector with the INT41 coding sequence, on the subcellular distribution of Htt. Compartmental fractionation 8 days after induction of Htt showed a 6-fold increased association of a dominate N-terminal mHtt fragment with DNA compared to N-terminal nHtt. Transduction with rAAV6-INT41 reduced DNA binding of N-terminal mHtt 6.5-fold in the nucleus and reduced nuclear translocation of the detected fragments. Subsequently, when rAAV6-INT41 is delivered to the striatum in the R6/2 mouse model, treated female mice exhibited executive function statistically indistinguishable from wild type, accompanied by reductions in Htt aggregates in the striatum, suggesting that rAAV6-INT41 is promising as a gene therapy for Huntington's disease. PMID:27595037

  12. Evaluation of the Naturally Acquired Antibody Immune Response to the Pv200L N-terminal Fragment of Plasmodium vivax Merozoite Surface Protein-1 in Four Areas of the Amazon Region of Brazil

    PubMed Central

    Storti-Melo, Luciane M.; Souza-Neiras, Wanessa C.; Cassiano, Gustavo C.; Taveira, Leonardo C.; Cordeiro, Antônio J.; Couto, Vanja S. C. A.; Póvoa, Marinete M.; Cunha, Maristela G.; Echeverry, Diana M.; Rossit, Andréa R. B.; Arévalo-Herrera, Myriam; Herrera, Sócrates; Machado, Ricardo L. D.

    2011-01-01

    Frequency and levels of IgG antibodies to an N-terminal fragment of the Plasmodium vivax MSP-1 (Pv200L) protein, in individuals naturally exposed to malaria in four endemic areas of Brazil, were evaluated by enzyme-linked immunosorbent assay. Plasma samples of 261 P. vivax-infected individuals from communities of Macapá, Novo Repartimento, Porto Velho, and Plácido de Castro in the Amazonian region with different malaria transmission intensities. A high mean number of studied individuals (89.3%) presented with antibodies to the Pv200L that correlated with the number of previous malaria infections; there were significant differences in the frequency of the responders (71.9–98.7) and in the antibody levels (1:200–1:51,200) among the four study areas. Results of this study provide evidence that Pv200L is a naturally immunogenic fragment of the PvMSP-1 and is associated with the degree of exposure to parasites. The fine specificity of antibodies to Pv200L is currently being assessed. PMID:21292879

  13. The N-Terminal Fragment of a PB2 Subunit from the Influenza A Virus (A/Hong Kong/156/1997 H5N1) Effectively Inhibits RNP Activity and Viral Replication

    PubMed Central

    Kashiwagi, Takahito; Hara, Koyu; Nakazono, Yoko; Uemura, Yusaku; Imamura, Yoshihiro; Hamada, Nobuyuki; Watanabe, Hiroshi

    2014-01-01

    Background Influenza A virus has a RNA-dependent RNA polymerase (RdRp) that is composed of three subunits (PB1, PB2 and PA subunit), which assemble with nucleoproteins (NP) and a viral RNA (vRNA) to form a RNP complex in the host nucleus. Recently, we demonstrated that the combination of influenza ribonucleoprotein (RNP) components is important for both its assembly and activity. Therefore, we questioned whether the inhibition of the RNP combination via an incompatible component in the RNP complex could become a methodology for an anti-influenza drug. Methodology/Principal Findings We found that a H5N1 PB2 subunit efficiently inhibits H1N1 RNP assembly and activity. Moreover, we determined the domains and important amino acids on the N-terminus of the PB2 subunit that are required for a strong inhibitory effect. The NP binding site of the PB2 subunit is important for the inhibition of RNP activity by another strain. A plaque assay also confirmed that a fragment of the PB2 subunit could inhibit viral replication. Conclusions/Significance Our results suggest that the N-terminal fragment of a PB2 subunit becomes an inhibitor that targets influenza RNP activity that is different from that targeted by current drugs such as M2 and NA inhibitors. PMID:25460916

  14. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models

    PubMed Central

    KWON, Ae Jeong; MOON, Ja Young; KIM, Won Kyong; KIM, Suk; HUR, Jin

    2016-01-01

    Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 × 109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice from systemic infection with virulent B. abortus. PMID:27349900

  15. Dscam1 Forms a Complex with Robo1 and the N-Terminal Fragment of Slit to Promote the Growth of Longitudinal Axons

    PubMed Central

    Alavi, Maryam; Song, Minmin; Gillis, Taylor; Bousum, Adam; Miller, Amanda; Kidd, Thomas

    2016-01-01

    The Slit protein is a major midline repellent for central nervous system (CNS) axons. In vivo, Slit is proteolytically cleaved into N- and C-terminal fragments, but the biological significance of this is unknown. Analysis in the Drosophila ventral nerve cord of a slit allele (slit-UC) that cannot be cleaved revealed that midline repulsion is still present but longitudinal axon guidance is disrupted, particularly across segment boundaries. Double mutants for the Slit receptors Dscam1 and robo1 strongly resemble the slit-UC phenotype, suggesting they cooperate in longitudinal axon guidance, and through biochemical approaches, we found that Dscam1 and Robo1 form a complex dependent on Slit-N. In contrast, Robo1 binding alone shows a preference for full-length Slit, whereas Dscam1 only binds Slit-N. Using a variety of transgenes, we demonstrated that Dscam1 appears to modify the output of Robo/Slit complexes so that signaling is no longer repulsive. Our data suggest that the complex is promoting longitudinal axon growth across the segment boundary. The ability of Dscam1 to modify the output of other receptors in a ligand-dependent fashion may be a general principle for Dscam proteins. PMID:27654876

  16. Direct analysis of tau from PSP brain identifies new phosphorylation sites and a major fragment of N-terminally cleaved tau containing four microtubule-binding repeats.

    PubMed

    Wray, Selina; Saxton, Malcolm; Anderton, Brian H; Hanger, Diane P

    2008-06-01

    Tangles containing hyperphosphorylated aggregates of insoluble tau are a pathological hallmark of progressive supranuclear palsy (PSP). Several phosphorylation sites on tau in PSP have been identified using phospho-specific antibodies, but no sites have been determined by direct sequencing due to the difficulty in enriching insoluble tau from PSP brain. We describe a new method to enrich insoluble PSP-tau and report eight phosphorylation sites [Ser46, Thr181, Ser202, Thr217, Thr231, Ser235, Ser396/Ser400 (one site) and Thr403/Ser404 (one site)] identified by mass spectrometry. We also describe a 35 kDa C-terminal tau fragment (tau35), lacking the N-terminus of tau but containing four microtubule-binding repeats (4R), that is present only in neurodegenerative disorders in which 4R tau is over-represented. Tau35 was readily detectable in PSP, corticobasal degeneration and 4R forms of fronto-temporal dementia with parkinsonism linked to chromosome 17, but was absent from control, Alzheimer's disease and Pick's disease brain. Our findings suggest the aggregatory characteristics of PSP-tau differ from those of insoluble tau in Alzheimer's disease brain and this might be related to the presence of a C-terminal cleavage product of tau.

  17. Modulation of N-methyl-D-aspartate and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) responses of spinal nociceptive neurons by a N-terminal fragment of substance P.

    PubMed

    Budai, D; Wilcox, G L; Larson, A A

    1992-06-17

    The effects of an N-terminal fragment of substance P, substance P-(1-7) [SP-(1-7)], on the responses of dorsal horn nociceptive neurons to N-methyl-D-aspartate (NMDA) and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) were tested by combined single-unit extracellular recordings/microiontophoresis. While SP-(1-7) had no effects when applied by itself, it was a potent and long-lasting modulator of both NMDA- and AMPA-mediated excitation of spinal dorsal horn nociceptive neurons. NMDA responses were transiently decreased (by an average of 36% of control at minimum) by SP-(1-7) followed by a more sustained increase (by 76% at maximum). In contrast, AMP responses were only increased by SP-(1-7) (by 81% at maximum). It is hypothesized that the actions of SP-(1-7) on excitatory amino acid (EAA) responses of dorsal horn nociceptive neurons reflect a novel mechanism by which SP and EAAs interact to modulate pain transmission.

  18. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    SciTech Connect

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh . E-mail: rakbhat01@yahoo.com; Banerjee-Bhatnagar, Nirupama . E-mail: nirupama@icgeb.res.in

    2006-12-22

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine.

  19. The N-terminal fragment of the β-amyloid precursor protein of Alzheimer's disease (N-APP) binds to phosphoinositide-rich domains on the surface of hippocampal neurons.

    PubMed

    Dawkins, Edgar; Gasperini, Robert; Hu, Yanling; Cui, Hao; Vincent, Adele J; Bolós, Marta; Young, Kaylene M; Foa, Lisa; Small, David H

    2014-11-01

    The function of the β-amyloid precursor protein (APP) of Alzheimer's disease is poorly understood. The secreted ectodomain fragment of APP (sAPPα) can be readily cleaved to produce a small N-terminal fragment (N-APP) that contains heparin-binding and metal-binding domains and that has been found to have biological activity. In the present study, we examined whether N-APP can bind to lipids. We found that N-APP binds selectively to phosphoinositides (PIPs) but poorly to most other lipids. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 )-rich microdomains were identified on the extracellular surface of neurons and glia in primary hippocampal cultures. N-APP bound to neurons and colocalized with PIPs on the cell surface. Furthermore, the binding of N-APP to neurons increased the level of cell-surface PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate. However, PIPs were not the principal cell-surface binding site for N-APP, because N-APP binding to neurons was not inhibited by a short-acyl-chain PIP analogue, and N-APP did not bind to glial cells which also possessed PI(4,5)P2 on the cell surface. The data are explained by a model in which N-APP binds to two distinct components on neurons, one of which is an unidentified receptor and the second of which is a PIP lipid, which binds more weakly to a distinct site within N-APP. Our data provide further support for the idea that N-APP may be an important mediator of APP's biological activity.

  20. Immunogenicity of a truncated enterovirus 71 VP1 protein fused to a Newcastle disease virus nucleocapsid protein fragment in mice.

    PubMed

    Ch'ng, W C; Saw, W T; Yusoff, K; Shafee, N

    2011-01-01

    Enterovirus 71 (EV71) is one of the viruses that cause hand, foot and mouth disease. Its viral capsid protein 1 (VP1), which contains many neutralization epitopes, is an ideal target for vaccine development. Recently, we reported the induction of a strong immune response in rabbits to a truncated VP1 fragment (Nt-VP1t) displayed on a recombinant Newcastle disease virus (NDV) capsid protein. Protective efficacy of this vaccine, however, can only be tested in mice, since all EV71 animal models thus far were developed in mouse systems. In this study, we evaluated the type of immune responses against the protein developed by adult BALB/c mice. Nt-VP1t protein induced high levels of VP1 IgG antibody production in mice. Purified VP1 antigen stimulated activation, proliferation and differentiation of splenocytes harvested from these mice. They also produced significant levels of IFN-γ, a Th1-related cytokine. Taken together, Nt-VP1t protein is a potent immunogen in adult mice and our findings provide the data needed for testing of its protective efficacy in mouse models of EV71 infections.

  1. N-Terminal Hypothesis for Alzheimer's Disease.

    PubMed

    Murray, Brian; Sharma, Bhanushee; Belfort, Georges

    2017-03-15

    Although the amyloid (abeta peptide, Aβ) hypothesis is 25 years old, is the dominant model of Alzheimer's disease (AD) pathogenesis, and guides the development of potential treatments, it is still controversial. One possible reason is a lack of a mechanistic path from the cleavage products of the amyloid precursor protein (APP) such as soluble Aβ monomer and soluble molecular fragments to the deleterious effects on synaptic form and function. From a review of the recent literature and our own published work including aggregation kinetics and structural morphology, Aβ clearance, molecular simulations, long-term potentiation measurements with inhibition binding, and the binding of a commercial monoclonal antibody, aducanumab, we hypothesize that the N-terminal domains of neurotoxic Aβ oligomers are implicated in causing the disease.

  2. N-Terminal Methionine Processing.

    PubMed

    Wingfield, Paul T

    2017-04-03

    Protein synthesis is initiated by methionine in eukaryotes and by formylmethionine in prokaryotes. N-terminal methionine can be co-translationally cleaved by the enzyme methionine aminopeptidase (MAP). When recombinant proteins are expressed in bacterial and mammalian expression systems, there is a simple universal rule that predicts whether the initiating methionine will be processed by MAP based on the size of the residue adjacent (penultimate) to the N-methionine. In general, if the side chains of the penultimate residues have a radius of gyration of 1.29 Å or less, methionine is cleaved. © 2017 by John Wiley & Sons, Inc.

  3. Biochemical characterization of peptides from herpes simplex virus glycoprotein gC: loss of CNBr fragments from the carboxy terminus of truncated, secreted gC molecules.

    PubMed Central

    Kikuchi, G E; Coligan, J E; Holland, T C; Levine, M; Glorioso, J C; Nairn, R

    1984-01-01

    A biochemical characterization of peptides from herpes simplex virus type 1 glycoprotein gC was carried out. We utilized simple micromethods, based on immunological isolation of biosynthetically radiolabeled gC, to obtain gC in pure form for biochemical study. CNBr fragments of gC were prepared, isolated, and characterized. These CNBr fragments were resolved into six peaks by chromatography on Sephacryl S-200 in 6 M guanidine hydrochloride. Only three of the CNBr fragments contained carbohydrate side chains, as judged from the incorporation of [14C]glucosamine. Radiochemical microsequence analyses were carried out on the gC molecule and on each of the CNBr fragments of gC. A comparison of this amino acid sequence data with the amino acid sequence predicted from the DNA sequence of the gC gene showed that the first 25 residues of the predicted sequence are not present in the gC molecule isolated from infected cells and allowed alignment of the CNBr fragments in the gC molecule. Glycoprotein gC was also examined from three gC mutants, synLD70, gC-8, and gC-49. These mutants lack an immunoreactive envelope form of gC but produce a secreted, truncated gC gene product. Glycoprotein gC from cells infected with any of these gC- mutants was shown to have lost more than one CNBr fragment present in the wild-type gC molecule. The missing fragments included the one containing the putative transmembrane anchor sequence. Glycoprotein gC from the gC-8 mutant was also shown, by tryptic peptide map analysis, to have lost more than five major arginine-labeled tryptic peptides arginine-labeled tryptic peptides present in the wild-type gC molecule and to have gained a lysine-labeled tryptic peptide not present in wild-type gC. Images PMID:6092712

  4. N-Terminal Peptide Detection with Optimized Peptide-Spectrum Matching and Streamlined Sequence Libraries.

    PubMed

    Lycette, Brynne E; Glickman, Jacob W; Roth, Samuel J; Cram, Abigail E; Kim, Tae Hee; Krizanc, Danny; Weir, Michael P

    2016-09-02

    We identified tryptic peptides in yeast cell lysates that map to translation initiation sites downstream of the annotated start sites using the peptide-spectrum matching algorithms OMSSA and Mascot. To increase the accuracy of peptide-spectrum matching, both algorithms were run using several standardized parameter sets, and Mascot was run utilizing a, b, and y ions from collision-induced dissociation. A large fraction (22%) of the detected N-terminal peptides mapped to translation initiation downstream of the annotated initiation sites. Expression of several truncated proteins from downstream initiation in the same reading frame as the full-length protein (frame 1) was verified by western analysis. To facilitate analysis of the larger proteome of Drosophila, we created a streamlined sequence library from which all duplicated trypsin fragments had been removed. OMSSA assessment using this "stripped" library revealed 171 peptides that map to downstream translation initiation sites, 76% of which are in the same reading frame as the full-length annotated proteins, although some are in different reading frames creating new protein sequences not in the annotated proteome. Sequences surrounding implicated downstream AUG start codons are associated with nucleotide preferences with a pronounced three-base periodicity N1^G2^A3.

  5. N-terminal domain of complexin independently activates calcium-triggered fusion

    PubMed Central

    Lai, Ying; Choi, Ucheor B.; Zhang, Yunxiang; Zhao, Minglei; Pfuetzner, Richard A.; Wang, Austin L.; Brunger, Axel T.

    2016-01-01

    Complexin activates Ca2+-triggered neurotransmitter release and regulates spontaneous release in the presynaptic terminal by cooperating with the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and the Ca2+-sensor synaptotagmin. The N-terminal domain of complexin is important for activation, but its molecular mechanism is still poorly understood. Here, we observed that a split pair of N-terminal and central domain fragments of complexin is sufficient to activate Ca2+-triggered release using a reconstituted single-vesicle fusion assay, suggesting that the N-terminal domain acts as an independent module within the synaptic fusion machinery. The N-terminal domain can also interact independently with membranes, which is enhanced by a cooperative interaction with the neuronal SNARE complex. We show by mutagenesis that membrane binding of the N-terminal domain is essential for activation of Ca2+-triggered fusion. Consistent with the membrane-binding property, the N-terminal domain can be substituted by the influenza virus hemagglutinin fusion peptide, and this chimera also activates Ca2+-triggered fusion. Membrane binding of the N-terminal domain of complexin therefore cooperates with the other fusogenic elements of the synaptic fusion machinery during Ca2+-triggered release. PMID:27444020

  6. Folding and stability studies on C-PE and its natural N-terminal truncant.

    PubMed

    Anwer, Khalid; Parmar, Asha; Rahman, Safikur; Kaushal, Avani; Madamwar, Datta; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-03-01

    The conformational and functional state of biliproteins can be determined by optical properties of the covalently linked chromophores. α-Subunit of most of the phycoerythrin contains 164 residues. Recently determined crystal structure of the naturally truncated form of α-subunit of cyanobacterial phycoerythrin (Tr-αC-PE) lacks 31 N-terminal residues present in its full length form (FL-αC-PE). This provides an opportunity to investigate the structure-function relationship between these two natural forms. We measured guanidinium chloride (GdmCl)-induced denaturation curves of FL-αC-PE and Tr-αC-PE proteins, followed by observing changes in absorbance at 565nm, fluorescence at 350 and 573nm, and circular dichroism at 222nm. The denaturation curve of each protein was analyzed for ΔGD(∘), the value of Gibbs free energy change on denaturation (ΔGD) in the absence of GdmCl. The main conclusions of the this study are: (i) GdmCl-induced denaturation (native state↔denatured state) of FL-αC-PE and Tr-αC-PE is reversible and follows a two-state mechanism, (ii) FL-αC-PE is 1.4kcalmol(-1) more stable than Tr-αC-PE, (iii) truncation of 31-residue long fragment that contains two α-helices, does not alter the 3-D structure of the remaining protein polypeptide chain, protein-chromophore interaction, and (iv) amino acid sequence of Tr-αC-PE determines the functional structure of the phycoerythrin.

  7. Synthetic Antibodies Inhibit Bcl-2-associated X Protein (BAX) through Blockade of the N-terminal Activation Site*

    PubMed Central

    Uchime, Onyinyechukwu; Dai, Zhou; Biris, Nikolaos; Lee, David; Sidhu, Sachdev S.; Li, Sheng; Lai, Jonathan R.; Gavathiotis, Evripidis

    2016-01-01

    The BCL-2 protein family plays a critical role in regulating cellular commitment to mitochondrial apoptosis. Pro-apoptotic Bcl-2-associated X protein (BAX) is an executioner protein of the BCL-2 family that represents the gateway to mitochondrial apoptosis. Following cellular stresses that induce apoptosis, cytosolic BAX is activated and translocates to the mitochondria, where it inserts into the mitochondrial outer membrane to form a toxic pore. How the BAX activation pathway proceeds and how this may be inhibited is not yet completely understood. Here we describe synthetic antibody fragments (Fabs) as structural and biochemical probes to investigate the potential mechanisms of BAX regulation. These synthetic Fabs bind with high affinity to BAX and inhibit its activation by the BH3-only protein tBID (truncated Bcl2 interacting protein) in assays using liposomal membranes. Inhibition of BAX by a representative Fab, 3G11, prevented mitochondrial translocation of BAX and BAX-mediated cytochrome c release. Using NMR and hydrogen-deuterium exchange mass spectrometry, we showed that 3G11 forms a stoichiometric and stable complex without inducing a significant conformational change on monomeric and inactive BAX. We identified that the Fab-binding site on BAX involves residues of helices α1/α6 and the α1-α2 loop. Therefore, the inhibitory binding surface of 3G11 overlaps with the N-terminal activation site of BAX, suggesting a novel mechanism of BAX inhibition through direct binding to the BAX N-terminal activation site. The synthetic Fabs reported here reveal, as probes, novel mechanistic insights into BAX inhibition and provide a blueprint for developing inhibitors of BAX activation. PMID:26565029

  8. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  9. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-02-11

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro.

  10. Autolysis of bovine enteropeptidase heavy chain: evidence of fragment 118-465 involvement in trypsinogen activation.

    PubMed

    Mikhailova, A G; Rumsh, L D

    1999-01-15

    Variations in bovine enteropeptidase (EP) activity were shown to result from autolysis caused by the loss of calcium ions; the cleavage sites were determined. The native enzyme preferred its natural substrate, trypsinogen (KM=2.4 microM), to the peptide and fusion protein substrates (KM=200 and 125 microM, respectively). On the other hand, the truncated enzyme composed of the C-terminal fragment 466-800 of EP heavy chain and intact light chain did not distinguish these substrates. The results suggest that the N-terminal fragment 118-465 of the enteropeptidase heavy chain contains a secondary substrate-binding site that interacts directly with trypsinogen.

  11. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein.

    PubMed

    Pastor, Ashutosh; Singh, Amit K; Shukla, Prakash K; Equbal, Md Javed; Malik, Shikha T; Singh, Tej P; Chaudhuri, Tapan K

    2016-09-01

    Maltodextrin glucosidase (MalZ) hydrolyses short malto-oligosaccharides from the reducing end releasing glucose and maltose in Escherichia coli. MalZ is a highly aggregation prone protein and molecular chaperonins GroEL and GroES assist in the folding of this protein to a substantial level. The N-terminal region of this enzyme appears to be a unique domain as seen in sequence comparison studies with other amylases as well as through homology modelling. The sequence and homology model analysis show a probability of disorder in the N-Terminal region of MalZ. The crystal structure of this enzyme has been reported in the present communication. Based on the crystallographic structure, it has been interpreted that the N-terminal region of the enzyme (Met1-Phe131) might be unstructured or flexible. To understand the role of the N-terminal region of MalZ in its enzymatic activity, and overall stability, a truncated version (Ala111-His616) of MalZ was created. The truncated version failed to fold into an active enzyme both in E. coli cytosol and in vitro even with the assistance of chaperonins GroEL and GroES. Furthermore, the refolding effort of N-truncated MalZ in the presence of isolated N-terminal domain didn't succeed. Our studies suggest that while the structural rigidity or orientation of the N-terminal region of the MalZ protein may not be essential for its stability and function, but the said domain is likely to play an important role in the formation of the native structure of the protein when present as an integral part of the protein.

  12. The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation

    PubMed Central

    Absmeier, Eva; Wollenhaupt, Jan; Mozaffari-Jovin, Sina; Becke, Christian; Lee, Chung-Tien; Preussner, Marco; Heyd, Florian; Urlaub, Henning; Lührmann, Reinhard; Santos, Karine F.; Wahl, Markus C.

    2015-01-01

    The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation. PMID:26637280

  13. Protease Substrate Profiling by N-Terminal COFRADIC.

    PubMed

    Staes, An; Van Damme, Petra; Timmerman, Evy; Ruttens, Bart; Stes, Elisabeth; Gevaert, Kris; Impens, Francis

    2017-01-01

    Detection of (neo-)N-terminal peptides is essential for identifying protease cleavage sites . We here present an update of a well-established and efficient selection method for enriching N-terminal peptides out of peptide mixtures: N-terminal COFRADIC (COmbined FRActional DIagonal Chromatography). This method is based on the old concept of diagonal chromatography, which involves a peptide modification step in between otherwise identical chromatographic separations, with this modification step finally allowing for the isolation of N-terminal peptides by longer retention of non-N-terminal peptides on the resin. N-terminal COFRADIC has been successfully applied in many protease-centric studies, as well as for studies on protein alpha-N-acetylation and on characterizing alternative translation initiation events.

  14. Glycosylations and truncations of functional cereal phytases expressed and secreted by Pichia pastoris documented by mass spectrometry.

    PubMed

    Dionisio, Giuseppe; Jørgensen, Malene; Welinder, Karen Gjesing; Brinch-Pedersen, Henrik

    2012-03-01

    Cereal purple acid phosphatase-type phytases, PAPhy, play an essential role in making phosphate accessible to mammalian digestion and reducing the environmental impact of manure. Studying the potential of PAPhy requires easy access to the enzymes. For that purpose wheat and barley isophytases have been expressed in Pichia pastoris from constructs encoding the alpha-mating factor at the N-termini and a His₆ tag before the stop codon in all constructs. A protein chemical study of a C-terminally truncated recombinant wheat phytase, r-TaPAPhy_b2, was carried out to clarifying the posttranslational processing of proteins secreted from P. pastoris. Extensive mass spectrometric sequencing of tryptic, chymotryptic and AspN derived peptides of both the native and endoH deglycosylated forms showed: (i) All mating factor derived sequence had been removed and further unspecific proteolysis left highly heterogeneous N-terminal variant forms of r-TaPAPhy; (ii) The His₆ tag had been retained or slightly truncated; (iii) All seven potential N-glycan sites were glycosylated except for two sites which were partially glycosylated by ca. 90% and 30%; (iv) Among the nine cysteine residues of this phytase, the most N-terminal residue is free, whereas the remaining eight appear to be disulfide bonded. It is noteworthy that already the first step in ESI-MS/MS sequencing had fragmented the hyper glycosylated peptides into free Z, Y and X mass spectrometric glycan fragments attached to the peptide.

  15. The N-terminal tails of the H2A-H2B histones affect dimer structure and stability.

    PubMed

    Placek, Brandon J; Gloss, Lisa M

    2002-12-17

    The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.

  16. SAXS Structural Studies of Dps from Deinococcus radiodurans Highlights the Conformation of the Mobile N-Terminal Extensions.

    PubMed

    Santos, Sandra P; Cuypers, Maxime G; Round, Adam; Finet, Stephanie; Narayanan, Theyencheri; Mitchell, Edward P; Romão, Célia V

    2017-03-10

    The radiation-resistant bacterium Deinococcus radiodurans contains two DNA-binding proteins from starved cells (Dps): Dps1 (DR2263) and Dps2 (DRB0092). These are suggested to play a role in DNA interaction and manganese and iron storage. The proteins assemble as a conserved dodecameric structure with structurally uncharacterised N-terminal extensions. In the case of DrDps1, these extensions have been proposed to be involved in DNA interactions, while in DrDps2, their function has yet to be established. The reported data reveal the relative position of the N-terminal extensions to the dodecameric sphere in solution for both Dps. The low-resolution small angle X-ray scattering (SAXS) results show that the N-terminal extensions protrude from the spherical shell of both proteins. The SAXS envelope of a truncated form of DrDps1 without the N-terminal extensions appears as a dodecameric sphere, contrasting strongly with the protrusions observed in the full-length models. The effect of iron incorporation into DrDps2 was investigated by static and stopped-flow SAXS measurements, revealing dynamic structural changes upon iron binding and core formation, as reflected by a quick alteration of its radius of gyration. The truncated and full-length versions of DrDps were also compared on the basis of their interaction with DNA to analyse functional roles of the N-terminal extensions. DrDps1 N-terminal protrusions appear to be directly involved with DNA, whilst those from DrDps2 are indirectly associated with DNA binding. Furthermore, detection of DrDps2 in the D. radiodurans membrane fraction suggests that the N-terminus of the protein interacts with the membrane.

  17. Functional dissection of the N-terminal sequence of Clostridium sp. G0005 glucoamylase: identification of components critical for folding the catalytic domain and for constructing the active site structure.

    PubMed

    Sakaguchi, Masayoshi; Matsushima, Yudai; Nagamine, Yusuke; Matsuhashi, Tomoki; Honda, Shotaro; Okuda, Shoi; Ohno, Misa; Sugahara, Yasusato; Shin, Yongchol; Oyama, Fumitaka; Kawakita, Masao

    2017-03-01

    Clostridium sp. G0005 glucoamylase (CGA) is composed of a β-sandwich domain (BD), a linker, and a catalytic domain (CD). In the present study, CGA was expressed in Escherichia coli as inclusion bodies when the N-terminal region (39 amino acid residues) of the BD was truncated. To further elucidate the role of the N-terminal region of the BD, we constructed N-terminally truncated proteins (Δ19, Δ24, Δ29, and Δ34) and assessed their solubility and activity. Although all evaluated proteins were soluble, their hydrolytic activities toward maltotriose as a substrate varied: Δ19 and Δ24 were almost as active as CGA, but the activity of Δ29 was substantially lower, and Δ34 exhibited little hydrolytic activity. Subsequent truncation analysis of the N-terminal region sequence between residues 25 and 28 revealed that truncation of less than 26 residues did not affect CGA activity, whereas truncation of 26 or more residues resulted in a substantial loss of activity. Based on further site-directed mutagenesis and N-terminal sequence analysis, we concluded that the 26XaaXaaTrp28 sequence of CGA is important in exhibiting CGA activity. These results suggest that the N-terminal region of the BD in bacterial GAs may function not only in folding the protein into the correct structure but also in constructing a competent active site for catalyzing the hydrolytic reaction.

  18. Cytoplasmic c-Jun N-terminal immunoreactivity: a hallmark of retinal apoptosis.

    PubMed

    Chiarini, Luciana B; de Freitas, Fabíola G; Leal-Ferreira, Mona Lisa; Tolkovsky, Aviva; Linden, Rafael

    2002-12-01

    1. We investigated the association of c-Jun with apoptosis within retinal tissue. Explants of the retina of neonatal rats were subject to a variety of procedures that cause apoptosis of specific classes of retinal cells at distinct stages of differentiation. The expression of c-Jun was detected by Western Blot, and immunohistochemistry was done with antibodies made for either N-terminal or C-terminal domains of c-Jun, and correlated with apoptosis detected either by chromatin condensation or by in situ nick end labeling of fragmented DNA. 2. c-Jun protein content was increased in retinal tissue subject to induction of both photoreceptor and ganglion cell death. 3. c-Jun N-terminal immunoreactivity was found mainly in the cytoplasm of apoptotic cells regardless of cell type, of the stage of differentiation, including proliferating cells, or of the means of induction of apoptosis. 4. The data are consistent with the hypothesis that c-Jun is involved in the control of cell death in retinal tissue, but other proteins that cross-react with c-Jun N-terminal antibodies may also be major markers of retinal apoptosis. 5. Antibodies directed to c-Jun N-terminal (aa 91-105) are useful tools to follow apoptotic changes in retinal tissue.

  19. Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3

    SciTech Connect

    Yoshimune, Kazuaki . E-mail: k.yoshimune@aist.go.jp; Shirakihara, Yasuo; Shiratori, Aya; Wakayama, Mamoru; Chantawannakul, Panuwan; Moriguchi, Mitsuaki

    2006-08-11

    Glutaminase of Micrococcus luteus K-3 (intact glutaminase; 48 kDa) is digested to a C-terminally truncated fragment (glutaminase fragment; 42 kDa) that shows higher salt tolerance than that of the intact glutaminase. The crystal structure of the glutaminase fragment was determined at 2.4 A resolution using multiple-wavelength anomalous dispersion (MAD). The glutaminase fragment is composed of N-terminal and C-terminal domains, and a putative catalytic serine-lysine dyad (S64 and K67) is located in a cleft of the N-terminal domain. Mutations of the S64 or K67 residues abolished the enzyme activity. The N-terminal domain has abundant glutamic acid residues on its surface, which may explain its salt-tolerant mechanism. A diffraction analysis of the intact glutaminase crystals (a twinning fraction of 0.43) located the glutaminase fragment in the unit cell but failed to turn up clear densities for the missing C-terminal portion of the molecule.

  20. Complete amino acid sequence of the N-terminal extension of calf skin type III procollagen.

    PubMed Central

    Brandt, A; Glanville, R W; Hörlein, D; Bruckner, P; Timpl, R; Fietzek, P P; Kühn, K

    1984-01-01

    The N-terminal extension peptide of type III procollagen, isolated from foetal-calf skin, contains 130 amino acid residues. To determine its amino acid sequence, the peptide was reduced and carboxymethylated or aminoethylated and fragmented with trypsin, Staphylococcus aureus V8 proteinase and bacterial collagenase. Pyroglutamate aminopeptidase was used to deblock the N-terminal collagenase fragment to enable amino acid sequencing. The type III collagen extension peptide is homologous to that of the alpha 1 chain of type I procollagen with respect to a three-domain structure. The N-terminal 79 amino acids, which contain ten of the 12 cysteine residues, form a compact globular domain. The next 39 amino acids are in a collagenase triplet sequence (Gly- Xaa - Yaa )n with a high hydroxyproline content. Finally, another short non-collagenous domain of 12 amino acids ends at the cleavage site for procollagen aminopeptidase, which cleaves a proline-glutamine bond. In contrast with type I procollagen, the type III procollagen extension peptides contain interchain disulphide bridges located at the C-terminus of the triple-helical domain. PMID:6331392

  1. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    PubMed

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.

  2. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.

    PubMed

    Haslbeck, Martin; Ignatiou, Athanasios; Saibil, Helen; Helmich, Sonja; Frenzl, Elke; Stromer, Thusnelda; Buchner, Johannes

    2004-10-15

    Small heat-shock proteins (Hsps) are ubiquitous molecular chaperones which prevent the unspecific aggregation of non-native proteins. For Hsp26, a cytosolic sHsp from of Saccharomyces cerevisiae, it has been shown that, at elevated temperatures, the 24 subunit complex dissociates into dimers. This dissociation is required for the efficient interaction with non-native proteins. Deletion analysis of the protein showed that the N-terminal half of Hsp26 (amino acid residues 1-95) is required for the assembly of the oligomer. Limited proteolysis in combination with mass spectrometry suggested that this region can be divided in two parts, an N-terminal segment including amino acid residues 1-30 and a second part ranging from residues 31-95. To analyze the structure and function of the N-terminal part of Hsp26 we created a deletion mutant lacking amino acid residues 1-30. We show that the oligomeric state and the structure, as determined by size exclusion chromatography and electron microscopy, corresponds to that of the Hsp26 wild-type protein. Furthermore, this truncated version of Hsp26 is active as a chaperone. However, in contrast to full length Hsp26, the truncated version dissociates at lower temperatures and complexes with non-native proteins are less stable than those found with wild-type Hsp26. Our results suggest that the N-terminal segment of Hsp26 is involved in both, oligomerization and chaperone function and that the second part of the N-terminal region (amino acid residues 31-95) is essential for both functions.

  3. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  4. Antigenic characteristics of the complete and truncated capsid protein VP1 of enterovirus 71.

    PubMed

    Zhang, Jianhua; Dong, Min; Jiang, Bingfu; Dai, Xing; Meng, Jihong

    2012-08-01

    The complete VP1 protein of enterovirus 71 (EV71) and a series of truncations were expressed in Escherichia coli and their antigenic characteristics were studied. Immunoblot analysis showed the major immunoreactive region of the VP1 protein was located in the N-terminal portion at position of amino acid (aa) 1-100. The complete VP1 possessed strong cross-reactivity with antisera against coxsackievirus A16 (CA16) and echovirus 6 (Echo6), while the truncated fragment at position 1-100 aa only had weak cross-reactivity. Moreover, an EV71-specific linear epitope at position 94-105 aa was identified using two EV71-specific mAbs (2B9 and 5B7) with indirect ELISA, but could not be recognized by antibodies against EV71 virus particles. The complete and all of truncated VP1 proteins except His-VP1(202-297) and GST-VP1(202-248) failed to elicit a significant neutralizing antibody response in mice. His-VP1(202-297) and GST-VP1(202-248) containing neutralizing epitope(s) could be recognized only by anti-EV71 mouse sera but not rabbit or human sera. These findings may contribute to a further understanding of antigenic characteristics of the capsid protein VP1 and may be helpful to the development of diagnostic reagents and vaccines.

  5. Size does matter: 18 amino acids at the N-terminal tip of an amino acid transporter in Leishmania determine substrate specificity

    PubMed Central

    Schlisselberg, Doreen; Mazarib, Eldar; Inbar, Ehud; Rentsch, Doris; Myler, Peter J.; Zilberstein, Dan

    2015-01-01

    Long N-terminal tails of amino acid transporters are known to act as sensors of the internal pool of amino acids and as positive regulators of substrate flux rate. In this study we establish that N-termini of amino acid transporters can also determine substrate specificity. We show that due to alternative trans splicing, the human pathogen Leishmania naturally expresses two variants of the proline/alanine transporter, one 18 amino acid shorter than the other. We demonstrate that the longer variant (LdAAP24) translocates both proline and alanine, whereas the shorter variant (∆18LdAAP24) translocates just proline. Remarkably, co-expressing the hydrophilic N-terminal peptide of the long variant with ∆18LdAAP24 was found to recover alanine transport. This restoration of alanine transport could be mediated by a truncated N-terminal tail, though truncations exceeding half of the tail length were no longer functional. Taken together, the data indicate that the first 18 amino acids of the negatively charged N-terminal LdAAP24 tail are required for alanine transport and may facilitate the electrostatic interactions of the entire negatively charged N-terminal tail with the positively charged internal loops in the transmembrane domain, as this mechanism has been shown to underlie regulation of substrate flux rate for other transporters. PMID:26549185

  6. Bepridil opens the regulatory N-terminal lobe of cardiac troponin C

    PubMed Central

    Li, Yu; Love, Michael L.; Putkey, John A.; Cohen, Carolyn

    2000-01-01

    Cardiac troponin C (cTnC) is the calcium-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of congestive heart failure. This calmodulin-like protein consists of two lobes connected by a central linker; each lobe contains two EF-hand domains. The regulatory N-terminal lobe of cTnC, unlike that of skeletal troponin C (sTnC), contains only one functional EF-hand and does not open fully upon the binding of Ca2+. We have determined the crystal structure of cTnC, with three bound Ca2+ ions, complexed with the calcium-sensitizer bepridil, to 2.15-Å resolution. In contrast to apo- and 3Ca2+-cTnC, the drug-bound complex displays a fully open N-terminal lobe similar to the N-terminal lobes of 4Ca2+-sTnC and cTnC bound to a C-terminal fragment of cardiac troponin I (residues 147–163). The closing of the lobe is sterically hindered by one of the three bound bepridils. Our results provide a structural basis for the Ca2+-sensitizing effect of bepridil and reveal the details of a distinctive two-stage mechanism for Ca2+ regulation by troponin C in cardiac muscle. PMID:10792039

  7. N-terminal chemical protein labeling using the naturally split GOS-TerL intein.

    PubMed

    Bachmann, Anne-Lena; Mootz, Henning D

    2017-03-23

    Chemoselective and regioselective chemical protein labeling is of great importance, yet no current technique is sufficiently general and simple to perform. Protein trans-splicing by split inteins can be used to ligate short tags with chemical labels to either the N or the C terminus of a protein. The CysTag approach exploits split intein fragments without a cysteine fused with such a short tag containing a single cysteine that is easily amenable to selective modification using classical cysteine bioconjugation. Labeling of the protein of interest is achieved through transfer of the pre-labeled tag by protein trans-splicing. This protocol keeps other cysteines unmodified. While split inteins for C-terminal CysTag labeling were previously reported, no high-yielding and naturally split intein for N-terminal labeling has been available. In this work, the recently discovered GOS-TerL intein was explored as the only known naturally split intein that both lacks a cysteine in its N-terminal fragment and is active under ambient conditions. Thioredoxin as a model protein and a camelid nanobody were labeled with a synthetic fluorophore by transferring the pre-labeling CysTag in the protein trans-splicing reaction with yields of about 50 to 90%. The short N-terminal intein fragment was also chemically synthesized with a tag to enable protein labeling by semi-synthetic protein trans-splicing. Our results expand the scope of the CysTag labeling strategy, which achieves selective chemical modification without the requirement for sophisticated biorthogonal functional groups and rather builds on the plethora of commercially available reagents directed at the thiol side chain of cysteine. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  8. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  9. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions

    PubMed Central

    Huang, Qiuying; Budil, David E.

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD′. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD′ dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1–7) and UmuD 18 (UmuD Δ1–17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuDʹ, but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD. PMID:28273172

  10. The proteolytic YB-1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress

    PubMed Central

    Kim, Ekaterina R; Selyutina, Anastasia A; Buldakov, Ilya A; Evdokimova, Valentina; Ovchinnikov, Lev P; Sorokin, Alexey V

    2013-01-01

    The Y-box binding protein 1 (YB-1) is a DNA/RNA-binding nucleocytoplasmic shuttling protein whose regulatory effect on many DNA and RNA-dependent events is determined by its localization in the cell. We have shown previously that YB-1 is cleaved by 20S proteasome between E219 and G220, and the truncated N-terminal YB-1 fragment accumulates in the nuclei of cells treated with DNA damaging drugs. We proposed that appearance of truncated YB-1 in the nucleus may predict multiple drug resistance. Here, we compared functional activities of the full-length and truncated YB-1 proteins and showed that the truncated form was more efficient in protecting cells against doxorubicin treatment. Both forms of YB-1 induced changes in expression of various genes without affecting those responsible for drug resistance. Interestingly, although YB-1 cleavage did not significantly affect its DNA binding properties, truncated YB-1 was detected in complexes with Mre11 and Rad50 under genotoxic stress conditions. We conclude that both full-length and truncated YB-1 are capable of protecting cells against DNA damaging agents, and the truncated form may have an additional function in DNA repair. PMID:24107631

  11. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis

    SciTech Connect

    Pozo-Yauner, Luis del; Wall, Jonathan S.; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L.; Pérez Carreón, Julio I.; and others

    2014-01-10

    Highlights: •We evaluated the impact of mutations in the N-terminal strand of 6aJL2 protein. •Mutations destabilized the protein in a position-dependent manner. •Destabilizing mutations accelerated the fibrillogenesis by shortening the lag time. •The effect on the kinetic of fibril elongation by seeding was of different nature. •The N-terminal strand is buried in the fibrillar state of 6aJL2 protein. -- Abstract: It has been suggested that the N-terminal strand of the light chain variable domain (V{sub L}) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V{sub L} protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  12. PURIFICATION AND N-TERMINAL ANALYSES OF ALGAL BILIPROTEINS,

    DTIC Science & Technology

    R-, B- and C-phycoerythrins and R- and C- phycocyanins were isolated and purified on a preparative scale by calcium phosphate chromatography, ammonium...of C-phycoerythrin (mol.wt. 226 000). Threonine (1 residue) is N-terminal in C- phycocyanin (mol.wt. 138 000), and both threonine (about 1.3 residues...and methionine (5 residues) are N-terminal in R- phycocyanin (mol.wt. 273 000). Results suggest that the apoproteins of the various phycoerythrins are

  13. Fragmentation Patterns and Mechanisms of Singly and Doubly Protonated Peptoids Studied by Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Ren, Jianhua; Tian, Yuan; Hossain, Ekram; Connolly, Michael D.

    2016-04-01

    Peptoids are peptide-mimicking oligomers consisting of N-alkylated glycine units. The fragmentation patterns for six singly and doubly protonated model peptoids were studied via collision-induced dissociation tandem mass spectrometry. The experiments were carried out on a triple quadrupole mass spectrometer with an electrospray ionization source. Both singly and doubly protonated peptoids were found to fragment mainly at the backbone amide bonds to produce peptoid B-type N-terminal fragment ions and Y-type C-terminal fragment ions. However, the relative abundances of B- versus Y-ions were significantly different. The singly protonated peptoids fragmented by producing highly abundant Y-ions and lesser abundant B-ions. The Y-ion formation mechanism was studied through calculating the energetics of truncated peptoid fragment ions using density functional theory and by controlled experiments. The results indicated that Y-ions were likely formed by transferring a proton from the C-H bond of the N-terminal fragments to the secondary amine of the C-terminal fragments. This proton transfer is energetically favored, and is in accord with the observation of abundant Y-ions. The calculations also indicated that doubly protonated peptoids would fragment at an amide bond close to the N-terminus to yield a high abundance of low-mass B-ions and high-mass Y-ions. The results of this study provide further understanding of the mechanisms of peptoid fragmentation and, therefore, are a valuable guide for de novo sequencing of peptoid libraries synthesized via combinatorial chemistry.

  14. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.

    PubMed

    Helsens, Kenny; Van Damme, Petra; Degroeve, Sven; Martens, Lennart; Arnesen, Thomas; Vandekerckhove, Joël; Gevaert, Kris

    2011-08-05

    Initiation of protein translation is a well-studied fundamental process, albeit high-throughput and more comprehensive determination of the exact translation initiation sites (TIS) was only recently made possible following the introduction of positional proteomics techniques that target protein N-termini. Precise translation initiation is of crucial importance, as truncated or extended proteins might fold, function, and locate erroneously. Still, as already shown for some proteins, alternative translation initiation can also serve as a regulatory mechanism. By applying N-terminal COFRADIC (combined fractional diagonal chromatography), we here isolated N-terminal peptides of a Saccharomyces cerevisiae proteome and analyzed both annotated and alternative TIS. We analyzed this N-terminome of S. cerevisiae which resulted in the identification of 650 unique N-terminal peptides corresponding to database annotated TIS. Furthermore, 56 unique N(α)-acetylated peptides were identified that suggest alternative TIS (MS/MS-based), while MS-based evidence of N(α)-acetylation led to an additional 33 such peptides. To improve the overall sensitivity of the analysis, we also included the 5' UTR (untranslated region) in-frame translations together with the yeast protein sequences in UniProtKB/Swiss-Prot. To ensure the quality of the individual peptide identifications, peptide-to-spectrum matches were only accepted at a 99% probability threshold and were subsequently analyzed in detail by the Peptizer tool to automatically ascertain their compliance with several expert criteria. Furthermore, we have also identified 60 MS/MS-based and 117 MS-based N(α)-acetylated peptides that point to N(α)-acetylation as a post-translational modification since these peptides did not start nor were preceded (in their corresponding protein sequence) by a methionine residue. Next, we evaluated consensus sequence features of nucleic acids and amino acids across each of these groups of peptides and

  15. N-terminal modification of proteins with o-aminophenols.

    PubMed

    Obermeyer, Allie C; Jarman, John B; Francis, Matthew B

    2014-07-09

    The synthetic modification of proteins plays an important role in chemical biology and biomaterials science. These fields provide a constant need for chemical tools that can introduce new functionality in specific locations on protein surfaces. In this work, an oxidative strategy is demonstrated for the efficient modification of N-terminal residues on peptides and N-terminal proline residues on proteins. The strategy uses o-aminophenols or o-catechols that are oxidized to active coupling species in situ using potassium ferricyanide. Peptide screening results have revealed that many N-terminal amino acids can participate in this reaction, and that proline residues are particularly reactive. When applied to protein substrates, the reaction shows a stronger requirement for the proline group. Key advantages of the reaction include its fast second-order kinetics and ability to achieve site-selective modification in a single step using low concentrations of reagent. Although free cysteines are also modified by the coupling reaction, they can be protected through disulfide formation and then liberated after N-terminal coupling is complete. This allows access to doubly functionalized bioconjugates that can be difficult to access using other methods.

  16. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis.

    PubMed

    del Pozo-Yauner, Luis; Wall, Jonathan S; González Andrade, Martín; Sánchez-López, Rosana; Rodríguez-Ambriz, Sandra L; Pérez Carreón, Julio I; Ochoa-Leyva, Adrián; Fernández-Velasco, D Alejandro

    2014-01-10

    It has been suggested that the N-terminal strand of the light chain variable domain (V(L)) protects the molecule from aggregation by hindering spurious intermolecular contacts. We evaluated the impact of mutations in the N-terminal strand on the thermodynamic stability and kinetic of fibrillogenesis of the V(L) protein 6aJL2. Mutations in this strand destabilized the protein in a position-dependent manner, accelerating the fibrillogenesis by shortening the lag time; an effect that correlated with the extent of destabilization. In contrast, the effect on the kinetics of fibril elongation, as assessed in seeding experiments was of different nature, as it was not directly dependant on the degree of destabilization. This finding suggests different factors drive the nucleation-dependent and elongation phases of light chain fibrillogenesis. Finally, taking advantage of the dependence of the Trp fluorescence upon environment, four single Trp substitutions were made in the N-terminal strand, and changes in solvent exposure during aggregation were evaluated by acrylamide-quenching. The results suggest that the N-terminal strand is buried in the fibrillar state of 6aJL2 protein. This finding suggest a possible explanation for the modulating effect exerted by the mutations in this strand on the aggregation behavior of 6aJL2 protein.

  17. Feeding truncated heat shock protein 70s protect Artemia franciscana against virulent Vibrio campbellii challenge.

    PubMed

    Baruah, Kartik; Norouzitallab, Parisa; Shihao, Li; Sorgeloos, Patrick; Bossier, Peter

    2013-01-01

    The 70 kDa heat shock proteins (Hsp70s) are highly conserved in evolution, leading to striking similarities in structure and composition between eukaryotic Hsp70s and their homologs in prokaryotes. The eukaryotic Hsp70 like the DnaK (Escherichia coli equivalent Hsp70) protein, consist of three functionally distinct domains: an N-terminal 44-kDa ATPase portion, an 18-kDa peptide-binding domain and a C-terminal 10-kDa fragment. Previously, the amino acid sequence of eukaryotic (the brine shrimp Artemia franciscana) Hsp70 and DnaK proteins were shown to share a high degree of homology, particularly in the peptide-binding domain (59.6%, the putative innate immunity-activating portion) compared to the N-terminal ATPase (48.8%) and the C-terminal lid domains (19.4%). Next to this remarkable conservation, these proteins have been shown to generate protective immunity in Artemia against pathogenic Vibrio campbellii. This study, aimed to unravel the Vibrio-protective domain of Hsp70s in vivo, demonstrated that gnotobiotically cultured Artemia fed with recombinant C-terminal fragment (containing the conserved peptide binding domain) of Artemia Hsp70 or DnaK protein were well protected against subsequent Vibrio challenge. In addition, the prophenoloxidase (proPO) system, at both mRNA and protein activity levels, was also markedly induced by these truncated proteins, suggesting epitope(s) responsible for priming the proPO system and presumably other immune-related genes, consequently boosting Artemia survival upon challenge with V. campbellii, might be located within this conserved region of the peptide binding domain.

  18. Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.

    PubMed

    Babic, Milos; Russo, Gary J; Wellington, Andrea J; Sangston, Ryan M; Gonzalez, Migdalia; Zinsmaier, Konrad E

    2015-04-08

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.

  19. Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites

    PubMed Central

    Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia

    2015-01-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186

  20. The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits

    PubMed Central

    Fernández-Pevida, Antonio; Martín-Villanueva, Sara; Murat, Guillaume; Lacombe, Thierry; Kressler, Dieter; de la Cruz, Jesús

    2016-01-01

    The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D. PMID:27422873

  1. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  2. Regulation of limited N-terminal proteolysis of APE1 in tumor via acetylation and its role in cell proliferation

    PubMed Central

    Bhakat, Kishor K.; Sengupta, Shiladitya; Adeniyi, Victor F.; Roychoudhury, Shrabasti; Nath, Somsubhra; Bellot, Larry J.; Feng, Dan; Mantha, Anil K.; Sinha, Mala; Qiu, Suimin; Luxon, Bruce A.

    2016-01-01

    Mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1), a ubiquitous and multifunctional protein, plays an essential role in the repair of both endogenous and drug-induced DNA damages in the genome. Unlike its E.coli counterpart Xth, mammalian APE1 has a unique N-terminal domain and possesses both DNA damage repair and transcriptional regulatory functions. Although the overexpression of APE1 in diverse cancer types and the association of APE1 expression with chemotherapy resistance and poor prognosis are well documented, the cellular and molecular mechanisms that alter APE1 functions during tumorigenesis are largely unknown. Here, we show the presence of full-length APE1 and N-terminal truncated isoforms of APE1 in tumor tissue samples of various cancer types. However, primary tumor tissue has higher levels of acetylated APE1 (AcAPE1) as well as full-length APE1 compared to adjacent non-tumor tissue. We found that APE1 is proteolytically cleaved by an unknown serine protease at its N-terminus following residue lysine (Lys) Lys6 and/or Lys7 and after Lys27 and Lys31 or Lys32. Acetylation of these Lys residues in APE1 prevents this proteolysis. The N-terminal domain of APE1 and its acetylation are required for modulation of the expression of hundreds of genes. Importantly, we found that AcAPE1 is essential for sustained cell proliferation. Together, our study demonstrates that increased acetylation levels of APE1 in tumor cells inhibit the limited N-terminal proteolysis of APE1 and thereby maintain the functions of APE1 to promote tumor cells' sustained proliferation and survival. PMID:26981776

  3. Functional Interrogation of the N-Terminal Lid of MDMX in p53 Binding via Native Chemical Ligation.

    PubMed

    Chen, Xishan; Lu, Weiyue

    2016-01-01

    The homologous proteins MDM2 and MDMX negatively regulate the tumor suppressor protein p53 by antagonizing p53 transactivation activity and targeting p53 for degradation. MDM2 and MDMX bind to p53 via N-terminal p53-binding domains to control the level of p53. The N-terminal regions of MDM2 and MDMX are modified in vivo under stressed conditions, suggesting that modifications to MDM2/MDMX also may affect the p53-MDM2/MDMX interaction. Ample evidence suggests that the MDM2 lid (residues 1-24) is partially structured and significantly reduces its binding affinity with p53 several fold. Since MDM2 and MDMX possess very similar p53-binding domains but different lids, however, the function of the N-terminal lid of MDMX still remains poorly understood. Using a native chemical ligation technique, the p53-binding domain of MDMX, (1-108)MDMX, and its N-terminal lid (residues 1-23) truncated analogue (24-108)MDMX were chemically synthesized. We comparatively characterized their structures by circular dichroism (CD) spectra, and measured their binding affinities with a panel of p53-derived peptide ligands by fluorescence polarization and surface plasmon resonance assays. Our results indicate that, as opposed to the lid of MDM2, the lid of MDMX has little effect on p53-binding, adopts no structural conformation, and has rare auto-inhibitory function. Different lid modifications of MDM2 and MDMX are functionally different with respect to p53 binding, which should be considered when designing dual specific inhibitors of MDM2 and MDMX.

  4. Structure of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Ksiazek, Dorota; Brandstetter, Hans; Israel, Lars; Bourenkov, Gleb P; Katchalova, Galina; Janssen, Klaus-Peter; Bartunik, Hans D; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2003-09-01

    Cyclase-associated proteins (CAPs) are widely distributed and highly conserved proteins that regulate actin remodeling in response to cellular signals. The N termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C termini bind to G-actin and thereby alter the dynamic rearrangements of the microfilament system. We report here the X-ray structure of the core of the N-terminal domain of the CAP from Dictyostelium discoideum, which comprises residues 51-226, determined by a combination of single isomorphous replacement with anomalous scattering (SIRAS). The overall structure of this fragment is an alpha helix bundle composed of six antiparallel helices. Results from gel filtration and crosslinking experiments for CAP(1-226), CAP(255-464), and the full-length protein, together with the CAP N-terminal domain structure and the recently determined CAP C-terminal domain structure, provide evidence that the functional structure of CAP is multimeric.

  5. 157 nm photodissociation of dipeptide ions containing N-terminal arginine.

    PubMed

    Webber, Nathaniel; He, Yi; Reilly, James P

    2014-02-01

    Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.

  6. Micellar environments induce structuring of the N-terminal tail of the prion protein.

    PubMed

    Renner, Christian; Fiori, Stella; Fiorino, Ferdinando; Landgraf, Dirk; Deluca, Dominga; Mentler, Matthias; Grantner, Klaus; Parak, Fritz G; Kretzschmar, Hans; Moroder, Luis

    2004-03-01

    In the physiological form, the prion protein is a glycoprotein tethered to the cell surface via a C-terminal glycosylphosphatidylinositol anchor, consisting of a largely alpha-helical globular C-terminal domain and an unstructured N-terminal portion. This unstructured part of the protein contains four successive octapeptide repeats, which were shown to bind up to four Cu(2+) ions in a cooperative manner. To mimic the location of the protein on the cell membrane and to analyze possible structuring effects of the lipid/water interface, the conformational preferences of a single octapeptide repeat and its tetrameric form, as well of the fragment 92-113, proposed as an additional copper binding site, were comparatively analyzed in aqueous and dodecylphosphocholine micellar solution as a membrane mimetic. While for the downstream fragment 92-113 no conformational effects were detectable in the presence of DPC micelles by CD and NMR, both the single octapeptide repeat and, in an even more pronounced manner, its tetrameric form are restricted into well-defined conformations. Because of the repetitive character of the rigid structural subdomain in the tetrarepeat molecule, the spatial arrangement of these identical motifs could not be resolved by NMR analysis. However, the polyvalent nature of the repetitive subunits leads to a remarkably enhanced interaction with the micelles, which is not detectably affected by copper complexation. These results strongly suggest interactions of the cellular form of PrP (PrP(c)) N-terminal tail with the cell membrane surface at least in the octapeptide repeat region with preorganization of these sequence portions for copper complexation. There are sufficient experimental facts known that support a physiological role of copper complexation by the octapeptide repeat region of PrP(c) such as a copper-buffering role of the PrP(c) protein on the extracellular surface.

  7. A Truncated Cauchy Distribution

    ERIC Educational Resources Information Center

    Nadarajah, Saralees; Kotz, Samuel

    2006-01-01

    A truncated version of the Cauchy distribution is introduced. Unlike the Cauchy distribution, this possesses finite moments of all orders and could therefore be a better model for certain practical situations. One such situation in finance is discussed. Explicit expressions for the moments of the truncated distribution are also derived.

  8. N-terminal sequence analysis of proteins and peptides.

    PubMed

    Reim, D F; Speicher, D W

    2001-05-01

    Amino-terminal (N-terminal) sequence analysis is used to identify the order of amino acids of proteins or peptides, starting at their N-terminal end. This unit describes the sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Perkin-Elmer Procise Sequencer. Sequence analysis of protein or peptide samples in solution or bound to PVDF membranes using a Hewlett-Packard Model G1005A sequencer is also described. Methods are provided for optimizing separation of PTH amino acid derivatives on Perkin-Elmer instruments and for increasing the proportion of sample injected onto the PTH analyzer on older Perkin-Elmer instruments by installing a modified sample loop. The amount of data obtained from a single sequencer run is substantial, and careful interpretation of this data by an experienced scientist familiar with the current operation performance of the instrument used for this analysis is critically important. A discussion of data interpretation is therefore provided. Finally, discussion of optimization of sequencer performance as well as possible solutions to frequently encountered problems is included.

  9. N-terminal Half of Transportin SR2 Interacts with HIV Integrase.

    PubMed

    Tsirkone, Vicky G; Blokken, Jolien; De Wit, Flore; Breemans, Jolien; De Houwer, Stéphanie; Debyser, Zeger; Christ, Frauke; Strelkov, Sergei V

    2017-03-29

    The karyopherin transportin SR2 (TRN-SR2, TNPO3) is responsible for shuttling specific cargoes such as serine/arginine-rich splicing factors from the cytoplasm to the nucleus. This protein plays a key role in HIV infection by facilitating the nuclear import of the pre-integration complex (PIC) which contains the viral DNA as well as several cellular and HIV proteins including the integrase. The process of nuclear import is considered to be the bottleneck of the viral replication cycle and therefore represents a promising target for anti-HIV drug design. Previous studies have demonstrated that the direct interaction between TRN-SR2 and HIV integrase predominantly involves the catalytic core domain (CCD) and the C-terminal domain (CTD) of the latter. We aimed at providing a detailed molecular view of this interaction through a biochemical characterization of the respective protein complex. Size-exclusion chromatography was used to characterize the interaction of TRN-SR2 with a truncated variant of HIV-1 integrase including both the CCD and CTD. These experiments indicate that one TRN-SR2 molecule can specifically bind one CCD-CTD dimer. Next, the regions of the solenoid-like TRN-SR2 molecule that are involved in the interaction with integrase were identified using AlphaScreen binding assays, revealing that the integrase interacts with the N-terminal half of TRN-SR2 principally through the HEAT repeats 4, 10 and 11. Combining these results with small-angle X-ray scattering data for the complex of TRN-SR2 with truncated integrase we propose a molecular model of the complex. We speculate that nuclear import of the PIC may proceed concurrently with the normal nuclear transport.

  10. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle

    SciTech Connect

    Farman, Gerrie P.; Miller, Mark S.; Reedy, Mary C.; Soto-Adames, Felipe N.; Vigoreaux, Jim O.; Maughan, David W.; Irving, Thomas C.

    2010-02-02

    X-ray diffraction of the indirect flight muscle (IFM) in living Drosophila at rest and electron microscopy of intact and glycerinated IFM was used to compare the effects of mutations in the regulatory light chain (RLC) on sarcomeric structure. Truncation of the RLC N-terminal extension (Dmlc2{sup {Delta}2-46}) or disruption of the phosphorylation sites by substituting alanines (Dmlc2{sup S66A, S67A}) decreased the equatorial intensity ratio (I{sub 20}/I{sub 10}), indicating decreased myosin mass associated with the thin filaments. Phosphorylation site disruption (Dmlc2{sup S66A, S67A}), but not N-terminal extension truncation (Dmlc2{sup {Delta}2-46}), decreased the 14.5 nm reflection intensity, indicating a spread of the axial distribution of the myosin heads. The arrangement of thick filaments and myosin heads in electron micrographs of the phosphorylation mutant (Dmlc2{sup S66A, S67A}) appeared normal in the relaxed and rigor states, but when calcium activated, fewer myosin heads formed cross-bridges. In transgenic flies with both alterations to the RLC (Dmlc2{sup {Delta}2-46; S66A, S67A}), the effects of the dual mutation were additive. The results suggest that the RLC N-terminal extension serves as a 'tether' to help pre-position the myosin heads for attachment to actin, while phosphorylation of the RLC promotes head orientations that allow optimal interactions with the thin filament.

  11. The N-Terminal Residues 43 to 60 Form the Interface for Dopamine Mediated α-Synuclein Dimerisation

    PubMed Central

    Leong, Su Ling; Hinds, Mark G.; Connor, Andrea R.; Smith, David P.; Illes-Toth, Eva; Pham, Chi L. L.; Barnham, Kevin J.; Cappai, Roberto

    2015-01-01

    α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson’s disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43–140) and C-terminally (1–95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA:α-syn oligomers, albeit 1–95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43–140 protein, we analysed the structural characteristics of the DA:α-syn 43–140 dimer and α-syn 43–140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers. PMID:25679387

  12. Structure of the Tropomyosin Overlap Complex from Chicken Smooth Muscle: Insight into the Diversity of N-Terminal Recognition

    SciTech Connect

    Frye, Jeremiah; Klenchin, Vadim A.; Rayment, Ivan

    2010-09-08

    Tropomyosin is a stereotypical {alpha}-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage {phi}29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal amino acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses {approx}15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.

  13. Crystallized N-terminal domain of influenza virus matrix protein M1 and method of determining and using same

    NASA Technical Reports Server (NTRS)

    Luo, Ming (Inventor); Sha, Bingdong (Inventor)

    2000-01-01

    The matrix protein, M1, of influenza virus strain A/PR/8/34 has been purified from virions and crystallized. The crystals consist of a stable fragment (18 Kd) of the M1 protein. X-ray diffraction studies indicated that the crystals have a space group of P3.sub.t 21 or P3.sub.2 21. Vm calculations showed that there are two monomers in an asymmetric unit. A crystallized N-terminal domain of M1, wherein the N-terminal domain of M1 is crystallized such that the three dimensional structure of the crystallized N-terminal domain of M1 can be determined to a resolution of about 2.1 .ANG. or better, and wherein the three dimensional structure of the uncrystallized N-terminal domain of M1 cannot be determined to a resolution of about 2.1 .ANG. or better. A method of purifying M1 and a method of crystallizing M1. A method of using the three-dimensional crystal structure of M1 to screen for antiviral, influenza virus treating or preventing compounds. A method of using the three-dimensional crystal structure of M1 to screen for improved binding to or inhibition of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the manufacture of an inhibitor of influenza virus M1. The use of the three-dimensional crystal structure of the M1 protein of influenza virus in the screening of candidates for inhibition of influenza virus M1.

  14. Kinetic mechanism of protein N-terminal methyltransferase 1.

    PubMed

    Richardson, Stacie L; Mao, Yunfei; Zhang, Gang; Hanjra, Pahul; Peterson, Darrell L; Huang, Rong

    2015-05-01

    The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors.

  15. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    SciTech Connect

    Auperin,T.; Bolduc, G.; Baron, M.; Heroux, A.; Filman, D.; Madoff, L.; Hogle, J.

    2005-01-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} of the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.

  16. Identification of an antigenic domain in the N-terminal region of avian hepatitis E virus (HEV) capsid protein that is not common to swine and human HEVs.

    PubMed

    Wang, Lizhen; Sun, Yani; Du, Taofeng; Wang, Chengbao; Xiao, Shuqi; Mu, Yang; Zhang, Gaiping; Liu, Lihong; Widén, Frederik; Hsu, Walter H; Zhao, Qin; Zhou, En-Min

    2014-12-01

    The antigenic domains located in the C-terminal 268 amino acid residues of avian hepatitis E virus (HEV) capsid protein have been characterized. This region shares common epitopes with swine and human HEVs. However, epitopes in the N-terminal 338 amino acid residues have never been reported. In this study, an antigenic domain located between amino acids 23 and 85 was identified by indirect ELISA using the truncated recombinant capsid proteins as coating antigens and anti-avian HEV chicken sera as primary antibodies. In addition, this domain did not react with anti-swine and human HEV sera. These results indicated that the N-terminal 338 amino acid residues of avian HEV capsid protein do not share common epitopes with swine and human HEVs. This finding is important for our understanding of the antigenicity of the avian HEV capsid protein. Furthermore, it has important implications in the selection of viral antigens for serological diagnosis.

  17. An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities.

    PubMed

    Wemhöner, Konstantin; Kanyshkova, Tatyana; Silbernagel, Nicole; Fernandez-Orth, Juncal; Bittner, Stefan; Kiper, Aytug K; Rinné, Susanne; Netter, Michael F; Meuth, Sven G; Budde, Thomas; Decher, Niels

    2015-01-01

    Rats of the Wistar Albino Glaxo/Rij (WAG/Rij) strain show symptoms resembling human absence epilepsy. Thalamocortical neurons of WAG/Rij rats are characterized by an increased HCN1 expression, a negative shift in I h activation curve, and an altered responsiveness of I h to cAMP. We cloned HCN1 channels from rat thalamic cDNA libraries of the WAG/Rij strain and found an N-terminal deletion of 37 amino acids. In addition, WAG-HCN1 has a stretch of six amino acids, directly following the deletion, where the wild-type sequence (GNSVCF) is changed to a polyserine motif. These alterations were found solely in thalamus mRNA but not in genomic DNA. The truncated WAG-HCN1 was detected late postnatal in WAG/Rij rats and was not passed on to rats obtained from pairing WAG/Rij and non-epileptic August Copenhagen Irish rats. Heterologous expression in Xenopus oocytes revealed 2.2-fold increased current amplitude of WAG-HCN1 compared to rat HCN1. While WAG-HCN1 channels did not have altered current kinetics or changed regulation by protein kinases, fluorescence imaging revealed a faster and more pronounced surface expression of WAG-HCN1. Using co-expression experiments, we found that WAG-HCN1 channels suppress heteromeric HCN2 and HCN4 currents. Moreover, heteromeric channels of WAG-HCN1 with HCN2 have a reduced cAMP sensitivity. Functional studies revealed that the gain-of-function of WAG-HCN1 is not caused by the N-terminal deletion alone, thus requiring a change of the N-terminal GNSVCF motif. Our findings may help to explain previous observations in neurons of the WAG/Rij strain and indicate that WAG-HCN1 may contribute to the genesis of absence seizures in WAG/Rij rats.

  18. An N-terminal deletion variant of HCN1 in the epileptic WAG/Rij strain modulates HCN current densities

    PubMed Central

    Wemhöner, Konstantin; Kanyshkova, Tatyana; Silbernagel, Nicole; Fernandez-Orth, Juncal; Bittner, Stefan; Kiper, Aytug K.; Rinné, Susanne; Netter, Michael F.; Meuth, Sven G.; Budde, Thomas; Decher, Niels

    2015-01-01

    Rats of the Wistar Albino Glaxo/Rij (WAG/Rij) strain show symptoms resembling human absence epilepsy. Thalamocortical neurons of WAG/Rij rats are characterized by an increased HCN1 expression, a negative shift in Ih activation curve, and an altered responsiveness of Ih to cAMP. We cloned HCN1 channels from rat thalamic cDNA libraries of the WAG/Rij strain and found an N-terminal deletion of 37 amino acids. In addition, WAG-HCN1 has a stretch of six amino acids, directly following the deletion, where the wild-type sequence (GNSVCF) is changed to a polyserine motif. These alterations were found solely in thalamus mRNA but not in genomic DNA. The truncated WAG-HCN1 was detected late postnatal in WAG/Rij rats and was not passed on to rats obtained from pairing WAG/Rij and non-epileptic August Copenhagen Irish rats. Heterologous expression in Xenopus oocytes revealed 2.2-fold increased current amplitude of WAG-HCN1 compared to rat HCN1. While WAG-HCN1 channels did not have altered current kinetics or changed regulation by protein kinases, fluorescence imaging revealed a faster and more pronounced surface expression of WAG-HCN1. Using co-expression experiments, we found that WAG-HCN1 channels suppress heteromeric HCN2 and HCN4 currents. Moreover, heteromeric channels of WAG-HCN1 with HCN2 have a reduced cAMP sensitivity. Functional studies revealed that the gain-of-function of WAG-HCN1 is not caused by the N-terminal deletion alone, thus requiring a change of the N-terminal GNSVCF motif. Our findings may help to explain previous observations in neurons of the WAG/Rij strain and indicate that WAG-HCN1 may contribute to the genesis of absence seizures in WAG/Rij rats. PMID:26578877

  19. Dissecting the Functional Role of the N-Terminal Domain of the Human Small Heat Shock Protein HSPB6

    PubMed Central

    Heirbaut, Michelle; Beelen, Steven; Strelkov, Sergei V.; Weeks, Stephen D.

    2014-01-01

    HSPB6 is a member of the human small heat shock protein (sHSP) family, a conserved group of molecular chaperones that bind partially unfolded proteins and prevent them from aggregating. In vertebrate sHSPs the poorly structured N-terminal domain has been implicated in both chaperone activity and the formation of higher-order oligomers. These two functionally important properties are likely intertwined at the sequence level, complicating attempts to delineate the regions that define them. Differing from the prototypical α-crystallins human HSPB6 has been shown to only form dimers in solution making it more amendable to explore the determinants of chaperoning activity alone. Using a systematic and iterative deletion strategy, we have extensively investigated the role of the N-terminal domain on the chaperone activity of this sHSP. As determined by size-exclusion chromatography and small-angle X-ray scattering, most mutants had a dimeric structure closely resembling that of wild-type HSPB6. The chaperone-like activity was tested using three different substrates, whereby no single truncation, except for complete removal of the N-terminal domain, showed full loss of activity, pointing to the presence of multiple sites for binding unfolding proteins. Intriguingly, we found that the stretch encompassing residues 31 to 35, which is nearly fully conserved across vertebrate sHSPs, acts as a negative regulator of activity, as its deletion greatly enhanced chaperoning capability. Further single point mutational analysis revealed an interplay between the highly conserved residues Q31 and F33 in fine-tuning its function. PMID:25157403

  20. N-Terminal Tau Fragments as Biomarkers for Alzheimer’s Disease and Neurotrauma

    DTIC Science & Technology

    2014-10-01

    1), such as might be expected with senile plaques (1). This pattern suggests that E2- tau may accumulate as the result of Abeta – tau interactions... plaques (Figure 2C). This is particularly interesting in light of the bioinformatic analysis of the exosomal fraction proteins associated with E2...colocalize with senile plaque profiles revealed by GFAP (glial fibrillary acidic protein) immunolabel (see insets and panel at right). The patchy

  1. N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB

    PubMed Central

    Van Damme, Petra; Lasa, Marta; Polevoda, Bogdan; Gazquez, Cristina; Elosegui-Artola, Alberto; Kim, Duk Soo; De Juan-Pardo, Elena; Demeyer, Kimberly; Hole, Kristine; Larrea, Esther; Timmerman, Evy; Prieto, Jesus; Arnesen, Thomas; Sherman, Fred; Gevaert, Kris; Aldabe, Rafael

    2012-01-01

    Protein N-terminal acetylation (Nt-acetylation) is an important mediator of protein function, stability, sorting, and localization. Although the responsible enzymes are thought to be fairly well characterized, the lack of identified in vivo substrates, the occurrence of Nt-acetylation substrates displaying yet uncharacterized N-terminal acetyltransferase (NAT) specificities, and emerging evidence of posttranslational Nt-acetylation, necessitate the use of genetic models and quantitative proteomics. NatB, which targets Met-Glu-, Met-Asp-, and Met-Asn-starting protein N termini, is presumed to Nt-acetylate 15% of all yeast and 18% of all human proteins. We here report on the evolutionary traits of NatB from yeast to human and demonstrate that ectopically expressed hNatB in a yNatB-Δ yeast strain partially complements the natB-Δ phenotypes and partially restores the yNatB Nt-acetylome. Overall, combining quantitative N-terminomics with yeast studies and knockdown of hNatB in human cell lines, led to the unambiguous identification of 180 human and 110 yeast NatB substrates. Interestingly, these substrates included Met-Gln- N-termini, which are thus now classified as in vivo NatB substrates. We also demonstrate the requirement of hNatB activity for maintaining the structure and function of actomyosin fibers and for proper cellular migration. In addition, expression of tropomyosin-1 restored the altered focal adhesions and cellular migration defects observed in hNatB-depleted HeLa cells, indicative for the conserved link between NatB, tropomyosin, and actin cable function from yeast to human. PMID:22814378

  2. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2015-03-01

    1 AWARD NUMBER: W81XWH-12-1-0431 TITLE: “c-jun-N- Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis” PRINCIPAL...TITLE AND SUBTITLE “c-jun-N- Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Scelerosis” 5a. CONTRACT NUMBER 5b. GRANT NUMBER...ABSTRACT Abstract: 250 aminopyrazoles, a new class of c-jun-N- terminal kinase (JNK) inhibitors, have been synthesized and the biochemical IC50 has

  3. The N-terminal zinc finger domain of Tgf2 transposase contributes to DNA binding and to transposition activity

    PubMed Central

    Jiang, Xia-Yun; Hou, Fei; Shen, Xiao-Dan; Du, Xue-Di; Xu, Hai-Li; Zou, Shu-Ming

    2016-01-01

    Active Hobo/Activator/Tam3 (hAT) transposable elements are rarely found in vertebrates. Previously, goldfish Tgf2 was found to be an autonomously active vertebrate transposon that is efficient at gene-transfer in teleost fish. However, little is known about Tgf2 functional domains required for transposition. To explore this, we first predicted in silico a zinc finger domain in the N-terminus of full length Tgf2 transposase (L-Tgf2TPase). Two truncated recombinant Tgf2 transposases with deletions in the N-terminal zinc finger domain, S1- and S2-Tgf2TPase, were expressed in bacteria from goldfish cDNAs. Both truncated Tgf2TPases lost their DNA-binding ability in vitro, specifically at the ends of Tgf2 transposon than native L-Tgf2TPase. Consequently, S1- and S2-Tgf2TPases mediated gene transfer in the zebrafish genome in vivo at a significantly (p < 0.01) lower efficiency (21%–25%), in comparison with L-Tgf2TPase (56% efficiency). Compared to L-Tgf2TPase, truncated Tgf2TPases catalyzed imprecise excisions with partial deletion of TE ends and/or plasmid backbone insertion/deletion. The gene integration into the zebrafish genome mediated by truncated Tgf2TPases was imperfect, creating incomplete 8-bp target site duplications at the insertion sites. These results indicate that the zinc finger domain in Tgf2 transposase is involved in binding to Tgf2 terminal sequences, and loss of those domains has effects on TE transposition. PMID:27251101

  4. The N-terminal region of organic anion transporting polypeptide 1B3 (OATP1B3) plays an essential role in regulating its plasma membrane trafficking.

    PubMed

    Chun, Se-Eun; Thakkar, Nilay; Oh, Yunseok; Park, Ji Eun; Han, Songhee; Ryoo, Gongmi; Hahn, Hyunggu; Maeng, Sang Hyun; Lim, Young-Ran; Han, Byung Woo; Lee, Wooin

    2017-05-01

    Organic anion transporting polypeptide 1B3 (OATP1B3) is a major influx transporter mediating the hepatic uptake of various endogenous substrates as well as clinically important drugs such as statins and anticancer drugs. However, molecular mechanisms controlling the membrane trafficking of OATP1B3 have been largely unknown. Several reports recently indicated the presence of a distinct, cancer-type OATP1B3 variant lacking the N-terminal 28 amino acids compared to OATP1B3 expressed in non-malignant hepatocytes. Interestingly, the cancer-type OATP1B3 variant is located predominantly in the cytoplasm, implicating the involvement of the N-terminal region of OATP1B3 in its membrane trafficking. In the current study, we set out to experimentally validate the importance of the N-terminal region of OATP1B3 and to identify responsible sequence motif(s) in that region. A number of truncation or point mutants of OATP1B3 were transiently expressed in HEK293T, HCT-8 or MDCK II cells and their expression in cytoplasmic and surface membrane fractions were analyzed by immunoblotting. Our results indicated that the N-terminal sequence of OATP1B3, in particular, at the amino acid positions between 12 and 28, may be indispensable in its membrane trafficking. Moreover, our results using a fusion construct indicated that the first 50 amino acids of OATP1B3 are sufficient for its membrane localization. The importance of the N-terminal region in membranous localization was shared among the other OATP1B subfamily members, OATP1B1 and rat Oatp1b2. Our efforts to identify the responsible amino acid(s) or structure motif(s) in the N-terminal region did not pinpoint individual amino acids or motifs with putative secondary structures. Our current findings however demonstrate that the N-terminal region is important for the membrane localization of the OATP1B subfamily members and should facilitate future investigations of the mechanisms involved in the regulation and membrane trafficking of

  5. Kinetic Mechanism of Protein N-terminal Methyltransferase 1*

    PubMed Central

    Richardson, Stacie L.; Mao, Yunfei; Zhang, Gang; Hanjra, Pahul; Peterson, Darrell L.; Huang, Rong

    2015-01-01

    The protein N-terminal methyltransferase 1 (NTMT1) catalyzes the transfer of the methyl group from the S-adenosyl-l-methionine to the protein α-amine, resulting in formation of S-adenosyl-l-homocysteine and α-N-methylated proteins. NTMT1 is an interesting potential anticancer target because it is overexpressed in gastrointestinal cancers and plays an important role in cell mitosis. To gain insight into the biochemical mechanism of NTMT1, we have characterized the kinetic mechanism of recombinant NTMT1 using a fluorescence assay and mass spectrometry. The results of initial velocity, product, and dead-end inhibition studies indicate that methylation by NTMT1 proceeds via a random sequential Bi Bi mechanism. In addition, our processivity studies demonstrate that NTMT1 proceeds via a distributive mechanism for multiple methylations. Together, our studies provide new knowledge about the kinetic mechanism of NTMT1 and lay the foundation for the development of mechanism-based inhibitors. PMID:25771539

  6. Jun N-terminal kinase signaling makes a face

    PubMed Central

    Hursh, Deborah A.; Stultz, Brian G.; Park, Sung Yeon

    2016-01-01

    ABSTRACT decapentaplegic (dpp), the Drosophila ortholog of BMP 2/4, directs ventral adult head morphogenesis through expression in the peripodial epithelium of the eye-antennal disc. This dpp expressing domain exerts effects both on the peripodial epithelium, and the underlying disc proper epithelium. We have uncovered a role for the Jun N-terminal kinase (JNK) pathway in dpp-mediated ventral head development. JNK activity is required for dpp's action on the disc proper, but in the absence of dpp expression, excessive JNK activity is produced, leading to specific loss of maxillary palps. In this review we outline our hypotheses on how dpp acts by both short range and longer range mechanisms to direct head morphogenesis and speculate on the dual role of JNK signaling in this process. Finally, we describe the regulatory control of dpp expression in the eye-antennal disc, and pose the problem of how the various expression domains of a secreted protein can be targeted to their specific functions. PMID:27384866

  7. Superalgebraic truncations in supergravities

    SciTech Connect

    Kim, C. ); Park, Y.; Kim, K.Y.; Kim, Y. ); l'Yi, W.S. Department of Physics and Astronomy, University of Maryland, College Park, Maryland )

    1991-11-15

    We study {ital D}=5 and {ital D}=8 supergravities in the context of superalgebra. These are analyzed in SU(4/2) superalgebra and its branching patterns in terms of Kac-Dynkin weight techniques. Consistent truncations can be easily realized as subalgebra chains of SU(4/2) superalgebras.

  8. Peptide scrambling during collision-induced dissociation is influenced by N-terminal residue basicity.

    PubMed

    Chawner, Ross; Holman, Stephen W; Gaskell, Simon J; Eyers, Claire E

    2014-11-01

    'Bottom up' proteomic studies typically use tandem mass spectrometry data to infer peptide ion sequence, enabling identification of the protein whence they derive. The majority of such studies employ collision-induced dissociation (CID) to induce fragmentation of the peptide structure giving diagnostic b-, y-, and a- ions. Recently, rearrangement processes that result in scrambling of the original peptide sequence during CID have been reported for these ions. Such processes have the potential to adversely affect ion accounting (and thus scores from automated search algorithms) in tandem mass spectra, and in extreme cases could lead to false peptide identification. Here, analysis of peptide species produced by Lys-N proteolysis of standard proteins is performed and sequences that exhibit such rearrangement processes identified. The effect of increasing the gas-phase basicity of the N-terminal lysine residue through derivatization to homoarginine toward such sequence scrambling is then assessed. The presence of a highly basic homoarginine (or arginine) residue at the N-terminus is found to disfavor/inhibit sequence scrambling with a coincident increase in the formation of b(n-1)+H(2)O product ions. Finally, further analysis of a sequence produced by Lys-C proteolysis provides evidence toward a potential mechanism for the apparent inhibition of sequence scrambling during resonance excitation CID.

  9. N-Terminal Acetylation Acts as an Avidity Enhancer Within an Interconnected Multiprotein Complex

    SciTech Connect

    Scott, Daniel C.; Monda, Julie K.; Bennett, Eric J.; Harper, J. Wade; Schulman, Brenda A.

    2012-10-25

    Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.

  10. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks.

    PubMed

    Komori, Kayoko; Hidaka, Masumi; Horiuchi, Takashi; Fujikane, Ryosuke; Shinagawa, Hideo; Ishino, Yoshizumi

    2004-12-17

    Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.

  11. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging

    PubMed Central

    Sivanandam, Venkatesh; Mathews, Deborah; Garmann, Rees; Erdemci-Tandogan, Gonca; Zandi, Roya; Rao, A. L. N.

    2016-01-01

    Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3′ terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging. PMID:27193742

  12. Iron-binding fragments from the carboxyl-terminal region of hen ovotransferrin.

    PubMed Central

    Williams, J

    1975-01-01

    1. When iron-saturated hen ovotransferrin was treated with subtilisin the N-terminal half was digested at a faster rate than the C-terminal half, allowing the latter to be isolated as a single-chain fragment of mol.wt 35000. 2. In mildly acid conditions iron-ovotransferrin loses iron preferentially from its N-terminal binding site. Trypsin digestion of the resulting monoferric ovotransferrin also gave rise to a C-terminal fragment. 3. Comparison of the N-terminal fragment with the C-terminal fragments shows differences in composition, peptide 'maps', CNBr-cleavage patterns and antigenic structures. The C-terminal fragments carry the carbohydrate group of ovotransferrin. 4. Both N-terminal and C-terminal fragments donate their bound iron to rabbit reticulocytes. Images PLATE 1 PLATE 2 PMID:811217

  13. New roles for old modifications: emerging roles of N-terminal post-translational modifications in development and disease.

    PubMed

    Tooley, John G; Schaner Tooley, Christine E

    2014-12-01

    The importance of internal post-translational modification (PTM) in protein signaling and function has long been known and appreciated. However, the significance of the same PTMs on the alpha amino group of N-terminal amino acids has been comparatively understudied. Historically considered static regulators of protein stability, additional functional roles for N-terminal PTMs are now beginning to be elucidated. New findings show that N-terminal methylation, along with N-terminal acetylation, is an important regulatory modification with significant roles in development and disease progression. There are also emerging studies on the enzymology and functional roles of N-terminal ubiquitylation and N-terminal propionylation. Here, will discuss the recent advances in the functional studies of N-terminal PTMs, recount the new N-terminal PTMs being identified, and briefly examine the possibility of dynamic N-terminal PTM exchange.

  14. New roles for old modifications: Emerging roles of N-terminal post-translational modifications in development and disease

    PubMed Central

    Tooley, John G; Schaner Tooley, Christine E

    2014-01-01

    The importance of internal post-translational modification (PTM) in protein signaling and function has long been known and appreciated. However, the significance of the same PTMs on the alpha amino group of N-terminal amino acids has been comparatively understudied. Historically considered static regulators of protein stability, additional functional roles for N-terminal PTMs are now beginning to be elucidated. New findings show that N-terminal methylation, along with N-terminal acetylation, is an important regulatory modification with significant roles in development and disease progression. There are also emerging studies on the enzymology and functional roles of N-terminal ubiquitylation and N-terminal propionylation. Here, will discuss the recent advances in the functional studies of N-terminal PTMs, recount the new N-terminal PTMs being identified, and briefly examine the possibility of dynamic N-terminal PTM exchange. PMID:25209108

  15. Investigation of Truncated Waveguides

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, David T.; Henry, Ross M.; Wollack, Edward J.

    2013-01-01

    The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands.

  16. Removal of the N-terminal hexapeptide from human beta2-microglobulin facilitates protein aggregation and fibril formation.

    PubMed Central

    Esposito, G.; Michelutti, R.; Verdone, G.; Viglino, P.; Hernández, H.; Robinson, C. V.; Amoresano, A.; Dal Piaz, F.; Monti, M.; Pucci, P.; Mangione, P.; Stoppini, M.; Merlini, G.; Ferri, G.; Bellotti, V.

    2000-01-01

    The solution structure and stability of N-terminally truncated beta2-microglobulin (deltaN6beta2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that deltaN6beta2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at microM concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that deltaN6beta2-m is significantly less protected than its wild-type counterpart. Analysis of deltaN6beta2-m by NMR shows that this loss of protection occurs in beta strands I, III, and part of II. At mM concentration gel filtration analysis shows that deltaN6beta2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of beta2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that deltaN6beta2-m could be a key intermediate of a proteolytic pathway of beta2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of beta2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between beta-strands far removed from this constrain is greatly perturbed. PMID:10850793

  17. Three N-terminal domains of beta-1,3-glucanase A1 are involved in binding to insoluble beta-1,3-glucan.

    PubMed Central

    Watanabe, T; Kasahara, N; Aida, K; Tanaka, H

    1992-01-01

    Limited proteolysis of beta-1,3-glucanase A1 by three different proteases, trypsin, chymotrypsin, and papain, gave three major active fragments. The sizes of the three major fragments generated by each protease treatment were identical to those of beta-1,3-glucanase A2, A3, and A4 detected in both the culture supernatant of Bacillus circulans WL-12 and the periplasmic space of Escherichia coli carrying a cloned glcA gene. These results indicate a four-domain structure for the enzyme. At the N terminus of the glucanase, duplicated segments of approximately 100 amino acids were observed. N-terminal amino acid sequence analysis revealed that the active fragments with sizes corresponding to those of A2 and A3 lack the first segment (domain) and both duplicated segments (domains), respectively. The fragment corresponding to A4 lacks both duplicated segments and the following ca. 120-amino-acid region. By losing the first, second, and third (corresponding to the segment of 120 amino acids) domains, beta-1,3-glucanase progressively lost the ability to bind to pachyman, beta-1,3-glucan. An active fragment which did not have the three N-terminal domains did not show significant binding to pachyman. Thus, all three N-terminal domains contribute to binding to beta-1,3-glucan, and the presence of three domains confers the highest binding activity on the glucanase. The loss of these binding domains remarkably decreased pachyman-hydrolyzing activity, indicating that the binding activity is essential for the efficient hydrolysis of insoluble beta-1,3-glucan. Images PMID:1729208

  18. Depletion of the human N-terminal acetyltransferase hNaa30 disrupts Golgi integrity and ARFRP1-localization.

    PubMed

    Kobbenes Starheim, Kristian; Kalvik, Thomas Vikestad; Bjørkøy, Geir; Arnesen, Thomas

    2017-03-29

    The organization of the Golgi apparatus is tightly regulated. Golgi stack scattering is observed in cellular processes such as apoptosis and mitosis, and has also been associated with disruption of cellular lipid metabolism, and neurodegenerative diseases. Our studies show that depletion of the human N-α-acetyltransferase 30 (hNaa30) induces fragmentation of the Golgi stack in HeLa and CAL-62 cell lines. The Golgi apparatus-associated GTPase ARFRP1 was previously shown to require N-terminal acetylation for membrane association, and based on its N-terminal sequence it is likely to be a substrate of hNaa30. ARFRP1 is involved in endosome-to- trans- Golgi Network traffic. We observed that ARFRP1 shifted from a predominantly cis- Golgi and trans- Golgi Network localization to localizing both to the Golgi and to non-Golgi vesicular structures in hNaa30-depleted cells. However, we did not observe loss of membrane association of ARFRP1. We conclude that hNaa30-depletion induces Golgi-scattering, and induces aberrant ARFRP1 Golgi-localization.

  19. Alzheimer's amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity.

    PubMed

    Lin, Tien-Wei; Chang, Chi-Fon; Chang, Yu-Jen; Liao, Yi-Hung; Yu, Hui-Ming; Chen, Yun-Ru

    2017-01-01

    Alzheimer's disease (AD) is the most common dementia affecting tens of million people worldwide. The primary neuropathological hallmark in AD is amyloid plaques composed of amyloid-β peptide (Aβ). Several familial mutations found in Aβ sequence result in early onset of AD. Previous studies showed that the mutations located at N-terminus of Aβ, such as the English (H6R) and Tottori (D7N) mutations, promote fibril formation and increase cytotoxicity. However, A2T mutant located at the very N-terminus of Aβ shows low-prevalence incidence of AD, whereas, another mutant A2V causes early onset of AD. To understand the molecular mechanism of the distinct effect and develop new potential therapeutic strategy, here, we examined the effect of full-length and N-terminal A2V/T variants to wild type (WT) Aβ40 by fibrillization assays and NMR studies. We found that full-length and N-terminal A2V accelerated WT fibrillization and induced large chemical shifts on the N-terminus of WT Aβ, whereas, full-length and N-terminal A2T retarded the fibrillization. We further examined the inhibition effect of various N-terminal fragments (NTFs) of A2T to WT Aβ. The A2T NTFs ranging from residue 1 to residue 7 to 10, but not 1 to 6 or shorter, are capable to retard WT Aβ fibrillization and rescue cytotoxicity. The results suggest that in the presence of full-length or specific N-terminal A2T can retard Aβ aggregation and the A2T NTFs can mitigate its toxicity. Our results provide a novel targeting site for future therapeutic development of AD.

  20. Alzheimer’s amyloid-β A2T variant and its N-terminal peptides inhibit amyloid-β fibrillization and rescue the induced cytotoxicity

    PubMed Central

    Lin, Tien-Wei; Chang, Chi-Fon; Chang, Yu-Jen; Liao, Yi-Hung; Yu, Hui-Ming; Chen, Yun-Ru

    2017-01-01

    Alzheimer’s disease (AD) is the most common dementia affecting tens of million people worldwide. The primary neuropathological hallmark in AD is amyloid plaques composed of amyloid-β peptide (Aβ). Several familial mutations found in Aβ sequence result in early onset of AD. Previous studies showed that the mutations located at N-terminus of Aβ, such as the English (H6R) and Tottori (D7N) mutations, promote fibril formation and increase cytotoxicity. However, A2T mutant located at the very N-terminus of Aβ shows low-prevalence incidence of AD, whereas, another mutant A2V causes early onset of AD. To understand the molecular mechanism of the distinct effect and develop new potential therapeutic strategy, here, we examined the effect of full-length and N-terminal A2V/T variants to wild type (WT) Aβ40 by fibrillization assays and NMR studies. We found that full-length and N-terminal A2V accelerated WT fibrillization and induced large chemical shifts on the N-terminus of WT Aβ, whereas, full-length and N-terminal A2T retarded the fibrillization. We further examined the inhibition effect of various N-terminal fragments (NTFs) of A2T to WT Aβ. The A2T NTFs ranging from residue 1 to residue 7 to 10, but not 1 to 6 or shorter, are capable to retard WT Aβ fibrillization and rescue cytotoxicity. The results suggest that in the presence of full-length or specific N-terminal A2T can retard Aβ aggregation and the A2T NTFs can mitigate its toxicity. Our results provide a novel targeting site for future therapeutic development of AD. PMID:28362827

  1. The N-terminal peptide of mammalian GTP cyclohydrolase I is an autoinhibitory control element and contributes to binding the allosteric regulatory protein GFRP.

    PubMed

    Higgins, Christina E; Gross, Steven S

    2011-04-08

    GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for biosynthesis of tetrahydrobiopterin (BH4), an obligate cofactor for NO synthases and aromatic amino acid hydroxylases. BH4 can limit its own synthesis by triggering decameric GTPCH to assemble in an inhibitory complex with two GTPCH feedback regulatory protein (GFRP) pentamers. Subsequent phenylalanine binding to the GTPCH·GFRP inhibitory complex converts it to a stimulatory complex. An N-terminal inhibitory peptide in GTPCH may also contribute to autoregulation of GTPCH activity, but mechanisms are undefined. To characterize potential regulatory actions of the N-terminal peptide in rat GTPCH, we expressed, purified, and characterized a truncation mutant, devoid of 45 N-terminal amino acids (Δ45-GTPCH) and contrasted its catalytic and GFRP binding properties to wild type GTPCH (wt-GTPCH). Contrary to prior reports, we show that GFRP binds wt-GTPCH in the absence of any small molecule effector, resulting in allosteric stimulation of GTPCH activity: a 20% increase in Vmax, 50% decrease in KmGTP, and increase in Hill coefficient to 1.6, from 1.0. These features of GFRP-stimulated wt-GTPCH activity were phenocopied by Δ45-GTPCH in the absence of bound GFRP. Addition of GFRP to Δ45-GTPCH failed to elicit complex formation or a substantial further increase in GTPCH catalytic activity. Expression of Δ45-GTPCH in HEK-293 cells elicited 3-fold greater BH4 accumulation than an equivalent of wt-GTPCH. Together, results indicate that the N-terminal peptide exerts autoinhibitory control over rat GTPCH and is required for GFRP binding on its own. Displacement of the autoinhibitory peptide provides a molecular mechanism for physiological up-regulation of GTPCH activity.

  2. The N-terminal domain of enterococcal surface protein, Esp, is sufficient for Esp-mediated biofilm enhancement in Enterococcus faecalis.

    PubMed

    Tendolkar, Preeti M; Baghdayan, Arto S; Shankar, Nathan

    2005-09-01

    Enterococci have emerged as one of the leading causes of nosocomial bloodstream, surgical site, and urinary tract infections. More recently, enterococci have been associated with biofilms, which are bacterial communities attached to a surface and encased in an extracellular polymeric matrix. The enterococcal cell surface-associated protein, Esp, enhances biofilm formation by Enterococcus faecalis in a glucose-dependent manner. Mature Esp consists of a nonrepeat N-terminal domain and a central region made up of two types of tandem repeats followed by a C-terminal membrane-spanning and anchor domain. This study was undertaken to localize the specific domain(s) of Esp that plays a role in Esp-mediated biofilm enhancement. To achieve this objective, we constructed in-frame deletion mutants expressing truncated forms of Esp in an isogenic background. By comparing strains expressing the mutant forms of Esp to those expressing wild-type Esp, we found that the strain expressing Esp lacking the N-terminal domain formed biofilms that were quantitatively less in biovolume than the strain expressing wild-type Esp. Furthermore, an E. faecalis strain expressing only the N-terminal domain of Esp fused to a heterologous protein anchor formed biofilms that were quantitatively similar to those formed by a strain expressing full-length Esp. This suggested that the minimal region contributing to Esp-mediated biofilm enhancement in E. faecalis was confined to the nonrepeat N-terminal domain. Expression of full-length E. faecalis Esp in heterologous host systems of esp-deficient Lactococcus lactis and Enterococcus faecium did not enhance biofilm formation as was observed for E. faecalis. These results suggest that Esp may require interaction with an additional E. faecalis-specific factor(s) to result in biofilm enhancement.

  3. Functional analysis of the extended N-terminal region in PLC-δ1 (MlPLC-δ1) from the mud loach, Misgurnus mizolepis.

    PubMed

    Kim, Na Young; Ahn, Sang Jung; Kim, Moo-Sang; Seo, Jung Soo; Jung, Se Hwan; Park, Sung Hwan; Lee, Hyung Ho; Chung, Joon Ki

    2014-01-01

    Mud loach phospholipase C-δ1 (MlPLC-δ1) contains all the characteristic domains found in mammalian PLC-δ isozymes (pleckstrin homology domain, EF-hands, X–Y catalytic region, and C2 domain) as well as an extended 26-amino acid (aa)-long N-terminal region that is an alternative splice form of PLC-δ1 and is novel to vertebrate PLC-δ. In the present structure-function analysis, deletion of the extended N-terminal region caused complete loss of phosphatidylinositol (PI)- and phosphatidylinositol 4,5-bisphosphate (PIP2)-hydrolyzing activity in MlPLC-δ1. Additionally, recombinant full-length MlPLC-δ1 PLC activity was reduced in a dose-dependent manner by coincubation with the 26-aa protein fragment. Using a protein-lipid overlay assay, both full-length MlPLC-δ1 and the 26-aa protein fragment had substantial affinity for PIP2, whereas deletion of the 26-aa region from MlPLC-δ1 (MlPLC-δ1-deletion) resulted in lower affinity for PIP2. These results suggest that the novel N-terminal exon of MlPLC-δ1 could play an important role in the regulation of PLC-δ1.

  4. Identification and characterization of an 18.4kDa antimicrobial truncation from shrimp Litopenaeus vannamei hemocyanin upon Vibrio parahaemolyticus infection.

    PubMed

    Wen, Ying; Zhan, Shixiong; Huang, He; Zhong, Mingqi; Chen, Jiehui; You, Cuihong; Wang, Fan; Zhang, Yueling

    2016-09-01

    Hemocyanin (HMC) is a multifunctional protein which plays many essential roles in invertebrate organism. Recently more and more immune-related functions have been discovered on this protein. Here the shrimp was infected with Vibrio parahaemolyticus and the shrimp sera were analyzed by two-dimensional gel electrophoresis. Totally 15 spots were identified as significantly up-regulated spots and further analyzed by MALDI-TOF/TOF mass spectrometry (MS). Four of them were identified as HMC derived truncations (HMCS1, HMCS3, HMCS4 and HMCS5). The HMCS4 primary sequence was further determined via Edman N terminal sequencing, MALDI-TOF MS and amino acid sequence alignment. The result indicated that the HMCS4 was a 165aa fragment from shrimp HMC small subunit C-terminal. The HMCS4 immunological activities were further analyzed by agglutination experiment and antibacterial assay in vitro. The results showed that the recombinant HMCS4 (rHMCS4) had strong agglutination and antibacterial activities against pathogenic bacteria at the optimum bacteriostasis concentration. In addition, the HMCS4 immunological activities were explored via mortality assay in vivo. The shrimp was challenged with V. parahaemolyticus and rHMCS4 V. parahaemolyticus mixture separately. The shrimp mortality rate was significantly decreased at 96 h post-infection with rHMCS4 injection. Our data showed that shrimp HMC truncation generation upon infection was an effective immune response against invaded pathogens. Moreover, these findings may have some potential applications in shrimp industry.

  5. Substrate specificity of mammalian N-terminal α-amino methyltransferase

    PubMed Central

    Petkowski, Janusz J.; Schaner Tooley, Christine E.; Anderson, Lissa C.; Shumilin, Igor A.; Balsbaugh, Jeremy L.; Shabanowitz, Jeffrey; Hunt, Donald F.; Minor, Wladek; Macara, Ian G.

    2012-01-01

    N-terminal methylation of free α-amino-groups is a post-translational modification of proteins that has been known for 30 years but has been very little studied. In this modification, the initiating M residue is cleaved and the exposed α-amino group is mono- di- or trimethylated by NRMT, a recently identified N-terminal methyltransferase. Currently, all known eukaryotic α-aminomethylated proteins have a unique N-terminal motif, M-X-P-K, where X is A, P, or S. NRMT can also methylate artificial substrates in vitro in which X is G, F, Y, C, M, K, R, N, Q or H. Methylation efficiencies of N-terminal amino acids are variable with respect to the identity of X. Here we use in vitro peptide methylation assays and substrate immunoprecipitations to show that the canonical M-X-P-K methylation motif is not the only one recognized by NRMT. We predict that N-terminal methylation is a widespread post-translational modification, and that there is interplay between N-terminal acetylation and N-terminal methylation. We also use isothermal calorimetry experiments to demonstrate that NRMT can efficiently recognize and bind to its fully methylated products. PMID:22769851

  6. Roles of Matrix, p2, and N-Terminal Myristoylation in Human Immunodeficiency Virus Type 1 Gag Assembly

    PubMed Central

    Morikawa, Yuko; Hockley, David J.; Nermut, Milan V.; Jones, Ian M.

    2000-01-01

    Human immunodeficiency virus type 1 Gag protein is cotranslationally myristoylated at the N terminus and targeted to the plasma membrane, where virus particle assembly occurs. Particle assembly requires the ordered multimerization of Gag proteins, yet there is little direct evidence of intermediates of the reaction or of the domains that lead to each stage of the oligomerization process. In this study, following the expression in insect cells of C-terminally truncated Gag proteins and their purification, both the multimeric nature of each Gag protein and the ability to form Gag virus-like particles (VLP) were analyzed. Our results show that (i) the matrix (MA) domain forms a trimer and contributes to a similar level of oligomerization of the assembly-competent Gag; (ii) the p2 domain, located at the capsid/nucleocapsid junction, is essential for a higher order of multimerization (>1,000 kDa); (iii) the latter multimerization is accompanied by a change in Gag assembly morphology from tubes to spheres and results in VLP production; and (iv) N-terminal myristoylation is not required for either of the multimerization stages but plays a key role in conversion of these multimers to Gag VLP. We suggest that the Gag trimer and the >1,000-kDa multimer are intermediates in the assembly reaction and form before Gag targeting to the plasma membrane. Our data identify a minimum of three stages for VLP development and suggest that each stage involves a separate domain, MA, p2, or N-terminal myristoylation, each of which contributes to HIV particle assembly. PMID:10590086

  7. Preparation of Arabidopsis thaliana seedling proteomes for identifying metacaspase substrates by N-terminal COFRADIC.

    PubMed

    Tsiatsiani, Liana; Stael, Simon; Van Damme, Petra; Van Breusegem, Frank; Gevaert, Kris

    2014-01-01

    Proteome-wide discovery of in vivo metacaspase substrates can be obtained by positional proteomics approaches such as N-terminal COFRADIC, for example by comparing the N-terminal proteomes (or N-terminomes) of wild-type plants to transgenic plants not expressing a given metacaspase. In this chapter we describe a protocol for the preparation of plant tissue proteomes, including differential isotopic labelling allowing for a comparison of in vivo N-terminomes that serves as the starting point for N-terminal COFRADIC studies.

  8. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c.

    PubMed

    Tai, Hulin; Munegumi, Toratane; Yamamoto, Yasuhiko

    2009-01-05

    In the denatured states of Hydrogenobacter thermophilus cytochrome c(552) (HT) and Pseudomonas aeruginosa cytochrome c(551) (PA), and their mutants, the N-terminal amino group of the polypeptide chain is coordinated to heme Fe in place of the axial Met, the His-N(term) form being formed. The coordination of the N-terminal amino group to heme Fe leads to loop formation by the N-terminal stretch preceding the first Cys residue bound to the heme, and the N-terminal stretches of HT and PA are different from each other in terms of both the sequence and the number of constituent amino acid residues. The His-N(term) form was shown to be rather stable, and hence it can influence the stability of the denatured state. We have investigated the heme Fe coordination structures and stabilities of the His-N(term) forms emerging upon guanidine hydrochloric acid-induced unfolding of the oxidized forms of the proteins. The Fe-N(term) coordination bond in the His-N(term) form with a 9-residue N-terminal stretch of HT proteins was found to be tilted to some extent away from the heme normal, as reflected by the great heme methyl proton shift spread. On the other hand, the small heme methyl proton shift spread of the His-N(term) form with an 11-residue stretch of PA proteins indicated that its Fe-N(term) bond is nearly parallel with the heme normal. The stability of the His-N(term) form was found to be affected by the structural properties of the N-terminal stretch, such as its length and the N-terminal residue. With a given N-terminal residue, the stability of the His-N(term) form is higher for a 9-residue N-terminal stretch than an 11-residue one. In addition, with a given length of the N-terminal stretch, the His-N(term) form with an N-terminal Glu is stabilized by a few kJ mol(-1) relative to that with an N-terminal Asn. These results provide a novel insight into the stabilizing interactions in the denatured cyts c that will facilitate elucidation of the folding/unfolding mechanisms

  9. Truncated Gaussians as tolerance sets

    NASA Technical Reports Server (NTRS)

    Cozman, Fabio; Krotkov, Eric

    1994-01-01

    This work focuses on the use of truncated Gaussian distributions as models for bounded data measurements that are constrained to appear between fixed limits. The authors prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. The characteristic function for the truncated Gaussian is presented; from this, algorithms are derived for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of their methods, a derivation of the disparity constraint (used in computer vision) from their models is described. The authors' approach complements results in Statistics, but their proposal is not only to use the truncated Gaussian as a model for selected data; they propose to model measurements as fundamentally in terms of truncated Gaussians.

  10. Conformational changes of the N-terminal part of Mason-Pfizer monkey virus p12 protein during multimerization

    SciTech Connect

    Knejzlik, Zdenek; Ulbrich, Pavel; Strohalm, Martin; Lastuvkova, Hana; Kodicek, Milan; Sakalian, Michael; Ruml, Tomas

    2009-10-10

    The Mason-Pfizer monkey virus is a prototype Betaretrovirus with the defining characteristic that it assembles spherical immature particles from Gag-related polyprotein precursors within the cytoplasm of the infected cell. It was shown previously that the N-terminal part of the Gag p12 domain (wt-Np12) is required for efficient assembly. However, the precise role for p12 in mediating Gag-Gag interaction is still poorly understood. In this study we employed detailed circular dichroism spectroscopy, electron microscopy and ultracentrifugation analyses of recombinant wt-Np12 prepared by in vitro transcription and translation. The wt-Np12 domain fragment forms fibrillar structures in a concentration-dependent manner. Assembly into fibers is linked to a conformational transition from unfolded or another non-periodical state to alpha-helix during multimerization.

  11. NMR structural characterization of the N-terminal domain of the adenylyl cyclase-associated protein (CAP) from Dictyostelium discoideum.

    PubMed

    Mavoungou, Chrystelle; Israel, Lars; Rehm, Till; Ksiazek, Dorota; Krajewski, Marcin; Popowicz, Grzegorz; Noegel, Angelika A; Schleicher, Michael; Holak, Tad A

    2004-05-01

    Cyclase-associated proteins (CAPs) are highly conserved, ubiquitous actin binding proteins that are involved in microfilament reorganization. The N-termini of CAPs play a role in Ras signaling and bind adenylyl cyclase; the C-termini bind to G-actin. We report here the NMR characterization of the amino-terminal domain of CAP from Dictyostelium discoideum (CAP(1-226)). NMR data, including the steady state (1)H-(15)N heteronuclear NOE experiments, indicate that the first 50 N-terminal residues are unstructured and that this highly flexible serine-rich fragment is followed by a stable, folded core starting at Ser 51. The NMR structure of the folded core is an alpha-helix bundle composed of six antiparallel helices, in a stark contrast to the recently determined CAP C-terminal domain structure, which is solely built by beta-strands.

  12. N-Terminal Derivatization with Structures Having High Proton Affinity for Discrimination between Leu and Ile Residues in Peptides by High-Energy Collision-Induced Dissociation.

    PubMed

    Kitanaka, Atsushi; Miyashita, Masahiro; Kubo, Ayumi; Satoh, Takaya; Toyoda, Michisato; Miyagawa, Hisashi

    2016-01-01

    De novo sequencing is still essential in the identification of peptides and proteins from unexplored organisms whose sequence information is not available. One of the remaining problems in de novo sequencing is discrimination between Leu and Ile residues. The discrimination is possible based on differences in side chain fragmentation between Leu and Ile under high-energy collision-induced dissociation (HE-CID) conditions. However, this is observed only when basic residues, such as Arg and Lys, are present near the N- or C-terminal end. It has been shown that the charge derivatization at the N-terminal end by a quarternary ammonium or phosphonium moiety facilitates the side chain fragmentation by HE-CID. However, the effective backbone fragmentation by low-energy CID (LE-CID) is often hampered in those derivatives with a fixed charge. Previously, we demonstrated that the N-terminal charge derivatization with the structures having high proton affinity induced the preferential formation of b-ions under LE-CID conditions, allowing straightforward interpretation of product ion spectra. In the present study, we further investigated whether the same derivatization approach is also effective for discrimination between Leu and Ile under HE-CID conditions. Consequently, the side chain fragmentation of Leu and Ile residues was most effectively enhanced by the N-terminal derivatization with 4-(guanidinomethyl)benzoic acid among the tested structures. This derivatization approach, which is compatible with both HE- and LE-CID analysis, offers a straightforward and unambiguous de novo peptide sequencing method.

  13. N-Terminal Derivatization with Structures Having High Proton Affinity for Discrimination between Leu and Ile Residues in Peptides by High-Energy Collision-Induced Dissociation

    PubMed Central

    Kitanaka, Atsushi; Miyashita, Masahiro; Kubo, Ayumi; Satoh, Takaya; Toyoda, Michisato; Miyagawa, Hisashi

    2016-01-01

    De novo sequencing is still essential in the identification of peptides and proteins from unexplored organisms whose sequence information is not available. One of the remaining problems in de novo sequencing is discrimination between Leu and Ile residues. The discrimination is possible based on differences in side chain fragmentation between Leu and Ile under high-energy collision-induced dissociation (HE-CID) conditions. However, this is observed only when basic residues, such as Arg and Lys, are present near the N- or C-terminal end. It has been shown that the charge derivatization at the N-terminal end by a quarternary ammonium or phosphonium moiety facilitates the side chain fragmentation by HE-CID. However, the effective backbone fragmentation by low-energy CID (LE-CID) is often hampered in those derivatives with a fixed charge. Previously, we demonstrated that the N-terminal charge derivatization with the structures having high proton affinity induced the preferential formation of b-ions under LE-CID conditions, allowing straightforward interpretation of product ion spectra. In the present study, we further investigated whether the same derivatization approach is also effective for discrimination between Leu and Ile under HE-CID conditions. Consequently, the side chain fragmentation of Leu and Ile residues was most effectively enhanced by the N-terminal derivatization with 4-(guanidinomethyl)benzoic acid among the tested structures. This derivatization approach, which is compatible with both HE- and LE-CID analysis, offers a straightforward and unambiguous de novo peptide sequencing method. PMID:27900234

  14. Inhibition of polyglutamine aggregation by SIMILAR huntingtin N-terminal sequences: Prospective molecules for preclinical evaluation in Huntington's disease.

    PubMed

    Burra, Gunasekhar; Thakur, Ashwani Kumar

    2017-04-12

    The mutant huntingtin protein (mHtt) fragments with expanded polyglutamine sequence forms microscopically visible aggregates in neurons, a hallmark of Huntington's disease (HD). The aggregation process and aggregates are possible targets of therapeutic intervention in HD. Due to lack of treatment and cure, the patients die within 15-20 years after the disease onset. Therefore, discovering therapeutic molecules that may either inhibit the aggregation mechanism or downregulate the toxic effects of mhtt are highly needed. The present study demonstrates the design and use of peptide inhibitors based on the role played by the N-terminal seventeen amino acid sequence (NT17 ) of huntingtin fragment in its aggregation. Fug-NT17 (Fugu), Xen-NT17 (Xenopus), Dro-NT17 (Drosophila), Aib-NT17 , and Pro-NT17 sequences were tested for their ability to inhibit aggregation. Among them, the first three are the sequence variants of human NT17 from evolutionarily distant organisms and the latter two are the analogs of human NT17 containing aminoisobutyric acid (Aib) and proline (Pro). Four out of five inhibited the aggregation of huntingtin fragment, NT17 Q35 P10 K2 polypeptide. Data indicates that the physicochemical properties of the inhibitors play a crucial role in exhibiting the inhibitory effect. These inhibitors can be tested in cell and animal models for the preclinical evaluation in the treating of HD. This article is protected by copyright. All rights reserved.

  15. Purification and characterization of recombinant sugarcane sucrose phosphate synthase expressed in E. coli and insect Sf9 cells: an importance of the N-terminal domain for an allosteric regulatory property.

    PubMed

    Sawitri, Widhi Dyah; Narita, Hirotaka; Ishizaka-Ikeda, Etsuko; Sugiharto, Bambang; Hase, Toshiharu; Nakagawa, Atsushi

    2016-06-01

    Sucrose phosphate synthase (SPS) catalyses the transfer of glycosyl group of uridine diphosphate glucose to fructose-6-phosphate to form sucrose-6-phosphate. Plant SPS plays a key role in photosynthetic carbon metabolisms, which activity is modulated by an allosteric activator glucose-6-phosphate (G6P). We produced recombinant sugarcane SPS using Escherichia coli and Sf9 insect cells to investigate its structure-function relationship. When expressed in E. coli, two forms of SPS with different sizes appeared; the larger was comparable in size with the authentic plant enzyme and the shorter was trimmed the N-terminal 20 kDa region off. In the insect cells, only enzyme with the authentic size was produced. We purified the trimmed SPS and the full size enzyme from insect cells and found their enzymatic properties differed significantly; the full size enzyme was activated allosterically by G6P, while the trimmed one showed a high activity even without G6P. We further introduced a series of N-terminal truncations up to 171 residue and found G6P-independent activity was enhanced by the truncation. These combined results indicated that the N-terminal region of sugarcane SPS is crucial for the allosteric regulation by G6P and may function like a suppressor domain for the enzyme activity.

  16. Oncogenic truncation of the first repeat of c-Myb decreases DNA binding in vitro and in vivo.

    PubMed Central

    Dini, P W; Lipsick, J S

    1993-01-01

    Oncogenic activation of c-Myb in both avian and murine systems often involves N-terminal truncation. In particular, the first of three DNA-binding repeats in c-Myb has been largely deleted during the genesis of the v-myb oncogenes of avian myeloblastosis virus and E26 avian leukemia virus. This finding suggests that the first DNA-binding repeat may have an important role in cell growth control. We demonstrate that truncation of the first DNA-binding repeat of c-Myb is sufficient for myeloid transformation in culture, but deletion of the N-terminal phosphorylation site and adjacent acidic region is not. Truncation of the first repeat decreases the ability of a Myb-VP16 fusion protein to trans activate the promoter of a Myb-inducible gene (mim-1) involved in differentiation. Moreover, truncation of the first repeat decreases the ability of the Myb protein to bind DNA both in vivo and in vitro. These results suggest that N-terminal mutants of c-Myb may transform by regulating only a subset of those genes normally regulated by c-Myb. Images PMID:8246954

  17. Electrophoretic characterization of species of fibronectin bearing sequences from the N-terminal heparin-binding domain in synovial fluid samples from patients with osteoarthritis and rheumatoid arthritis

    PubMed Central

    Peters, John H; Carsons, Steven; Yoshida, Mika; Ko, Fred; McDougall, Skye; Loredo, Grace A; Hahn, Theodore J

    2003-01-01

    Fragments of fibronectin (FN) corresponding to the N-terminal heparin-binding domain have been observed to promote catabolic chondrocytic gene expression and chondrolysis. We therefore characterized FN species that include sequences from this domain in samples of arthritic synovial fluid using one-and two-dimensional (1D and 2D) Western blot analysis. We detected similar assortments of species, ranging from ~47 to greater than 200 kDa, in samples obtained from patients with osteoarthritis (n = 9) versus rheumatoid arthritis (n = 10). One of the predominant forms, with an apparent molecular weight of ~170 kDa, typically resolved in 2D electrophoresis into a cluster of subspecies. These exhibited reduced binding to gelatin in comparison with a more prevalent species of ~200+ kDa and were also recognized by a monoclonal antibody to the central cell-binding domain (CBD). When considered together with our previous analyses of synovial fluid FN species containing the alternatively spliced EIIIA segment, these observations indicate that the ~170-kDa species includes sequences from four FN domains that have previously, in isolation, been observed to promote catabolic responses by chondrocytes in vitro: the N-terminal heparin-binding domain, the gelatin-binding domain, the central CBD, and the EIIIA segment. The ~170-kDa N-terminal species of FN may therefore be both a participant in joint destructive processes and a biomarker with which to gauge activity of the arthritic process. PMID:14680507

  18. An improved stable isotope N-terminal labeling approach with light/heavy TMPP to automate proteogenomics data validation: dN-TOP.

    PubMed

    Bertaccini, Diego; Vaca, Sebastian; Carapito, Christine; Arsène-Ploetze, Florence; Van Dorsselaer, Alain; Schaeffer-Reiss, Christine

    2013-06-07

    In silico gene prediction has proven to be prone to errors, especially regarding precise localization of start codons that spread in subsequent biological studies. Therefore, the high throughput characterization of protein N-termini is becoming an emerging challenge in the proteomics and especially proteogenomics fields. The trimethoxyphenyl phosphonium (TMPP) labeling approach (N-TOP) is an efficient N-terminomic approach that allows the characterization of both N-terminal and internal peptides in a single experiment. Due to its permanent positive charge, TMPP labeling strongly affects MS/MS fragmentation resulting in unadapted scoring of TMPP-derivatized peptide spectra by classical search engines. This behavior has led to difficulties in validating TMPP-derivatized peptide identifications with usual score filtering and thus to low/underestimated numbers of identified N-termini. We present herein a new strategy (dN-TOP) that overwhelmed the previous limitation allowing a confident and automated N-terminal peptide validation thanks to a combined labeling with light and heavy TMPP reagents. We show how this double labeling allows increasing the number of validated N-terminal peptides. This strategy represents a considerable improvement to the well-established N-TOP method with an enhanced and accelerated data processing making it now fully compatible with high-throughput proteogenomics studies.

  19. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.

    PubMed

    Guardiani, Carlo; Scorciapino, Mariano Andrea; Amodeo, Giuseppe Federico; Grdadolnik, Joze; Pappalardo, Giuseppe; De Pinto, Vito; Ceccarelli, Matteo; Casu, Mariano

    2015-09-15

    The voltage-dependent anion channel (VDAC) is the main mitochondrial porin allowing the exchange of ions and metabolites between the cytosol and the mitochondrion. In addition, VDAC was found to actively interact with proteins playing a fundamental role in the regulation of apoptosis and being of central interest in cancer research. VDAC is a large transmembrane β-barrel channel, whose N-terminal helical fragment adheres to the channel interior, partially closing the pore. This fragment is considered to play a key role in protein stability and function as well as in the interaction with apoptosis-related proteins. Three VDAC isoforms are differently expressed in higher eukaryotes, for which distinct and complementary roles are proposed. In this work, the folding propensity of their N-terminal fragments has been compared. By using multiple spectroscopic techniques, and complementing the experimental results with theoretical computer-assisted approaches, we have characterized their conformational equilibrium. Significant differences were found in the intrinsic helical propensity of the three peptides, decreasing in the following order: hVDAC2 > hVDAC3 > hVDAC1. In light of the models proposed in the literature to explain voltage gating, selectivity, and permeability, as well as interactions with functionally related proteins, our results suggest that the different chemicophysical properties of the N-terminal domain are possibly correlated to different functions for the three isoforms. The overall emerging picture is that a similar transmembrane water accessible conduit has been equipped with not identical domains, whose differences can modulate the functional roles of the three VDAC isoforms.

  20. Deletion of the N-terminal region of the AREA protein is correlated with a derepressed phenotype with respect to nitrogen metabolite repression.

    PubMed Central

    Lamb, H K; Dodds, A L; Swatman, D R; Cairns, E; Hawkins, A R

    1997-01-01

    The entire areA gene and a truncated version lacking the sequence encoding the N-terminal 389 amino acids were expressed from the qutE promoter and terminator in an Aspergillus nidulans strain with the endogenous areA gene deleted. This expression system was used to decouple the effects of transcription regulation and mRNA stability mediated by the native promoter and terminator from any posttranslational modulation of AREA activity. Both the full-length AREA protein and the truncated form were able to function in the deletion strain, conferring the ability to use alternate nitrogen sources. Transformants containing the entire areA gene had a repressible phenotype with respect to nitrogen metabolite repression, whereas those containing the truncated form of the areA gene had a derepressed phenotype. The truncated areA gene was expressed in an A. nidulans strain containing a normally regulated wild-type areA gene, and transformants displayed a quinate-inducible nitrogen metabolite derepressed phenotype. Northern blot analysis of transformed strains showed that areA-specific mRNAs of the expected sizes were being produced. The truncated AREA protein was overproduced in Escherichia coli as a fusion protein and purified to homogeneity by a single-step immobilized metal affinity chromatography, and the purified protein was shown to bind specifically to the niaD promoter. Revised sequences of the 5' region of the areA gene and the entire meaB gene are reported. PMID:9352912

  1. Oligomerization of the microtubule-associated protein tau is mediated by its N-terminal sequences: implications for normal and pathological tau action.

    PubMed

    Feinstein, H Eric; Benbow, Sarah J; LaPointe, Nichole E; Patel, Nirav; Ramachandran, Srinivasan; Do, Thanh D; Gaylord, Michelle R; Huskey, Noelle E; Dressler, Nicolette; Korff, Megan; Quon, Brady; Cantrell, Kristi Lazar; Bowers, Michael T; Lal, Ratnesh; Feinstein, Stuart C

    2016-06-01

    Despite extensive structure-function analyses, the molecular mechanisms of normal and pathological tau action remain poorly understood. How does the C-terminal microtubule-binding region regulate microtubule dynamics and bundling? In what biophysical form does tau transfer trans-synaptically from one neuron to another, promoting neurodegeneration and dementia? Previous biochemical/biophysical work led to the hypothesis that tau can dimerize via electrostatic interactions between two N-terminal 'projection domains' aligned in an anti-parallel fashion, generating a multivalent complex capable of interacting with multiple tubulin subunits. We sought to test this dimerization model directly. Native gel analyses of full-length tau and deletion constructs demonstrate that the N-terminal region leads to multiple bands, consistent with oligomerization. Ferguson analyses of native gels indicate that an N-terminal fragment (tau(45-230) ) assembles into heptamers/octamers. Ferguson analyses of denaturing gels demonstrates that tau(45-230) can dimerize even in sodium dodecyl sulfate. Atomic force microscopy reveals multiple levels of oligomerization by both full-length tau and tau(45-230) . Finally, ion mobility-mass spectrometric analyses of tau(106-144) , a small peptide containing the core of the hypothesized dimerization region, also demonstrate oligomerization. Thus, multiple independent strategies demonstrate that the N-terminal region of tau can mediate higher order oligomerization, which may have important implications for both normal and pathological tau action. The microtubule-associated protein tau is essential for neuronal development and maintenance, but is also central to Alzheimer's and related dementias. Unfortunately, the molecular mechanisms underlying normal and pathological tau action remain poorly understood. Here, we demonstrate that tau can homo-oligomerize, providing novel mechanistic models for normal tau action (promoting microtubule growth and

  2. NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr.

    PubMed

    Wecker, K; Roques, B P

    1999-12-01

    The human immunodeficiency virus type 1 (HIV-1) genome encodes a highly conserved 16 kDa regulatory gene product, Vpr (viral protein of regulation, 96 amino acid residues), which is incorporated into virions, in quantities equivalent to those of the viral Gag proteins. In the infected cells, Vpr is believed to function in the early phase of HIV-1 replication, including nuclear migration of preintegration complex, transcription of the provirus genome and viral multiplication by blocking cells in the G2 phase. Vpr has a critical role in long-term AIDS disease by inducing infection in nondividing cells such as monocytes and macrophages. Mutations have suggested that the N-terminal domain of Vpr encompassing the first 40 residues could be required for nuclear localization, packaging into virions and binding of transcription factor (TFIIB, Sp1), viral proteins (p6) and cellular proteins (RIP1, UNG, karyopherins). To gain insight into the structure-function relationship of Vpr, (1-51)Vpr was synthesized and its structure analyzed by circular dichroism and two-dimensional 1H NMR in aqueous trifluoroethanol (30%) solution and refined by restrained molecular dynamics. The structure is characterized by three turns around the first three prolines, Pro5, Pro10, Pro14, followed by a long amphipathic alpha helix-turn-alpha helix (Asp17-Ile46) motif ended by a turn extending from Tyr47 to Thr49. The alpha helix-turn-alpha helix motif and the amphipathic helix are well known for being implicated in protein-protein or protein-nucleic acid interaction. Therefore structural characteristics of the (1-51) N-terminal fragment of Vpr could explain why this region of Vpr plays a role in several biological functions of this protein.

  3. Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana.

    PubMed

    Valdez, Hugo A; Busi, Maria V; Wayllace, Nahuel Z; Parisi, Gustavo; Ugalde, Rodolfo A; Gomez-Casati, Diego F

    2008-03-04

    Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.

  4. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.

    PubMed

    Westermann, Benoit; Jacome, Alvaro Sebastian Vaca; Rompais, Magali; Carapito, Christine; Schaeffer-Reiss, Christine

    2017-01-01

    The study of the N-terminome and the precise identification of proteolytic processing events are key in biology. Dedicated methodologies have been developed as the comprehensive characterization of the N-terminome can hardly be achieved by standard proteomics methods. In this context, we have set up a trimethoxyphenyl phosphonium (TMPP) labeling approach that allows the characterization of both N-terminal and internal digestion peptides in a single experiment. This latter point is a major advantage of our strategy as most N-terminomics methods rely on the enrichment of N-terminal peptides and thus exclude internal peptides.We have implemented a double heavy/light TMPP labeling and an automated data validation workflow that make our doublet N-terminal oriented proteomics (dN-TOP) strategy efficient for high-throughput N-terminome analysis.

  5. Engineered recombinant enteropeptidase catalytic subunit: effect of N-terminal modification.

    PubMed

    Song, Hye-Won; Choi, Sung-Il; Seong, Baik L

    2002-04-01

    Enteropeptidase (enterokinase) is a serine protease highly specific for recognition and cleavage of the target sequence of Asp-Asp-Asp-Asp-Lys (D4K). The three-dimensional structure of the enteropeptidase shows that the N-terminal amino acid is buried inside the protein providing molecular interactions necessary to maintain the conformation of the active site. To determine the influence of the N-terminal amino acid of enteropeptidase light chain (EK(L)) on the enzymatic activity, we constructed various mutants including 17 different single amino acid substitutions and three different extensions at the N-terminal end. The mutants of recombinant enteropeptidase (rEK(L)) were expressed in Saccharomyces cerevisiae and secreted into culture medium. Among 20 different mutants tested, the only mutant with the Ile --> Val substitution exhibited significant activity. The kinetic properties of the mutant protein were very similar to those of the wild-type rEK(L). Based on the three-dimensional structure where the N-terminal Ile is oriented into hydrophobic pocket, the results suggest that Val could substitute Ile without affecting the active conformation of the enzyme. The results also explain why all trypsin-like serine proteases carry either Ile or Val at the N-termini and none other amino acid residues are found. Moreover, this finding provides a mental framework for expressing the N-terminally engineered enteropeptidase in Escherichia coli, utilizing the known property of the methionine aminopeptidase that exhibits poor activity toward the N-terminal Met-Ile bond, but offers efficient cleavage of the Met-Val bond.

  6. Functional stabilization of an RNA recognition motif by a noncanonical N-terminal expansion.

    PubMed

    Netter, Catharina; Weber, Gert; Benecke, Heike; Wahl, Markus C

    2009-07-01

    RNA recognition motifs (RRMs) constitute versatile macromolecular interaction platforms. They are found in many components of spliceosomes, in which they mediate RNA and protein interactions by diverse molecular strategies. The human U11/U12-65K protein of the minor spliceosome employs a C-terminal RRM to bind hairpin III of the U12 small nuclear RNA (snRNA). This interaction comprises one side of a molecular bridge between the U11 and U12 small nuclear ribonucleoprotein particles (snRNPs) and is reminiscent of the binding of the N-terminal RRMs in the major spliceosomal U1A and U2B'' proteins to hairpins in their cognate snRNAs. Here we show by mutagenesis and electrophoretic mobility shift assays that the beta-sheet surface and a neighboring loop of 65K C-terminal RRM are involved in RNA binding, as previously seen in canonical RRMs like the N-terminal RRMs of the U1A and U2B'' proteins. However, unlike U1A and U2B'', some 30 residues N-terminal of the 65K C-terminal RRM core are additionally required for stable U12 snRNA binding. The crystal structure of the expanded 65K C-terminal RRM revealed that the N-terminal tail adopts an alpha-helical conformation and wraps around the protein toward the face opposite the RNA-binding platform. Point mutations in this part of the protein had only minor effects on RNA affinity. Removal of the N-terminal extension significantly decreased the thermal stability of the 65K C-terminal RRM. These results demonstrate that the 65K C-terminal RRM is augmented by an N-terminal element that confers stability to the domain, and thereby facilitates stable RNA binding.

  7. Classic phenotype of Coffin-Lowry syndrome in a female with stimulus-induced drop episodes and a genotype with preserved N-terminal kinase domain.

    PubMed

    Rojnueangnit, Kitiwan; Jones, Julie R; Basehore, Monica J; Robin, Nathaniel H

    2014-02-01

    An adolescent female presented with intellectual disability, stimulus-induced drop episodes (SIDEs), facial characteristics that include wide set eyes, short nose with wide columella, full and everted lips with wide mouth and progressive skeletal changes: scoliosis, spondylolisthesis and pectus excavatum. These findings were suggestive of Coffin-Lowry syndrome (CLS), and this was confirmed by the identification of a novel mutation in RPS6KA3, a heterozygous one basepair duplication at nucleotide 1570 (c.1570dupA). This mutation occurs within the C-terminal kinase domain of the protein, and, therefore contradicts the previous report that SIDEs is only associated with premature truncation of the protein in the N-terminal kinase domain or upstream of this domain. As CLS is X-linked, it is unusual for a female to have such a classic phenotype.

  8. C-Jun N-terminal Kinase and Apoptotic Signaling in Prostate Cancer

    DTIC Science & Technology

    2002-01-01

    hydrogen peroxide (H20 2) to induce JNK activation varied in different cell types. Pyrrolidine dithiocarbamate (PDTC), a presumed antioxidant (13,14...Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate...and Tan, T.-H. (2001) Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine

  9. Cloning and truncation modification of trehalose-6-phosphate synthase gene from Selaginella pulvinata.

    PubMed

    Zhao, Sheng-Mei; Fu, Feng-Ling; Gou, Lin; Wang, Han-Guang; He, Gang; Li, Wan-Chen

    2013-01-10

    A homologous sequence was amplified from resurrection plant Selaginella pulvinta by RACE technique, proved to be the full-length cDNA of trehalose-6-phosphate synthase gene by homologous alignment and yeast complementation assay, and nominated as SpTPS1 gene. The open reading frame of this gene was truncated 225bp at the 5'-end, resulting the N-terminal truncation modification of 75 amino acids for its encoding protein. The TPS1 deletion mutant strain YSH290 of the brewer's yeast transformed by the truncated gene SpTPS1Δ and its original full-length version restored growth on the medium with glucose as a sole carbon source and displayed growth curves with no significant difference, indicating their encoding proteins functioning as TPS enzyme. The TPS activity of the mutant strain transformed by the truncated gene SpTPS1Δ was about six fold higher than that transformed by its original version, reasoning that the extra N-terminal extension of the full-length amino acid sequence acts as an inhibitory domain to trehalose synthesis. However, the trehalose accumulation of the mutant strain transformed by the truncated gene SpTPS1Δ was only 8% higher than that transformed by its original version. This result is explained by the feedback balance of trehalose content coordinated by the comparative activities between trehalose synthase and trehalase. The truncated gene SpTPS1Δ is suggested to be used in transgenic operation, together with the inhibition of trehalase activity by the application of validamycin A or genetic deficiency of the endogenous trehalase gene, for the enhancement of trehalose accumulation and improvement of abiotic tolerance in transgenic plants.

  10. Identification of specific antigenic epitope at N-terminal segment of enterovirus 71 (EV-71) VP1 protein and characterization of its use in recombinant form for early diagnosis of EV-71 infection

    PubMed Central

    Zhang, Jianhua; Jiang, Bingfu; Xu, Mingjie; Dai, Xing; Purdy, Michael A.; Meng, Jihong

    2015-01-01

    Human enterovirus 71 (EV-71) is the main etiologic agent of hand, foot and mouth disease (HFMD). We sought to identify EV-71 specific antigens and develop serologic assays for acute-phase EV-71 infection. A series of truncated proteins within the N-terminal 100 amino acids (aa) of EV-71 VP1 was expressed in Escherichia coli. Western blot (WB) analysis showed that positions around 11–21 aa contain EV-71-specific antigenic sites, whereas positions 1–5 and 51–100 contain epitopes shared with human coxsackievirus A16 (CV-A16) and human echovirus 6 (E-6). The N-terminal truncated protein of VP1, VP16–43, exhibited good stability and was recognized by anti-EV-71 specific rabbit sera. Alignment analysis showed that VP16–43 is highly conserved among EV-71 strains from different genotypes but was heterologous among other enteroviruses. When the GST-VP16–43 fusion protein was incorporated as antibody-capture agent in a WB assay and an ELISA for detecting anti-EV-71 IgM in human sera, sensitivities of 91.7% and 77.8% were achieved, respectively, with 100% specificity for both. The characterized EV-71 VP1 protein truncated to positions 6–43 aa has potential as an antigen for detection of anti-EV-71 IgM for early diagnosis of EV-71 infection in a WB format. PMID:24952304

  11. Calmodulin activation of an endoplasmic reticulum-located calcium pump involves an interaction with the N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Hwang, I.; Harper, J. F.; Liang, F.; Sze, H.

    2000-01-01

    To investigate how calmodulin regulates a unique subfamily of Ca(2+) pumps found in plants, we examined the kinetic properties of isoform ACA2 identified in Arabidopsis. A recombinant ACA2 was expressed in a yeast K616 mutant deficient in two endogenous Ca(2+) pumps. Orthovanadate-sensitive (45)Ca(2+) transport into vesicles isolated from transformants demonstrated that ACA2 is a Ca(2+) pump. Ca(2+) pumping by the full-length protein (ACA2-1) was 4- to 10-fold lower than that of the N-terminal truncated ACA2-2 (Delta2-80), indicating that the N-terminal domain normally acts to inhibit the pump. An inhibitory sequence (IC(50) = 4 microM) was localized to a region within valine-20 to leucine-44, because a peptide corresponding to this sequence lowered the V(max) and increased the K(m) for Ca(2+) of the constitutively active ACA2-2 to values comparable to the full-length pump. The peptide also blocked the activity (IC(50) = 7 microM) of a Ca(2+) pump (AtECA1) belonging to a second family of Ca(2+) pumps. This inhibitory sequence appears to overlap with a calmodulin-binding site in ACA2, previously mapped between aspartate-19 and arginine-36 (J.F. Harper, B. Hong, I. Hwang, H.Q. Guo, R. Stoddard, J.F. Huang, M.G. Palmgren, H. Sze inverted question mark1998 J Biol Chem 273: 1099-1106). These results support a model in which the pump is kept "unactivated" by an intramolecular interaction between an autoinhibitory sequence located between residues 20 and 44 and a site in the Ca(2+) pump core that is highly conserved between different Ca(2+) pump families. Results further support a model in which activation occurs as a result of Ca(2+)-induced binding of calmodulin to a site overlapping or immediately adjacent to the autoinhibitory sequence.

  12. Palladium Mediated Rapid Deprotection of N-Terminal Cysteine under Native Chemical Ligation Conditions for the Efficient Preparation of Synthetically Challenging Proteins.

    PubMed

    Jbara, Muhammad; Maity, Suman Kumar; Seenaiah, Mallikanti; Brik, Ashraf

    2016-04-20

    Facilitating the process of chemical protein synthesis is an important goal in order to enable the efficient preparation of large and novel protein analogues. Native chemical ligation, which is widely used in the synthesis and semisynthesis of proteins, has been going through several developments to expedite the synthetic process and to obtain the target protein in high yield. A key aspect of this approach is the utilization of protecting groups for the N-terminal Cys in the middle fragments, which bear simultaneously the two reactive groups, i.e., N-terminal Cys and C-terminal thioester. Despite important progress in this area, as has been demonstrated in the use of thiazolidine protecting group in the synthesis of over 100 proteins, finding optimal protecting group(s) remains a challenge. For example, the thiazolidine removal step is very slow (>8 h), and in some cases the applied conditions lead to undesired side reactions. Here we show that water-soluble palladium(II) complexes are excellent reagents for the effective unmasking of thiazolidine, enabling its complete removal within 15 min under native chemical ligation conditions. Moreover, palladium is also able to rapidly remove propargyloxycarbonyl-protecting group from the N-terminal Cys in a similar efficiency. The utility of the new removal conditions for both protecting groups is exemplified in the rapid and efficient synthesis of Lys34-ubiquitinated H2B and for the first time neddlyated peptides derived from cullin1. The current approach expands the use of palladium in protein chemistry and should significantly facilitate the chemical and semisynthesis of synthetically challenging proteins from multiple fragments.

  13. Proteasome-mediated degradation of the C-terminus of the Alzheimer's disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein.

    PubMed

    Nunan, Janelle; Williamson, Nicholas A; Hill, Andrew F; Sernee, M Fleur; Masters, Colin L; Small, David H

    2003-11-01

    The beta-amyloid protein (Abeta) is derived by proteolytic processing of the amyloid protein precursor (APP). Cleavage of APP by beta-secretase generates a C-terminal fragment (APP-CTFbeta), which is subsequently cleaved by gamma-secretase to produce Abeta. Our previous studies have shown that the proteasome can cleave the C-terminal cytoplasmic domain of APP. To identify proteasome cleavage sites in APP, two peptides homologous to the C-terminus of APP were incubated with recombinant 20S proteasome. Cleavage of the peptides was monitored by reversed phase high-performance liquid chromatography and mass spectrometry. Proteasome cleaved the APP C-terminal peptides at several sites, including a region around the sequence YENPTY that interacts with several APP-binding proteins. To examine the effect of this cleavage on Abeta production, APP-CTFbeta and mutant forms of APP-CTFbeta terminating on either side of the YENPTY sequence were expressed in CHO cells. Truncation of APP-CTFbeta on the N-terminal side of the YENPTY sequence at residue 677 significantly decreased the amount of Abeta produced, whereas truncation on the C-terminal side of residue 690 had little effect. The results suggest that proteasomal cleavage of the cytosolic domain of APP at the YENPTY sequence decreases gamma-secretase processing, and consequently inhibits Abeta production. Therefore, the proteasome-dependent trafficking pathway of APP may be a valid therapeutic target for altering Abeta production in the Alzheimer's disease brain.

  14. Thermal unfolding of the N-terminal region of p53 monitored by circular dichroism spectroscopy.

    PubMed

    Schaub, Leasha J; Campbell, James C; Whitten, Steven T

    2012-11-01

    It has been estimated that 30% of eukaryotic protein and 70% of transcription factors are intrinsically disordered (ID). The biochemical significance of proteins that lack stable tertiary structure, however, is not clearly understood, largely owing to an inability to assign well-defined structures to specific biological tasks. In an attempt to investigate the structural character of ID protein, we have measured the circular dichroism spectrum of the N-terminal region of p53 over a range of temperatures and solution conditions. p53 is a well-studied transcription factor that has a proline-rich N-terminal ID region containing two activation domains. High proline content is a property commonly associated with ID, and thus p53 may be a good model system for investigating the biochemical importance of ID. The spectra presented here suggest that the N-terminal region of p53 may adopt an ordered structure under physiological conditions and that this structure can be thermally unfolded in an apparent two-state manner. The midpoint temperature for this thermal unfolding of the N-terminal region of p53 was at the near-physiological temperature of 39°C, suggesting the possibility of a physiological role for the observed structural equilibrium.

  15. NRMT2 is an N-terminal monomethylase that primes for its homologue NRMT1.

    PubMed

    Petkowski, Janusz J; Bonsignore, Lindsay A; Tooley, John G; Wilkey, Daniel W; Merchant, Michael L; Macara, Ian G; Schaner Tooley, Christine E

    2013-12-15

    NRMT (N-terminal regulator of chromatin condensation 1 methyltransferase) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homologue of NRMT, METTL11B (methyltransferase-like protein 11B, now renamed NRMT2). We show in the present paper for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and MS experiments indicate that they differ in their specific catalytic functions. Although NRMT1 is a distributive methyltransferase that can mono-, di- and tri-methylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation.

  16. NRMT2 is an N-terminal monomethylase that primes for its homolog NRMT1

    PubMed Central

    Petkowski, Janusz J.; Bonsignore, Lindsay A.; Tooley, John G.; Wilkey, Daniel W.; Merchant, Michael L.; Macara, Ian G.; Schaner Tooley, Christine E.

    2014-01-01

    N-terminal RCC1 methyltransferase (NRMT) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homolog of NRMT, Methyltransferase-like protein 11B (METTL11B, now renamed NRMT2). We show here for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and mass spectrometry experiments indicate they differ in their specific catalytic functions. While NRMT1 is a distributive methyltransferase that can mono-, di-, and trimethylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation. PMID:24090352

  17. Determining the N-terminal orientations of recombinant transmembrane proteins in the Escherichia coli plasma membrane

    PubMed Central

    Lee, Chien-Hsien; Chou, Chia-Cheng; Hsu, Min-Feng; Wang, Andrew H.-J.

    2015-01-01

    In silico algorithms have been the common approach for transmembrane (TM) protein topology prediction. However, computational tools may produce questionable results and experimental validation has proven difficult. Although biochemical strategies are available to determine the C-terminal orientation of TM proteins, experimental strategies to determine the N-terminal orientation are still limited but needed because the N-terminal end is essential for membrane targeting. Here, we describe a new and easy method to effectively determine the N-terminal orientation of the target TM proteins in Escherichia coli plasma membrane environment. D94N, the mutant of bacteriorhodopsin from Haloarcula marismortui, can be a fusion partner to increase the production of the target TM proteins if their N-termini are in cytoplasm (Nin orientation). To create a suitable linker for orientating the target TM proteins with the periplasmic N-termini (Nout orientation) correctly, we designed a three-TM-helix linker fused at the C-terminus of D94N fusion partner (termed D94N-3TM) and found that D94N-3TM can specifically improve the production of the Nout target TM proteins. In conclusion, D94N and D94N-3TM fusion partners can be applied to determine the N-terminal end of the target TM proteins oriented either Nin or Nout by evaluating the net expression of the fusion proteins. PMID:26462555

  18. Ascorbate as a pro-oxidant: mild N-terminal modification with vinylboronic acids.

    PubMed

    Ohata, Jun; Ball, Zachary T

    2017-02-04

    We describe divergent reactivity of vinylboronic acids for protein modification. In addition to previously reported copper-catalyzed backbone N-H modification, ascorbate in air mediates N-terminal functionalization with the same vinylboronate reagents. This mild and selective aqueous reactivity enables selective single-modification of the B chain of human insulin.

  19. Selecting protein N-terminal peptides by combined fractional diagonal chromatography.

    PubMed

    Staes, An; Impens, Francis; Van Damme, Petra; Ruttens, Bart; Goethals, Marc; Demol, Hans; Timmerman, Evy; Vandekerckhove, Joël; Gevaert, Kris

    2011-07-14

    In recent years, procedures for selecting the N-terminal peptides of proteins with analysis by mass spectrometry have been established to characterize protease-mediated cleavage and protein α-N-acetylation on a proteomic level. As a pioneering technology, N-terminal combined fractional diagonal chromatography (COFRADIC) has been used in numerous studies in which these protein modifications were investigated. Derivatization of primary amines--which can include stable isotope labeling--occurs before trypsin digestion so that cleavage occurs after arginine residues. Strong cation exchange (SCX) chromatography results in the removal of most of the internal peptides. Diagonal, reversed-phase peptide chromatography, in which the two runs are separated by reaction with 2,4,6-trinitrobenzenesulfonic acid, results in the removal of the C-terminal peptides and remaining internal peptides and the fractionation of the sample. We describe here the fully matured N-terminal COFRADIC protocol as it is currently routinely used, including the most substantial improvements (including treatment with glutamine cyclotransferase and pyroglutamyl aminopeptidase to remove pyroglutamate before SCX, and a sample pooling scheme to reduce the overall number of liquid chromatography-tandem mass spectrometry analyses) that were made since its original publication. Completion of the N-terminal COFRADIC procedure takes ~5 d.

  20. The N-terminal acetyltransferase Naa10 is essential for zebrafish development

    PubMed Central

    Ree, Rasmus; Myklebust, Line M.; Thiel, Puja; Foyn, Håvard; Fladmark, Kari E.; Arnesen, Thomas

    2015-01-01

    N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish. PMID:26251455

  1. Alzheimer therapy with an antibody against N-terminal Abeta 4-X and pyroglutamate Abeta 3-X

    PubMed Central

    Antonios, Gregory; Borgers, Henning; Richard, Bernhard C.; Brauß, Andreas; Meißner, Julius; Weggen, Sascha; Pena, Vladimir; Pillot, Thierry; Davies, Sarah L.; Bakrania, Preeti; Matthews, David; Brownlees, Janet; Bouter, Yvonne; Bayer, Thomas A.

    2015-01-01

    Full-length Aβ1-42 and Aβ1-40, N-truncated pyroglutamate Aβ3-42 and Aβ4-42 are major variants in the Alzheimer brain. Aβ4-42 has not been considered as a therapeutic target yet. We demonstrate that the antibody NT4X and its Fab fragment reacting with both the free N-terminus of Aβ4-x and pyroglutamate Aβ3-X mitigated neuron loss in Tg4-42 mice expressing Aβ4-42 and completely rescued spatial reference memory deficits after passive immunization. NT4X and its Fab fragment also rescued working memory deficits in wild type mice induced by intraventricular injection of Aβ4-42. NT4X reduced pyroglutamate Aβ3-x, Aβx-40 and Thioflavin-S positive plaque load after passive immunization of 5XFAD mice. Aβ1-x and Aβx-42 plaque deposits were unchanged. Importantly, for the first time, we demonstrate that passive immunization using the antibody NT4X is therapeutically beneficial in Alzheimer mouse models showing that N-truncated Aβ starting with position four in addition to pyroglutamate Aβ3-x is a relevant target to fight Alzheimer’s disease. PMID:26626428

  2. Alzheimer therapy with an antibody against N-terminal Abeta 4-X and pyroglutamate Abeta 3-X.

    PubMed

    Antonios, Gregory; Borgers, Henning; Richard, Bernhard C; Brauß, Andreas; Meißner, Julius; Weggen, Sascha; Pena, Vladimir; Pillot, Thierry; Davies, Sarah L; Bakrania, Preeti; Matthews, David; Brownlees, Janet; Bouter, Yvonne; Bayer, Thomas A

    2015-12-02

    Full-length Aβ1-42 and Aβ1-40, N-truncated pyroglutamate Aβ3-42 and Aβ4-42 are major variants in the Alzheimer brain. Aβ4-42 has not been considered as a therapeutic target yet. We demonstrate that the antibody NT4X and its Fab fragment reacting with both the free N-terminus of Aβ4-x and pyroglutamate Aβ3-X mitigated neuron loss in Tg4-42 mice expressing Aβ4-42 and completely rescued spatial reference memory deficits after passive immunization. NT4X and its Fab fragment also rescued working memory deficits in wild type mice induced by intraventricular injection of Aβ4-42. NT4X reduced pyroglutamate Aβ3-x, Aβx-40 and Thioflavin-S positive plaque load after passive immunization of 5XFAD mice. Aβ1-x and Aβx-42 plaque deposits were unchanged. Importantly, for the first time, we demonstrate that passive immunization using the antibody NT4X is therapeutically beneficial in Alzheimer mouse models showing that N-truncated Aβ starting with position four in addition to pyroglutamate Aβ3-x is a relevant target to fight Alzheimer's disease.

  3. Antigenic and immunogenic properties of truncated VP28 protein of white spot syndrome virus in Procambarus clarkii.

    PubMed

    Du, Hua-Hua; Hou, Chong-Lin; Wu, Xiao-Guo; Xie, Rong-hui; Wang, Yi-Zhen

    2013-01-01

    Previous studies identify VP28 envelope protein of white spot syndrome virus (WSSV) as its main antigenic protein. Although implicated in viral infectivity, its functional role remains unclear. In the current study, we described the production of polyclonal antibodies to recombinant truncated VP28 proteins including deleted N-terminal (rVP28ΔN), C-terminal (rVP28ΔC) and middle (rVP28ΔM). In antigenicity assays, antibodies developed from VP28 truncations lacking the N-terminal or middle regions showed significantly lowered neutralization of WSSV in crayfish, Procambarus clarkii. Further immunogenicity analysis showed reduced relative percent survival (RPS) in crayfish vaccinating with these truncations before challenge with WSSV. These results indicated that N-terminal (residues 1-27) and middle region (residues 35-95) were essential to maintain the neutralizing linear epitopes of VP28 and responsible in eliciting immune response. Thus, it is most likely that these regions are exposed on VP28, and will be useful for rational design of effective vaccines targeting VP28 of WSSV.

  4. Site directed spin labeling studies of Escherichia coli dihydroorotate dehydrogenase N-terminal extension

    SciTech Connect

    Couto, Sheila G.; Cristina Nonato, M.

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer EcDHODH is a membrane-associated enzyme and a promising target for drug design. Black-Right-Pointing-Pointer Enzyme's N-terminal extension is responsible for membrane association. Black-Right-Pointing-Pointer N-terminal works as a molecular lid regulating access to the protein interior. -- Abstract: Dihydroorotate dehydrogenases (DHODHs) are enzymes that catalyze the fourth step of the de novo synthesis of pyrimidine nucleotides. In this reaction, DHODH converts dihydroorotate to orotate, using a flavine mononucleotide as a cofactor. Since the synthesis of nucleotides has different pathways in mammals as compared to parasites, DHODH has gained much attention as a promising target for drug design. Escherichia coli DHODH (EcDHODH) is a family 2 DHODH that interacts with cell membranes in order to promote catalysis. The membrane association is supposedly made via an extension found in the enzyme's N-terminal. In the present work, we used site directed spin labeling (SDSL) to specifically place a magnetic probe at positions 2, 5, 19, and 21 within the N-terminal and thus monitor, by using Electron Spin Resonance (ESR), dynamics and structural changes in this region in the presence of a membrane model system. Overall, our ESR spectra show that the N-terminal indeed binds to membranes and that it experiences a somewhat high flexibility that could be related to the role of this region as a molecular lid controlling the entrance of the enzyme's active site and thus allowing the enzyme to give access to quinones that are dispersed in the membrane and that are necessary for the catalysis.

  5. Identification and Functional Assessment of Age-Dependent Truncations to Cx46 and Cx50 in the Human Lens

    PubMed Central

    Slavi, Nefeli; Wang, Zhen; Harvey, Lucas; Schey, Kevin L.; Srinivas, Miduturu

    2016-01-01

    Purpose Many proteins in the lens undergo extensive posttranslational modifications (PTMs) with age, leading to alterations in their function. The extent to which lens gap junction proteins, Cx46 and Cx50, accumulate PTMs with aging is not known. In this study, we identified truncations in Cx46 and Cx50 in the human lens using mass spectrometry. We also examined the effect of truncations on channel function using electrophysiological measurements. Methods Human lenses were dissected into cortex, outer nucleus, and nucleus regions, and fiber cell membranes were subjected to trypsin digestion. Tryptic peptides were analyzed by liquid chromatography (LC)–electrospray tandem mass spectrometry (ESI/MS/MS). Effects of truncations on channel conductance, permeability, and gating were assessed in transfected cells. Results Cleavage sites were identified in the C-terminus, the cytoplasmic loop, and the N-terminus of Cx46 and Cx50. Levels of C-terminal truncations, which were found at residues 238 to 251 in Cx46 and at residues 238 to 253 and 274 to 284 in Cx50, were similar in different lens regions. In contrast, levels of truncations in cytoplasmic loop and N-terminal domains of Cx46 and Cx50 increased dramatically from outer cortex to nucleus. Most of the C-terminally truncated proteins were functional, whereas truncations in the cytoplasmic loop did not result in the formation of functional channels. Conclusions Accumulation of cytoplasmic loop and N-terminal truncations in the core might lead to decreases in coupling with age. This reduction is expected to lead to an increase in intracellular calcium and a decrease in levels of glutathione in the nucleus. These changes may ultimately lead to age-related nuclear cataracts. PMID:27787559

  6. Fragment based discovery of Arginine isosteres through REPLACE: towards non-ATP competitive CDK inhibitors

    PubMed Central

    Premnath, Padmavathy Nandha; Liu, Shu; Perkins, Tracy; Abbott, Jennifer; Anderson, Erin; McInnes, Campbell

    2013-01-01

    In order to develop non-ATP competitive CDK2/cyclin A inhibitors, the REPLACE strategy has been applied to generate fragment alternatives for the N-terminal tetrapeptide of the cyclin binding motif (HAKRRLIF) involved in substrate recruitment prior to phosphotransfer. The docking approach used for the prediction of small molecule mimics for peptide determinants was validated through reproduction of experimental binding modes of known inhibitors and provides useful information for evaluating binding to protein-protein interaction sites. Further to this, potential arginine isosteres predicted using the validated LigandFit docking method were ligated to the truncated C-terminal peptide, RLIF using solid phase synthesis and evaluated in a competitive binding assay. After testing, identified fragments were shown to represent not only appropriate mimics for a critical arginine residue but also to interact effectively with a minor hydrophobic pocket present in the binding groove. Further evaluation of binding modes was undertaken to optimize the potency of these compounds. Through further application of the REPLACE strategy in this study, peptide-small molecule hybrid CDK2 inhibitors were identified that are more drug-like and suitable for further optimization as anti-tumor therapeutics. PMID:24286762

  7. N-Terminal Domain of Feline Calicivirus (FCV) Proteinase-Polymerase Contributes to the Inhibition of Host Cell Transcription

    PubMed Central

    Wu, Hongxia; Zu, Shaopo; Sun, Xue; Liu, Yongxiang; Tian, Jin; Qu, Liandong

    2016-01-01

    Feline Calicivirus (FCV) infection results in the inhibition of host protein synthesis, known as “shut-off”. However, the precise mechanism of shut-off remains unknown. Here, we found that the FCV strain 2280 proteinase-polymerase (PP) protein can suppress luciferase reporter gene expression driven by endogenous and exogenous promoters. Furthermore, we found that the N-terminal 263 aa of PP (PPN-263) determined its shut-off activity using the expression of truncated proteins. However, the same domain of the FCV strain F9 PP protein failed to inhibit gene expression. A comparison between strains 2280 and F9 indicated that Val27, Ala96 and Ala98 were key sites for the inhibition of host gene expression by strain 2280 PPN-263, and PPN-263 exhibited the ability to shut off host gene expression as long as it contained any two of the three amino acids. Because the N-terminus of the PP protein is required for its proteinase and shut-off activities, we investigated the ability of norovirus 3C-like proteins (3CLP) from the GII.4-1987 and -2012 isolates to interfere with host gene expression. The results showed that 3CLP from both isolates was able to shut off host gene expression, but 3CLP from GII.4-2012 had a stronger inhibitory activity than that from GII.4-1987. Finally, we found that 2280 PP and 3CLP significantly repressed reporter gene transcription but did not affect mRNA translation. Our results provide new insight into the mechanism of the FCV-mediated inhibition of host gene expression. PMID:27447663

  8. Expression of a truncated form of ribosomal protein L3 confers resistance to pokeweed antiviral protein and the Fusarium mycotoxin deoxynivalenol.

    PubMed

    Di, Rong; Tumer, Nilgun E

    2005-08-01

    The contamination of important agricultural products such as wheat, barley, or maize with the trichothecene mycotoxin deoxynivalenol (DON) due to infection with Fusarium species is a worldwide problem. Trichothecenes inhibit protein synthesis by targeting ribosomal protein L3. Pokeweed antiviral protein (PAP), a ribosome-inactivating protein binds to L3 to depurinate the alpha-sarcin/loop of the large rRNA. Plants transformed with the wild-type PAP show lesions and express very low levels of PAP because PAP autoregulates its expression by destabilizing its own mRNA. We show here that transgenic tobacco plants expressing both the wild-type PAP and a truncated form of yeast L3 (L3delta) are phenotypically normal. PAP mRNA and protein levels are very high in these plants, indicating that L3delta suppresses the autoregulation of PAP mRNA expression. Ribosomes are not depurinated in the transgenic plants expressing PAP and L3delta, even though PAP is associated with ribosomes. The expression of the endogenous tobacco ribosomal protein L3 is up-regulated in these plants and they are resistant to the Fusarium mycotoxin DON. These results demonstrate that expression of an N-terminal fragment of yeast L3 leads to trans-dominant resistance to PAP and the trichothecene mycotoxin DON, providing evidence that both toxins target L3 by a common mechanism.

  9. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.

    PubMed

    Langridge, Timothy D; Tarver, Micheal J; Whitten, Steven T

    2014-04-01

    Intrinsically disordered proteins (IDPs) are often characterized in terms of the hydrodynamic radius, Rh . The Rh of IDPs are known to depend on fractional proline content and net charge, where increased numbers of proline residues and increased net charge cause larger Rh . Though sequence and charge effects on the Rh of IDPs have been studied, the temperature sensitivity has been noted only briefly. Reported here are Rh measurements in the temperature range of 5-75°C for the intrinsically disordered N-terminal region of the p53 protein, p53(1-93). Of note, the Rh of this protein fragment was highly sensitive to temperature, decreasing from 35 Å at 5°C to 26 Å at 75°C. Computer generated simulations of conformationally dynamic and disordered polypeptide chains were performed to provide a hypothesis for the heat-induced compaction of p53(1-93) structure, which was opposite to the heat-induced increase in Rh observed for a model folded protein. The simulations demonstrated that heat caused Rh to trend toward statistical coil values for both proteins, indicating that the effects of heat on p53(1-93) structure could be interpreted as thermal denaturation. The simulation data also predicted that proline content contributed minimally to the native Rh of p53(1-93), which was confirmed by measuring Rh for a substitution variant that had all 22 proline residues changed for glycine.

  10. Molecular Interaction between the Chaperone Hsc70 and the N-terminal Flank of Huntingtin Exon 1 Modulates Aggregation*

    PubMed Central

    Monsellier, Elodie; Redeker, Virginie; Ruiz-Arlandis, Gemma; Bousset, Luc; Melki, Ronald

    2015-01-01

    The aggregation of polyglutamine (polyQ)-containing proteins is at the origin of nine neurodegenerative diseases. Molecular chaperones prevent the aggregation of polyQ-containing proteins. The exact mechanism by which they interact with polyQ-containing, aggregation-prone proteins and interfere with their assembly is unknown. Here we dissect the mechanism of interaction between a huntingtin exon 1 fragment of increasing polyQ lengths (HttEx1Qn), the aggregation of which is tightly associated with Huntington's disease, and molecular chaperone Hsc70. We show that Hsc70, together with its Hsp40 co-chaperones, inhibits HttEx1Qn aggregation and modifies the structural, seeding, and infectious properties of the resulting fibrils in a polyQ-independent manner. We demonstrate that Hsc70 binds the 17-residue-long N-terminal flank of HttEx1Qn, and we map Hsc70-HttEx1Qn surface interfaces at the residue level. Finally, we show that this interaction competes with homotypic interactions between the N termini of different HttEx1Qn molecules that trigger the aggregation process. Our results lay the foundations of future therapeutic strategies targeting huntingtin aggregation in Huntington disease. PMID:25505179

  11. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase.

    PubMed

    Wei, Ping; Fan, Keqiang; Chen, Hao; Ma, Liang; Huang, Changkang; Tan, Lei; Xi, Dong; Li, Chunmei; Liu, Ying; Cao, Aoneng; Lai, Luhua

    2006-01-20

    The 3C-like proteinase of severe acute respiratory syndrome (SARS) coronavirus has been proposed to be a key target for structural-based drug design against SARS. Accurate determination of the dimer dissociation constant and the role of the N-finger (residues 1-7) will provide more insights into the enzyme catalytic mechanism of SARS 3CL proteinase. The dimer dissociation constant of the wild-type protein was determined to be 14.0microM by analytical ultracentrifugation method. The N-finger fragment of the enzyme plays an important role in enzyme dimerization as shown in the crystal structure. Key residues in the N-finger have been studied by site-directed mutagenesis, enzyme assay, and analytical ultracentrifugation. A single mutation of M6A was found to be critical to maintain the dimer structure of the enzyme. The N-terminal octapeptide N8 and its mutants were also synthesized and tested for their potency as dimerization inhibitors. Peptide cleavage assay confirms that peptide N8 is a dimerization inhibitor with a K(i) of 2.20mM. The comparison of the inhibitory activities of N8 and its mutants indicates that the hydrophobic interaction of Met-6 and the electrostatic interaction of Arg-4 contribute most for inhibitor binding. This study describes the first example of inhibitors targeting the dimeric interface of SARS 3CL proteinase, providing a novel strategy for drug design against SARS and other coronaviruses.

  12. Inhibition of N-Terminal Lysines Acetylation and Transcription Factor Assembly by Epirubicin Induced Deranged Cell Homeostasis

    PubMed Central

    Khan, Shahper N.; Danishuddin, Mohd; Varshney, Bhavna; Lal, Sunil K.; Khan, Asad U.

    2012-01-01

    Epirubicin (EPI), an anthracycline antitumour antibiotic, is a known intercalating and DNA damaging agent. Here, we study the molecular interaction of EPI with histones and other cellular targets. EPI binding with histone core protein was predicted with spectroscopic and computational techniques. The molecular distance r, between donor (histone H3) and acceptor (EPI) was estimated using Förster’s theory of non-radiation energy transfer and the detailed binding phenomenon is expounded. Interestingly, the concentration dependent reduction in the acetylated states of histone H3 K9/K14 was observed suggesting more repressed chromatin state on EPI treatment. Its binding site near N-terminal lysines is further characterized by thermodynamic determinants and molecular docking studies. Specific DNA binding and inhibition of transcription factor (Tf)-DNA complex formation implicates EPI induced transcriptional inhibition. EPI also showed significant cell cycle arrest in drug treated cells. Chromatin fragmentation and loss of membrane integrity in EPI treated cells is suggestive of their commitment to cell death. This study provides an analysis of nucleosome dynamics during EPI treatment and provides a novel insight into its action. PMID:23251640

  13. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    SciTech Connect

    Oeberg, Christine; Belikov, Sergey

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, {Delta}N-hH1.4, were compared. Black-Right-Pointing-Pointer Both histones bind to chromatin, however, {Delta}N-hH1.4 displays lower binding affinity. Black-Right-Pointing-Pointer Interaction of {Delta}N-hH1.4 with chromatin includes a significant unspecific component. Black-Right-Pointing-Pointer N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain ({Delta}N-hH1.4). The {Delta}N-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that {Delta}N-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  14. The S-Layer Proteins of Two Bacillus stearothermophilus Wild-Type Strains Are Bound via Their N-Terminal Region to a Secondary Cell Wall Polymer of Identical Chemical Composition

    PubMed Central

    Egelseer, Eva Maria; Leitner, Karl; Jarosch, Marina; Hotzy, Christoph; Zayni, Sonja; Sleytr, Uwe B.; Sára, Margit

    1998-01-01

    Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition. PMID:9515918

  15. Plasmodium falciparum Werner homologue is a nuclear protein and its biochemical activities reside in the N-terminal region.

    PubMed

    Rahman, Farhana; Tarique, Mohammed; Ahmad, Moaz; Tuteja, Renu

    2016-01-01

    RecQ helicases, also addressed as a gatekeeper of genome, are an inevitable family of genome scrutiny proteins conserved from prokaryotes to eukaryotes and play a vital role in DNA metabolism. The deficiencies of three RecQ proteins out of five are involved in genetic abnormalities like Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS). It is noteworthy that Plasmodium falciparum contains only two members of the RecQ family as opposed to five members present in the host Homo sapiens. In the present study, we report the biochemical characterization of the homologue of Werner (Wrn) helicase from P. falciparum 3D7 strain. Although there are significant sequence conservations between Wrn helicases of both H. sapiens and P. falciparum as well as among all the other Plasmodium species, they contain some peculiar differences also. In silico studies reveal that PfWrn is evolutionarily close to the bacterial RecQ protein. The N-terminal fragment (PfWrnN) contains all the helicase motifs along with all the functional domains and the predicted structure resembles with the human RecQ1 protein, whereas the C-terminal fragment (PfWrnC) contains no significant domain. Biochemical characterization further revealed that purified recombinant PfWrnN shows ATPase and DNA helicase activity in 3' to 5' direction, but PfWrnC lacks the ATPase and helicase activities. Immunofluorescence study shows that PfWrn is expressed in all the stages of intraerythrocytic development of the P. falciparum 3D7 strain and localizes distinctly in the nucleus. This study can be used for further characterization of RecQ helicases that will aid in understanding the physiological significance of these helicases in the malaria parasite.

  16. Role of N-terminal methionine residues in the redox activity of copper bound to alpha-synuclein.

    PubMed

    Rodríguez, Esaú E; Arcos-López, Trinidad; Trujano-Ortiz, Lidia G; Fernández, Claudio O; González, Felipe J; Vela, Alberto; Quintanar, Liliana

    2016-09-01

    Amyloid aggregation of α-synuclein (AS) is one of the hallmarks of Parkinson's disease. The interaction of copper ions with the N-terminal region of AS promotes its amyloid aggregation and metal-catalyzed oxidation has been proposed as a plausible mechanism. The AS(1-6) fragment represents the minimal sequence that models copper coordination to this intrinsically disordered protein. In this study, we evaluated the role of methionine residues Met1 and Met5 in Cu(II) coordination to the AS(1-6) fragment, and in the redox activity of the Cu-AS(1-6) complex. Spectroscopic and electronic structure calculations show that Met1 may play a role as an axial ligand in the Cu(II)-AS(1-6) complex, while Met5 does not participate in metal coordination. Cyclic voltammetry and reactivity studies demonstrate that Met residues play an important role in the reduction and reoxidation processes of this complex. However, Met1 plays a more important role than Met5, as substitution of Met1 by Ile decreases the reduction potential of the Cu-AS(1-6) complex by ~80 mV, causing a significant decrease in its rate of reduction. Reoxidation of the complex by oxygen results in oxidation of the Met residues to sulfoxide, being Met1 more susceptible to copper-catalyzed oxidation than Met5. The sulfoxide species can suffer elimination of methanesulfenic acid, rendering a peptide with no thioether moiety, which would impair the ability of AS to bind Cu(I) ions. Overall, our study underscores the important roles that Met1 plays in copper coordination and the reactivity of the Cu-AS complex.

  17. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    NASA Astrophysics Data System (ADS)

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O'Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-12-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics.

  18. Structure of the human histone chaperone FACT Spt16 N-terminal domain.

    PubMed

    Marcianò, G; Huang, D T

    2016-02-01

    The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  19. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms

    PubMed Central

    Rathore, Om Singh; Faustino, Alexandra; Prudêncio, Pedro; Van Damme, Petra; Cox, Cymon J.; Martinho, Rui Gonçalo

    2016-01-01

    Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initial expectations, we determined that NAT diversification did not occur in the eukaryotes, as all six major human NATs were most likely present in the Last Eukaryotic Common Ancestor (LECA). Furthermore, we also observed that some NATs were actually secondarily lost during evolution of major eukaryotic lineages; therefore, the increased complexity of the higher eukaryotic proteome occurred without a concomitant diversification of NAT complexes. PMID:26861501

  20. Bordetella dermonecrotic toxin binds to target cells via the N-terminal 30 amino acids.

    PubMed

    Fukui-Miyazaki, Aya; Ohnishi, Shinya; Kamitani, Shigeki; Abe, Hiroyuki; Horiguchi, Yasuhiko

    2011-03-01

    Bordetella dermonecrotic toxin (DNT) affects the biological function of host cells by activating intracellular Rho GTPases. The toxin binds to unidentified receptor(s) via 54 N-terminal amino acids, undergoes intramolecular cleavage on the C-terminal side of Arg(44) by furin or furin-like protease, and eventually enters the cytoplasm where the Rho GTPases reside. The binding to the receptor(s) and intramolecular cleavage are essential for DNT to intoxicate cells, and the 54 amino-acid binding domain encompasses the cleavage site, however, it is unclear whether these two events are related. In this study, we could narrow down the cell-binding domain to the N-terminal amino acids 2-30. The region does not contain the furin-recognition site, indicating that the cell binding and the intramolecular cleavage are independent events.

  1. The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening.

    PubMed

    Schwarze, Simone; Zwettler, Fabian U; Johnson, Christopher M; Neuweiler, Hannes

    2013-01-01

    Web spiders assemble spidroin monomers into silk fibres of unrivalled tensile strength at remarkably high spinning speeds of up to 1 m s(-1). The spidroin N-terminal domain contains a charge-driven, pH-sensitive relay that controls self-association by an elusive mechanism. The underlying kinetics have not yet been reported. Here we engineer a fluorescence switch into the isolated N-terminal domain from spidroin 1 of the major ampullate gland of the nursery web spider E. australis that monitors dimerization. We observe ultrafast association that is surprisingly insensitive to salt, contrasting the classical screening effects in accelerated, charged protein interfaces. To gain deeper mechanistic insight, we mutate each of the protonatable residue side chains and probe their contributions. Two vicinal aspartic acids are critically involved in an unusual process of accelerated protein association that is protected from screening by electrolytes, potentially facilitating the rapid synthesis of silk fibres by web spiders.

  2. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Previous studies have demonstrated that alpha-crystallin binds specifically, in a saturable manner, to lens membrane. To determine the region of the alpha-crystallin molecule that might be involved in this binding, native alpha-crystallin from the bovine lens has been treated by limited digestion with trypsin, to produce alpha-A molecules with an intact C-terminal region, and a nicked N-terminal region. Compared to intact alpha-crystallin, trypsin-treated alpha-crystallin binds less avidly to lens membrane, suggesting that the N-terminal region of the alpha-A molecule may play a key role in the recognition between lens membrane and crystallin.

  3. Resin-assisted Enrichment of N-terminal Peptides for Characterizing Proteolytic Processing

    SciTech Connect

    Kim, Jong Seo; Dai, Ziyu; Aryal, Uma K.; Moore, Ronald J.; Camp, David G.; Baker, Scott E.; Smith, Richard D.; Qian, Weijun

    2013-06-17

    Proteolytic processing is a ubiquitous, irreversible posttranslational modification that plays an important role in cellular regulation in all living organisms. Herein we report a resin-assisted positive selection method for specifically enriching protein N-terminal peptides to facilitate the characterization of proteolytic processing events by liquid chromatography-tandem mass spectrometry. In this approach, proteins are initially reduced and alkylated and their lysine residues are converted to homoarginines. Then, protein N-termini are selectively converted to reactive thiol groups. We demonstrate that these sequential reactions were achieved with nearly quantitative efficiencies. Thiol-containing N-terminal peptides are then captured (>98% efficiency) by a thiol-affinity resin, a significant improvement over the traditional avidin/biotin enrichment. Application to cell lysates of Aspergillus niger, a filamentous fungus of interest for biomass degradation, enabled the identification of 1672 unique protein N-termini and proteolytic cleavage sites from 690 unique proteins.

  4. PRINT: A Protein Bioconjugation Method with Exquisite N-terminal Specificity

    PubMed Central

    Sur, Surojit; Qiao, Yuan; Fries, Anja; O’Meally, Robert N.; Cole, Robert N.; Kinzler, Kenneth W.; Vogelstein, Bert; Zhou, Shibin

    2015-01-01

    Chemical conjugation is commonly used to enhance the pharmacokinetics, biodistribution, and potency of protein therapeutics, but often leads to non-specific modification or loss of bioactivity. Here, we present a simple, versatile and widely applicable method that allows exquisite N-terminal specific modification of proteins. Combining reversible side-chain blocking and protease mediated cleavage of a commonly used HIS tag appended to a protein, we generate with high yield and purity exquisitely site specific and selective bio-conjugates of TNF-α by using amine reactive NHS ester chemistry. We confirm the N terminal selectivity and specificity using mass spectral analyses and show near complete retention of the biological activity of our model protein both in vitro and in vivo murine models. We believe that this methodology would be applicable to a variety of potentially therapeutic proteins and the specificity afforded by this technique would allow for rapid generation of novel biologics. PMID:26678960

  5. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1.

    PubMed

    Parnham, Stuart; Gaines, William A; Duggan, Brendan M; Marcotte, William R; Hennig, Mirko

    2011-10-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35-40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all (1)H, (13)C, and (15)N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes.

  6. c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic Lateral Sclerosis

    DTIC Science & Technology

    2013-10-01

    Treatment of Amyotrophic Lateral Sclerosis ” PRINCIPAL INVESTIGATOR: Dr. Philip LoGrasso CONTRACTING ORGANIZATION: The Scripps Research... Lateral Sclerosis ” 5a. CONTRACT NUMBER W81XWH-12-1-0431 5b. GRANT NUMBER W81XWH-12-1-0431 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Philip...Annual 3. DATES COVERED 30September2012-29September2013 4. TITLE AND SUBTITLE “c-jun-N-Terminal Kinase (JNK) for the Treatment of Amyotrophic

  7. Thermodynamics of the protonation equilibria of two fragments of N-terminal β-hairpin of FPB28 WW domain.

    PubMed

    Makowska, Joanna; Uber, Dorota; Chmurzyński, Lech

    2012-01-12

    The pK(a) values of two peptides derived from the formin-binding protein 28 WW domain [Ac-Lys-Thr-Ala-Asp-Gly-Lys-Thr-NH(2) (D7), Ac-Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr-NH(2) (D9)] were determined by potentiometric titration in the temperature range from 25 to 60 °C, and their heat capacities were determined, by differential scanning calorimetry, in the temperature range from 10 to 90 °C. For both peptides, heat capacity has a maximum at t ≈ 50 °C, with height about 0.1 kcal/(mol × deg), suggesting that a modest unfolding transition occurs. The first two pK(a)'s are low at temperatures below 50 °C, suggesting that the two lysine residues are close to each other and the peptides have bent shapes at lower temperatures; this effect is greater for D7 compared with D9. With increasing temperature beyond 50 °C (i.e., that of the thermodynamic unfolding transition), pK(a1) and pK(a2) increase rapidly for D9, whereas their temperature variation is less significant for D7. This observation, and the fact that the enthalpies and entropies of the dissociation of the two first protons (determined from the temperature dependence of the respective pK(a)'s) decrease significantly near the transition temperature, suggest that the peptide undergoes a transition from a bent to an amorphous shape and that the presence of charged lysine residues stabilizes the folded state.

  8. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    PubMed

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-02

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection.

  9. Epitope tags beside the N-terminal cytoplasmic tail of human BST-2 alter its intracellular trafficking and HIV-1 restriction.

    PubMed

    Lv, Mingyu; Wang, Jiawen; Zhang, Jingyao; Zhang, Biao; Wang, Xiaodan; Zhu, Yingzi; Zuo, Tao; Liu, Donglai; Li, Xiaojun; Wu, Jiaxin; Zhang, Haihong; Yu, Bin; Wu, Hui; Zhao, Xinghong; Kong, Wei; Yu, Xianghui

    2014-01-01

    BST-2 blocks the particle release of various enveloped viruses including HIV-1, and this antiviral activity is dependent on the topological arrangement of its four structural domains. Several functions of the cytoplasmic tail (CT) of BST-2 have been previously discussed, but the exact role of this domain remains to be clearly defined. In this study, we investigated the impact of truncation and commonly-used tags addition into the CT region of human BST-2 on its intracellular trafficking and signaling as well as its anti-HIV-1 function. The CT-truncated BST-2 exhibited potent inhibition on Vpu-defective HIV-1 and even wild-type HIV-1. However, the N-terminal HA-tagged CT-truncated BST-2 retained little antiviral activity and dramatically differed from its original protein in the cell surface level and intracellular localization. Further, we showed that the replacement of the CT domain with a hydrophobic tag altered BST-2 function possibly by preventing its normal vesicular trafficking. Notably, we demonstrated that a positive charged motif "KRXK" in the conjunctive region between the cytotail and the transmembrane domain which is conserved in primate BST-2 is important for the protein trafficking and the antiviral function. These results suggest that although the CT of BST-2 is not essential for its antiviral activity, the composition of residues in this region may play important roles in its normal trafficking which subsequently affected its function. These observations provide additional implications for the structure-function model of BST-2.

  10. Epitope Tags beside the N-Terminal Cytoplasmic Tail of Human BST-2 Alter Its Intracellular Trafficking and HIV-1 Restriction

    PubMed Central

    Zhang, Jingyao; Zhang, Biao; Wang, Xiaodan; Zhu, Yingzi; Zuo, Tao; Liu, Donglai; Li, Xiaojun; Wu, Jiaxin; Zhang, Haihong; Yu, Bin; Wu, Hui; Zhao, Xinghong; Kong, Wei; Yu, Xianghui

    2014-01-01

    BST-2 blocks the particle release of various enveloped viruses including HIV-1, and this antiviral activity is dependent on the topological arrangement of its four structural domains. Several functions of the cytoplasmic tail (CT) of BST-2 have been previously discussed, but the exact role of this domain remains to be clearly defined. In this study, we investigated the impact of truncation and commonly-used tags addition into the CT region of human BST-2 on its intracellular trafficking and signaling as well as its anti-HIV-1 function. The CT-truncated BST-2 exhibited potent inhibition on Vpu-defective HIV-1 and even wild-type HIV-1. However, the N-terminal HA-tagged CT-truncated BST-2 retained little antiviral activity and dramatically differed from its original protein in the cell surface level and intracellular localization. Further, we showed that the replacement of the CT domain with a hydrophobic tag altered BST-2 function possibly by preventing its normal vesicular trafficking. Notably, we demonstrated that a positive charged motif “KRXK” in the conjunctive region between the cytotail and the transmembrane domain which is conserved in primate BST-2 is important for the protein trafficking and the antiviral function. These results suggest that although the CT of BST-2 is not essential for its antiviral activity, the composition of residues in this region may play important roles in its normal trafficking which subsequently affected its function. These observations provide additional implications for the structure-function model of BST-2. PMID:25347789

  11. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region.

    PubMed

    Lemas, Dominick; Lekkas, Panagiotis; Ballif, Bryan A; Vigoreaux, Jim O

    2016-03-01

    Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region.

  12. Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency.

    PubMed

    Saunier, Chloé; Støve, Svein Isungset; Popp, Bernt; Gérard, Bénédicte; Blenski, Marina; AhMew, Nicholas; de Bie, Charlotte; Goldenberg, Paula; Isidor, Bertrand; Keren, Boris; Leheup, Bruno; Lampert, Laetitia; Mignot, Cyril; Tezcan, Kamer; Mancini, Grazia M S; Nava, Caroline; Wasserstein, Melissa; Bruel, Ange-Line; Thevenon, Julien; Masurel, Alice; Duffourd, Yannis; Kuentz, Paul; Huet, Frédéric; Rivière, Jean-Baptiste; van Slegtenhorst, Marjon; Faivre, Laurence; Piton, Amélie; Reis, André; Arnesen, Thomas; Thauvin-Robinet, Christel; Zweier, Christiane

    2016-08-01

    N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X-inactivation was random in five females. The core phenotype of X-linked NAA10-related N-terminal-acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype-phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X-inactivation in females.

  13. N-Terminal Deletion of Peptide:N-Glycanase Results in Enhanced Deglycosylation Activity

    PubMed Central

    Wang, Shengjun; Xin, Fengxue; Liu, Xiaoyue; Wang, Yuxiao; An, Zhenyi; Qi, Qingsheng; Wang, Peng George

    2009-01-01

    Peptide:N-glycanase catalyzes the detachment of N-linked glycan chains from glycopeptides or glycoproteins by hydrolyzing the β-aspartylglucosaminyl bond. Peptide:N-glycanase in yeast binds to Rad23p through its N-terminus. In this study, the complex formed between Peptide:N-glycanase and Rad23p was found to exhibit enhanced deglycosylation activity, which suggests an important role for this enzyme in the misfolded glycoprotein degradation pathway in vivo. To investigate the role of this enzyme in this pathway, we made stepwise deletions of the N-terminal helices of peptide:N-glycanase. Enzymatic analysis of the deletion mutants showed that deletion of the N-terminal H1 helix (Png1p-ΔH1) enhanced the deglycosylation activity of N-glycanase towards denatured glycoproteins. In addition, this mutant exhibited high deglycosylation activity towards native glycoproteins. Dynamic simulations of the wild type and N-terminal H1 deletion mutant implied that Png1p-ΔH1 is more flexible than wild type Png1p. The efficient deglycosylation of Png1p-ΔH1 towards native and non-native glycoproteins offers a potential biotechnological application. PMID:20016784

  14. Critical roles of CTP synthase N-terminal in cytoophidium assembly.

    PubMed

    Huang, Yong; Wang, Jin-Jun; Ghosh, Sanjay; Liu, Ji-Long

    2017-03-22

    Several metabolic enzymes assemble into distinct intracellular structures in prokaryotes and eukaryotes suggesting an important functional role in cell physiology. The CTP-generating enzyme CTP synthase forms long filamentous structures termed cytoophidia in bacteria, yeast, fruit flies and human cells independent of its catalytic activity. However, the amino acid determinants for protein-protein interaction necessary for polymerisation remained unknown. In this study, we systematically analysed the role of the conserved N-terminal of Drosophila CTP synthase in cytoophidium assembly. Our mutational analyses identified three key amino acid residues within this region that play an instructive role in organisation of CTP synthase into a filamentous structure. Co-transfection assays demonstrated formation of heteromeric CTP synthase filaments which is disrupted by protein carrying a mutated N-terminal alanine residue thus revealing a dominant-negative activity. Interestingly, the dominant-negative activity is supressed by the CTP synthase inhibitor DON. Furthermore, we found that the amino acids at the corresponding position in the human protein exhibit similar properties suggesting conservation of their function through evolution. Our data suggest that cytoophidium assembly is a multi-step process involving N-terminal-dependent sequential interactions between correctly folded structural units and provide insights into the assembly of these enigmatic structures.

  15. Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB.

    PubMed

    Hong, Haiyan; Cai, Yongfei; Zhang, Shijun; Ding, Hongyan; Wang, Haitao; Han, Aidong

    2017-04-04

    The NatB N-terminal acetyltransferase specifically acetylates the N-terminal group of substrate protein peptides starting with Met-Asp/Glu/Asn/Gln. How NatB recognizes and acetylates these substrates remains unknown. Here, we report crystal structures of a NatB holoenzyme from Candida albicans in the presence of its co-factor CoA and substrate peptides. The auxiliary subunit Naa25 of NatB forms a horseshoe-like deck to hold specifically its catalytic subunit Naa20. The first two amino acids Met and Asp of a substrate peptide mediate the major interactions with the active site in the Naa20 subunit. The hydrogen bonds between the substrate Asp and pocket residues of Naa20 are essential to determine the NatB substrate specificity. Moreover, a hydrogen bond between the amino group of the substrate Met and a carbonyl group in the Naa20 active site directly anchors the substrate toward acetyl-CoA. Together, these structures define a unique molecular mechanism of specific N-terminal acetylation acted by NatB.

  16. Mechanism of N-terminal modulation of activity at the melanocortin-4 receptor GPCR

    PubMed Central

    Ersoy, Baran A; Pardo, Leonardo; Zhang, Sumei; Thompson, Darren A; Millhauser, Glenn; Govaerts, Cedric; Vaisse, Christian

    2013-01-01

    Most of our understanding of G protein–coupled receptor (GPCR) activation has been focused on the direct interaction between diffusible ligands and their seven-transmembrane domains. However, a number of these receptors depend on their extracellular N-terminal domain for ligand recognition and activation. To dissect the molecular interactions underlying both modes of activation at a single receptor, we used the unique properties of the melanocortin-4 receptor (MC4R), a GPCR that shows constitutive activity maintained by its N-terminal domain and is physiologically activated by the peptide α-melanocyte stimulating hormone (αMSH). We find that activation by the N-terminal domain and αMSH relies on different key residues in the transmembrane region. We also demonstrate that agouti-related protein, a physiological antagonist of MC4R, acts as an inverse agonist by inhibiting N terminus–mediated activation, leading to the speculation that a number of constitutively active orphan GPCRs could have physiological inverse agonists as sole regulators. PMID:22729149

  17. Intrinsic disorder and multiple phosphorylations constrain the evolution of the flightin N-terminal region

    PubMed Central

    Lemas, Dominick; Lekkas, Panagiotis; Ballif, Bryan A.; Vigoreaux, Jim O.

    2015-01-01

    Flightin is a myosin binding phosphoprotein that originated in the ancestor to Pancrustacea ~500 MYA. In Drosophila melanogaster, flightin is essential for length determination and flexural rigidity of thick filaments. Here, we show that among 12 Drosophila species, the N-terminal region is characterized by low sequence conservation, low pI, a cluster of phosphorylation sites, and a high propensity to intrinsic disorder (ID) that is augmented by phosphorylation. Using mass spectrometry, we identified eight phosphorylation sites within a 29 amino acid segment in the N-terminal region of D. melanogaster flightin. We show that phosphorylation of D. melanogaster flightin is modulated during flight and, through a comparative analysis to orthologs from other Drosophila species, we found phosphorylation sites that remain invariant, sites that retain the charge character, and sites that are clade-specific. While the number of predicted phosphorylation sites differs across species, we uncovered a conserved pattern that relates the number of phosphorylation sites to pI and ID. Extending the analysis to orthologs of other insects, we found additional conserved features in flightin despite the near absence of sequence identity. Collectively, our results demonstrate that structural constraints demarcate the evolution of the highly variable N-terminal region. PMID:26691840

  18. Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†

    PubMed Central

    Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878

  19. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    SciTech Connect

    Marcianò, G.; Huang, D. T.

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  20. Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface.

    PubMed

    Kimlicka, Lynn; Lau, Kelvin; Tung, Ching-Chieh; Van Petegem, Filip

    2013-01-01

    Ryanodine receptors are large channels that release Ca(2+) from the endoplasmic and sarcoplasmic reticulum. Hundreds of RyR mutations can cause cardiac and skeletal muscle disorders, yet detailed mechanisms explaining their effects have been lacking. Here we compare pseudo-atomic models and propose that channel opening coincides with widening of a cytoplasmic vestibule formed by the N-terminal region, thus altering an interface targeted by 20 disease mutations. We solve crystal structures of several disease mutants that affect intrasubunit domain-domain interfaces. Mutations affecting intrasubunit ionic pairs alter relative domain orientations, and thus couple to surrounding interfaces. Buried disease mutations cause structural changes that also connect to the intersubunit contact area. These results suggest that the intersubunit contact region between N-terminal domains is a prime target for disease mutations, direct or indirect, and we present a model whereby ryanodine receptors and inositol-1,4,5-trisphosphate receptors are activated by altering domain arrangements in the N-terminal region.

  1. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish

    PubMed Central

    Zou, Jun; Tran, Diana; Baalbaki, Mai; Tang, Ling Fung; Poon, Annie; Pelonero, Angelo; Titus, Erron W; Yuan, Christiana; Shi, Chenxu; Patchava, Shruthi; Halper, Elizabeth; Garg, Jasmine; Movsesyan, Irina; Yin, Chaoying; Wu, Roland; Wilsbacher, Lisa D; Liu, Jiandong; Hager, Ronald L; Coughlin, Shaun R; Jinek, Martin; Pullinger, Clive R; Kane, John P; Hart, Daniel O; Kwok, Pui-Yan; Deo, Rahul C

    2015-01-01

    Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six zebrafish lines with Titin truncations in the N-terminal and C-terminal regions. Although all exons were constitutive, C-terminal mutations caused severe myopathy whereas N-terminal mutations demonstrated mild phenotypes. Surprisingly, neither mutation type acted as a dominant negative. Instead, we found a conserved internal promoter at the precise position where divergence in disease severity occurs, with the resulting protein product partially rescuing N-terminal truncations. In addition to its clinical implications, our work may shed light on a long-standing mystery regarding the architecture of the sarcomere. DOI: http://dx.doi.org/10.7554/eLife.09406.001 PMID:26473617

  2. N-Terminal Prodomain of Pfs230 Synthesized Using a Cell-Free System Is Sufficient To Induce Complement-Dependent Malaria Transmission-Blocking Activity▿

    PubMed Central

    Tachibana, Mayumi; Wu, Yimin; Iriko, Hideyuki; Muratova, Olga; MacDonald, Nicholas J.; Sattabongkot, Jetsumon; Takeo, Satoru; Otsuki, Hitoshi; Torii, Motomi; Tsuboi, Takafumi

    2011-01-01

    The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum. PMID:21715579

  3. Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie.

    PubMed

    Fullard, John F; Baker, Nicholas E

    2015-01-01

    Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott-Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.

  4. N-Terminal pyroglutamate formation of Aβ38 and Aβ40 enforces oligomer formation and potency to disrupt hippocampal long-term potentiation.

    PubMed

    Schlenzig, Dagmar; Rönicke, Raik; Cynis, Holger; Ludwig, Hans-Henning; Scheel, Eike; Reymann, Klaus; Saido, Takaomi; Hause, Gerd; Schilling, Stephan; Demuth, Hans-Ulrich

    2012-06-01

    Pyroglutamate (pGlu)-modified amyloid peptides have been identified in sporadic and familial forms of Alzheimer's disease (AD) and the inherited disorders familial British and Danish Dementia (FBD and FDD). In this study, we characterized the aggregation of amyloid-β protein Aβ37, Aβ38, Aβ40, Aβ42 and ADan species in vitro, which were modified by N-terminal pGlu (pGlu-Aβ3-x, pGlu-ADan) or possess the intact N-terminus (Aβ1-x, ADan). The pGlu-modification confers rapid formation of oligomers and short fibrillar aggregates. In accordance with these observations, the pGlu-modified Aβ38, Αβ40 and Αβ42 species inhibit hippocampal long term potentiation of synaptic response, but pGlu-Aβ3-42 showing the highest effect. Among the unmodified Aβ peptides, only Aβ1-42 exhibites such propensity, which was similar to pGlu-Aβ3-38 and pGlu-Aβ3-40. Likewise, the amyloidogenic peptide pGlu-ADan impaired synaptic potentiation more pronounced than N-terminal unmodified ADan. The results were validated using conditioned media from cultivated HEK293 cells, which express APP variants favoring the formation of Aβ1-x, Aβ3-x or N-truncated pGlu-Aβ3-x species. Hence, we show that the ability of different amyloid peptides to impair synaptic function apparently correlates to their potential to form oligomers as a common mechanism. The pGlu-modification is apparently mediating a higher surface hydrophobicity, as shown by 1-anilinonaphtalene-8-sulfonate fluorescence, which enforces potential to interfere with neuronal physiology.

  5. Analysis of a eukaryotic beta-galactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product.

    PubMed Central

    Breunig, K D; Dahlems, U; Das, S; Hollenberg, C P

    1984-01-01

    The LAC4 gene of Kluyveromyces lactis, encoding the enzyme beta-galactosidase was mapped on a cloned DNA fragment and the sequence of the 5' end was determined. This sequence includes the 5' regulatory region involved in the induction by lactose and the N-terminal end of the protein coding region. Comparison of the deduced amino acid sequence of this eukaryotic enzyme with the N-terminal end of the Escherichia coli beta-galactosidase revealed substantial homology. Two major RNA initiation sites were mapped at -115 and -105. A number of structural peculiarities of the 5'non-coding region are discussed as in comparison to Saccharomyces cerevisiae genes. Images PMID:6324114

  6. Enhancement of cardenolide and phytosterol levels by expression of an N-terminally truncated 3-hydroxy-3-methylglutaryl CoA reductase in Transgenic digitalis minor.

    PubMed

    Sales, Ester; Muñoz-Bertomeu, Jesús; Arrillaga, Isabel; Segura, Juan

    2007-06-01

    Pathway engineering in medicinal plants attains a special significance in Digitalis species, the main industrial source of cardiac glycosides, steroidal metabolites derived from mevalonic acid via the triterpenoid pathway. In this work, the Arabidopsis thaliana HMG1 cDNA, coding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the MVA pathway, was expressed in the cardenolide-producing plant Digitalis minor. Transgenic plants were morphologically indistinguishable from control wild plants and displayed the same developmental pattern. Constitutive expression of HMG1 resulted in an increased sterol and cardenolide production in both in vitro- and greenhouse-grown plants. This work demonstrates that transgenic D. minor plants are a valuable system to study and achieve metabolic engineering of the cardenolide pathway and in consequence for the genetic improvement of Digitalis species.

  7. Characterization of the fundamental properties of the N-terminal truncation (Δ exon 1) variant of estrogen receptor α in the rat.

    PubMed

    Hattori, Yujiro; Ishii, Hirotaka; Morita, Akio; Sakuma, Yasuo; Ozawa, Hitoshi

    2015-10-15

    The estrogen receptor α (ERα) directs transactivation of target genes, and splice variants have been shown to exhibit altered activation properties. We previously documented the complicated alternative promoter usage and splicing patterns of the rat ERα gene; however, the information was restricted to a few specific organs. Therefore, we re-examined the rat mRNA profiles of ERα, including the generation of the exon 1-skipping, ERα46 transcript in a wider variety of rat organs and further characterized the fundamental functional properties of rat ERα46 variants. With the use of RT-PCR, we discovered unique distribution and splicing patterns for promoter-specific ERα isoforms, as well as the extensive expression of the Δ exon 1 variant in the rat. Similar to wild-type ERα, an immunocytochemical analysis showed a predominant localization of ERα46 proteins in the nuclei of transfected cells. Luciferase reporter assays revealed that ERα46 variants stimulated the transcriptional activity of an estrogen response element-driven promoter in response to estrogen. In addition, the variants exhibited distinct transactivation and reactivity to 4-hydroxytamoxifen in different cell types. Although the alternative splicing patterns are species-specific, the profiles of the alternative use of promoters, and the fundamental properties of the rat ERα46 variant are similar to those of human and mouse homologs. Therefore, the present study provides fundamental and useful information for further research into the regulation and functions of ERα gene variants.

  8. Studies on the interactions of SAP-1 (an N-terminal truncated form of cystatin S) with its binding partners by CD-spectroscopic and molecular docking methods.

    PubMed

    Yadav, Vikash Kumar; Mandal, Rahul Shubhra; Puniya, Bhanwar Lal; Singh, Sarman; Yadav, Savita

    2015-01-01

    SAP-1 is a 113 amino acid long single-chain protein which belongs to the type 2 cystatin gene family. In our previous study, we have purified SAP-1 from human seminal plasma and observed its cross-class inhibitory property. At this time, we report the interaction of SAP-1 with diverse proteases and its binding partners by CD-spectroscopic and molecular docking methods. The circular dichroism (CD) spectroscopic studies demonstrate that the conformation of SAP-1 is changed after its complexation with proteases, and the alterations in protein secondary structure are quantitatively calculated with increase of α-helices and reduction of β-strand content. To get insight into the interactions between SAP-1 and proteases, we make an effort to model the three-dimensional structure of SAP-1 by molecular modeling and verify its stability and viability through molecular dynamics simulations and finally complexed with different proteases using ClusPro 2.0 Server. A high degree of shape complementarity is examined within the complexes, stabilized by a number of hydrogen bonds (HBs) and hydrophobic interactions. Using HB analyses in different protein complexes, we have identified a series of key residues that may be involved in the interactions between SAP-1 and proteases. These findings will assist to understand the mechanism of inhibition of SAP-1 for different proteases and provide intimation for further research.

  9. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    PubMed

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  10. Molecular Determinants of the N-Terminal Acetyltransferase Naa60 Anchoring to the Golgi Membrane.

    PubMed

    Aksnes, Henriette; Goris, Marianne; Strømland, Øyvind; Drazic, Adrian; Waheed, Qaiser; Reuter, Nathalie; Arnesen, Thomas

    2017-02-14

    Nα-acetyltransferase 60 (Naa60 or NatF) was recently identified as an unconventional N-terminal acetyltransferase (NAT) since it localizes to organelles, in particular the Golgi apparatus, and has a preference for acetylating N-termini of transmembrane proteins. This knowledge challenged the prevailing view of N-terminal acetylation as a co-translational ribosome-associated process and suggested a new mechanistic functioning for the enzymes responsible for this increasingly recognized protein modification. Crystallography studies on Naa60 were unable to resolve the C-terminal tail of Naa60, which is responsible for the organellar localization. Here, we combined modeling, in vitro assays, and cellular localization studies to study secondary structure and membrane interacting capacity of Naa60. The results show that Naa60 is a peripheral membrane protein. Two amphipathic helices within the Naa60 C-terminus bind the membrane directly in a parallel position relative to the lipid bilayer via hydrophobic and electrostatic interactions. A peptide corresponding to the C-terminus is unstructured in solution and only folds into an α-helical conformation in the presence of liposomes. Computational modeling and cellular mutational analysis revealed the hydrophobic face of two α-helices to be critical for membranous localization. Furthermore, we found a strong and specific binding preference of Naa60 towards membranes containing the phosphatidylinositol PI4P, thus possibly explaining the primary residency of Naa60 at the PI4P-rich Golgi. In conclusion, we have defined the mode of cytosolic Naa60 anchoring to the Golgi apparatus, most likely occurring post-translationally and specifically facilitating post-translational N-terminal acetylation of many transmembrane proteins.

  11. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration.

    PubMed

    Ibrahim, Hisham R; Imazato, Kenta; Ono, Hajime

    2011-09-28

    Human milk lysozyme is thought to be a key defense factor in protecting the gastrointestinal tract of newborns against bacterial infection. Recently, evidence was found that pepsin, under conditions relevant to the newborn stomach, cleaves chicken lysozyme (cLZ) at specific loops to generate five antimicrobial peptide motifs. This study explores the antimicrobial role of the corresponding peptides of human lysozyme (hLZ), the actual protein in breast milk. Five peptide motifs of hLZ, one helix-loop-helix (HLH), its two helices (H1 and H2), and two helix-sheet motifs, H2-β-strands 1-2 (H2-S12) or H2-β-strands 1-3 (H2-S13), were synthesized and examined for antimicrobial action. The five peptides of hLZ exhibit microbicidal activity to various degrees against several bacterial strains. The HLH peptide and its N-terminal helix (H1) were significantly the most potent bactericidal to Gram-positive and Gram-negative bacteria and the fungus Candida albicans . Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its N-terminal helix (H1) kill bacteria by crossing the outer membrane of Gram-negative bacteria via self-promoted uptake and are able to dissipate the membrane potential-dependent respiration of Gram-positive bacteria. This finding is the first to describe that hLZ possesses multiple antimicrobial peptide motifs within its N-terminal domain, providing insight into new classes of antibiotic peptides with potential use in the treatment of infectious diseases.

  12. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs.

  13. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis.

    PubMed

    Taggart, David J; Dayeh, Daniel M; Fredrickson, Saul W; Suo, Zucai

    2014-10-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5'-2-deoxyribose-5-phosphate lyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or an 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated -1 or -2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of -2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of -1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase within the non

  14. Dissecting functions of the N-terminal domain and GAS-site recognition in STAT3 nuclear trafficking.

    PubMed

    Martincuks, Antons; Fahrenkamp, Dirk; Haan, Serge; Herrmann, Andreas; Küster, Andrea; Müller-Newen, Gerhard

    2016-08-01

    Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous transcription factor involved in many biological processes, including hematopoiesis, inflammation and cancer progression. Cytokine-induced gene transcription greatly depends on tyrosine phosphorylation of STAT3 on a single tyrosine residue with subsequent nuclear accumulation and specific DNA sequence (GAS) recognition. In this study, we analyzed the roles of the conserved STAT3 N-terminal domain (NTD) and GAS-element binding ability of STAT3 in nucleocytoplasmic trafficking. Our results demonstrate the nonessential role of GAS-element recognition for both cytokine-induced and basal nuclear import of STAT3. Substitution of five key amino acids within the DNA-binding domain rendered STAT3 unable to bind to GAS-elements while still maintaining the ability for nuclear localization. In turn, deletion of the NTD markedly decreased nuclear accumulation upon IL-6 treatment resulting in a prolonged accumulation of phosphorylated dimers in the cytoplasm, at the same time preserving specific DNA recognition ability of the truncation mutant. Observed defect in nuclear localization could not be explained by flawed importin-α binding, since both wild-type and NTD deletion mutant of STAT3 could precipitate both full-length and autoinhibitory domain (∆IBB) deletion mutants of importin-α5, as well as ∆IBB-α3 and ∆IBB-α7 isoforms independently of IL-6 stimulation. Despite its inability to translocate to the nucleus upon IL-6 stimulation, the NTD lacking mutant still showed nuclear accumulation in resting cells similar to wild-type upon inhibition of nuclear export by leptomycin B. At the same time, blocking the nuclear export pathway could not rescue cytoplasmic trapping of phosphorylated STAT3 molecules without NTD. Moreover, STAT3 mutant with dysfunctional SH2 domain (R609Q) also localized in the nucleus of unstimulated cells after nuclear export blocking, while upon cytokine treatment the

  15. Role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila melanogaster wing imaginal disc.

    PubMed

    Mattila, Jaakko; Omelyanchuk, Leonid; Kyttälä, Satu; Turunen, Heikki; Nokkala, Seppo

    2005-01-01

    When a fragment of a Drosophila imaginal disc is cultured in growth permissive conditions, it either regenerates the missing structures or duplicates the pattern present in the fragment. This kind of pattern regulation is known to be epimorphic, i.e. the new pattern is generated by proliferation in a specialized tissue called the blastema. Pattern regulation is accompanied by the healing of the cut surfaces restoring the continuous epithelia. Wound healing has been considered to be the inductive signal to commence regenerative cell divisions. Although the general outlines of the proliferation dynamics in a regenerating imaginal disc blastema have been well studied, little is known about the mechanisms driving cells into the regenerative cell cycles. In this study, we have investigated the role of Jun N-terminal Kinase (JNK) signaling in the wound healing and regeneration of a Drosophila wing imaginal disc. By utilizing in vivo and in vitro culturing of incised and fragmented discs, we have been able to visualize the dynamics in cellular architecture and gene expression involved in the healing and regeneration process. Our results directly show that homotypic wound healing is not a prerequisite for regenerative cell divisions. We also show that JNK signaling participates in imaginal disc wound healing and is regulated by the physical dynamics of the process, as well as in recruiting cells into the regenerative cell cycles. A model describing the determination of blastema size is discussed.

  16. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    SciTech Connect

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine; Drummer, Heidi E.; Poumbourios, Pantelis . E-mail: apoumbourios@burnet.edu.au

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutant correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.

  17. N-Terminal region is responsible for chemotaxis-inducing activity of flounder IL-8.

    PubMed

    Kurata, Osamu; Wada, Shinpei; Matsuyama, Tomomasa; Sakai, Takamitsu; Takano, Tomokazu

    2014-06-01

    The objective of this study was to locate the functional region responsible for the chemotaxis-inducing activity of flounder interleukin 8 (IL-8), which lacks the glutamic acid-leucine-arginine (ELR) motif essential for the induction of neutrophil migration by mammalian IL-8. Using a human cell line, we produced a secretory recombinant protein of flounder IL-8, and analyzed its chemotaxis-inducing activity on leukocytes collected from the flounder kidney. The recombinant IL-8 induced significant migration in neutrophils, which were morphologically and functionally characterized. Using the Edman degradation method, the N-terminal amino acid sequence of rIL-8 was identified as VSLRSLGV. To examine the significance of the N-terminal region for the bioactivity of flounder IL-8, we prepared several recombinant proteins that containing mutations at the N-terminus. Modification of three residues (residues 9-11: serine-leucine-histidine) corresponding in position to the ELR motif in mammalian IL-8 did not reduce its chemotaxis-inducing activity. However, deletion of the first six or more residues significantly reduced its chemotaxis-inducing activity. We propose that residue 6 (leucine) at the N-terminus is important for the chemotaxis-inducing activity of flounder IL-8.

  18. Concerted regulation of ISWI by an autoinhibitory domain and the H4 N-terminal tail

    PubMed Central

    Ludwigsen, Johanna; Pfennig, Sabrina; Singh, Ashish K; Schindler, Christina; Harrer, Nadine; Forné, Ignasi; Zacharias, Martin; Mueller-Planitz, Felix

    2017-01-01

    ISWI-family nucleosome remodeling enzymes need the histone H4 N-terminal tail to mobilize nucleosomes. Here we mapped the H4-tail binding pocket of ISWI. Surprisingly the binding site was adjacent to but not overlapping with the docking site of an auto-regulatory motif, AutoN, in the N-terminal region (NTR) of ISWI, indicating that AutoN does not act as a simple pseudosubstrate as suggested previously. Rather, AutoN cooperated with a hitherto uncharacterized motif, termed AcidicN, to confer H4-tail sensitivity and discriminate between DNA and nucleosomes. A third motif in the NTR, ppHSA, was functionally required in vivo and provided structural stability by clamping the NTR to Lobe 2 of the ATPase domain. This configuration is reminiscent of Chd1 even though Chd1 contains an unrelated NTR. Our results shed light on the intricate structural and functional regulation of ISWI by the NTR and uncover surprising parallels with Chd1. DOI: http://dx.doi.org/10.7554/eLife.21477.001 PMID:28109157

  19. Novel Insights into Structure-Activity Relationships of N-Terminally Modified PACE4 Inhibitors.

    PubMed

    Kwiatkowska, Anna; Couture, Frédéric; Levesque, Christine; Ly, Kévin; Beauchemin, Sophie; Desjardins, Roxane; Neugebauer, Witold; Dory, Yves L; Day, Robert

    2016-02-04

    PACE4 plays important roles in prostate cancer cell proliferation. The inhibition of this enzyme has been shown to slow prostate cancer progression and is emerging as a promising therapeutic strategy. In previous work, we developed a highly potent and selective PACE4 inhibitor, the multi-Leu (ML) peptide, an octapeptide with the sequence Ac-LLLLRVKR-NH2 . Here, with the objective of developing a useful compound for in vivo administration, we investigate the effect of N-terminal modifications. The inhibitory activity, toxicity, stability, and cell penetration properties of the resulting analogues were studied and compared to the unmodified inhibitor. Our results show that the incorporation of a polyethylene glycol (PEG) moiety leads to a loss of antiproliferative activity, whereas the attachment of a lipid chain preserves or improves it. However, the lipidated peptides are significantly more toxic when compared with their unmodified counterparts. Therefore, the best results were achieved not by the N-terminal extension but by the protection of both ends with the d-Leu residue and 4-amidinobenzylamide, which yielded the most stable inhibitor, with an excellent activity and toxicity profile.

  20. Specific N-terminal cleavage of ribosomal protein L27 in Staphylococcus aureus and related bacteria

    PubMed Central

    Wall, Erin A.; Caufield, J. Harry; Lyons, Charles E.; Manning, Keith A.; Dokland, Terje; Christie, Gail E.

    2015-01-01

    Summary Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms, and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway. PMID:25388641

  1. A peptide N-terminal protection strategy for comprehensive glycoproteome analysis using hydrazide chemistry based method.

    PubMed

    Huang, Junfeng; Qin, Hongqiang; Sun, Zhen; Huang, Guang; Mao, Jiawei; Cheng, Kai; Zhang, Zhang; Wan, Hao; Yao, Yating; Dong, Jing; Zhu, Jun; Wang, Fangjun; Ye, Mingliang; Zou, Hanfa

    2015-05-11

    Enrichment of glycopeptides by hydrazide chemistry (HC) is a popular method for glycoproteomics analysis. However, possible side reactions of peptide backbones during the glycan oxidation in this method have not been comprehensively studied. Here, we developed a proteomics approach to locate such side reactions and found several types of the side reactions that could seriously compromise the performance of glycoproteomics analysis. Particularly, the HC method failed to identify N-terminal Ser/Thr glycopeptides because the oxidation of vicinal amino alcohol on these peptides generates aldehyde groups and after they are covalently coupled to HC beads, these peptides cannot be released by PNGase F for identification. To overcome this drawback, we apply a peptide N-terminal protection strategy in which primary amine groups on peptides are chemically blocked via dimethyl labeling, thus the vicinal amino alcohols on peptide N-termini are eliminated. Our results showed that this strategy successfully prevented the oxidation of peptide N-termini and significantly improved the coverage of glycoproteome.

  2. Supramolecular properties of the proline-rich gamma-Zein N-terminal domain.

    PubMed Central

    Kogan, Marcelo J; Dalcol, Ionara; Gorostiza, Pau; Lopez-Iglesias, Carmen; Pons, Ramon; Pons, Miquel; Sanz, Fausto; Giralt, Ernest

    2002-01-01

    Zeins are maize storages proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner face of the protein body membrane, and its N-terminal proline-rich repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation. In a preliminary recent work we used atomic force microscopy to study the surface organization of the octamer and transmission electron microscopy to visualize aggregates of the peptide from aqueous solution. We previously envisioned two self-assembly models (i.e., the geometric and the micellar) that take into account the observed features. In the present work we studied in detail the self-assembly of the peptide in solution and found that the peptide is able to form cylindrical micelles. Fibrils formed on graphite are generated by assembly of solution micelles. Based on the results of these studies, we focused exclusively on the micellar model. To our knowledge we have characterized for the first time supramolecular aggregates of polyproline structures other than collagen. The spontaneous arrangement of (VHLPPP)(8) suggests a role for the N-terminal domain of gamma-zein in the process of the whole protein deposition in protein bodies. PMID:12124299

  3. Developmental regulation of N-terminal H2B methylation in Drosophila melanogaster

    PubMed Central

    Villar-Garea, Ana; Forne, Ignasi; Vetter, Irene; Kremmer, Elisabeth; Thomae, Andreas; Imhof, Axel

    2012-01-01

    Histone post-translational modifications play an important role in regulating chromatin structure and gene expression in vivo. Extensive studies investigated the post-translational modifications of the core histones H3 and H4 or the linker histone H1. Much less is known on the regulation of H2A and H2B modifications. Here, we show that a major modification of H2B in Drosophila melanogaster is the methylation of the N-terminal proline, which increases during fly development. Experiments performed in cultured cells revealed higher levels of H2B methylation when cells are dense, regardless of their cell cycle distribution. We identified dNTMT (CG1675) as the enzyme responsible for H2B methylation. We also found that the level of N-terminal methylation is regulated by dART8, an arginine methyltransferase that physically interacts with dNTMT and asymmetrically methylates H3R2. Our results demonstrate the existence of a complex containing two methyltransferases enzymes, which negatively influence each other’s activity. PMID:22053083

  4. Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms.

    PubMed

    Giglione, C; Serero, A; Pierre, M; Boisson, B; Meinnel, T

    2000-11-01

    The N-terminal protein processing pathway is an essential mechanism found in all organisms. However, it is widely believed that deformylase, a key enzyme involved in this process in bacteria, does not exist in eukaryotes, thus making it a target for antibacterial agents such as actinonin. In an attempt to define this process in higher eukaryotes we have used Arabidopsis thaliana as a model organism. Two deformylase cDNAs, the first identified in any eukaryotic system, and six distinct methionine aminopeptidase cDNAs were cloned. The corresponding proteins were characterized in vivo and in vitro. Methionine aminopeptidases were found in the cytoplasm and in the organelles, while deformylases were localized in the organelles only. Our work shows that higher plants have a much more complex machinery for methionine removal than previously suspected. We were also able to identify deformylase homologues from several animals and clone the corresponding cDNA from human cells. Our data provide the first evidence that lower and higher eukaryotes, as well as bacteria, share a similar N-terminal protein processing machinery, indicating universality of this system.

  5. In silico identification and characterization of N-Terminal acetyltransferase genes of poplar (Populus trichocarpa).

    PubMed

    Zhu, Hang-Yong; Li, Chun-Ming; Wang, Li-Feng; Bai, Hui; Li, Yan-Ping; Yu, Wen-Xi; Xia, De-An; Liu, Chang-Cai

    2014-01-27

    N-terminal acetyltransferase (Nats) complex is responsible for protein N-terminal acetylation (Nα-acetylation), which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS) and auxiliary subunits (AS) have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A-F), being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  6. Preparation of protein samples for mass spectrometry and N-terminal sequencing.

    PubMed

    Glenn, Gary

    2014-01-01

    The preparation of protein samples for mass spectrometry and N-terminal sequencing is a key step in successfully identifying proteins. Mass spectrometry is a very sensitive technique, and as such, samples must be prepared carefully since they can be subject to contamination of the sample (e.g., due to incomplete subcellular fractionation or purification of a multiprotein complex), overwhelming of the sample by highly abundant proteins, and contamination from skin or hair (keratin can be a very common hit). One goal of sample preparation for mass spec is to reduce the complexity of the sample - in the example presented here, mitochondria are purified, solubilized, and fractionated by sucrose density gradient sedimentation prior to preparative 1D SDS-PAGE. It is important to verify the purity and integrity of the sample so that you can have confidence in the hits obtained. More protein is needed for N-terminal sequencing and ideally it should be purified to a single band when run on an SDS-polyacrylamide gel. The example presented here involves stably expressing a tagged protein in HEK293 cells and then isolating the protein by affinity purification and SDS-PAGE.

  7. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    NASA Astrophysics Data System (ADS)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  8. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps.

  9. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development

    PubMed Central

    Park, Sung Yeon; Stultz, Brian G.; Hursh, Deborah A.

    2015-01-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. PMID:26500262

  10. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain

    PubMed Central

    Moparthi, Lavanya; Survery, Sabeen; Kreir, Mohamed; Simonsen, Charlotte; Kjellbom, Per; Högestätt, Edward D.; Johanson, Urban; Zygmunt, Peter M.

    2014-01-01

    We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1–688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ9-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1–688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca2+, or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease). PMID:25389312

  11. Identification of a human ABCC10 orthologue in Catharanthus roseus reveals a U12-type intron determinant for the N-terminal domain feature.

    PubMed

    El-Guizani, Taissir; Guibert, Clotilde; Triki, Saida; St-Pierre, Benoit; Ducos, Eric

    2014-04-01

    ABC (ATP-binding cassette) transporters are members of a large superfamily of proteins that utilize ATP hydrolysis to translocate a wide range of substrates across biological membranes. In general, members of C subfamily (ABCC) are structurally characterized by an additional (N-terminal) transmembrane domain (TMD0). Phylogenetic analysis of plant ABCCs separates their protein sequences into three distinct clusters: I and II are plant specific whereas cluster III contains both human and plant ABCCs. Screening of the Plant Medicinal Genomics Resource database allowed us to identify 16 ABCCs partial sequences in Catharanthus roseus; two of which belong to the unique CrABCC1 transcript that we identified in cluster III. Genomic organization of CrABCC1 TMD0 coding sequence displays an AT-AC U12-type intron that is conserved in higher plant orthologues. We showed that CrABCC1, like its human orthologue ABCC10, produces alternative transcripts that encode protein sequences with a truncated form of TMD0 without the first transmembrane span (TM1). Subcellular localization of CrABCC1 TMD0 variants using yellow fluorescent protein fusions reveals that the TM1 is required for a correct routing of the TMD0 to the tonoplast. Finally, the specific repartition of CrABCC1 orthologues in some species suggests that this gene was lost several times during evolution and that its physiological function may, rely on a common feature of multicellular eukaryotes.

  12. HABP1/p32/gC1qR induces aberrant growth and morphology in Schizosaccharomyces pombe through its N-terminal {alpha} helix

    SciTech Connect

    Mallick, Jaideep; Datta, Kasturi . E-mail: kdatta@mail.jnu.ac.in

    2005-10-01

    Hyaluronan binding protein (HABP1), located on human chromosome 17p13.3, was identified and characterized as being involved in cellular signaling from our laboratory. Here, we demonstrate that HABP1 expression in Schizosaccharomyces pombe induces growth inhibition, morphological abnormalities like elongation, multinucleation and aberrant cell septum formation in several strains of S. pombe, implicating its role in cell cycle progression and cytokinesis. This argument is further strengthened by an observed delay in the maximal expression of cell cycle regulatory proteins like CDC 2 and CDC 25 coupled to the direct interaction of HABP1 with CDC 25. In order to pinpoint the interacting domain of HABP1, its N- and C-terminal truncated variants ({delta}N.HABP1 and {delta}C.HABP1, respectively) were utilized which revealed that while expression of the former did not alter the phenotype, the latter generated morphological changes similar to those imparted upon HABP1 expression. It was also noted that along with HABP1, {delta}C.HABP1 too directly interacts with CDC 25 while {delta}N.HABP1 does not. Taken together, these data suggest that HABP1 induces morphological changes and modulates the cell cycle by interacting with proteins like CDC 25 through its N-terminal {alpha}-helix.

  13. Identification and Analysis of a Novel Dimerization Domain Shared by Various Members of c-Jun N-terminal Kinase (JNK) Scaffold Proteins*

    PubMed Central

    Cohen-Katsenelson, Ksenya; Wasserman, Tanya; Darlyuk-Saadon, Ilona; Rabner, Alona; Glaser, Fabian; Aronheim, Ami

    2013-01-01

    Mitogen-activated protein kinases (MAPKs) form a kinase tier module in which MAPK, MAP2K, and MAP3K are held by scaffold proteins. The scaffold proteins serve as a protein platform for selective and spatial kinase activation. The precise mechanism by which the scaffold proteins function has not yet been fully explained. WDR62 is a novel scaffold protein of the c-Jun N-terminal kinase (JNK) pathway. Recessive mutations within WDR62 result in severe cerebral cortical malformations. One of the WDR62 mutant proteins found in a patient with microcephaly encodes a C-terminal truncated protein that fails to associate efficiently with JNK and MKK7β1. The present article shows that the WDR62 C-terminal region harbors a novel dimerization domain composed of a putative loop-helix domain that is necessary and sufficient for WDR62 dimerization and is critical for its scaffolding function. The loop-helix domain is highly conserved between orthologues and is also shared by the JNK scaffold protein, JNKBP1/MAPKBP1. Based on the high sequence conservation of the loop-helix domain, our article shows that MAPKBP1 homodimerizes and heterodimerizes with WDR62. Endogenous WDR62 and MAPKBP1 co-localize to stress granules following arsenite treatment, but not during mitosis. This study proposes another layer of complexity, in which coordinated activation of signaling pathways is mediated by the association between the different JNK scaffold proteins depending on their biological function. PMID:23341463

  14. Recombinant hnRNP protein A1 and its N-terminal domain show preferential affinity for oligodeoxynucleotides homologous to intron/exon acceptor sites.

    PubMed Central

    Buvoli, M; Cobianchi, F; Biamonti, G; Riva, S

    1990-01-01

    The reported binding preference of human hnRNP protein A1 for the 3'-splice site of some introns (Swanson and Dreyfuss (1988) EMBO J. 7, 3519-3529; Mayrand and Pederson (1990) Nucleic Acids Res. 18, 3307-3318) was tested by assaying in vitro the binding of purified recombinant A1 protein (expressed in bacteria) to synthetic oligodeoxynucleotides (21-mers) of suitable sequence. In such a minimal system we find preferential binding of protein A1 to oligodeoxynucleotide sequences corresponding to the 3'-splice site of IVS1 of human beta-globin pre-mRNA and of IVS1 of Adenovirus type 2 major late transcript. Mutation studies demonstrate that the binding specificity is dependent on the known critical domains of this intron region, the AG splice site dinucleotide and polypyrimidine tract, and resides entirely in the short oligonucleotide sequence. Moreover specific binding does not require the presence of other hnRNP proteins or of snRNP particles. Studies with a truncated recombinant protein demonstrated that the minimal protein sequence determinants for A1 recognition of 3'-splice acceptor site reside entirely in the N-terminal 195 aa of the unmodified protein. Images PMID:2251120

  15. Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution.

    PubMed

    Mirza, Zeenat; Pillai, Vikram Gopalakrishna; Zhong, Wei-Zhu

    2014-03-10

    Alzheimer's disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD's neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer's Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ-Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD.

  16. N-truncation and pyroglutaminylation enhances the opsonizing capacity of Aβ-peptides and facilitates phagocytosis by macrophages and microglia.

    PubMed

    Condic, Mateja; Oberstein, Timo Jan; Herrmann, Martin; Reimann, Mareike Carola; Kornhuber, Johannes; Maler, Juan Manuel; Spitzer, Philipp

    2014-10-01

    Abnormal accumulations of amyloid-β (Aβ)-peptides are one of the pathological hallmarks of Alzheimer's disease (AD). The precursor of the Aβ-peptides, the amyloid precursor protein (APP), is also found in peripheral blood cells, but its function in these cells remains elusive. We previously observed that mononuclear phagocytes release Aβ-peptides during activation and phagocytosis, suggesting a physiologic role in inflammatory processes. Here, we show that supplementing the media with soluble N-terminally truncated Aβ(2-40) and Aβ(2-42) as well as Aβ(1-42) induced the phagocytosis of polystyrene particles (PSPs) by primary human monocytes. If the PSPs were pre-incubated with Aβ-peptides, phagocytosis was induced by all tested Aβ-peptide species. N-terminally truncated Aβ(x-42) induced the phagocytosis of PSPs significantly more effectively than did Aβ(x-40). Similarly, the phagocytosis of Escherichia coli by GM-CSF- and M-CSF-elicited macrophages as well as microglia was particularly facilitated by pre-incubation with N-terminally truncated Aβ(x-42). The proinflammatory polarization of monocytes was indicated by the reduced MSRI expression and IL-10 secretion after phagocytosis of PSPs coated with Aβ(1-42), Aβ(2-42) and Aβ(3p-42). Polarization of the macrophages by GM-CSF reduced the phagocytic activity, but it did not affect the capabilities of Aβ-peptides to opsonize prey. Taken together, Aβ-peptides support phagocytosis as soluble factors and act as opsonins. Differential effects among the Aβ-peptide variants point to distinct mechanisms of interaction among monocytes/macrophages, prey and Aβ-peptides. A proinflammatory polarization induced by the phagocytosis of Aβ-peptide coated particles may provide a model for the chronic inflammatory reaction and sustained plaque deposition in AD.

  17. The Impact of N-terminal Acetylation of α-Synuclein on Phospholipid Membrane Binding and Fibril Structure*

    PubMed Central

    Iyer, Aditya; Roeters, Steven J.; Schilderink, Nathalie; Hommersom, Bob; Heeren, Ron M. A.; Woutersen, Sander; Claessens, Mireille M. A. E.

    2016-01-01

    Human α-synuclein (αS) has been shown to be N terminally acetylated in its physiological state. This modification is proposed to modulate the function and aggregation of αS into amyloid fibrils. Using bacterially expressed acetylated-αS (NTAc-αS) and endogenous αS (Endo-αS) from human erythrocytes, we show that N-terminal acetylation has little impact on αS binding to anionic membranes and thus likely not relevant for regulating membrane affinity. N-terminal acetylation does have an effect on αS aggregation, resulting in a narrower distribution of the aggregation lag times and rates. 2D-IR spectra show that acetylation changes the secondary structure of αS in fibrils. This difference may arise from the slightly higher helical propensity of acetylated-αS in solution leading to a more homogenous fibril population with different fibril structure than non-acetylated αS. We speculate that N-terminal acetylation imposes conformational restraints on N-terminal residues in αS, thus predisposing αS toward specific interactions with other binding partners or alternatively decrease nonspecific interactions. PMID:27531743

  18. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker

    PubMed Central

    Si, Yunlong; Wang, Yue; Gao, Jin; Song, Chenyang; Feng, Shiqiong; Zhou, Yifa; Tai, Guihua; Su, Jiyong

    2016-01-01

    Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay. PMID:27973456

  19. Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase

    SciTech Connect

    Biswas, Tapan; Tsodikov, Oleg V.

    2009-01-15

    Hexameric DnaB helicase unwinds the DNA double helix during replication of genetic material in bacteria. DnaB is an essential bacterial protein; therefore, it is an important potential target for antibacterial drug discovery. We report a crystal structure of the N-terminal region of DnaB from the pathogen Mycobacterium tuberculosis (MtDnaBn), determined at 2.0 {angstrom} resolution. This structure provides atomic resolution details of formation of the hexameric ring of DnaB by two distinct interfaces. An extensive hydrophobic interface stabilizes a dimer of MtDnaBn by forming a four-helix bundle. The other, less extensive, interface is formed between the dimers, connecting three of them into a hexameric ring. On the basis of crystal packing interactions between MtDnaBn rings, we suggest a model of a helicase-primase complex that explains previously observed effects of DnaB mutations on DNA priming.

  20. Presynaptic c-Jun N-terminal Kinase 2 regulates NMDA receptor-dependent glutamate release

    PubMed Central

    Nisticò, Robert; Florenzano, Fulvio; Mango, Dalila; Ferraina, Caterina; Grilli, Massimo; Di Prisco, Silvia; Nobili, Annalisa; Saccucci, Stefania; D'Amelio, Marcello; Morbin, Michela; Marchi, Mario; Mercuri, Nicola B.; Davis, Roger J.; Pittaluga, Anna; Feligioni, Marco

    2015-01-01

    Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored. Here, by means of biochemical, morphological and functional approaches, we demonstrate that JNK and its scaffold protein JIP1 are also expressed at the presynaptic level and that the NMDA-evoked glutamate release is controlled by presynaptic JNK-JIP1 interaction. Moreover, using knockout mice for single JNK isoforms, we proved that JNK2 is the essential isoform in mediating this presynaptic event. Overall the present findings unveil a novel JNK2 localization and function, which is likely to play a role in different physiological and pathological conditions. PMID:25762148

  1. Cyclic N-terminal loop of amylin forms non amyloid fibers.

    PubMed

    Cope, Stephanie M; Shinde, Sandip; Best, Robert B; Ghirlanda, Giovanna; Vaiana, Sara M

    2013-10-01

    We report for the first time, to our knowledge, that the N-terminal loop (N_loop) of amylin (islet amyloid polypeptide (IAPP) residues 1-8) forms extremely long and stable non-β-sheet fibers in solution under the same conditions in which human amylin (hIAPP) forms amyloid fibers. This observation applies to the cyclic, oxidized form of the N_loop but not to the linear, reduced form, which does not form fibers. Our findings indicate a potential role of direct N_loop-N_loop interactions in hIAPP aggregation, which has not been previously explored, with important implications for the mechanism of hIAPP amyloid fiber formation, the inhibitory action of IAPP variants, and the competition between ordered and disordered aggregation in peptides of the calcitonin peptide family.

  2. Cyclic N-Terminal Loop of Amylin Forms Non Amyloid Fibers

    PubMed Central

    Cope, Stephanie M.; Shinde, Sandip; Best, Robert B.; Ghirlanda, Giovanna; Vaiana, Sara M.

    2013-01-01

    We report for the first time, to our knowledge, that the N-terminal loop (N_loop) of amylin (islet amyloid polypeptide (IAPP) residues 1–8) forms extremely long and stable non-β-sheet fibers in solution under the same conditions in which human amylin (hIAPP) forms amyloid fibers. This observation applies to the cyclic, oxidized form of the N_loop but not to the linear, reduced form, which does not form fibers. Our findings indicate a potential role of direct N_loop-N_loop interactions in hIAPP aggregation, which has not been previously explored, with important implications for the mechanism of hIAPP amyloid fiber formation, the inhibitory action of IAPP variants, and the competition between ordered and disordered aggregation in peptides of the calcitonin peptide family. PMID:24094407

  3. SSDP1 gene encodes a protein with a conserved N-terminal FORWARD domain.

    PubMed

    Bayarsaihan, Dashzeveg

    2002-09-23

    I describe the characterization of mouse, human and chicken SSDP1 orthologs that encode a highly conserved protein with over 90% identity at the amino acid level. Structurally, the protein consists of a well-preserved FWD (FORWARD)-domain at the N-terminal end and a proline-, glycine-, methionine- and serine-rich sequence in the central and C-terminal regions. The FORWARD domain, comprised of three alpha-helices, is characterized by the presence of a FWD-box of unknown function conserved not only in vertebrates, but also in nematode, plants, fly and yeast. Human SSDP1 spans about 200 kb on the chromosome 1p31-p32 region and consists of 17 exons. The SSDP1 mRNA transcripts are distributed ubiquitously in adult human and mouse tissues.

  4. Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide.

    PubMed

    Nguyen, Giang K T; Cao, Yuan; Wang, Wei; Liu, Chuan Fa; Tam, James P

    2015-12-21

    An efficient ligase with exquisite site-specificity is highly desirable for protein modification. Recently, we discovered the fastest known ligase called butelase 1 from Clitoria ternatea for intramolecular cyclization. For intermolecular ligation, butelase 1 requires an excess amount of a substrate to suppress the reverse reaction, a feature similar to other ligases. Herein, we describe the use of thiodepsipeptide substrates with a thiol as a leaving group and an unacceptable nucleophile to render the butelase-mediated ligation reactions irreversible and in high yields. Butelase 1 also accepted depsipeptides as substrates, but unlike a thiodesipeptide, the desipeptide ligation was partially reversible as butelase 1 can tolerate an alcohol group as a poor nucleophile. The thiodesipeptide method was successfully applied in N-terminal labeling of ubiquitin and green fluorescent protein using substrates with or without a biotin group in high yields.

  5. [Proteolysis of semax analogues with different N-terminal amino acids by aminopeptidases].

    PubMed

    Shevchenko, K V; V'iunova, T V; Nagaev, I Iu; Andreeva, L A; Alfeeva, L Iu; Miasoedov, N F

    2011-01-01

    Proteolysis of semax (Met-Glu-His-Phe-Pro-Gly-Pro, Sem) and its analogues ([Ala1]Sem, [Gly1]Sem, [Thr1]Sem, [Trp1]Sem) that are differ from semax in substitution of N-terminal Met residue were studied. It is shown that such replacement changes the rate of peptides degradation by N-aminopeptidases (EC 3.4.11.2, Sigma, Type VI, 9.2 units. Akt. / mg). [Ala1]Sem, [Gly1]Sem and [Thr1]Sem semax analogues proved to be more stable to proteolysis than semax (Sem), and their initial product of proteolysis is His-Phe-Pro-Gly-Pro (Sem-5). For triptophan analogue both Glu-His-Phe-Pro-Gly-Pro (Sem-6) and Sem-5 product are formed in similar quantities. It is found that all investigated analogues can be used as inhibitors in Sem proteolysis.

  6. Copper binding triggers compaction in N-terminal tail of human copper pump ATP7B.

    PubMed

    Mondol, Tanumoy; Åden, Jörgen; Wittung-Stafshede, Pernilla

    2016-02-12

    Protein conformational changes are fundamental to biological reactions. For copper ion transport, the multi-domain protein ATP7B in the Golgi network receives copper from the cytoplasmic copper chaperone Atox1 and, with energy from ATP hydrolysis, moves the metal to the lumen for loading of copper-dependent enzymes. Although anticipated, conformational changes involved in ATP7B's functional cycle remain elusive. Using spectroscopic methods we here demonstrate that the four most N-terminal metal-binding domains in ATP7B, upon stoichiometric copper addition, adopt a more compact arrangement which has a higher thermal stability than in the absence of copper. In contrast to previous reports, no stable complex was found in solution between the metal-binding domains and the nucleotide-binding domain of ATP7B. Metal-dependent movement of the first four metal-binding domains in ATP7B may be a trigger that initiates the overall catalytic cycle.

  7. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain.

    PubMed

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-03-14

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD.

  8. Site-specific Chemical Modification of a Glycoprotein Fragment Expressed in Yeast

    PubMed Central

    Xiao, Junpeng; Tolbert, Thomas J.

    2011-01-01

    Site-specific modification of glycoproteins has wide application in both biochemical and biophysical studies. This method describes the conjugation of synthetic molecules to the N-terminus of a glycoprotein fragment: immunoglobulin G subclass 1 fragment crystallizable (IgG1 Fc) by native chemical ligation. The glycosylated IgG1 Fc is expressed in a glycosylation deficient yeast strain. The N-terminal cysteine is generated by the endogenous yeast protease Kex2 in the yeast secretory pathway. The N-terminal cysteine is then conjugated with a biotin thioester to produce a biotinylated, glycosylated IgG1 Fc using native chemical ligation. PMID:21674341

  9. Immobilization of the N-terminal helix stabilizes prefusion paramyxovirus fusion proteins

    PubMed Central

    Song, Albert S.; Poor, Taylor A.; Abriata, Luciano A.; Jardetzky, Theodore S.; Dal Peraro, Matteo; Lamb, Robert A.

    2016-01-01

    Parainfluenza virus 5 (PIV5) is an enveloped, single-stranded, negative-sense RNA virus of the Paramyxoviridae family. PIV5 fusion and entry are mediated by the coordinated action of the receptor-binding protein, hemagglutinin–neuraminidase (HN), and the fusion protein (F). Upon triggering by HN, F undergoes an irreversible ATP- and pH-independent conformational change, going down an energy gradient from a metastable prefusion state to a highly stable postfusion state. Previous studies have highlighted key conformational changes in the F-protein refolding pathway, but a detailed understanding of prefusion F-protein metastability remains elusive. Here, using two previously described F-protein mutations (S443D or P22L), we examine the capacity to modulate PIV5 F stability and the mechanisms by which these point mutants act. The S443D mutation destabilizes prefusion F proteins by disrupting a hydrogen bond network at the base of the F-protein globular head. The introduction of a P22L mutation robustly rescues destabilized F proteins through a local hydrophobic interaction between the N-terminal helix and a hydrophobic pocket. Prefusion stabilization conferred by a P22L-homologous mutation is demonstrated in the F protein of Newcastle disease virus, a paramyxovirus of a different genus, suggesting a conserved stabilizing structural element within the paramyxovirus family. Taken together, the available data suggest that movement of the N-terminal helix is a necessary early step for paramyxovirus F-protein refolding and presents a novel target for structure-based drug design. PMID:27335462

  10. Functional differences between HOX proteins conferred by two residues in the homeodomain N-terminal arm.

    PubMed Central

    Phelan, M L; Sadoul, R; Featherstone, M S

    1994-01-01

    Hox genes encode homeodomain-containing transcriptional regulators that function during development to specify positional identity along embryonic axes. The homeodomain is composed of a flexible N-terminal arm and three alpha helices, and it differentially binds DNA. A number of homeodomains recognize sites containing a TAAT core motif. The product of the murine Hoxd-4 (Hox-4.2) gene functions in a positive autoregulatory fashion in P19 cells that is dependent on two TAAT motifs in the Hoxd-4 promoter. This effect is specific in that murine HOXA-1 (HOX-1.6) is unable to activate transcription through the Hoxd-4 autoregulatory element. Here we show that this is due to an inability of the HOXA-1 homeodomain to bind a HOXD-4 recognition site effectively. We have produced chimeras between HOXD-4 and HOXA-1 to map specific residues responsible for this functional difference. When positions 2 and 3 in the N-terminal arm of HOXA-1 were converted to HOXD-4 identity, both strong DNA binding and transcriptional activation were rescued. This substitution appears to confer an increased DNA-binding ability on the HOXA-1 homeodomain, since we were unable to detect a high-affinity recognition sequence for HOXA-1 in a randomized pool of DNA probes. The contribution of position 3 to DNA binding has been implicated by structural studies, but this is the first report of the importance of position 2 in regulating homeodomain-DNA interactions. Additionally, specific homeodomain residues that confer major differences in DNA binding and transcriptional activation between Hox gene products have not been previously determined. Identity at these two positions is generally conserved among paralogs but varies between Hox gene subfamilies. As a result, these residues may be important for the regulation of target gene expression by specific Hox products. Images PMID:7913516

  11. Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues

    PubMed Central

    Coey, Christopher T.; Malik, Shuja S.; Pidugu, Lakshmi S.; Varney, Kristen M.; Pozharski, Edwin; Drohat, Alexander C.

    2016-01-01

    Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308. Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme–DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination. PMID:27580719

  12. Specific cleavage of N-terminal acetyl-methionine from peptides by rabbit muscle fractions

    SciTech Connect

    Krishna, G.R.; Wold, F.

    1986-05-01

    The authors have investigated the hypothesis that the processing of eukaryotic proteins involves acetylation of the N-terminal Met, followed by removal of the resulting Ac-Met to expose the second amino acid in the sequence. An activity was identified in rabbit muscle extracts that effectively removes Ac-Met from a synthetic peptide I (AcMDETGDTALVA) resembling the N-terminus of actin. The activity is associated with microsomes and free ribosomes, but can be extracted from the ribosomes by treatment with 0.5 M NaCl in the presence of 2 mM Mg/sup + +/; a 200 fold purification is achieved by this differential centrifugation procedure. A number of chemically acetylated (/sup 14/C-Ac) peptides have been tested as substrates using an HPLC assay for liberated /sup 14/C-Ac-Met. The results suggest that the partially purified activity is specific for N-terminal Ac-Met in that other Ac-amino acids (Gly, Ala, Ser, Asp) were not released from similar peptides, including a derivative of peptide I with Met missing and with Ac-Asp as n-terminus. The amino acid in the second position also appears to be involved as a specificity determinant; a peptide Ac-Met-Arg-Phe-Ala was inert and the tripeptide Ac-Met/sub 3/ was a poor substrate. The dipeptide Ac-Met-Glu was also a very poor substrate, while several tripeptides Ac-Met-X-Y, were good substrates, although not as good as the actinlike peptide I.

  13. Intranasal delivery of N-terminal modified leptin-pluronic conjugate for treatment of obesity.

    PubMed

    Yuan, Dongfen; Yi, Xiang; Zhao, Yuling; Poon, Chi-Duen; Bullock, Kristin M; Hansen, Kim M; Salameh, Therese S; Farr, Susan A; Banks, William A; Kabanov, Alexander V

    2017-03-24

    Leptin is an adipocyte-secreted hormone that is delivered via a specific transport system across the blood-brain barrier (BBB) to the brain where it acts on the hypothalamus receptors to control appetite and thermogenesis. Peripheral resistance to leptin due to its impaired brain delivery prevents therapeutic use of leptin in overweight and moderately obese patients. To address this problem, we modified the N-terminal amine of leptin with Pluronic P85 (LepNP85) and administered this conjugate intranasally using the nose-to-brain (INB) route to bypass the BBB. We compared this conjugate with the native leptin, the N-terminal leptin conjugate with poly(ethylene glycol) (LepNPEG5K), and two conjugates of leptin with Pluronic P85 attached randomly to the lysine amino groups of the hormone. Compared to the random conjugates of leptin with P85, LepNP85 has shown higher affinity upon binding with the leptin receptor, and similarly to native hormone activated hypothalamus receptors after direct injection into brain. After INB delivery, LepNP85 conjugate was transported to the brain and accumulated in the hypothalamus and hippocampus to a greater extent than the native leptin and LepNPEG5K and activated leptin receptors in hypothalamus at lower dose than native leptin. Our work suggests that LepNP85 can access the brain directly after INB delivery and confirms our hypothesis that the improvement in brain accumulation of this conjugate is due to its enhanced brain absorption. In conclusion, the LepNP85 with optimized conjugation chemistry is a promising candidate for treatment of obesity.

  14. Defining Lipid Interacting Domains in the N-terminal Region of Apolipoprotein B

    PubMed Central

    Jiang, Zhenghui Gordon; Gantz, Donald; Bullitt, Esther; McKnight, C. James

    2008-01-01

    Apolipoprotein B (ApoB) is a nonexchangeable apolipoprotein that dictates the synthesis of chylomicrons and very low density lipoproteins. ApoB is the major protein in low density lipoprotein, also known as the “bad cholesterol” that is directly implicated in atherosclerosis. It has been suggested that the N-terminal domain of apoB plays a critical role in the formation of apoB-containing lipoproteins through the initial recruitment of phospholipids in the endoplasmic reticulum. However, very little is known about the mechanism of lipoprotein nucleation by apoB. Here we demonstrate that a strong phospholipid remodeling function is associated with the predicted α-helical and C-sheet domains in the N-terminal 17% of apoB (B17). Using dimyristoylphosphatidylcholine (DMPC) as a model lipid, these domains can convert multilamellar DMPC vesicles into discoidal-shaped particles. The nascent particles reconstituted from different apoB domains are distinctive and compositionally homogenous. This phospholipid remodeling activity is also observed with egg phosphatidylcholine (egg PC) and is therefore not DMPC dependent. Using kinetic analysis of the DMPC clearance assay, we show that the identified phospholipid binding sequences all map to the surface of the lipid binding pocket in the B17 model based on the homologous protein, lipovitellin. Since both B17 and microsomal triglyceride transfer protein (MTP), a critical chaperone during lipoprotein assembly, are homologous to lipovitellin, the identification of these phospholipid remodeling sequences in B17 provides important insights into the potential mechanism that initiates the assembly of apoB-containing lipoproteins. PMID:17002280

  15. Truncated Gaussian and derived methods

    NASA Astrophysics Data System (ADS)

    Beucher, Hélène; Renard, Didier

    2016-09-01

    The interest of a digital model to represent the geological characteristics of the field is well established. However, the way to obtain it is not straightforward because this translation is necessarily a simplification of the actual field. This paper describes a stochastic model called truncated Gaussian simulations (TGS), which distributes a collection of facies or lithotypes over an area of interest. This method is based on facies proportions, spatial distribution and relationships, which can be easily tuned to produce numerous different textures. Initially developed for ordered facies, this model has been extended to complex organizations, where facies are not sequentially ordered. This method called pluri-Gaussian simulation (PGS) considers several Gaussian random functions, which can be correlated. PGS can produce a large variety of lithotype setups, as illustrated by several examples such as oriented deposits or high frequency layering.

  16. The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II

    PubMed Central

    Nishimura, Taishi; Nagao, Ryo; Noguchi, Takumi; Nield, Jon; Sato, Fumihiko; Ifuku, Kentaro

    2016-01-01

    The PsbP protein, an extrinsic subunit of photosystem II (PSII) in green plants, is known to induce a conformational change around the catalytic Mn4CaO5 cluster securing the binding of Ca2+ and Cl– in PSII. PsbP has multiple interactions with the membrane subunits of PSII, but how these affect the structure and function of PSII requires clarification. Here, we focus on the interactions between the N-terminal residues of PsbP and the α subunit of Cytochrome (Cyt) b559 (PsbE). A key observation was that a peptide fragment formed of the first N-terminal 15 residues of PsbP, ‘pN15’, was able to convert Cyt b559 into its HP form. Interestingly, addition of pN15 to NaCl-washed PSII membranes decreased PSII’s oxygen-evolving activity, even in the presence of saturating Ca2+ and Cl– ions. In fact, pN15 reversibly inhibited the S1 to S2 transition of the OEC in PSII. These data suggest that pN15 can modulate the redox property of Cyt b559 involved in the side-electron pathway in PSII. This potential change of Cyt b559, in the absence of the C-terminal domain of PsbP, however, would interfere with any electron donation from the Mn4CaO5 cluster, leading to the possibility that multiple interactions of PsbP, binding to PSII, have distinct roles in regulating electron transfer within PSII. PMID:26887804

  17. Lamp with a truncated reflector cup

    DOEpatents

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  18. N-terminal region of myelin basic protein reduces fibrillar amyloid-β deposition in Tg-5xFAD mice.

    PubMed

    Ou-Yang, Ming-Hsuan; Xu, Feng; Liao, Mei-Chen; Davis, Judianne; Robinson, John K; Van Nostrand, William E

    2015-02-01

    Alzheimer's disease is a progressive neurodegenerative disorder that is characterized by extensive deposition of fibrillar amyloid-β (Aβ) in the brain. Previously, myelin basic protein (MBP) was identified to be a potent inhibitor to Aβ fibril formation, and this inhibitory activity was localized to the N-terminal residues 1-64, a fragment designated MBP1. Here, we show that the modest neuronal expression of a fusion protein of the biologically active MBP1 fragment and the enhanced green fluorescent protein (MBP1-EGFP) significantly improved the performance of spatial learning memory in Tg-5xFAD mice, a model of pathologic Aβ accumulation in brain. The levels of insoluble Aβ and fibrillar amyloid were significantly reduced in bigenic Tg-5xFAD/Tg-MBP1-EGFP mice. Quantitative stereological analysis revealed that the reduction in amyloid was because of a reduction in the size of fibrillar plaques rather than a decrease in plaque numbers. The current findings support previous studies showing that MBP1 inhibits Aβ fibril formation in vitro and demonstrate the ability of MBP1 to reduce Aβ pathology and improve behavioral performance.

  19. N-Terminal signal sequence is required for cellular trafficking and hyaluronan-depolymerization of KIAA1199.

    PubMed

    Yoshida, Hiroyuki; Nagaoka, Aya; Nakamura, Sachiko; Tobiishi, Megumi; Sugiyama, Yoshinori; Inoue, Shintaro

    2014-01-03

    Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization.

  20. Computing correct truncated excited state wavefunctions

    NASA Astrophysics Data System (ADS)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  1. Reducing Truncation Error In Integer Processing

    NASA Technical Reports Server (NTRS)

    Thomas, J. Brooks; Berner, Jeffrey B.; Graham, J. Scott

    1995-01-01

    Improved method of rounding off (truncation of least-significant bits) in integer processing of data devised. Provides for reduction, to extremely low value, of numerical bias otherwise generated by accumulation of truncation errors from many arithmetic operations. Devised for use in integer signal processing, in which rescaling and truncation usually performed to reduce number of bits, which typically builds up in sequence of operations. Essence of method to alternate direction of roundoff (plus, then minus) on alternate occurrences of truncated values contributing to bias.

  2. Role of Prion Disease-Linked Mutations in the Intrinsically Disordered N-Terminal Domain of the Prion Protein.

    PubMed

    Cong, Xiaojing; Casiraghi, Nicola; Rossetti, Giulia; Mohanty, Sandipan; Giachin, Gabriele; Legname, Giuseppe; Carloni, Paolo

    2013-11-12

    Prion diseases are fatal neurodegenerative disorders in mammals and other animal species. In humans, about 15% of these maladies are caused by pathogenic mutations (PMs) in the gene encoding for the prion protein (PrP(C)). Seven PMs are located in the naturally unfolded PrP(C) N-terminal domain, which constitutes about half of the protein. Intriguingly and in sharp contrast to other PMs clustered in the folded domain, N-terminal PMs barely affect the conversion to the pathogenic (scrapie, or PrP(Sc)) isoform of PrP(C). Here, we hypothesize that the neurotoxicity of these PMs arises from changes in structural determinants of the N-terminal domain, affecting the protein binding with its cellular partners and/or the cotranslational translocation during the PrP(C) biosynthesis. We test this idea by predicting the conformational ensemble of the wild-type (WT) and mutated mouse PrP(C) N-terminal domain, whose sequence is almost identical to that of the human one and for which the largest number of in vivo data is available. The conformational properties of the WT are consistent with those inferred experimentally. Importantly, the PMs turn out to affect in a subtle manner the intramolecular contacts in the putative N-terminal domain binding sites for Cu(2+) ions, sulphated glycosaminoglycans, and other known PrP(C) cellular partners. The PMs also alter the local structural features of the transmembrane domain and adjacent stop transfer effector, which act together to regulate the protein topology. These results corroborate the hypothesis that N-terminal PMs affect the PrP(C) binding to functional interactors and/or the translocation.

  3. Solid-phase N-terminal peptide enrichment study by optimizing trypsin proteolysis on homoarginine modified proteins by mass spectrometry

    PubMed Central

    Chowdhury, Saiful M.; Munske, Gerhard R.; Yang, Jonathon; Zhukova, Daria; Nguen, Hamilton; Bruce, James E.

    2014-01-01

    Rationale Proteolytic cleavages generate active precursor proteins by creating new N-termini in the proteins. A number of strategies recently published regarding the enrichment of original or newly formed N-terminal peptides using guanidination of lysine residues and amine reactive reagents. For effective enrichment of N-terminal peptides, the efficiency of trypsin proteolysis on homoarginine (guanidinated) modified proteins must be understood and simple and versatile solid-phase N-terminal capture strategies should be developed. Methods We present here a mass spectrometry-based study to evaluate and optimize the trypsin proteolysis on a guanidinated modified protein. Trypsin proteolysis was studied using different amount of trypsin to modified protein ratios. To capture the original N-termini, after guanidination of proteins, original N-termini were acetylated and the proteins were digested with trypsin. The newly formed N-terminal tryptic peptides were captured with a new amine reactive acid-cleavable solid-phase reagent. The original N-terminal peptides were then collected from the supernatant of the solution. Results We demonstrated a detailed study of the efficiency of enzyme trypsin on homoarginine modified proteins. We observed that the rate of hydrolysis of homoarginine residues compared to their lysine/arginine counter parts were slower but generally cleaved after an overnight digestion period depending on the protein to protease concentration ratios. Selectivity of the solid-phase N-terminal reagent was studied by enrichment of original N-terminal peptides from two standard proteins, ubiquitin and RNaseS. Conclusion We found enzyme trypsin is active in guanidinated form of protein depending on enzyme to protein concentrations, time and the proximity of arginine residues in the sequence. The novel solid-phase capture reagent also successfully enriched N-terminal peptides from the standard protein mixtures. We believe this trypsin proteolysis study on

  4. Activation of ara operons by a truncated AraC protein does not require inducer.

    PubMed

    Menon, K P; Lee, N L

    1990-05-01

    The araC gene of Escherichia coli encodes a protein that binds the inducer L-arabinose to activate the transcription of three ara operons. In a study to determine the functional domains within the AraC protein, we have generated a set of overlapping deletions from the proximal end of the araC gene. We found that the removal of up to nearly 60% of the coding sequence of this protein still allows transcriptional activation of the ara operons in vivo, up to 27% that of the wild type. These truncated proteins, however, no longer require arabinose for induction. The ligand-induced conformational change apparently either releases or unmasks an existing functional domain within AraC, rather than generating a new conformation that is required for activation of the promoter of araBAD. Since the truncated protein of the mutant C154 (which lacks 153 amino acid residues from the N terminus) retains DNA binding specificity, the DNA-recognition domain is localized in the C-terminal half of the AraC protein. Truncated proteins were unable to repress araBAD or araC in vivo, even though they were able to bind all ara operators. We propose that the N-terminal half of AraC is essential for the formation of the DNA loops that are responsible for repression of araBAD and for autoregulation of araC.

  5. Integrating Terminal Truncation and Oligopeptide Fusion for a Novel Protein Engineering Strategy To Improve Specific Activity and Catalytic Efficiency: Alkaline α-Amylase as a Case Study

    PubMed Central

    Yang, Haiquan; Shin, Hyun-dong; Chen, Rachel R.; Li, Jianghua; Chen, Jian

    2013-01-01

    In this work, we integrated terminal truncation and N-terminal oligopeptide fusion as a novel protein engineering strategy to improve specific activity and catalytic efficiency of alkaline α-amylase (AmyK) from Alkalimonas amylolytica. First, the C terminus or N terminus of AmyK was partially truncated, yielding 12 truncated mutants, and then an oligopeptide (AEAEAKAKAEAEAKAK) was fused at the N terminus of the truncated AmyK, yielding another 12 truncation-fusion mutants. The specific activities of the truncation-fusion mutants AmyKΔC500-587::OP and AmyKΔC492-587::OP were 25.5- and 18.5-fold that of AmyK, respectively. The kcat/Km was increased from 1.0 × 105 liters · mol−1 · s−1 for AmyK to 30.6 × and 23.2 × 105 liters · mol−1 · s−1 for AmyKΔC500-587::OP and AmyKΔC492-587::OP, respectively. Comparative analysis of structure models indicated that the higher flexibility around the active site may be the main reason for the improved catalytic efficiency. The proposed terminal truncation and oligopeptide fusion strategy may be effective to engineer other enzymes to improve specific activity and catalytic efficiency. PMID:23956385

  6. Perspective on rainbow-ladder truncation

    SciTech Connect

    Eichmann, G.; Alkofer, R.; Krassnigg, A.; Cloeet, I. C.; Roberts, C. D.

    2008-04-15

    Prima facie the systematic implementation of corrections to the rainbow-ladder truncation of QCD's Dyson-Schwinger equations will uniformly reduce in magnitude those calculated mass-dimensioned results for pseudoscalar and vector meson properties that are not tightly constrained by symmetries. The aim and interpretation of studies employing rainbow-ladder truncation are reconsidered in this light.

  7. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase

    PubMed Central

    Qiu, Shihong; Ogino, Minako; Luo, Ming

    2015-01-01

    ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the

  8. SILProNAQ: A Convenient Approach for Proteome-Wide Analysis of Protein N-Termini and N-Terminal Acetylation Quantitation.

    PubMed

    Bienvenut, Willy V; Giglione, Carmela; Meinnel, Thierry

    2017-01-01

    Protein N-terminal modifications have recently been involved in overall proteostasis through their impact on cell fate and protein life time. This explains the development of new approaches to characterize more precisely the N-terminal end of mature proteins. Although few approaches are available to perform N-terminal enrichment based on positive or negative discriminations, these methods are usually restricted to the enrichment in N-terminal peptides and their characterization by mass spectrometry. Recent investigation highlights both (1) the knowledge of the N-terminal acetylation status of most cytosolic proteins and (2) post-translational addition of this modification on the N-terminus of nuclear coded chloroplast proteins imported in the plastid and after the cleavage of the transit peptide. The workflow involves stable isotope labeling to assess N-acetylation rates followed by Strong Cation eXchange (SCX ) fractionation of the samples to provide protein N-terminal enriched fractions. Combined with mass spectrometry analyses, the technology finally requires extensive data processing. This last step aims first at discriminating the most relevant mature N-termini from the characterized peptides, next at determining its experimental position and then at calculating the N-terminal acetylation yield. Stable-Isotope Protein N-terminal Acetylation Quantification (SILProNAQ) is a complete workflow combining wet-lab techniques together with dry-lab processing to determine the N-terminal acetylation yield of mature proteins for a clearly defined localization.

  9. Structural basis for fragmenting the exopolysaccharide of Acinetobacter baumannii by bacteriophage ΦAB6 tailspike protein.

    PubMed

    Lee, I-Ming; Tu, I-Fan; Yang, Feng-Ling; Ko, Tzu-Ping; Liao, Jiahn-Haur; Lin, Nien-Tsung; Wu, Chung-Yi; Ren, Chien-Tai; Wang, Andrew H-J; Chang, Ching-Ming; Huang, Kai-Fa; Wu, Shih-Hsiung

    2017-02-17

    With an increase in antibiotic-resistant strains, the nosocomial pathogen Acinetobacter baumannii has become a serious threat to global health. Glycoconjugate vaccines containing fragments of bacterial exopolysaccharide (EPS) are an emerging therapeutic to combat bacterial infection. Herein, we characterize the bacteriophage ΦAB6 tailspike protein (TSP), which specifically hydrolyzed the EPS of A. baumannii strain 54149 (Ab-54149). Ab-54149 EPS exhibited the same chemical structure as two antibiotic-resistant A. baumannii strains. The ΦAB6 TSP-digested products comprised oligosaccharides of two repeat units, typically with stoichiometric pseudaminic acid (Pse). The 1.48-1.89-Å resolution crystal structures of an N-terminally-truncated ΦAB6 TSP and its complexes with the semi-hydrolyzed products revealed a trimeric β-helix architecture that bears intersubunit carbohydrate-binding grooves, with some features unusual to the TSP family. The structures suggest that Pse in the substrate is an important recognition site for ΦAB6 TSP. A region in the carbohydrate-binding groove is identified as the determinant of product specificity. The structures also elucidated a retaining mechanism, for which the catalytic residues were verified by site-directed mutagenesis. Our findings provide a structural basis for engineering the enzyme to produce desired oligosaccharides, which is useful for the development of glycoconjugate vaccines against A. baumannii infection.

  10. Structural basis for fragmenting the exopolysaccharide of Acinetobacter baumannii by bacteriophage ΦAB6 tailspike protein

    PubMed Central

    Lee, I-Ming; Tu, I-Fan; Yang, Feng-Ling; Ko, Tzu-Ping; Liao, Jiahn-Haur; Lin, Nien-Tsung; Wu, Chung-Yi; Ren, Chien-Tai; Wang, Andrew H.-J.; Chang, Ching-Ming; Huang, Kai-Fa; Wu, Shih-Hsiung

    2017-01-01

    With an increase in antibiotic-resistant strains, the nosocomial pathogen Acinetobacter baumannii has become a serious threat to global health. Glycoconjugate vaccines containing fragments of bacterial exopolysaccharide (EPS) are an emerging therapeutic to combat bacterial infection. Herein, we characterize the bacteriophage ΦAB6 tailspike protein (TSP), which specifically hydrolyzed the EPS of A. baumannii strain 54149 (Ab-54149). Ab-54149 EPS exhibited the same chemical structure as two antibiotic-resistant A. baumannii strains. The ΦAB6 TSP-digested products comprised oligosaccharides of two repeat units, typically with stoichiometric pseudaminic acid (Pse). The 1.48-1.89-Å resolution crystal structures of an N-terminally-truncated ΦAB6 TSP and its complexes with the semi-hydrolyzed products revealed a trimeric β-helix architecture that bears intersubunit carbohydrate-binding grooves, with some features unusual to the TSP family. The structures suggest that Pse in the substrate is an important recognition site for ΦAB6 TSP. A region in the carbohydrate-binding groove is identified as the determinant of product specificity. The structures also elucidated a retaining mechanism, for which the catalytic residues were verified by site-directed mutagenesis. Our findings provide a structural basis for engineering the enzyme to produce desired oligosaccharides, which is useful for the development of glycoconjugate vaccines against A. baumannii infection. PMID:28209973

  11. CXCL12 N-terminal end is sufficient to induce chemotaxis and proliferation of neural stem/progenitor cells.

    PubMed

    Filippo, Thais R M; Galindo, Layla T; Barnabe, Gabriela F; Ariza, Carolina B; Mello, Luiz E; Juliano, Maria A; Juliano, Luiz; Porcionatto, Marimélia A

    2013-09-01

    Neural stem/progenitor cells (NSC) respond to injury after brain injuries secreting IL-1, IL-6, TNF-α, IL-4 and IL-10, as well as chemokine members of the CC and CXC ligand families. CXCL12 is one of the chemokines secreted at an injury site and is known to attract NSC-derived neuroblasts, cells that express CXCL12 receptor, CXCR4. Activation of CXCR4 by CXCL12 depends on two domains located at the N-terminal of the chemokine. In the present work we aimed to investigate if the N-terminal end of CXCL12, where CXCR4 binding and activation domains are located, was sufficient to induce NSC-derived neuroblast chemotaxis. Our data show that a synthetic peptide analogous to the first 21 amino acids of the N-terminal end of CXCL12, named PepC-C (KPVSLSYRCPCRFFESHIARA), is able to promote chemotaxis of neuroblasts in vivo, and stimulate chemotaxis and proliferation of CXCR4+ cells in vitro, without affecting NSC fate. We also show that PepC-C upregulates CXCL12 expression in vivo and in vitro. We suggest the N-terminal end of CXCL12 is responsible for a positive feedback loop to maintain a gradient of CXCL12 that attracts neuroblasts from the subventricular zone into an injury site.

  12. Non-native, N-terminal Hsp70 Molecular Motor Recognition Elements in Transit Peptides Support Plastid Protein Translocation*

    PubMed Central

    Chotewutmontri, Prakitchai; Bruce, Barry D.

    2015-01-01

    Previously, we identified the N-terminal domain of transit peptides (TPs) as a major determinant for the translocation step in plastid protein import. Analysis of Arabidopsis TP dataset revealed that this domain has two overlapping characteristics, highly uncharged and Hsp70-interacting. To investigate these two properties, we replaced the N-terminal domains of the TP of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and its reverse peptide with a series of unrelated peptides whose affinities to the chloroplast stromal Hsp70 have been determined. Bioinformatic analysis indicated that eight out of nine peptides in this series are not similar to the TP N terminus. Using in vivo and in vitro protein import assays, the majority of the precursors containing Hsp70-binding elements were targeted to plastids, whereas none of the chimeric precursors lacking an N-terminal Hsp70-binding element were targeted to the plastids. Moreover, a pulse-chase assay showed that two chimeric precursors with the most uncharged peptides failed to translocate into the stroma. The ability of multiple unrelated Hsp70-binding elements to support protein import verified that the majority of TPs utilize an N-terminal Hsp70-binding domain during translocation and expand the mechanistic view of the import process. This work also indicates that synthetic biology may be utilized to create de novo TPs that exceed the targeting activity of naturally occurring sequences. PMID:25645915

  13. Molecular evolution of troponin I and a role of its N-terminal extension in nematode locomotion

    PubMed Central

    Barnes, Dawn E.; Hwang, Hyundoo; Ono, Kanako; Lu, Hang; Ono, Shoichiro

    2016-01-01

    Summary The troponin complex, composed of troponin T (TnT), troponin I (TnI), and troponin C (TnC), is the major calcium-dependent regulator of muscle contraction, which is present widely in both vertebrates and invertebrates. Little is known about evolutionary aspects of troponin in the animal kingdom. Using a combination of data mining and functional analysis of TnI, we report evidence that an N-terminal extension of TnI is present in most of bilaterian animals as a functionally important domain. Troponin components have been reported in species in most of representative bilaterian phyla. Comparison of TnI sequences shows that the core domains are conserved in all examined TnIs, and that N- and C-terminal extensions are variable among isoforms and species. In particular, N-terminal extensions are present in all protostome TnIs and chordate cardiac TnIs but lost in a subset of chordate TnIs including vertebrate skeletal-muscle isoforms. Transgenic rescue experiments in C. elegans striated muscle show that the N-terminal extension of TnI (UNC-27) is required for coordinated worm locomotion but not in sarcomere assembly and single muscle-contractility kinetics. These results suggest that N-terminal extensions of TnIs are retained from a TnI ancestor as a functional domain. PMID:26849746

  14. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.

    PubMed

    Minagawa, Shun; Kondoh, Yasumitsu; Sueoka, Keigo; Osada, Hiroyuki; Nakamoto, Hitoshi

    2011-04-01

    Chemical arrays were employed to screen ligands for HtpG, the prokaryotic homologue of Hsp (heat-shock protein) 90. We found that colistins and the closely related polymyxin B interact physically with HtpG. They bind to the N-terminal domain of HtpG specifically without affecting its ATPase activity. The interaction caused inhibition of chaperone function of HtpG that suppresses thermal aggregation of substrate proteins. Further studies were performed with one of these cyclic lipopeptide antibiotics, colistin sulfate salt. It inhibited the chaperone function of the N-terminal domain of HtpG. However, it inhibited neither the chaperone function of the middle domain of HtpG nor that of other molecular chaperones such as DnaK, the prokaryotic homologue of Hsp70, and small Hsp. The addition of colistin sulfate salt increased surface hydrophobicity of the N-terminal domain of HtpG and induced oligomerization of HtpG and its N-terminal domain. These structural changes are discussed in relation to the inhibition of the chaperone function.

  15. N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Biomarkers that predict musculoskeletal response to anabolic therapies should expedite drug development. During collagen synthesis in soft lean tissue, N-terminal propeptide of type III procollagen (P3NP) is released into circulation. We investigated P3NP as a biomarker of lean body mass (L...

  16. N-Terminal Ubiquitination of Extracellular Signal-Regulated Kinase 3 and p21 Directs Their Degradation by the Proteasome

    PubMed Central

    Coulombe, Philippe; Rodier, Geneviève; Bonneil, Eric; Thibault, Pierre; Meloche, Sylvain

    2004-01-01

    Extracellular signal-regulated kinase 3 (ERK3) is an unstable mitogen-activated protein kinase homologue that is constitutively degraded by the ubiquitin-proteasome pathway in proliferating cells. Here we show that a lysineless mutant of ERK3 is still ubiquitinated in vivo and requires a functional ubiquitin conjugation pathway for its degradation. Addition of N-terminal sequence tags of increasing size stabilizes ERK3 by preventing its ubiquitination. Importantly, we identified a fusion peptide between the N-terminal methionine of ERK3 and the C-terminal glycine of ubiquitin in vivo by tandem mass spectrometry analysis. These findings demonstrate that ERK3 is conjugated to ubiquitin via its free NH2 terminus. We found that large N-terminal tags also stabilize the expression of the cell cycle inhibitor p21 but not that of substrates ubiquitinated on internal lysine residues. Consistent with this observation, lysineless p21 is ubiquitinated and degraded in a ubiquitin-dependent manner in intact cells. Our results suggests that N-terminal ubiquitination is a more prevalent modification than originally recognized. PMID:15226418

  17. Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles

    PubMed Central

    Gilbert, Leona; Toivola, Jouni; Välilehto, Outi; Saloniemi, Taija; Cunningham, Claire; White, Daniel; Mäkelä, Anna R; Korhonen, Eila; Vuento, Matti; Oker-Blom, Christian

    2006-01-01

    Fluorescence correlation spectroscopy (FCS) monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids) were fused to the C-terminus of the enhanced green fluorescent protein (EGFP). The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic radii of 7, 20 and 14 nm, respectively. These results show that the non-truncated EGFP-VP2 fusion protein and the EGFP-VP2 constructs truncated by 23 and by as much as 40 amino acids were able to form virus-like particles (VLPs). The fluorescent VLP, harbouring VP2 truncated by 23 amino acids, showed a somewhat larger hydrodynamic radius compared to the non-truncated EGFP-VP2. In contrast, the construct containing EGFP-VP2 truncated by 14 amino acids was not able to assemble into VLP-resembling structures. Formation of capsid structures was confirmed by confocal and electron microscopy. The number of fluorescent fusion protein molecules present within the different VLPs was determined by FCS. In conclusion, FCS provides a novel strategy to analyze virus assembly and gives valuable structural information for strategic development of parvovirus-like particles. PMID:17156442

  18. Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles.

    PubMed

    Gilbert, Leona; Toivola, Jouni; Välilehto, Outi; Saloniemi, Taija; Cunningham, Claire; White, Daniel; Mäkelä, Anna R; Korhonen, Eila; Vuento, Matti; Oker-Blom, Christian

    2006-12-08

    Fluorescence correlation spectroscopy (FCS) monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids) were fused to the C-terminus of the enhanced green fluorescent protein (EGFP). The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic radii of 7, 20 and 14 nm, respectively. These results show that the non-truncated EGFP-VP2 fusion protein and the EGFP-VP2 constructs truncated by 23 and by as much as 40 amino acids were able to form virus-like particles (VLPs). The fluorescent VLP, harbouring VP2 truncated by 23 amino acids, showed a somewhat larger hydrodynamic radius compared to the non-truncated EGFP-VP2. In contrast, the construct containing EGFP-VP2 truncated by 14 amino acids was not able to assemble into VLP-resembling structures. Formation of capsid structures was confirmed by confocal and electron microscopy. The number of fluorescent fusion protein molecules present within the different VLPs was determined by FCS. In conclusion, FCS provides a novel strategy to analyze virus assembly and gives valuable structural information for strategic development of parvovirus-like particles.

  19. Transcription-dependent nuclear localization of DAZAP1 requires an N-terminal signal

    SciTech Connect

    Lin, Yi-Tzu; Wen, Wan-Ching; Yen, Pauline H.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer DAZAP1 shuttles between the nucleus and the cytoplasm. Black-Right-Pointing-Pointer DAZAP1 accumulates in the cytoplasm when the nuclear transcription is inhibited. Black-Right-Pointing-Pointer DAZAP1's transcription-dependent nuclear localization requires N-terminal N42. Black-Right-Pointing-Pointer SLIRP binds to N42 and may be involved in the process. -- Abstract: Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous hnRNP protein required for normal development and spermatogenesis. It resides predominantly in the nucleus and moves between the nucleus and the cytoplasm via a ZNS shuttling signal at its C-terminus. DAZAP1 accumulates in the cytoplasm when RNA polymerase II activity is inhibited by actinomycin D. Here we report the mapping of a 42-amino acid segment (N42) at the N-terminus of DAZAP1 that is both necessary and sufficient for its transcription-dependent nuclear localization. In addition, using a yeast two-hybrid system, we have identified SLIRP as a N42-binding protein which may regulate DAZAP1 subcellular localization.

  20. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences

    PubMed Central

    Ivanov, Ivaylo P.; Firth, Andrew E.; Michel, Audrey M.; Atkins, John F.; Baranov, Pavel V.

    2011-01-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5′ cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized—both for increased coding capacity and potentially also for novel regulatory mechanisms—remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5′ untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data. PMID:21266472

  1. Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain

    SciTech Connect

    Schwarten, Melanie; Stoldt, Matthias; Mohrlueder, Jeannine; Willbold, Dieter

    2010-05-07

    During autophagy a crescent shaped like membrane is formed, which engulfs the material that is to be degraded. This membrane grows further until its edges fuse to form the double membrane covered autophagosome. Atg8 is a protein, which is required for this initial step of autophagy. Therefore, a multistage conjugation process of newly synthesized Atg8 to phosphatidylethanolamine is of critical importance. Here we present the high resolution structure of unprocessed Atg8 determined by nuclear magnetic resonance spectroscopy. Its C-terminal subdomain shows a well-defined ubiquitin-like fold with slightly elevated mobility in the pico- to nanosecond timescale as determined by heteronuclear NOE data. In comparison to unprocessed Atg8, cleaved Atg8{sup G116} shows a decreased mobility behaviour. The N-terminal domain adopts different conformations within the micro- to millisecond timescale. The possible biological relevance of the differences in dynamic behaviours between both subdomains as well as between the cleaved and uncleaved forms is discussed.

  2. Tor forms a dimer through an N-terminal helical solenoid with a complex topology.

    PubMed

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M; Williams, Roger L

    2016-04-13

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended 'railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  3. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    SciTech Connect

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  4. Trehalose induces functionally active conformation in the intrinsically disordered N-terminal domain of glucocorticoid receptor.

    PubMed

    Khan, Shagufta H; Jasuja, Ravi; Kumar, Raj

    2016-08-05

    Glucocorticoid receptor (GR) is a classic member of the nuclear receptor superfamily and plays pivotal roles in human physiology at the level of gene regulation. Various constellations of cellular cofactors are required to associate with GR to activate/repress genes. The effects of specific ligands on the AF2 structure and consequent preferential binding of co-activators or co-repressors have helped our understanding of the mechanisms involved. But the data so far fall short of fully explaining GR actions. We believe that this is because work so far has largely avoided detailed examination of the contributions of AF1 to overall GR actions. It has been shown that the GR containing only the N-terminal domain (NTD) and the DNA-binding domain (GR500) is constitutively quite active in stimulating transcription from simple promoters. However, we are only beginning to understand structure and functions of GR500 in spite of the fact that AF1 located within the NTD serves as major transactivation domain for GR. Lack of this information has hampered our complete understanding of how GR regulates its target gene(s). The major obstacle in determining GR500 structure has been due to its intrinsically disordered NTD conformation, frequently found in transcription factors. In this study, we tested whether a naturally occurring osmolyte, trehalose, can promote functionally ordered conformation in GR500. Our data show that in the presence of trehalose, GR500 is capable of formation of a native-like functionally folded conformation.

  5. An N-terminal region of mot-2 binds to p53 in vitro.

    PubMed

    Kaul, S C; Reddel, R R; Mitsui, Y; Wadhwa, R

    2001-01-01

    The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312-352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its N-terminal amino acid residues 253-282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.

  6. SHP-1 inhibition by 4-hydroxynonenal activates Jun N-terminal kinase and glutamate cysteine ligase.

    PubMed

    Rinna, Alessandra; Forman, Henry Jay

    2008-07-01

    4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation product, is toxic at high concentrations, but at near-physiological concentrations it induces detoxifying enzymes. Previous data established that in human bronchial epithelial (HBE1) cells, both genes for glutamate cysteine ligase (GCL) are induced by HNE through the c-Jun N-terminal kinase (JNK) pathway. The protein-tyrosine phosphatase SH2 domain containing phosphatase-1 (SHP-1) is thought to play a role as a negative regulator of cell signaling, and has been implicated as such in the JNK pathway. In the present study, SHP-1 was demonstrated to contribute to HNE-induced-gclc expression via regulation of the JNK pathway in HBE1 cells. Treatment of HBE1 cells with HNE induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4), JNK, and c-Jun. HNE was able to inhibit protein tyrosine phosphatase activity of SHP-1 through increased degradation of the protein. Furthermore, transfection with small interference RNA SHP-1 showed an enhancement of JNK and c-Jun phosphorylation, but not of MKK4, leading to increased gclc expression. These results demonstrate that SHP-1 plays a role as a negative regulator of the JNK pathway and that HNE activated the JNK pathway by inhibiting SHP-1. Thus, SHP-1 acts as a sensor for HNE and is responsible for an important adaptive response to oxidative stress.

  7. c-Jun N-Terminal Kinase Phosphorylation Is a Biomarker of Plitidepsin Activity

    PubMed Central

    Muñoz-Alonso, María J.; Álvarez, Enrique; Guillén-Navarro, María José; Pollán, Marina; Avilés, Pablo; Galmarini, Carlos M.; Muñoz, Alberto

    2013-01-01

    Plitidepsin is an antitumor drug of marine origin currently in Phase III clinical trials in multiple myeloma. In cultured cells, plitidepsin induces cell cycle arrest or an acute apoptotic process in which sustained activation of c-Jun N-terminal kinase (JNK) plays a crucial role. With a view to optimizing clinical use of plitidepsin, we have therefore evaluated the possibility of using JNK activation as an in vivo biomarker of response. In this study, we show that administration of a single plitidepsin dose to mice xenografted with human cancer cells does indeed lead to increased phosphorylation of JNK in tumors at 4 to 12 h. By contrast, no changes were found in other in vitro plitidepsin targets such as the levels of phosphorylated-ERK, -p38MAPK or the protein p27KIP1. Interestingly, plitidepsin also increased JNK phosphorylation in spleens from xenografted mice showing similar kinetics to those seen in tumors, thereby suggesting that normal tissues might be useful for predicting drug activity. Furthermore, plitidepsin administration to rats at plasma concentrations comparable to those achievable in patients also increased JNK phosphorylation in peripheral mononuclear blood cells. These findings suggest that changes in JNK activity provide a reliable biomarker for plitidepsin activity and this could be useful for designing clinical trials and maximizing the efficacy of plitidepsin. PMID:23697951

  8. Calcium-controlled conformational choreography in the N-terminal half of adseverin

    NASA Astrophysics Data System (ADS)

    Chumnarnsilpa, Sakesit; Robinson, Robert C.; Grimes, Jonathan M.; Leyrat, Cedric

    2015-09-01

    Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca2+-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca2+-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca2+-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca2+-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.

  9. Calcium-controlled conformational choreography in the N-terminal half of adseverin.

    PubMed

    Chumnarnsilpa, Sakesit; Robinson, Robert C; Grimes, Jonathan M; Leyrat, Cedric

    2015-09-14

    Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1-A3) and the Ca(2+)-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca(2+)-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1-A3 provided insights into Ca(2+)-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca(2+)-independent F-actin severing by A1-A3, albeit at a lower efficiency than observed for gelsolin domains G1-G3. Together, these data address the calcium dependency of A1-A3 activity in relation to the calcium-independent activity of G1-G3.

  10. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains

    PubMed Central

    Krieger, James; Bahar, Ivet; Greger, Ingo H.

    2015-01-01

    Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment. PMID:26255587

  11. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    SciTech Connect

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias . E-mail: mattias.belting@med.lu.se; Graeslund, Astrid . E-mail: astrid@dbb.su.se

    2006-09-22

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.

  12. N-Terminal-Based Targeted, Inducible Protein Degradation in Escherichia coli

    PubMed Central

    Sekar, Karthik; Gentile, Andrew M.; Bostick, John W.; Tyo, Keith E. J.

    2016-01-01

    Dynamically altering protein concentration is a central activity in synthetic biology. While many tools are available to modulate protein concentration by altering protein synthesis rate, methods for decreasing protein concentration by inactivation or degradation rate are just being realized. Altering protein synthesis rates can quickly increase the concentration of a protein but not decrease, as residual protein will remain for a while. Inducible, targeted protein degradation is an attractive option and some tools have been introduced for higher organisms and bacteria. Current bacterial tools rely on C-terminal fusions, so we have developed an N-terminal fusion (Ntag) strategy to increase the possible proteins that can be targeted. We demonstrate Ntag dependent degradation of mCherry and beta-galactosidase and reconfigure the Ntag system to perform dynamic, exogenously inducible degradation of a targeted protein and complement protein depletion by traditional synthesis repression. Model driven analysis that focused on rates, rather than concentrations, was critical to understanding and engineering the system. We expect this tool and our model to enable inducible protein degradation use particularly in metabolic engineering, biological study of essential proteins, and protein circuits. PMID:26900850

  13. Functional regions of the N-terminal domain of the antiterminator RfaH

    PubMed Central

    Belogurov, Georgiy A; Sevostyanova, Anastasia; Svetlov, Vladimir; Artsimovitch, Irina

    2010-01-01

    RfaH is a bacterial elongation factor that increases expression of distal genes in several long, horizontally acquired operons. RfaH is recruited to the transcription complex during RNA chain elongation through specific interactions with a DNA element called ops. Following recruitment, RfaH remains bound to RNA polymerase (RNAP) and acts as an antiterminator by reducing RNAP pausing and termination at some factor-independent and Rho-dependent signals. RfaH consists of two domains connected by a flexible linker. The N-terminal RfaH domain (RfaHN) recognizes the ops element, binds to the RNAP and reduces pausing and termination in vitro. Functional analysis of single substitutions in this domain reported here suggests that three separate RfaHN regions mediate these functions. We propose that a polar patch on one side of RfaHN interacts with the non-template DNA strand during recruitment, whereas a hydrophobic surface on the opposite side of RfaHN remains bound to the β′ subunit clamp helices domain throughout transcription of the entire operon. The third region is apparently dispensable for RfaH binding to the transcription complex but is required for the antitermination modification of RNAP. PMID:20132437

  14. Tor forms a dimer through an N-terminal helical solenoid with a complex topology

    NASA Astrophysics Data System (ADS)

    Baretić, Domagoj; Berndt, Alex; Ohashi, Yohei; Johnson, Christopher M.; Williams, Roger L.

    2016-04-01

    The target of rapamycin (Tor) is a Ser/Thr protein kinase that regulates a range of anabolic and catabolic processes. Tor is present in two complexes, TORC1 and TORC2, in which the Tor-Lst8 heterodimer forms a common sub-complex. We have determined the cryo-electron microscopy (EM) structure of Tor bound to Lst8. Two Tor-Lst8 heterodimers assemble further into a dyad-symmetry dimer mediated by Tor-Tor interactions. The first 1,300 residues of Tor form a HEAT repeat-containing α-solenoid with four distinct segments: a highly curved 800-residue N-terminal 'spiral', followed by a 400-residue low-curvature 'bridge' and an extended `railing' running along the bridge leading to the 'cap' that links to FAT region. This complex topology was verified by domain insertions and offers a new interpretation of the mTORC1 structure. The spiral of one TOR interacts with the bridge of another, which together form a joint platform for the Regulatory Associated Protein of TOR (RAPTOR) regulatory subunit.

  15. N-terminal processing of affinity-tagged recombinant proteins purified by IMAC procedures.

    PubMed

    Mooney, Jane T; Fredericks, Dale P; Christensen, Thorkild; Bruun Schiødt, Christine; Hearn, Milton T W

    2015-07-01

    The ability of a new class of metal binding tags to facilitate the purification of recombinant proteins, exemplified by the tagged glutathione S-transferase and human growth hormone, from Escherichia coli fermentation broths and lysates has been further investigated. These histidine-containing tags exhibit high affinity for borderline metal ions chelated to the immobilised ligand, 1,4,7-triazacyclononane (tacn). The use of this tag-tacn immobilised metal ion affinity chromatography (IMAC) system engenders high selectivity with regard to host cell protein removal and permits facile tag removal from the E. coli-expressed recombinant protein. In particular, these tags were specifically designed to enable their efficient removal by the dipeptidyl aminopeptidase 1 (DAP-1), thus capturing the advantages of high substrate specificity and rates of cleavage. MALDI-TOF MS analysis of the cleaved products from the DAP-1 digestion of the recombinant N-terminally tagged proteins confirmed the complete removal of the tag within 4-12 h under mild experimental conditions. Overall, this study demonstrates that the use of tags specifically designed to target tacn-based IMAC resins offers a comprehensive and flexible approach for the purification of E. coli-expressed recombinant proteins, where complete removal of the tag is an essential prerequisite for subsequent application of the purified native proteins in studies aimed at delineating the molecular and cellular basis of specific biological processes.

  16. Cdc13 N-Terminal Dimerization DNA Binding and Telomere Length Regulation

    SciTech Connect

    M Mitchell; J Smith; M Mason; S Harper; D Speicher; F Johnson; E Skordalakes

    2011-12-31

    The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.

  17. c-Jun N-terminal kinase activity is required for efficient respiratory syncytial virus production.

    PubMed

    Caly, Leon; Li, Hong-Mei; Bogoyevitch, Marie A; Jans, David A

    2017-01-29

    Respiratory syncytial virus (RSV) is a major cause of respiratory infections in infants and the elderly, leading to more deaths than influenza each year worldwide. With no RSV antiviral or efficacious vaccine currently available, improved understanding of the host-RSV interaction is urgently required. Here we examine the contribution to RSV infection of the host stress-regulated c-Jun N-terminal kinase (JNK), for the first time. Peak JNK1/2 phosphoactivation is observed at ∼24 h post-infection, correlating with the time of virus assembly. The release of infectious RSV virions from infected cells was significantly reduced by either JNK1/2 siRNA knockdown or treatment with the JNK-specific inhibitor, JNK-IN-VIII. High resolution microscopy confirmed RSV accumulation in the host cell cytoplasm. The results implicate JNK1/2 as a key host factor for RSV virus production, raising the possibility of agents targeting JNK activity as potential anti-RSV therapeutics.

  18. The N-terminal Set-β Protein Isoform Induces Neuronal Death.

    PubMed

    Trakhtenberg, Ephraim F; Morkin, Melina I; Patel, Karan H; Fernandez, Stephanie G; Sang, Alan; Shaw, Peter; Liu, Xiongfei; Wang, Yan; Mlacker, Gregory M; Gao, Han; Velmeshev, Dmitry; Dombrowski, Susan M; Vitek, Michael P; Goldberg, Jeffrey L

    2015-05-22

    Set-β protein plays different roles in neurons, but the diversity of Set-β neuronal isoforms and their functions have not been characterized. The expression and subcellular localization of Set-β are altered in Alzheimer disease, cleavage of Set-β leads to neuronal death after stroke, and the full-length Set-β regulates retinal ganglion cell (RGC) and hippocampal neuron axon growth and regeneration in a subcellular localization-dependent manner. Here we used various biochemical approaches to investigate Set-β isoforms and their role in the CNS, using the same type of neurons, RGCs, across studies. We found multiple alternatively spliced isoforms expressed from the Set locus in purified RGCs. Set transcripts containing the Set-β-specific exon were the most highly expressed isoforms. We also identified a novel, alternatively spliced Set-β transcript lacking the nuclear localization signal and demonstrated that the full-length (∼39-kDa) Set-β is localized predominantly in the nucleus, whereas a shorter (∼25-kDa) Set-β isoform is localized predominantly in the cytoplasm. Finally, we show that an N-terminal Set-β cleavage product can induce neuronal death.

  19. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab.

    PubMed

    Tan, Shuguang; Zhang, Hao; Chai, Yan; Song, Hao; Tong, Zhou; Wang, Qihui; Qi, Jianxun; Wong, Gary; Zhu, Xiaodong; Liu, William J; Gao, Shan; Wang, Zhongfu; Shi, Yi; Yang, Fuquan; Gao, George F; Yan, Jinghua

    2017-02-06

    Cancer immunotherapy by targeting of immune checkpoint molecules has been a research 'hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1.

  20. Role of c-Jun N-terminal kinase activation in blastema formation during planarian regeneration.

    PubMed

    Tasaki, Junichi; Shibata, Norito; Sakurai, Toshihide; Agata, Kiyokazu; Umesono, Yoshihiko

    2011-04-01

    The robust regenerative abilities of planarians absolutely depend on a unique population of pluripotent stem cells called neoblasts, which are the only mitotic somatic cells in adult planarians and are responsible for blastema formation after amputation. Little is known about the molecular mechanisms that drive blastema formation during planarian regeneration. Here we found that treatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 blocked the entry of neoblasts into the M-phase of the cell cycle, while allowing neoblasts to successfully enter S-phase in the planarian Dugesia japonica. The rapid and efficient blockage of neoblast mitosis by treatment with the JNK inhibitor provided a method to assess whether temporally regulated cell cycle activation drives blastema formation during planarian regeneration. In the early phase of blastema formation, activated JNK was detected prominently in a mitotic region (the "postblastema") proximal to the blastema region. Furthermore, we demonstrated that undifferentiated mitotic neoblasts in the postblastema showed highly activated JNK at the single cell level. JNK inhibition by treatment with SP600125 during this period caused a severe defect of blastema formation, which accorded with a drastic decrease of mitotic neoblasts in regenerating animals. By contrast, these animals still retained many undifferentiated neoblasts near the amputation stump. These findings suggest that JNK signaling plays a crucial role in feeding into the blastema neoblasts for differentiation by regulating the G2/M transition in the cell cycle during planarian regeneration.

  1. Identification, N-terminal region sequencing and similarity analysis of differentially expressed proteins in Paracoccidioides brasiliensis.

    PubMed

    Cunha, A F; Sousa, M V; Silva, S P; Jesuíno, R S; Soares, C M; Felipe, M S

    1999-04-01

    Paracoccidioides brasiliensis is the causal agent of paracoccidioidomycosis, which is a systemic mycosis in Latin America. This human pathogen is a dimorphic fungus existing as mycelium (26 degrees C) and in infected tissues as a yeast form (36 degrees C). The in vitro differentiation process is reversible and dependent on temperature shift. In the present study, the total proteins from both forms of P. brasiliensis (isolate Pb01) were analysed by two-dimensional electrophoresis. Differentially expressed proteins were identified. Two of these proteins, PbM46 (mycelium) and PbY20 (yeast), were submitted to automated protein sequencing of their N-terminal regions. The 15 amino acid residue sequence of PbM46, AITKIFALKVYDSSG, is similar to enolases from several sources, and specially those from Saccharomyces cerevisiae (80%) and Candida albicans (67%), when compared to the NR database at NCBI using the BLASTP program. The 34 amino acid residue sequence of PbY20, APKIAIVFYSLYGHIQKLAEAQKKGIEAAGGTAD, could probably represent an allergen protein since it is very similar (90%) to the minor allergen protein of Alternaria alternata and 82% similar to the allergen protein of Cladosporium herbarum. This comparative analysis of proteins from mycelium and yeast forms has allowed the identification and characterization of differentially expressed proteins, probably related to differential gene expression in P. brasiliensis.

  2. PLC-δ1-Lf, a novel N-terminal extended phospholipase C-δ1.

    PubMed

    Kim, Na Young; Ahn, Sang Jung; Kim, Moo-Sang; Seo, Jung Soo; Kim, Bo Seong; Bak, Hye Jin; Lee, Jin Young; Park, Myoung-Ae; Park, Ju Hyeon; Lee, Hyung Ho; Chung, Joon Ki

    2013-10-10

    Phospholipase C-δ (PLC-δ), a key enzyme in phosphoinositide turnover, is involved in a variety of physiological functions. The widely expressed PLC-δ1 isoform is the best characterized and the most well understood phospholipase family member. However, the functional and molecular mechanisms of PLC-δ1 remain obscure. Here, we identified that the N-terminal region of mouse PLC-δ1 gene has two variants, a novel alternative splicing form, named as long form (mPLC-δ1-Lf) and the previously reported short form (mPLC-δ1-Sf), having exon 2 and exon 1, respectively, while both the gene variants share exons 3-16 for RNA transcription. Furthermore, the expression, identification and enzymatic characterization of the two types of PLC-δ1 genes were compared. Expression of mPLC-δ1-Lf was found to be tissue specific, whereas mPLC-δ1-Sf was widely distributed. The recombinant mPLC-δ1-Sf protein exhibited higher activity than recombinant mPLC-δ1-Lf protein. Although, the general catalytic and regulatory properties of mPLC-δ1-Lf are similar to those of PLC-δ1-Sf isozyme, the mPLC-δ1-Lf showed some distinct regulatory properties, such as tissue-specific expression and lipid binding specificity, particularly for phosphatidylserine.

  3. Calcium-controlled conformational choreography in the N-terminal half of adseverin

    PubMed Central

    Chumnarnsilpa, Sakesit; Robinson, Robert C.; Grimes, Jonathan M.; Leyrat, Cedric

    2015-01-01

    Adseverin is a member of the calcium-regulated gelsolin superfamily of actin-binding proteins. Here we report the crystal structure of the calcium-free N-terminal half of adseverin (iA1–A3) and the Ca2+-bound structure of A3, which reveal structural similarities and differences with gelsolin. Solution small-angle X-ray scattering combined with ensemble optimization revealed a dynamic Ca2+-dependent equilibrium between inactive, intermediate and active conformations. Increasing calcium concentrations progressively shift this equilibrium from a main population of inactive conformation to the active form. Molecular dynamics simulations of iA1–A3 provided insights into Ca2+-induced destabilization, implicating a critical role for the A2 type II calcium-binding site and the A2A3 linker in the activation process. Finally, mutations that disrupt the A1/A3 interface increase Ca2+-independent F-actin severing by A1–A3, albeit at a lower efficiency than observed for gelsolin domains G1–G3. Together, these data address the calcium dependency of A1–A3 activity in relation to the calcium-independent activity of G1–G3. PMID:26365202

  4. Analysis of an N-terminal deletion in subunit a of the Escherichia coli ATP synthase.

    PubMed

    Ishmukhametov, Robert R; DeLeon-Rangel, Jessica; Zhu, Shaotong; Vik, Steven B

    2017-04-01

    Subunit a is a membrane-bound stator subunit of the ATP synthase and is essential for proton translocation. The N-terminus of subunit a in E. coli is localized to the periplasm, and contains a sequence motif that is conserved among some bacteria. Previous work has identified mutations in this region that impair enzyme activity. Here, an internal deletion was constructed in subunit a in which residues 6-20 were replaced by a single lysine residue, and this mutant was unable to grow on succinate minimal medium. Membrane vesicles prepared from this mutant lacked ATP synthesis and ATP-driven proton translocation, even though immunoblots showed a significant level of subunit a. Similar results were obtained after purification and reconstitution of the mutant ATP synthase into liposomes. The location of subunit a with respect to its neighboring subunits b and c was probed by introducing cysteine substitutions that were known to promote cross-linking: a_L207C + c_I55C, a_L121C + b_N4C, and a_T107C + b_V18C. The last pair was unable to form cross-links in the background of the deletion mutant. The results indicate that loss of the N-terminal region of subunit a does not generally disrupt its structure, but does alter interactions with subunit b.

  5. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.

    PubMed

    Emanuelsson, O; Nielsen, H; Brunak, S; von Heijne, G

    2000-07-21

    A neural network-based tool, TargetP, for large-scale subcellular location prediction of newly identified proteins has been developed. Using N-terminal sequence information only, it discriminates between proteins destined for the mitochondrion, the chloroplast, the secretory pathway, and "other" localizations with a success rate of 85% (plant) or 90% (non-plant) on redundancy-reduced test sets. From a TargetP analysis of the recently sequenced Arabidopsis thaliana chromosomes 2 and 4 and the Ensembl Homo sapiens protein set, we estimate that 10% of all plant proteins are mitochondrial and 14% chloroplastic, and that the abundance of secretory proteins, in both Arabidopsis and Homo, is around 10%. TargetP also predicts cleavage sites with levels of correctly predicted sites ranging from approximately 40% to 50% (chloroplastic and mitochondrial presequences) to above 70% (secretory signal peptides). TargetP is available as a web-server at http://www.cbs.dtu.dk/services/TargetP/.

  6. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    PubMed Central

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI: http://dx.doi.org/10.7554/eLife.23024.001 PMID:28290985

  7. Inhibitors of c-Jun N-terminal kinases: JuNK no more?

    PubMed

    Bogoyevitch, Marie A; Arthur, Peter G

    2008-01-01

    The c-Jun N-terminal kinases (JNKs) have been the subject of intense interest since their discovery in the early 1990s. Major research programs have been directed to the screening and/or design of JNK-selective inhibitors and testing their potential as drugs. We begin this review by considering the first commercially-available JNK ATP-competitive inhibitor, SP600125. We focus on recent studies that have evaluated the actions of SP600125 in lung, brain, kidney and liver following exposure to a range of stress insults including ischemia/reperfusion. In many but not all cases, SP600125 administration has proved beneficial. JNK activation can also follow infection, and we next consider recent examples that demonstrate the benefits of SP600125 administration in viral infection. Additional ATP-competitive JNK inhibitors have now been described following high throughput screening of small molecule libraries, but information on their use in biological systems remains limited and thus these inhibitors will require further evaluation. Peptide substrate-competitive ATP-non-competitive inhibitors of JNK have also now been described, and we discuss the recent advances in the use of JNK inhibitory peptides in the treatment of neuronal death, diabetes and viral infection. We conclude by raising a number of questions that should be considered in the quest for JNK-specific inhibitors.

  8. Procollagen III N-terminal Propeptide and Desmosine are Released by Matrix Destruction in Pulmonary Tuberculosis

    PubMed Central

    Seddon, Jo; Kasprowicz, Victoria; Walker, Naomi F.; Yuen, Ho Ming; Sunpath, Henry; Tezera, Liku; Meintjes, Graeme; Wilkinson, Robert J.; Bishai, William R.; Friedland, Jon S.; Elkington, Paul T.

    2013-01-01

    Background. Tuberculosis is transmitted by patients with pulmonary disease. Matrix metalloproteinases (MMPs) drive lung destruction in tuberculosis but the resulting matrix degradation products (MDPs) have not been studied. We investigate the hypothesis that MMP activity generates matrix turnover products as correlates of lung pathology. Methods. Induced sputum and plasma were collected prospectively from human immunodeficiency virus (HIV) positive and negative patients with pulmonary tuberculosis and controls. Concentrations of MDPs and MMPs were analyzed by ELISA and Luminex array in 2 patient cohorts. Results. Procollagen III N-terminal propeptide (PIIINP) was 3.8-fold higher in induced sputum of HIV-uninfected tuberculosis patients compared to controls and desmosine, released during elastin degradation, was 2.4-fold higher. PIIINP was elevated in plasma of tuberculosis patients. Plasma PIIINP correlated with induced sputum MMP-1 concentrations and radiological scores, demonstrating that circulating MDPs reflect lung destruction. In a second patient cohort of mixed HIV seroprevalence, plasma PIIINP concentration was increased 3.0-fold above controls (P < .001). Plasma matrix metalloproteinase-8 concentrations were also higher in tuberculosis patients (P = .001). Receiver operating characteristic analysis utilizing these 2 variables demonstrated an area under the curve of 0.832 (P < .001). Conclusions. In pulmonary tuberculosis, MMP-driven immunopathology generates matrix degradation products. PMID:23922364

  9. Ion Channels of Alamethicin Dimer N-Terminally Linked by Disulfide Bond

    PubMed Central

    Okazaki, Takashi; Sakoh, Machiko; Nagaoka, Yasuo; Asami, Koji

    2003-01-01

    A covalent dimer of alamethicin Rf30 was synthesized by linking the N-termini by a disulfide bond. When the dimer peptides were added to the cis-side of a diphytanoyl PC membrane, macroscopic channel current was induced only at cis positive voltages. The single-channel recordings showed several conductance levels that were alternately stabilized. These results indicate that the dimer peptides form stable channels by N-terminal insertion like alamethicin and that most of the pores are assembled from even numbers of helices. Taking advantages of the long open duration of the dimer peptide channels, the current-voltage (I-V) relations of the single-channels were obtained by applying fast voltage ramps during the open states. The I-V relations showed rectification, such that current from the cis-side toward the trans-side is larger than that in the opposite direction. The intrinsic rectification is mainly attributed to the macro dipoles of parallel peptide helices surrounding a central pore. PMID:12829482

  10. Ion channels of alamethicin dimer N-terminally linked by disulfide bond.

    PubMed

    Okazaki, Takashi; Sakoh, Machiko; Nagaoka, Yasuo; Asami, Koji

    2003-07-01

    A covalent dimer of alamethicin Rf30 was synthesized by linking the N-termini by a disulfide bond. When the dimer peptides were added to the cis-side of a diphytanoyl PC membrane, macroscopic channel current was induced only at cis positive voltages. The single-channel recordings showed several conductance levels that were alternately stabilized. These results indicate that the dimer peptides form stable channels by N-terminal insertion like alamethicin and that most of the pores are assembled from even numbers of helices. Taking advantages of the long open duration of the dimer peptide channels, the current-voltage (I-V) relations of the single-channels were obtained by applying fast voltage ramps during the open states. The I-V relations showed rectification, such that current from the cis-side toward the trans-side is larger than that in the opposite direction. The intrinsic rectification is mainly attributed to the macro dipoles of parallel peptide helices surrounding a central pore.

  11. An unexpected N-terminal loop in PD-1 dominates binding by nivolumab

    PubMed Central

    Tan, Shuguang; Zhang, Hao; Chai, Yan; Song, Hao; Tong, Zhou; Wang, Qihui; Qi, Jianxun; Wong, Gary; Zhu, Xiaodong; Liu, William J.; Gao, Shan; Wang, Zhongfu; Shi, Yi; Yang, Fuquan; Gao, George F.; Yan, Jinghua

    2017-01-01

    Cancer immunotherapy by targeting of immune checkpoint molecules has been a research ‘hot-spot' in recent years. Nivolumab, a human monoclonal antibody targeting PD-1, has been widely used clinically since 2014. However, the binding mechanism of nivolumab to PD-1 has not yet been shown, despite a recent report describing the complex structure of pembrolizumab/PD-1. It has previously been speculated that PD-1 glycosylation is involved in nivolumab recognition. Here we report the complex structure of nivolumab with PD-1 and evaluate the effects of PD-1 N-glycosylation on the interactions with nivolumab. Structural and functional analyses unexpectedly reveal an N-terminal loop outside the IgV domain of PD-1. This loop is not involved in recognition of PD-L1 but dominates binding to nivolumab, whereas N-glycosylation is not involved in binding at all. Nivolumab binds to a completely different area than pembrolizumab. These results provide the basis for the design of future inhibitory molecules targeting PD-1. PMID:28165004

  12. Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase

    PubMed Central

    Biggi, Silvia; Buccarello, Lucia; Sclip, Alessandra; Lippiello, Pellegrino; Rumio, Cristiano; Di Marino, Daniele

    2017-01-01

    The c-Jun N-terminal kinase (JNK) is part of a stress signalling pathway strongly activated by NMDA-stimulation and involved in synaptic plasticity. Many studies have been focused on the post-synaptic mechanism of JNK action, and less is known about JNK presynaptic localization and its physiological role at this site. Here we examined whether JNK is present at the presynaptic site and its activity after presynaptic NMDA receptors stimulation. By using N-SIM Structured Super Resolution Microscopy as well as biochemical approaches, we demonstrated that presynaptic fractions contained significant amount of JNK protein and its activated form. By means of modelling design, we found that JNK, via the JBD domain, acts as a physiological effector on T-SNARE proteins; then using biochemical approaches we demonstrated the interaction between Syntaxin-1-JNK, Syntaxin-2-JNK, and Snap25-JNK. In addition, taking advance of the specific JNK inhibitor peptide, D-JNKI1, we defined JNK action on the SNARE complex formation. Finally, electrophysiological recordings confirmed the role of JNK in the presynaptic modulation of vesicle release. These data suggest that JNK-dependent phosphorylation of T-SNARE proteins may have an important functional role in synaptic plasticity. PMID:28367336

  13. c-Jun N-terminal kinase - c-Jun pathway transactivates Bim to promote osteoarthritis.

    PubMed

    Ye, Zhiqiang; Chen, Yuxian; Zhang, Rongkai; Dai, Haitao; Zeng, Chun; Zeng, Hua; Feng, Hui; Du, Gengheng; Fang, Hang; Cai, Daozhang

    2014-02-01

    Osteoarthritis (OA) is a chronic degenerative joint disorder. Previous studies have shown abnormally increased apoptosis of chondrocytes in patients and animal models of OA. TNF-α and nitric oxide have been reported to induce chondrocyte ageing; however, the mechanism of chondrocyte apoptosis induced by IL-1β has remained unclear. The aim of this study is to identify the role of the c-Jun N-terminal kinase (JNK) - c-Jun pathway in regulating induction of Bim, and its implication in chondrocyte apoptosis. This study showed that Bim is upregulated in chondrocytes obtained from the articular cartilage of OA patients and in cultured mouse chondrocytes treated with IL-1β. Upregulation of Bim was found to be critical for chondrocyte apoptosis induced by IL-1β, as revealed by the genetic knockdown of Bim, wherein apoptosis was greatly reduced in the chondrocytes. Moreover, activation of the JNK-c-Jun pathway was observed under IL-1β treatment, as indicated by the increased expression levels of c-Jun protein. Suppression of the JNK-c-Jun pathway, using chemical inhibitors and RNA interference, inhibited the Bim upregulation induced by IL-1β. These findings suggest that the JNK-c-Jun pathway is involved in the upregulation of Bim during OA and that the JNK-c-Jun-Bim pathway is vital for chondrocyte apoptosis.

  14. Highly heterologous region in the N-terminal extracellular domain of reptilian follitropin receptors.

    PubMed

    Akazome, Y; Ogasawara, O; Park, M K; Mori, T

    1996-12-01

    The primary structure of the N-terminal extracellular region of the follitropin receptor (FSH-R), which is thought to be responsible for hormone binding specificity, was determined in three reptilian species (tortoise, gecko, and lizard). Remarkably low sequence homologies were detected in the C-terminal part of the extracellular domain. This region was estimated to be a part of exon 10, which is the last exon of the FSH-R gene. In this region, not only were low homologies detected among the three reptilian species, but also specific deletions and/or insertions were found. In particular, large deletions were detected in squamate (gecko and lizard) FSH-Rs. Phylogenetic analysis indicated that these large deletions occurred recently, i.e., after the Triassic period. In another region characterized, sequence homologies were high, with tortoise-rat homology 78.4%, gecko-rat 64.7%, and lizard-rat 69.1%. In this highly conserved region, however, some reptile-specific alterations were detected, such as the loss of a cysteine residue in putative exon 7 and the existence of potential N-linked glycosylation sites in putative exon 9.

  15. Control of protein life-span by N-terminal methionine excision

    PubMed Central

    Giglione, Carmela; Vallon, Olivier; Meinnel, Thierry

    2003-01-01

    Peptide deformylases (PDFs) have been discovered recently in eukaryotic genomes, and it appears that N-terminal methionine excision (NME) is a conserved pathway in all compartments where protein synthesis occurs. This work aimed at uncovering the function(s) of NME in a whole proteome, using the chloroplast-encoded proteins of both Arabidopsis thaliana and Chlamydomonas reinhardtii as model systems. Dis ruption of PDF1B in A.thaliana led to an albino phenotype, and an extreme sensitivity to the PDF- specific inhibitor actinonin. In contrast, a knockout line for PDF1A exhibited no apparent phenotype. Photosystem II activity in C.reinhardtii cells was substantially reduced by the presence of actinonin. Pulse–chase experiments revealed that PDF inhibi tion leads to destabilization of a crucial subset of chloroplast-encoded photosystem II components in C.reinhardtii. The same proteins were destabilized in pdf1b. Site-directed substitutions altering NME of the most sensitive target, subunit D2, resulted in similar effects. Thus, plastid NME is a critical mechanism specifically influencing the life-span of photosystem II polypeptides. A general role of NME in modulating the half-life of key subsets of proteins is suggested. PMID:12505980

  16. Evolutionary Conserved Role of c-Jun-N-Terminal Kinase in CO2-Induced Epithelial Dysfunction

    PubMed Central

    Vadász, István; Dada, Laura A.; Briva, Arturo; Helenius, Iiro Taneli; Sharabi, Kfir; Welch, Lynn C.; Kelly, Aileen M.; Grzesik, Benno A.; Budinger, G. R. Scott; Liu, Jing; Seeger, Werner; Beitel, Greg J.; Gruenbaum, Yosef; Sznajder, Jacob I.

    2012-01-01

    Elevated CO2 levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO2 signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO2 levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO2 levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO2-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO2 signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO2 signaling in mammals, diptera and nematodes. PMID:23056407

  17. N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies.

    PubMed

    Liu, Y Diana; Goetze, Andrew M; Bass, Randal B; Flynn, Gregory C

    2011-04-01

    Therapeutic proteins contain a large number of post-translational modifications, some of which could potentially impact their safety or efficacy. In one of these changes, pyroglutamate can form on the N terminus of the polypeptide chain. Both glutamine and glutamate at the N termini of recombinant monoclonal antibodies can cyclize spontaneously to pyroglutamate (pE) in vitro. Glutamate conversion to pyroglutamate occurs more slowly than from glutamine but has been observed under near physiological conditions. Here we investigated to what extent human IgG2 N-terminal glutamate converts to pE in vivo. Pyroglutamate levels increased over time after injection into humans, with the rate of formation differing between polypeptide chains. These changes were replicated for the same antibodies in vitro under physiological pH and temperature conditions, indicating that the changes observed in vivo were due to chemical conversion not differential clearance. Differences in the conversion rates between the light chain and heavy chain on an antibody were eliminated by denaturing the protein, revealing that structural elements affect pE formation rates. By enzymatically releasing pE from endogenous antibodies isolated from human serum, we could estimate the naturally occurring levels of this post-translational modification. Together, these techniques and results can be used to predict the exposure of pE for therapeutic antibodies and to guide criticality assessments for this attribute.

  18. Rescue of functional DeltaF508-CFTR channels by co-expression with truncated CFTR constructs in COS-1 cells.

    PubMed

    Owsianik, Grzegorz; Cao, Lishuang; Nilius, Bernd

    2003-11-06

    The most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), DeltaF508-CFTR, is misprocessed and subsequently degraded in the endoplasmic reticulum. Using the patch-clamp technique, we showed that co-expressions of DeltaF508-CFTR with the N-terminal CFTR truncates containing bi-arginine (RXR) retention/retrieval motifs result in a functional rescue of the DeltaF508-CFTR mutant channel in COS-1 cells. This DeltaF508-CFTR rescue process was strongly impaired when truncated CFTR constructs possessed either the DeltaF508 mutation or arginine-to-lysine mutations in RXRs. In conclusions, our data demonstrated that expression of truncated CFTR constructs could be a novel promising approach to improve maturation of DeltaF508-CFTR channels.

  19. Hydroxyl Radical-Mediated Novel Modification of Peptides: N-Terminal Cyclization through the Formation of α-Ketoamide.

    PubMed

    Lee, Seon Hwa; Kyung, Hyunsook; Yokota, Ryo; Goto, Takaaki; Oe, Tomoyuki

    2015-01-20

    The hydroxyl radical-mediated oxidation of peptides and proteins constitutes a large group of post-translational modifications that can result in structural and functional changes. These oxidations can lead to hydroxylation, sulfoxidation, or carbonylation of certain amino acid residues and cleavage of peptide bonds. In addition, hydroxyl radicals can convert the N-terminus of peptides to an α-ketoamide via abstraction of the N-terminal α-hydrogen and hydrolysis of the ketimine intermediate. In the present study, we identified N-terminal cyclization as a novel modification mediated by a hydroxyl radical. The reaction of angiotensin (Ang) II (DRVYIHPF) and the hydroxyl radical generated by the Cu(II)/ascorbic acid (AA) system or UV/hydrogen peroxide system produced N-terminal cyclized-Ang II (Ang C) and pyruvamide-Ang II (Ang P, CH3COCONH-RVYIHPF). The structure of Ang C was confirmed by mass spectrometry and comparison to an authentic standard. The subsequent incubation of isolated Ang P in the presence of Cu(II)/AA revealed that Ang P was the direct precursor of Ang C. The proposed mechanism involves the formation of a nitrogen-centered (aminyl) radical, which cyclizes to form a five-membered ring containing the alkoxy radical. The subsequent β-scission reaction of the alkoxyl radical results in the cleavage of the terminal CH3CO group. The initial aminyl radical can be stabilized by chelation to the Cu(II) ions. The affinity of Ang C toward the Ang II type 1 receptor was significantly lower than that of Ang II or Ang P. Ang C was not further metabolized by aminopeptidase A, which converts Ang II to Ang III. Hydroxyl radical-mediated N-terminal cyclization was also observed in other Ang peptides containing N-terminal alanine, arginine, valine, and amyloid β 1-11 (DAEFRHDSGYE).

  20. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    SciTech Connect

    Borko, Ľubomír; Bauerová-Hlinková, Vladena Hostinová, Eva; Gašperík, Juraj; Beck, Konrad; Lai, F. Anthony; Zahradníková, Alexandra; Ševčík, Jozef

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.

  1. A helical bundle in the N-terminal domain of the BLM helicase mediates dimer and potentially hexamer formation.

    PubMed

    Shi, Jing; Chen, Wei-Fei; Zhang, Bo; Fan, San-Hong; Ai, Xia; Liu, Na-Nv; Rety, Stephane; Xi, Xu-Guang

    2017-04-07

    Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.

  2. Dimeric structure of the N-terminal domain of PriB protein from Thermoanaerobacter tengcongensis solved ab initio

    SciTech Connect

    Liebschner, Dorothee; Brzezinski, Krzysztof; Dauter, Miroslawa; Dauter, Zbigniew; Nowak, Marta; Kur, Józef; Olszewski, Marcin

    2012-12-01

    The N-terminal domain of the PriB protein from the thermophilic bacterium T. tengcongensis (TtePriB) was expressed and its crystal structure has been solved at the atomic resolution of 1.09 Å by direct methods. PriB is one of the components of the bacterial primosome, which catalyzes the reactivation of stalled replication forks at sites of DNA damage. The N-terminal domain of the PriB protein from the thermophilic bacterium Thermoanaerobacter tengcongensis (TtePriB) was expressed and its crystal structure was solved at the atomic resolution of 1.09 Å by direct methods. The protein chain, which encompasses the first 104 residues of the full 220-residue protein, adopts the characteristic oligonucleotide/oligosaccharide-binding (OB) structure consisting of a five-stranded β-barrel filled with hydrophobic residues and equipped with four loops extending from the barrel. In the crystal two protomers dimerize, forming a six-stranded antiparallel β-sheet. The structure of the N-terminal OB domain of T. tengcongensis shows significant differences compared with mesophile PriBs. While in all other known structures of PriB a dimer is formed by two identical OB domains in separate chains, TtePriB contains two consecutive OB domains in one chain. However, sequence comparison of both the N-terminal and the C-terminal domains of TtePriB suggests that they have analogous structures and that the natural protein possesses a structure similar to a dimer of two N-terminal domains.

  3. N-terminal and central segments of the type 1 ryanodine receptor mediate its interaction with FK506-binding proteins.

    PubMed

    Girgenrath, Tanya; Mahalingam, Mohana; Svensson, Bengt; Nitu, Florentin R; Cornea, Razvan L; Fessenden, James D

    2013-05-31

    We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca(2+) leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) "tags" placed within N-terminal (amino acid residues 76-619) or central (residues 2157-2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.

  4. Structure of a truncated form of leucine zipper II of JIP3 reveals an unexpected antiparallel coiled-coil arrangement.

    PubMed

    Llinas, Paola; Chenon, Mélanie; Nguyen, T Quyen; Moreira, Catia; de Régibus, Annélie; Coquard, Aline; Ramos, Maria J; Guérois, Raphaël; Fernandes, Pedro A; Ménétrey, Julie

    2016-03-01

    JIP3 and JIP4, two highly related scaffolding proteins for MAP kinases, are binding partners for two molecular motors as well as for the small G protein ARF6. The leucine zipper II (LZII) region of JIP3/4 is the binding site for these three partners. Previously, the crystal structure of ARF6 bound to JIP4 revealed LZII in a parallel coiled-coil arrangement. Here, the crystal structure of an N-terminally truncated form of LZII of JIP3 alone shows an unexpected antiparallel arrangement. Using molecular dynamics and modelling, the stability of this antiparallel LZII arrangement, as well as its specificity for ARF6, were investigated. This study highlights that N-terminal truncation of LZII can change its coiled-coil orientation without affecting its overall stability. Further, a conserved buried asparagine residue was pinpointed as a possible structural determinant for this dramatic structural rearrangement. Thus, LZII of JIP3/4 is a versatile structural motif, modifications of which can impact partner recognition and thus biological function.

  5. Tryptic digestion of human GPIIIa. Isolation and biochemical characterization of the 23 kDa N-terminal glycopeptide carrying the antigenic determinant for a monoclonal antibody (P37) which inhibits platelet aggregation.

    PubMed Central

    Calvete, J J; Rivas, G; Maruri, M; Alvarez, M V; McGregor, J L; Hew, C L; Gonzalez-Rodriguez, J

    1988-01-01

    Early digestion of pure human platelet glycoprotein IIIa (GPIIIa) leads to a single cleavage of the molecule at 23 kDa far from one of the terminal amino acids. Automated Edman degradation demonstrates that GPIIIa and the smaller (23 kDa) tryptic fragment share the same N-terminal amino acid sequence. A further cleavage occurs in the larger fragment (80 kDa), reducing its apparent molecular mass by 10 kDa. The 23 kDa fragment remains attached to the larger ones in unreduced samples. Stepwise reduction of early digested GPIIIa with dithioerythritol selectively reduces the single disulphide bond joining the smaller (23 kDa) to the larger (80/70 kDa) fragments. Two fractions were obtained by size-exclusion chromatography of early digested GPIIIa after partial or full reduction and alkylation. The larger-size fraction contains the 80/70 kDa fragments, while the 23 kDa fragment is isolated in the smaller. The amino acid compositions of these fractions do not differ very significantly from the composition of GPIIIa; however the 23 kDa fragment contains only 10.2% by weight of sugars and is richer in neuraminic acid. Disulphide bonds are distributed four in the 23 kDa glycopeptide and 20-21 in the 80/70 kDa glycopeptide. The epitope for P37, a monoclonal antibody which inhibits platelet aggregation [Melero & González-Rodríguez (1984) Eur. J. Biochem. 141, 421-427] is situated within the first 17 kDa of the N-terminal region of GPIIIa, which gives a special functional interest to this extracellular region of GPIIIa. On the other hand, the epitopes for GPIIIa-specific monoclonal antibodies, P6, P35, P40 and P97, which do not interfere with platelet aggregation, are located within the larger tryptic fragment (80/70 kDa). Thus, the antigenic areas available in the extracellular surface of GPIIIa for these five monoclonal antibodies are now more precisely delineated. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2455507

  6. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity.

    PubMed

    Kimalov, Boaz; Gal-On, Amit; Stav, Ran; Belausov, Eduard; Arazi, Tzahi

    2004-11-01

    Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.

  7. Structure and function of the N-terminal domain of Ralstonia eutropha polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme.

    PubMed

    Kim, Yeo-Jin; Choi, So Young; Kim, Jieun; Jin, Kyeong Sik; Lee, Sang Yup; Kim, Kyung-Jin

    2017-01-01

    Polyhydroxyalkanoates (PHAs) are natural polyesters synthesized by numerous microorganisms as energy and reducing power storage materials, and have attracted much attention as substitutes for petroleum-based plastics. In an accompanying paper, the authors reported the crystal structure of the C-terminal domain of Ralstonia eutropha PHA synthase (PhaC1). Here, the authors report the 3D reconstructed model of full-length of R. eutropha PhaC1 (RePhaC1F ) by small angle X-ray scattering (SAXS) analysis. The catalytic C-terminal domain of RePhaC1 (RePhaC1CD ) dimer is located at the center of RePhaC1F , and the N-terminal domain of RePhaC1 (RePhaC1ND ) is located opposite the dimerization subdomain of RePhaC1CD , indicating that RePhaC1ND is not directly involved in the enzyme catalysis. The localization studies using RePhaC1F , RePhaC1ND and RePhaC1CD revealed that RePhaC1ND plays important roles in PHA polymerization by localizing the enzyme to the PHA granules and stabilizing the growing PHA polymer near the active site of RePhaC1CD . The serial truncation study on RePhaC1ND suggested that the predicted five α-helices (N-α3 to N-α7) are required for proper folding and granule binding function of RePhaC1ND . In addition, the authors also report the SAXS 3D reconstructed model of the RePhaC1F /RePhaMΔC complex (RePhaMΔC , PAKKA motif-truncated version of RePhaM). RePhaM forms a complex with RePhaC1 by interacting with RePhaC1ND and activates RePhaC1 by providing a more extensive surface area for interaction with the growing PHA polymer.

  8. Huntingtin N-terminal monomeric and multimeric structures destabilized by covalent modification of heteroatomic residues

    PubMed Central

    Arndt, James R.; Kondalaji, Samaneh G.; Maurer, Megan M.; Parker, Arlo; Legleiter, Justin

    2015-01-01

    Early-stage oligomer formation of the huntingtin protein may be driven by self-association of the seventeen-residue amphipathic α-helix at the protein’s N-terminus (Nt17). Oligomeric structures have been implicated in neuronal toxicity and may represent important neurotoxic species in Huntington’s disease. Therefore, a residue-specific structural characterization of Nt17 is crucial to understanding and potentially inhibiting oligomer formation. Native electrospray ion mobility spectrometry-mass spectrometry (IMS-MS) techniques and molecular dynamics simulations (MDS), have been applied to study coexisting monomer and multimer conformations of Nt17, independent of the remainder of huntingtin exon 1. MDS suggests gas-phase monomer ion structures are comprised of a helix-turn-coil configuration and a helix-extended coil region. Elongated dimer species are comprised of partially-helical monomers arranged in an antiparallel geometry. This stacked helical bundle may represent the earliest stages of Nt17-driven oligomer formation. Nt17 monomers and multimers have been further probed using diethylpyrocarbonate (DEPC). An N-terminal site (N-terminus of Threonine-3) and Lysine-6 are modified at higher DEPC concentrations, which led to the formation of an intermediate monomer structure. These modifications resulted in decreased extended monomer ion conformers, as well as a reduction in multimer formation. From the MDS experiments for the dimer ions, Lys6 residues in both monomer constituents interact with Ser16 and Glu12 residues on adjacent peptides; therefore, the decrease in multimer formation could result from disruption of these or similar interactions. This work provides a structurally selective model from which to study Nt17 self-association and provides critical insight toward Nt17 multimerization and possibly, the early stages of huntingtin exon 1 aggregation. PMID:26098795

  9. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  10. Promoter-dependent activity on androgen receptor N-terminal domain mutations in androgen insensitivity syndrome.

    PubMed

    Tadokoro-Cuccaro, Rieko; Davies, John; Mongan, Nigel P; Bunch, Trevor; Brown, Rosalind S; Audi, Laura; Watt, Kate; McEwan, Iain J; Hughes, Ieuan A

    2014-01-01

    Androgen receptor (AR) mutations are associated with androgen insensitivity syndrome (AIS). Missense mutations identified in the AR-N-terminal domain (AR-NTD) are rare, and clinical phenotypes are typically mild. We investigated 7 missense mutations and 2 insertion/deletions located in the AR-NTD. This study aimed to elucidate the pathogenic role of AR-NTD mutants in AIS and to use this knowledge to further define AR-NTD function. AR-NTD mutations (Q120E, A159T, G216R, N235K, G248V, L272F, and P380R) were introduced into AR-expression plasmids. Stably expressing cell lines were established for del57L and ins58L. Transactivation was measured using luciferase reporter constructs under the control of GRE and Pem promoters. Intrinsic fluorescence spectroscopy and partial proteolysis studies were performed for mutations which showed reduced activities by using a purified AR-AF1 protein. Pem-luciferase reporter activation was reduced for A159T, N235K, and G248V but not the GRE-luciferase reporter. Protein structure analysis detected no significant change in the AR-AF1 region for these mutations. Reduced cellular expression and transactivation activity were observed for ins58L. The mutations Q120E, G216R, L272F, P380R, and del57L showed small or no detectable changes in function. Thus, clinical and experimental analyses have identified novel AR-signalling defects associated with mutations in the structurally disordered AR-NTD domain in patients with AIS.

  11. Peptidase E, a Peptidase Specific for N-Terminal Aspartic Dipeptides, Is a Serine Hydrolase

    PubMed Central

    Lassy, Rachel A. L.; Miller, Charles G.

    2000-01-01

    Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (104-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available. PMID:10762256

  12. Feline Immunodeficiency Virus Vif N-Terminal Residues Selectively Counteract Feline APOBEC3s.

    PubMed

    Gu, Qinyong; Zhang, Zeli; Cano Ortiz, Lucía; Franco, Ana Cláudia; Häussinger, Dieter; Münk, Carsten

    2016-12-01

    Feline immunodeficiency virus (FIV) Vif protein counteracts feline APOBEC3s (FcaA3s) restriction factors by inducing their proteasomal degradation. The functional domains in FIV Vif for interaction with FcaA3s are poorly understood. Here, we have identified several motifs in FIV Vif that are important for selective degradation of different FcaA3s. Cats (Felis catus) express three types of A3s: single-domain A3Z2, single-domain A3Z3, and double-domain A3Z2Z3. We proposed that FIV Vif would selectively interact with the Z2 and the Z3 A3s. Indeed, we identified two N-terminal Vif motifs (12LF13 and 18GG19) that specifically interacted with the FcaA3Z2 protein but not with A3Z3. In contrast, the exclusive degradation of FcaA3Z3 was regulated by a region of three residues (M24, L25, and I27). Only a FIV Vif carrying a combination of mutations from both interaction sites lost the capacity to degrade and counteract FcaA3Z2Z3. However, alterations in the specific A3s interaction sites did not affect the cellular localization of the FIV Vif protein and binding to feline A3s. Pulldown experiments demonstrated that the A3 binding region localized to FIV Vif residues 50 to 80, outside the specific A3 interaction domain. Finally, we found that the Vif sites specific to individual A3s are conserved in several FIV lineages of domestic cat and nondomestic cats, while being absent in the FIV Vif of pumas. Our data support a complex model of multiple Vif-A3 interactions in which the specific region for selective A3 counteraction is discrete from a general A3 binding domain.

  13. Structural and functional relationships of the steroid hormone receptors’ N-terminal transactivation domain

    PubMed Central

    Kumar, Raj; Litwack, Gerald

    2009-01-01

    Steroid hormone receptors are members of a family of ligand inducible transcription factors, and regulate the transcriptional activation of target genes by recruiting coregulatory proteins to the pre-initiation machinery. The binding of these coregulatory proteins to the steroid hormone receptors is often mediated through their two activation functional domains, AF1, which resides in the N-terminal domain, and the ligand-dependent AF2, which is localized in the C-terminal ligand binding domain. Compared to other important functional domains of the steroid hormone receptors, our understanding of the mechanisms of action of the AF1 are incomplete, in part, due to the fact that, in solution, AF1 is intrinsically disordered (ID). However, recent studies have shown that AF1 must adopt a functionally active and folded conformation for its optimal activity under physiological conditions. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF1-mediated gene activation, focusing on AF1 conformation and coactivator binding. We further propose models for the binding/folding of the AF1 domains of the steroid hormone receptors and their protein-protein interactions. The population of ID AF1 can be visualized as a collection of many different conformations, some of which may be assuming the proper functional folding for other critical target binding partners that result in ultimate assembly of AF1:coactivator complexes and subsequent gene regulation. Knowledge of the mechanisms involved therein will significantly help in understanding how signals from a steroid to a specific target gene are conveyed. PMID:19666041

  14. The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation

    PubMed Central

    2016-01-01

    The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recombination event at the pilE locus that varies the surface exposed residues of the major pilus subunit PilE (pilin) in the pilus fiber. This programmed recombination system has the potential to produce thousands of pilin variants and can produce strains with unproductive pilin molecules that are completely unable to form Tfp. Saturating mutagenesis of the 3’ third of the pilE gene identified 68 unique single nucleotide mutations that each resulted in an underpiliated colony morphology. Notably, all isolates, including those with undetectable levels of pilin protein and no observable surface-exposed pili, retained an intermediate level of transformation competence not exhibited in ΔpilE strains. Site-directed, nonsense mutations revealed that only the first 38 amino acids of the mature pilin N-terminus (the N-terminal domain or Ntd) are required for transformation competence, and microscopy, ELISAs and pilus purification demonstrate that extended Tfp are not required for competence. Transformation in strains producing only the pilin Ntd has the same genetic determinants as wild-type transformation. The Ntd corresponds to the alternative product of S-pilin cleavage, a specific proteolysis unique to pathogenic Neisseria. Mutation of the S-pilin cleavage site demonstrated that S-pilin cleavage mediated release of the Ntd is required for competence when a strain produces unproductive pilin molecules that cannot assemble into a Tfp through mutation or antigenic variation. We conclude that S-pilin cleavage evolved as a mechanism to maintain competence in nonpiliated antigenic

  15. Stable proline box motif at the N-terminal end of alpha-helices.

    PubMed Central

    Viguera, A. R.; Serrano, L.

    1999-01-01

    We describe a novel N-terminal alpha-helix local motif that involves three hydrophobic residues and a Pro residue (Pro-box motif). Database analysis shows that when Pro is the N-cap of an alpha-helix the distribution of amino acids in adjacent positions changes dramatically with respect to the average distribution in an alpha-helix, but not when Pro is at position N1. N-cap Pro residues are usually associated to Ile and Leu, at position N', Val at position N3 and a hydrophobic residue (h) at position N4. The side chain of the N-cap Pro packs against Val, while the hydrophobic residues at positions N' and N4 make favorable interactions. To analyze the role of this putative motif (sequence fingerprint hPXXhh), we have synthesized a series of peptides and analyzed them by circular dichroism (CD) and NMR. We find that this motif is formed in peptides, and that the accompanying hydrophobic interactions contribute up to 1.2 kcal/mol to helix stability. The fact that some of the residues in this fingerprint are not good N-cap and helix formers results in a small overall stabilization of the alpha-helix with respect to other peptides having Gly as the N-cap and Ala at N3 and N4. This suggests that the Pro-box motif will not specially contribute to protein stability but to the specificity of its fold. In fact, 80% of the sequences that contain the fingerprint sequence in the protein database are adopting the described structural motif, and in none of them is the helix extended to place Pro at the more favorable N1 position. PMID:10493574

  16. Glycosylation and surface expression of the influenza virus neuraminidase requires the N-terminal hydrophobic region.

    PubMed Central

    Markoff, L; Lin, B C; Sveda, M M; Lai, C J

    1984-01-01

    A full-length double-stranded DNA copy of an influenza A virus N2 neuraminidase (NA) gene was cloned into the late region of pSV2330, a hybrid expression vector that includes pBR322 plasmid DNA sequences and the simian virus 40 early region and simian virus 40 late region promoters, splice sequences, and transcription termination sites. The protein encoded by the cloned wild-type NA gene was shown to be present in the cytoplasm of fixed cells and at the surface of "live" or unfixed cells by indirect immunofluorescence with N2 monoclonal antibodies. Immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of [35S]methionine-labeled proteins from wild-type vector-infected cells with heterospecific N2 antibody showed that the product of the cloned NA DNA comigrated with glycosylated NA from influenza virus-infected cells, remained associated with internal membranes of cells fractionated into membrane and cytoplasmic fractions, and could form an immunoprecipitable dimer. NA enzymatic activity was detectable after simian virus 40 lysis of vector-infected cells. These properties of the product of the cloned wild-type gene were compared with those of the polypeptides produced by three deletion mutant NA DNAs that were also cloned into the late region of the pSV2330 vector. These mutants lacked 7 (dlk), 21 (dlI), or all 23 amino acids (dlZ) of the amino (N)-terminal variable hydrophobic region that anchors the mature wild-type NA tetrameric structure in the infected cell or influenza viral membrane. Comparison of the phenotypes of these mutants showed that this region in the NA molecule also includes sequences that control translocation of the nascent polypeptide into membrane organelles for glycosylation. Images PMID:6700587

  17. Mechanochemical tuning of myosin-I by the N-terminal region

    PubMed Central

    Greenberg, Michael J.; Lin, Tianming; Shuman, Henry; Ostap, E. Michael

    2015-01-01

    Myosins are molecular motors that generate force to power a wide array of motile cellular functions. Myosins have the inherent ability to change their ATPase kinetics and force-generating properties when they encounter mechanical loads; however, little is known about the structural elements in myosin responsible for force sensing. Recent structural and biophysical studies have shown that myosin-I isoforms, Myosin-Ib (Myo1b) and Myosin-Ic (Myo1c), have similar unloaded kinetics and sequences but substantially different responses to forces that resist their working strokes. Myo1b has the properties of a tension-sensing anchor, slowing its actin-detachment kinetics by two orders of magnitude with just 1 pN of resisting force, whereas Myo1c has the properties of a slow transporter, generating power without slowing under 1-pN loads that would stall Myo1b. To examine the structural elements that lead to differences in force sensing, we used single-molecule and ensemble kinetic techniques to show that the myosin-I N-terminal region (NTR) plays a critical role in tuning myosin-I mechanochemistry. We found that replacing the Myo1c NTR with the Myo1b NTR changes the identity of the primary force-sensitive transition of Myo1c, resulting in sensitivity to forces of <2 pN. Additionally, we found that the NTR plays an important role in stabilizing the post–power-stroke conformation. These results identify the NTR as an important structural element in myosin force sensing and suggest a mechanism for generating diversity of function among myosin isoforms. PMID:26056287

  18. Involvement of c-Jun N-Terminal Kinase in TNF-α-Driven Remodeling.

    PubMed

    Eurlings, Irene M J; Reynaert, Niki L; van de Wetering, Cheryl; Aesif, Scott W; Mercken, Evi M; de Cabo, Rafael; van der Velden, Jos L; Janssen-Heininger, Yvonne M; Wouters, Emiel F M; Dentener, Mieke A

    2017-03-01

    Lung tissue remodeling in chronic obstructive pulmonary disease (COPD) is characterized by airway wall thickening and/or emphysema. Although the bronchial and alveolar compartments are functionally independent entities, we recently showed comparable alterations in matrix composition comprised of decreased elastin content and increased collagen and hyaluronan contents of alveolar and small airway walls. Out of several animal models tested, surfactant protein C (SPC)-TNF-α mice showed remodeling in alveolar and airway walls similar to what we observed in patients with COPD. Epithelial cells are able to undergo a phenotypic shift, gaining mesenchymal properties, a process in which c-Jun N-terminal kinase (JNK) signaling is involved. Therefore, we hypothesized that TNF-α induces JNK-dependent epithelial plasticity, which contributes to lung matrix remodeling. To this end, the ability of TNF-α to induce a phenotypic shift was assessed in A549, BEAS2B, and primary bronchial epithelial cells, and phenotypic markers were studied in SPC-TNF-α mice. Phenotypic markers of mesenchymal cells were elevated both in vitro and in vivo, as shown by the expression of vimentin, plasminogen activator inhibitor-1, collagen, and matrix metalloproteinases. Concurrently, the expression of the epithelial markers, E-cadherin and keratin 7 and 18, was attenuated. A pharmacological inhibitor of JNK attenuated this phenotypic shift in vitro, demonstrating involvement of JNK signaling in this process. Interestingly, activation of JNK signaling was also clearly present in lungs of SPC-TNF-α mice and patients with COPD. Together, these data show a role for TNF-α in the induction of a phenotypic shift in vitro, resulting in increased collagen production and the expression of elastin-degrading matrix metalloproteinases, and provide evidence for involvement of the TNF-α-JNK axis in extracellular matrix remodeling.

  19. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    PubMed Central

    Liu, Xiang; Zaid, Ali; Goh, Lucas Y. H.; Hobson-Peters, Jody; Hall, Roy A.; Merits, Andres

    2017-01-01

    ABSTRACT Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. PMID:28223458

  20. Directional intercept factor of truncated CPCs

    SciTech Connect

    Minano, J.C.

    1983-09-01

    The fraction of power reaching the collector of a truncated cylindrical compound parabolic concentrator, out of the total power arriving at its entry aperture in a given direction, is calculated without ray tracing for all directions.

  1. Structural and biochemical characterization of an RNA/DNA binding motif in the N-terminal domain of RecQ4 helicases

    PubMed Central

    Marino, Francesca; Mojumdar, Aditya; Zucchelli, Chiara; Bhardwaj, Amit; Buratti, Emanuele; Vindigni, Alessandro; Musco, Giovanna; Onesti, Silvia

    2016-01-01

    The RecQ4 helicase belongs to the ubiquitous RecQ family but its exact role in the cell is not completely understood. In addition to the helicase domain, RecQ4 has a unique N-terminal part that is essential for viability and is constituted by a region homologous to the yeast Sld2 replication initiation factor, followed by a cysteine-rich region, predicted to fold as a Zn knuckle. We carried out a structural and biochemical analysis of both the human and Xenopus laevis RecQ4 cysteine-rich regions, and showed by NMR spectroscopy that the Xenopus fragment indeed assumes the canonical Zn knuckle fold, whereas the human sequence remains unstructured, consistent with the mutation of one of the Zn ligands. Both the human and Xenopus Zn knuckles bind to a variety of nucleic acid substrates, with a mild preference for RNA. We also investigated the effect of a segment located upstream the Zn knuckle that is highly conserved and rich in positively charged and aromatic residues, partially overlapping with the C-terminus of the Sld2-like domain. In both the human and Xenopus proteins, the presence of this region strongly enhances binding to nucleic acids. These results reveal novel possible roles of RecQ4 in DNA replication and genome stability. PMID:26888063

  2. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase

    PubMed Central

    Sala, Marina; Spensiero, Antonia; Esposito, Francesca; Scala, Maria C.; Vernieri, Ermelinda; Bertamino, Alessia; Manfra, Michele; Carotenuto, Alfonso; Grieco, Paolo; Novellino, Ettore; Cadeddu, Marta; Tramontano, Enzo; Schols, Dominique; Campiglia, Pietro; Gomez-Monterrey, Isabel M.

    2016-01-01

    The viral enzyme integrase (IN) is essential for the replication of human immunodeficiency virus type 1 (HIV-1) and represents an important target for the development of new antiretroviral drugs. In this study, we focused on the N-terminal domain (NTD), which is mainly involved into protein oligomerization process, for the development and synthesis of a library of overlapping peptide sequences, with specific length and specific offset covering the entire native protein sequence NTD IN 1–50. The most potent fragment, VVAKEIVAH (peptide 18), which includes a His residue instead of the natural Ser at position 39, inhibits the HIV-1 IN activity with an IC50 value of 4.5 μM. Amino acid substitution analysis on this peptide revealed essential residues for activity and allowed us to identify two nonapeptides (peptides 24 and 25), that show a potency of inhibition similar to the one of peptide 18. Interestingly, peptide 18 does not interfere with the dynamic interplay between IN subunits, while peptides 24 and 25 modulated these interactions in different manners. In fact, peptide 24 inhibited the IN-IN dimerization, while peptide 25 promoted IN multimerization, with IC50 values of 32 and 4.8 μM, respectively. In addition, peptide 25 has shown to have selective anti-infective cell activity for HIV-1. These results confirmed peptide 25 as a hit for further development of new chemotherapeutic agents against HIV-1. PMID:27375570

  3. The N-Terminal Non-Kinase-Domain-Mediated Binding of Haspin to Pds5B Protects Centromeric Cohesion in Mitosis.

    PubMed

    Zhou, Linli; Liang, Cai; Chen, Qinfu; Zhang, Zhenlei; Zhang, Bo; Yan, Haiyan; Qi, Feifei; Zhang, Miao; Yi, Qi; Guan, Youchen; Xiang, Xingfeng; Zhang, Xiaoqing; Ye, Sheng; Wang, Fangwei

    2017-04-03

    Sister-chromatid cohesion, mediated by the multi-subunit cohesin complex, must be precisely regulated to prevent chromosome mis-segregation. In prophase and prometaphase, whereas the bulk of cohesin on chromosome arms is removed by its antagonist Wapl, cohesin at centromeres is retained to ensure chromosome biorientation until anaphase onset. It remains incompletely understood how centromeric cohesin is protected against Wapl in mitosis. Here we show that the mitotic histone kinase Haspin binds to the cohesin regulatory subunit Pds5B through a conserved YGA/R motif in its non-catalytic N terminus, which is similar to the recently reported YSR-motif-dependent binding of Wapl to Pds5B. Knockout of Haspin or disruption of Haspin-Pds5B interaction causes weakened centromeric cohesion and premature chromatid separation, which can be reverted by centromeric targeting of a N-terminal short fragment of Haspin containing the Pds5B-binding motif or by prevention of Wapl-dependent cohesin removal. Conversely, excessive Haspin capable of binding Pds5B displaces Wapl from Pds5B and suppresses Wapl activity, and it largely bypasses the Wapl antagonist Sgo1 for cohesion protection. Taken together, these data indicate that the Haspin-Pds5B interaction is required to ensure proper sister-chromatid cohesion, most likely through antagonizing Wapl-mediated cohesin release from mitotic centromeres.

  4. Borrelia burgdorferi protein BBK32 binds to soluble fibronectin via the N-terminal 70-kDa region, causing fibronectin to undergo conformational extension.

    PubMed

    Harris, Gemma; Ma, Wenjiang; Maurer, Lisa M; Potts, Jennifer R; Mosher, Deane F

    2014-08-08

    BBK32 is a fibronectin (FN)-binding protein expressed on the cell surface of Borrelia burgdorferi, the causative agent of Lyme disease. There is conflicting information about where and how BBK32 interacts with FN. We have characterized interactions of a recombinant 86-mer polypeptide, "Bbk32," comprising the unstructured FN-binding region of BBK32. Competitive enzyme-linked assays utilizing various FN fragments and epitope-mapped anti-FN monoclonal antibodies showed that Bbk32 binding involves both the fibrin-binding and the gelatin-binding domains of the 70-kDa N-terminal region (FN70K). Crystallographic and NMR analyses of smaller Bbk32 peptides complexed, respectively, with (2-3)FNI and (8-9)FNI, demonstrated that binding occurs by β-strand addition. Isothermal titration calorimetry indicated that Bbk32 binds to isolated FN70K more tightly than to intact FN. In a competitive enzyme-linked binding assay, complex formation with Bbk32 enhanced binding of FN with mAbIII-10 to the (10)FNIII module. Thus, Bbk32 binds to multiple FN type 1 modules of the FN70K region by a tandem β-zipper mechanism, and in doing so increases accessibility of FNIII modules that interact with other ligands. The similarity in the FN-binding mechanism of BBK32 and previously studied streptococcal proteins suggests that the binding and associated conformational change of FN play a role in infection.

  5. N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication

    PubMed Central

    Lei, Yan-Chang; Tian, Yong-Jun; Ding, Hong-Hui; Wang, Bao-Ju; Yang, Yan; Hao, You-Hua; Zhao, Xi-Ping; Lu, Meng-Ji; Gong, Fei-Li; Yang, Dong-Liang

    2006-01-01

    AIM: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G (APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis B virus (HBV) in vitro and in vivo. METHODS: The mammalian hepatoma cells HepG2 and HuH7 were cotransfected with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vector and 1.3-fold-overlength HBV DNA as well as the linear monomeric HBV of genotype B and C. For in vivo study, an HBV vector-based mouse model was used in which APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vectors were co-delivered with 1.3-fold-overlength HBV DNA via high-volume tail vein injection. Levels of hepatitis B virus surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg) in the media of the transfected cells and in the sera of mice were determined by ELISA. The expression of hepatitis B virus core antigen (HBcAg) in the transfected cells was determined by Western blot analysis. Core-associated HBV DNA was examined by Southern blot analysis. Levels of HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by quantitative PCR and quantitative RT-PCR analysis, respectively. RESULTS: Human APOBEC3G exerted an anti-HBV activity in a dose-dependent manner in HepG2 cells, and comparable suppressive effects were observed on genotype B and C as that of genotype A. Interestingly, the N-terminal or C-terminal cytosine deaminase domain alone could also inhibit HBV replication in HepG2 cells as well as Huh7 cells. Consistent with in vitro results, the levels of HBsAg in the sera of mice were dramatically decreased, with more than 50 times decrease in the levels of serum HBV DNA and core-associated RNA in the liver of mice treated with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain as compared to the controls. CONCLUSION: Our findings provide probably the

  6. Chameleon fragmentation

    SciTech Connect

    Brax, Philippe

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.

  7. The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription

    PubMed Central

    Morin, Benjamin; Coutard, Bruno; Lelke, Michaela; Ferron, François; Kerber, Romy; Jamal, Saïd; Frangeul, Antoine; Baronti, Cécile; Charrel, Rémi; de Lamballerie, Xavier; Vonrhein, Clemens; Lescar, Julien; Bricogne, Gérard; Günther, Stephan; Canard, Bruno

    2010-01-01

    Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease. PMID:20862324

  8. Importin α1 Mediates Yorkie Nuclear Import via an N-terminal Non-canonical Nuclear Localization Signal.

    PubMed

    Wang, Shimin; Lu, Yi; Yin, Meng-Xin; Wang, Chao; Wu, Wei; Li, Jinhui; Wu, Wenqing; Ge, Ling; Hu, Lianxin; Zhao, Yun; Zhang, Lei

    2016-04-08

    The Hippo signaling pathway controls organ size by orchestrating cell proliferation and apoptosis. When the Hippo pathway was inactivated, the transcriptional co-activator Yorkie translocates into the nucleus and forms a complex with transcription factor Scalloped to promote the expression of Hippo pathway target genes. Therefore, the nuclear translocation of Yorkie is a critical step in Hippo signaling. Here, we provide evidence that the N-terminal 1-55 amino acids of Yorkie, especially Arg-15, were essential for its nuclear localization. By mass spectrometry and biochemical analyses, we found that Importin α1 can directly interact with the Yorkie N terminus and drive Yorkie into the nucleus. Further experiments show that the upstream component Hippo can inhibit Importin α1-mediated Yorkie nuclear import. Taken together, we identified a potential nuclear localization signal at the N-terminal end of Yorkie as well as a critical role for Importin α1 in Yorkie nuclear import.

  9. Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion

    PubMed Central

    Ribeiro, Ana Luisa; Silva, Rui D.; Foyn, Håvard; Tiago, Margarida N.; Rathore, Om Singh; Arnesen, Thomas; Martinho, Rui Gonçalo

    2016-01-01

    The gene separation anxiety (san) encodes Naa50/San, a N-terminal acetyltransferase required for chromosome segregation during mitosis. Although highly conserved among higher eukaryotes, the mitotic function of this enzyme is still poorly understood. Naa50/San was originally proposed to be required for centromeric sister chromatid cohesion in Drosophila and human cells, yet, more recently, it was also suggested to be a negative regulator of microtubule polymerization through internal acetylation of beta Tubulin. We used genetic and biochemical approaches to clarify the function of Naa50/San during development. Our work suggests that Naa50/San is required during tissue proliferation for the correct interaction between the cohesin subunits Scc1 and Smc3. Our results also suggest a working model where Naa50/San N-terminally acetylates the nascent Scc1 polypeptide, and that this co-translational modification is subsequently required for the establishment and/or maintenance of sister chromatid cohesion. PMID:27996020

  10. Expression and characterization of the N-terminal half of antistasin, an anticoagulant protein derived from the leech Haementeria officinalis.

    PubMed

    Palladino, L O; Tung, J S; Dunwiddie, C; Alves, K; Lenny, A B; Przysiecki, C; Lehman, D; Nutt, E; Cuca, G C; Law, S W

    1991-02-01

    Antistasin, a 15-kDa anticoagulant protein isolated from the salivary glands of the Mexican leech Haementeria officinalis, has been shown to be a potent inhibitor of factor Xa in the blood coagulation cascade. Antistasin possesses a twofold internal homology between the N- and C-terminal halves of the molecule, suggesting a gene duplication event in the evolution of the antistasin gene. This structural feature also suggests that either or both halves of the protein may possess biological activity if expressed as separate domains. Because the N-terminal domain contains a factor Xa P1-reactive site, we chose to express this domain in an insect cell baculovirus expression system. Characterization of this recombinant half antistasin molecule reveals that the N-terminal domain inhibits factor Xa in vitro, with a K(i) of 1.7 nM.

  11. Structure of a double hexamer of the Pyrococcus furiosus minichromosome maintenance protein N-terminal domain

    SciTech Connect

    Meagher, Martin; Enemark, Eric J.

    2016-06-22

    The crystal structure of the N-terminal domain of thePyrococcus furiosusminichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.

  12. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains

    PubMed Central

    Lucena, Pedro I.; Faget, Douglas V.; Pachulec, Emilia; Robaina, Marcela C.; Klumb, Claudete E.

    2015-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4+ T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions. PMID:26483414

  13. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    SciTech Connect

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-04-19

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite.

  14. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains.

    PubMed

    Lucena, Pedro I; Faget, Douglas V; Pachulec, Emilia; Robaina, Marcela C; Klumb, Claudete E; Robbs, Bruno K; Viola, João P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.

  15. Impact of an N-terminal extension on the stability and activity of the GH11 xylanase from Thermobacillus xylanilyticus.

    PubMed

    Song, Letian; Dumon, Claire; Siguier, Béatrice; André, Isabelle; Eneyskaya, Elena; Kulminskaya, Anna; Bozonnet, Sophie; O'Donohue, Michael Joseph

    2014-03-20

    To understand structure-function relationships in the N-terminal region of GH11 xylanases, the 17 N-terminal amino acids of the GH11 xylanase from Neocallimastix patriciarum (Np-Xyn) have been grafted onto the N-terminal extremity of the untypically short GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn), creating a hybrid enzyme denoted NTfus. The hybrid xylanase displayed properties (pH and temperature optima) similar to those of the parental enzyme, although thermostability was lowered, with the Tm value, being reduced by 5°C. Kinetic assays using oNP-Xylo-oligosaccharides (DP2 and 3) indicated that the N-extension did not procure more extensive substrate binding, even when further mutagenesis was performed to promote this. However, these experiments confirmed weak subsite -3 for both NTfus and the parental enzyme. The catalytic efficiency of NTfus was shown to be 17% higher than that of the parental enzyme on low viscosity wheat arabinoxylan and trials using milled wheat straw as the substrate revealed that NTfus released more substituted oligosaccharide products (Xyl/Ara=8.97±0.13 compared to Xyl/Ara=9.70±0.21 for the parental enzyme), suggesting that the hybrid enzyme possesses wider substrate selectivity. Combining either the parental enzyme or NTfus with the cellulolytic cocktail Accellerase 1500 boosted the impact of the latter on wheat straw, procuring yields of solubilized xylose and glucose of 23 and 24% of theoretical yield, respectively, thus underlining the benefits of added xylanase activity when using this cellulase cocktail. Overall, in view of the results obtained for NTfus, we propose that the N-terminal extension leads to the modification of a putative secondary substrate binding site, a hypothesis that is highly consistent with previous data.

  16. Impact of N-Terminal Acetylation of α-Synuclein on Its Random Coil and Lipid Binding Properties

    PubMed Central

    2012-01-01

    N-Terminal acetylation of α-synuclein (aS), a protein implicated in the etiology of Parkinson’s disease, is common in mammals. The impact of this modification on the protein’s structure and dynamics in free solution and on its membrane binding properties has been evaluated by high-resolution nuclear magnetic resonance and circular dichroism (CD) spectroscopy. While no tetrameric form of acetylated aS could be isolated, N-terminal acetylation resulted in chemical shift perturbations of the first 12 residues of the protein that progressively decreased with the distance from the N-terminus. The directions of the chemical shift changes and small changes in backbone 3JHH couplings are consistent with an increase in the α-helicity of the first six residues of aS, although a high degree of dynamic conformational disorder remains and the helical structure is sampled <20% of the time. Chemical shift and 3JHH data for the intact protein are virtually indistinguishable from those recorded for the corresponding N-terminally acetylated and nonacetylated 15-residue synthetic peptides. An increase in α-helicity at the N-terminus of aS is supported by CD data on the acetylated peptide and by weak medium-range nuclear Overhauser effect contacts indicative of α-helical character. The remainder of the protein has chemical shift values that are very close to random coil values and indistinguishable between the two forms of the protein. No significant differences in the fibrillation kinetics were observed between acetylated and nonacetylated aS. However, the lipid binding properties of aS are strongly impacted by acetylation and exhibit distinct behavior for the first 12 residues, indicative of an initiation role for the N-terminal residues in an “initiation–elongation” process of binding to the membrane. PMID:22694188

  17. Design, high-level expression, purification and characterization of soluble fragments of the hepatitis C virus NS3 RNA helicase suitable for NMR-based drug discovery methods and mechanistic studies.

    PubMed

    Gesell, J J; Liu, D; Madison, V S; Hesson, T; Wang, Y S; Weber, P C; Wyss, D F

    2001-08-01

    RNA helicases represent a family of enzymes that unwind double-stranded (ds) RNA in a nucleoside triphosphate (NTP)-dependent fashion and which are required in all aspects of cellular RNA metabolism and processing. The hepatitis C virus (HCV) non-structural 3 (NS3) protein possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion of the 631 amino acid residue bifunctional enzyme. The HCV NS3 RNA helicase is of key importance in the life cycle of HCV, which makes it a target for the development of therapeutics. However, neither the precise mechanism nor the substrate structure has been defined for this enzyme. For nuclear magnetic resonance (NMR)-based drug discovery methods and for mechanistic studies we engineered, prepared and characterized various truncated constructs of the 451-residue HCV NS3 RNA helicase. Our goal was to produce smaller fragments of the enzyme, which would be amenable to solution NMR techniques while retaining their native NTP and/or nucleic acid binding sites. Solution conditions were optimized to obtain high-quality heteronuclear NMR spectra of nitrogen-15 isotope-labeled constructs, which are typical of well-folded monomeric proteins. Moreover, NMR binding studies and functional data directly support the correct folding of these fragments.

  18. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    PubMed

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  19. Conformational unfolding in the N-terminal region of ribonuclease A detected by nonradiative energy transfer.

    PubMed

    McWherter, C A; Haas, E; Leed, A R; Scheraga, H A

    1986-04-22

    Unfolding in the N-terminal region of RNase A was studied by the nonradiative energy-transfer technique. RNase A was labeled with a nonfluorescent acceptor (2,4-dinitrophenyl) on the alpha-amino group and a fluorescent donor (ethylenediamine monoamide of 2-naphthoxyacetic acid) on a carboxyl group in the vicinity of residue 50 (75% at Glu-49 and 25% at Asp-53). The distribution of donor labeling sites does not affect the results of this study since they are close in both the sequence and the three-dimensional structure. The sites of labeling were determined by peptide mapping. The derivatives possessed full enzymatic activity and underwent reversible thermal transitions. However, there were some quantitative differences in the thermodynamic parameters. When the carboxyl groups were masked, there was a 5 degrees C lowering of the melting temperature at pH 2 and 4, and no significant change in delta H(Tm). Labeling of the alpha-amino group had no effect on the melting temperature or delta H(Tm) at pH 2 but did result in a dramatic decrease in delta H(Tm) of the unfolding reaction at pH 4. The melting temperature did not change appreciably at pH 4, indicating that an enthalpy/entropy compensation had occurred. The efficiencies of energy transfer determined with both fluorescence intensity and lifetime measurements were in reasonably good agreement. The transfer efficiency dropped from about 60% under folding conditions to roughly 20% when the derivatives were unfolded with disulfide bonds intact and was further reduced to 5% when the disulfide bonds were reduced. The interprobe separation distance was estimated to be 35 +/- 2 A under folding conditions. The contribution to the interprobe distance resulting from the finite size of the probes was treated by using simple geometric considerations and a rotational isomeric state model of the donor probe linkage. With this model, the estimated average interprobe distance of 36 A is in excellent agreement with the

  20. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  1. The first N-terminal unprotected (Gly-Aib)n peptide: H-Gly-Aib-Gly-Aib-OtBu.

    PubMed

    Gessmann, Renate; Brückner, Hans; Petratos, Kyriacos

    2015-12-01

    Glycine (Gly) is incorporated in roughly half of all known peptaibiotic (nonribosomally biosynthesized antibiotic peptides of fungal origin) sequences and is the residue with the greatest conformational flexibility. The conformational space of Aib (α-aminoisobutyric acid) is severely restricted by the second methyl group attached to the Cα atom. Most of the crystal structures containing Aib are N-terminal protected. Deprotection of the N- or C-terminus of peptides may alter the hydrogen-bonding scheme and/or the structure and may facilitate crystallization. The structure reported here for glycyl-α-aminoisobutyrylglycyl-α-aminoisobutyric acid tert-butyl ester, C16H30N4O5, describes the first N-terminal-unprotected (Gly-Aib)n peptide. The achiral peptide could form an intramolecular hydrogen bond between the C=O group of Gly1 and the N-H group of Aib4. This hydrogen bond is found in all tetrapeptides and N-terminal-protected tripeptides containing Aib, apart from one exception. In the present work, this hydrogen bond is not observed (N...O = 5.88 Å). Instead, every molecule is hydrogen bonded to six other symmetry-related molecules with a total of eight hydrogen bonds per molecule. The backbone conformation starts in the right-handed helical region (and the left-handed helical region for the inverted molecule) and reverses the screw sense in the last two residues.

  2. Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis

    PubMed Central

    Bonsignore, Lindsay A.; Butler, Jill Sergesketter; Klinge, Carolyn M.; Tooley, Christine E. Schaner

    2015-01-01

    Though discovered over four decades ago, the function of N-terminal methylation has mostly remained a mystery. Our discovery of the first mammalian N-terminal methyltransferase, NRMT1, has led to the discovery of many new functions for N-terminal methylation, including regulation of DNA/protein interactions, accurate mitotic division, and nucleotide excision repair (NER). Here we test whether NRMT1 is also important for DNA double-strand break (DSB) repair, and given its previously known roles in cell cycle regulation and the DNA damage response, assay if NRMT1 is acting as a tumor suppressor. We find that NRMT1 knockdown significantly enhances the sensitivity of breast cancer cell lines to both etoposide treatment and γ-irradiation, as well as, increases proliferation rate, invasive potential, anchorage-independent growth, xenograft tumor size, and tamoxifen sensitivity. Interestingly, this positions NRMT1 as a tumor suppressor protein involved in multiple DNA repair pathways, and indicates, similar to BRCA1 and BRCA2, its loss may result in tumors with enhanced sensitivity to diverse DNA damaging chemotherapeutics. PMID:25909287

  3. The SAS-5 N-terminal domain is a tetramer, with implications for centriole assembly in C. elegans.

    PubMed

    Shimanovskaya, Ekaterina; Qiao, Renping; Lesigang, Johannes; Dong, Gang

    2013-07-01

    The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. It has a unique 9-fold symmetry and its assembly is governed by at least five component proteins (SPD-2, ZYG-1, SAS-5, SAS-6 and SAS-4), which are recruited in a hierarchical order. Recently published structural studies of the SAS-6 N-terminal domain have greatly advanced our understanding of the mechanisms of centriole assembly. However, it remains unclear how the weak interaction between the SAS-6 N-terminal head groups could drive the assembly of a closed ring-like structure, and what determines the stacking of multiple rings on top one another in centriole duplication. We recently reported that SAS-5 binds specifically to a very narrow region of the SAS-6 central coiled coil through its C-terminal domain (CTD, residues 391-404). Here, we further demonstrate by both static light scattering and small angle X-ray scattering that the SAS-5 N-terminal domain (NTD, residues 1-260) forms a tetramer. Specifically, we found that the tetramer is formed by SAS-5 residues 82-260, whereas residues 1-81 are intrinsically disordered. Taking these results together, we propose a working model for SAS-5-mediated assembly of the multi-layered central tube structure.

  4. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR.

    PubMed

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-03-02

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains.

  5. Human cap methyltransferase (RNMT) N-terminal non-catalytic domain mediates recruitment to transcription initiation sites

    PubMed Central

    Aregger, Michael; Cowling, Victoria H.

    2013-01-01

    Gene expression in eukaryotes is dependent on the mRNA methyl cap which mediates mRNA processing and translation initiation. Synthesis of the methyl cap initiates with the addition of 7-methylguanosine to the initiating nucleotide of RNA pol II (polymerase II) transcripts, which occurs predominantly during transcription and in mammals is catalysed by RNGTT (RNA guanylyltransferase and 5′ phosphatase) and RNMT (RNA guanine-7 methyltransferase). RNMT has a methyltransferase domain and an N-terminal domain whose function is unclear; it is conserved in mammals, but not required for cap methyltransferase activity. In the present study we report that the N-terminal domain is necessary and sufficient for RNMT recruitment to transcription initiation sites and that recruitment occurs in a DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole)-dependent manner. The RNMT-activating subunit, RAM (RNMT-activating miniprotein), is also recruited to transcription initiation sites via an interaction with RNMT. The RNMT N-terminal domain is required for transcript expression, translation and cell proliferation. PMID:23863084

  6. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge.

    PubMed

    Wang, Yawei; Fu, Zheng; Huang, Huoqing; Zhang, Huashan; Yao, Bin; Xiong, Hairong; Turunen, Ossi

    2012-05-01

    In order to increase the stability of thermophilic Thermomyces lanuginosus GH11 xylanase, TLX, a disulfide bridge Q1C-Q24C was introduced into the N-terminal region of the enzyme. The apparent temperature optimum shifted upwards at pH 6.5 by about 10°C to 75°C. The resistance to thermal inactivation also increased by about 10°C. The melting temperature measured by CD spectroscopy increased from 66 to 74°C. Therefore the N-terminal disulfide bridge increased both kinetic and thermodynamic stability almost equally. At pH 8 and 70°C, the disulfide bridge increased the enzyme half-life 20-fold in the presence of substrate. In contrast to the situation in acidic-neutral pH, the substrate decreased the thermostability of xylanases in alkaline pH. The upper limit for the performance of the disulfide bridge mutant at pH 9 was 75°C. This study showed that N-terminal disulfide bridges can stabilize even thermostable family GH11 xylanases.

  7. The Sec7 N-terminal regulatory domains facilitate membrane-proximal activation of the Arf1 GTPase

    PubMed Central

    Richardson, Brian C; Halaby, Steve L; Gustafson, Margaret A; Fromme, J Christopher

    2016-01-01

    The Golgi complex is the central sorting compartment of eukaryotic cells. Arf guanine nucleotide exchange factors (Arf-GEFs) regulate virtually all traffic through the Golgi by activating Arf GTPase trafficking pathways. The Golgi Arf-GEFs contain multiple autoregulatory domains, but the precise mechanisms underlying their function remain largely undefined. We report a crystal structure revealing that the N-terminal DCB and HUS regulatory domains of the Arf-GEF Sec7 form a single structural unit. We demonstrate that the established role of the N-terminal region in dimerization is not conserved; instead, a C-terminal autoinhibitory domain is responsible for dimerization of Sec7. We find that the DCB/HUS domain amplifies the ability of Sec7 to activate Arf1 on the membrane surface by facilitating membrane insertion of the Arf1 amphipathic helix. This enhancing function of the Sec7 N-terminal domains is consistent with the high rate of Arf1-dependent trafficking to the plasma membrane necessary for maximal cell growth. DOI: http://dx.doi.org/10.7554/eLife.12411.001 PMID:26765562

  8. Conformation Changes N-terminal Involvement and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain

    SciTech Connect

    H Wang; H Robinson; H Ke

    2011-12-31

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  9. Conformation changes, N-terminal involvement and cGMP signal relay in phosphodiesterase-5 GAF domain

    SciTech Connect

    Wang, H.; Robinson, H.; Ke, H.

    2010-12-03

    The activity of phosphodiesterase-5 (PDE5) is specific for cGMP and is regulated by cGMP binding to GAF-A in its regulatory domain. To better understand the regulatory mechanism, x-ray crystallographic and biochemical studies were performed on constructs of human PDE5A1 containing the N-terminal phosphorylation segment, GAF-A, and GAF-B. Superposition of this unliganded GAF-A with the previously reported NMR structure of cGMP-bound PDE5 revealed dramatic conformational differences and suggested that helix H4 and strand B3 probably serve as two lids to gate the cGMP-binding pocket in GAF-A. The structure also identified an interfacial region among GAF-A, GAF-B, and the N-terminal loop, which may serve as a relay of the cGMP signal from GAF-A to GAF-B. N-terminal loop 98-147 was physically associated with GAF-B domains of the dimer. Biochemical analyses showed an inhibitory effect of this loop on cGMP binding and its involvement in the cGMP-induced conformation changes.

  10. Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene

    PubMed Central

    Elsayed, Solaf M.; Phillips, Jennifer B.; Heller, Raoul; Thoenes, Michaela; Elsobky, Ezzat; Nürnberg, Gudrun; Nürnberg, Peter; Seland, Saskia; Ebermann, Inga; Altmüller, Janine; Thiele, Holger; Toliat, Mohammad; Körber, Friederike; Hu, Xue-Jia; Wu, Yun-Dong; Zaki, Maha S.; Abdel-Salam, Ghada; Gleeson, Joseph; Boltshauser, Eugen; Westerfield, Monte; Bolz, Hanno J.

    2015-01-01

    Determination of variant pathogenicity represents a major challenge in the era of high-throughput sequencing. Erroneous categorization may result if variants affect genes that are in fact dispensable. We demonstrate that this also applies to rare, apparently unambiguous truncating mutations of an established disease gene. By whole-exome sequencing (WES) in a consanguineous family with congenital non-syndromic deafness, we unexpectedly identified a homozygous nonsense variant, p.Arg1066*, in AHI1, a gene associated with Joubert syndrome (JBTS), a severe recessive ciliopathy. None of four homozygotes expressed any signs of JBTS, and one of them had normal hearing, which also ruled out p.Arg1066* as the cause of deafness. Homozygosity mapping and WES in the only other reported JBTS family with a homozygous C-terminal truncation (p.Trp1088Leufs*16) confirmed AHI1 as disease gene, but based on a more N-terminal missense mutation impairing WD40-repeat formation. Morpholinos against N-terminal zebrafish Ahi1, orthologous to where human mutations cluster, produced a ciliopathy, but targeting near human p.Arg1066 and p.Trp1088 did not. Most AHI1 mutations in JBTS patients result in truncated protein lacking WD40-repeats and the SH3 domain; disease was hitherto attributed to loss of these protein interaction modules. Our findings indicate that normal development does not require the C-terminal SH3 domain. This has far-reaching implications, considering that variants like p.Glu984* identified by preconception screening (‘Kingsmore panel’) do not necessarily indicate JBTS carriership. Genomes of individuals with consanguineous background are enriched for homozygous variants that may unmask dispensable regions of disease genes and unrecognized false positives in diagnostic large-scale sequencing and preconception carrier screening. PMID:25616960

  11. Cross-reactive and major virus-specific epitopes are located at the N-terminal halves of the cylindrical inclusion proteins of turnip mosaic and zucchini yellow mosaic potyviruses.

    PubMed

    Kundu, A K; Ohshima, K; Sako, N; Yaegashi, H

    2000-01-01

    To investigate the antigenic nature of cylindrical inclusion proteins (CIPs) of the potyviruses Turnip mosaic virus (TuMV) and Zucchini yellow mosaic virus (ZYMV), monoclonal antibodies (MAbs) against the two CIPs were produced and epitopes on the CIPs were localized using Escherichia coli-expressed CIP fragments in Western blot analysis. All 23 MAbs against ZYMV CIP reacted only with ZYMV CIP. In contrast out of the 18 MAbs produced against TuMV CIP, 14 MAbs were TuMV CIP-specific while the remaining four MAbs cross-reacted with both CIPs. The four cross-reactive MAbs recognized two distinct epitopes in the N-terminal half of TuMV CIP corresponding to amino acid residues 103-119 and 224-237. Thirteen out of 14 TuMV CIP-specific MAbs recognized two distinct epitopes within residues 1-102 and 120-214, while the other one recognized an epitope within residues 301-644. On the other hand, 21 out of 23 ZYMV CIP-specific MAbs recognized epitopes within residues 1-118, while the remaining two recognized epitopes within residues 301-522. These results suggest that cross-reactive and major virus-specific epitopes are located at the N-terminal half of the respective CIPs.

  12. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation.

    SciTech Connect

    Qian, Zhen; Horton, John R.; Cheng, Xiadong; Lutz, Stefan; Emory

    2009-11-02

    Circular permutation of Candida antarctica lipase B yields several enzyme variants with substantially increased catalytic activity. To better understand the structural and functional consequences of protein termini reorganization, we have applied protein engineering and x-ray crystallography to cp283, one of the most active hydrolase variants. Our initial investigation has focused on the role of an extended surface loop, created by linking the native N- and C-termini, on protein integrity. Incremental truncation of the loop partially compensates for observed losses in secondary structure and the permutants temperature of unfolding. Unexpectedly, the improvements are accompanied by quaternary-structure changes from monomer to dimer. The crystal structures of one truncated variant (cp283{Delta}7) in the apo-form determined at 1.49 {angstrom} resolution and with a bound phosphonate inhibitor at 1.69 {angstrom} resolution confirmed the formation of a homodimer by swapping of the enzyme's 35-residue N-terminal region. Separately, the new protein termini at amino acid positions 282/283 convert the narrow access tunnel to the catalytic triad into a broad crevice for accelerated substrate entry and product exit while preserving the native active-site topology for optimal catalytic turnover.

  13. N-Terminal Lipid Modification Is Required for the Stable Accumulation of CyanoQ in Synechocystis sp. PCC 6803

    PubMed Central

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.; Roose, Johnna L.

    2016-01-01

    The CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 to eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex. PMID:27656895

  14. The effects of phosphomimetic lid mutation on the thermostability of the N-terminal domain of MDM2.

    PubMed

    Worrall, Erin G; Worrall, Liam; Blackburn, Elizabeth; Walkinshaw, Malcolm; Hupp, Ted R

    2010-05-07

    The multidomain E3 ubiquitin ligase MDM2 catalyzes p53 ubiquitination by a "dual-site" docking mechanism whereby MDM2 binding to at least two distinct peptide motifs on p53 promotes ubiquitination. One protein-protein interaction occurs between the N-terminal hydrophobic pocket of MDM2 and the transactivation motif of p53, and the second interaction occurs between the acidic domain of MDM2 and a motif in the DNA-binding domain of p53. A flexible N-terminal pseudo-substrate or "lid" adjacent to the N-terminal hydrophobic pocket of MDM2 has a phosphorylation site, and there are distinct models proposed on how the phosphorylated lid could affect MDM2 function. Biochemical studies have predicted that phosphomimetic mutation will stabilize the lid on the surface of MDM2 and will "open" the hydrophobic pocket and stabilize the MDM2-p53 complex, while NMR studies proposed that phosphomimetic mutation "closes" the lid over the MDM2 pocket and inhibits MDM2-p53 complex formation. To resolve these discrepancies, we utilized a quantitative fluorescence-based dye binding assay to measure the thermal unfolding of wild-type (wt), DeltaLid, and S17D N-terminal domains of MDM2 as a function of increasing ligand concentration. Our data reveal that S17D lid mutation increases, rather than decreases, the thermostability of the N-terminal domain of MDM2 in the absence or in the presence of ligand. DeltaLid mutation, by contrast, increases MDM2 thermoinstability. This is consistent with biochemical data, using full-length MDM2, showing that the S17D mutation stabilizes the MDM2-p53 complex and increases the specific activity of the E3 ubiquitin ligase function of MDM2. These data indicate that phosphomimetic lid mutation results in an "opening," rather than a "closing," of the pocket of MDM2 and highlight the ability of small intrinsically disordered or unstructured peptide motifs to regulate the specific activity of a protein.

  15. Truncation correction for oblique filtering lines

    SciTech Connect

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Guenter; Dennerlein, Frank; Noo, Frederic

    2008-12-15

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  16. Truncation correction for oblique filtering lines.

    PubMed

    Hoppe, Stefan; Hornegger, Joachim; Lauritsch, Günter; Dennerlein, Frank; Noo, Frédéric

    2008-12-01

    State-of-the-art filtered backprojection (FBP) algorithms often define the filtering operation to be performed along oblique filtering lines in the detector. A limited scan field of view leads to the truncation of those filtering lines, which causes artifacts in the final reconstructed volume. In contrast to the case where filtering is performed solely along the detector rows, no methods are available for the case of oblique filtering lines. In this work, the authors present two novel truncation correction methods which effectively handle data truncation in this case. Method 1 (basic approach) handles data truncation in two successive preprocessing steps by applying a hybrid data extrapolation method, which is a combination of a water cylinder extrapolation and a Gaussian extrapolation. It is independent of any specific reconstruction algorithm. Method 2 (kink approach) uses similar concepts for data extrapolation as the basic approach but needs to be integrated into the reconstruction algorithm. Experiments are presented from simulated data of the FORBILD head phantom, acquired along a partial-circle-plus-arc trajectory. The theoretically exact M-line algorithm is used for reconstruction. Although the discussion is focused on theoretically exact algorithms, the proposed truncation correction methods can be applied to any FBP algorithm that exposes oblique filtering lines.

  17. PrP-C1 fragment in cattle brains reveals features of the transmissible spongiform encephalopathy associated PrP(sc).

    PubMed

    Serra, Fabienne; Müller, Joachim; Gray, John; Lüthi, Ramona; Dudas, Sandor; Czub, Stefanie; Seuberlich, Torsten

    2017-03-15

    Three different types of bovine spongiform encephalopathy (BSE) are known and supposedly caused by distinct prion strains: the classical (C-) BSE type that was typically found during the BSE epidemic, and two relatively rare atypical BSE types, termed H-BSE and L-BSE. The three BSE types differ in the molecular phenotype of the disease associated prion protein, namely the N-terminally truncated proteinase K (PK) resistant prion protein fragment (PrP(res)). In this study, we report and analyze yet another PrP(res) type (PrP(res-2011)), which was found in severely autolytic brain samples of two cows in the framework of disease surveillance in Switzerland in 2011. Analysis of brain tissues from these animals by PK titration and PK inhibitor assays ruled out the process of autolysis as the cause for the aberrant PrP(res) profile. Immunochemical characterization of the PrP fragments present in the 2011 cases by epitope mapping indicated that PrP(res-2011) corresponds in its primary sequence to the physiologically occurring PrP-C1 fragment. However, high speed centrifugation, sucrose gradient assay and NaPTA precipitation revealed biochemical similarities between PrP(res-2011) and the disease-associated prion protein found in BSE affected cattle in terms of detergent insolubility, PK resistance and PrP aggregation. Although it remains to be established whether PrP(res-2011) is associated with a transmissible disease, our results point out the need of further research on the role the PrP-C1 aggregation and misfolding in health and disease.

  18. The effects of N-glycosylation sites and the N-terminal region on the biological function of {beta}1,3-N-acetylglucosaminyltransferase 2 and its secretion

    SciTech Connect

    Kato, Tatsuya; Suzuki, Mami; Murata, Takeomi; Park, Enoch Y. . E-mail: yspark@agr.shizuoka.ac.jp

    2005-04-08

    Human {beta}1,3-N-acetylglucosaminyltransferase 2 ({beta}3GnT2) is thought to be an enzyme that extends the polylactosamine acceptor chains, but its function and structure analysis are unknown. To obtain insight into the structure of {beta}3GnT2, the effects of N-glycosylation on its biological function were evaluated using the addition of inhibitors, site-directed mutagenesis of potential N-glycosylation sites, and deletion of its N-terminal region using a fusion protein with GFP{sub uv} in a baculovirus expression system. Four of five potential N-glycosylation sites were found to be occupied, and their biological function and secretion were inhibited with the treatment of N-glycosylation inhibitor, tunicamycin. The N-glycosylation at Asn219 was necessary for the {beta}3GnT activity; moreover, N-glycosylation at Asn127 and Asn219 was critical for efficient protein secretion. When Ser221 was replaced with Thr, fusion protein was expressed as a single band, indicating that the double band of the expressed fusion protein was due to the heterogeneity of the glycosylation at Asn219. The truncated protein consisting of amino acids 82-397 (GFP{sub uv}-{beta}3GnT2{delta}83), which lacked both one N-glycosylation site at Asn79 and the stem region of glycosyltransferase, was expressed as only a small form and showed no {beta}3GnT activity. These results suggest that the N-glycosylation site at Asn219, which is conserved throughout the {beta}1,3-glycosyltransferase family, is indispensable not only with regard to its biological function, but also to its secretion. The N-terminal region, which belongs to a stem region of glycosyltransferase, might also be important to the active protein structure.

  19. Fragmentation Processes

    NASA Astrophysics Data System (ADS)

    Whelan, Colm T.

    2012-12-01

    Preface; 1. Direct and resonant double-photoionization: from atoms to solids L. Avaldi and G. Stefani; 2. The application of propagation exterior complex scaling to atomic collisions P. L. Bartlett and A. T. Stelbovics; 3. Fragmentation of molecular-ion beams in intense ultra-short laser pulses I. Ben-Itzhak; 4. Atoms with one and two active electrons in strong laser fields I. A. Ivanov and A. S. Kheifets; 5. Experimental aspects of ionization studies by positron and positronium impact G. Laricchia, D. A. Cooke, Á. Kövér and S. J. Brawley; 6. (e,2e) spectroscopy using fragmentation processes J. Lower, M. Yamazaki and M. Takahashi; 7. A coupled pseudostate approach to the calculation of ion-atom fragmentation processes M. McGovern, H. R. J. Walters and C. T. Whelan; 8. Electron Impact Ionization using (e,2e) coincidence techniques from threshold to intermediate energies A. J. Murray; 9. (e,2e) processes on atomic inner shells C. T. Whelan; 10. Spin resolved atomic (e,2e) processes J. Lower and C. T. Whelan; Index.

  20. Correlation estimation with singly truncated bivariate data.

    PubMed

    Im, Jongho; Ahn, Eunyong; Beck, Namseon; Kim, Jae Kwang; Park, Taesung

    2017-02-27

    Correlation coefficient estimates are often attenuated for truncated samples in the sense that the estimates are biased towards zero. Motivated by real data collected in South Sudan, we consider correlation coefficient estimation with singly truncated bivariate data. By considering a linear regression model in which a truncated variable is used as an explanatory variable, a consistent estimator for the regression slope can be obtained from the ordinary least squares method. A consistent estimator of the correlation coefficient is then obtained by multiplying the regression slope estimator by the variance ratio of the two variables. Results from two limited simulation studies confirm the validity and robustness of the proposed method. The proposed method is applied to the South Sudanese children's anthropometric and nutritional data collected by World Vision. Copyright © 2017 John Wiley & Sons, Ltd.

  1. On consistent truncations in = 2* holography

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Venkat; Buchel, Alex

    2014-02-01

    Although Pilch-Warner (PW) gravitational renormalization group flow [1] passes a number of important consistency checks to be identified as a holographic dual to a large- N SU( N) = 2* supersymmetric gauge theory, it fails to reproduce the free energy of the theory on S 4, computed with the localization techniques. This disagreement points to the existence of a larger dual gravitational consistent truncation, which in the gauge theory flat-space limit reduces to a PW flow. Such truncation was recently identified by Bobev-Elvang-Freedman-Pufu (BEFP) [2]. Additional bulk scalars of the BEFP gravitation truncation might lead to destabilization of the finite-temperature deformed PW flows, and thus modify the low-temperature thermodynamics and hydrodynamics of = 2* plasma. We compute the quasinormal spectrum of these bulk scalar fields in the thermal PW flows and demonstrate that these modes do not condense, as long as the masses of the = 2* hypermultiplet components are real.

  2. [Designing of hybrid human interferon alfa-2 strain-producers and the use of enteropeptidase for obtaining N-terminal methionine-free interferons].

    PubMed

    Shirokov, D A; Riabichenko, V V; Akishina, R I; Ospel'nikova, T P; Glazunov, A V; Chestukhina, G G; Veĭko, V P

    2011-01-01

    A system for production of human interferon-alpha2a (IFN-alpha2a) and IFN-alpha2b lacking N-terminal methionine has been developed. Plasmids containing genes of hybrid IFN-alpha2 under the control of different promoters were constructed; a sequence encoding the enteropeptidase hydrolysis site being introduced in proximal part of the genes. As the result, 4 strains of Escherichia coli producing hybrid IFN-alpha2 have been obtained. The methodology for IFN-alpha2 renaturation, hydrolysis of its N-terminal part, chromatographic purification of N-terminal methionine-free IFN-alpha2 has been developed.

  3. A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

    PubMed Central

    Sabino Cunha, Marcela; Lima Sampaio, Thatiane; Peterlin, B. Matija; Jesus da Costa, Luciana

    2016-01-01

    Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 proviruses. In an attempt to investigate the role played by Nef during the replication cycle of an SIVcpz, a Nef-defective derivative was obtained from the SIVcpzWTGab2 clone by introducing a frame shift mutation at a unique restriction site within the nef sequence. This nef-deleted clone expresses an N-terminal 74-amino acid truncated peptide of Nef and was named SIVcpz-tNef. We found that the SIVcpz-tNef does not behave as a classic nef-deleted HIV-1 or simian immunodeficiency virus of macaques SIVmac. Markedly, SIVcpz-tNef progeny from both Hek-293T and Molt producer cells were completely non-infectious. Moreover, the loss in infectivity of SIVcpz-tNef correlated with the inhibition of Gag and GagPol processing. A marked accumulation of Gag and very low levels of reverse transcriptase were detected in viral lysates. Furthermore, these observations were reproduced once the tNef peptide was expressed in trans both in SIVcpzΔNef and HIV-1WT expressing cells, demonstrating that the truncated peptide is a dominant negative for viral processing and infectivity for both SIVcpz and HIV-1. We demonstrated that the truncated Nef peptide binds to GagPol outside the protease region and by doing so probably blocks processing of both GagPol and Gag precursors at a very early stage. This study demonstrates for the first time that naturally-occurring Nef peptides can potently block lentiviral processing and infectivity. PMID:27399760

  4. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.

    PubMed

    Takenaka, Shinji; Miyatake, Ayaka; Tanaka, Kosei; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Watanabe, Masanori; Yoshida, Ken-ichi

    2015-06-01

    Two amylases, amylase I and amylase II from Bacillus subtilis strain FP-133, were purified to homogeneity and characterized. Their stabilities toward temperature, pH, and organic solvents, and their substrate specificities toward polysaccharides and oligosaccharides were similar. Under moderately high salt conditions, both amylases were more stable than commercial B. licheniformis amylase, and amylase I retained higher amylase activity than amylase II. The N-terminal amino acid sequence, genomic southern blot analysis, and MALDI-TOFF-MS analysis indicated that the halotolerant amylase I was produced by limited carboxy-terminal truncation of the amylase II peptide. The deduced amino acid sequence of amylase II was >95% identical to that of previously reported B. subtilis α-amylases, but their carboxy-terminal truncation points differed. Three recombinant amylases--full-length amylase corresponding to amylase II, an artificially truncated amylase corresponding to amylase I, and an amylase with a larger artificial C-terminal truncation--were expressed in B. subtilis. The artificially truncated recombinant amylases had the same high amylase activity as amylase I under moderately high salt conditions. Sequence comparisons indicated that an increased ratio of Asp/Glu residues in the enzyme may be one factor responsible for increasing halotolerance.

  5. The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer's disease

    PubMed Central

    Flores-Rodríguez, Paola; Ontiveros-Torres, Miguel A.; Cárdenas-Aguayo, María C.; Luna-Arias, Juan P.; Meraz-Ríos, Marco A.; Viramontes-Pintos, Amparo; Harrington, Charles R.; Wischik, Claude M.; Mena, Raúl; Florán-Garduño, Benjamin; Luna-Muñoz, José

    2015-01-01

    We previously demonstrated that, in the early stages of tau processing in Alzheimer's disease, the N-terminal part of the molecule undergoes a characteristic cascade of phosphorylation and progressive misfolding of the proteins resulting in a structural conformation detected by Alz-50. In this immunohistochemical study of AD brain tissue, we have found that C-terminal truncation of tau at Asp-421 was an early event in tau aggregation and analyzed the relationship between phospho-dependent tau epitopes located at the C-terminus with truncation at Glu-391. The aim of this study was to determine whether C-terminal truncation may trigger events leading to the assembly of insoluble PHFs from soluble tau aggregates present in pre-tangle cells. Our findings suggest that there is a complex interaction between phosphorylated and truncated tau species. A model is presented here in which truncated tau protein represents an early neurotoxic species while phosphorylated tau species may provide a neuroprotective role in Alzheimer's disease. PMID:25717290

  6. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense.

    PubMed

    Nishikawa, C Y; Araújo, L M; Kadowaki, M A S; Monteiro, R A; Steffens, M B R; Pedrosa, F O; Souza, E M; Chubatsu, L S

    2012-02-01

    Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ(54) co-factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH(4)Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.

  7. Scattering by a Truncated Periodic Array.

    DTIC Science & Technology

    1987-03-01

    those near the truncated edges of the array. This edge effect is clearly noticeable from the computed data and leads one to conclude that the simple...findings of this work are summarized as follows: (1) The edge effect is clearly observable and should not be ignored; (2) The array scat- ters strongly in

  8. Irregularly Shaped Space-Filling Truncated Octahedra

    ERIC Educational Resources Information Center

    Hanson, John Robert

    2008-01-01

    For any parent tetrahedron ABCD, centroids of selected sub-tetrahedra form the vertices of an irregularly shaped space-filling truncated octahedron. To reflect these properties, such a figure will be called an ISTO. Each edge of the ISTO is parallel to and one-eighth the length of one of the edges of tetrahedron ABCD and the volume of the ISTO is…

  9. Family Therapy for the "Truncated" Nuclear Family.

    ERIC Educational Resources Information Center

    Zuk, Gerald H.

    1980-01-01

    The truncated nuclear family consists of a two-generation group in which conflict has produced a polarization of values. The single-parent family is at special risk. Go-between process enables the therapist to depolarize sharply conflicted values and reduce pathogenic relating. (Author)

  10. Phosphorylation Regulates Interaction of 210-kDa Myosin Light Chain Kinase N-terminal Domain with Actin Cytoskeleton.

    PubMed

    Vilitkevich, E L; Khapchaev, A Y; Kudryashov, D S; Nikashin, A V; Schavocky, J P; Lukas, T J; Watterson, D M; Shirinsky, V P

    2015-10-01

    High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303-314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.

  11. Intein-Promoted Cyclization of Aspartic Acid Flanking the Intein Leads to Atypical N-Terminal Cleavage.

    PubMed

    Minteer, Christopher J; Siegart, Nicolle M; Colelli, Kathryn M; Liu, Xinyue; Linhardt, Robert J; Wang, Chunyu; Gomez, Alvin V; Reitter, Julie N; Mills, Kenneth V

    2017-02-28

    Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.

  12. Requirement of N-terminal amino acid residues of gp41 for human immunodeficiency virus type 1-mediated cell fusion.

    PubMed Central

    Schaal, H; Klein, M; Gehrmann, P; Adams, O; Scheid, A

    1995-01-01

    An expression vector was designed to test the structural requirements of the gp41 N terminus for human immunodeficiency virus type 1-induced membrane fusion. Mutations in the region coding for the N terminus of gp41 were found to disrupt glycoprotein expression because of deleterious effects on the Rev-responsive element (RRE). Insertion of an additional RRE in the 3'-noncoding sequence of env made possible efficient glycoprotein expression, irrespective of the mutations introduced into the RRE in the natural location. This permitted the insertion of the unique restriction site SpeI within the N-terminal sequences of gp41, allowing convenient and efficient mutation of the gp41 N terminus by using double-stranded synthetic oligonucleotides. Mutants with deletions of 1 to 7 amino acids of the N terminus were constructed. Expression and cleavage of all mutants were confirmed by Western immunoblot analysis with anti-gp41 antibodies. The capability of mutants to induce membrane fusion was monitored following transfection of HeLa-T4+ cell lines with wild-type and mutant expression vectors by electroporation and microinjection. The efficiency of cell-fusing activity decreased drastically with deletion of 3 and 4 amino acids and was completely lost with deletion of 5 amino acids. Cotransfection of the parent and mutant expression vectors resulted in reduced cell-fusing activity. The extent of this dominant interference by mutant glycoprotein paralleled the decrease in cell-fusing activity of the mutants alone. This suggests the existence of a specific N-terminal structure required for fusing activity. However, there does not appear to be a stringent requirement for the precise length of the N terminus. This finding is supported by the length variation of this region among natural human immunodeficiency virus type 1 isolates and is in contrast to the apparent stringency in the length of analogous N-terminal structures of influenza A virus and paramyxovirus fusion

  13. Identification of the WW domain-interaction sites in the unstructured N-terminal domain of EBV LMP 2A.

    PubMed

    Seo, Min-Duk; Park, Sung Jean; Kim, Hyun-Jung; Lee, Bong Jin

    2007-01-09

    Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase.

  14. Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle.

    PubMed

    Cheng, Mary Hongying; Bahar, Ivet

    2014-10-01

    Neurotransmitter: sodium symporters (NSSs) regulate neuronal signal transmission by clearing excess neurotransmitters from the synapse, assisted by the co-transport of sodium ions. Extensive structural data have been collected in recent years for several members of the NSS family, which opened the way to structure-based studies for a mechanistic understanding of substrate transport. Leucine transporter (LeuT), a bacterial orthologue, has been broadly adopted as a prototype in these studies. This goal has been elusive, however, due to the complex interplay of global and local events as well as missing structural data on LeuT N-terminal segment. We provide here for the first time a comprehensive description of the molecular events leading to substrate/Na+ release to the postsynaptic cell, including the structure and dynamics of the N-terminal segment using a combination of molecular simulations. Substrate and Na+-release follows an influx of water molecules into the substrate/Na+-binding pocket accompanied by concerted rearrangements of transmembrane helices. A redistribution of salt bridges and cation-π interactions at the N-terminal segment prompts substrate release. Significantly, substrate release is followed by the closure of the intracellular gate and a global reconfiguration back to outward-facing state to resume the transport cycle. Two minimally hydrated intermediates, not structurally resolved to date, are identified: one, substrate-bound, stabilized during the passage from outward- to inward-facing state (holo-occluded), and another, substrate-free, along the reverse transition (apo-occluded).

  15. Nickel Ligation of the N-Terminal Amine of HypA Is Required for Urease Maturation in Helicobacter pylori.

    PubMed

    Hu, Heidi Q; Johnson, Ryan C; Merrell, D Scott; Maroney, Michael J

    2017-02-28

    The human pathogen Helicobacter pylori requires nickel for colonization of the acidic environment of the stomach. HypA, a Ni metallochaperone that is typically associated with hydrogenase maturation, is also required for urease maturation and acid survival of H. pylori. There are two proposed Ni site structures for HypA; one is a paramagnetic six-coordinate site characterized by X-ray absorption spectroscopy (XAS) in unmodified HypA, while another is a diamagnetic four-coordinate planar site characterized by solution nuclear magnetic resonance in an N-terminally modified HypA construct. To determine the role of the N-terminal amine in Ni binding of HypA, an N-terminal extension variant, L2*-HypA, in which a leucine residue was inserted into the second position of the amino acid sequence in the proposed Ni-binding motif, was characterized in vitro and in vivo. Structural characterization of the Ni site using XAS showed a coordination change from six-coordinate in wild-type HypA (WT-HypA) to five-coordinate pyramidal in L2*-HypA, which was accompanied by the loss of two N/O donor protein ligands and the addition of an exogenous bromide ligand from the buffer. The magnetic properties of the Ni sites in WT-HypA compared to those of the Ni sites in L2*-HypA confirmed that a spin-state change from high to low spin accompanied this change in structure. The L2*-HypA H. pylori strain was shown to be acid sensitive and deficient in urease activity in vivo. In vitro characterization showed that L2*-HypA did not disrupt the HypA-UreE interaction that is essential for urease maturation but was at least 20-fold weaker in Ni binding than WT-HypA. Characterization of the L2*-HypA variant clearly demonstrates that the N-terminal amine of HypA is involved in proper Ni coordination and is necessary for urease activity and acid survival.

  16. Structural characterization and biological activity of recombinant human epidermal growth factor proteins with different N-terminal sequences.

    PubMed

    Svoboda, M; Bauhofer, A; Schwind, P; Bade, E; Rasched, I; Przybylski, M

    1994-05-18

    The primary structures and molecular homogeneity of recombinant human epidermal growth factors from different suppliers were characterized and their biological activities evaluated by a standard DNA synthesis assay. Molecular weight determinations using 252Cf-plasma-desorption and electrospray mass spectrometry in combination with N- and C-terminal sequence analysis and determination of intramolecular disulfide bridges revealed that one recombinant protein had the correct human-identical structure (54 aa residues; 6347 Da). In contrast, a second recombinant protein (7020 Da) was found to contain a pentapeptide (KKYPR) insert following its N-terminal methionine. This structural variant showed a significant reduction in its capacity to stimulate DNA synthesis.

  17. Differential Contributions of Tacaribe Arenavirus Nucleoprotein N-Terminal and C-Terminal Residues to Nucleocapsid Functional Activity

    PubMed Central

    D'Antuono, Alejandra; Loureiro, Maria Eugenia; Foscaldi, Sabrina; Marino-Buslje, Cristina

    2014-01-01

    ABSTRACT The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity. We show that alanine substitution of N-terminal residues predicted to be available for NP-NP interaction strongly affected NP self-association, as determined by coimmunoprecipitation assays, produced a drastic inhibition of transcription and replication of a TCRV minigenome RNA, and impaired NP binding to RNA. Mutagenesis and functional analysis also revealed that, while dispensable for NP self-interaction, key amino acids at the C-terminal domain were essential for RNA synthesis. Furthermore, mutations at these C-terminal residues rendered NP unable to bind RNA both in vivo and in vitro but had no effect on the interaction with the L polymerase. In addition, while all oligomerization-defective variants tested exhibited unaltered capacities to sustain NP-L interaction, NP deletion mutants were fully incompetent to bind L, suggesting that, whereas NP self-association is dispensable, the integrity of both the N-terminal and C-terminal domains is required for binding the L polymerase. Overall, our results suggest that NP self-interaction mediated by the N-terminal domain may play a critical role in TCRV nucleocapsid assembly and activity and that the C-terminal domain of NP is implicated in RNA binding. IMPORTANCE The mechanism of arenavirus functional nucleocapsid assembly is still poorly understood. No detailed information is available on the nucleocapsid structure, and the regions of full-length NP involved in binding to viral RNA remain to be

  18. Peptide Mass Fingerprinting and N-Terminal Amino Acid Sequencing of Glycosylated Cysteine Protease of Euphorbia nivulia Buch.-Ham.

    PubMed Central

    Badgujar, Shamkant B.; Mahajan, Raghunath T.

    2013-01-01

    A new cysteine protease named Nivulian-II has been purified from the latex of Euphorbia nivulia Buch.-Ham. The apparent molecular mass of Nivulian-II is 43670.846 Da (MALDI TOF/MS). Peptide mass fingerprint analysis revealed peptide matches to Maturase K (Q52ZV1_9MAGN) of Banksia quercifolia. The N-terminal sequence (DFPPNTCCCICC) showed partial homology with those of other cysteine proteinases of biological origin. This is the first paper to characterize a Nivulian-II of E. nivulia latex with respect to amino acid sequencing. PMID:23476742

  19. Conformational studies of the N-terminal lipid-associating domain of human apolipoprotein C-I by CD and 1H NMR spectroscopy.

    PubMed Central

    Rozek, A.; Buchko, G. W.; Kanda, P.; Cushley, R. J.

    1997-01-01

    A peptide comprising the N-terminal 38 residues of human apolipoprotein C-I (apoC-I(1-38)) was synthesized using solid-phase methods and its solution conformation studied by CD and 1H NMR spectroscopy. The CD data indicate that apoC-I(1-38) has a similar helical content (55%) in the presence of saturating amounts of SDS or egg yolk lysophosphatidylcholine. A structural ensemble of SDS-bound apoC-I(1-38) was calculated from 464 NOE-based distance restraints using distance geometry methods. ApoC-I(1-38) adopts a helical structure between residues V4 and K30 and an extended C-terminus from Q31 when associated with SDS. The region K12-G15 undergoes slow conformational exchange as indicated by above-average amide resonance linewidths, large temperature coefficients, and fast exchange (< 2 h) of backbone amide protons with deuterium. The mobility of K12-G15 is reflected in the poorly defined dihedral angles of K12 and E13 in the calculated ensemble of structures. The average structure of apoC-I(1-38) is curved toward its hydrophobic face with bends of 125 degrees, centered at K12/E13, and 150 degrees, centered at K21. This curvature appears to be driven by the interaction of two hydrophobic clusters, one formed by residues L8, L11, F14, and L18, and the other by L25, I26, and I29, with the amphiphile SDS. Based on our present structural definition of apoC-I(1-38) and the previously obtained structure of the fragment apoC-I(35-53), we propose the secondary structure of intact apolipoprotein C-I. PMID:9300485

  20. Link protein N-terminal peptide binds to bone morphogenetic protein (BMP) type II receptor and drives matrix protein expression in rabbit intervertebral disc cells.

    PubMed

    Wang, Zili; Weitzmann, M Neale; Sangadala, Sreedhara; Hutton, William C; Yoon, S Tim

    2013-09-27

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain.

  1. Link Protein N-terminal Peptide Binds to Bone Morphogenetic Protein (BMP) Type II Receptor and Drives Matrix Protein Expression in Rabbit Intervertebral Disc Cells*

    PubMed Central

    Wang, Zili; Weitzmann, M. Neale; Sangadala, Sreedhara; Hutton, William C.; Yoon, S. Tim

    2013-01-01

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain. PMID:23940040

  2. Evidence that the N-terminal part of the S-layer protein from Bacillus stearothermophilus PV72/p2 recognizes a secondary cell wall polymer.

    PubMed Central

    Ries, W; Hotzy, C; Schocher, I; Sleytr, U B; Sára, M

    1997-01-01

    The S-layer of Bacillus stearothermophilus PV72/p2 shows oblique lattice symmetry and is composed of identical protein subunits with a molecular weight of 97,000. The isolated S-layer subunits could bind and recrystallize into the oblique lattice on native peptidoglycan-containing sacculi which consist of peptidoglycan of the A1gamma chemotype and a secondary cell wall polymer with an estimated molecular weight of 24,000. The secondary cell wall polymer could be completely extracted from peptidoglycan-containing sacculi with 48% HF, indicating the presence of phosphodiester linkages between the polymer chains and the peptidoglycan backbone. The cell wall polymer was composed mainly of GlcNAc and ManNAc in a molar ratio of 4:1, constituted about 20% of the peptidoglycan-containing sacculus dry weight, and was also detected in the fraction of the S-layer self-assembly products. Extraction experiments and recrystallization of the whole S-layer protein and proteolytic cleavage fragments confirmed that the secondary cell wall polymer is responsible for anchoring the S-layer subunits by the N-terminal part to the peptidoglycan-containing sacculi. In addition to this binding function, the cell wall polymer was found to influence the in vitro self-assembly of the guanidinium hydrochloride-extracted S-layer protein. Chemical modification studies further showed that the secondary cell wall polymer does not contribute significant free amino or carboxylate groups to the peptidoglycan-containing sacculi. PMID:9190804

  3. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity

    SciTech Connect

    Saito, Chieko; Lemasters, John J.; Jaeschke, Hartmut

    2010-07-15

    Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10 mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1 h before 600 mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12 h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT release and necrosis) were partially attenuated by the vehicle (- 65%) and completely eliminated by SP600125 (- 98%) at 6 and 12 h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite + nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.

  4. Purification and Characterization of Recombinant N-Terminally Pyroglutamate-Modified Amyloid-β Variants and Structural Analysis by Solution NMR Spectroscopy

    PubMed Central

    Dammers, Christina; Gremer, Lothar; Neudecker, Philipp; Demuth, Hans-Ulrich; Schwarten, Melanie; Willbold, Dieter

    2015-01-01

    Alzheimer’s disease (AD) is the leading cause of dementia in the elderly and is characterized by memory loss and cognitive decline. Pathological hallmark of AD brains are intracellular neurofibrillary tangles and extracellular amyloid plaques. The major component of these plaques is the highly heterogeneous amyloid-β (Aβ) peptide, varying in length and modification. In recent years pyroglutamate-modified amyloid-β (pEAβ) peptides have increasingly moved into the focus since they have been described to be the predominant species of all N-terminally truncated Aβ. Compared to unmodified Aβ, pEAβ is known to show increased hydrophobicity, higher toxicity, faster aggregation and β-sheet stabilization and is more resistant to degradation. Nuclear magnetic resonance (NMR) spectroscopy is a particularly powerful method to investigate the conformations of pEAβ isoforms in solution and to study peptide/ligand interactions for drug development. However, biophysical characterization of pEAβ and comparison to its non-modified variant has so far been seriously hampered by the lack of highly pure recombinant and isotope-enriched protein. Here we present, to our knowledge, for the first time a reproducible protocol for the production of pEAβ from a recombinant precursor expressed in E. coli in natural isotope abundance as well as in uniformly [U-15N]- or [U-13C, 15N]-labeled form, with yields of up to 15 mg/l E. coli culture broth. The chemical state of the purified protein was evaluated by RP-HPLC and formation of pyroglutamate was verified by mass spectroscopy. The recombinant pyroglutamate-modified Aβ peptides showed characteristic sigmoidal aggregation kinetics as monitored by thioflavin-T assays. The quality and quantity of produced pEAβ40 and pEAβ42 allowed us to perform heteronuclear multidimensional NMR spectroscopy in solution and to sequence-specifically assign the backbone resonances under near-physiological conditions. Our results suggest that the

  5. The N-Terminal GH10 Domain of a Multimodular Protein from Caldicellulosiruptor bescii Is a Versatile Xylanase/β-Glucanase That Can Degrade Crystalline Cellulose

    PubMed Central

    Xue, Xianli; Wang, Rong; Tu, Tao; Shi, Pengjun; Ma, Rui; Luo, Huiying

    2015-01-01

    The genome of the thermophilic bacterium Caldicellulosiruptor bescii encodes three multimodular enzymes with identical C-terminal domain organizations containing two consecutive CBM3b modules and one glycoside hydrolase (GH) family 48 (GH48) catalytic module. However, the three proteins differ much in their N termini. Among these proteins, CelA (or C. bescii Cel9A [CbCel9A]/Cel48A) with a GH9/CBM3c binary partner in the N terminus has been shown to use a novel strategy to degrade crystalline cellulose, which leads to its outstanding cellulose-cleaving activity. Here we show that C. bescii Xyn10C (CbXyn10C), the N-terminal GH10 domain from CbXyn10C/Cel48B, can also degrade crystalline cellulose, in addition to heterogeneous xylans and barley β-glucan. The data from substrate competition assays, mutational studies, molecular modeling, and docking point analyses point to the existence of only one catalytic center in the bifunctional xylanase/β-glucanase. The specific activities of the recombinant CbXyn10C on Avicel and filter paper were comparable to those of GH9/CBM3c of the robust CelA expressed in Escherichia coli. Appending one or two cellulose-binding CBM3bs enhanced the activities of CbXyn10C in degrading crystalline celluloses, which were again comparable to those of the GH9/CBM3c-CBM3b-CBM3b truncation mutant of CelA. Since CbXyn10C/Cel48B and CelA have similar domain organizations and high sequence homology, the endocellulase activity observed in CbXyn10C leads us to speculate that CbXyn10C/Cel48B may use the same strategy that CelA uses to hydrolyze crystalline cellulose, thus helping the excellent crystalline cellulose degrader C. bescii acquire energy from the environment. In addition, we also demonstrate that CbXyn10C may be an interesting candidate enzyme for biotechnology due to its versatility in hydrolyzing multiple substrates with different glycosidic linkages. PMID:25819971

  6. Functional Characterization of the N-Terminal C2 Domain from Arabidopsis thaliana Phospholipase Dα and Dβ

    PubMed Central

    Noiriel, Alexandre

    2016-01-01

    Most of plant phospholipases D (PLD) exhibit a C2-lipid binding domain of around 130 amino acid residues at their N-terminal region, involved in their Ca2+-dependent membrane binding. In this study, we expressed and partially purified catalytically active PLDα from Arabidopsis thaliana (AtPLDα) in the yeast Pichia pastoris. The N-terminal amino acid sequence of the recombinant AtPLDα was found to be NVEETIGV and thus to lack the first 35 amino acid belonging to the C2 domain, as found in other recombinant or plant purified PLDs. To investigate the impact of such a cleavage on the functionality of C2 domains, we expressed, in E. coli, purified, and refolded the mature-like form of the C2 domain of the AtPLDα along with its equivalent C2 domain of the AtPLDβ, for the sake of comparison. Using Förster Resonance Energy Transfer and dot-blot assays, both C2 domains were shown to bind phosphatidylglycerol in a Ca2+-independent manner while phosphatidic acid and phosphatidylserine binding were found to be enhanced in the presence of Ca2+. Amino acid sequence alignment and molecular modeling of both C2 domains with known C2 domain structures revealed the presence of a novel Ca2+-binding site within the C2 domain of AtPLDα. PMID:28101506

  7. The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2’s function

    PubMed Central

    Ly, Thu; Moroz, Natalia; Pappas, Christopher T.; Novak, Stefanie M.; Tolkatchev, Dmitri; Wooldridge, Dayton; Mayfield, Rachel M.; Helms, Gregory; Gregorio, Carol C.; Kostyukova, Alla S.

    2016-01-01

    Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2–knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43–90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124–201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly­merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends. PMID:27307584

  8. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo.

    PubMed Central

    Mann, R K; Grunstein, M

    1992-01-01

    Recent work has shown that the yeast histone H4 N-terminus, while not essential for viability, is required for repression of the silent mating loci and activation of GAL1 and PHO5 promoters. Because histone H3 shares many structural features with histone H4 and is intimately associated with H4 in the assembled nucleosome, we asked whether H3 has similar functions. While the basic N-terminal domain of H3 is found to be non-essential (deletion of residues 4-40 of this 135 amino acid protein allows viability), its removal has only a minor effect on mating. Surprisingly, both deletions (of residues 4-15) and acetylation site substitutions (at residues 9, 14 and 18) within the N-terminus of H3 allow hyperactivation of the GAL1 promoter as well as a number of other GAL4-regulated genes including GAL2, GAL7 and GAL10. To a limited extent glucose repression is also alleviated by H3 N-terminal deletions. Expression of another inducible promoter, PHO5, is shown to be relatively unaffected. We conclude that the H3 and H4 N-termini have different functions in both the repression of the silent mating loci and in the regulation of GAL1. Images PMID:1505519

  9. The assembly of CD1e is controlled by an N-terminal propeptide which is processed in endosomal compartments.

    PubMed

    Maître, Blandine; Angénieux, Catherine; Wurtz, Virginie; Layre, Emilie; Gilleron, Martine; Collmann, Anthony; Mariotti, Sabrina; Mori, Lucia; Fricker, Dominique; Cazenave, Jean-Pierre; van Dorsselaer, Alain; Gachet, Christian; de Libero, Gennaro; Puzo, Germain; Hanau, Daniel; de la Salle, Henri

    2009-05-01

    CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32-333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e alpha-chain with beta(2)-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.

  10. A new general pathway for synthesis of reference compounds of N-terminal valine-isocyanate adducts.

    PubMed

    Davies, Ronnie; Rydberg, Per; Westberg, Emelie; Motwani, Hitesh V; Johnstone, Erik; Törnqvist, Margareta

    2010-03-15

    Adducts to Hb could be used as biomarkers to monitor exposure to isocyanates. Particularly useful is the measurement of carbamoylation of N-terminal valines in Hb, after detachment as hydantoins. The synthesis of references from the reactive isocyanates, especially diisocyanates, has been problematic due to side reactions and polymerization of the isocyanate starting material. A simpler, safer, and more general method for the synthesis of valine adducts of isocyanates has been developed using N-[(4-nitrophenyl)carbamate]valine methylamide (NPCVMA) as the key precursor to adducts of various mono- and diisocyanates of interest. By reacting NPCVMA with a range of isocyanate-related amines, carbamoylated valines are formed without the use of the reactive isocyanates. The carbamoylated products synthesized here were cyclized with good yields of the formed hydantoins. The carbamoylated derivative from phenyl isocyanate also showed quantitative yield in a test with cyclization under the conditions used in blood. This new pathway for the preparation of N-carbamoylated model compounds overcomes the above-mentioned problems in the synthesis and is a general and simplified approach, which could make such reference compounds of adducts to N-terminal valine from isocyanates accessible for biomonitoring purposes. The synthesized hydantoins corresponding to adducts from isocyanic acid, methyl isocyanate, phenyl isocyanate, and 2,6-toluene diisocyanate were characterized by LC-MS analysis. The background level of the hydantoin from isocyanic acid in human blood was analyzed with the LC-MS conditions developed.

  11. Characterization of four new monoclonal antibodies against the distal N-terminal region of PrPc

    PubMed Central

    Hartman, Katrina; Vranac, Tanja; Čurin Šerbec, Vladka

    2015-01-01

    Prion diseases are a group of fatal neurodegenerative disorders that affect humans and animals. They are characterized by the accumulation in the central nervous system of a pathological form of the host-encoded prion protein (PrPC). The prion protein is a membrane glycoprotein that consists of two domains: a globular, structured C-terminus and an unstructured N-terminus. The N-terminal part of the protein is involved in different functions in both health and disease. In the present work we discuss the production and biochemical characterization of a panel of four monoclonal antibodies (mAbs) against the distal N-terminus of PrPC using a well-established methodology based on the immunization of Prnp0/0 mice. Additionally, we show their ability to block prion (PrPSc) replication at nanomolar concentrations in a cell culture model of prion infection. These mAbs represent a promising tool for prion diagnostics and for studying the physiological role of the N-terminal domain of PrPC. PMID:25802800

  12. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA

    PubMed Central

    Doritchamou, Justin; Sabbagh, Audrey; Jespersen, Jakob S.; Renard, Emmanuelle; Salanti, Ali; Nielsen, Morten A.; Deloron, Philippe; Tuikue Ndam, Nicaise

    2015-01-01

    The VAR2CSA protein of Plasmodium falciparum is transported to and expressed on the infected erythrocyte surface where it plays a key role in placental malaria (PM). It is the current leading candidate for a vaccine to prevent PM. However, the antigenic polymorphism integral to VAR2CSA poses a challenge for vaccine development. Based on detailed analysis of polymorphisms in the sequence of its ligand-binding N-terminal region, currently the main focus for vaccine development, we assessed var2csa from parasite isolates infecting pregnant women. The results reveal for the first time the presence of a major dimorphic region in the functionally critical N-terminal ID1 domain. Parasite isolates expressing VAR2CSA with particular motifs present within this domain are associated with gravidity- and parasite density-related effects. These observations are of particular interest in guiding efforts with respect to optimization of the VAR2CSA-based vaccines currently under development. PMID:26393516

  13. Hydrogen ion titration of 12 S rape seed protein and partial N-terminal sequence of one of it's subunits.

    PubMed

    Bhushan, R; Mahesh, V K; Mallikharjun, P V

    1989-10-01

    The high molecular weight 12 S protein from rape seed was isolated in a homogeneous form and characterized. Six subunits were isolated by PAGE in the presence of SDS and 0.2 M 2-mercaptoethanol. These subunits (s1 to s6) were found in the protein in the weight ratio of 1.32:1.2:1.15:1.0:1.21:1.11. The molecular weights and first two N-terminal amino acids of the isolated subunits were 64,800 and phenylalanine, alanine (s1), 50,650 and valine, tyrosine (s2), 42,500 and phenylalanine, leucine (s3), 28,800 and threonine, glutamic acid (s4), 19,100 and cystine, isoleucine (s5) and 15,600 and alanine, phenylalanine (s6). The number of side chain carboxyl, imidazole and epsilon-amino groups were calculated from the hydrogen ion titrations, which were in agreement with the amino acid assay. Besides, the N-terminal amino acid sequence upto 43 residues for one subunit (s6) is reported using Edman degradation.

  14. Improvement of the catalytic performance of a Bispora antennata cellulase by replacing the N-terminal semi-barrel structure.

    PubMed

    Zheng, Fei; Huang, Huoqing; Wang, Xiaoyu; Tu, Tao; Liu, Qiong; Meng, Kun; Wang, Yuan; Su, Xiaoyun; Xie, Xiangming; Luo, Huiying

    2016-10-01

    The aim of this work was to study the contribution of the N-terminal structure to cellulase catalytic performance. A wild-type cellulase (BaCel5) of glycosyl hydrolase (GH) family 5 from Bispora antennata and two hybrid enzymes (BaCel5(127) and BaCel5(167)) with replacement of the N-terminal (βα)3 (127 residues) or (βα)4 (167 residues)-barrel with the corresponding sequences of TeEgl5A from Talaromyces emersonii were produced in Pichia pastoris and biochemically characterized. BaCel5 exhibited optimal activity at pH 5.0 and 50°C but had low catalytic efficiency (25.4±0.8mLs(-1)mg(-1)). In contrast, BaCel5(127) and BaCel5(167) showed similar enzymatic properties but improved catalytic performance. When using CMC-Na, barley β-glucan, lichenan, and cellooligosaccharides as substrates, BaCel5(127) and BaCel5(167) had increased specific activities and catalytic efficiencies by ∼1.8-6.7-fold and ∼1.0-4.7-fold, respectively. The catalytic efficiency of BaCel5(167) was even higher than that of parental proteins. The underlying mechanism was analyzed by molecular docking and molecular dynamic simulation.

  15. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

    PubMed Central

    Hynkova, Anna; Marsakova, Lenka; Vaskova, Jana; Vlachova, Viktorie

    2016-01-01

    Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence. PMID:27345869

  16. Lumazine proteins from photobacteria: localization of the single ligand binding site to the N-terminal domain.

    PubMed

    Illarionov, Boris; Eisenreich, Wolfgang; Wirth, Martina; Yong Lee, Chan; Eun Woo, Young; Bacher, Adelbert; Fischer, Markus

    2007-12-01

    Lumazine protein is believed to serve as an optical transponder in bioluminescence emission by certain marine bacteria. Sequence arguments suggest that the protein comprises two similarly folded riboflavin synthase-type domains, but earlier work also suggested that only one domain binds 6,7-dimethyl-8-ribityllumazine (DMRL). We show that the replacement of serine-48 or threonine-50 in the N-terminal domain of lumazine protein of Photobacterium leiognathi modulates the absorbance and fluorescence properties of bound DMRL or riboflavin. Moreover, the replacement of these amino acids is accompanied by reduced ligand affinity. Replacement of serine-48 by tryptophan shifts the (13)C NMR signal of the 6-methyl group in bound DMRL upfield by 2.9 ppm as compared to the wild-type protein complex. Replacement of threonine-50 causes a downfield shift of approximately 20 ppm for the (15)N NMR signal of N-5, as well as an upfield shift of 3 ppm for the (13)C NMR signal of C-7 in bound DMRL, respectively. The replacement of the topologically equivalent serine-144 and proline-146 in the C-terminal domain had no significant impact on optical properties, chemical shifts and apparent binding constants of bound DMRL. These data show that the N-terminal domain is the unique site for ligand binding in lumazine protein.

  17. Noncatalytic, N-terminal Domains of DNA Polymerase Lambda Affect Its Cellular Localization and DNA Damage Response.

    PubMed

    Stephenson, Anthony A; Taggart, David J; Suo, Zucai

    2017-04-13

    Specialized DNA polymerases, such as DNA polymerase lambda (Polλ), are important players in DNA damage tolerance and repair pathways. Knowing how DNA polymerases are regulated and recruited to sites of DNA damage is imperative to understanding these pathways. Recent work has suggested that Polλ plays a role in several distinct DNA damage tolerance and repair pathways. In this paper, we report previously unknown roles of the N-terminal domains of human Polλ for modulating its involvement in DNA damage tolerance and repair. By using Western blot analysis, fluorescence microscopy, and cell survival assays, we found that the BRCA1 C-terminal (BRCT) and proline/serine-rich (PSR) domains of Polλ affect its cellular localization and DNA damage responses. The nuclear localization signal (NLS) of Polλ was necessary to overcome the impediment of its nuclear localization caused by its BRCT and PSR domains. Induction of DNA damage resulted in recruitment of Polλ to chromatin, which was controlled by its BRCT and PSR domains. In addition, the presence of both domains was required for Polλ-mediated tolerance of oxidative DNA damage but not DNA methylation damage. These findings suggest that the N-terminal domains of Polλ are important for regulating its responses to DNA damage.

  18. The serine 106 residue within the N-terminal transactivation domain is crucial for Oct4 function in mice.

    PubMed

    Mitani, Atsushi; Fukuda, Atsushi; Miyashita, Toshiyuki; Umezawa, Akihiro; Akutsu, Hidenori

    2017-03-07

    Pou5f1/Oct4 is a key transcription factor for the induction of pluripotency and totipotency in preimplantation mouse embryos. In mice, loss or gain of function experiments have demonstrated an important role for Oct4 in preimplantation and developmental ability. In this study, using mouse preimplantation embryos as a model for the evaluation of Oct4 function, we constructed Oct4 overexpression embryos with various mutations at the N-terminal transactivation domain. Developmental competency and molecular biological phenotypes depended on the type of mutation. The replacement of serine 106 with alanine resulted in more severe phenotypes similar to that of wild type Oct4, indicating that this alteration using alanine is negligible for Oct4 function. In contrast, we found that Oct4-specific antibodies could not recognize Oct4 protein when this residue was replaced by aspartic acid (Oct4-S106D). Oct4-S106D overexpressing embryos did not show developmental arrest and aberrant chromatin structure. Thus, these results demonstrated that the Ser-106 residue within the N-terminal transactivation domain is crucial for Oct4 function and suggested that this mutation might affect Oct4 protein conformation.

  19. Structural evidence for variable oligomerization of the N-terminal domain of cyclase-associated protein (CAP).

    PubMed

    Yusof, Adlina Mohd; Hu, Nien-Jen; Wlodawer, Alexander; Hofmann, Andreas

    2005-02-01

    Cyclase-associated protein (CAP) is a highly conserved and widely distributed protein that links the nutritional response signaling to cytoskeleton remodeling. In yeast, CAP is a component of the adenylyl cyclase complex and helps to activate the Ras-mediated catalytic cycle of the cyclase. While the N-terminal domain of CAP (N-CAP) provides a binding site for adenylyl cyclase, the C-terminal domain (C-CAP) possesses actin binding activity. Our attempts to crystallize full-length recombinant CAP from Dictyostelium discoideum resulted in growth of orthorhombic crystals containing only the N-terminal domain (residues 42-227) due to auto-proteolytic cleavage. The structure was solved by molecular replacement with data at 2.2 A resolution. The present crystal structure allows the characterization of a head-to-tail N-CAP dimer in the asymmetric unit and a crystallographic side-to-side dimer. Comparison with previously published structures of N-CAP reveals variable modes of dimerization of this domain, but the presence of a common interface for the side-to-side dimer.

  20. The N-terminal Part of Arabidopsis thaliana Starch Synthase 4 Determines the Localization and Activity of the Enzyme.

    PubMed

    Raynaud, Sandy; Ragel, Paula; Rojas, Tomás; Mérida, Ángel

    2016-05-13

    Starch synthase 4 (SS4) plays a specific role in starch synthesis because it controls the number of starch granules synthesized in the chloroplast and is involved in the initiation of the starch granule. We showed previously that SS4 interacts with fibrillins 1 and is associated with plastoglobules, suborganelle compartments physically attached to the thylakoid membrane in chloroplasts. Both SS4 localization and its interaction with fibrillins 1 were mediated by the N-terminal part of SS4. Here we show that the coiled-coil region within the N-terminal portion of SS4 is involved in both processes. Elimination of this region prevents SS4 from binding to fibrillins 1 and alters SS4 localization in the chloroplast. We also show that SS4 forms dimers, which depends on a region located between the coiled-coil region and the glycosyltransferase domain of SS4. This region is highly conserved between all SS4 enzymes sequenced to date. We show that the dimerization seems to be necessary for the activity of the enzyme. Both dimerization and the functionality of the coiled-coil region are conserved among SS4 proteins from phylogenetically distant species, such as Arabidopsis and Brachypodium This finding suggests that the mechanism of action of SS4 is conserved among different plant species.

  1. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel

    NASA Astrophysics Data System (ADS)

    Hynkova, Anna; Marsakova, Lenka; Vaskova, Jana; Vlachova, Viktorie

    2016-06-01

    Human transient receptor potential ankyrin channel 1 (TRPA1) is a polymodal sensor implicated in pain, inflammation and itching. An important locus for TRPA1 regulation is the cytoplasmic N-terminal domain, through which various exogenous electrophilic compounds such as allyl-isothiocyanate from mustard oil or cinnamaldehyde from cinnamon activate primary afferent nociceptors. This major region is comprised of a tandem set of 17 ankyrin repeats (AR1-AR17), five of them contain a strictly conserved T/SPLH tetrapeptide motif, a hallmark of an important and evolutionarily conserved contribution to conformational stability. Here, we characterize the functional consequences of putatively stabilizing and destabilizing mutations in these important structural units and identify AR2, AR6, and AR11-13 to be distinctly involved in the allosteric activation of TRPA1 by chemical irritants, cytoplasmic calcium, and membrane voltage. Considering the potential involvement of the T/SP motifs as putative phosphorylation sites, we also show that proline-directed Ser/Thr kinase CDK5 modulates the activity of TRPA1, and that T673 outside the AR-domain is its only possible target. Our data suggest that the most strictly conserved N-terminal ARs define the energetics of the TRPA1 channel gate and contribute to chemical-, calcium- and voltage-dependence.

  2. c-Jun N-Terminal Phosphorylation: Biomarker for Cellular Stress Rather than Cell Death in the Injured Cochlea123

    PubMed Central

    Anttonen, Tommi; Herranen, Anni; Virkkala, Jussi; Kirjavainen, Anna; Elomaa, Pinja; Laos, Maarja; Liang, Xingqun; Ylikoski, Jukka; Behrens, Axel

    2016-01-01

    Prevention of auditory hair cell death offers therapeutic potential to rescue hearing. Pharmacological blockade of JNK/c-Jun signaling attenuates injury-induced hair cell loss, but with unsolved mechanisms. We have characterized the c-Jun stress response in the mouse cochlea challenged with acoustic overstimulation and ototoxins, by studying the dynamics of c-Jun N-terminal phosphorylation. It occurred acutely in glial-like supporting cells, inner hair cells, and the cells of the cochlear ion trafficking route, and was rapidly downregulated after exposures. Notably, death-prone outer hair cells lacked c-Jun phosphorylation. As phosphorylation was triggered also by nontraumatic noise levels and none of the cells showing this activation were lost, c-Jun phosphorylation is a biomarker for cochlear stress rather than an indicator of a death-prone fate of hair cells. Preconditioning with a mild noise exposure before a stronger traumatizing noise exposure attenuated the cochlear c-Jun stress response, suggesting that the known protective effect of sound preconditioning on hearing is linked to suppression of c-Jun activation. Finally, mice with mutations in the c-Jun N-terminal phosphoacceptor sites showed partial, but significant, hair cell protection. These data identify the c-Jun stress response as a paracrine mechanism that mediates outer hair cell death. PMID:27257624

  3. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance

    PubMed Central

    Kunze, Markus; Berger, Johannes

    2015-01-01

    The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes. PMID:26441678

  4. The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus.

    PubMed

    Wolf, Sebastian; Rausch, Thomas; Greiner, Steffen

    2009-05-01

    The pectin matrix of the cell wall, a complex and dynamic network, impacts on cell growth, cell shape and signaling processes. A hallmark of pectin structure is the methylesterification status of its major component, homogalacturonan (HGA), which affects the biophysical properties and enzymatic turnover of pectin. The pectin methylesterases (PMEs), responsible for de-esterification, encompass a protein family of more than 60 isoforms in the Arabidopsis genome. The pivotal role of PME in the regulation of pectin properties also requires tight control at the post-translational level. Type-I PMEs are characterized by an N-terminal pro region, which exhibits homology with pectin methylesterase inhibitors (PMEIs). Here, we demonstrate that the proteolytic removal of the N-terminal pro region depends on conserved basic tetrad motifs, occurs in the early secretory pathway, and is required for the subsequent export of the PME core domain to the cell wall. In addition, we demonstrate the involvement of AtS1P, a subtilisin-like protease, in Arabidopsis PME processing. Our results indicate that the pro region operates as an effective retention mechanism, keeping unprocessed PME in the Golgi apparatus. Consequently, pro-protein processing could constitute a post-translational mechanism regulating PME activity.

  5. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.

    PubMed

    Raman, Swetha; Suguna, Kaza

    2015-06-01

    Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.

  6. Heterologous expression and N-terminal His-tagging processes affect the catalytic properties of staphylococcal lipases: a monolayer study.

    PubMed

    Horchani, Habib; Sabrina, Lignon; Régine, Lebrun; Sayari, Adel; Gargouri, Youssef; Verger, Robert

    2010-10-15

    The interfacial and kinetic properties of wild type, untagged recombinant and tagged recombinant forms of three staphylococcal lipases (SSL, SXL and SAL3) were compared using the monomolecular film technique. A kinetic study on the dependence of the stereoselectivity of these nine lipase forms on the surface pressure was performed using the three dicaprin isomers spread in the form of monomolecular films at the air-water interface. New parameters, termed Recombinant expression Effects on Catalysis (REC), N-Tag Effects on Catalysis (TEC), and N-Tag and Recombinant expression Effects on Catalysis (TREC), were introduced. The findings obtained showed that with all the lipases tested, the recombinant expression process and the N-terminal His-tag slightly affect the sn-1 preference for dicaprin enantiomers as well as the penetration capacity into monomolecular films of phosphatidylcholine but significantly decrease the catalytic rate of hydrolysis of three dicaprin isomers. This rate reduction is more pronounced at high surface pressures, i.e. at low interfacial energies. In conclusion, the effects of the heterologous expression process on the catalytic properties of the staphylococcal lipases are three times more deleterious than the presence of an N-terminal tag extension. In the case of the situation most commonly encountered in the literature, i.e. the heterologous expression of a tagged lipase, the rate of catalysis can be decreased by these processes by 42-83% on average in comparison with the values measured with the corresponding wild type form.

  7. Enhancing the antimicrobial activity of Sus scrofa lysozyme by N-terminal fusion of a sextuple unique homologous peptide.

    PubMed

    Zhu, Dewei; Cai, Guolin; Li, Xiaomin; Lu, Jian; Zhang, Liang

    2017-02-10

    Sus scrofa lysozyme (SSL), an important component of the pig immune system, is a potential candidate to replace antibiotics in feed. However, there is little antimicrobial activity of natural SSL against gram-negative bacteria, which limits its application. In this study, a unique peptide (A-W-V-A-W-K) with antimicrobial activity against gram-negative bacteria was discovered and purified from trypsin hydrolysate of natural SSL. This unique peptide was fused to natural SSL and the recombinant fused SSL exhibited improved activity against gram-negative bacteria. The N-terminal fusion likely increased the membrane penetrability and induced programmed bacterial cell death. The recombinant fused SSL also showed higher activity against some gram-positive bacteria with O-acetylation. By N-terminal fusion of the sextuple peptide, the anti-microbial activity, either to gram-positive or negative bacteria, of the recombinant SSL was higher than the fusion of only one copy of the peptide. This study provides a general, feasible, and highly useful strategy to enhance the antimicrobial activity of lysozyme.

  8. Contribution of histone N-terminal tails to the structure and stability of nucleosomes☆☆☆

    PubMed Central

    Iwasaki, Wakana; Miya, Yuta; Horikoshi, Naoki; Osakabe, Akihisa; Taguchi, Hiroyuki; Tachiwana, Hiroaki; Shibata, Takehiko; Kagawa, Wataru; Kurumizaka, Hitoshi

    2013-01-01

    Histones are the protein components of the nucleosome, which forms the basic architecture of eukaryotic chromatin. Histones H2A, H2B, H3, and H4 are composed of two common regions, the “histone fold” and the “histone tail”. Many efforts have been focused on the mechanisms by which the post-translational modifications of histone tails regulate the higher-order chromatin architecture. On the other hand, previous biochemical studies have suggested that histone tails also affect the structure and stability of the nucleosome core particle itself. However, the precise contributions of each histone tail are unclear. In the present study, we determined the crystal structures of four mutant nucleosomes, in which one of the four histones, H2A, H2B, H3, or H4, lacked the N-terminal tail. We found that the deletion of the H2B or H3 N-terminal tail affected histone–DNA interactions and substantially decreased nucleosome stability. These findings provide important information for understanding the complex roles of histone tails in regulating chromatin structure. PMID:24251097

  9. N-terminal mono-PEGylation of growth hormone antagonist: correlation of PEG size and pharmacodynamic behavior.

    PubMed

    Wu, Ling; Ho, Sa V; Wang, Wei; Gao, Jianping; Zhang, Guifeng; Su, Zhiguo; Hu, Tao

    2013-09-10

    Growth hormone antagonist (GHA), an analog of growth hormone (GH), can inhibit GH action and treat acromegaly. However, GHA suffers from a short plasma half-life of 15-20 min that has limited its clinical application. PEGylation, conjugation with polyethylene glycol (PEG), can increase the plasma half-life of GHA. Single PEG attachment (mono-PEGylation) at N-terminus of GHA has the advantages of product homogeneity and minimization of the bioactivity loss. Conjugation of large PEG molecule may increase the plasma half-life but could potentially decrease the bioactivity of GHA, due to the steric shielding effect of PEG. Thus, N-terminal mono-PEGylation of GHA with 20 kDa and 40 kDa PEG were used to look for a balance of the two competing factors. Sedimentation velocity analysis suggested that 40 kDa PEG was more efficient than 20 kDa PEG to elongate the molecular shape of the conjugate. As reflected by marginal suppression of insulin-like growth factor I (IGF-I), GHA conjugated with 40 kDa PEG was statistically indistinguishable from the saline solution that could not inhibit GH action. In contrast, GHA conjugated with 20kDa PEG can apparently inhibit GH action, as reflected by IGF-I suppression of 30-43%. Thus, our work demonstrated the effective therapeutic potency of N-terminally mono-PEGylated GHA.

  10. Chemical states of the N-terminal "lid" of MDM2 regulate p53 binding: simulations reveal complexities of modulation.

    PubMed

    Dastidar, Shubhra Ghosh; Raghunathan, Devanathan; Nicholson, Judith; Hupp, Ted R; Lane, David P; Verma, Chandra S

    2011-01-01

    Phosphorylation of S17 in the N-terminal "lid" of MDM2 (residues 1-24) is proposed to regulate the binding of p53. The lid is composed of an intrinsically disordered peptide motif that is not resolved in the crystal structure of the MDM2 N-terminal domain. Molecular dynamics simulations of MDM2 provide novel insight into how the lid undergoes complex dynamics depending on its phosphorylation state that have not been revealed by NMR analyses. The difference in charges between the phosphate and the phosphomimetic 'Asp' and the change in shape from tetrahedral to planar are manifested in differences in strengths and durations of interactions that appear to modulate access of the binding site to ligands and peptides differentially. These findings unveil the complexities that underlie protein-protein interactions and reconcile some differences between the biochemical and NMR data suggesting that lid mutation or deletion can change the specific activity of MDM2 and provide concepts for future approaches to evaluate the effects of S17 modification on p53 binding.

  11. Opposing Functions of the N-terminal Acetyltransferases Naa50 and NatA in Sister-chromatid Cohesion.

    PubMed

    Rong, Ziye; Ouyang, Zhuqing; Magin, Robert S; Marmorstein, Ronen; Yu, Hongtao

    2016-09-02

    During the cell cycle, sister-chromatid cohesion tethers sister chromatids together from S phase to the metaphase-anaphase transition and ensures accurate segregation of chromatids into daughter cells. N-terminal acetylation is one of the most prevalent protein covalent modifications in eukaryotes and is mediated by a family of N-terminal acetyltransferases (NAT). Naa50 (also called San) has previously been shown to play a role in sister-chromatid cohesion in metazoans. The mechanism by which Naa50 contributes to cohesion is not understood however. Here, we show that depletion of Naa50 in HeLa cells weakens the interaction between cohesin and its positive regulator sororin and causes cohesion defects in S phase, consistent with a role of Naa50 in cohesion establishment. Strikingly, co-depletion of NatA, a heterodimeric NAT complex that physically interacts with Naa50, rescues the sister-chromatid cohesion defects and the resulting mitotic arrest caused by Naa50 depletion, indicating that NatA and Naa50 play antagonistic roles in cohesion. Purified recombinant NatA and Naa50 do not affect each other's NAT activity in vitro Because NatA and Naa50 exhibit distinct substrate specificity, we propose that they modify different effectors and regulate sister-chromatid cohesion in opposing ways.

  12. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    SciTech Connect

    Shiheido, Hirokazu Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  13. Applications of truncated QR methods to sinusoidal frequency estimation

    NASA Technical Reports Server (NTRS)

    Hsieh, S. F.; Liu, K. J. R.; Yao, K.

    1990-01-01

    Three truncated QR methods are proposed for sinusoidal frequency estimation: (1) truncated QR without column pivoting (TQR), (2) truncated QR with preordered columns, and (3) truncated QR with column pivoting. It is demonstrated that the benefit of truncated SVD for high frequency resolution is achievable under the truncated QR approach with much lower computational cost. Other attractive features of the proposed methods include the ease of updating, which is difficult for the SVD method, and numerical stability. TQR methods thus offer efficient ways to identify sinusoidals closely clustered in frequencies under stationary and nonstationary conditions.

  14. Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein.

    PubMed

    Fox, Jonathan H; Connor, Teal; Stiles, Megan; Kama, Jibrin; Lu, Zhen; Dorsey, Kathryn; Lieberman, Gregory; Liebermann, Gregory; Sapp, Ellen; Cherny, Robert A; Banks, Mary; Volitakis, Irene; DiFiglia, Marian; Berezovska, Oksana; Bush, Ashley I; Hersch, Steven M

    2011-05-20

    Huntington disease (HD) is a progressive neurodegenerative disorder caused by expression of polyglutamine-expanded mutant huntingtin protein (mhtt). Most evidence indicates that soluble mhtt species, rather than insoluble aggregates, are the important mediators of HD pathogenesis. However, the differential roles of soluble monomeric and oligomeric mhtt species in HD and the mechanisms of oligomer formation are not yet understood. We have shown previously that copper interacts with and oxidizes the polyglutamine-containing N171 fragment of huntingtin. In this study we report that oxidation-dependent oligomers of huntingtin form spontaneously in cell and mouse HD models. Levels of these species are modulated by copper, hydrogen peroxide, and glutathione. Mutagenesis of all cysteine residues within N171 blocks the formation of these oligomers. In cells, levels of oligomerization-blocked mutant N171 were decreased compared with native N171. We further show that a subset of the oligomerization-blocked form of glutamine-expanded N171 huntingtin is rapidly depleted from the soluble pool compared with "native " mutant N171. Taken together, our data indicate that huntingtin is subject to specific oxidations that are involved in the formation of stable oligomers and that also delay removal from the soluble pool. These findings show that inhibiting formation of oxidation-dependent huntingtin oligomers, or promoting their dissolution, may have protective effects in HD by decreasing the burden of soluble mutant huntingtin.

  15. Block truncation signature coding for hyperspectral analysis

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Chang, Chein-I.

    2008-08-01

    This paper introduces a new signature coding which is designed based on the well-known Block Truncation Coding (BTC). It comprises of bit-maps of the signature blocks generated by different threshold criteria. Two new BTC-based algorithms are developed for signature coding, to be called Block Truncation Signature Coding (BTSC) and 2-level BTSC (2BTSC). In order to compare the developed BTC based algorithms with current binary signature coding schemes such as Spectral Program Analysis Manager (SPAM) developed by Mazer et al. and Spectral Feature-based Binary Coding (SFBC) by Qian et al., three different thresholding functions, local block mean, local block gradient, local block correlation are derived to improve the BTSC performance where the combined bit-maps generated by these thresholds can provide better spectral signature characterization. Experimental results reveal that the new BTC-based signature coding performs more effectively in characterizing spectral variations than currently available binary signature coding methods.

  16. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  17. Serum levels of N-terminal fragment of precursor protein brain-type natriuretic peptide (NT-proBNP) in twin pregnancy.

    PubMed

    Yamada, Takashi; Koyama, Takahiro; Furuta, Itsuko; Takeda, Masamitsu; Nishida, Ryutaro; Yamada, Takahiro; Morikawa, Mamoru; Minakami, Hisanori

    2013-01-16

    Twin pregnancy differs considerably from singleton pregnancy in many aspects and it is unknown how serum NT-proBNP level behaves in women with twin pregnancies. Serum NT-proBNP levels were determined longitudinally at gestational weeks (GW) 24 and 35 in normotensive women with 13 twin and 99 singleton pregnancies. The effects of maternal demographic characteristics on NT-proBNP levels were also analyzed. The serum NT-proBNP levels (pg/ml) in twin pregnancies, which were not different from those in singleton pregnancies at 24 GW (26±15 vs. 40±27, respectively, P=0.0718), increased significantly (P=0.0038) and were significantly higher than those in singleton pregnancies at 35 GW (72±49 vs. 34±24, P<0.0001). In the analysis including women with singleton pregnancies, the serum levels of NT-proBNP at 35 GW were significantly inversely correlated with pre-pregnancy body mass index (BMI, kg/m(2)) and were significantly higher in nulliparous than multiparous women. Thus, women with twin pregnancy were likely to exhibit an increase in serum NT-proBNP levels in the late stage of pregnancy, especially in lean and nulliparous women. The relative greater blood volume expansion occurring in twin than in singleton pregnancies was considered to be responsible for this phenomenon.

  18. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus

    SciTech Connect

    Carr, Stephen B.; Makris, George; Phillips, Simon E. V.; Thomas, Christopher D.

    2006-11-01

    The crystallization and data collection of topoisomerase IV from S. aureus is described. Phasing by molecular replacement proved difficult owing to the presence of translational NCS and strategies used to overcome this are discussed. DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2{sub 1}, diffract to a resolution of 2.9 Å and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 Å, β = 90.1°, while crystals of GrlA59 belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 Å. These crystals diffract to a resolution of 2.8 Å. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  19. Values of using QTc and N-terminal fragment of B-type natriuretic peptide as markers for early detection of acute antipsychotic drugs-induced cardiotoxicity.

    PubMed

    Khalaf, Mohamed A M; Abdelrahman, Tarek M; Abbas, Mohamed F

    2011-03-01

    We aimed at studying the acute cardiotoxicity of the most commonly used antipsychotics in Egypt using QTc interval and NT-proBNP as markers for the early detection of such cases. Eighty-two admitted patients, at El-Minia PCC (period from 1-7-2005 to 30-6-2010), were classified into 3 groups: I: acute thioridazine overdose (n = 28), II: acute pimozide overdose (n = 23), and III: acute clozapine overdose (n = 31). Patients were investigated for NT-proBNP level and QTc on admission (day 0) and after 24 h (day 1). All the studied drugs had the ability to induce cardiotoxicity in the form of hypotension and dysrhythmias. Thioridazine and pimozide had potentially serious cardiotoxic effects than clozapine. NT-proBNP levels were elevated significantly in all groups on days 0 and 1 when compared with the reference value and a significant decrease in the same parameter on day 1 when compared with that of day 0 within the same group. QTc showed a significant prolongation in all studied groups on days 0 and 1, and there was a significant shortening of QTc on day 1 when compared with that of day 0 within the same group. A significant positive correlation of NT-proBNP level elevation with QTc prolongation was reported in all groups on days 0 and 1. Serious dysrhythmias were associated with QTc prolongation greater than 500 ms. And it was concluded that NT-proBNP, in adjunction with QTc measurement, may be a valuable and sensitive laboratory biomarker to predict cardiotoxicity of antipsychotic overdose. Larger multicenter studies are still needed to verify this possible relationship.

  20. Crystallization and preliminary X-ray diffraction analysis of two N-terminal fragments of the DNA-cleavage domain of topoisomerase IV from Staphylococcus aureus.

    PubMed

    Carr, Stephen B; Makris, George; Phillips, Simon E V; Thomas, Christopher D

    2006-11-01

    DNA topoisomerase IV removes undesirable topological features from DNA molecules in order to help maintain chromosome stability. Two constructs of 56 and 59 kDa spanning the DNA-cleavage domain of the A subunit of topoisomerase IV from Staphylococcus aureus (termed GrlA56 and GrlA59) have been crystallized. Crystals were grown at 291 K using the sitting-drop vapour-diffusion technique with PEG 3350 as a precipitant. Preliminary X-ray analysis revealed that GrlA56 crystals belong to space group P2(1), diffract to a resolution of 2.9 A and possess unit-cell parameters a = 83.6, b = 171.5, c = 87.8 A, beta = 90.1 degrees, while crystals of GrlA59 belong to space group P2(1)2(1)2, with unit-cell parameters a = 41.5, b = 171.89, c = 87.9 A. These crystals diffract to a resolution of 2.8 A. This is the first report of the crystallization and preliminary X-ray analysis of the DNA-cleavage domain of a topoisomerase IV from a Gram-positive organism.

  1. Unquenched Studies Using the Truncated Determinant Algorithm

    SciTech Connect

    A. Duncan, E. Eichten and H. Thacker

    2001-11-29

    A truncated determinant algorithm is used to study the physical effects of the quark eigenmodes associated with eigenvalues below 420 MeV. This initial high statistics study focuses on coarse (6{sup 4}) lattices (with O(a{sup 2}) improved gauge action), light internal quark masses and large physical volumes. Three features of full QCD are examined: topological charge distributions, string breaking as observed in the static energy and the eta prime mass.

  2. Truncated Dual-Cap Nucleation Site Development

    NASA Technical Reports Server (NTRS)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  3. Accurate basis set truncation for wavefunction embedding

    NASA Astrophysics Data System (ADS)

    Barnes, Taylor A.; Goodpaster, Jason D.; Manby, Frederick R.; Miller, Thomas F.

    2013-07-01

    Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller III, J. Chem. Theory Comput. 8, 2564 (2012)], 10.1021/ct300544e to allow for the systematic and accurate truncation of the embedded subsystem basis set. The approach is applied to both covalently and non-covalently bound test cases, including water clusters and polypeptide chains, and it is demonstrated that errors associated with basis set truncation are controllable to well within chemical accuracy. Furthermore, we show that this approach allows for switching between accurate projection-based embedding and DFT embedding with approximate kinetic energy (KE) functionals; in this sense, the approach provides a means of systematically improving upon the use of approximate KE functionals in DFT embedding.

  4. Mechanism of production of troponin T fragments during postmortem aging of porcine muscle.

    PubMed

    Kitamura, Shin-ichi; Muroya, Susumu; Tanabe, Soichi; Okumura, Tomoyuki; Chikuni, Koichi; Nishimura, Toshihide

    2005-05-18

    Troponin T (TnT) is one of the myofibrillar proteins that is easily degraded during postmortem aging of pork. In this study, we determined the N-terminal amino acid sequences of TnT degradation fragments produced during postmortem aging and by m-calpain hydrolysis. The N-terminal amino acid sequences of TnT fragments produced during postmortem aging were EVHEPEEKPRPKLTAP, EKPRPKLTAPKIPEG, and APKIPEGEKVDF. On the other hand, the N-terminal amino acid sequences of TnT fragments produced by the action of m-calpain were APPPPAEV, EVHEPEEK, and APK. These sequences of degradation fragments could be mapped on fast type TnT isoform 2. The peptide bonds of His37-Glu38 and Thr51-Ala52 in fTnT2 were cleaved during postmortem aging as well as by the calpain hydrolysis; therefore, calpain was concluded to have an important role in TnT degradation during postmortem aging. It was also found that the sourness-suppressing peptide APPPPAEVHEVHEEVH (Okumura et al. Biosci. Biotechnol. Biochem. 2004, 68, 1657-1662) derived from TnT degradation could be produced by the action of calpains on Glu21-Ala22 and His37-Glu38 sites.

  5. Structural investigation and homology modeling studies of native and truncated forms of alpha-amylases from Sclerotinia sclerotiorum.

    PubMed

    Ben Abdelmalek, Imen; Urdaci, Maria Camino; Ben Ali, Mamdouh; Denayrolles, Muriel; Chaignepain, Stephane; Limam, Ferid; Bejar, Samir; Marzouki, Mohamed Nejib

    2009-11-01

    The filamentous ascomycete Sclerotinia sclerotiorum is well known for its ability to produce a large variety of hydrolytic enzymes for the degradation of plant polysaccharide material. Two alpha-amylases designated as ScAmy54 and ScAmy43 were biochemically characterized and predicted to play an important role in starch degradation. Those enzymes produce specific oligosaccharides, essentially maltotriose, that have a considerable commercial interest. The primary structures of the two enzymes were analyzed by N-terminal sequencing, MALDI-TOF mass spectrometry, and cDNA cloning, and implied that the two proteins have the same N-terminal catalytic domain and ScAmy43 was produced from ScAmy54 by truncation of 96 amino acids at the carboxyl-terminal region. The result of genomic analysis suggested that the two enzymes originated from the same alpha-amylase gene and that truncation of ScAmy54 to ScAmy43 occurred probably during the S. sclerotiorum cultivation. The structural gene of ScAmy54 consisted of 9 exons and 8 introns, containing a single 1,500-bp open reading frame encoding 499 amino acids including a signal peptide of 21 amino acids. ScAmy54 exhibited high amino acid identity to other liquefying fungal alpha-amylases, essentially in the four conserved regions and in the putative catalytic triad. A 3D structure model of ScAmy54 and ScAmy43 was built using the 3D structure of 2guy from A. niger as template. ScAmy54 with three domains A, B, and C, including the well-known (beta/alpha)8-barrel motif in domain A, has a typical structure of the alpha-amylase family. ScAmy43 composed only of domains A and B constitutes a smallest fungal alpha-amylase with only a catalytic domain.