Sample records for n-type schottky barrier

  1. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, James D.

    1997-01-01

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controled switching and effecting a direction of rectification.

  2. Schottky barrier MOSFET systems and fabrication thereof

    DOEpatents

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  3. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  4. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R.

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantlymore » higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.« less

  5. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  6. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN

    NASA Astrophysics Data System (ADS)

    Sun, Minglei; Chou, Jyh-Pin; Ren, Qingqiang; Zhao, Yiming; Yu, Jin; Tang, Wencheng

    2017-04-01

    Using first-principles calculations, we systematically investigated the electronic properties of graphene/g-GaN van der Waals (vdW) heterostructures. We discovered that the Dirac cone of graphene could be quite well preserved in the vdW heterostructures. Moreover, a transition from an n-type to p-type Schottky contact at the graphene/g-GaN interface was induced with a decreased interlayer distance from 4.5 to 2.5 Å. This relationship is expected to enable effective control of the Schottky barrier, which is an important development in the design of Schottky devices.

  7. Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier

    DOEpatents

    Carlson, David E.; Wronski, Christopher R.

    1979-01-01

    A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.

  8. Analysis of Schottky Barrier Parameters and Current Transport Properties of V/p-Type GaN Schottky Junction at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Asha, B.; Harsha, Cirandur Sri; Padma, R.; Rajagopal Reddy, V.

    2018-05-01

    The electrical characteristics of a V/p-GaN Schottky junction have been investigated by current-voltage (I-V) and capacitance-voltage (C-V) characteristics under the assumption of the thermionic emission (TE) theory in the temperature range of 120-280 K with steps of 40 K. The zero-bias barrier height (ΦB0), ideality factor (n), flat-band barrier height (ΦBF) and series resistance (R S) values were evaluated and were found to be strongly temperature dependent. The results revealed that the ΦB0 values increase, whereas n, ΦFB and R S values decrease, with increasing temperature. Using the conventional Richardson plot, the mean barrier height (0.39 eV) and Richardson constant (8.10 × 10-10 Acm-2 K-2) were attained. The barrier height inhomogeneities were demonstrated by assuming a Gaussian distribution function. The interface state density (N SS) values were found to decrease with increasing temperature. The reverse leakage current mechanism of the V/p-GaN Schottky junction was found to be governed by Poole-Frenkel emission at all temperatures.

  9. First-Principles Study of the Band Diagrams and Schottky-Type Barrier Heights of Aqueous Ta3N5 Interfaces.

    PubMed

    Watanabe, Eriko; Ushiyama, Hiroshi; Yamashita, Koichi

    2017-03-22

    The photo(electro)chemical production of hydrogen by water splitting is an efficient and sustainable method for the utilization of solar energy. To improve photo(electro)catalytic activity, a Schottky-type barrier is typically useful to separate excited charge carriers in semiconductor electrodes. Here, we focused on studying the band diagrams and the Schottky-type barrier heights of Ta 3 N 5 , which is one of the most promising materials as a photoanode for water splitting. The band alignments of the undoped and n-type Ta 3 N 5 with adsorbents in a vacuum were examined to determine how impurities and adsorbents affect the band positions and Fermi energies. The band edge positions as well as the density of surface states clearly depended on the density of O N impurities in the bulk and surface regions. Finally, the band diagrams of the n-type Ta 3 N 5 /water interfaces were calculated with an improved interfacial model to include the effect of electrode potential with explicit water molecules. We observed partial Fermi level pinning in our calculations at the Ta 3 N 5 /water interface, which affects the driving force for charge separation.

  10. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  11. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    NASA Astrophysics Data System (ADS)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  12. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    NASA Astrophysics Data System (ADS)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  13. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    NASA Astrophysics Data System (ADS)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  14. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    PubMed

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  15. Characterization and Reliability of Vertical N-Type Gallium Nitride Schottky Contacts

    DTIC Science & Technology

    2016-09-01

    barrier diode SEM scanning electron microscopy SiC silicon carbide SMU source measure unit xvi THIS PAGE INTENTIONALLY LEFT BLANK xvii...arguably the Schottky barrier diode (SBD). The SBD is a fundamental component in the majority of power electronic devices; specifically, those used in...Ishizuka, and Ueno demonstrated the long-term reliability of vertical metal-GaN Schottky barrier diodes through their analysis of the degradation

  16. Schottky barrier diode and method thereof

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid (Inventor); Franz, David (Inventor)

    2008-01-01

    Pt/n.sup.-GaN Schottky barrier diodes are disclosed that are particularly suited to serve as ultra-violet sensors operating at wavelengths below 200 nm. The Pt/n.sup.-GaN Schottky barrier diodes have very large active areas, up to 1 cm.sup.2, which exhibit extremely low leakage current at low reverse biases. Very large area Pt/n.sup.-GaN Schottky diodes of sizes 0.25 cm.sup.2 and 1 cm.sup.2 have been fabricated from n.sup.-/n.sup.+ GaN epitaxial layers grown by vapor phase epitaxy on single crystal c-plane sapphire, which showed leakage currents of 14 pA and 2.7 nA, respectively for the 0.25 cm.sup.2 and 1 cm.sup.2 diodes both configured at a 0.5V reverse bias.

  17. The determination of modified barrier heights in Ti/GaN nano-Schottky diodes at high temperature.

    PubMed

    Lee, Seung-Yong; Kim, Tae-Hong; Chol, Nam-Kyu; Seong, Han-Kyu; Choi, Heon-Jin; Ahn, Byung-Guk; Lee, Sang-Kwon

    2008-10-01

    We have investigated the size-effect of the nano-Schottky diodes on the electrical transport properties and the temperature-dependent current transport mechanism in a metal-semiconductor nanowire junction (a Ti/GaN nano-Schottky diode) using current-voltage characterization in the range of 300-423 K. We found that the modified mean Schottky barrier height (SBH) was approximately 0.7 eV with a standard deviation of approximately 0.14 V using a Gaussian distribution model of the barrier heights. The slightly high value of the modified mean SBH (approximately 0.11 eV) compared to the results from the thin-film based Ti/GaN Schottky diodes could be due to an additional oxide layer at the interface between the Ti and GaN nanowires. Moreover, we found that the abnormal behavior of the barrier heights and the ideality factors in a Ti/GaN nano-Schottky diode at a temperature below 423 K could be explained by a combination of the enhancement of the tunneling current and a model with a Gaussian distribution of the barrier heights.

  18. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    PubMed

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  19. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  20. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  1. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  2. Temperature Dependence Of Current-Voltage Characteristics Of Au/p-GaAsN Schottky Barrier Diodes, With Small N Content

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio; Reentilä, Outi; Sopanen, Markku; Lipsanen, Harri

    2011-12-01

    The temperature dependent current-voltage (IVT) measurements on Au Schottky barrier diodes made on intrinsically p-type GaAs1-xNx were carried out. Three samples with small N content (x = 0.5%, 0.7% and 1%) were studied. The temperature range was 10-320 K. All contacts were found to be of Schottky type. The ideality factor and the apparent barrier height calculated by using thermionic emission (TE) theory show a strong temperature dependence. The current voltage (IV) curves are fitted based on the TE theory, yielding a zero-bias carrier height (ΦB0) and a ideality factor (n) that decrease and increase with decreasing temperature, respectively. The linear fitting of ΦB0 vs n and its subsequent evaluation for n = 1 give a zero-bias ΦB0 in the order of 0.35-0.4 eV. From the reverse-bias IV study, it is found that the experimental carrier density (NA) values increase with increasing temperature and are in agreement with the intrinsic carrier concentration for GaAs.

  3. External electric field effects on Schottky barrier at Gd3N@C80/Au interface

    NASA Astrophysics Data System (ADS)

    Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong

    2017-08-01

    The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.

  4. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  5. Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Y.; Chu, R.; Li, R.

    2016-03-14

    In a vertical GaN Schottky barrier diode, the free electron concentration n in the 6-μm-thick drift layer was found to greatly impact the diode reverse leakage current, which increased from 2.1 × 10{sup −7} A to 3.9 × 10{sup −4} A as n increased from 7.5 × 10{sup 14 }cm{sup −3} to 6.3 × 10{sup 15 }cm{sup −3} at a reverse bias of 100 V. By capping the drift layer with an ultrathin 5-nm graded AlGaN layer, reverse leakage was reduced by more than three orders of magnitude with the same n in the drift layer. We attribute this to the increased Schottky barrier height with the AlGaN at the surface. Meanwhile, themore » polarization field within the graded AlGaN effectively shortened the depletion depth, which led to the formation of tunneling current at a relatively small forward bias. The turn-on voltage in the vertical Schottky diodes was reduced from 0.77 V to 0.67 V—an advantage in reducing conduction loss in power switching applications.« less

  6. Barrier height modification and mechanism of carrier transport in Ni/in situ grown Si3N4/n-GaN Schottky contacts

    NASA Astrophysics Data System (ADS)

    Karpov, S. Y.; Zakheim, D. A.; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Brunkov, P. N.; Lundina, E. Y.; Tsatsulnikov, A. F.

    2018-02-01

    In situ growth of an ultra-thin (up to 2.5 nm) Si3N4 film on the top of n-GaN is shown to reduce remarkably the height of the barrier formed by deposition of Ni-based Schottky contact. The reduction is interpreted in terms of polarization dipole induced at the Si3N4/n-GaN interface and Fermi level pinning at the Ni/Si3N4 interface. Detailed study of temperature-dependent current-voltage characteristics enables identification of the electron transport mechanism in such Schottky diodes under forward bias: thermal/field electron emission over the barrier formed in n-GaN followed by tunneling through the Si3N4 film. At reverse bias and room temperature, the charge transfer is likely controlled by Poole-Frenkel ionization of deep traps in n-GaN. Tunneling exponents at forward and reverse biases and the height of the Ni/Si3N4 Schottky barrier are evaluated experimentally and compared with theoretical predictions.

  7. On electrical and interfacial properties of iron and platinum Schottky barrier diodes on (111) n-type Si0.65Ge0.35

    NASA Astrophysics Data System (ADS)

    Hamri, D.; Teffahi, A.; Djeghlouf, A.; Chalabi, D.; Saidane, A.

    2018-04-01

    Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G/ω-V-f) characteristics of Molecular Beam Epitaxy (MBE)-deposited Fe/n-Si0.65Ge0.35 (FM1) and Pt/n-Si0.65Ge0.35(PM2) (111) orientated Schottky barrier diodes (SBDs) have been investigated at room-temperature. Barrier height (ΦB0), ideality factor (n) and series resistance (RS) were extracted. Dominant current conduction mechanisms were determined. They revealed that Poole-Frenkel-type conduction mechanism dominated reverse current. Differences in shunt resistance confirmed the difference found in leakage current. Under forward bias, quasi-ohmic conduction is found at low voltage regions and space charge-limited conduction (SCLC) at higher voltage regions for both SBDs. Density of interface states (NSS) indicated a difference in interface reactivity. Distribution profiles of series resistance (RS) with bias gives a peak in depletion region at low-frequencies that disappears with increasing frequencies. These results show that interface states density and series resistance of Schottky diodes are important parameters that strongly influence electrical properties of FM1 and PM2 structures.

  8. Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

    NASA Astrophysics Data System (ADS)

    Bera, Swades Ranjan; Saha, Satyajit

    2018-04-01

    CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.

  9. Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Hu, J.; Stoffels, S.; Lenci, S.; Bakeroot, B.; Venegas, R.; Groeseneken, G.; Decoutere, S.

    2015-02-01

    This paper presents a combined technique of high voltage off-state stress and current transient measurements to investigate the trapping/de-trapping characteristics of Au-free AlGaN/GaN Schottky barrier diodes. The device features a symmetric three-terminal structure with a central anode contact surrounded by two separate cathodes. Under the diode off-state stress conditions, the two separate cathodes were electrically shorted. The de-trapping dynamics was studied by monitoring the recovery of the two-dimensional electron gas (2DEG) current at different temperatures by applying 0.5 V at cathode 2 while grounding cathode 1. During the recovery, the anode contact acts as a sensor of changes in diode leakage current. This leakage variation was found to be mainly due to the barrier height variation. With this method, the energy level and capture cross section of different traps in the AlGaN/GaN Schottky barrier diode can be extracted. Furthermore, the physical location of different trapping phenomena is indicated by studying the variation of the diode leakage current during the recovery. We have identified two distinct trapping mechanisms: (i) electron trapping at the AlGaN surface in the vicinity of the Schottky contact which results in the leakage reduction (barrier height ϕB increase) together with RON degradation; (ii) the electron trapping in the GaN channel layer which partially depletes the 2DEG. The physical origin of the two different traps is discussed in the text.

  10. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    NASA Astrophysics Data System (ADS)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  11. Interface state density of free-standing GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Faraz, S. M.; Ashraf, H.; Imran Arshad, M.; Hageman, P. R.; Asghar, M.; Wahab, Q.

    2010-09-01

    Schottky diodes were fabricated on the HVPE-grown, free-standing gallium nitride (GaN) layers of n- and p-types. Both contacts (ohmic and Schottky) were deposited on the top surface using Al/Ti and Pd/Ti/Au, respectively. The Schottky diode fabricated on n-GaN exhibited double barriers with values of 0.9 and 0.6 eV and better performance in the rectification factor together with reverse and forward currents with an ideality factor of 1.8. The barrier height for the p-GaN Schottky diode is 0.6 eV with an ideality factor of 4.16. From the capacitance-voltage (C-V) measurement, the net doping concentration of n-GaN is 4 × 1017 cm-3, resulting in a lower reverse breakdown of around -12 V. The interface state density (NSS) as a function of EC-ESS is found to be in the range 4.23 × 1012-3.87 × 1011 eV-1 cm-2 (below the conduction band) from Ec-0.90 to EC-0.99. Possible reasons responsible for the low barrier height and high ideality factor have been addressed.

  12. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  13. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery.

    PubMed

    San, Haisheng; Yao, Shulin; Wang, Xiang; Cheng, Zaijun; Chen, Xuyuan

    2013-10-01

    The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy. Considering the actual limitations of current GaN growth technique, a Fe-doped compensation technique by MOCVD method can be used to realize the n-type GaN with a carrier concentration of 1×10(15) cm(-3), by which a GaN based Schottky betavoltaic micro-battery can achieve an energy conversion efficiency of 2.25% based on the theoretical calculations of semiconductor device physics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  15. Electrical characteristics of n-GaN Schottky contacts on cleaved surfaces of free-standing substrates: Metal work function dependence of Schottky barrier height

    NASA Astrophysics Data System (ADS)

    Imadate, Hiroyoshi; Mishima, Tomoyoshi; Shiojima, Kenji

    2018-04-01

    We report the electrical characteristics of Schottky contacts with nine different metals (Ag, Ti, Cr, W, Mo, Au, Pd, Ni, and Pt) formed on clean m-plane surfaces by cleaving freestanding GaN substrates, compared with these of contacts on Ga-polar c-plane n-GaN surfaces grown on GaN substrates. The n-values from the forward current–voltage (I–V) characteristics are as good as 1.02–1.18 and 1.02–1.09 for the m- and c-plane samples, respectively. We found that the reverse I–V curves of both samples can be explained by the thermionic field emission theory, and that the Schottky barrier height of the cleaved m-plane contacts shows a metal work function dependence.

  16. Analysis of aging time dependent electrical characteristics of AuCu/n-Si/Ti Schottky type diode

    NASA Astrophysics Data System (ADS)

    Taser, Ahmet; Şenarslan, Elvan; Güzeldir, Betül; Saǧlam, Mustafa

    2017-04-01

    The purpose of this study is to fabricate AuCu/n-Si/Ti Schottky type diode and determine the effects of aging time on the diode parameters such as ideality factor, barrier height, series resistance, interface state density and rectification ratio. Gold and copper ratios in the gold-copper alloy used in making the Schottky contact were taken as equal. Schottky barrier contact using AuCu alloy and ohmic contact using Ti metal were made on n-Si by thermal evaporation. The electrical characterization of the AuCu/n-Si/Ti diode was made immediately based on the aging time at room temperature in dark conditions. The I-V measurements were also repeated 1, 7, 15, 30 and 90 days after fabrication of the diode in order to observe the effect of the aging time. The determined values of the ideality factor are in the range of 1,21 (for immediately)-1,075 (for 90 days). In the same way, values of the barrier height are also in the range of 0,566 eV (for immediately)-0,584 eV (for 90 days). From the I-V characteristics, it is seen that the diode appears to have a good rectification character.

  17. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M. G.; Petwal, V. C.; Dwivedi, Jishnu; Choudhary, R. J.

    2017-06-01

    The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I-V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (ΦB), ideality factor (n) and series resistance (Rs). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of ΦB was observed as a function of EBI dose. The improved n with increased ΦB is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune Schottky contact parameters by metal deposition on the electron beam irradiated n-Si wafers.

  18. Laterally inhomogeneous barrier analysis of cu/n-gap/al schottky devices

    NASA Astrophysics Data System (ADS)

    Çınar Demir, K.; Coşkun, C.; Kurudirek, S. V.; Öz, S.; Aydoğan, Ş.; Biber, M.

    2016-04-01

    In this study, we examined the electrical parameters of Cu/n-GaP/Al Schottky structures at room temperature and examined the electrical characterization of these devices depending on and Capacitance-Voltage (C-V) and Current-Voltage (I-V) measurements. A statistical study on the experimental ideality factor (n) and BHs(barrier heights) values of the devices was stated. The n and BHs of all contacts have been determined from the electrical characteristics. Even though all of the diodes were conformably prepared, there was a diode-todiode variation: the effective BHs changed from 0.988-0.07 to 1.216-0.07 eV, and the n from 1.01-0.299 to 2.16-0.299. The yielded results show that the mean electrical parameters of Schottky devices are different from one diode to another, even if they are identically prepared. It can be axplained that the lower BHs usher with the higher n values owing to inhomogeneities.

  19. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  20. Tunable Schottky barrier and electronic properties in borophene/g-C2N van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, J. W.; Wang, X. C.; Song, Y.; Mi, W. B.

    2018-05-01

    By stacking different layers of two dimensional (2D) monolayer materials, the electronic properties of the 2D van der Waals (vdW) heterostructures can be tailored. However, the Schottky barrier formed between 2D semiconductor and metallic electrode has greatly limited the application of 2D semiconductor in nanoelectronic and optoelectronic devices. Herewith, we investigate the electronic properties of borophene/g-C2N vdW heterostructures by first-principles calculations. The results indicate that electronic structures of borophene and g-C2N are preserved in borophene/g-C2N vdW heterostructures. Meanwhile, upon the external electric field, a transition from the n-type Schottky contact to Ohmic contact is induced, and the carrier concentration between the borophene and g-C2N interfaces can be tuned. These results are expected to provide useful insight in the nanoelectronic and optoelectronic devices based on the borophene/g-C2N vdW heterostructures.

  1. The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.

    We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

  2. Schottky barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1981-01-01

    A method of fabricating a Schottky barrier solar cell is described. The cell consists of a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive. A thin layer of heavily doped n-type polycrystalling germanium is deposited on the substrate after a passivation layer is deposited to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes to serve as a base layer on which a thin layer of gallium arsenide is vapor-epitaxilly grown followed by a thermally-grown oxide layer. A metal layer is deposited on the oxide layer and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer.

  3. Investigation of the thermal annealing effect on electrical properties of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Sleptsov, E. V.; Chernykh, A. V.; Chernykh, S. V.; Dorofeev, A. A.; Gladysheva, N. B.; Kondakov, M. N.; Sleptsova, A. A.; Panichkin, A. V.; Konovalov, M. P.; Didenko, S. I.

    2017-03-01

    Investigation of the thermal annealing effect on Schottky barrier parameters and the leakage current of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures has been performed. Improvement of Schottky barrier parameters after annealing of the investigated metallization schemes was observed. Ni/Au and Mo/Au contacts drastically degrade after annealing at the temperatures higher than 400 °C, whereas the Ni/Mo/Au contact exhibits excellent parameters after 500 °C annealing (qϕb = 1.00 eV, n = 1.13 и Ileak = 5 μA).

  4. Plastic Schottky barrier solar cells

    DOEpatents

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  5. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  6. Schottky barrier betavoltaic battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manasse, F.K.; Pinajian, J.J.; Tse, A.N.

    1976-02-01

    A new nuclear betavoltaic battery is described. It uses a Schottky barrier in place of the more standard p-n junction diode, along with $sup 147$Pm metal film rather than Pm$sub 2$O$sub 3$ oxide as in the commercially available Betacel. Design details of the battery including measurement of absorption, conversion efficiency, thickness etc. as functions of resistivity and other cell parameters are described. A prototype design is discussed and its performance assessed. (auth)

  7. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-08-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm-2 of Nickle-63 (63Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure.

  8. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    PubMed

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character.

  9. Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roul, Basanta; Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TEmore » and TFE models were 1.08 and 1.43 eV, respectively.« less

  10. The effects of high-energy uranium ion irradiation on Au/n-GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gou, J.; Zhang, C. H.; Zhang, L. Q.; Song, Y.; Wang, L. X.; Li, J. J.; Meng, Y. C.; Li, H. X.; Yang, Y. T.; Lu, Z. W.

    2014-11-01

    The I-V and C-V characteristics of Au/n-GaN Schottky diodes irradiated with 290-MeV 238U32+ ions are presented. The U ions can penetrate the n-type GaN epi-layer with a thickness about 3 μm grown on the c-plane of a sapphire substrate using the MOCVD technique, leaving a purely electronic energy deposition. The Au/n-GaN Schottky diodes were irradiated to successively increasing fluences from 1 × 109 to 5 × 1011 ions cm-2. The measured I-V curves show that the height of the Schottky barrier decreases after irradiation and that the Schottky barrier almost disappears when the ion fluence reaches 5 × 1010 ions cm-2. Meanwhile, the irradiation increases the series resistance. The C-V curves show that the capacitance drops sharply when the ion fluence reaches 5 × 1010 ions cm-2. The dielectric constant also decreases following the irradiation. The changes of the electrical properties are ascribed to the neutralization of the donor-like surface state and the acceptor-like surface state due to the migration of Au atoms at the interface of Au/n-GaN under energetic U ions irradiations.

  11. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    NASA Astrophysics Data System (ADS)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  12. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  13. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    PubMed

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  14. Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.

  15. Electronic transport and Schottky barrier heights of p-type CuAlO2 Schottky diodes

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Luo, Jie; Hung, Hao-Che

    2013-05-01

    A CuAlO2 Schottky diode was fabricated and investigated using current density-voltage (J-V) and capacitance-voltage (C-V) methods. It is shown that the barrier height (qϕB) determined from J-V measurements is lower than that determined from C-V measurements and qϕB determined from C-V measurements is close to the Schottky limit. This is due to a combined effect of the image-force lowering and tunneling. Time domain measurements provide evidence of the domination of electron trapping with long-second lifetime in CuAlO2. Carrier capture and emission from charge traps may lead to the increased probability of tunneling, increasing the ideality factor.

  16. Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tadjer, Marko J.; Mahadik, Nadeemullah A.; Freitas, Jaime A.; Glaser, Evan R.; Koehler, Andrew D.; Luna, Lunet E.; Feigelson, Boris N.; Hobart, Karl D.; Kub, Fritz J.; Kuramata, A.

    2018-02-01

    We present novel approaches for the development of Ga2O3 Schottky barrier and heterojunction diodes. Samples of β- Ga2O3 were first annealed in N2 and O2 to demonstrate the effect of annealing on the carrier concentration. Cathodoluminescence and electron spin resonance measurements were also performed. Schottky barrier diodes on asgrown and O2-annealed epitaxial Ga2O3 films were fabricated and breakdown voltages were compared. Lower reverse current and a breakdown voltage of about 857 V were measured on the O2-annealed device. Finally, we report preliminary results from the development of anisotype heterojunctions between n-type Ga2O3 with a sputtered NiO layer. Rectifying current-voltage characteristics were obtained when the NiO was deposited both at room temperature and at 450 °C.

  17. Effects of Post Annealing on I-V-T Characteristics of (Ni/Au)/Al0.09Ga0.91N Schottky Barrier Diodes

    NASA Astrophysics Data System (ADS)

    Akkaya, Abdullah; Ayyıldız, Enise

    2016-04-01

    Post annealing is a simple, effective and suitable method for improving the diode parameters, especially when the used chemically stable substrates like Si, III-N and ternary alloys. In our work, we were applied this method to (Ni/Au)/Al0.09Ga0.91N Schottky Barrier Diodes (SBDs) and investigated by temperature-dependent current-voltage (I-V-T) characteristics at optimum conditions. Optimum annealing temperature was 600°C, which it’s determined with respect to have a highest barrier height value. The temperature-dependent electrical characteristics of the annealed at 600°C (Ni/Au)/Al0.09Ga0.91N SBDs were investigated in the wide temperature range of 95-315K. The diode parameters such as ideality factor (n) and Schottky barrier height (Vb0) were obtained to be strongly temperature dependent. The observed variation in Vb0 and n can be attributed to the spatial barrier inhomogeneities in Schottky barrier height by assuming a triple Gaussian distribution (TGD) of barrier heights (BHs) at 95-145K, 145-230K and 230-315K. The modified Richardson plots and T0 analysis was performed to provide an experimental Richardson constants and bias coefficients of the mean barrier height. Furthermore, the chemical composition of the contacts was examined by the XPS depth profile analysis.

  18. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    NASA Astrophysics Data System (ADS)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  19. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J.; Roul, Basanta

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolutionmore » X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.« less

  20. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P., E-mail: vlabella@albany.edu

    2013-11-15

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to bemore » below the region of best fit for the power law form of the BK model, demonstrating its region of validity.« less

  1. Current transport in Pd2Si/n-Si(100) Schottky barrier diodes at low temperatures

    NASA Astrophysics Data System (ADS)

    Chand, Subhash; Kumar, Jitendra

    1996-08-01

    The forward current-voltage ( I V) characteristics of Pd2Si/n-Si(100) Schottky barrier diodes are shown to follow the Thermionic Emission-Diffusion (TED) mechanism in the temperature range of 52-295 K. The evaluation of the experimental I V data reveals a decrease of the zero-bias barrier height (ϕ b0) and an increase of the ideality factor (η) with decreasing temperature. Further, the changes in ϕ b0 and η become quite significant below 148 K. It is demonstrated that the findings cannot be explained on the basis of tunneling, generation-recombination and/or image force lowering. Also, the concepts of flat band barrier height and “ T 0-effect” fail to account for the temperature dependence of the barrier parameters. The 1n( I s / T 2) vs 1/ T plot exhibits nonlinearity below 185 K with the linear portion corresponding to an activat ion energy of 0.64 eV, a value smaller than the zero-bias barrier height energy (0.735 eV) of Pd2Si/n-Si Schottky diodes. Similarly, the value of the effective Richardson constant A** turns out to be 1.17 × 104 A m-2 K-2 against the theoretical value of 1.12 × 106 A m-2 K-2. Finally, it is demonstrated that the observed trends result due to barrier height inhomogeneities prevailing at the interface which, in turn, cause extra current such that the I V characteristics continue to remain consistent with the TED process even at low temperatures. The inhomogeneities are believed to have a Gaussian distribution with a mean barrier height of 0.80 V and a standard deviation of 0.05 V at zero-bias. Also, the effect of bias is shown to homogenize barrier heights at a slightly higher mean value.

  2. Red Light Emitting Schottky Diodes on p-TYPE GaN/AlN/Si(111) Substrate

    NASA Astrophysics Data System (ADS)

    Chuah, L. S.; Hassan, Z.; Abu Hassan, H.

    High quality GaN layers doped with Mg were grown on Si(111) substrates using high temperature AlN as buffer layer by radio-frequency molecular beam epitaxy. From the Hall measurements, fairly uniform high hole concentration as high as (4-5) × 1020 cm-3 throughout the GaN was achieved. The fabrication of the device is very simple. Nickel ohmic contacts and Schottky contacts using indium were fabricated on Mg-doped p-GaN films. The light emission has been obtained from these thin film electroluminescent devices. Thin film electroluminescent devices were operated under direct current bias. Schottky and ohmic contacts used as cathode and anode were employed in these investigations. Alternatively, two Schottky contacts could be probed as cathode and anode. Thin film electroluminescent devices were able to emit light. However, electrical and optical differences could be observed from the two different probing methods. The red light color could be observed when the potential between the electrodes was increased gradually under forward bias of 8 V at room temperature. Electrical properties of these thin film electroluminescent devices were characterized by current-voltage (I-V) system, the heights of barriers determined from the I-V measurements were found to be related to the electroluminescence.

  3. Silicon nanowires: electron holography studies of doped p-n junctions and biased Schottky barriers.

    PubMed

    He, Kai; Cho, Jeong-Hyun; Jung, Yeonwoong; Picraux, S Tom; Cumings, John

    2013-03-22

    We report an in situ examination of individual Si p-n junction nanowires (NWs) using off-axis electron holography (EH) during transmission electron microscopy. The SiNWs were synthesized by chemical vapor deposition with an axial dopant profile from n- to p-type, and then placed inside the transmission electron microscope as a cantilever geometry in contact with a movable Pt probe for in situ biasing measurements during simultaneous EH observations. The phase shift from EH indicates the potential shift between the p- and n-segments to be 1.03 ± 0.17 V due to the built-in voltage. The I-V characteristics of a single SiNW indicate the formation of a Schottky barrier between the NW tip and the movable Pt contact. EH observations show a strong concentration of electric field at this contact, preventing a change in the Si energy bands in the p-n junction region due to the applied bias.

  4. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  5. Temperature dependent barrier height and ideality factor of electrodeposited n-CdSe/Cu Schottky barrier diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahato, S., E-mail: som.phy.ism@gmail.com; Shiwakoti, N.; Kar, A. K.

    2015-06-24

    This article reports the measurement of temperature-dependent barrier height and ideality factor of n-CdSe/Cu Schottky barrier diode. The Cadmium Selenide (CdSe) thin films have been deposited by simple electrodeposition technique. The XRD measurements ravels the deposited single phase CdSe films are highly oriented on (002) plane and the average particle size has been calculated to be ~18 nm. From SEM characterization, it is clear that the surface of CdSe thin films are continuous, homogeneous and the film is well adhered to the substrate and consists of fine grains which are irregular in shape and size. Current-Voltage characteristics have been measured atmore » different temperatures in the range (298 K – 353 K). The barrier height and ideality factor are found to be strongly temperature dependent. The inhomogenious barrier height increases and ideality factor decreases with increase in temperature. The expectation value has been calculated and its value is 0.30 eV.« less

  6. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of themore » observed device performance enhancements.« less

  7. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode.

    PubMed

    Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Luo, Shunzhong; Liu, Ning

    2012-03-01

    An Au-Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p-n junction. The results show that the Schottky diode had a higher I(sc) and harder radiation tolerance but lower V(oc) than the p-n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Effects of deposition temperature on the electrical properties of Ti/SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Oder, Tom N.; Kundeti, Krishna C.; Borucki, Nicholas; Isukapati, Sundar B.

    2017-12-01

    Ti Schottky contacts were deposited on n-type 4H-SiC at different temperatures ranging from 28 oC to 900 oC using a magnetron sputtering deposition system to fabricate Schottky barrier diodes. Post deposition annealing at 500 oC for up to 60 hours in vacuum was carried to further improve the contact properties. Optimum barrier height of 1.13 eV and ideality factor of 1.04 was obtained in contacts deposited at 200 oC and annealed for 60 hours. Under a reverse voltage bias of 400 V, the average leakage current on these set of diodes was 6.6 x 10-8 A. Based on the x-ray diffraction analysis, TiC, Ti5Si3 and Ti3SiC2 were formed at the Ti/SiC interface. These results could be beneficial to improving the performance of 4H-SiC Schottky diodes for high power and high temperature applications.

  9. Radioisotope battery using Schottky barrier devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manasse, F.K.; Tse, A.N.

    1976-05-01

    Based on the well-known betavoltaic effect, a new nuclear battery, which uses a Schottky barrier, has been used in place of the more standard p-n junction diode, along with /sup 147/Pm metal film rather than Pm/sub 2/O/sub 3/ oxide, as in the commercially available Betacel. Measurement of absorption, conversion efficiency, thickness, etc., as functions of resistivity and other cell parameters, and assessment of performance are being researched to design a prototype battery.

  10. 1.9 kV AlGaN/GaN Lateral Schottky Barrier Diodes on Silicon

    DOE PAGES

    Zhu, Mingda; Song, Bo; Qi, Meng; ...

    2015-02-16

    In this letter, we present AlGaN/GaN lateral Schottky barrier diodes on silicon with recessed anodes and dual field plates. A low specific on-resistance R ON,SP (5.12 mΩ · cm 2), a low turn-on voltage (<0.7 V) and a high reverse breakdown voltage BV (>1.9 kV), were simultaneously achieved in devices with a 25 μm anode/cathode separation, resulting in a power figure-of-merit (FOM) BV2/R ON,SP of 727 MW·cm 2. The record high breakdown voltage of 1.9 kV is attributed to the dual field plate structure.

  11. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  12. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    PubMed

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  13. Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer

    NASA Astrophysics Data System (ADS)

    Thapaswini, P. Prabhu; Padma, R.; Balaram, N.; Bindu, B.; Rajagopal Reddy, V.

    2016-05-01

    Au/Ba0.6Sr0.4TiO3 (BST)/n-InP metal/insulator/semiconductor (MIS) Schottky diodes have been analyzed by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The surface morphology of the BST films on InP is fairly smooth. The Au/BST/n-InP MIS Schottky diode shows better rectification ratio and low leakage current compared to the conventional Au/n-InP metal-semiconductor (MS) Schottky diode. Higher barrier height is achieved for the MIS Schottky diode compared to the MS Schottky diode. The Norde and Cheung's methods are employed to determine the barrier height, ideality factor and series resistance. The interface state density (NSS) is determined from the forward bias I-V data for both the MS and MIS Schottky diodes. Results reveal that the NSS of the MIS Schottky diode is lower than that of the MS Schottky diode. The Poole-Frenkel emission is found dominating the reverse current in both Au/n-InP MS and Au/BST/n-InP MIS Schottky diodes, indicating the presence of structural defects and trap levels in the dielectric film.

  14. Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation.

    PubMed

    Kumar, Ashish; Arafin, Shamsul; Amann, Markus Christian; Singh, Rajendra

    2013-11-15

    Temperature-dependent electrical characterization of Pt/n-GaN Schottky barrier diodes prepared by ultra high vacuum evaporation has been done. Analysis has been made to determine the origin of the anomalous temperature dependence of the Schottky barrier height, the ideality factor, and the Richardson constant calculated from the I-V-T characteristics. Variable-temperature Hall effect measurements have been carried out to understand charge transport at low temperature. The modified activation energy plot from the barrier inhomogeneity model has given the value of 32.2 A/(cm2 K2) for the Richardson constant A** in the temperature range 200 to 380 K which is close to the known value of 26.4A/(cm2 K2) for n-type GaN.

  15. Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi

    2018-04-01

    A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.

  16. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model

    PubMed Central

    Penumatcha, Ashish V.; Salazar, Ramon B.; Appenzeller, Joerg

    2015-01-01

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses. PMID:26563458

  17. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    PubMed

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  18. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.

    2016-04-01

    A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.

  19. Spatially inhomogeneous barrier height in graphene/MoS2 Schottky junctions

    NASA Astrophysics Data System (ADS)

    Tomer, Dushyant; Rajput, Shivani; Li, Lian

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. In this study, graphene Schottky junctions are fabricated by transferring CVD monolayer graphene on mechanically exfoliated MoS2 multilayers. The forward bias current-voltage characteristics are measured in the temperature range of 210-300 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature. Such behavior is attributed to Schottky barrier inhomogeneities possibly due to graphene ripples and ridges at the junction interface as suggested by atomic force microscopy. Assuming a Gaussian distribution of the barrier height, mean barrier of 0.97+/-0.10 eV is found for the graphene MoS2 junction. Our findings provide significant insight on the barrier height inhomogeneities in graphene/two dimensional semiconductor Schottky junctions. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award No. DEFG02-07ER46228.

  20. Electrical properties and interface state energy distributions of Cr/n-Si Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Karataş, Şükrü; Yildirim, Nezir; Türüt, Abdülmecit

    2013-12-01

    In this study, the electrical characteristics of the Cr/n-type Si (MS) Schottky barrier diode have been investigated by the current-voltage (I-V) and capacitance-voltage (C-V) measurements at 300 K temperature. Using the thermionic emission theory, the values of ideality factor and the barrier height have been obtained to be 1.22, 0.71 and 1.01, 0.83 eV, from the results of the I-V and C-V measurements, respectively. The barrier height (Φb) and the series resistance (RS) obtained from Norde’s function have been compared with those obtained from Cheung functions, and a good agreement between the results of both methods was seen. The interface state density (NSS) calculated without the RS is obtained to be increasing exponentially with bias from 2.40 × 1012 cm-2 eV-1 in (EC-0.623) eV to 1.94 × 1014 cm-2 eV-1 in (EC-0.495) eV, also, the NSS obtained taking into account the RS has increased exponentially with bias from 2.07 × 1012 cm-2 eV-1 to 1.47 × 1014 cm-2 eV-1 in the same interval.

  1. Calculation of the Schottky barrier and current–voltage characteristics of metal–alloy structures based on silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V.

    2016-09-15

    A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.

  2. Graphene barristor, a triode device with a gate-controlled Schottky barrier.

    PubMed

    Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam

    2012-06-01

    Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

  3. Liquid junction schottky barrier solar cell

    DOEpatents

    Williams, Richard

    1980-01-01

    A mixture of ceric ions (Ce.sup.+4) and cerous ions (Ce.sup.+3) in an aqueous electrolyte solution forms a Schottky barrier at the interface between an active region of silicon and the electrolyte solution. The barrier height obtained for hydrogenated amorphous silicon using the Ce.sup.+4 /Ce.sup.+3 redox couple is about 1.7 eV.

  4. Simulation design of high reverse blocking high-K/low-K compound passivation AlGaN/GaN Schottky barrier diode with gated edge termination

    NASA Astrophysics Data System (ADS)

    Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi

    2017-11-01

    In this paper, a novel high-K/low-K compound passivation AlGaN/GaN Schottky Barrier Diode (CPG-SBD) is proposed to improve the off-state characteristics of AlGaN/GaN schottky barrier diode with gated edge termination (GET-SBD) by adding low-K blocks in to the high-K passivation layer. The reverse leakage current of CPG-SBD can be reduced to 1.6 nA/mm by reducing the thickness of high-K dielectric under GET region to 5 nm, while the forward voltage and on-state resistance keep 1 V and 3.8 Ω mm, respectively. Breakdown voltage of CPG-SBDs can be improved by inducing discontinuity of the electric field at the high-K/low-K interface. The breakdown voltage of the optimized CPG-SBD with 4 blocks of low-K can reach 1084 V with anode to cathode distance of 5 μm yielding a high FOM of 5.9 GW/cm2. From the C-V simulation results, CPG-SBDs induce no parasitic capacitance by comparison of the GET-SBDs.

  5. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction.

    PubMed

    Rajput, S; Chen, M X; Liu, Y; Li, Y Y; Weinert, M; Li, L

    2013-01-01

    When graphene is interfaced with a semiconductor, a Schottky contact forms with rectifying properties. Graphene, however, is also susceptible to the formation of ripples upon making contact with another material. Here we report intrinsic ripple- and electric field-induced effects at the graphene semiconductor Schottky junction, by comparing chemical vapour-deposited graphene transferred on semiconductor surfaces of opposite polarization-the hydrogen-terminated silicon and carbon faces of hexagonal silicon carbide. Using scanning tunnelling microscopy/spectroscopy and first-principles calculations, we show the formation of a narrow Schottky dipole barrier approximately 10 Å wide, which facilitates the observed effective electric field control of the Schottky barrier height. We further find atomic-scale spatial fluctuations in the Schottky barrier that directly follow the undulation of ripples on both graphene-silicon carbide junctions. These findings reveal fundamental properties of the graphene/semiconductor Schottky junction-a key component of vertical graphene devices that offer functionalities unattainable in planar device architecture.

  6. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  7. Electrical parameters of Au/n-GaN and Pt/n-GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Kadaoui, Mustapha Amine; Bouiadjra, Wadi Bachir; Saidane, Abdelkader; Belahsene, Sofiane; Ramdane, Abderrahim

    2015-06-01

    Electrical properties of Si-doped GaN epitaxial layers, grown on a c-plane sapphire substrate by MOCVD to form Schottky diodes with Gold (Au) and platinum (Pt) and using Ti/Al/Au as Ohmic contact, are investigated. Characterization was performed through I-V and C-V-f measurements at room temperature. Schottky barrier height (Φb), ideality factor (n), and series resistance (Rs) were extracted from forward I-V characteriztics using Cheung and Lien methods. Φb, doping concentration (Nd) and Rs frequency dependence were extracted from C-V-f characteriztics. Pt/n-GaN shows a non-linear behavior with a barrier height of 0.63 eV, an ideality factor of 2.3, and series resistance of 63 Ω. Au/n-GaN behaves like two diodes in parallel with two barrier heights of (0.83 and 0.9 eV), two ideality factors of (5.8 and 3.18) and two series resistance of (10.6 and 68 Ω). Interface state properties in both samples have been investigated taking into account the bias dependence of the effective barrier height. The amount of stimulated traps along the energy-gap at the interface increases with voltage bias, which increases NSS exponentially from 4.24 ṡ 1013 to 3.67 ṡ 1014 eV-1 cm-2 in the range (Ec - 0.17) to (Ec - 0.61) eV for Pt/n-GaN, and from 2.3 ṡ 1013 to 1.14 ṡ 1014 eV-1 cm-2, in the range (Ec - 0.31) to (Ec - 0.82) eV for Au/n-GaN. The values of interface states density and series resistance for both samples are found to decrease with increasing frequency. Peak intensity was a measure of active interface states. C-V-f results confirm the model of the Schottky diode with a native interfacial insulator layer along the space charge region.

  8. Evaluation of Schottky barrier height on 4H-SiC m-face \\{ 1\\bar{1}00\\} for Schottky barrier diode wall integrated trench MOSFET

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yusuke; Ishimori, Hiroshi; Kinoshita, Akimasa; Kojima, Takahito; Takei, Manabu; Kimura, Hiroshi; Harada, Shinsuke

    2017-04-01

    We proposed an Schottky barrier diode wall integrated trench MOSFET (SWITCH-MOS) for the purposes of shrinking the cell pitch and suppressing the forward degradation of the body diode. A trench Schottky barrier diode (SBD) was integrated into a trench gate MOSFET with a wide shielding p+ region that protected the trench bottoms of both the SBD and the MOS gate from high electrical fields in the off state. The SBD was placed on the trench sidewall of the \\{ 1\\bar{1}00\\} plane (m-face). Static and transient simulations revealed that SWITCH-MOS sufficiently suppressed the bipolar current that induced forward degradation, and we determined that the optimum Schottky barrier height (SBH) was from 0.8 to 2.0 eV. The SBH depends on the crystal planes in 4H-SiC, but the SBH of the m-face was unclear. We fabricated a planar m-face SBD for the first time, and we obtained SBHs from 1.4 to 1.8 eV experimentally with titanium or nickel as a Schottky metal.

  9. Process for preparing schottky diode contacts with predetermined barrier heights

    DOEpatents

    Chang, Y. Austin; Jan, Chia-Hong; Chen, Chia-Ping

    1996-01-01

    A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

  10. Optical properties of thin gold films applied to Schottky barrier solar cells

    NASA Technical Reports Server (NTRS)

    YEH Y. M.

    1974-01-01

    The Schottky barrier solar cell is considered a possible candidate for converting solar to electrical energy both for space and terrestrial applications. Knowledge of the optical constants of the ultrathin metal film used in the cell is essential for analyzing and designing higher efficiency Schottky barrier cells. The optical constants of 7.5 -nm (75-A) gold films on gallium arsenide have been obtained. In addition, the absolute collection efficiency of Schottky barrier solar cells has been determined from measured spectral response and optical constants of the gold film.

  11. Intermediate type excitons in Schottky barriers of A3B6 layer semiconductors and UV photodetectors

    NASA Astrophysics Data System (ADS)

    Alekperov, O. Z.; Guseinov, N. M.; Nadjafov, A. I.

    2006-09-01

    Photoelectric and photovoltaic spectra of Schottky barrier (SB) structures of InSe, GaSe and GaS layered semiconductors (LS) are investigated at quantum energies from the band edge excitons of corresponding materials up to 6.5eV. Spectral dependences of photoconductivity (PC) of photo resistors and barrier structures are strongly different at the quantum energies corresponding to the intermediate type excitons (ITE) observed in these semiconductors. It was suggested that high UV photoconductivity of A3B6 LS is due to existence of high mobility light carriers in the depth of the band structure. It is shown that SB of semitransparent Au-InSe is high sensitive photo detector in UV region of spectra.

  12. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    NASA Astrophysics Data System (ADS)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  13. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  14. Properties of GaP Schottky barrier diodes at elevated temperatures.

    NASA Technical Reports Server (NTRS)

    Nannichi, Y.; Pearson, G. L.

    1969-01-01

    Gallium phosphide Schottky barrier diodes, discussing construction and metals used, barrier height relationships to impurity concentration and temperature, rectifying characteristics and internal quantum efficiency

  15. Very low Schottky barrier height at carbon nanotube and silicon carbide interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Suzuki, Kazuma; Shibuya, Megumi

    2015-03-23

    Electrical contacts to silicon carbide with low contact resistivity and high current durability are crucial for future SiC power devices, especially miniaturized vertical-type devices. A carbon nanotube (CNT) forest formed by silicon carbide (SiC) decomposition is a densely packed forest, and is ideal for use as a heat-dissipative ohmic contact in SiC power transistors. The contact resistivity and Schottky barrier height in a Ti/CNT/SiC system with various SiC dopant concentrations were evaluated in this study. Contact resistivity was evaluated in relation to contact area. The Schottky barrier height was calculated from the contact resistivity. As a result, the Ti/CNT/SiC contactmore » resistivity at a dopant concentration of 3 × 10{sup 18 }cm{sup −3} was estimated to be ∼1.3 × 10{sup −4} Ω cm{sup 2} and the Schottky barrier height of the CNT/SiC contact was in the range of 0.40–0.45 eV. The resistivity is relatively low for SiC contacts, showing that CNTs have the potential to be a good ohmic contact material for SiC power electronic devices.« less

  16. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    NASA Astrophysics Data System (ADS)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  17. High-density Schottky barrier IRCCD sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Tower, J. R.; McCarthy, B. M.

    1983-01-01

    It is pointed out that the ambitious goals envisaged for the next generation of space-borne sensors challenge the state-of-the-art in solid-state imaging technology. Studies are being conducted with the aim to provide focal plane array technology suitable for use in future Multispectral Linear Array (MLA) earth resource instruments. An important new technology for IR-image sensors involves the use of monolithic Schottky barrier infrared charge-coupled device arrays. This technology is suitable for earth sensing applications in which moderate quantum efficiency and intermediate operating temperatures are required. This IR sensor can be fabricated by using standard integrated circuit (IC) processing techniques, and it is possible to employ commercial IC grade silicon. For this reason, it is feasible to construct Schottky barrier area and line arrays with large numbers of elements and high-density designs. A Pd2Si Schottky barrier sensor for multispectral imaging in the 1 to 3.5 micron band is under development.

  18. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    NASA Technical Reports Server (NTRS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  19. Influence of surface oxides on hydrogen-sensitive Pd:GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Weidemann, O.; Hermann, M.; Steinhoff, G.; Wingbrant, H.; Lloyd Spetz, A.; Stutzmann, M.; Eickhoff, M.

    2003-07-01

    The hydrogen response of Pd:GaN Schottky diodes, prepared by in situ and ex situ deposition of catalytic Pd Schottky contacts on Si-doped GaN layers is compared. Ex situ fabricated devices show a sensitivity towards molecular hydrogen, which is about 50 times higher than for in situ deposited diodes. From the analysis of these results, we conclude that adsorption sites for atomic hydrogen in Pd:GaN sensors are provided by an oxidic intermediate layer. In addition, in situ deposited Pd Schottky contacts reveal lower barrier heights and drastically higher reverse currents. We suggest that the passivation of the GaN surface before ex situ deposition of Pd also results in quenching of leakage paths caused by structural defects.

  20. Schottky-type grain boundaries in CCTO ceramics

    NASA Astrophysics Data System (ADS)

    Felix, A. A.; Orlandi, M. O.; Varela, J. A.

    2011-10-01

    In this work we studied electrical barriers existing at CaCu 3Ti 4O 12 (CCTO) ceramics using dc electrical measurements. CCTO pellets were produced by solid state reaction method and X-ray diffractograms showed which single phase polycrystalline samples were obtained. The samples were electrically characterized by dc and ac measurements as a function of temperature, and semiconductor theory was applied to analyze the barrier at grain boundaries. The ac results showed the sample's permittivity is almost constant ( 104) as function of temperature at low frequencies and it changes from 100 to 104 as the temperature increases at high frequencies. Using dc measurements as a function of temperature, the behavior of barriers was studied in detail. Comparison between Schottky and Poole-Frenkel models was performed, and results prove that CCTO barriers are more influenced by temperature than by electric field (Schottky barriers). Besides, the behavior of barrier width as function of temperature was also studied and experimental results confirm the theoretical assumptions.

  1. Plastic Schottky-barrier solar cells

    DOEpatents

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  2. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes

    NASA Astrophysics Data System (ADS)

    Okino, Hiroyuki; Kameshiro, Norifumi; Konishi, Kumiko; Shima, Akio; Yamada, Ren-ichi

    2017-12-01

    Nickel (Ni), titanium (Ti), and molybdenum (Mo) 4H-silicon carbide Schottky-barrier diodes (SiC SBDs) were fabricated and used to investigate the relation between forward and reverse currents. Temperature dependence of reverse current follows a theory that includes tunneling in regard to thermionic emission, namely, temperature dependence is weak at low temperature but strong at high temperatures. On the other hand, the reverse currents of the Ni and Mo SBDs are higher than their respective currents calculated from their Schottky barrier heights (SBHs), whereas the reverse current of the Ti SBD agrees well with that calculated from its SBH. The cause of the high reverse currents was investigated from the viewpoints of low barrier patch, Gaussian distribution of barrier height (GD), thin surface barrier, and electron effective mass. The high reverse current of the Ni and Mo SBDs can be explained not in terms of a low-barrier patch, GD, or thin surface barrier but in terms of small effective masses. Investigation of crystal structures at the Schottky interface revealed a large lattice mismatch between the metals (Ni, Ti, or Mo) and SiC for the Ni and Mo SBDs. The small effective mass is possibly attributed to the large lattice mismatch, which might generate transition layers at the Schottky interface. It is concluded from these results that the lattice constant as well as the work function is an important factor in selecting the metal species as the Schottky metal for wide band-gap SBDs, for which tunneling current dominates reverse current.

  3. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    PubMed

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  4. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    NASA Astrophysics Data System (ADS)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-07-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  5. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    NASA Astrophysics Data System (ADS)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  6. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  7. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    PubMed

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  8. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  9. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  10. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    PubMed

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  11. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing

    PubMed Central

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-01-01

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4–0.7 eV to 0.2–0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature. PMID:28773440

  12. Electrical Characteristics of 10-kV 4H-SiC MPS Rectifiers with High Schottky Barrier Height

    NASA Astrophysics Data System (ADS)

    Jiang, Yifan; Sung, Woongje; Baliga, Jayant; Wang, Sizhen; Lee, Bongmook; Huang, Alex

    2018-02-01

    This paper reports the study of the fabrication and characterization results of 10-kilo-volt (kV) 4H-SiC merged PiN/Schottky rectifiers. A metal contact process was developed to make the Schottky contact on n-type SiC and ohmic contact on p-type SiC at the same time. The diodes with different Schottky contact width were fabricated and characterized for comparison. With the improvement quality of the Schottky contact and the passivation layer, the devices show low leakage current up to 10 kV. The on-state characteristics from room temperature to elevated temperature (423 K) were demonstrated and compared between structures with different Schottky contact width.

  13. 2 kV slanted tri-gate GaN-on-Si Schottky barrier diodes with ultra-low leakage current

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Matioli, Elison

    2018-01-01

    This letter reports lateral GaN-on-Si power Schottky barrier diodes (SBDs) with unprecedented voltage-blocking performance by integrating 3-dimensionally a hybrid of tri-anode and slanted tri-gate architectures in their anode. The hybrid tri-anode pins the voltage drop at the Schottky junction (VSCH), despite a large applied reverse bias, fixing the reverse leakage current (IR) of the SBD. Such architecture led to an ultra-low IR of 51 ± 5.9 nA/mm at -1000 V, in addition to a small turn-on voltage (VON) of 0.61 ± 0.03 V. The slanted tri-gate effectively distributes the electric field in OFF state, leading to a remarkably high breakdown voltage (VBR) of -2000 V at 1 μA/mm, constituting a significant breakthrough from existing technologies. The approach pursued in this work reduces the IR and increases the VBR without sacrificing the VON, which provides a technology for high-voltage SBDs, and unveils the unique advantage of tri-gates for advanced power applications.

  14. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  15. Electrical characterization of n/p-type nickel silicide/silicon junctions by Sb segregation.

    PubMed

    Jun, Myungsim; Park, Youngsam; Hyun, Younghoon; Choi, Sung-Jin; Zyung, Taehyung; Jang, Moongyu

    2011-08-01

    In this paper, n/p-type nickel-silicided Schottky diodes were fabricated by incorporating antimony atoms near the nickel silicide/Si junction interface and the electrical characteristics were studied through measurements and simulations. The effective Schottky barrier height (SBH) for electron, extracted from the thermionic emission model, drastically decreased from 0.68 to less than 0.1 eV while that for hole slightly increased from 0.43 to 0.53 eV. In order to identify the current conduction mechanisms, the experimental current-temperature-voltage characteristics for the n-type diode were fitted based on various models for transport of charge carrier in Schottky diodes. As the result, the large change in effective SBH for electron is ascribed to trap-assisted tunneling rather than barrier height inhomogeneity.

  16. Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes

    DTIC Science & Technology

    2013-03-21

    REPORT TYPE Master’s Thesis 3. DATES COVERED (From – To) 04 Sep 2011 - Mar 2013 4. TITLE AND SUBTITLE ELECTRONIC CHARACTERISTICS OF RARE EARTH ...ELECTRONIC CHARACTERISTICS OF RARE EARTH DOPED GaN SCHOTTKY DIODES THESIS Aaron B. Blanning...United States. AFIT-ENP-13-M-03 Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes THESIS Presented to the Faculty

  17. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    PubMed Central

    2011-01-01

    Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd) nanoparticles (NPs) in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures. PMID:21831273

  18. High Density Schottky Barrier Infrared Charge-Coupled Device (IRCCD) Sensors For Short Wavelength Infrared (SWIR) Applications At Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-11-01

    Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  19. Study of barrier height and trap centers of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contacts by current-voltage (I-V) characteristics and deep level transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yapeng; Fu, Li, E-mail: fuli@nwpu.edu.cn; Sun, Jie

    2015-02-28

    The temperature-dependent electrical characteristics of the Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contact have been studied at the temperature range of 140 K–315 K. Based on the thermionic emission theory, the ideality factor and Schottky barrier height were calculated to decrease and increase from 3.18 to 1.88 and 0.39 eV to 0.5 eV, respectively, when the temperature rose from 140 K to 315 K. This behavior was interpreted by the lateral inhomogeneities of Schottky barrier height at the interface of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} contact, which was shown by the plot of zero-bias barrier heights Φ{sub bo} versus q/2kT. Meanwhile, it was found that the Schottky barriermore » height with a Gaussian distribution was 0.67 eV and the standard deviation σ{sub 0} was about 0.092 eV, indicating that the uneven distribution of barrier height at the interface region. In addition, the mean value of Φ{sup ¯}{sub b0} and modified Richardson constant was determined to be 0.723 eV and 62.8 A/cm{sup 2}K{sup 2} from the slope and intercept of the ln(I{sub o}/T{sup 2}) – (qσ{sub 0}{sup 2}/2k{sup 2}T{sup 2}) versus q/kT plot, respectively. Finally, two electron trap centers were observed at the interface of Au/n-Hg{sub 3}In{sub 2}Te{sub 6} Schottky contact by means of deep level transient spectroscopy.« less

  20. Ultralow-power complementary metal-oxide-semiconductor inverters constructed on Schottky barrier modified nanowire metal-oxide-semiconductor field-effect-transistors.

    PubMed

    Ma, R M; Peng, R M; Wen, X N; Dai, L; Liu, C; Sun, T; Xu, W J; Qin, G G

    2010-10-01

    We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.

  1. Characterization of WB/SiC Schottky Barrier Diodes Using I-V-T Method

    NASA Astrophysics Data System (ADS)

    Aldridge, James; Oder, Tom

    2009-04-01

    The importance of silicon carbide (SiC) semiconductor for high temperature and high power microelectronic device applications has long been established. We have fabricated SiC Schottky barrier diodes using tungsten boride (WB) as the Schottky contact. The diodes were characterized using the current-voltage-temperature method. The sample was mounted on a heated stage and the temperature varied from about 25 ^oC to 300 ^oC at intervals of 25 ^oC. From the Richardson's plot, we obtained an energy barrier height of 0.96 eV and a Richardson's constant of 71.2 AK-1cm-2. Using the modified Richardson's plot, we obtained a barrier height of 1.01 eV. From the variation of the ideality factor and the temperature, we determined a characteristic energy of 0.02 eV to 0.04 eV across the range of the measurement temperature. This implies that thermionic emission is dominant in the low measurement temperature range. Our results confirm the excellent thermal stability of WB/SiC Schottky barrier diodes.

  2. Energy harvesting efficiency in GaN nanowire-based nanogenerators: the critical influence of the Schottky nanocontact.

    PubMed

    Jamond, Nicolas; Chrétien, Pascal; Gatilova, Lina; Galopin, Elisabeth; Travers, Laurent; Harmand, Jean-Christophe; Glas, Frank; Houzé, Frédéric; Gogneau, Noëlle

    2017-03-30

    The performances of 1D-nanostructure based nanogenerators are governed by the ability of nanostructures to efficiently convert mechanical deformation into electrical energy, and by the efficiency with which this piezo-generated energy is harvested. In this paper, we highlight the crucial influence of the GaN nanowire-metal Schottky nanocontact on the energy harvesting efficiency. Three different metals, p-type doped diamond, PtSi and Pt/Ir, have been investigated. By using an atomic force microscope equipped with a Resiscope module, we demonstrate that the harvesting of piezo-generated energy is up to 2.4 times more efficient using a platinum-based Schottky nanocontact compared to a doped diamond-based nanocontact. In light of Schottky contact characteristics, we evidence that the conventional description of the Schottky diode cannot be applied. The contact is governed by its nanometer size. This specific behaviour induces notably a lowering of the Schottky barrier height, which gives rise to an enhanced conduction. We especially demonstrate that this effective thinning is directly correlated with the improvement of the energy harvesting efficiency, which is much pronounced for Pt-based Schottky diodes. These results constitute a building block to the overall improvement of NW-based nanogenerator devices.

  3. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    NASA Astrophysics Data System (ADS)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.

  4. An all-carbon vdW heterojunction composed of penta-graphene and graphene: Tuning the Schottky barrier by electrostatic gating or nitrogen doping

    NASA Astrophysics Data System (ADS)

    Guo, Yaguang; Wang, Fancy Qian; Wang, Qian

    2017-08-01

    The non-zero band gap together with other unique properties endows penta-graphene with potential for device applications. Here, we study the performance of penta-graphene as the channel material contacting with graphene to form a van der Waals heterostructure. Based on first-principles calculations, we show that the intrinsic properties of penta-graphene are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The stacked system forms an n-type Schottky barrier (Φe) at the vertical interface, while a negative band bending occurs at the lateral interface in a current-in-plane model. From the device point of view, we further demonstrate that a low-Φe or an Ohmic contact can be realized by applying an external electric field or doping graphene with nitrogen atoms. This allows the control of the Schottky barrier height, which is essential in fabricating penta-graphene-based nanotransistors.

  5. Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer

    DOEpatents

    Carlson, David E.

    1980-01-01

    Amorphous silicon Schottky barrier solar cells which incorporate a thin insulating layer and a thin doped layer adjacent to the junction forming metal layer exhibit increased open circuit voltages compared to standard rectifying junction metal devices, i.e., Schottky barrier devices, and rectifying junction metal insulating silicon devices, i.e., MIS devices.

  6. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  7. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  8. Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Peta, Koteswara Rao; Kim, Moon Deock

    2018-01-01

    The leakage current transport mechanism under reverse bias of Au/Ni/GaN Schottky diode is studied using temperature dependent current-voltage (I-V-T) and capacitance-voltage (C-V) characteristics. I-V measurement in this study is in the range of 140 K-420 K in steps of 10 K. A reduction in voltage dependent barrier height and a strong internal electric field in depletion region under reverse bias suggested electric field enhanced thermionic emission in carrier transport via defect states in Au/Ni/GaN SBD. A detailed analysis of reverse leakage current revealed two different predominant transport mechanisms namely variable-range hopping (VRH) and Poole-Frenkel (PF) emission conduction at low (<260 K) and high (>260 K) temperatures respectively. The estimated thermal activation energies (0.20-0.39 eV) from Arrhenius plot indicates a trap assisted tunneling of thermally activated electrons from a deep trap state into a continuum of states associated with each conductive threading dislocation.

  9. On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Bilkan, Ç.; Badali, Y.; Fotouhi-Shablou, S.; Azizian-Kalandaragh, Y.; Altındal, Ş.

    2017-08-01

    In this paper, we report the preparation and characterization of SnO2-PVA nanocomposite film as interlayer for Schottky barrier diodes (SBDs). The possible current transport mechanisms (CTMs) of the prepared SBDs were investigated using the forward-bias current-voltage ( I- V) characteristics in the temperature range of 80-400 K. The structure of nanocomposite film was characterized by an X-ray diffractometer (XRD) and the surface morphology was investigated using a Scanning Electron Microscopy (SEM) at room temperature. The values of ideality factor ( n) and zero-bias barrier height (\\overline{Φ}_{Bo}) showed variation with temperature, such that they changed from 19.10 to 3.77 and 0.190 to 0.844 eV, respectively. \\overline{Φ}_{Bo}- n, \\overline{Φ}_{Bo}- q/2 kT, and n -1- q/2 kT plots were drawn to get evidence to the Gaussian Distribution (GD) of the barrier height (BH). These plots revealed two distinct linear regions with different slopes for low temperatures (80-160 K) (LTs) and high temperatures (180-400 K) (HTs). This behavior is an evidence to the existence double GD of BHs which provides an average value for BH (\\overline{Φ}_{Bo}) and a standard deviation (σs) for each region. The high value of n especially at low temperatures was attributed to the existence of interlayer: interface states ( N ss) and barrier inhomogeneity at Au/n-Si interface. The values of \\overline{Φ}_{Bo} and σs were obtained from the intercept and slope of mentioned plots as 0.588 and 0.0768 V for LTs and 1.183 eV and 0.158 V for HTs, respectively. Moreover, the modified ln( I s/ T 2)- q 2σ s 2 /2 k 2 T 2 vs q/ kT plot also showed two linear regions. The values of \\overline{Φ}_{Bo} and effective Richardson constant ( A *) were extracted from the slope and intercept of this plot as 0.610 eV and 93.13 A/cm2 K2 for LTs and 1.235 eV and 114.65 A/cm2 K2 for HTs, respectively. The value of A* for HTs is very close to the theoretical value (112 A/cm2 K2) of n-type Si. Thus

  10. CURRENT-VOLTAGE CHARACTERISTICS OF THERMALLY ANNEALED Ni/n-GaAs SCHOTTKY CONTACTS

    NASA Astrophysics Data System (ADS)

    Yildirim, Nezir; Turut, Abdulmecit; Dogan, Hulya

    The Schottky barrier type Ni/n-GaAs contacts fabricated by us were thermally annealed at 600∘C and 700∘C for 1min. The apparent barrier height Φap and ideality factor of the diodes were calculated from the forward bias current-voltage characteristic in 60-320K range. The Φap values for the nonannealed and 600∘C and 700∘C annealed diodes were obtained as 0.80, 0.81 and 0.67eV at 300K, respectively. Thus, it has been concluded that the reduced barrier due to the thermal annealing at 700∘C promises some device applications. The current preferentially flows through the lowest barrier height (BH) with the temperature due to the BH inhomogeneities. Therefore, it was seen that the Φap versus (2kT)‑1 plots for the nonannealed and annealed diodes showed the linear behavior according to Gaussian distributions.

  11. Equivalent Circuit Modeling for Carbon Nanotube Schottky Barrier Modulation in Polarized Gases

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2005-01-01

    We study the carbon nanotube Schottky barrier at the metallic electrode interface in polarized gases using an equivalent circuit model. The gas-nanotube interaction is often weak and very little charge transfer is expected [l]. This is the case with'oxygen, but the gas-electrode interaction is appreciable and makes the oxygen molecules negatively charged. In the closed circuit condition, screening positive charges appear in the nanotube as well as in the electrode, and the Schottky barrier is modulated due to the resultant electrostatic effects [2]. In the case of ammonia, both the gas-nanotube and gas-electrode interactions are weak, but the Schottky barrier can still be modulated since the molecules are polarized and align in the preferred orientation within the gap between the electrode and nanotube in the open circuit condition (dipole layer formation). In the closed circuit condition, an electric field appears in the gap and strengthens or weakens the preferred dipole alignment reflecting the nanotube Fermi level. The modulation is visible when the nanotube depletion mode is involved, and the required dipole density is as low as 2 x 10(exp 13) dipoles/sq cm, which is quite feasible experimentally,

  12. Morphology, stoichiometry, and crystal structure control via post-annealing for Pt-ZnO nanograin Schottky barrier interfaces

    NASA Astrophysics Data System (ADS)

    Chan, Yuet Ching; Yu, Jerry; Ho, Derek

    2018-06-01

    Nanointerfaces have attracted intensive research effort for advanced electronics due to their unique and tunable semiconducting properties made possible by metal-contacted oxide structures at the nanoscale. Although much work has been on the adjustment of fabrication parameters to achieve high-quality interfaces, little work has experimentally obtained the various correlations between material parameters and Schottky barrier electronic properties to accurately probe the underlying phenomenon. In this work, we investigate the control of Pt-ZnO nanograin interfaces properties by thermal annealing. Specifically, we quantitatively analyze the correlation between material parameters (such as surface morphology, crystallographic structure, and stoichiometry) and Schottky diode parameters (Schottky barrier height, ideality factor, and contact resistance). Results revealed strong dependencies of Schottky barrier characteristics on oxygen vacancies, surface roughness, grain density, d-spacing, and crystallite size. I-V-T data shows that annealing at 600 °C produces a nanograin based interface with the most rectifying diode characteristics. These dependencies, which have not been previously reported holistically, highlight the close relationship between material properties and Schottky barrier characteristics, and are instrumental for the performance optimization of nanostructured metal-semiconductor interfaces in advanced electronic devices.

  13. Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Qiao, Da-Yong; Yuan, Wei-Zheng; Gao, Peng; Yao, Xian-Wang; Zang, Bo; Zhang, Lin; Guo, Hui; Zhang, Hong-Jian

    2008-10-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device.

  14. Capacitance and conductance-frequency characteristics of In-pSi Schottky barrier diode

    NASA Astrophysics Data System (ADS)

    Dhimmar, J. M.; Desai, H. N.; Modi, B. P.

    2015-06-01

    The Schottky barrier height (SBH) values have been calculated by using the reverse bias capacitance-voltage (C-V) characteristics at temperature range of 120-360K. The forward bias capacitance-frequency (C-f) and conductance- frequency (G-f) measurement of In-pSi SBD have been carried out from 0-1.0 V with a step up 0.05 V whereby the energy distribution of the interface state has been determined from the forward bias I-V data taking the bias dependence of the effective barrier height and series resistance (RS) into account. The high value of ideality factor (n=2.12) was attributing to high density of interface states and interfacial oxide layer at metal semiconductor interface. The interface state density (NSS) shows a decrease with bias from bottom of conduction band toward the mid gap. In order to examine frequency dependence NSS, RS, C-V and G(ω)/ω-f measurement of the diode were performed at room temperature in the frequency range of 100Hz-100KHz. Experimental result confirmed that there is an influence in the electrical characteristic of Schottky diode.

  15. Tracking the Effect of Adatom Electronegativity on Systematically Modified AlGaN/GaN Schottky Interfaces.

    PubMed

    Reiner, Maria; Pietschnig, Rudolf; Ostermaier, Clemens

    2015-10-21

    The influence of surface modifications on the Schottky barrier height for gallium nitride semiconductor devices is frequently underestimated or neglected in investigations thereof. We show that a strong dependency of Schottky barrier heights for nickel/aluminum-gallium nitride (0001) contacts on the surface terminations exists: a linear correlation of increasing barrier height with increasing electronegativity of superficial adatoms is observed. The negatively charged adatoms compete with the present nitrogen over the available gallium (or aluminum) orbital to form an electrically improved surface termination. The resulting modification of the surface dipoles and hence polarization of the surface termination causes observed band bending. Our findings suggest that the greatest Schottky barrier heights are achieved by increasing the concentration of the most polarized fluorine-gallium (-aluminum) bonds at the surface. An increase in barrier height from 0.7 to 1.1 eV after a 15% fluorine termination is obtained with ideality factors of 1.10 ± 0.05. The presence of surface dipoles that are changing the surface energy is proven by the sessile drop method as the electronegativity difference and polarization influences the contact angle. The extracted decrease in the Lifshitz-van-der-Waals component from 48.8 to 40.4 mJ/m(2) with increasing electronegativity and concentration of surface adatoms confirms the presence of increasing surface dipoles: as the polarizability of equally charged anions decreases with increasing electronegativity, the diiodomethane contact angles increase significantly from 14° up to 39° after the 15% fluorine termination. Therefore, a linear correlation between increasing anion electronegativity of the (Al)GaN termination and total surface energy within a 95% confidence interval is obtained. Furthermore, our results reveal a generally strong Lewis basicity of (Al)GaN surfaces explaining the high chemical inertness of the surfaces.

  16. The effect of Al segregation on Schottky barrier height and effective work function in TiAl/TiN/HfO2 gate stacks

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.

    2016-07-01

    We perform first-principles density functional calculations to investigate the effects of Al incorporation on the p-type Schottky barrier height ≤ft({φ\\text{p}}\\right) and the effective work function for various high-k/metal gate stacks, such as TiN/HfO2 with interface Al impurities, Ti1-x Al x N/HfO2, and TiAl/TiN/HfO2. When Al atoms substitute for the interface Ti atoms at TiN/HfO2 interface, interface dipole fields become stronger, leading to the increase of {φ\\text{p}} and thereby the n-type shift of effective work function. In Ti1-x Al x N/HfO2 interface, {φ\\text{p}} linearly increases with the Al content, attributed to the presence of interface Al atoms. On the other hand, in TiAl/TiN/HfO2 interface, where Al is assumed not to segregate from TiAl to TiN, {φ\\text{p}} is nearly independent of the thickness of TiAl. Our results indicate that Al impurities at the metal/dielectric interface play an important role in controlling the effective work function, and provide a clue to understanding the n-type shift of the effective work function observed in TiAl/TiN/HfO2 gate stacks fabricated by using thegate-last process.

  17. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes

    NASA Astrophysics Data System (ADS)

    Filali, Walid; Sengouga, Nouredine; Oussalah, Slimane; Mari, Riaz H.; Jameel, Dler; Al Saqri, Noor Alhuda; Aziz, Mohsin; Taylor, David; Henini, Mohamed

    2017-11-01

    Forward and reverse current-voltage (Isbnd V) of Ti/Au/n-Al0.33Ga0.67As/n-GaAs/n-Al0.33Ga0.67As multi-quantum well (MQW) Schottky diodes were measured over a range of temperatures from 20 to 400 K by a step of 20 K. The Schottky diodes parameters were then extracted from these characteristics. The Cheung method is used for this purpose, assuming a thermionic conduction mechanism. The extracted ideality factor decrease with increasing temperatures. But their values at low temperatures were found to be unrealistic. In order to explain this uncertainty, three assumptions were explored. Firstly an assumed inhomogeneous barrier height gave better parameters especially the Richardson constant but the ideality factor is still unrealistic at low temperatures. Secondly, by using numerical simulation, it was demonstrated that defects including interface states are not responsible for the apparent unrealistic Schottky diode parameters. The third assumption is the tunnelling mechanism through the barrier in the low temperature range. At these lower temperatures, the tunnelling mechanism was more suitable to explain the extracted parameters values.

  18. New approach to the design of Schottky barrier diodes for THz mixers

    NASA Technical Reports Server (NTRS)

    Jelenski, A.; Grueb, A.; Krozer, V.; Hartnagel, H. L.

    1992-01-01

    Near-ideal GaAs Schottky barrier diodes especially designed for mixing applications in the THz frequency range are presented. A diode fabrication process for submicron diodes with near-ideal electrical and noise characteristics is described. This process is based on the electrolytic pulse etching of GaAs in combination with an in-situ platinum plating for the formation of the Schottky contacts. Schottky barrier diodes with a diameter of 1 micron fabricated by the process have already shown excellent results in a 650 GHz waveguide mixer at room temperature. A conversion loss of 7.5 dB and a mixer noise temperature of less than 2000 K have been obtained at an intermediate frequency of 4 GHz. The optimization of the diode structure and the technology was possible due to the development of a generalized Schottky barrier diode model which is valid also at high current densities. The common diode design and optimization is discussed on the basis of the classical theory. However, the conventional fomulas are valid only in a limited forward bias range corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. The generalized new model takes into account not only the phenomena occurring at the junction such as current dependent recombination and drift/diffusion velocities, but also mobility and electron temperature variations in the undepleted epi-layer. Calculated diode I/V and noise characteristics are in excellent agreement with the measured values. Thus, the model offers the possibility of optimizing the diode structure and predicting the diode performance under mixing conditions at THz frequencies.

  19. Reducing the Schottky barrier between few-layer MoTe2 and gold

    NASA Astrophysics Data System (ADS)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  20. Development and fabrication of improved Schottky power diodes

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkel, M.; Taft, E. A.

    1975-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes have been developed for tungsten, aluminum, conventional platinum silicide, and low temperature platinum silicide. Barrier heights and barrier lowering under reverse bias have been measured, permitting the accurate prediction of forward and reverse diode characteristics. Processing procedures have been developed that permit the fabrication of large area (about 1 sq cm) mesageometry power Schottky diodes with forward and reverse characteristics that approach theoretical values. A theoretical analysis of the operation of bridge rectifier circuits has been performed, which indicates the ranges of frequency and voltage for which Schottky rectifiers are preferred to p-n junctions. Power Schottky rectifiers have been fabricated and tested for voltage ratings up to 140 volts.

  1. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    NASA Astrophysics Data System (ADS)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  2. X-ray detection with zinc-blende (cubic) GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.

    2016-07-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm-2 and (189.0 ± 0.2) mA cm-2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.

  3. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    PubMed

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  4. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide.

    PubMed

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2011-08-15

    An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi(2) detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device's size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used. © 2011 Optical Society of America

  5. Modeling of Carbon Nanotube Schottky Barrier Reduction for Holes in Air

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes Phi(sub Bh) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We consider that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower Phi(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  6. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  7. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    PubMed

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  8. Characterization of a SiC MIS Schottky diode as RBS particle detector

    NASA Astrophysics Data System (ADS)

    Kaufmann, I. R.; Pick, A. C.; Pereira, M. B.; Boudinov, H. I.

    2018-02-01

    A 4H-SiC Schottky diode was investigated as a particle detector for Rutherford Backscattering Spectroscopy (RBS) experiment. The device was fabricated on a commercial 4H-SiC epitaxial n-type layer grown onto a 4H-SiC n+ type substrate wafer doped with nitrogen. Hafnium oxide with thickness of 1 nm was deposited by Atomic Layer Deposition and 10 nm of Ni were deposited by sputtering to form the Ni/HfO2/4H-SiC MIS Schottky structure. Current-Voltage curves with variable temperature were measured to extract the real Schottky Barrier Height (0.32 V) and ideality factor values (1.15). Reverse current and Capacitance-Voltage measurements were performed on the 4H-SiC detector and compared to a commercial Si barrier detector acquired from ORTEC. RBS data for four alpha energies (1, 1.5, 2 and 2.5 MeV) were collected from an Au/Si sample using the fabricated SiC and the commercial Si detectors simultaneously. The energy resolution for the fabricated detector was estimated to be between 75 and 80 keV.

  9. Silicide Schottky Barrier For Back-Surface-Illuminated CCD

    NASA Technical Reports Server (NTRS)

    Hecht, Michael H.

    1990-01-01

    Quantum efficiency of back-surface-illuminated charge-coupled device (CCD) increased by coating back surface with thin layer of PtSi or IrSi on thin layer of SiO2. In its interaction with positively-doped bulk Si of CCD, silicide/oxide layer forms Schottky barrier that repels electrons, promoting accumulation of photogenerated charge carriers in front-side CCD potential wells. Physical principle responsible for improvement explained in "Metal Film Increases CCD Output" (NPO-16815).

  10. Electrical properties of Al foil/n-4H-SiC Schottky junctions fabricated by surface-activated bonding

    NASA Astrophysics Data System (ADS)

    Morita, Sho; Liang, Jianbo; Matsubara, Moeko; Dhamrin, Marwan; Nishio, Yoshitaka; Shigekawa, Naoteru

    2018-02-01

    We fabricate 17-µm-thick Al foil/n-4H-SiC Schottky junctions by surface-activated bonding. Their current-voltage and capacitance-voltage characteristics are compared with those of Schottky junctions fabricated by evaporating Al layers on n-4H-SiC epilayers. We find that the ideality factor of Al foil/SiC junctions is larger than that of conventional junctions, which is due to the irradiation of the fast atom beam (FAB) of Ar. The ideality factor of Al foil/SiC junctions is improved by annealing at 400 °C. We also find that the Schottky barrier height is increased by FAB irradiation, which is likely to be due to the negative charges formed at SiC surfaces.

  11. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    NASA Astrophysics Data System (ADS)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  12. Cr-Si Schottky nano-diodes utilizing anodic aluminum oxide templates.

    PubMed

    Kwon, Namyong; Kim, Kyohyeok; Heo, Jinhee; Chung, Ilsub

    2014-04-01

    We have fabricated Cr nanodot Schottky diodes utilizing AAO templates formed on n-Si substrates. The diameters of the diodes were 75.0, 57.6, and 35.8 nm. Cr nanodot Schottky diodes with smaller diameters yield higher current densities than those with larger diameters due to an enhanced tunnel current contribution, which is attributed to a reduction in the barrier thickness. The diameters of Cr nanodots smaller than the Debye length (156 nm) play an important role in the reduction of barrier thickness. Also, we have fabricated Cr-Si nanorod Schottky diodes with three different lengths (130, 220, and 330 nm) by dry etching of n-Si substrate. Cr-Si nanorod Schottky diodes with longer nanorods yield higher reverse current than those with shorter nanorods due to the enhanced electric field, which is attributed to a high aspect ratio of Si nanorod.

  13. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    NASA Astrophysics Data System (ADS)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation

  14. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  15. Electrical characteristics of TMAH-surface treated Ni/Au/Al2O3/GaN MIS Schottky structures

    NASA Astrophysics Data System (ADS)

    Reddy, M. Siva Pratap; Lee, Jung-Hee; Jang, Ja-Soon

    2014-03-01

    The electrical characteristics and reverse leakage mechanisms of tetramethylammonium hydroxide (TMAH) surface-treated Ni/Au/Al2O3/GaN metal-insulator-semiconductor (MIS) diodes were investigated by using the current-voltage ( I-V) and capacitance-voltage ( C-V) characteristics. The MIS diode was formed on n-GaN after etching the AlGaN in the AlGaN/GaN heterostructures. The TMAH-treated MIS diode showed better Schottky characteristics with a lower ideality factor, higher barrier height and lower reverse leakage current compared to the TMAH-free MIS diode. In addition, the TMAH-free MIS diodes exhibited a transition from Poole-Frenkel emission at low voltages to Schottky emission at high voltages, whereas the TMAH-treated MIS diodes showed Schottky emission over the entire voltage range. Reasonable mechanisms for the improved device-performance characteristics in the TMAH-treated MIS diode are discussed in terms of the decreased interface state density or traps associated with an oxide material and the reduced tunneling probability.

  16. Numerical analysis of the reverse blocking enhancement in High-K passivation AlGaN/GaN Schottky barrier diodes with gated edge termination

    NASA Astrophysics Data System (ADS)

    Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi

    2018-02-01

    We conducted a numerical analysis on high-K dielectric passivated AlGaN/GaN Schottky barrier diodes (HPG-SBDs) with a gated edge termination (GET). The reverse blocking characteristics were significantly enhanced without the stimulation of any parasitic effect by varying the dielectric thickness dge under the GET, thickness TP, and dielectric constant εr of the high-K passivation layer. The leakage current was reduced by increasing εr and decreasing dge. The breakdown voltage of the device was enhanced by increasing εr and TP. The highest breakdown voltage of 970 V and the lowest leakage current of 0.5 nA/mm were achieved under the conditions of εr = 80, TP = 800 nm, and dge = 10 nm. C-V simulation revealed that the HPG-SBDs induced no parasitic capacitance by comparing the integrated charges of the devices with different high-K dielectrics and different dge.

  17. Observation of Van Hove Singularities and Temperature Dependence of Electrical Characteristics in Suspended Carbon Nanotube Schottky Barrier Transistors

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Liu, Siyu; Nshimiyimana, Jean Pierre; Deng, Ya; Hu, Xiao; Chi, Xiannian; Wu, Pei; Liu, Jia; Chu, Weiguo; Sun, Lianfeng

    2018-06-01

    A Van Hove singularity (VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.

  18. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L. Z., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn; Xiong, S. J.; Wu, X. L., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn

    2016-08-08

    The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.

  19. A charge-based model of Junction Barrier Schottky rectifiers

    NASA Astrophysics Data System (ADS)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  20. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    PubMed Central

    Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed. PMID:28144530

  1. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    PubMed

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I - V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  2. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    PubMed

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  3. Zinc Oxide-Based Schottky Diode Prepared Using Radio-Frequency Magnetron Cosputtering System

    NASA Astrophysics Data System (ADS)

    Lai, Bo-Ting; Lee, Ching-Ting; Hong, Jhen-Dong; Yao, Shiau-Lu; Liu, Day-Shan

    2010-08-01

    The rectifying property of a zinc oxide (ZnO)-based Schottky diode prepared using a radio-frequency (rf) magnetron cosputtering system was improved by enhancing the cosputtered ZnO crystal quality, thereby optimizing the ohmic contact resistance and compensating the Schottky contact surface states. An undoped ZnO layer with a high c-axis orientation and a low internal residual stress was achieved using a postannealing treatment. A homogeneous n-type ZnO-indium tin oxide (ITO) cosputtered film was deposited onto the undoped ZnO layer to optimize the ohmic contact behavior to the Al electrode. The Schottky contact surface of the undoped ZnO layer to the Ni/Au electrode was passivated using an oxygen plasma treatment. Owing to the compensation of the native oxygen vacancies (VO) on the undoped ZnO surface, the leakage current markedly decreased and subsequently led to a quality Schottky diode performance with an ideality factor of 1.23 and a Schottky barrier height of 0.82 eV.

  4. Silicon Based Schottky Barrier Infrared Sensors For Power System And Industrial Applications

    NASA Astrophysics Data System (ADS)

    Elabd, Hammam; Kosonocky, Walter F.

    1984-03-01

    Schottky barrier infrared charge coupled device sensors (IR-CCDs) have been developed. PtSi Schottky barrier detectors require cooling to liquid Nitrogen temperature and cover the wavelength range between 1 and 6 μm. The PtSi IR-CCDs can be used in industrial thermography with NEAT below 0.1°C. Pd Si-Schottkybarrier detectors require cooling to 145K and cover the spectral range between 1 and 3.5 μm. 11d2Si-IR-CCDs can be used in imaging high temperature scenes with NE▵T around 100°C. Several high density staring area and line imagers are available. Both interlaced and noninterlaced area imagers can be operated with variable and TV compatible frame rates as well as various field of view angles. The advantages of silicon fabrication technology in terms of cost and high density structures opens the doors for the design of special purpose thermal camera systems for a number of power aystem and industrial applications.

  5. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain.

    PubMed

    Lee, Sungsik; Nathan, Arokia

    2016-10-21

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (<1 volt) and ultralow power (<1 nanowatt). By using a Schottky-barrier at the source and drain contacts, the current-voltage characteristics of the transistor were virtually channel-length independent with an infinite output resistance. It exhibited high intrinsic gain (>400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation. Copyright © 2016, American Association for the Advancement of Science.

  6. Effect of 60Co γ-irradiation on the nature of electronic transport in heavily doped n-type GaN based Schottky photodetectors

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Porwal, S.; Kher, S.; Sharma, T. K.

    2018-04-01

    GaN Schottky photodetectors are fabricated on heavily doped n-type GaN epitaxial layers grown by the hydride vapour phase epitaxy technique. The effect of 60Co γ-radiation on the electronic transport in GaN epilayers and Schottky detectors is studied. In contrast to earlier observations, a steady rise in the carrier concentration with increasing irradiation dose is clearly seen. By considering a two layer model, the contribution of interfacial dislocations in carrier transport is isolated from that of the bulk layer for both the pristine and irradiated samples. The bulk carrier concentration is fitted by using the charge balance equation which indicates that no new electrically active defects are generated by γ-radiation even at 500 kGy dose. The irradiation induced rise in the bulk carrier concentration is attributed to the activation of native Si impurities that are already present in an electrically inert form in the pristine sample. Further, the rise in interfacial contribution in the carrier concentration is governed by the enhanced rate of formation of nitrogen vacancies by irradiation, which leads to a larger diffusion of oxygen impurities. A large value of the characteristic tunnelling energy for both the pristine and irradiated Au/Ni/GaN Schottky devices confirms that the dislocation-assisted tunnelling dominates the low temperature current transport even after irradiation. The advantage of higher displacement energy and larger bandgap of GaN as compared to GaAs is evident from the change in leakage current after irradiation. Further, a fast recovery of the photoresponse of GaN photodetectors after irradiation signifies their compatibility to operate in high radiation zones. The results presented here are found to be crucial in understanding the interaction of 60Co γ-irradiation with n+-GaN epilayers.

  7. Electrical degradation of double-Schottky barrier in ZnO varistors

    NASA Astrophysics Data System (ADS)

    He, Jinliang; Cheng, Chenlu; Hu, Jun

    2016-03-01

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  8. Electrical degradation of double-Schottky barrier in ZnO varistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun

    2016-03-15

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  9. Time dependent changes in Schottky barrier mapping of the W/Si(001) interface utilizing ballistic electron emission microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durcan, Chris A.; Balsano, Robert; LaBella, Vincent P., E-mail: vlabella@albany.edu

    2015-06-28

    The W/Si(001) Schottky barrier height is mapped to nanoscale dimensions using ballistic electron emission microscopy (BEEM) over a period of 21 days to observe changes in the interface electrostatics. Initially, the average spectrum is fit to a Schottky barrier height of 0.71 eV, and the map is uniform with 98% of the spectra able to be fit. After 21 days, the average spectrum is fit to a Schottky barrier height of 0.62 eV, and the spatial map changes dramatically with only 27% of the spectra able to be fit. Transmission electron microscopy shows the formation of an ultra-thin tungsten silicide at themore » interface, which increases in thickness over the 21 days. This increase is attributed to an increase in electron scattering and the changes are observed in the BEEM measurements. Interestingly, little to no change is observed in the I-V measurements throughout the 21 day period.« less

  10. Comparative study of I- V methods to extract Au/FePc/p-Si Schottky barrier diode parameters

    NASA Astrophysics Data System (ADS)

    Oruç, Çiğdem; Altındal, Ahmet

    2018-01-01

    So far, various methods have been proposed to extract the Schottky diode parameters from measured current-voltage characteristics. In this work, Schottky barrier diode with structure of Au/2(3),9(10),16(17),23(24)-tetra(4-(4-methoxyphenyl)-8-methylcoumarin-7 oxy) phthalocyaninatoiron(II) (FePc)/p-Si was fabricated and current-voltage measurements were carried out on it. In addition, current-voltage measurements were also performed on Au/p-Si structure, without FePc, to clarify the influence of the presence of an interface layer on the device performance. The measured current-voltage characteristics indicate that the interface properties of a Schottky barrier diode can be controlled by the presence of an organic interface layer. It is found that the room temperature barrier height of Au/FePc/p-Si structure is larger than that of the Au/p-Si structure. The obtained forward bias current-voltage characteristics of the Au/FePc/p-Si device was analysed by five different analytical methods. It is found that the extracted values of SBD parameters strongly depends on the method used.

  11. Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride

    NASA Astrophysics Data System (ADS)

    Khanna, Rohit

    compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy

  12. The Study of 0.34 THz Monolithically Integrated Fourth Subharmonic Mixer Using Planar Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong

    2015-11-01

    A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.

  13. Importance of Schottky barriers for wide-bandgap thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Wais, M.; Held, K.; Battiato, M.

    2018-04-01

    The development of thermoelectric devices faces not only the challenge of optimizing the Seebeck coefficient, the electrical and thermal conductivity of the active material, but also further bottlenecks when going from the thermoelectric material to an actual device, e.g., the dopant diffusion at the hot contact. We show that for large bandgap thermoelectrics another aspect can dramatically reduce the efficiency of the device: the formation of Schottky barriers. Understanding the effect, it can then be fixed rather cheaply by a two-metal contact solution.

  14. Strong Fermi-Level Pinning at Metal/n-Si(001) Interface Ensured by Forming an Intact Schottky Contact with a Graphene Insertion Layer.

    PubMed

    Yoon, Hoon Hahn; Jung, Sungchul; Choi, Gahyun; Kim, Junhyung; Jeon, Youngeun; Kim, Yong Soo; Jeong, Hu Young; Kim, Kwanpyo; Kwon, Soon-Yong; Park, Kibog

    2017-01-11

    We report the systematic experimental studies demonstrating that a graphene layer inserted at metal/n-Si(001) interface is efficient to explore interface Fermi-level pinning effect. It is confirmed that an inserted graphene layer prevents atomic interdiffusion to form an atomically abrupt Schottky contact. The Schottky barriers of metal/graphene/n-Si(001) junctions show a very weak dependence on metal work-function, implying that the metal Fermi-level is almost completely pinned at charge neutrality level close to the valence band edge of Si. The atomically impermeable and electronically transparent properties of graphene can be used generally to form an intact Schottky contact for all semiconductors.

  15. NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR.

    PubMed

    Chen, Wenjing; Kan, Tetsuo; Ajiki, Yoshiharu; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-10-31

    We present a near-infrared (NIR) spectrum measurement method using a Schottky photodetector enhanced by surface plasmon resonance (SPR). An Au grating was fabricated on an n-type silicon wafer to form a Schottky barrier and act as an SPR coupler. The resulting photodetector provides wavelength-selective photodetection depending on the SPR coupling angle. A matrix was pre-calculated to describe this characteristic. The spectrum was obtained from this matrix and the measured photocurrents at various SPR coupling angles. Light with single and multiple wavelengths was tested. Comparative measurements showed that our method is able to detect spectra with a wavelength resolution comparable to that of a commercial spectrometer.

  16. Novel attributes of bandstructure effect on the performance of germanium Schottky barrier MOSFET

    NASA Astrophysics Data System (ADS)

    Ahangari, Zahra

    2018-07-01

    A detailed study of the bandstructure effect on the performance of a double-gate germanium Schottky barrier MOSFET (Ge-SBFET) is investigated. An accurate calculation of the thickness-dependent 2D bandstructure is employed within a 20 orbital sp 3 d 5 s* tight-binding formalism, and the quantum transport of the carriers is elucidated based on the non-equilibrium Green’s function formalism. Quantum confinement considerably changes the bandstructure profile of the Ge-SBFET and causes the energy difference of the | {{Γ }}-L| valleys to rearrange. For a channel thickness of about 1.5 nm, the two-fold X 2 type valleys with major axes at the {{Γ }} point form a subband with minimum energy, and the | {{Γ }}-L| energy split is reduced to 13 meV, which compensates for the lack of density of states in the nanoscale regime. Moreover, the strong transverse confinement of the ultra-thin body Ge-SBFET increases the effective Schottky barrier height and a parabolic potential profile with discrete resonant states is formed along the current transport direction, mainly at low drain voltages. Resonant tunnelling creates oscillations in the transfer characteristic, especially at low temperatures and at a reduced value of drain voltages. The impact of the physical and structural parameters, which may affect the resonant tunnelling in a Ge-SBFET, is thoroughly analysed. The results in this paper pave the way towards elucidating the applications of nanoscale Ge-SBFETs.

  17. High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: Broad range detection of m-dihydroxybenzene.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-07-30

    Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Tunnel barrier schottky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Rongming; Cao, Yu; Li, Zijian

    2018-02-20

    A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.

  19. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    NASA Astrophysics Data System (ADS)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  20. Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouchi, Ryo, E-mail: r-nouchi@21c.osakafu-u.ac.jp

    2016-08-14

    Ultrathin two-dimensional semiconductors obtained from layered transition-metal dichalcogenides such as molybdenum disulfide (MoS{sub 2}) are promising for ultimately scaled transistors beyond Si. Although the shortening of the semiconductor channel is widely studied, the narrowing of the channel, which should also be important for scaling down the transistor, has been examined to a lesser degree thus far. In this study, the impact of narrowing on mechanically exfoliated MoS{sub 2} flakes was investigated according to the channel-width-dependent Schottky barrier heights at Cr/Au contacts. Narrower channels were found to possess a higher Schottky barrier height, which is ascribed to the edge-induced band bendingmore » in MoS{sub 2}. The higher barrier heights degrade the transistor performance as a higher electrode-contact resistance. Theoretical analyses based on Poisson's equation showed that the edge-induced effect can be alleviated by a high dopant impurity concentration, but this strategy should be limited to channel widths of roughly 0.7 μm because of the impurity-induced charge-carrier mobility degradation. Therefore, proper termination of the dangling bonds at the edges should be necessary for aggressive scaling with layered semiconductors.« less

  1. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} Amore » to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.« less

  2. Temperature-dependent Schottky barrier in high-performance organic solar cells

    PubMed Central

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions. PMID:28071700

  3. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    NASA Astrophysics Data System (ADS)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  4. Measurements of Effective Schottky Barrier in Inverse Extraordinary Optoconductance Structures

    NASA Astrophysics Data System (ADS)

    Tran, L. C.; Werner, F. M.; Solin, S. A.; Gilbertson, Adam; Cohen, L. F.

    2013-03-01

    Individually addressable optical sensors with dimensions as low as 250nm, fabricated from metal semiconductor hybrid structures (MSH) of AuTi-GaAs Schottky interfaces, display a transition from resistance decreasing with intensity in micron-scale sensors (Extraordinary Optoconductance, EOC) to resistance increasing with intensity in nano-scale sensors (Inverse Extraordinary Optoconductance I-EOC). I-EOC is attributed to a ballistic to diffusive crossover with the introduction of photo-induced carriers and gives rise to resistance changes of up to 9462% in 250nm devices. We characterize the photo-dependence of the effective Schottky barrier in EOC/I-EOC structures by the open circuit voltage and reverse bias resistance. Under illumination by a 5 mW, 632.8 nm HeNe laser, the barrier is negligible and the Ti-GaAs interface becomes Ohmic. Comparing the behavior of two devices, one with leads exposed, another with leads covered by an opaque epoxy, the variation in Voc with the position of the laser can be attributed to a photovoltaic effect of the lead metal and bulk GaAs. The resistance is unaffected by the photovoltaic offset of the leads, as indicated by the radial symmetry of 2-D resistance maps obtained by rastering a laser across EOC/IEOC devices. SAS has a financial interest in PixelEXX, a start-up company whose mission is to market imaging arrays.

  5. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (<7 × 1015 cm-3) free charge density in the nominally undoped films. The barrier height and ideality factor were estimated by current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  6. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model

    NASA Astrophysics Data System (ADS)

    Korucu, Demet; Turut, Abdulmecit; Efeoglu, Hasan

    2013-04-01

    The current-voltage (I-V) characteristics of Au/n-GaAs contacts prepared with photolithography technique have been measured in the temperature range of 80-320 K. The ideality factor and barrier height (BH) values have remained almost unchanged between 1.04 and 1.10 and at a value of about 0.79 eV at temperatures above 200 K, respectively. Therefore, the ideality factor values near unity say that the experimental I-V data are almost independent of the sample temperature, that is, contacts have shown excellent Schottky diode behavior above 200 K. An abnormal decrease in the experimental BH Φb and an increase in the ideality factor with a decrease in temperature have been observed below 200 K. This behavior has been attributed to the barrier inhomogeneity by assuming a Gaussian distribution of nanometer-sized patches with low BH at the metal-semiconductor interface. The barrier inhomogeneity assumption is also confirmed by the linear relationship between the BH and the ideality factor. According to Tung’s barrier inhomogeneity model, it has been seen that the value of σT=7.41×10-5 cm2/3 V1/3from ideality factor versus (kT)-1 curve is in close agreement with σT=7.95×10-5 cm2/3 V1/3 value from the Φeff versus (2kT)-1 curve in the range of 80-200 K. The modified Richardson ln(J0/T2)-(qσT)2(Vb/η)2/3/[2(kT)2] versus (kT)-1 plot, from Tung’s Model, has given a Richardson constant value of 8.47 A cm-2 K-2which is in very close agreement with the known value of 8.16 A cm-2 K-2 for n-type GaAs; considering the effective patch area which is significantly lower than the entire geometric area of the Schottky contact, in temperature range of 80-200 K. Thus, it has been concluded that the use of Tung’s lateral inhomogeneity model is more appropriate to interpret the temperature-dependent I-V characteristics in the Schottky contacts.

  7. Schottky barrier detection devices having a 4H-SiC n-type epitaxial layer

    DOEpatents

    Mandal, Krishna C.; Terry, J. Russell

    2016-12-06

    A detection device, along with methods of its manufacture and use, is provided. The detection device can include: a SiC substrate defining a substrate surface cut from planar to about 12.degree.; a buffer epitaxial layer on the substrate surface; a n-type epitaxial layer on the buffer epitaxial layer; and a top contact on the n-type epitaxial layer. The buffer epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.15 cm.sup.-3 to about 5.times.10.sup.18 cm.sup.-3 with nitrogen, boron, aluminum, or a mixture thereof. The n-type epitaxial layer can include a n-type 4H--SiC epitaxial layer doped at a concentration of about 1.times.10.sup.13 cm.sup.-3 to about 5.times.10.sup.15 cm.sup.-3 with nitrogen. The top contact can have a thickness of about 8 nm to about 15 nm.

  8. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    PubMed

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  9. Doping enhanced barrier lowering in graphene-silicon junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  10. Si--Au Schottky barrier nuclear battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, Anthony N.

    1972-11-01

    A long-life, high-power-density, high-reliability, compact microwatt battery is needed in many applications. In the field of medicine, for example, such a battery could power an artificial pacemaker which would greatly extend the residence time of the device. Various alternatives are analyzed and discussed. Betavoltaic conversion systems with Si-Au Schottky barrier cells coupled with 147Pm metal foil were selected for investigation. Characterization experiments were performed to obtain optimized silicon resistivity and promethium metal foil thickness. Radiation dose rates were measured and the safety aspects of the battery were analyzed. A prototype battery was assembled and tested. The economics of the batterymore » were demonstrated for special applications. It is concluded that a microwatt nuclear battery can be built with a conversion efficiency of 1 to 2%, a power density of 60 to 300 pW/cm 3 depending on the power level, and a useful life of 5 to 10 years. Further research areas are recommended.« less

  11. Electrical transport characterization of PEDOT:PSS/n-Si Schottky diodes and their applications in solar cells.

    PubMed

    Khurelbaatar, Zagarzusem; Hyung, Jung-Hwan; Kim, Gil-Sung; Park, No-Won; Shim, Kyu-Hwan; Lee, Sang-Kwon

    2014-06-01

    We demonstrate locally contacted PEDOT:PSS Schottky diodes with excellent rectifying behavior, fabricated on n-type Si substrates using a spin-coating process and a reactive-ion etching process. Electrical transport characterizations of these Schottky diodes were investigated by both current-voltage (I-V) and capacitance-voltage (C-V) measurements. We found that these devices exhibit excellent modulation in the current with an on/off ratio of - 10(6). Schottky junction solar cells composed of PEDOT:PSS and n-Si structures were also examined. From the current density-voltage (J-V) measurement of a solar cell under illumination, the short circuit current (I(sc)), open circuit voltage (V(oc)), and conversion efficiency (eta) were - 19.7 mA/cm2, - 578.5 mV, and - 6.5%, respectively. The simple and low-cost fabrication process of the PEDOT:PSS/n-Si Schottky junctions makes them a promising candidate for further high performance solar cell applications.

  12. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes

    DOE PAGES

    Liu, Yuanyue; Xiao, Hai; Goddard, III, William A.

    2016-11-22

    Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. Here we demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. Based on first principles calculations, we find that the surface chemistry strongly affects the Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, while F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weakmore » Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control the surface terminations based on the calculated formation energies. Finally, this study enhances the understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials, and also gives practical predictions for improving 2D electronics.« less

  13. A novel nanoscaled Schottky barrier based transmission gate and its digital circuit applications

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Loan, Sajad A.; Alamoud, Abdulrahman M.

    2017-04-01

    In this work we propose and simulate a compact nanoscaled transmission gate (TG) employing a single Schottky barrier based transistor in the transmission path and a single transistor based Sajad-Sunil-Schottky (SSS) device as an inverter. Therefore, just two transistors are employed to realize a complete transmission gate which normally consumes four transistors in the conventional technology. The transistors used to realize the transmission path and the SSS inverter in the proposed TG are the double gate Schottky barrier devices, employing stacks of two metal silicides, platinum silicide (PtSi) and erbium silicide (ErSi). It has been observed that the realization of the TG gate by the proposed technology has resulted into a compact structure, with reduced component count, junctions, interconnections and regions in comparison to the conventional technology. The further focus of this work is on the application part of the proposed technology. So for the first time, the proposed technology has been used to realize various combinational circuits, like a two input AND gate, a 2:1 multiplexer and a two input XOR circuits. It has been observed that the transistor count has got reduced by half in a TG, two input AND gate, 2:1 multiplexer and in a two input XOR gate. Therefore, a significant reduction in transistor count and area requirement can be achieved by using the proposed technology. The proposed technology can be also used to perform the compact realization of other combinational and sequential circuitry in future.

  14. 1.5-V-threshold-voltage Schottky barrier normally-off AlGaN/GaN high-electron-mobility transistors with f T/f max of 41/125 GHz

    NASA Astrophysics Data System (ADS)

    Hou, Bin; Ma, Xiaohua; Yang, Ling; Zhu, Jiejie; Zhu, Qing; Chen, Lixiang; Mi, Minhan; Zhang, Hengshuang; Zhang, Meng; Zhang, Peng; Zhou, Xiaowei; Hao, Yue

    2017-07-01

    In this paper, a normally-off AlGaN/GaN high-electron-mobility transistors (HEMT) fabricated using inductively coupled plasma (ICP) CF4 plasma recessing and an implantation technique is reported. A gate-to-channel distance of ˜10 nm and an equivalent negative fluorine sheet charge density of -1.21 × 1013 cm-2 extracted using a simple threshold voltage (V th) analytical model result in a high V th of 1.5 V, a peak transconductance of 356 mS/mm, and a subthreshold slope of 133 mV/decade. A small degradation of channel mobility leads to a high RF performance with f T/f max of 41/125 GHz, resulting in a record high f T × L g product of 10.66 GHz·µm among Schottky barrier AlGaN/GaN normally-off HEMTs with V th exceeding 1 V, to the best of our knowledge.

  15. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole

    NASA Astrophysics Data System (ADS)

    Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei

    2017-03-01

    The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.

  16. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-05-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories.

  17. Giant tunnelling electroresistance in metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier

    PubMed Central

    Xi, Zhongnan; Ruan, Jieji; Li, Chen; Zheng, Chunyan; Wen, Zheng; Dai, Jiyan; Li, Aidong; Wu, Di

    2017-01-01

    Recently, ferroelectric tunnel junctions have attracted much attention due to their potential applications in non-destructive readout non-volatile memories. Using a semiconductor electrode has been proven effective to enhance the tunnelling electroresistance in ferroelectric tunnel junctions. Here we report a systematic investigation on electroresistance of Pt/BaTiO3/Nb:SrTiO3 metal/ferroelectric/semiconductor tunnel junctions by engineering the Schottky barrier on Nb:SrTiO3 surface via varying BaTiO3 thickness and Nb doping concentration. The optimum ON/OFF ratio as great as 6.0 × 106, comparable to that of commercial Flash memories, is achieved in a device with 0.1 wt% Nb concentration and a 4-unit-cell-thick BaTiO3 barrier. With this thinnest BaTiO3 barrier, which shows a negligible resistance to the tunnelling current but is still ferroelectric, the device is reduced to a polarization-modulated metal/semiconductor Schottky junction that exhibits a more efficient control on the tunnelling resistance to produce the giant electroresistance observed. These results may facilitate the design of high performance non-volatile resistive memories. PMID:28513590

  18. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    PubMed

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  19. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  20. Electrical and Dielectric Properties of a n-Si Schottky Barrier Diode with Bismuth Titanate Interlayer: Effect of Temperature

    NASA Astrophysics Data System (ADS)

    Yıldırım, M.; Şahin, C.; Altındal, Ş.; Durmuş, P.

    2017-03-01

    An Au/Bi4Ti3O12/ n-Si Schottky barrier diode (SBD) was fabricated with a 51 nm Bi4Ti3O12 interfacial layer. Admittance measurements of the fabricated SBD were carried out in the bias voltage ( V) range of -4 V and 6 V. Capacitance ( C) and conductance ( G/ω) measurements were carried out in a wide temperature range of 120-380 K so that temperature effects on electrical and dielectric properties of the SBD were investigated. Main electrical parameters were extracted from reverse bias C -2- V plots. It was found that variance of electrical and dielectric parameters of the SBD with temperature is basically different for low and high temperature regions. A fair number (˜1012 eV-1 cm-2) was obtained for surface states ( N ss); however, N ss first decreased then increased with temperature. This result was associated with increased defects with temperature and higher activation energy in the high temperature region. Dielectric parameters of the SBD were also extracted and the dielectric constant of SBD was found as ˜10 at room temperature. Application of modulus formalism to the admittance data revealed temperature-activated dielectric relaxation at 340 K. Results showed that the temperature has considerable effects on electrical and dielectric properties of Au/Bi4Ti3O12/ n-Si SBD.

  1. Silicon-based Coulomb blockade thermometer with Schottky barriers

    NASA Astrophysics Data System (ADS)

    Tuboltsev, V.; Savin, A.; Rogozin, V. D.; Räisänen, J.

    2014-04-01

    A hybrid Coulomb blockade thermometer (CBT) in form of an array of intermittent aluminum and silicon islands connected in series via tunnel junctions was fabricated on a thin silicon-on-insulator (SOI) film. Tunnel barriers in the micrometer size junctions were formed by metal-semiconductor Schottky contacts between aluminium electrodes and heavily doped silicon. Differential conductance through the array vs. bias voltage was found to exhibit characteristic features of competing thermal and charging effects enabling absolute temperature measurements over the range of ˜65 to ˜500 mK. The CBT performance implying the primary nature of the thermometer demonstrated for rather trivial architecture attempted in this work paves a route for introduction of Coulomb blockade thermometry into well-developed contemporary SOI technology.

  2. In situ current-voltage characterization of swift heavy ion irradiated Au/n-GaAs Schottky diode at low temperature

    NASA Astrophysics Data System (ADS)

    Singh, R.; Arora, S. K.; Singh, J. P.; Kanjilal, D.

    A Au/n-GaAs(100) Schottky diode was irradiated at 80 K by a 180 MeV Ag-107(14+) ion beam. In situ current-voltage (I--V) characterization of the diode was performed at various irradiation fluences ranging from 1x10(10) to 1x10(13) ions cm(-2) . The semiconductor was heavily doped (carrier concentration=1x10(18) cm(-3)), hence thermionic field emission was assumed to be the dominant current transport mechanism in the diode. Systematic variations in various parameters of the Schottky diode like characteristic energy E-0 , ideality factor n , reverse saturation current I-S , flatband barrier height Phi(bf) and reverse leakage current I-R have been observed with respect to the irradiation fluence. The nuclear and electronic energy losses of the swift heavy ion affect the interface state density at the metal-semiconductor interface resulting in observed variations in Schottky diode parameters.

  3. The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4 H-SiC

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.

    2018-05-01

    The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

  4. Modeling of Schottky Barrier Modulation due to Oxidation at Metallic Electrode and Semiconducting Carbon Nanotube Junction

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model is proposed for the previously reported lower Schottky barrier for holes PHI (sub bH) in air than in vacuum at a metallic electrode - semiconducting carbon nanotube (CNT) junction. We assume that there is a transition region between the electrode and the CNT, and an appreciable potential can drop there. The role of the oxidation is to increase this potential drop with negatively charged oxygen molecules on the CNT, leading to lower PHI(sub Bh) after oxidation. The mechanism prevails in both p- and n-CNTs, and the model consistently explains the key experimental findings.

  5. Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides

    NASA Astrophysics Data System (ADS)

    Lu, Haichang; Guo, Yuzheng; Robertson, John

    2016-08-01

    The Schottky Barrier Heights (SBH) of metal layers on top of monolayer hexagonal X-nitrides (X = B, Al, Ga, and h-XN) are calculated using supercells and density functional theory so as to understand the chemical trends of contact formation on graphene and the 2D layered semiconductors such as the transition metal dichalcogenides. The Fermi level pinning factor S of SBHs on h-BN is calculated to be nearly 1, indicating no pinning. For h-AlN and h-GaN, the calculated pinning factor is about 0.63, less than for h-BN. We attribute this to the formation of stronger, chemisorptive bonds between the nitrides and the contact metal layer. Generally, the h-BN layer remains in a planar sp2 geometry and has weak physisorptive bonds to the metals, whereas h-AlN and h-GaN buckle out of their planar geometry which enables them to form the chemisorptive bonds to the metals.

  6. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    NASA Technical Reports Server (NTRS)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  7. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  8. Interface state density distribution in Au/n-ZnO nanorods Schottky diodes

    NASA Astrophysics Data System (ADS)

    Faraz, S. M.; Willander, M.; Wahab, Q.

    2012-04-01

    Interface states density (NSS) distribution is extracted in Au/ ZnO Schottky diodes. Nanorods of ZnO are grown on silver (Ag) using aqueous chemical growth (ACG) technique. Well aligned hexagonal-shaped vertical nanorods of a mean diameter of 300 - 450 nm and 1.3 -1.9 μm high are revealed in SEM. Gold (Au) Schottky contacts of thickness 60 nm and 1.5mm diameter were evaporated. For electrical characterization of Schottky diodes current-voltage (I-V) and capacitance-Voltage (C-V) measurements are performed. The diodes exhibited a typical non-linear rectifying behavior with a barrier height of 0.62eV and ideality factor of 4.3. Possible reasons for low barrier height and high ideality factor have been addressed. Series resistance (RS) has been calculated from forward I-V characteristics using Chueng's function. The density of interfacial states (NSS) below the conduction band (EC-ESS) is extracted using I-V and C-V measured values. A decrease in interface states density (NSS) is observed from 3.74 × 1011 - 7.98 × 1010 eV-1 cm-2 from 0.30eV - 0.61eV below the conduction band edge.

  9. Au/n-InP Schottky diodes using an Al2O3 interfacial layer grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hogyoung; Kim, Min Soo; Yoon, Seung Yu; Choi, Byung Joon

    2017-02-01

    We investigated the effect of an Al2O3 interfacial layer grown by atomic layer deposition on the electrical properties of Au Schottky contacts to n-type InP. Considering barrier inhomogeneity, modified Richardson plots yielded a Richardson constant of 8.4 and 7.5 Acm-2K-2, respectively, for the sample with and without the Al2O3 interlayer (theoretical value of 9.4 Acm-2K-2 for n-type InP). The dominant reverse current flow for the sample with an Al2O3 interlayer was found to be Poole-Frenkel emission. From capacitance-voltage measurements, it was observed that the capacitance for the sample without the Al2O3 interlayer was frequency dependent. Sputter-induced defects as well as structural defects were passivated effectively with an Al2O3 interlayer.

  10. Electric field modulation of Schottky barrier height in graphene/MoSe{sub 2} van der Waals heterointerface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sata, Yohta; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp, E-mail: tmachida@iis.u-tokyo.ac.jp; Morikawa, Sei

    2015-07-13

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe{sub 2} van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe{sub 2} exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe{sub 2} vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10{sup 5}. These results point to the potential high performance ofmore » the graphene/MoSe{sub 2} vdW heterostructure for electronics applications.« less

  11. Temperature dependent electrical properties of rare-earth metal Er Schottky contact on p-type InP

    NASA Astrophysics Data System (ADS)

    Rao, L. Dasaradha; Reddy, N. Ramesha; Kumar, A. Ashok; Reddy, V. Rajagopal

    2013-06-01

    The current-voltage (I-V) characteristics of the Er/p-InP Schottky barrier diodes (SBDs) have been investigated in the temperature range of 300-400K in steps of 25K. The electrical parameters such as ideality factor (n) and zero-bias barrier height (Φbo) are found to be strongly temperature dependent. It is observed that ΦI-V decreases whereas n increases with decreasing temperature. The series resistance is also calculated from the forward I-V characteristics of Er/p-InP SBD and it is found to be strongly dependent on temperature. Further, the temperature dependence of energy distribution of interface state density (NSS) profiles is determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor. It is observed that the NSS values increase with a decrease in temperature.

  12. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    NASA Astrophysics Data System (ADS)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  13. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    NASA Astrophysics Data System (ADS)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  14. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    PubMed Central

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  15. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure.

    PubMed

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-08

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and Al x O x guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H₂ plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the Al x O x guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the Al x O x guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm²@100 V), and a Schottky barrier height of 1.074 eV.

  16. Semi-insulating GaAs and Au Schottky barrier photodetectors for near-infrared detection (1280 nm)

    NASA Astrophysics Data System (ADS)

    Nusir, A. I.; Makableh, Y. F.; Manasreh, O.

    2015-08-01

    Schottky barriers formed between metal (Au) and semiconductor (GaAs) can be used to detect photons with energy lower than the bandgap of the semiconductor. In this study, photodetectors based on Schottky barriers were fabricated and characterized for the detection of light at wavelength of 1280 nm. The device structure consists of three gold fingers with 1.75 mm long and separated by 0.95 mm, creating an E shape while the middle finger is disconnected from the outer frame. When the device is biased, electric field is stretched between the middle finger and the two outermost electrodes. The device was characterized by measuring the current-voltage (I-V) curve at room temperature. This showed low dark current on the order of 10-10 A, while the photocurrent was higher than the dark current by four orders of magnitude. The detectivity of the device at room temperature was extracted from the I-V curve and estimated to be on the order of 5.3x1010 cm.Hz0.5/W at 5 V. The step response of the device was measured from time-resolved photocurrent curve at 5 V bias with multiple on/off cycles. From which the average recovery time was estimated to be 0.63 second when the photocurrent decreases by four orders of magnitude, and the average rise time was measured to be 0.897 second. Furthermore, the spectral response spectrum of the device exhibits a strong peak close to the optical communication wavelength (~1.3 μm), which is attributed to the internal photoemission of electrons above the Schottky barrier formed between Au and GaAs.

  17. Differential Depletion Capacitance Approximation Analysis Under DC Voltage for Air-Exposed Cu/n-Si Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Korkut, A.

    It is well known that the semiconductor surface is easily oxidized by air-media in time. This work studieds the characterization of Schottky diodes and changes in depletion capacitance, which is caused by air exposure of a group of Cu/n-Si/Al Schottky diodes. First, data for current-voltage and capacitance-voltage were a Ren, and then ideality factor, barrier height, built-in potential (Vbi), donor concentration and Fermi level, interfacial oxide thickness, interface state density were calculated. It is seen that depletion capacitance was calculate; whereafter built-in potential played an important role in Schottky diodes characteristic. Built-in potential directly affects the characteristic of Schottky diodes and a turning point occurs. In case of forward and reverse bias, depletion capacitance versus voltage graphics are matched, but in an opposite direction. In case of forward bias, differential depletion capacitance begins from minus values, it is raised to first Vbi, then reduced to second Vbi under the minus condition. And it sharply gones up to positive apex, then sharply falls down to near zero, but it takes positive values depending on DC voltage. In case of reverse bias, differential depletion capacitance takes to small positive values. In other respects, we see that depletion characteristics change considerably under DC voltage.

  18. Comparative Study on Graded-Barrier AlxGa1‑xN/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistor by Using Ultrasonic Spray Pyrolysis Deposition Technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Sung; Hsu, Wei-Chou; Huang, Yi-Ping; Liu, Han-Yin; Yang, Wen-Luh; Yang, Shen-Tin

    2018-06-01

    Comparative study on a novel Al2O3-dielectric graded-barrier (GB) AlxGa1‑xN/AlN/GaN/Si (x = 0.22 ∼ 0.3) metal-oxide-semiconductor heterostructure field-effect transistor (MOS-HFET) formed by using the ultrasonic spray pyrolysis deposition (USPD) technique has been made with respect to a conventional-barrier (CB) Al0.26Ga0.74N/AlN/GaN/Si MOS-HFET and the reference Schottky-gate HFET devices. The GB AlxGa1‑xN was devised to improve the interfacial quality and enhance the Schottky barrier height at the same time. A cost-effective ultrasonic spray pyrolysis deposition (USPD) method was used to form the high-k Al2O3 gate dielectric and surface passivation on the AlGaN barrier of the present MOS-HFETs. Comprehensive device performances, including maximum extrinsic transconductance (g m,max), maximum drain-source current density (I DS,max), gate-voltage swing (GVS) linearity, breakdown voltages, subthreshold swing (SS), on/off current ratio (I on /I off ), high frequencies, and power performance are investigated.

  19. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    PubMed Central

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-01-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification. PMID:27185635

  20. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  1. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells.

    PubMed

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-17

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm(2), an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm(2). Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  2. Low-frequency noise in AlN/AlGaN/GaN metal-insulator-semiconductor devices: A comparison with Schottky devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Son Phuong; Nguyen, Tuan Quy; Shih, Hong-An

    2014-08-07

    We have systematically investigated low-frequency noise (LFN) in AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) devices, where the AlN gate insulator layer was sputtering-deposited on the AlGaN surface, in comparison with LFN in AlGaN/GaN Schottky devices. By measuring LFN in ungated two-terminal devices and heterojunction field-effect transistors (HFETs), we extracted LFN characteristics in the intrinsic gated region of the HFETs. Although there is a bias regime of the Schottky-HFETs in which LFN is dominated by the gate leakage current, LFN in the MIS-HFETs is always dominated by only the channel current. Analyzing the channel-current-dominated LFN, we obtained Hooge parameters α for the gated regionmore » as a function of the sheet electron concentration n{sub s} under the gate. In a regime of small n{sub s}, both the MIS- and Schottky-HFETs exhibit α∝n{sub s}{sup −1}. On the other hand, in a middle n{sub s} regime of the MIS-HFETs, α decreases rapidly like n{sub s}{sup −ξ} with ξ ∼ 2-3, which is not observed for the Schottky-HFETs. In addition, we observe strong increase in α∝n{sub s}{sup 3} in a large n{sub s} regime for both the MIS- and Schottky-HFETs.« less

  3. Optical response at 10.6 microns in tungsten silicide Schottky barrier diodes

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Boyd, Joseph T.; Jackson, Howard E.

    1987-01-01

    Optical response to radiation at a wavelength of 10.6 microns in tungsten silicide-silicon Schottky barrier diodes has been observed. Incident photons excite electrons by means of junction plasmon assisted inelastic electron tunneling. At 78 K, a peak in the second derivative of current versus junction bias voltage was observed at a voltage corresponding to the energy of photons having a wavelength of 10.6 microns. This peak increased with increasing incident laser power, saturating at the highest laser powers investigated.

  4. Schottky barrier SOI-MOSFETs with high-k La2O3/ZrO2 gate dielectrics

    PubMed Central

    Henkel, C.; Abermann, S.; Bethge, O.; Pozzovivo, G.; Klang, P.; Stöger-Pollach, M.; Bertagnolli, E.

    2011-01-01

    Schottky barrier SOI-MOSFETs incorporating a La2O3/ZrO2 high-k dielectric stack deposited by atomic layer deposition are investigated. As the La precursor tris(N,N′-diisopropylformamidinato) lanthanum is used. As a mid-gap metal gate electrode TiN capped with W is applied. Processing parameters are optimized to issue a minimal overall thermal budget and an improved device performance. As a result, the overall thermal load was kept as low as 350, 400 or 500 °C. Excellent drive current properties, low interface trap densities of 1.9 × 1011 eV−1 cm−2, a low subthreshold slope of 70-80 mV/decade, and an ION/IOFF current ratio greater than 2 × 106 are obtained. PMID:21461054

  5. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In3+ to In0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries atmore » Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  6. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt–Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In 3+ to In 0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O 2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailedmore » interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  7. Magnetic field-driven lateral photovoltaic effect in the Fe/SiO2/p-Si hybrid structure with the Schottky barrier

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Rautskii, M. V.; Tarasov, A. S.; Yakovlev, I. A.; Bondarev, I. A.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-07-01

    We demonstrate that the lateral photovoltaic effect in the Fe/SiO2/p-Si structure not only strongly depends on the optical radiation wavelength and temperature, but is also sensitive to external magnetic fields. The magnetic field lowers the absolute value of photovoltage regardless of the wavelength and temperature; however, the relative photovoltage variation significantly depends on these parameters. The lateral photovoltage is observed both on the Fe film and Si substrate sides and results from separation of photoinduced electrons and holes in a built-in electric field of the Schottky barrier with their subsequent diffusion to the structure in the lateral direction from the illuminated area. The observed features in the behavior of the lateral photovoltaic effect originate from the variation in the light absorption coefficient of the semiconductor and the related quantum efficiency upon light wavelength variation. In addition, an important role is played by the change in the characteristics of the Schottky barrier at the redistribution of optically generated carriers and temperature variation. The effect of the magnetic field is attributed to the Lorentz force, which bends trajectories of carriers drifting under the action of the Schottky barrier field and, consequently, suppresses the lateral photovoltaic effect.

  8. Fabrication and characterization of GaAs Schottky barrier photodetectors for microwave fiber optic links

    NASA Astrophysics Data System (ADS)

    Blauvelt, H.; Thurmond, G.; Parsons, J.; Lewis, D.; Yen, H.

    1984-08-01

    High-speed GaAs Schottky barrier photodiodes have been fabricated and characterized. These detectors have 3-dB bandwidths of 20 GHz and quantum efficiencies as high as 70 percent. The response of the detectors to light modulated at 1-18 GHz has been directly measured. Microwave modulated optical signals were obtained by using a LiNbO3 traveling wave modulator and by heterodyning two laser diodes.

  9. Flexible IGZO Schottky diodes on paper

    NASA Astrophysics Data System (ADS)

    Kaczmarski, Jakub; Borysiewicz, Michał A.; Piskorski, Krzysztof; Wzorek, Marek; Kozubal, Maciej; Kamińska, Eliana

    2018-01-01

    With the development of novel device applications, e.g. in the field of robust and recyclable paper electronics, came an increased demand for the understanding and control of IGZO Schottky contact properties. In this work, a fabrication and characterization of flexible Ru-Si-O/IGZO Schottky barriers on paper is presented. It is found that an oxygen-rich atomic composition and microstructure of Ru-Si-O containing randomly oriented Ru inclusions with diameter of 3-5 nm embedded in an amorphous SiO2 matrix are effective in preventing interfacial reactions in the contact region, allowing to avoid pre-treatment of the semiconductor surface and fabricate reliable diodes at room temperature characterized by Schottky barrier height and ideality factor equal 0.79 eV and 2.13, respectively.

  10. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    PubMed

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  11. Characterization of breakdown behavior of diamond Schottky barrier diodes using impact ionization coefficients

    NASA Astrophysics Data System (ADS)

    Driche, Khaled; Umezawa, Hitoshi; Rouger, Nicolas; Chicot, Gauthier; Gheeraert, Etienne

    2017-04-01

    Diamond has the advantage of having an exceptionally high critical electric field owing to its large band gap, which implies its high ability to withstand high voltages. At this maximum electric field, the operation of Schottky barrier diodes (SBDs), as well as FETs, may be limited by impact ionization, leading to avalanche multiplication, and hence the devices may breakdown. In this study, three of the reported impact ionization coefficients for electrons, αn, and holes, αp, in diamond at room temperature (300 K) are analyzed. Experimental data on reverse operation characteristics obtained from two different diamond SBDs are compared with those obtained from their corresponding simulated structures. Owing to the crucial role played by the impact ionization rate in determining the carrier transport, the three reported avalanche parameters implemented affect the behavior not only of the breakdown voltage but also of the leakage current for the same structure.

  12. A model to non-uniform Ni Schottky contact on SiC annealed at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pristavu, G.; Brezeanu, G.; Badila, M.

    2015-06-29

    Ni Schottky contacts on SiC have a nonideal behavior, with strong temperature dependence of the electrical parameters, caused by a mixed barrier on the contact area and interface states. A simple analytical model that establishes a quantitative correlation between Schottky contact parameter variation with temperature and barrier height non-uniformity is proposed. A Schottky contact surface with double Schottky barrier is considered. The main model parameters are the lower barrier (Φ{sub Bn,l}) and a p factor which quantitatively evaluates the barrier non-uniformity on the Schottky contact area. The model is validated on Ni/4H-SiC Schottky contacts, post metallization sintered at high temperatures.more » The measured I{sub F}–V{sub F}–T characteristics, selected so as not to be affected by interface states, were used for model correlation. An inhomogeneous double Schottky barrier (with both nickel silicide and Ni droplets at the interface) is formed by a rapid thermal annealing (RTA) at 750 °C. High values of the p parameter are obtained from samples annealed at this temperature, using the proposed model. A significant improvement in the electrical properties occurs following RTA at 800 °C. The expansion of the Ni{sub 2}Si phase on the whole contact area is evinced by an X-Ray diffraction investigation. In this case, the p factor is much lower, attesting the uniformity of the contact. The model makes it possible to evaluate the real Schottky barrier, for a homogenous Schottky contact. Using data measured on samples annealed at 800 °C, a true barrier height of around 1.73 V has been obtained for Ni{sub 2}Si/4H-SiC Schottky contacts.« less

  13. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions

    PubMed Central

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5–20 cm2/V·s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V·s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics. PMID:25109609

  14. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  15. Graphite based Schottky diodes formed semiconducting substrates

    NASA Astrophysics Data System (ADS)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  16. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  17. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  18. Few-Layer WSe2 Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping.

    PubMed

    Ko, Seungpil; Na, Junhong; Moon, Young-Sun; Zschieschang, Ute; Acharya, Rachana; Klauk, Hagen; Kim, Gyu-Tae; Burghard, Marko; Kern, Klaus

    2017-12-13

    Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe 2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al 2 O 3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W -1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.

  19. Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts.

    PubMed

    Wang, Ching-Hua; Incorvia, Jean Anne C; McClellan, Connor J; Yu, Andrew C; Mleczko, Michal J; Pop, Eric; Wong, H-S Philip

    2018-05-09

    Black phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 μA/μm in 6.5 nm thick BP. Intriguingly, the electrical transport of the as-fabricated, capped devices changes from ambipolar to n-type unipolar behavior after a month at room temperature. Transmission electron microscopy analysis of the contact cross-section reveals an intermixing layer consisting of partly oxidized metal at the interface. This intermixing layer results in a low n-type Schottky barrier between Sc and BP, leading to the unipolar behavior of the BP transistor. This unipolar transport with a suppressed p-type current is favorable for digital logic circuits to ensure a lower off-power consumption.

  20. Simplified gas sensor model based on AlGaN/GaN heterostructure Schottky diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Subhashis, E-mail: subhashis.ds@gmail.com; Majumdar, S.; Kumar, R.

    2015-08-28

    Physics based modeling of AlGaN/GaN heterostructure Schottky diode gas sensor has been investigated for high sensitivity and linearity of the device. Here the surface and heterointerface properties are greatly exploited. The dependence of two dimensional electron gas (2DEG) upon the surface charges is mainly utilized. The simulation of Schottky diode has been done in Technology Computer Aided Design (TCAD) tool and I-V curves are generated, from the I-V curves 76% response has been recorded in presence of 500 ppm gas at a biasing voltage of 0.95 Volt.

  1. RF upset susceptibilities of CMOS and low power Schottky D-type flip-flops

    NASA Astrophysics Data System (ADS)

    Kenneally, Daniel J.; Koellen, Daniel S.; Epshtein, Stan

    A description is given of measurements of RF upset levels on two D-type flip-flops, the CD4013B and 54ALS74A, which are functionally identical but fabricated from different technologies: CMOS and low-power Schottky. Continuous-wave electromagnetic interference (CW EMI) from 1 MHz to 200 MHz was coupled into the clock, data, and collector bias, Vcc, ports of each device type while test vectors were used to verify normal operation and subsequent upsets. Both the CMOS and the Schottky devices show decreasing RF susceptibility with increasing frequencies from 1 to 200 MHz. The CMOS device roll-off is almost 18 dB/decade as compared to about 12 dB/decade for the Schottky device. The differences in the Vcc ports' susceptibilities are also apparent. The CMOS device's upset levels decrease steeply with increasing frequency at approximate roll-offs of 60 dB/decade up to 5 MHz and 15 dB/decade from 5 to 100 MHz. Over the same bands, the Schottky device susceptibility at the Vcc port remains strikingly constant at a 6-dBm upset level. Measurements on the clock and data ports seem to suggest that: (1) the CMOS device is `RF harder' than the Schottky device by 3 to 18 dB at least above the 5 to 10 MHz range and out to 100 MHz; and (2) below that range, the Schottky device may be `RF harder' by 3 to 6 dB, but there are not enough measurement data to confirm this performance below 5 MHz.

  2. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chang, Hsun-Ming; Fan, Kai-Lin; Charnas, Adam; Ye, Peide D.; Lin, Yu-Ming; Wu, Chih-I.; Wu, Chao-Hsin

    2018-04-01

    Compared to graphene and MoS2, studies on metal contacts to black phosphorus (BP) transistors are still immature. In this work, we present the experimental analysis of titanium contacts on BP based upon the theory of thermionic emssion. The Schottky barrier height (SBH) is extracted by thermionic emission methods to analyze the properties of Ti-BP contact. To examine the results, the band gap of BP is extracted followed by theoretical band alignment by Schottky-Mott rule. However, an underestimated SBH is found due to the hysteresis in electrical results. Hence, a modified SBH extraction for contact resistance that avoids the effects of hysteresis is proposed and demonstrated, showing a more accurate SBH that agrees well with theoretical value and results of transmission electron microscopy and energy-dispersive x-ray spectroscopy.

  3. In Situ Chemical Modification of Schottky Barrier in Solution-Processed Zinc Tin Oxide Diode.

    PubMed

    Son, Youngbae; Li, Jiabo; Peterson, Rebecca L

    2016-09-14

    Here we present a novel in situ chemical modification process to form vertical Schottky diodes using palladium (Pd) rectifying bottom contacts, amorphous zinc tin oxide (Zn-Sn-O) semiconductor made via acetate-based solution process, and molybdenum top ohmic contacts. Using X-ray photoelectron spectroscopy depth profiling, we show that oxygen plasma treatment of Pd creates a PdOx interface layer, which is then reduced back to metallic Pd by in situ reactions during Zn-Sn-O film annealing. The plasma treatment ensures an oxygen-rich environment in the semiconductor near the Schottky barrier, reducing the level of oxygen-deficiency-related defects and improving the rectifying contact. Using this process, we achieve diodes with high forward current density exceeding 10(3)A cm(-2) at 1 V, rectification ratios of >10(2), and ideality factors of around 1.9. The measured diode current-voltage characteristics are compared to numerical simulations of thermionic field emission with sub-bandgap states in the semiconductor, which we attribute to spatial variations in metal stoichiometry of amorphous Zn-Sn-O. To the best of our knowledge, this is the first demonstration of vertical Schottky diodes using solution-processed amorphous metal oxide semiconductor. Furthermore, the in situ chemical modification method developed here can be adapted to tune interface properties in many other oxide devices.

  4. Isothermal current–voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinshtein, M. E., E-mail: melev@nimis.ioffe.ru; Ivanov, P. A.; Zhang, Q. J.

    The forward-pulse isothermal current–voltage characteristics of 4H-SiC junction barrier Schottky rectifiers (JBSs) with a nominal blocking voltage of 1700 V are measured in the temperature range from–80 to +90°C (193–363 K) up to current densities j of ~5600 A/cm{sup 2} at–80°C and 3000 A/cm{sup 2} at +90°C. In these measurements, the overheating of the structures relative to the ambient temperature, ΔT, did not exceed several degrees. At higher current densities, the effective injection of minority carriers (holes) into the base of the structures is observed, which is accompanied by the appearance of an S-type differential resistance. The pulsed isothermal current–voltagemore » characteristics are also measured at a temperature of 77 K.« less

  5. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  6. Interface properties of an O2 annealed Au/Ni/n-Al0.18Ga0.82N Schottky contact

    NASA Astrophysics Data System (ADS)

    Legodi, M. J.; Meyer, W. E.; Auret, F. D.

    2012-05-01

    We oxidized a Ni/Au metal bi-layer contact fabricated on HVPE Al0.18Ga0.82N from 373 K to 573 K in 100 K steps. In the range 1 kHz to 2 MHz, the Capacitance-Voltage-Frequency (C-V-f) measurements reveal a frequency dispersion of the capacitance and the presence of an anomalous peak at 0.4 V owing to the presence of interface states in the as deposited contact system. The dispersion was progressively removed by O2 anneals from temperatures as low as 373 K. These changes are accompanied by an improvement in the overall quality of the Schottky system: the ideality factor, n, improves from 2.09 to 1.26; the Schottky barrier height (SBH), determined by the Norde [1] method, increases from 0.72 eV to 1.54 eV. From the Nicollian and Goetzberger model [2], we calculated the energy distribution of the density of interface states, NSS. Around 1 eV above the Al0.18Ga0.82N valence band, NSS, decreases from 2.3×1012 eV-1 cm-2 for the un-annealed diodes to 1.3×1012 eV-1 cm-2 after the 573 K anneal. Our results suggest the formation of an insulating NiO leading to a MIS structure for the oxidized Au/Ni/Al0.18Ga0.82N contact.

  7. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    PubMed

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  8. Branch-point energies and the band-structure lineup at Schottky contacts and heterostrucures

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    2011-06-01

    Empirical branch-point energies of Si, the group-III nitrides AlN, GaN, and InN, and the group-II and group-III oxides MgO, ZnO, Al2O3 and In2O3 are determined from experimental valance-band offsets of their heterostructures. For Si, GaN, and MgO, these values agree with the branch-point energies obtained from the barrier heights of their Schottky contacts. The empirical branch-point energies of Si and the group-III nitrides are in very good agreement with results of previously published calculations using quite different approaches such as the empirical tight-binding approximation and modern electronic-structure theory. In contrast, the empirical branch-point energies of the group-II and group-III oxides do not confirm the respective theoretical results. As at Schottky contacts, the band-structure lineup at heterostructures is also made up of a zero-charge-transfer term and an intrinsic electric-dipole contribution. Hence, valence-band offsets are not equal to the difference of the branch-point energies of the two semiconductors forming the heterostructure. The electric-dipole term may be described by the electronegativity difference of the two solids in contact. A detailed analysis of experimental Si Schottky barrier heights and heterostructure valence-band offsets explains and proves these conclusions.

  9. Impact of substrate off-angle on the m-plane GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yamada, Hisashi; Chonan, Hiroshi; Takahashi, Tokio; Shimizu, Mitsuaki

    2018-04-01

    We investigated the effects of the substrate off-angle on the m-plane GaN Schottky diodes. GaN epitaxial layers were grown by metal-organic chemical vapor deposition on m-plane GaN substrates having an off-angle of 0.1, 1.1, 1.7, or 5.1° toward [000\\bar{1}]. The surface of the GaN epitaxial layers on the 0.1°-off substrate consisted of pyramidal hillocks and contained oxygen (>1017 cm-3) and carbon (>1016 cm-3) impurities. The residual carbon and oxygen impurities decreased to <1016 cm-3 when the off-angle of the m-plane GaN substrate was increased. The leakage current of the 0.1°-off m-plane GaN Schottky diodes originated from the +c facet of the pyramidal hillocks. The leakage current was efficiently suppressed through the use of an off-angle that was observed to be greater than 1.1°. The off-angle of the m-plane GaN substrate is critical in obtaining high-performance Schottky diodes.

  10. Research on the electrical characteristics of the Pt/CdS Schottky diode

    NASA Astrophysics Data System (ADS)

    Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng

    2013-08-01

    With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.

  11. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  12. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  13. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    NASA Astrophysics Data System (ADS)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  14. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  15. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    PubMed

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  16. Tuning a Schottky Barrier in a Photoexcited Topological Insulator with Transient Dirac Cone Electron-Hole Asymmetry

    DTIC Science & Technology

    2014-01-06

    S. Jia9, H.W. Ji9, R.J. Cava9 & M. Marsi1 The advent of Dirac materials has made it possible to realize two-dimensional gases of relativistic...ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials . DOI : 10.1038...topological insulator with transient Dirac cone electron-hole asymmetry. Nat. Commun. 5:3003 doi : 10.1038/ncomms4003 (2014). ARTICLE NATURE

  17. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    PubMed Central

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I–V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems. PMID:22164066

  18. Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction

    NASA Astrophysics Data System (ADS)

    Berahim, A. N.; Zaharudin, M. Z.; Ani, M. H.; Arifin, S. K.

    2018-01-01

    The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

  19. Influence of interface inhomogeneities in thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin

    2017-11-01

    The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.

  20. Study of Diffusion Barrier for Solder/ n-Type Bi2Te3 and Bonding Strength for p- and n-Type Thermoelectric Modules

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Chih; Li, Ying-Sih; Wu, Albert T.

    2018-01-01

    This paper investigates the interfacial reaction between Sn and Sn3Ag0.5Cu (SAC305) solder on n-type Bi2Te3 thermoelectric material. An electroless Ni-P layer successfully suppressed the formation of porous SnTe intermetallic compound at the interface. The formation of the layers between Bi2Te3 and Ni-P indicates that Te is the dominant diffusing species. Shear tests were conducted on both Sn and SAC305 solder on n- and p-type Bi2Te3 with and without a Ni-P barrier layer. Without a Ni-P layer, porous SnTe would result in a more brittle fracture. A comparison of joint strength for n- and p-type thermoelectric modules is evaluated by the shear test. Adding a diffusion barrier increases the mechanical strength by 19.4% in n-type and 74.0% in p-type thermoelectric modules.

  1. Schottky junction interfacial properties at high temperature: A case of AgNWs embedded metal oxide/p-Si

    NASA Astrophysics Data System (ADS)

    Mahala, Pramila; Patel, Malkeshkumar; Gupta, Navneet; Kim, Joondong; Lee, Byung Ha

    2018-05-01

    Studying the performance limiting parameters of the Schottky device is an urgent issue, which are addressed herein by thermally stable silver nanowire (AgNW) embedded metal oxide/p-Si Schottky device. Temperature and bias dependent junction interfacial properties of AgNW-ITO/Si Schottky photoelectric device are reported. The current-voltage-temperature (I-V-T), capacitance-voltage-temperature (C-V-T) and impedance analysis have been carried out in the high-temperature region. The ideality factor and barrier height of Schottky junction are assessed using I-V-T characteristics and thermionic emission, to reveal the decrease of ideality factor and increase of barrier height by the increasing of temperature. The extracted values of laterally homogeneous Schottky (ϕb) and ideality factor (n) are approximately 0.73 eV and 1.58, respectively. Series resistance (Rs) assessed using Cheung's method and found that it decreases with the increase of temperature. A linear response of Rs of AgNW-ITO/Si Schottky junction is observed with respect to change in forward bias, i.e. dRS/dV from 0 to 0.7 V is in the range of 36.12-36.43 Ω with a rate of 1.44 Ω/V. Impedance spectroscopy is used to study the effect of bias voltage and temperature on intrinsic Schottky properties which are responsible for photoconversion efficiency. These systematic analyses are useful for the AgNWs-embedding Si solar cells or photoelectrochemical cells.

  2. A graphene barristor using nitrogen profile controlled ZnO Schottky contacts.

    PubMed

    Hwang, Hyeon Jun; Chang, Kyoung Eun; Yoo, Won Beom; Shim, Chang Hoo; Lee, Sang Kyung; Yang, Jin Ho; Kim, So-Young; Lee, Yongsu; Cho, Chunhum; Lee, Byoung Hun

    2017-02-16

    We have successfully demonstrated a graphene-ZnO:N Schottky barristor. The barrier height between graphene and ZnO:N could be modulated by a buried gate electrode in the range of 0.5-0.73 eV, and an on-off ratio of up to 10 7 was achieved. By using a nitrogen-doped ZnO film as a Schottky contact material, the stability problem of previously reported graphene barristors could be greatly alleviated and a facile route to build a top-down processed graphene barristor was realized with a very low heat cycle. This device will be instrumental when implementing logic functions in systems requiring high-performance logic devices fabricated with a low temperature fabrication process such as back-end integrated logic devices or flexible devices on soft substrates.

  3. Extraction of physical Schottky parameters using the Lambert function in Ni/AlGaN/GaN HEMT devices with defined conduction phenomena

    NASA Astrophysics Data System (ADS)

    Latry, O.; Divay, A.; Fadil, D.; Dherbécourt, P.

    2017-01-01

    Electrical characterization analyses are proposed in this work using the Lambert function on Schottky junctions in GaN wide band gap semiconductor devices for extraction of physical parameters. The Lambert function is used to give an explicit expression of the current in the Schottky junction. This function is applied with defined conduction phenomena, whereas other work presented arbitrary (or undefined) conduction mechanisms in such parameters’ extractions. Based upon AlGaN/GaN HEMT structures, extractions of parameters are undergone in order to provide physical characteristics. This work highlights a new expression of current with defined conduction phenomena in order to quantify the physical properties of Schottky contacts in AlGaN/GaN HEMT transistors. Project supported by the French Department of Defense (DGA).

  4. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Pratap, Yogesh; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-12-01

    In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The I ON/I OFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

  5. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  6. Development and fabrication of improved Schottky power diodes, phases I and II

    NASA Technical Reports Server (NTRS)

    Cordes, L. F.; Garfinkle, M.; Taft, E. A.

    1974-01-01

    Reproducible methods for the fabrication of silicon Schottky diodes were developed for the metals tungsten, aluminum, conventional platinum silicide and low temperature platinum silicide. Barrier heights and barrier lowering were measured permitting the accurate prediction of ideal forward and reverse diode performance. Processing procedures were developed which permit the fabrication of large area (approximately 1 sqcm) mesa-geometry power Schottky diodes with forward and reverse characteristics that approach theoretical values.

  7. ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Wu, Xinghui; Liu, Bing; Li, Bing; Zhang, Xingtang; Du, Zuliang

    2011-11-01

    ZnO nanowire (NW) ultraviolet (UV) photodetectors have high sensitivity, while the long recovery time is an important limitation for its applications. In this paper, we demonstrate the promising applications of ZnO NW Schottky barrier as high performance UV photodetector with high sensitivity and fast recovery speed. The on/off ratio, sensitivity, and photocurrent gain are 4 × 105, 2.6 × 103 A/W, and 8.5 × 103, respectively. The recovery time is 0.28 s when photocurrent decreases by 3 orders of magnitude, and the corresponding time constant is as short as 46 ms. The physical mechanisms of the fast recovery properties have also been discussed.

  8. Temperature dependent transport characteristics of graphene/n-Si diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parui, S.; Ruiter, R.; Zomer, P. J.

    2014-12-28

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup −10} A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for themore » CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler.« less

  9. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  10. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  11. Effect of interfacial composition on Ag-based Ohmic contact of GaN-based vertical light emitting diodes

    NASA Astrophysics Data System (ADS)

    Wu, Ning; Xiong, Zhihua; Qin, Zhenzhen

    2018-02-01

    By investigating the effect of a defective interface structure on Ag-based Ohmic contact of GaN-based vertical light-emitting diodes, we found a direct relationship between the interfacial composition and the Schottky barrier height of the Ag(111)/GaN(0001) interface. It was demonstrated that the Schottky barrier height of a defect-free Ag(111)/GaN(0001) interface was 2.221 eV, and it would be dramatically decreased to 0.375 eV with the introduction of one Ni atom and one Ga vacancy at the interface structure. It was found that the tunability of the Schottky barrier height can be attributed to charge accumulations around the interfacial defective regions and an unpinning of the Fermi level, which explains the experimental phenomenon of Ni-assisted annealing improving the p-type Ohmic contact characteristic. Lastly, we propose a new method of using Cu as an assisted metal to realize a novel Ag-based Ohmic contact. These results provide a guideline for the fabrication of high-quality Ag-based Ohmic contact of GaN-based vertical light-emitting diodes.

  12. Evaluating bandgap distributions of carbon nanotubes via scanning electron microscopy imaging of the Schottky barriers.

    PubMed

    He, Yujun; Zhang, Jin; Li, Dongqi; Wang, Jiangtao; Wu, Qiong; Wei, Yang; Zhang, Lina; Wang, Jiaping; Liu, Peng; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2013-01-01

    We show that the Schottky barrier at the metal-single walled carbon nanotube (SWCNT) contact can be clearly observed in scanning electron microscopy (SEM) images as a bright contrast segment with length up to micrometers due to the space charge distribution in the depletion region. The lengths of the charge depletion increase with the diameters of semiconducting SWCNTs (s-SWCNTs) when connected to one metal electrode, which enables direct and efficient evaluation of the bandgap distributions of s-SWCNTs. Moreover, this approach can also be applied for a wide variety of semiconducting nanomaterials, adding a new function to conventional SEM.

  13. Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Feng, Zhaoqing; Hu, Zhuangzhuang; Xing, Xiangyu; Yan, Guangshuo; Zhang, Jincheng; Xu, Yongkuan; Lian, Xiaozheng; Hao, Yue

    2018-02-01

    We have demonstrated the epitaxial growth of a β-(Al0.08Ga0.92)2O3 film on a β-Ga2O3 (010) substrate through pulsed laser deposition. The temperature-dependent electrical characteristics of Au/Ni/β-(Al0.08Ga0.92)2O3 Schottky diodes were investigated in the temperature range of 300-573 K, using thermionic emission theory to calculate the Schottky diode parameters. The barrier height ϕb was found to increase, while the ideality factor n and the series resistance Rs were found to decrease with increasing temperatures. The calculated values of ϕb and n varied from 0.81 eV and 2.29 at 300 K to 1.02 eV and 1.65 at 573 K. The temperature-dependent I-V characteristics of the Schottky diode have shown the Gaussian distribution, yielding a mean barrier height of 1.23 eV and a standard deviation of 0.147 V, respectively. A modified Richardson plot of ln (Is /T2 )-(q2σs2 /2 k2T2 ) versus q/2kT gives ϕb 0 ¯ and A* as 1.24 eV and 44.3 A cm-2 K-2, showing the promise of Ni/β-(AlGa)2O3 as a Schottky diode rectifier.

  14. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  15. Influence of B doping on the carrier transport mechanism and barrier height of graphene/ZnO Schottky contact

    NASA Astrophysics Data System (ADS)

    Li, Yapeng; Li, Yingfeng; Zhang, Jianhua; Tong, Ting; Ye, Wei

    2018-03-01

    The ZnO films were fabricated on the surface of n-Si(1 1 1) substrate using the sol-gel method, and the graphene was then transferred to its surface for the fabrication of the graphene/ZnO Schottky contact. The results showed that ZnO films presented a strong (0 0 2) preferred direction, and that the particle sizes on the surface decreased as the doping concentration of B ions increased. The electrical properties of the graphene/ZnO Schottky contact were measured by using current-voltage measurements. It was found that the graphene/ZnO Schottky contact showed a fine rectification behavior when the doping concentration of B ions was increased. However, when the doping concentration of the B ions increased to 0.15 mol l-1, the leakage current increased and rectification behavior weakened. This was due to the Fermi level pinning caused by the presence of the O vacancy at the interface of the graphene/ZnO Schottky contact.

  16. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  17. Study and modeling of the transport mechanism in a semi insulating GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi. R.

    2012-09-01

    The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of carriers from the semiconductor into the metal, thermionic emission-diffusion (TED) of carriers across the Schottky barrier and quantum-mechanical tunneling through the barrier. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behavior of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase of the process of thermionic electrons and holes, which will in turn the IV characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.

  18. Switchable Schottky diode characteristics induced by electroforming process in Mn-doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Nam, Yoonseung; Hwang, Inrok; Oh, Sungtaek; Lee, Sangik; Lee, Keundong; Hong, Sahwan; Kim, Jinsoo; Choi, Taekjib; Ho Park, Bae

    2013-04-01

    We investigated the asymmetric current-voltage (I-V) characteristics and accompanying unipolar resistive switching of pure ZnO and Mn(1%)-doped ZnO (Mn:ZnO) films sandwiched between Pt electrodes. After electroforming, a high resistance state of the Mn:ZnO capacitor revealed switchable diode characteristics whose forward direction was determined by the polarity of the electroforming voltage. Linear fitting of the I-V curves highlighted that the rectifying behavior was influenced by a Schottky barrier at the Pt/Mn:ZnO interface. Our results suggest that formation of conducting filaments from the cathode during the electroforming process resulted in a collapse of the Schottky barrier (near the cathode), and rectifying behaviors dominated by a remnant Schottky barrier near the anode.

  19. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure.

    PubMed

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J K; Deen, M Jamal; Qi, Bensheng

    2015-03-16

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 10(17) cm(-3). A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm(2), the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure.

  20. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures

  1. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    PubMed

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  2. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    PubMed

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, Antonio; Luongo, Giuseppe; Giubileo, Filippo; Funicello, Nicola; Niu, Gang; Schroeder, Thomas; Lisker, Marco; Lupina, Grzegorz

    2017-06-01

    We propose a hybrid device consisting of a graphene/silicon (Gr/Si) Schottky diode in parallel with a Gr/SiO2/Si capacitor for high-performance photodetection. The device, fabricated by transfer of commercial graphene on low-doped n-type Si substrate, achieves a photoresponse as high as 3 \\text{A} {{\\text{W}}-1} and a normalized detectivity higher than 3.5× {{10}12} \\text{cm} \\text{H}{{\\text{z}}1/2} {{\\text{W}}-1} in the visible range. It exhibits a photocurrent exceeding the forward current because photo-generated minority carriers, accumulated at Si/SiO2 interface of the Gr/SiO2/Si capacitor, diffuse to the Gr/Si junction. We show that the same mechanism, when due to thermally generated carriers, although usually neglected or disregarded, causes the increased leakage often measured in Gr/Si heterojunctions. We perform extensive I-V and C-V characterization at different temperatures and we measure a zero-bias Schottky barrier height of 0.52 eV at room temperature, as well as an effective Richardson constant A **  =  4× {{10}-5} \\text{A} \\text{c}{{\\text{m}}-2} {{\\text{K}}-2} and an ideality factor n≈ 3.6 , explained by a thin (<1 nm) oxide layer at the Gr/Si interface.

  4. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    PubMed

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  5. Formation and characterization of Ni/Al Ohmic contact on n+-type GeSn

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhang, Dongliang; Zheng, Jun; Liu, Zhi; He, Chao; Xue, Chunlai; Zhang, Guangze; Li, Chuanbo; Cheng, Buwen; Wang, Qiming

    2015-12-01

    In this study, a Ni/Al Ohmic contact on a highly doped n-type GeSn has been investigated. A specific contact resistivity as low as (2.26 ± 0.11) × 10-4 Ω cm2 was obtained with the GeSn sample annealed at a temperature of 450 °C for 30 s. The linear Ohmic behavior was attributed to the low resistance of the Ni(GeSn) phase; this behavior was determined using glancing-angle X-ray diffraction, and the quantum tunneling current through the Schottky barrier narrowed because of high doping; this phenomenon was confirmed from the contact resistance characteristics at different temperatures from 45 to 205 K.

  6. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    NASA Astrophysics Data System (ADS)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  7. UV sensing using film bulk acoustic resonators based on Au/n-ZnO/piezoelectric-ZnO/Al structure

    PubMed Central

    Bian, Xiaolei; Jin, Hao; Wang, Xiaozhi; Dong, Shurong; Chen, Guohao; Luo, J. K.; Deen, M. Jamal; Qi, Bensheng

    2015-01-01

    A new type of ultraviolet (UV) light sensor based on film bulk acoustic wave resonator (FBAR) is proposed. The new sensor uses gold and a thin n-type ZnO layer deposited on the top of piezoelectric layer of FBAR to form a Schottky barrier. The Schottky barrier's capacitance can be changed with UV light, resulting in an enhanced shift in the entire FBAR's resonant frequency. The fabricated UV sensor has a 50 nm thick n-ZnO semiconductor layer with a carrier concentration of ~ 1017 cm−3. A large frequency downshift is observed when UV light irradiates the FBAR. With 365 nm UV light of intensity 1.7 mW/cm2, the FBAR with n-ZnO/Au Schottky diode has 250 kHz frequency downshift, much larger than the 60 kHz frequency downshift in a conventional FBAR without the n-ZnO layer. The shift in the new FBAR's resonant frequency is due to the junction formed between Au and n-ZnO semiconductor and its properties changes with UV light. The experimental results are in agreement with the theoretical analysis using an equivalent circuit model of the new FBAR structure. PMID:25773146

  8. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    PubMed

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  9. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    NASA Astrophysics Data System (ADS)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  10. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    NASA Astrophysics Data System (ADS)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  11. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    PubMed

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale.

    PubMed

    Fisichella, Gabriele; Greco, Giuseppe; Roccaforte, Fabrizio; Giannazzo, Filippo

    2014-08-07

    Vertical heterostructures combining two or more graphene (Gr) layers separated by ultra-thin insulating or semiconductor barriers represent very promising systems for next generation electronics devices, due to the combination of high speed operation with wide-range current modulation by a gate bias. They are based on the specific mechanisms of current transport between two-dimensional-electron-gases (2DEGs) in close proximity. In this context, vertical devices formed by Gr and semiconductor heterostructures hosting an "ordinary" 2DEG can be also very interesting. In this work, we investigated the vertical current transport in Gr/Al(0.25)Ga(0.75)N/GaN heterostructures, where Gr is separated from a high density 2DEG by a ∼ 24 nm thick AlGaN barrier layer. The current transport from Gr to the buried 2DEG was characterized at nanoscale using conductive atomic force microscopy (CAFM) and scanning capacitance microscopy (SCM). From these analyses, performed both on Gr/AlGaN/GaN and on AlGaN/GaN reference samples using AFM tips with different metal coatings, the Gr/AlGaN Schottky barrier height ΦB and its lateral uniformity were evaluated, as well as the variation of the carrier densities of graphene (ngr) and AlGaN/GaN 2DEG (ns) as a function of the applied bias. A low Schottky barrier (∼ 0.40 eV) with excellent spatial uniformity was found at the Gr/AlGaN interface, i.e., lower compared to the measured values for metal/AlGaN contacts, which range from ∼ 0.6 to ∼ 1.1 eV depending on the metal workfunction. The electrical behavior of the Gr/AlGaN contact has been explained by Gr interaction with AlGaN donor-like surface states located in close proximity, which are also responsible of high n-type Gr doping (∼ 1.3 × 10(13) cm(-2)). An effective modulation of ns by the Gr Schottky contact was demonstrated by capacitance analysis under reverse bias. From this basic understanding of transport properties in Gr/AlGaN/GaN heterostructures, novel vertical field effect

  13. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    PubMed

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  14. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-01-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654

  15. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    PubMed

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vertical GaN merged PiN Schottky diode with a breakdown voltage of 2 kV

    NASA Astrophysics Data System (ADS)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Yamamuka, Mikio

    2017-06-01

    In this study, we successfully fabricated vertical GaN merged PiN Schottky (MPS) diodes and comparatively investigated the cyclic p-GaN width (W p) dependence of their electrical characteristics, including turn-on voltage and reverse leakage current. The MPS diodes with W p of more than 6 µm can turn on at around 3 V. Increasing W p can suppress the reverse leakage current. Moreover, the vertical GaN MPS diode with the breakdown voltage of 2 kV was realized for the first time.

  17. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    PubMed

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.

  18. Scaling and Graphical Transport-Map Analysis of Ambipolar Schottky-Barrier Thin-Film Transistors Based on a Parallel Array of Si Nanowires.

    PubMed

    Jeon, Dae-Young; Pregl, Sebastian; Park, So Jeong; Baraban, Larysa; Cuniberti, Gianaurelio; Mikolajick, Thomas; Weber, Walter M

    2015-07-08

    Si nanowire (Si-NW) based thin-film transistors (TFTs) have been considered as a promising candidate for next-generation flexible and wearable electronics as well as sensor applications with high performance. Here, we have fabricated ambipolar Schottky-barrier (SB) TFTs consisting of a parallel array of Si-NWs and performed an in-depth study related to their electrical performance and operation mechanism through several electrical parameters extracted from the channel length scaling based method. Especially, the newly suggested current-voltage (I-V) contour map clearly elucidates the unique operation mechanism of the ambipolar SB-TFTs, governed by Schottky-junction between NiSi2 and Si-NW. Further, it reveals for the first-time in SB based FETs the important internal electrostatic coupling between the channel and externally applied voltages. This work provides helpful information for the realization of practical circuits with ambipolar SB-TFTs that can be transferred to different substrate technologies and applications.

  19. Measurement of N-Type 6H SiC Minority-Carrier Diffusion Lengths by Electron Bombardment of Schottky Barriers

    NASA Technical Reports Server (NTRS)

    Hubbard, S. M.; Tabib-Azar, M.; Balley, S.; Rybickid, G.; Neudeck, P.; Raffaelle, R.

    2004-01-01

    Minority-Carrier diffusion lengths of n-type 6H-SiC were measured using the electron-beam induced current (EBIC) technique. Experimental values of primary beam current, EBIC, and beam voltage were obtained for a variety of SIC samples. This data was used to calculate experimental diode efficiency vs. beam voltage curves. These curves were fit to theoretically calculated efficiency curves, and the diffusion length and metal layer thickness were extracted. The hole diffusion length in n-6H SiC ranged from 0.93 +/- 0.15 microns.

  20. Impedance characterization of AlGaN/GaN Schottky diodes with metal contacts

    NASA Astrophysics Data System (ADS)

    Donahue, M.; Lübbers, B.; Kittler, M.; Mai, P.; Schober, A.

    2013-04-01

    To obtain detailed information on structural and electrical properties of AlGaN/GaN Schottky diodes and to determine an appropriate equivalent circuit, impedance spectroscopy and impedance voltage profiling are employed over a frequency range of 1 MHz-1 Hz. In contrast to the commonly assumed parallel connection of capacitive and resistive elements, an equivalent circuit is derived from impedance spectra which utilizes the constant phase element and accounts for frequency dispersion and trap states. The trap density is estimated and is in good agreement with the literature values. The resulting reduced equivalent circuit consists of a capacitor and resistor connected in series.

  1. Junction barrier Schottky rectifier with an improved P-well region

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Li, Ting; Cao, Fei; Shao, Lei; Chen, Yu-Xian

    2012-12-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the VF—IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10-8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P+ grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier.

  2. Black Phosphorus Transistors with Near Band Edge Contact Schottky Barrier.

    PubMed

    Ling, Zhi-Peng; Sakar, Soumya; Mathew, Sinu; Zhu, Jun-Tao; Gopinadhan, K; Venkatesan, T; Ang, Kah-Wee

    2015-12-15

    Black phosphorus (BP) is a new class of 2D material which holds promise for next generation transistor applications owing to its intrinsically superior carrier mobility properties. Among other issues, achieving good ohmic contacts with low source-drain parasitic resistance in BP field-effect transistors (FET) remains a challenge. For the first time, we report a new contact technology that employs the use of high work function nickel (Ni) and thermal anneal to produce a metal alloy that effectively reduces the contact Schottky barrier height (ΦB) in a BP FET. When annealed at 300 °C, the Ni electrode was found to react with the underlying BP crystal and resulted in the formation of nickel-phosphide (Ni2P) alloy. This serves to de-pin the metal Fermi level close to the valence band edge and realizes a record low hole ΦB of merely ~12 meV. The ΦB at the valence band has also been shown to be thickness-dependent, wherein increasing BP multi-layers results in a smaller ΦB due to bandgap energy shrinkage. The integration of hafnium-dioxide high-k gate dielectric additionally enables a significantly improved subthreshold swing (SS ~ 200 mV/dec), surpassing previously reported BP FETs with conventional SiO2 gate dielectric (SS > 1 V/dec).

  3. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Fan, Zhi-Qiang; Jiang, Xiang-Wei; Luo, Jun-Wei; Jiao, Li-Ying; Huang, Ru; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As Moore's law approaches its end, two-dimensional (2D) materials are intensely studied for their potentials as one of the "More than Moore' (MM) devices. However, the ultimate performance limits and the optimal design parameters for such devices are still unknown. One common problem for the 2D-material-based device is the relative weak on-current. In this study, two-dimensional Schottky-barrier field-effect transistors (SBFETs) consisting of in-plane heterojunctions of 1T metallic-phase and 2H semiconducting-phase transition-metal dichalcogenides (TMDs) are studied following the recent experimental synthesis of such devices at a much larger scale. Our ab initio simulation reveals the ultimate performance limits of such devices and offers suggestions for better TMD materials. Our study shows that the Schottky-barrier heights (SBHs) of the in-plane 1T/2H contacts are smaller than the SBHs of out-of-plane contacts, and the contact coupling is also stronger in the in-plane contact. Due to the atomic thickness of the monolayer TMD, the average subthreshold swing of the in-plane TMD-SBFETs is found to be close to the limit of 60 mV/dec, and smaller than that of the out-of-plane TMD-SBFET device. Different TMDs are considered and it is found that the in-plane WT e2-SBFET provides the best performance and can satisfy the performance requirement of the sub-10-nm high-performance transistor outlined by the International Technology Roadmap for Semiconductors, and thus could be developed into a viable sub-10-nm MM device in the future.

  4. Schottky barrier contrasts in single and bi-layer graphene contacts for MoS{sub 2} field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Hyewon; Kim, Taekwang; Shin, Somyeong

    We have investigated single- and bi-layer graphene as source-drain electrodes for n-type MoS{sub 2} transistors. Ti-MoS{sub 2}-graphene heterojunction transistors using both single-layer MoS{sub 2} (1M) and 4-layer MoS{sub 2} (4M) were fabricated in order to compare graphene electrodes with commonly used Ti electrodes. MoS{sub 2}-graphene Schottky barrier provided electron injection efficiency up to 130 times higher in the subthreshold regime when compared with MoS{sub 2}-Ti, which resulted in V{sub DS} polarity dependence of device parameters such as threshold voltage (V{sub TH}) and subthreshold swing (SS). Comparing single-layer graphene (SG) with bi-layer graphene (BG) in 4M devices, SG electrodes exhibited enhancedmore » device performance with higher on/off ratio and increased field-effect mobility (μ{sub FE}) due to more sensitive Fermi level shift by gate voltage. Meanwhile, in the strongly accumulated regime, we observed opposing behavior depending on MoS{sub 2} thickness for both SG and BG contacts. Differential conductance (σ{sub d}) of 1M increases with V{sub DS} irrespective of V{sub DS} polarity, while σ{sub d} of 4M ceases monotonic growth at positive V{sub DS} values transitioning to ohmic-like contact formation. Nevertheless, the low absolute value of σ{sub d} saturation of the 4M-graphene junction demonstrates that graphene electrode could be unfavorable for high current carrying transistors.« less

  5. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  6. Band line-up determination at p- and n-type Al/4H-SiC Schottky interfaces using photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohlscheen, J.; Emirov, Y. N.; Beerbom, M. M.; Wolan, J. T.; Saddow, S. E.; Chung, G.; MacMillan, M. F.; Schlaf, R.

    2003-09-01

    The band lineup of p- and n-type 4H-SiC/Al interfaces was determined using x-ray photoemission spectroscopy (XPS). Al was deposited in situ on ex situ cleaned SiC substrates in several steps starting at 1.2 Å up to 238 Å nominal film thickness. Before growth and after each growth step, the sample surface was characterized in situ by XPS. The analysis of the spectral shifts indicated that during the initial deposition stages the Al films react with the ambient surface contamination layer present on the samples after insertion into vacuum. At higher coverage metallic Al clusters are formed. The band lineups were determined from the analysis of the core level peak shifts and the positions of the valence bands maxima (VBM) depending on the Al overlayer thickness. Shifts of the Si 2p and C 1s XPS core levels occurred to higher (lower) binding energy for the p-(n-)type substrates, which was attributed to the occurrence of band bending due to Fermi-level equilibration at the interface. The hole injection barrier at the p-type interface was determined to be 1.83±0.1 eV, while the n-type interface revealed an electron injection barrier of 0.98±0.1 eV. Due to the weak features in the SiC valence bands measured by XPS, the VBM positions were determined using the Si 2p peak positions. This procedure required the determination of the Si 2p-to-VBM binding energy difference (99.34 eV), which was obtained from additional measurements.

  7. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy.

    PubMed

    Dong, Hong; Gong, Cheng; Addou, Rafik; McDonnell, Stephen; Azcatl, Angelica; Qin, Xiaoye; Wang, Weichao; Wang, Weihua; Hinkle, Christopher L; Wallace, Robert M

    2017-11-08

    MoS 2 , as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS 2 junction is critical to realizing the potential of MoS 2 -based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS 2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 μm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS 2 is detected by XPS characterization, which gives insight into metal contact physics to MoS 2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

  8. High performance Schottky diodes based on indium-gallium-zinc-oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk; Xin, Qian

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in themore » rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.« less

  9. Photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes induced by GaN interband excitation

    NASA Astrophysics Data System (ADS)

    Tang, Xi; Li, Baikui; Chen, Kevin J.; Wang, Jiannong

    2018-05-01

    The photocurrent characteristics of metal–AlGaN/GaN Schottky-on-heterojunction diodes were investigated. When the photon energy of incident light was larger than the bandgap of GaN but smaller than that of AlGaN, the alternating-current (ac) photocurrent measured using lock-in techniques increased with the chopper frequency. Analyzing the generation and flow processes of photocarriers revealed that the photocurrent induced by GaN interband excitation featured a transient behavior, and its direction reversed when the light excitation was removed. The abnormal dependence of the measured ac photocurrent magnitude on the chopper frequency was explained considering the detection principles of a lock-in amplifier.

  10. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  11. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  12. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    PubMed

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB.

  13. Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions

    NASA Astrophysics Data System (ADS)

    Pandit, Bhishma; Seo, Tae Hoon; Ryu, Beo Deul; Cho, Jaehee

    2016-06-01

    The current transport mechanism of graphene formed on AlxGa1-xN/GaN heterostructures with various Al mole fractions (x = 0.15, 0.20, 0.30, and 0.40) is investigated. The current-voltage measurement from graphene to AlGaN/GaN shows an excellent rectifying property. The extracted Schottky barrier height of the graphene/AlGaN/GaN contacts increases with the Al mole fraction in AlGaN. However, the current transport mechanism deviates from the Schottky-Mott theory owing to the deterioration of AlGaN crystal quality at high Al mole fractions confirmed by reverse leakage current measurement.

  14. Tuning a Schottky barrier of epitaxial graphene/4H-SiC (0001) by hydrogen intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmaraj, P.; Justin Jesuraj, P.; Jeganathan, K., E-mail: kjeganathan@yahoo.com

    We report the electron transport properties of epitaxial graphene (EG) grown on 4H-SiC (0001) by low energy electron-beam irradiation. As-grown EG (AEG) on SiC interface exhibits rectifying current-voltage characteristics with a low Schottky barrier (SB) of 0.55 ± 0.05 eV and high reverse current leakage. The SB of AEG/SiC junction is extremely impeded by the Fermi level pinning (FLP) above the Dirac point due to charged states at the interface. Nevertheless, a gentle hydrogen intercalation at 900 °C enables the alleviation of both FLP and carrier scattering owing to the saturation of dangling bonds as evidenced by the enhancement of SB (0.75 ± 0.05 eV) and highmore » electron mobility well excess of 6000 cm{sup 2} V{sup −1} s{sup −1}.« less

  15. Modeling of hysteretic Schottky diode-like conduction in Pt/BiFeO3/SrRuO3 switches

    NASA Astrophysics Data System (ADS)

    Miranda, E.; Jiménez, D.; Tsurumaki-Fukuchi, A.; Blasco, J.; Yamada, H.; Suñé, J.; Sawa, A.

    2014-08-01

    The hysteresis current-voltage (I-V) loops in Pt/BiFeO3/SrRuO3 structures are simulated using a Schottky diode-like conduction model with sigmoidally varying parameters, including series resistance correction and barrier lowering. The evolution of the system is represented by a vector in a 3D parameter space describing a closed trajectory with stationary states. It is shown that the hysteretic behavior is not only the result of a Schottky barrier height (SBH) variation arising from the BiFeO3 polarization reversal but also a consequence of the potential drop distribution across the device. The SBH modulation is found to be remarkably lower (<0.07 eV) than previously reported (>0.5 eV). It is also shown that the p-type semiconducting nature of BiFeO3 can explain the large ideality factors (>6) required to simulate the I-V curves as well as the highly asymmetric set and reset voltages (4.7 V and -1.9 V) exhibited by our devices.

  16. Epitaxial graphene/SiC Schottky ultraviolet photodiode with orders of magnitude adjustability in responsivity and response speed

    NASA Astrophysics Data System (ADS)

    Yang, Junwei; Guo, Liwei; Guo, Yunlong; Hu, Weijie; Zhang, Zesheng

    2018-03-01

    A simple optical-electronic device that possesses widescale adjustability in its performance is specially required for realizing multifunctional applications as in optical communication and weak signal detectors. Here, we demonstrate an epitaxial graphene (EG)/n-type SiC Schottky ultraviolet (UV) photodiode with extremely widescale adjustability in its responsivity and response speed. It is found that the response speed of the device can be modulated over seven orders of magnitude from tens of nanoseconds to milliseconds by changing its working bias from 0 to -5 V, while its responsivity can be varied by three orders of magnitude. A 2.18 A/W responsivity is observed at -5 V when a 325 nm laser is irradiated on, corresponding to an external quantum efficiency over 800% ascribed to the trap induced internal gain mechanism. These performances of the EG/SiC Schottky photodiode are far superior to those based on traditional metal/SiC and indicate that the EG/n-type SiC Schottky diode is a good candidate for application in UV photodetection.

  17. Built-in potential shift and Schottky-barrier narrowing in organic solar cells with UV-sensitive electron transport layers.

    PubMed

    Li, Cheng; Credgington, Dan; Ko, Doo-Hyun; Rong, Zhuxia; Wang, Jianpu; Greenham, Neil C

    2014-06-28

    The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.

  18. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    NASA Technical Reports Server (NTRS)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  19. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  20. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  1. High-voltage 4H-SiC trench MOS barrier Schottky rectifier with low forward voltage drop using enhanced sidewall layer

    NASA Astrophysics Data System (ADS)

    Cho, Doohyung; Sim, Seulgi; Park, Kunsik; Won, Jongil; Kim, Sanggi; Kim, Kwangsoo

    2015-12-01

    In this paper, a 4H-SiC trench MOS barrier Schottky (TMBS) rectifier with an enhanced sidewall layer (ESL) is proposed. The proposed structure has a high doping concentration at the trench sidewall. This high doping concentration improves both the reverse blocking and forward characteristics of the structure. The ESL-TMBS rectifier has a 7.4% lower forward voltage drop and a 24% higher breakdown voltage. However, this structure has a reverse leakage current that is approximately three times higher than that of a conventional TMBS rectifier owing to the reduction in energy barrier height. This problem is solved when ESL is used partially, since its use provides a reverse leakage current that is comparable to that of a conventional TMBS rectifier. Thus, the forward voltage drop and breakdown voltage improve without any loss in static and dynamic characteristics in the ESL-TMBS rectifier compared with the performance of a conventional TMBS rectifier.

  2. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    NASA Astrophysics Data System (ADS)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  3. Irradiation effects on electrical properties of DNA solution/Al Schottky diodes

    NASA Astrophysics Data System (ADS)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Iwamoto, Mitsumasa

    2018-04-01

    Deoxyribonucleic acid (DNA) has emerged as one of the most exciting organic material and as such extensively studied as a smart electronic material since the last few decades. DNA molecules have been reported to be utilized in the fabrication of small-scaled sensors and devices. In this current work, the effect of alpha radiation on the electrical properties of an Al/DNA/Al device using DNA solution was studied. It was observed that the carrier transport was governed by electrical interface properties at the Al-DNA interface. Current ( I)-voltage ( V) curves were analyzed by employing the interface limited Schottky current equations, i.e., conventional and Cheung and Cheung's models. Schottky parameters such as ideality factor, barrier height and series resistance were also determined. The extracted barrier height of the Schottky contact before and after radiation was calculated as 0.7845, 0.7877, 0.7948 and 0.7874 eV for the non-radiated, 12, 24 and 36 mGy, respectively. Series resistance of the structure was found to decline with the increase in the irradiation, which was due to the increase in the free radical root effects in charge carriers in the DNA solution. Results pertaining to the electronic profiles obtained in this work may provide a better understanding for the development of precise and rapid radiation sensors using DNA solution.

  4. Properties of homoepitaxial 4H-SiC and characteristics of Ti/4H-SiC Schottky barrier diodes

    NASA Astrophysics Data System (ADS)

    Chen, G.; Li, Z. Y.; Bai, S.; Han, P.

    2008-02-01

    This paper describes the properties of the homoepitaxial 4H-SiC layer, the fabrication and electrical parameters of Ti/4H-SiC Schottky barrier diode (SBD). The 4H-SiC epitaxial layers, grown on the commercially available 8°off-oriented Si-face(0001) single-crystal 4H-SiC wafers, have been performed at 1550~1600°C by using the step controlled epitaxy with low pressure chemical vapor deposition. X-ray diffraction measurement result indicates the single crystal nature of the epilayer, and Raman spectrum shows the typical 4H-SiC feature peaks. When the off-oriented angle of substrate is 8°, the epitaxial growth perfectly replicates the substrate's polytype. High quality 4H-SiC epilayer has been generated on the 4H-SiC substrate. Ti/4H-SiC SBDs with blocking voltage 1kV have been made on an undoped epilayer with 12um in thick and 3×10 15cm -3 in carrier density. The ideality factor n=1.16 and the effective barrier height φ e=0.9V of the Ti/4H-SiC SBDs are measured with method of forward density-voltage (J-V). The diode rectification ratio of forward to reverse (defined at +/-1V) is over 10 7 at room temperature. By using B + implantation, an amorphous layer as the edge termination is formed. The SBDs have on-state current density of 200A/cm2 at a forward voltage drop of about 2V. The specific on-resistance for the rectifier is found to be as 6.6mΩ•cm2.

  5. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  6. Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes.

    PubMed

    Lee, Jae Hyung; Lee, Won Woo; Yang, Dong Won; Chang, Won Jun; Kwon, Sun Sang; Park, Won Il

    2018-04-25

    Graphene has attracted great attention as an alternative to conventional metallic or transparent conducting electrodes. Despite its similarities with conventional electrodes, recent studies have shown that a single-atom layer of graphene possesses unique characteristics, such as a tunable work function and transparencies for electric potential, reactivity, and wetting. Nevertheless, a systematic analysis of graphene and semiconductor junction characteristics has not yet been carried out. Here, we report the photoresponse characteristics of graphene-on-GaN Schottky junction photodiodes (Gr-GaN SJPDs), showing a typical rectifying behavior and distinct photovoltaic and photoelectric responses. Following the initial abrupt response to UV illumination, the Gr-GaN SJPDs exhibited a distinct difference in photocarrier dynamics depending on the applied bias voltage, which is characterized by either a negative or positive change in photocurrent with time. We propose underlying mechanisms for the anomalous photocarrier dynamics based on the interplay between electrostatic molecular interactions over the one-atom-thick graphene and GaN junction and trapped photocarriers at the defect states in the GaN thin film.

  7. Poole Frenkel current and Schottky emission in SiN gate dielectric in AlGaN/GaN metal insulator semiconductor heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Hanna, Mina J.; Zhao, Han; Lee, Jack C.

    2012-10-01

    We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.

  8. Transport gap of organic semiconductors in organic modified Schottky contacts

    NASA Astrophysics Data System (ADS)

    Zahn, Dietrich R. T.; Kampen, Thorsten U.; Méndez, Henry

    2003-05-01

    Two different organic molecules with similar structure, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) and N, N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide (DiMe-PTCDI), were used for the modification of Ag Schottky contacts on sulphur passivated GaAs(1 0 0) (S-GaAs). Such diodes were investigated recording in situ current-voltage ( I- V) characteristics. As a function of the PTCDA thickness the effective barrier height of Ag/PTCDA/S-GaAs contacts initially increases from 0.59±0.01 to 0.72±0.01 eV, and then decreases to 0.54±0.01 eV, while only a decrease in barrier height from 0.54±0.01 to 0.45±0.01 eV is observed for DiMe-PTCDI interlayers. The initial increase and decrease in effective barrier height for PTCDA and DiMe-PTCDI respectively, is correlated with the energy level alignment of the lowest unoccupied molecular orbital (LUMO) with respect to the conduction band minimum (CBM) of S-GaAs at the organic/inorganic semiconductor interface. Whilst there is an additional barrier for electrons at the PTCDA/S-GaAs interface of about 150 meV, i.e. the LUMO lies above CBM, the LUMO is aligned or below CBM in the DiMe-PTCDI case. The results also shine light on the important issue of the transport gap in organic semiconductors for which an estimation can be obtained.

  9. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    PubMed Central

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-01-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2–3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells. PMID:27539213

  10. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes.

    PubMed

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P; Khan, M Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-19

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  11. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    NASA Astrophysics Data System (ADS)

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  12. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  13. Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells

    DTIC Science & Technology

    2011-04-01

    nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal ...177 mV and a short-circuit current of 19.2 nA. Schottky and ohmic contacts between a single GeNW and different metal electrodes were systematically...containing solution was spread out onto asymmetric metal electrodes to produce a rectifying current flow. Under one-sun illumination, the GeNW

  14. Effect of interleaved Si layer on the magnetotransport and semiconducting properties of n-Si/Fe Schottky junctions

    NASA Astrophysics Data System (ADS)

    Das, Sudhansu Sekhar; Kumar, M. Senthil

    2017-12-01

    Heterostructure films of the form n-Si/Si(tSi)/Fe(800 Å) were prepared by DC magnetron sputtering. In these films, the Si and Fe (800 Å) films were deposited onto n-Si(100) substrates. Substrates with different doping concentration ND were used. The thickness tSi of the interleaved Si layer is varied. For tSi = 0, the heterostructures form n-Si/Fe Schottky junctions. Structural studies on the samples as performed through XRD indicate the polycrystalline nature of the films. The magnetization data showed that the samples have in-plane easy axis of magnetization. The coercivity of the samples is of the order of 90 Oe. The I-V measurements on the samples showed nonlinear behavior. The diode ideality factor η = 2.6 is observed for the junction with ND = 1018 cm-3. The leakage current I0 increases with the increase of ND. Magnetic field has less effect on the electrical properties of the junctions. A positive magnetoresistance in the range 1 - 10 % was observed for the Si/Fe Schottky junctions in the presence of magnetic field of strength 2 T. The origin of the MR is analyzed using a model where the ratio of the currents across the junctions with and without the applied magnetic field, IH=2T/IH=0 is studied as a function of the bias voltage Vbias. The ratio IH=2T/IH=0 shows a decreasing trend with the Vbias, suggesting that the contribution to the MR in our n-Si/Fe Schottky junctions due to the spin dependent scattering is very less as compared to that due to the suppression of the impact ionization process.

  15. Superlattice barrier varactors

    NASA Technical Reports Server (NTRS)

    Raman, C.; Sun, J. P.; Chen, W. L.; Munns, G.; East, J.; Haddad, G.

    1992-01-01

    SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented.

  16. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    PubMed

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  17. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics.

    PubMed

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-11-14

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.

  18. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  19. Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Neeraj; Department of Materials Science, Gulbarga University, Gulbarga 585106; Roul, Basanta, E-mail: basantaroul@gmail.com

    2015-01-15

    Highlights: • InGaN thin films were grown on GaN template by PAMBE. • InGaN films were characterized by HRXRD, SEM and PL and Raman spectroscopy. • The indium incorporation in single phase InGaN films was found to be 23%. • The I–V characteristic of the InGaN/GaN heterojunction shows rectifying behavior. • Log–log plot of the I–V characteristics indicates the presence of SCLC mechanism. - Abstract: InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phasemore » InGaN was found to be ∼2.48 eV. The current–voltage (I–V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log–log plot of the I–V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film.« less

  20. Photoemission studies of CdTe(100) and the Ag-CdTe(100) interface: Surface structure, growth behavior, Schottky barrier, and surface photovoltage

    NASA Astrophysics Data System (ADS)

    John, P.; Miller, T.; Hsieh, T. C.; Shapiro, A. P.; Wachs, A. L.; Chiang, T.-C.

    1986-11-01

    The clean CdTe(100) surface prepared by sputtering and annealing was studied with high-energy electron diffraction (HEED) and photoemission. HEED showed the surface to be a one-domain, (2×1) reconstruction. Photoemission spectra showed two surface-shifted components for the Cd 4d core level, with an intensity ratio of about 1:3, accounting for nearly an entire atomic layer. No surface-induced shifts for the Te 4d core level were detected. A model is proposed for the surface structure in which the surface layer is free of Te, and Cd atoms form dimers resulting in a (2×1) reconstruction; in addition, about (1/4) of the surface area is covered by excess loosely attached Cd atoms. Ag was evaporated on the surface at room temperature and found to grow three dimensionally in the [111] direction. The Ag was found to interact only weakly with the substrate, although the Cd atoms originally loosely bound on top of the surface were found to float on the evaporated Ag islands. A small coverage-dependent surface photovoltage, induced by the synchrotron radiation used for photoemission, was observed; with this effect taken into account, band bending was monitored, the final Fermi-level position being near 0.96 eV above the valence-band maximum. This corresponds to a Schottky-barrier height of about 0.60 eV for the n-type sample used in this experiment. The mechanism for generation of the surface photovoltage will be discussed.

  1. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    NASA Astrophysics Data System (ADS)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  2. SiC-Based Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Neudeck, Philip G.; Chen, Liang-Yu; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai

    1997-01-01

    Silicon carbide based Schottky diode gas sensors are being developed for high temperature applications such as emission measurements. Two different types of gas sensitive diodes will be discussed in this paper. By varying the structure of the diode, one can affect the diode stability as well as the diode sensitivity to various gases. It is concluded that the ability of SiC to operate as a high temperature semiconductor significantly enhances the versatility of the Schottky diode gas sensing structure and will potentially allow the fabrication of a SiC-based gas sensor arrays for versatile high temperature gas sensing applications.

  3. Metal silicide/poly-Si Schottky diodes for uncooled microbolometers

    PubMed Central

    2013-01-01

    Nickel silicide Schottky diodes formed on polycrystalline Si 〈P〉 films are proposed as temperature sensors of monolithic uncooled microbolometer infrared focal plane arrays. The structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as a multi-phase compound composed of 20% to 40% of Ni3Si, 30% to 60% of Ni2Si, and 10% to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from about 100 to about 20 for the temperature increasing from 22℃ to 70℃; they exceed 1,000 at 80 K. A barrier of around 0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-electromotive force spectra at 80 K and attributed to the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3%℃ to 0.6%/℃ for forward bias and around 2.5%/℃ for reverse bias of the diodes. PMID:23594606

  4. Metal silicide/poly-Si Schottky diodes for uncooled microbolometers.

    PubMed

    Chizh, Kirill V; Chapnin, Valery A; Kalinushkin, Victor P; Resnik, Vladimir Y; Storozhevykh, Mikhail S; Yuryev, Vladimir A

    2013-04-17

    : Nickel silicide Schottky diodes formed on polycrystalline Si 〈P〉 films are proposed as temperature sensors of monolithic uncooled microbolometer infrared focal plane arrays. The structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as a multi-phase compound composed of 20% to 40% of Ni3Si, 30% to 60% of Ni2Si, and 10% to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from about 100 to about 20 for the temperature increasing from 22â"ƒ to 70â"ƒ; they exceed 1,000 at 80 K. A barrier of around 0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-electromotive force spectra at 80 K and attributed to the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3%â"ƒ to 0.6%/â"ƒ for forward bias and around 2.5%/â"ƒ for reverse bias of the diodes.

  5. Effects of ultrathin oxides in conducting MIS structures on GaAs

    NASA Technical Reports Server (NTRS)

    Childs, R. B.; Ruths, J. M.; Sullivan, T. E.; Fonash, S. J.

    1978-01-01

    Schottky barrier-type GaAs baseline devices (semiconductor surface etched and then immediately metalized) and GaAs conducting metal oxide-semiconductor devices are fabricated and characterized. The baseline surfaces (no purposeful oxide) are prepared by a basic or an acidic etch, while the surface for the MIS devices are prepared by oxidizing after the etch step. The metallizations used are thin-film Au, Ag, Pd, and Al. It is shown that the introduction of purposeful oxide into these Schottky barrier-type structures examined on n-type GaAs modifies the barrier formation, and that thin interfacial layers can modify barrier formation through trapping and perhaps chemical reactions. For Au- and Pd-devices, enhanced photovoltaic performance of the MIS configuration is due to increased barrier height.

  6. Piezoresistive effect in metal-semiconductor-metal structures on p-type GaN

    NASA Astrophysics Data System (ADS)

    Gaska, R.; Shur, M. S.; Bykhovski, A. D.; Yang, J. W.; Khan, M. A.; Kaminski, V. V.; Soloviov, S. M.

    2000-06-01

    We report on a strong piezoresistive effect in metal-semiconductor-metal structures fabricated on p-type GaN. The maximum measured gauge factor was 260, which is nearly two times larger than for piezoresistive silicon transducers. We attribute this large sensitivity to applied strain to the combination of two mechanisms: (i) a high piezoresistance of bulk p-GaN and (ii) a strong piezoresistive effect in a Schottky contact on p-GaN. The obtained results demonstrate that GaN-based structures can be suitable for stress/pressure sensor applications.

  7. Temperature dependence of carrier transport and resistance switching in Pt/SrTi1-xNbxO3 Schottky junctions

    NASA Astrophysics Data System (ADS)

    Li, Jianyong; Ohashi, Naoki; Okushi, Hideyo; Haneda, Hajime

    2011-03-01

    We investigated the temperature dependence of carrier transport and resistance switching of Pt/SrTi1-xNbxO3 Schottky junctions in the temperature range 80-400 K by measuring the current-voltage (I-V) characteristics and the frequency dependence of the capacitance-voltage (C-V) characteristics. The I-V curves displayed a high degree of hysteresis, known as the colossal electroresistance (CER) effect, and their temperature dependence showed an anomalous behavior, i.e., the magnitude of the hysteresis increased with decreasing T. The experimental results were analyzed by taking into account the temperature and electric-field dependence of the relative permittivity of SrTi1-xNbxO3 as well as the inhomogeneity of the Schottky barrier height (SBH) (a model in which two parallel current paths coexist in the Schottky barrier). It was confirmed that the observed I-V and C-V curves were well simulated by this model, thus indicating that the CER effects originated in the field emission current through different SBHs and at different locations of the Schottky junctions. Based on these results, we explain the mechanism of the CER effect qualitatively in terms of this model. For this purpose, we take into account the pinched-off effect caused by the small-scale inhomogeneity of SBH and the existence of deep levels as a result of defects and unintentional impurities in the depletion layer of the Pt/SrTi1-xNbxO3 Schottky junctions.

  8. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Li, X.; Xu, P.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5 nm. The dominant emission, detectable at ultralow (<1 μA) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25 μA current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter < 250 nm), this trend breaks down due to heat accumulation in the NWs. Our simple device architecturemore » offers a potentially cost-effective scheme to fabricate high efficiency Schottky junction-based UV-LEDs.« less

  9. A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    All Abbas, J. M.; Atmaca, G.; Narin, P.; Kutlu, E.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.

    2017-08-01

    Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger-Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.

  10. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-01

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  11. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors.

    PubMed

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-17

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  12. Carbon-Nanotube Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Wong, Eric; Schlecht, Erich; Hunt, Brian; Siegel, Peter

    2006-01-01

    Schottky diodes based on semiconducting single-walled carbon nanotubes are being developed as essential components of the next generation of submillimeter-wave sensors and sources. Initial performance predictions have shown that the performance characteristics of these devices can exceed those of the state-of-the-art solid-state Schottky diodes that have been the components of choice for room-temperature submillimeter-wave sensors for more than 50 years. For state-of-the-art Schottky diodes used as detectors at frequencies above a few hundred gigahertz, the inherent parasitic capacitances associated with their semiconductor junction areas and the resistances associated with low electron mobilities limit achievable sensitivity. The performance of such a detector falls off approximately exponentially with frequency above 500 GHz. Moreover, when used as frequency multipliers for generating signals, state-of-the-art solid-state Schottky diodes exhibit extremely low efficiencies, generally putting out only micro-watts of power at frequencies up to 1.5 THz. The shortcomings of the state-of-the-art solid-state Schottky diodes can be overcome by exploiting the unique electronic properties of semiconducting carbon nanotubes. A single-walled carbon nanotube can be metallic or semiconducting, depending on its chirality, and exhibits high electron mobility (recently reported to be approx.= 2x10(exp 5)sq cm/V-s) and low parasitic capacitance. Because of the narrowness of nanotubes, Schottky diodes based on carbon nanotubes have ultra-small junction areas (of the order of a few square nanometers) and consequent junction capacitances of the order of 10(exp -18) F, which translates to cutoff frequency >5 THz. Because the turn-on power levels of these devices are very low (of the order of nano-watts), the input power levels needed for pumping local oscillators containing these devices should be lower than those needed for local oscillators containing state-of-the-art solid

  13. Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States.

    PubMed

    Kim, Gwang-Sik; Kim, Seung-Hwan; Park, June; Han, Kyu Hyun; Kim, Jiyoung; Yu, Hyun-Yong

    2018-06-06

    The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS 2 ). For electrical contacts of multilayered MoS 2 , the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS 2 , which makes most MoS 2 -channel field-effect transistors (MoS 2 FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS 2 by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal-induced gap states (MIGS). An ultrathin titanium dioxide (TiO 2 ) interlayer is inserted between the metal contact and the multilayered MoS 2 to alleviate FLP and tune the SBH at the S/D contacts of multilayered MoS 2 FETs. A significant alleviation of FLP is demonstrated as MIS structures with 1 nm thick TiO 2 interlayers are introduced into the S/D contacts. Consequently, the pinning factor ( S) increases from 0.02 for metal-semiconductor (MS) contacts to 0.24 for MIS contacts, and the controllable SBH range is widened from 37 meV (50-87 meV) to 344 meV (107-451 meV). Furthermore, the Fermi-level unpinning effect is reinforced as the interlayer becomes thicker. This work widens the scope for modifying electrical characteristics of contacts by providing a platform to control the SBH through a simple process as well as understanding of the FLP at the electrical top contacts of multilayered MoS 2 .

  14. Junction formation and current transport mechanisms in hybrid n-Si/PEDOT:PSS solar cells

    PubMed Central

    Jäckle, Sara; Mattiza, Matthias; Liebhaber, Martin; Brönstrup, Gerald; Rommel, Mathias; Lips, Klaus; Christiansen, Silke

    2015-01-01

    We investigated hybrid inorganic-organic solar cells combining monocrystalline n-type silicon (n-Si) and a highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS). The build-in potential, photo- and dark saturation current at this hybrid interface are monitored for varying n-Si doping concentrations. We corroborate that a high build-in potential forms at the hybrid junction leading to strong inversion of the n-Si surface. By extracting work function and valence band edge of the polymer from ultraviolet photoelectron spectroscopy, a band diagram of the hybrid n-Si/PEDOT:PSS heterojunction is presented. The current-voltage characteristics were analyzed using Schottky and abrupt pn-junction models. The magnitude as well as the dependence of dark saturation current on n-Si doping concentration proves that the transport is governed by diffusion of minority charge carriers in the n-Si and not by thermionic emission of majorities over a Schottky barrier. This leads to a comprehensive explanation of the high observed open-circuit voltages of up to 634 mV connected to high conversion efficiency of almost 14%, even for simple planar device structures without antireflection coating or optimized contacts. The presented work clearly shows that PEDOT:PSS forms a hybrid heterojunction with n-Si behaving similar to a conventional pn-junction and not, like commonly assumed, a Schottky junction. PMID:26278010

  15. A novel double gate metal source/drain Schottky MOSFET as an inverter

    NASA Astrophysics Data System (ADS)

    Loan, Sajad A.; Kumar, Sunil; Alamoud, Abdulrahman M.

    2016-03-01

    In this work, we propose and simulate a novel structure of a double gate metal source/drain (MSD) Schottky MOSFET. The novelty of the proposed device is that it realizes a complete CMOS inverter action, which is actually being realized by the combination of two n and p type MOS transistors in the conventional CMOS technology. Therefore, the use of this device will significantly reduce the transistor count in implementing combinational and sequential circuits. Further, there is a significant reduction in the number of junctions and regions in the proposed device in comparison to the conventional CMOS inverter. Therefore, the proposed device is compact and can consume less power. The proposed device has been named as Sajad-Sunil-Schottky (SSS) device. The mixed mode circuit analysis of the proposed SSS device has shown that a CMOS inverter action with high logic level (VOH) and low logic level (VOL) as ∼VDD and ∼ground respectively. A two dimensional calibrated simulation study using the experimental data has revealed that the proposed SSS device in n and p type modes have subthreshold slopes (S) of 130 mV/decade and 85 mV/decade respectively and have reasonable high ION and ION/IOFF ratio's. Furthermore, it has been proved that such a device action cannot be realised by folding the conventional doped n and p MOS transistors.

  16. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes.

    PubMed

    DuChene, Joseph S; Tagliabue, Giulia; Welch, Alex J; Cheng, Wen-Hui; Atwater, Harry A

    2018-04-11

    Harvesting nonequilibrium hot carriers from plasmonic-metal nanostructures offers unique opportunities for driving photochemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. Here, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p-GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO 2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H 2 evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.

  17. Control of GaAs Microwave Schottky Diode Electrical Characteristics by Contact Geometry: The Gap Diode.

    DTIC Science & Technology

    1982-05-01

    semiconductor Schottky-barrier contacts are used in many semiconductor devices, including switches, rectifiers, varactors , IMPATTs, mixer and detector...ionic materials such as most of the II-VI compound semiconductors (e.g. ZnS and ZnO) and the transition-metal oxides , the barrier height is strongly...the alloying process described above is nonuniformity, due to the incomplete removal of residual surface oxides prior to the evaporation of the metal

  18. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV

    NASA Astrophysics Data System (ADS)

    Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.

    2017-10-01

    We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.

  19. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    PubMed

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-17

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  20. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    NASA Astrophysics Data System (ADS)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  1. p -n Junction Rectifying Characteristics of Purely n -Type GaN-Based Structures

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Jiang, Y.; Ma, Z. G.; Wang, L.; Zhao, B.; Li, Y. F.; Yue, G.; Wu, H. Y.; Yan, H. J.; Jia, H. Q.; Wang, W. X.; Zhou, J. M.; Sun, Q.; Liu, W. M.; Ji, An-Chun; Chen, H.

    2017-08-01

    The GaN-based p -n junction rectifications are important in the development of high-power electronics. Here, we demonstrate that p -n junction rectifying characteristics can be realized with pure n -type structures by inserting an (In,Ga)N quantum well into the GaN /(Al ,Ga )N /GaN double heterostructures. Unlike the usual barriers, the insertion of an (In,Ga)N quantum well, which has an opposite polarization field to that of the (Al,Ga)N barrier, tailors significantly the energy bands of the system. The lifted energy level of the GaN spacer and the formation of the (In ,Ga )N /GaN interface barrier can improve the reverse threshold voltage and reduce the forward threshold voltage simultaneously, forming the p -n junction rectifying characteristics.

  2. RF dynamic and noise performance of Metallic Source/Drain SOI n-MOSFETs

    NASA Astrophysics Data System (ADS)

    Martin, Maria J.; Pascual, Elena; Rengel, Raúl

    2012-07-01

    This paper presents a detailed study of the RF and noise performance of n-type Schottky barrier (SB) MOSFETs with a particular focus on the influence of the Schottky barrier height (SBH) on the main dynamic and noise figures of merit. With this aim, a 2D Monte Carlo simulator including tunnelling transport across Schottky interfaces has been developed, with special care to consider quantum transmission coefficients and the influence of image charge effects at the Schottky junctions. Particular attention is paid to the microscopic transport features, including carrier mean free paths or number of scattering events along the channel for investigating the optimization of the device topology and the strategic concepts related to the noise performance of this new architecture. A more effective control of the gate electrode over drain current for low SBH (discussed in terms of internal physical quantities) is translated into an enhanced transconductance gm, cut-off frequency fT, and non-quasistatic dynamic parameters. The drain and gate intrinsic noise sources show a noteworthy degradation with the SBH reduction due to the increased current, influence of hot carriers and reduced number of phonon scatterings. However, the results evidence that this effect is counterbalanced by the extremely improved dynamic performance in terms of gm and fT. Therefore, the deterioration of the intrinsic noise performance of the SB-MOSFET has no significant impact on high-frequency noise FoMs as NFmin, Rn and Gass for low SBH and large gate overdrive conditions. The role of the SBH on Γopt, optimum noise reactance and susceptance has been also analyzed.

  3. Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu3Ti4O12 and Pt

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Ning, Ting-Yin; Wang, Can; Zhou, Yue-Liang; Zhang, Dong-Xiang; Wang, Pei; Ming, Hai; Yang, Guo-Zhen

    2011-08-01

    CaCu3Ti4O12 (CCTO) thin films were fabricated on ITO-covered MgO (100) substrates. The rectification characteristics were observed in the CCTO capacitance structure with Pt top electrodes at temperatures ranging from 150 K to 330 K, which are attributed to the formation of a Schottky junction between n-type semiconducting CCTO and Pt due to the difference of their work functions. At low forward-bias voltage, the current-voltage characteristics of the Schottky junction follow . A strong decrease in ideality factor with the increasing temperature is obtained by linear fitting at the low bias voltage.

  4. Observation of negative differential capacitance (NDC) in Ti Schottky diodes on SiGe islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangel-Kuoppa, Victor-Tapio; Jantsch, Wolfgang; Tonkikh, Alexander

    2013-12-04

    The Negative Differential Capacitance (NDC) effect on Ti Schottky diodes formed on n-type Silicon samples with embedded Germanium Quantum Dots (QDs) is observed and reported. The NDC-effect is detected using capacitance-voltage (CV) method at temperatures below 200 K. It is explained by the capture of electrons in Germanium QDs. Our measurements reveal that each Ge QD captures in average eight electrons.

  5. Chemical-free n-type and p-type multilayer-graphene transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com; Eisaman, M. D.; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping.more » When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.« less

  6. Effect of annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal-insulator-semiconductor (MIS) structure

    NASA Astrophysics Data System (ADS)

    Prasanna Lakshmi, B.; Rajagopal Reddy, V.; Janardhanam, V.; Siva Pratap Reddy, M.; Lee, Jung-Hee

    2013-11-01

    We report on the effect of an annealing temperature on the electrical properties of Au/Ta2O5/n-GaN metal-insulator-semiconductor (MIS) structure by current-voltage ( I- V) and capacitance-voltage ( C- V) measurements. The measured Schottky barrier height ( Φ bo) and ideality factor n values of the as-deposited Au/Ta2O5/n-GaN MIS structure are 0.93 eV ( I- V) and 1.19. The barrier height (BH) increases to 1.03 eV and ideality factor decreases to 1.13 upon annealing at 500 ∘C for 1 min under nitrogen ambient. When the contact is annealed at 600 ∘C, the barrier height decreases and the ideality factor increases to 0.99 eV and 1.15. The barrier heights obtained from the C- V measurements are higher than those obtained from I- V measurements, and this indicates the existence of spatial inhomogeneity at the interface. Cheung’s functions are also used to calculate the barrier height ( Φ bo), ideality factor ( n), and series resistance ( R s ) of the Au/Ta2O5/n-GaN MIS structure. Investigations reveal that the Schottky emission is the dominant mechanism and the Poole-Frenkel emission occurs only in the high voltage region. The energy distribution of interface states is determined from the forward bias I- V characteristics by taking into account the bias dependence of the effective barrier height. It is observed that the density value of interface states for the annealed samples with interfacial layer is lower than that of the density value of interface states of the as-deposited sample.

  7. Contrasting conduction mechanisms of two internal barrier layer capacitors: (Mn, Nb)-doped SrTiO3 and CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Tsuji, Kosuke; Chen, Wei-Ting; Guo, Hanzheng; Lee, Wen-Hsi; Guillemet-Fritsch, Sophie; Randall, Clive A.

    2017-02-01

    The d.c. conduction is investigated in the two different types of internal barrier layer capacitors, namely, (Mn, Nb)-doped SrTiO3 (STO) and CaCu3Ti4O12 (CCTO). Scanning electron microscopy (SEM) and Capacitance - Voltage (C-V) analysis are performed to estimate the effective electric field at a grain boundary, EGB. Then, the d.c. conduction mechanism is discussed based on the J (Current density)-EGB characteristics. Three different conduction mechanisms are successively observed with the increase of EGB in both systems. In (Mn, Nb)-doped STO, non-linear J-EGB characteristics is temperature dependent at the intermediate EGB and becomes relatively insensitive to the temperature at the higher EGB. The J- EGB at each regime is explained by the Schottky emission (SE) followed by Fowler-Nordheim (F-N) tunneling. Based on the F-N tunneling, the breakdown voltage is then scaled by the function of the depletion layer thickness and Schottky barrier height at the average grain boundary. The proposed function shows a clear linear relationship with the breakdown. On the other hand, F-N tunneling was not observed in CCTO in our measurement. Ohmic, Poole-Frenkel (P-F), and SE are successively observed in CCTO. The transition point from P-F and SE depends on EGB and temperature. A charge-based deep level transient spectroscopy study reveals that 3 types of trap states exist in CCTO. The trap one with Et ˜ 0.65 eV below the conduction band is found to be responsible for the P-F conduction.

  8. Modeling and fabrication of 4H-SiC Schottky junction

    NASA Astrophysics Data System (ADS)

    Martychowiec, A.; Pedryc, A.; Kociubiński, A.

    2017-08-01

    The rapidly growing demand for electronic devices requires using of alternative semiconductor materials, which could replace conventional silicon. Silicon carbide has been proposed for these harsh environment applications (high temperature, high voltage, high power conditions) because of its wide bandgap, its high temperature operation ability, its excellent thermal and chemical stability, and its high breakdown electric field strength. The Schottky barrier diode (SBD) is known as one of the best refined SiC devices. This paper presents prepared model, simulations and description of technology of 4H-SiC Schottky junction as well as characterization of fabricated structures. The future aim of the application of the structures is an optical detection of an ultraviolet radiation. The model section contains a comparison of two different solutions of SBD's construction. Simulations - as a crucial process of designing electronic devices - have been performed using the ATLAS device of Silvaco TCAD software. As a final result the paper shows I-V characteristics of fabricated diodes.

  9. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes

    PubMed Central

    Lee, Young Keun; Choi, Hongkyw; Lee, Hyunsoo; Lee, Changhwan; Choi, Jin Sik; Choi, Choon-Gi; Hwang, Euyheon; Park, Jeong Young

    2016-01-01

    Carrier multiplication (i.e. generation of multiple electron–hole pairs from a single high-energy electron, CM) in graphene has been extensively studied both theoretically and experimentally, but direct application of hot carrier multiplication in graphene has not been reported. Here, taking advantage of efficient CM in graphene, we fabricated graphene/TiO2 Schottky nanodiodes and found CM-driven enhancement of quantum efficiency. The unusual photocurrent behavior was observed and directly compared with Fowler’s law for photoemission on metals. The Fowler’s law exponent for the graphene-based nanodiode is almost twice that of a thin gold film based diode; the graphene-based nanodiode also has a weak dependence on light intensity—both are significant evidence for CM in graphene. Furthermore, doping in graphene significantly modifies the quantum efficiency by changing the Schottky barrier. The CM phenomenon observed on the graphene/TiO2 nanodiodes can lead to intriguing applications of viable graphene-based light harvesting. PMID:27271245

  10. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.

    PubMed

    Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong

    2010-05-14

    This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

  11. Programmable Schottky Junctions Based on Ferroelectric Gated MoS2 Transistors

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Song, Jingfeng; Drcharme, Stephen; Hong, Xia

    We report a programmable Schottky junction based on MoS2 field effect transistors with a SiO2 back gate and a ferroelectric copolymer poly(vinylidene-fluoride-trifluorethylene) (PVDF) top gate. We fabricated mechanically exfoliated single layer MoS2 flakes into two point devices via e-beam lithography, and deposited on the top of the devices ~20 nm PVDF thin films. The polarization of the PVDF layer is controlled locally by conducting atomic force microscopy. The devices exhibit linear ID-VD characteristics when the ferroelectric gate is uniformly polarized in one direction. We then polarized the gate into two domains with opposite polarization directions, and observed that the ID-VD characteristics of the MoS2 channel can be modulated between linear and rectified behaviors depending on the back gate voltage. The nonlinear ID-VD relation emerges when half of the channel is in the semiconductor phase while the other half is in the metallic phase, and it can be well described by the thermionic emission model with a Schottky barrier of ~0.5 eV. The Schottky junction can be erased by re-write the entire channel in the uniform polarization state. Our study facilitates the development of programmable, multifunctional nanoelectronics based on layered 2D TMDs..

  12. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  13. Solar cells having integral collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1978-01-01

    A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.

  14. Ballistics-Electron-Microscopy and Spectroscopy of Metal/GaN Interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Smith, R. P.; McDermott, B. T.; Gertner, E. R.; Pittman, R.; Pierson, R. L.; Sullivan, G. J.

    1997-01-01

    BEEM spectroscopy and imaging have been applied to the Au/GaN interface. In contrast to previous BEEM measurements, spectra yield a Schottky barrier height of 1.04eV that agrees well with the highest values measured by conventional methods.

  15. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    NASA Astrophysics Data System (ADS)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  16. Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator

    NASA Astrophysics Data System (ADS)

    Resfa, A.; Smahi, Bourzig Y.; Menezla, Brahimi R.

    2011-12-01

    The current through a metal—semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson—Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal—semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current—voltage (I—V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes, which will in turn act on the I—V characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I—V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.

  17. Alternating InGaN barriers with GaN barriers for enhancing optical performance in InGaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yujue; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn

    2015-01-21

    InGaN-based light-emitting diodes (LEDs) with some specific designs on the quantum barrier layers by alternating InGaN barriers with GaN barriers are proposed and studied numerically. In the proposed structure, simulation results show that the carriers are widely dispersed in the multi-quantum well active region, and the radiative recombination rate is efficiently improved and the electron leakage is suppressed accordingly, due to the appropriate band engineering. The internal quantum efficiency and light-output power are thus markedly enhanced and the efficiency droop is smaller, compared to the original structures with GaN barriers or InGaN barriers. Moreover, the gradually decrease of indium compositionmore » in the alternating quantum barriers can further promote the LED performance because of the more uniform carrier distribution, which provides us a simple but highly effective approach for high-performance LED applications.« less

  18. Interface and transport properties of metallization contacts to flat and wet-etching roughed N-polar n-type GaN.

    PubMed

    Wang, Liancheng; Liu, Zhiqiang; Guo, Enqing; Yang, Hua; Yi, Xiaoyan; Wang, Guohong

    2013-06-26

    The electrical characteristics of metallization contacts to flat (F-sample, without wet-etching roughed) and wet-etching roughed (R-sample) N-polar (Nitrogen-polar) n-GaN have been investigated. R-sample shows higher contact resistance (Rc) to Al/Ti/Au (~2.5 × 10(-5) Ω·cm(2)) and higher Schottky barriers height (SBH, ~0.386 eV) to Ni/Au, compared with that of F-sample (~1.3 × 10(-6) Ω·cm(2), ~0.154 eV). Reasons accounting for this discrepancy has been detail investigated and discussed: for R-sample, wet-etching process caused surface state and spontaneous polarization variation will degraded its electrical characteristics. Metal on R-sample shows smoother morphology, however, the effect of metal deposition state on electrical characteristics is negligible. Metallization contact area for both samples has also been further considered. Electrical characteristics of metallization contact to both samples show degradation upon annealing. The VLED chip (1 mm × 1 mm), which was fabricated on the basis of a hybrid scheme, coupling the advantage of F- and R-sample, shows the lowest forward voltage (2.75 V@350 mA) and the highest light output power.

  19. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less

  20. Correlation Between Morphological Defects, Electron Beam Induced Current Imaging, and the Electrical Properties of 4H-SiC Schottky Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang,Y.; Ali, G.; Mikhov, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier heightmore » within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis.« less

  1. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  2. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    NASA Astrophysics Data System (ADS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  3. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Films Using Various p-Type Dopants and Their Application to GaN-Based Light-Emitting Diodes.

    PubMed

    Lee, Byeong Ryong; Kim, Tae Geun

    2017-01-01

    This article reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWCNT) films using various p-type dopants and their application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWCNT films on the light-emitting diodes (LEDs), we increased the work function (Φ) of the films using chemical doping with AuCl₃, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and MoO₃; thereby reduced the Schottky barrier height between the RGO/SWCNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWCNT film doped with MoO₃ exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  4. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Film Using Various p-Type Dopants and Its Application to GaN-Based Light-Emitting Diodes.

    PubMed

    Lee, Byeong Ryong; Kim, Tae Geun

    2016-06-01

    This paper reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films using various p-type dopants and its application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWNT films on the light-emitting diodes (LEDs), we increased the work function (φ) of the films using chemical doping with AuCl3, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and MoO3; thereby reduced the Schottky barrier height between the RGO/SWNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWNT film doped with MoO3 exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  5. Temperature dependence of current-and capacitance-voltage characteristics of an Au/4H-SiC Schottky diode

    NASA Astrophysics Data System (ADS)

    Gülnahar, Murat

    2014-12-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) measurements of an Au/4H-SiC Schottky diode are characterized as a function of the temperature in 50-300 K temperature range. The experimental parameters such as ideality factor and apparent barrier height presents to be strongly temperature dependent, that is, the ideality factor increases and the apparent barrier height decreases with decreasing temperature, whereas the barrier height values increase with the temperature for C-V data. Likewise, the Richardson plot deviates at low temperatures. These anomaly behaviors observed for Au/4H-SiC are attributed to Schottky barrier inhomogeneities. The barrier anomaly which relates to interface of Au/4H-SiC is also confirmed by the C-V measurements versus the frequency measured in 300 K and it is interpreted by both Tung's lateral inhomogeneity model and multi-Gaussian distribution approach. The values of the weighting coefficients, standard deviations and mean barrier height are calculated for each distribution region of Au/4H-SiC using the multi-Gaussian distribution approach. In addition, the total effective area of the patches NAe is obtained at separate temperatures and as a result, it is expressed that the low barrier regions influence meaningfully to the current transport at the junction. The homogeneous barrier height value is calculated from the correlation between the ideality factor and barrier height and it is noted that the values of standard deviation from ideality factor versus q/3kT curve are in close agreement with the values obtained from the barrier height versus q/2kT variation. As a result, it can be concluded that the temperature dependent electrical characteristics of Au/4H-SiC can be successfully commented on the basis of the thermionic emission theory with both models.

  6. Barrier inhomogeneities at vertically stacked graphene-based heterostructures.

    PubMed

    Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2014-01-21

    The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

  7. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector.

    PubMed

    Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun

    2014-11-17

    We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.

  8. SEMICONDUCTOR TECHNOLOGY: SBH adjustment characteristic of the dopant segregation process for NiSi/n-Si SJDs

    NASA Astrophysics Data System (ADS)

    Haiping, Shang; Qiuxia, Xu

    2010-05-01

    By means of analyzing the I-V characteristic curve of NiSi/n-Si Schottky junction diodes (NiSi/n-Si SJDs), abstracting the effective Schottky barrier height (varphiB, eff) and the ideal factor of NiSi/n-Si SJDs and measuring the sheet resistance of NiSi films (RNiSi), we study the effects of different dopant segregation process parameters, including impurity implantation dose, segregation annealing temperature and segregation annealing time, on the varphiB, eff of NiSi/n-Si SJDs and the resistance characteristic of NiSi films. In addition, the changing rules of varphiB, eff and RNiSi are discussed.

  9. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    PubMed

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  10. Schottky Noise and Beam Transfer Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaskiewicz, M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  11. p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements.

    PubMed

    Kamimura, Jumpei; Bogdanoff, Peter; Ramsteiner, Manfred; Corfdir, Pierre; Feix, Felix; Geelhaar, Lutz; Riechert, Henning

    2017-03-08

    GaN nanowires (NWs) doped with Mg as a p-type impurity were grown on Si(111) substrates by plasma-assisted molecular beam epitaxy. In a systematic series of experiments, the amount of Mg supplied during NW growth was varied. The incorporation of Mg into the NWs was confirmed by the observation of donor-acceptor pairs and acceptor-bound excitons in low-temperature photoluminescence spectroscopy. Quantitative information about the Mg concentrations was deduced from Raman scattering by local vibrational modes related to Mg. In order to study the type and density of charge carriers present in the NWs, we employed two photoelectrochemical techniques, open-circuit potential and Mott-Schottky measurements. Both methods showed the expected transition from n-type to p-type conductivity with increasing Mg doping level, and the latter characterization technique allowed us to quantify the charge carrier concentration. Beyond the quantitative information obtained for Mg doping of GaN NWs, our systematic and comprehensive investigation demonstrates the benefit of photoelectrochemical methods for the analysis of doping in semiconductor NWs in general.

  12. Effect of copper phthalocyanine thickness on surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Harsha, Cirandur Sri; Reddy, V. Rajagopal; Lee, Sung-Nam; Won, Jonghan; Choi, Chel-Jong

    2018-02-01

    Effects of the thickness of copper phthalocyanine (CuPc) film (2, 5, 10, 15, 20, 30 and 40 nm) on the surface morphology, optical and electrical properties of Au/CuPc/n-Si heterojunction have been investigated. The optical band gap of CuPc film was increased with increase in the thickness of the CuPc film. The electrical properties of the Au/n-Si Schottky junction and Au/CuPc/n-Si heterojunctions were characterized by current-voltage ( I-V) and capacitance-voltage ( C-V) measurements. The barrier height, ideality factor and series resistance were estimated based on the I-V, Cheung's and Norde's methods. The barrier heights increased with increasing CuPc interlayer thickness up to 15 nm and remained constant for thickness above 20 nm, associated with the incapability of the generated carriers to reach the interface. The discrepancy in the barrier heights obtained from I-V and C-V measurements indicates the presence of barrier inhomogeneity at the interface as evidenced by higher ideality factor values. It can be concluded that the electrical properties of Au/n-Si Schottky junction can be significantly altered with the variation of CuPc thickness as interlayer.

  13. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  14. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers.

    PubMed

    Lv, Wenbin; Wang, Lai; Wang, Jiaxing; Hao, Zhibiao; Luo, Yi

    2012-11-07

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm.

  15. Alleviation of efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes with trapezoidal quantum barriers

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Jo; Lee, Kwang Jae; Park, Seong-Ju

    2018-06-01

    We numerically investigated the effects of trapezoidal quantum barriers (QBs) on efficiency droop in InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs). Simulations showed that the electrostatic field in QWs of LEDs with trapezoidal barriers is reduced because of the reduced sheet charge density at the QW-QB interface caused by the thin GaN layer in trapezoidal QBs. Additionally, the InGaN grading region in trapezoidal QBs suppresses hot carrier transport and this enhances efficient carrier injection into the QWs. The electroluminescence intensity of an LED with trapezoidal QBs is increased by 10.2% and 6.7% at 245 A cm‑2 when compared with the intensities of LEDs with square-type GaN barriers and multilayer barriers, respectively. The internal quantum efficiency (IQE) droop of an LED with trapezoidal QBs is 16% at 300 A cm‑2, while LEDs with square-type GaN barriers and multilayer barriers have IQE droop of 31% and 24%, respectively. This IQE droop alleviation in LEDs with trapezoidal QBs is attributed to the reduced energy band bending, efficient hole injection, and more uniform hole distribution in the MQWs that results from reduction of the piezoelectric field by the trapezoidal QBs. These results indicate that the trapezoidal QB in MQWs is promising for enhanced efficiency in high-power GaN-based LEDs.

  16. The controlled growth of graphene nanowalls on Si for Schottky photodetector

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Xiangzhi; Zhang, Enliang; Luo, Shi; Shen, Jun; Wang, Yuefeng; Wei, Dapeng

    2017-12-01

    Schottky diode with directly-grown graphene on silicon substrate has advantage of clean junction interface, promising for photodetectors with high-speed and low noise. In this report, we carefully studied the influence of growth parameters on the junction quality and photoresponse of graphene nanowalls (GNWs)-based Schottky photodetectors. We found that shorter growth time is critical for lower dark current, but at the same time higher photocurrent. The influence of growth parameters was attributed to the defect density of various growth time, which results in different degrees of surface absorption for H2O/O2 molecules and P-type doping level. Raman characterization and vacuum annealing treatment were carried out to confirm the regulation mechanism. Meanwhile, the release of thermal stress also makes the ideality factor η of thinner sample better than the thicker. Our results are important for the response improvement of photodetectors with graphene-Si schottky junction.

  17. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    NASA Astrophysics Data System (ADS)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  18. n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell

    PubMed Central

    Gronet, Chris M.; Lewis, Nathan S.; Cogan, George; Gibbons, James

    1983-01-01

    n-Type Si electrodes in MeOH solvent with 0.2 M (1-hydroxyethyl)ferrocene, 0.5 mM (1-hydroxyethyl)ferricenium, and 1.0 M LiClO4 exhibit air mass 2 conversion efficiencies of 10.1% for optical energy into electricity. We observe open-circuit voltages of 0.53 V and short-circuit quantum efficiencies for electron flow of nearly unity. The fill factor of the cell does not decline significantly with increases in light intensity, indicating substantial reduction in efficiency losses in MeOH solvent compared to previous nonaqueous n-Si systems. Matte etch texturing of the Si surface decreases surface reflectivity and increases photocurrent by 50% compared to shiny, polished Si samples. The high values of the open-circuit voltage observed are consistent with the presence of a thin oxide layer, as in a Schottky metal-insulator-semiconductor device, which yields decreased surface recombination and increased values of open-circuit voltage and short-circuit current. The n-Si system was shown to provide sustained photocurrent at air mass 2 levels (20 mA/cm2) for charge through the interface of >2,000 C/cm2. The n-Si/MeOH system represents a liquid junction cell that has exceeded the 10% barrier for conversion of optical energy into electricity. PMID:16593280

  19. Magnetic tunnel transistor with a perpendicular Co/Ni multilayer sputtered on a Si/Cu(1 0 0) Schottky diode

    NASA Astrophysics Data System (ADS)

    Vautrin, C.; Lu, Y.; Robert, S.; Sala, G.; Lenoble, O.; Petit-Watelot, S.; Devaux, X.; Montaigne, F.; Lacour, D.; Hehn, M.

    2016-09-01

    We have studied a magnetic tunnel transistor (MTT) structure based on a MgO tunnelling barrier emitter and a [Co/Ni]5/Cu multilayer base on a Si (0 0 1) substrate. Evident links between the Schottky barrier preparation techniques and the properties of perpendicular magnetic anisotropy (PMA) in the [Co/Ni] multilayer have been revealed by combined x-ray diffraction and magnetometry analyses. The Si surface treated by hydrofluoric acid (HF) is found to favour a Cu [1 0 0] texture growth which is detrimental to the [Co/Ni]5 PMA properties. However, a Ta layer insertion can restore the [1 1 1] texture required for the PMA appearance. By carefully engineering the base crystallographic texture structure, we obtain both a good quality of Schottky barrier and PMA property; a magneto-current ratio of 162% has been measured for MTTs with a spin-valve base composed of one magnetic layer having in-plane anisotropy and another one with out-of-plane anisotropy.

  20. Role of structural relaxations and chemical substitutions on piezoelectric fields and potential lineup in GaN/Al junctions

    NASA Astrophysics Data System (ADS)

    Picozzi, S.; Profeta, G.; Continenza, A.; Massidda, S.; Freeman, A. J.

    2002-04-01

    First-principles full-potential linearized augmented plane wave calculations are performed to clarify the role of the interface geometry on piezoelectric fields and potential lineups in [0001] wurtzite and [111]-zincblende GaN/Al junctions. The electric field (polarity and magnitude) is found to be strongly affected by atomic relaxations in the interface region. A procedure is used to evaluate the Schottky-barrier height in the presence of electric fields, showing that their effect is relatively small (a few tenths of an eV). These calculations assess the rectifying behavior of the GaN/Al contact, in agreement with experimental values for the barrier. We disentangle chemical and structural effects on the relevant properties (such as the potential discontinuity and the electric field) by studying unrelaxed ideal nitride/metal systems. Using simple electronegativity arguments, we outline the leading mechanisms that define the values of the electric field and Schottky barrier in these ideal systems. Finally, the transitivity rule is proved to be well satisfied.

  1. Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors

    NASA Astrophysics Data System (ADS)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2017-12-01

    In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.

  2. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers

    PubMed Central

    2012-01-01

    InGaN/GaN multilayer quantum dot (QD) structure is a potential type of active regions for yellow-green light-emitting diodes (LEDs). The surface morphologies and crystalline quality of GaN barriers are critical to the uniformity of InGaN QD layers. While GaN barriers were grown in multi-QD layers, we used improved growth parameters by increasing the growth temperature and switching the carrier gas from N2 to H2 in the metal organic vapor phase epitaxy. As a result, a 10-layer InGaN/GaN QD LED is demonstrated successfully. The transmission electron microscopy image shows the uniform multilayer InGaN QDs clearly. As the injection current increases from 5 to 50 mA, the electroluminescence peak wavelength shifts from 574 to 537 nm. PMID:23134721

  3. Carrier-transport mechanism of Er-silicide Schottky contacts to strained-silicon-on-insulator and silicon-on-insulator.

    PubMed

    Jyothi, I; Janardhanam, V; Kang, Min-Sung; Yun, Hyung-Joong; Lee, Jouhahn; Choi, Chel-Jong

    2014-11-01

    The current-voltage characteristics and the carrier-transport mechanism of the Er-silicide (ErSi1.7) Schottky contacts to strained-silicon-on-insulator (sSOI) and silicon-on-insulator (SOI) were investigated. Barrier heights of 0.74 eV and 0.82 eV were obtained for the sSOI and SOI structures, respectively. The barrier height of the sSOI structure was observed to be lower than that of the SoI structure despite the formation of a Schottky contact using the same metal silicide. The sSOI structure exhibited better rectification and higher current level than the SOI structure, which could be associated with a reduction in the band gap of Si caused by strain. The generation-recombination mechanism was found to be dominant in the forward bias for both structures. Carrier generation along with the Poole-Frenkel mechanism dominated the reverse-biased current in the SOI structure. The saturation tendency of the reverse leakage current in the sSOI structure could be attributed to strain-induced defects at the interface in non-lattice-matched structures.

  4. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-04-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized (I-V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  5. Electromechanical Characterization of Single GaN Nanobelt Probed with Conductive Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Yan, X. Y.; Peng, J. F.; Yan, S. A.; Zheng, X. J.

    2018-07-01

    The electromechanical characterization of the field effect transistor based on a single GaN nanobelt was performed under different loading forces by using a conductive atomic force microscope (C-AFM), and the effective Schottky barrier height (SBH) and ideality factor are simulated by the thermionic emission model. From 2-D current image, the high value of the current always appears on the nanobelt edge with the increase of the loading force less than 15 nN. The localized ( I- V) characteristic reveals a typical rectifying property, and the current significantly increases with the loading force at the range of 10-190 nN. The ideality factor is simulated as 9.8 within the scope of GaN nano-Schottky diode unity (6.5-18), therefore the thermionic emission current is dominant in the electrical transport of the GaN-tip Schottky junction. The SBH is changed through the piezoelectric effect induced by the loading force, and it is attributed to the enhanced current. Furthermore, a single GaN nanobelt has a high mechanical-induced current ratio that could be made use of in a nanoelectromechanical switch.

  6. Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion-MoS2 sandwich interfaces.

    PubMed

    Su, Jie; Feng, Liping; Zeng, Wei; Liu, Zhengtang

    2017-06-08

    Metal/insertion-MoS 2 sandwich interfaces are designed to reduce the Schottky barriers at metal-MoS 2 interfaces. The effects of geometric and electronic structures of two-dimensional (2D) insertion materials on the contact properties of metal/insertion-MoS 2 interfaces are comparatively studied by first-principles calculations. Regardless of the geometric and electronic structures of 2D insertion materials, Fermi level pinning effects and charge scattering at the metal/insertion-MoS 2 interface are weakened due to weak interactions between the insertion and MoS 2 layers, no gap states and negligible structural deformations for MoS 2 layers. The Schottky barriers at metal/insertion-MoS 2 interfaces are induced by three interface dipoles and four potential steps that are determined by the charge transfers and structural deformations of 2D insertion materials. The lower the electron affinities of 2D insertion materials, the more are the electrons lost from the Sc surface, resulting in lower n-type Schottky barriers at Sc/insertion-MoS 2 interfaces. The larger the ionization potentials and the thinner the thicknesses of 2D insertion materials, the fewer are the electrons that accumulate at the Pt surface, leading to lower p-type Schottky barriers at Pt/insertion-MoS 2 interfaces. All Sc/insertion-MoS 2 interfaces exhibited ohmic characters. The Pt/BN-MoS 2 interface exhibits the lowest p-type Schottky barrier of 0.52 eV due to the largest ionization potential (∼6.88 eV) and the thinnest thickness (single atomic layer thickness) of BN. These results in this work are beneficial to understand and design high performance metal/insertion-MoS 2 interfaces through 2D insertion materials.

  7. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro

    2016-04-11

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less

  8. Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface

    NASA Astrophysics Data System (ADS)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-01

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.

  9. A double barrier memristive device

    PubMed Central

    Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.

    2015-01-01

    We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits. PMID:26348823

  10. Photovoltaic conversion of laser energy

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  11. The dependence of Schottky junction (I-V) characteristics on the metal probe size in nano metal-semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Rezeq, Moh'd.; Ali, Ahmed; Patole, Shashikant P.; Eledlebi, Khouloud; Dey, Ripon Kumar; Cui, Bo

    2018-05-01

    We have studied the dependence of Schottky junction (I-V) characteristics on the metal contact size in metal-semiconductor (M-S) junctions using different metal nanoprobe sizes. The results show strong dependence of (I-V) characteristics on the nanoprobe size when it is in contact with a semiconductor substrate. The results show the evolution from sub-10 nm reversed Schottky diode behavior to the normal diode behavior at 100 nm. These results also indicate the direct correlation between the electric field at the M-S interface and the Schottky rectification behavior. The effect of the metal contact size on nano-Schottky diode structure is clearly demonstrated, which would help in designing a new type of nano-devices at sub-10 nm scale.

  12. Electronic Properties of Graphene-PtSe2 Contacts.

    PubMed

    Sattar, Shahid; Schwingenschlögl, Udo

    2017-05-10

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe 2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe 2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe 2 and a p-type Schottky contact with bilayer PtSe 2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  13. Lateral tunneling through voltage-controlled barriers

    NASA Technical Reports Server (NTRS)

    Manion, S. J.; Bell, L. D.; Kaiser, W. J.; Maker, P. D.; Muller, R. E.

    1991-01-01

    The paper reports on a detailed experimental investigation of lateral tunneling between electrodes of a two-dimensional electron gas separated by the voltage-controlled barrier of a nanometer Schottky gate. The experimental data are modeled using the WKB method to calculate the tunneling probability of electrons through a barrier whose shape is determined from a solution of the two-dimensional Poisson equation. This model is in excellent agreement with the experimental data over a two order of magnitude range of current.

  14. An AlN/Al 0.85Ga 0.15N high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    2016-07-22

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al 0.85Ga 0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high I on/I off current ratio greater than 10 7 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. In conclusion,more » the room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.« less

  15. γ-rays irradiation effects on dielectric properties of Ti/Au/GaAsN Schottky diodes with 1.2%N

    NASA Astrophysics Data System (ADS)

    Teffahi, A.; Hamri, D.; Djeghlouf, A.; Abboun Abid, M.; Saidane, A.; Al Saqri, N.; Felix, J. F.; Henini, M.

    2018-06-01

    Dielectric properties of As grown and irradiated Ti /Au/GaAsN Schottky diodes with 1.2%N are investigated using capacitance/conductance-voltage measurements in 90-290 K temperature range and 50-2000 kHz frequency range. Extracted parameters are interface state density, series resistance, dielectric constant, dielectric loss, tangent loss and ac conductivity. It is shown that exposure to γ-rays irradiation leads to reduction in effective trap density believed to result from radiation-induced traps annulations. An increase in series resistance is attributed to a net doping reduction. Dielectric constant (ε') shows usual step-like transitions with corresponding relaxation peaks in dielectric loss. These peaks shift towards lower temperature as frequency decrease. Temperature dependant ac conductivity followed an Arrhenius relation with activation energy of 153 meV in the 200-290 K temperature range witch correspond to As vacancy. The results indicate that γ-rays irradiation improves the dielectric and electrical properties of the diode due to the defect annealing effect.

  16. All-back-Schottky-contact thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  17. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  18. Modeling of Schottky barrier diode characteristics on heteroepitaxial β-gallium oxide thin films

    NASA Astrophysics Data System (ADS)

    Splith, Daniel; Müller, Stefan; von Wenckstern, Holger; Grundmann, Marius

    2018-02-01

    When investigating Schottky contacts on heteroepitaxial β-Ga2O3 thin films, several non-idealities are observed in the current voltage characteristics, which cannot be accounted for with the standard diode current models. In this article, we therefore employed a model for the rigorous calculation of the diode currents in order to understand the origin of this non-idealities. Using the model and a few parameters determined from the measurements, we were able to simulate the characteristics with good agreement to the measured data for temperatures between 30 °C and 150 °C. Fitting of the simulated curves to the measured curves allows a deeper insight into the microscopic origins of said non-idealities.

  19. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    PubMed

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  20. Responsivity drop due to conductance modulation in GaN metal-semiconductor-metal Schottky based UV photodetectors on Si(111)

    NASA Astrophysics Data System (ADS)

    Ravikiran, L.; Radhakrishnan, K.; Dharmarasu, N.; Agrawal, M.; Wang, Zilong; Bruno, Annalisa; Soci, Cesare; Lihuang, Tng; Kian Siong, Ang

    2016-09-01

    GaN Schottky metal-semiconductor-metal (MSM) UV photodetectors were fabricated on a 600 nm thick GaN layer, grown on 100 mm Si (111) substrate using an ammonia-MBE growth technique. In this report, the effect of device dimensions, applied bias and input power on the linearity of the GaN Schottky-based MSM photodetectors on Si substrate were investigated. Devices with larger interdigitated spacing, ‘S’ of 9.0 μm between the fingers resulted in good linearity and flat responsivity characteristics as a function of input power with an external quantum efficiency (EQE) of ˜33% at an applied bias of 15 V and an input power of 0.8 W m-2. With the decrease of ‘S’ to 3.0 μm, the EQE was found to increase to ˜97%. However, devices showed non linearity and drop in responsivity from flatness at higher input power. Moreover, the position of dropping from flatter responsivity was found to shift to lower powers with increased bias. The drop in the responsivity was attributed to the modulation of conductance in the MSM due to the trapping of electrons at the dislocations, resulting in the formation of depletion regions around them. In devices with lower ‘S’, both the image force reduction and the enhanced collection efficiency increased the photocurrent as well as the charging of the dislocations. This resulted in the increased depletion regions around the dislocations leading to the modulation of conductance and non-linearity.

  1. An AlN/Al{sub 0.85}Ga{sub 0.15}N high electron mobility transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    2016-07-18

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al{sub 0.85}Ga{sub 0.15}N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high I{sub on}/I{sub off} current ratio greater than 10{sup 7} and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminalmore » off-state drain current was adequately modeled with Frenkel-Poole emission.« less

  2. Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.

    PubMed

    Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong

    2012-10-24

    The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.

  3. Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS 2

    DOE PAGES

    Xiao, Zhiyong; Song, Jingfeng; Ferry, David K.; ...

    2017-06-08

    Here, we exploit scanning probe controlled domain patterning in a ferroelectric top-layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS 2 between a transistor and a junction state. In the presence of a domain wall, MoS 2 exhibits rectified I-V that is well described by the thermionic emission model. The induced Schottky barrier height Φ eff Β varies from 0.38 eV to 0.57 eV and is tunabe by a SiO 2 global back-gate, while the tuning range of Φ eff Β the barrier height depends sensitively on the conduction band tail trapping states. Our work points tomore » a new route to achieve programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems.« less

  4. Ferroelectric-Domain-Patterning-Controlled Schottky Junction State in Monolayer MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zhiyong; Song, Jingfeng; Ferry, David K.

    Here, we exploit scanning probe controlled domain patterning in a ferroelectric top-layer to induce nonvolatile modulation of the conduction characteristic of monolayer MoS 2 between a transistor and a junction state. In the presence of a domain wall, MoS 2 exhibits rectified I-V that is well described by the thermionic emission model. The induced Schottky barrier height Φ eff Β varies from 0.38 eV to 0.57 eV and is tunabe by a SiO 2 global back-gate, while the tuning range of Φ eff Β the barrier height depends sensitively on the conduction band tail trapping states. Our work points tomore » a new route to achieve programmable functionalities in van der Waals materials and sheds light on the critical performance limiting factors in these hybrid systems.« less

  5. Au-Doped Indium Tin Oxide Ohmic Contacts to p-Type GaN

    NASA Astrophysics Data System (ADS)

    Guo, H.; Andagana, H. B.; Cao, X. A.

    2010-05-01

    Indium tin oxide (ITO) thin films doped with Au, Ni, or Pt (3.5 at.% to 10.5 at.%) were deposited on p-GaN epilayers (Mg ~4 × 1019 cm-3) using direct-current (DC) sputter codeposition. It was found that undoped ITO con- tacts to p-GaN exhibited leaky Schottky behavior, whereas the incorporation of a small amount of Au (3.5 at.% to 10.5 at.%) significantly improved their ohmic characteristics. Compared with standard Ni/ITO contacts, the Au-doped ITO contacts had a similar specific contact resistance in the low 10-2 Ω cm-2 range, but were more stable above 600°C and more transparent at blue wavelengths. These results provide support for the use of Au-doped ITO ohmic contact to p-type GaN in high-brightness blue light-emitting diodes.

  6. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    NASA Astrophysics Data System (ADS)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  7. Developing Infrared (IR) Transparent Conductive Electrode Technology for Multi-Functional Infrared (IR) Sensing

    DTIC Science & Technology

    2011-07-13

    Expected I-V curve of the CNT- metal Schottky barrier; (c), Band diagrams of Aluminum and the p-type doped CNT film; (d) – (f), The band diagrams of the Al...I-V Characteristics of the CNT- metal Schottky barrier. The CNT- metal Schottky diode turns on at ~ 0.5V. The Fermi-level of the CNF film is...Figure 9. Simplified energy band diagrams of the CNT and metal interface: (a) before contact; (b) after contact. A barrier V0 is formed between the

  8. The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Xiangzhi; Luo, Wei; Shen, Jun; Wang, Yuefeng; Wei, Dapeng

    2018-03-01

    Polyethylenimine ethoxylated (PEIE) and polyethyl-enimine (PEI), the two kinds of interface buffer layer, are widely used in the organic light-emitting diodes and solar cells for band alignment adjustment. In this report, we carefully studied the influence of the inserting organic layer on the graphene nanowalls(GNWS)/Si junction quality and the photoresponse of the Schottky devices. We found that thinner layers of PEI could decrease the dark current and improve the photo-to-dark ratio to 105 for n-Si devices. The s-kink effect and degradation of open circuit voltage could be observed for thicker thickness and excessive doping. Relatively, PEIE with stable thin layer not only improve the rectifying characteristics of p-Si devices but also the incident photon conversion efficiency. The maximus IPCE could reach 44% and be adjusted to zero by the reverse bias. The tunneling inhibition for electrons can be alleviated by increasing the barrier height. Our results provide an attractive method to improve the efficiency of pristine GNWs/Si junction with interface doping and passivation.

  9. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae

    2017-07-01

    Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.

  10. Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure

    NASA Astrophysics Data System (ADS)

    Pintilie, Lucian; Stancu, Viorica; Trupina, L.; Pintilie, Ioana

    2010-08-01

    A single ferroelectric Schottky diode was obtained on a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta (SRO-PZT20/80-Ta) structure in which the SRO-PZT20/80 interface is the rectifying contact and the PZT20/80-Ta interface behaves as a quasiohmic contact. Both the capacitance-voltage (C-V) and the current-voltage (I-V) characteristics show the memory effect due to the ferroelectric polarization. However, retention studies had revealed that only the “down” orientation of ferroelectric polarization is stable in time (polarization oriented from top to bottom contact). The analysis of the experimental results suggests that the PZT20/80 is n type and that the stable orientation of polarization is related to the presence of a depletion region at the SRO-PZT20/80 Schottky interface.

  11. Prospects of zero Schottky barrier height in a graphene-inserted MoS{sub 2}-metal interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-07

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS{sub 2}-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS{sub 2} and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS{sub 2}. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, densitymore » functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS{sub 2} through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS{sub 2}-metal interface, the projected dispersion of MoS{sub 2} remains preserved in any MoS{sub 2}-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS{sub 2}-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.« less

  12. Multi-level Capacitive Memory Effect in Metal/Oxide/Floating-Schottky Junction

    NASA Astrophysics Data System (ADS)

    Choi, Gahyun; Jung, Sungchul; Yoon, Hoon Hahn; Jeon, Youngeun; Park*, Kibog

    2015-03-01

    A memory computing (memcomputing) system can store and process information at the same physical location simultaneously. The essential components of memcomputing are passive devices with memory functionality, such as memristor, memcapacitor, and meminductor. We report the realization of a Schottky contact memcapacitor compatible with the current Si CMOS technology. Our memcapacitor is formed by depositing a stack of metal and oxide thin films on top of a Schottky contact. Here, the metal electrode of the Schottky contact is floating. The working principle of our memcapacitor is based on the fact that the depletion width of the Schottky contact varies according to the amount of charge stored in the floating metal electrode. The voltage pulse applied across the Metal/Oxide/Floating-Schottky junction controls charge flow in the Schottky contact and determines the amount of charge stored eventually. It is demonstrated experimentally that our memcapacitor exhibits hysteresis behaviors in capacitance-voltage curves and possesses multiple capacitance values that are switchable by the applied voltage pulse. Supported by NRF in South Korea (2013R1A1A2007070).

  13. Photovoltaic and thermophotovoltaic devices with quantum barriers

    DOEpatents

    Wernsman, Bernard R [Jefferson Hills, PA

    2007-04-10

    A photovoltaic or thermophotovoltaic device includes a diode formed by p-type material and n-type material joined at a p-n junction and including a depletion region adjacent to said p-n junction, and a quantum barrier disposed near or in the depletion region of the p-n junction so as to decrease device reverse saturation current density while maintaining device short circuit current density. In one embodiment, the quantum barrier is disposed on the n-type material side of the p-n junction and decreases the reverse saturation current density due to electrons while in another, the barrier is disposed on the p-type material side of the p-n junction and decreases the reverse saturation current density due to holes. In another embodiment, both types of quantum barriers are used.

  14. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  15. Single event upset sensitivity of low power Schottky devices

    NASA Technical Reports Server (NTRS)

    Price, W. E.; Nichols, D. K.; Measel, P. R.; Wahlin, K. L.

    1982-01-01

    Data taken from tests involving heavy ions in the Berkeley 88 in. cyclotron being directed at low power Schottky barrier devices are reported. The tests also included trials in the Harvard cyclotron with 130 MeV protons, and at the U.C. Davis cyclotron using 56 MeV protons. The experiments were performed to study the single event upsets in MSI logic devices containing flip-flops. Results are presented of single-event upsets (SEU) causing functional degradation observed in post-exposure tests of six different devices. The effectiveness of the particles in producing SEUs in logic device functioning was found to be directly proportional to the proton energy. Shielding was determined to offer negligible protection from the particle bombardment. The results are considered significant for the design and fabrication of LS devices for space applications.

  16. Laterally stacked Schottky diodes for infrared sensor applications

    NASA Technical Reports Server (NTRS)

    Lin, True-Lon (Inventor)

    1991-01-01

    Laterally stacked Schottky diodes for infrared sensor applications are fabricated utilizing porous silicon having pores. A Schottky metal contract is formed in the pores, such as by electroplating. The sensors may be integrated with silicon circuits on the same chip with a high quantum efficiency, which is ideal for IR focal plane array applications due to uniformity and reproducibility.

  17. A comparison of freeway median crash frequency, severity, and barrier strike outcomes by median barrier type.

    PubMed

    Russo, Brendan J; Savolainen, Peter T

    2018-08-01

    Median-crossover crashes are among the most hazardous events that can occur on freeways, often resulting in severe or fatal injuries. The primary countermeasure to reduce the occurrence of such crashes is the installation of a median barrier. When installation of a median barrier is warranted, transportation agencies are faced with the decision among various alternatives including concrete barriers, beam guardrail, or high-tension cable barriers. Each barrier type differs in terms of its deflection characteristics upon impact, the required installation and maintenance costs, and the roadway characteristics (e.g., median width) where installation would be feasible. This study involved an investigation of barrier performance through an in-depth analysis of crash frequency and severity data from freeway segments where high-tension cable, thrie-beam, and concrete median barriers were installed. A comprehensive manual review of crash reports was conducted to identify crashes in which a vehicle left the roadway and encroached into the median. This review also involved an examination of crash outcomes when a barrier strike occurred, which included vehicle containment, penetration, or re-direction onto the travel lanes. The manual review of crash reports provided critical supplementary information through narratives and diagrams not normally available through standard fields on police crash report forms. Statistical models were estimated to identify factors that affect the frequency, severity, and outcomes of median-related crashes, with particular emphases on differences between segments with varying median barrier types. Several roadway-, traffic-, and environmental-related characteristics were found to affect these metrics, with results varying across the different barrier types. The results of this study provide transportation agencies with important guidance as to the in-service performance of various types of median barrier. Copyright © 2018 Elsevier Ltd. All rights

  18. Single Schottky junction FETs based on Si:P nanowires with axially graded doping

    NASA Astrophysics Data System (ADS)

    Barreda, Jorge; Keiper, Timothy; Zhang, Mei; Xiong, Peng

    2015-03-01

    Si nanowires (NWs) with a systematic axial increase in phosphorus doping have been synthesized via a vapor-liquid-solid method. Silane and phosphine precursor gases are utilized for the growth and doping, respectively. The phosphorous doping profile is controlled by the flow ratio of the precursor gases. After the as-grown product is ultrasonically agitated into a solution, the Si NWs are dispersed on a SiO2 substrate with a highly doped Si back gate. Individual NWs are identified for the fabrication of field-effect transistors (FETs) with multiple Cr/Ag contacts along the NW. Two-probe and four-probe measurements are taken systematically under vacuum conditions at room temperature and the contribution from each contact and each NW section between adjacent contacts is determined. The graded doping level, produced by a systematic reduction in dopant density along the length of the NWs, is manifested in the regular increases in the channel and contact resistances. Our Si NWs facilitate the fabrication of asymmetric FETs with one ohmic and one Schottky contact. A significant increase in gate modulation is obtained due to the single Schottky-barrier contact. Characterization details and the applicability for sensing purposes will be discussed.

  19. Enhancing the Photocatalytic Hydrogen Evolution Performance of a Metal/Semiconductor Catalyst through Modulation of the Schottky Barrier Height by Controlling the Orientation of the Interface.

    PubMed

    Liu, Yang; Gu, Xin; Qi, Wen; Zhu, Hong; Shan, Hao; Chen, Wenlong; Tao, Peng; Song, Chengyi; Shang, Wen; Deng, Tao; Wu, Jianbo

    2017-04-12

    Construction of a metal-semiconductor heterojunction is a promising method to improve heterogeneous photocatalysis for various reactions. Although the structure and photocatalytic performance of such a catalyst system have been extensively studied, few reports have demonstrated the effect of interface orientation at the metal-semiconductor junction on junction-barrier bending and the electronic transport properties. Here, we construct a Pt/PbS heterojunction, in which Pt nanoparticles are used as highly active catalysts and PbS nanocrystals (NCs) with well-controlled shapes are used as light-harvesting supports. Experimental results show that the photoelectrocatalytic activities of the Pt/PbS catalyst are strongly dependent on the contacting facets of PbS at the junction. Pt/octahedral PbS NCs with exposed PbS(111) facets show the highest photoinduced enhancement of hydrogen evolution reaction activity, which is ∼14.38 times higher than that of the ones with only PbS(100) facets (Pt/cubic PbS NCs). This enhancement can further be rationalized by the different energy barriers of the Pt/PbS Schottky junction due to the specific band structure and electron affinity, which is also confirmed by the calculations based on density functional theory. Therefore, controlling the contacting interfaces of a metal/semiconductor material may offer an effective approach to form the desired heterojunction for optimization of the catalytic performance.

  20. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    NASA Astrophysics Data System (ADS)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  1. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes.

    PubMed

    Shen, Jun; Liu, Xiangzhi; Song, Xuefen; Li, Xinming; Wang, Jun; Zhou, Quan; Luo, Shi; Feng, Wenlin; Wei, Xingzhan; Lu, Shirong; Feng, Shuanglong; Du, Chunlei; Wang, Yuefeng; Shi, Haofei; Wei, Dapeng

    2017-05-11

    Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, photodetectors are fabricated using directly grown graphene nanowalls (GNWs) as electrodes. Due to the metal-free growth process, GNWs-Si heterojunctions with an ultralow measured current noise of 3.1 fA Hz -1/2 are obtained, and the as-prepared photodetectors demonstrate specific detectivities of 5.88 × 10 13 cm Hz 1/2 W -1 and 2.27 × 10 14 cm Hz 1/2 W -1 based on the measured and calculated noise current, respectively, under ambient conditions. These are among the highest reported values for planar silicon Schottky photodetectors. In addition, an on/off ratio of 2 × 10 7 , time response of 40 μs, cut-off frequency of 8.5 kHz and responsivity of 0.52 A W -1 are simultaneously realized. The ultralow current noise is attributed to the excellent junction quality with a barrier height of 0.69 eV and an ideal factor of 1.18. Furthermore, obvious infrared photoresponse is observed in blackbody tests, and potential applications based on the photo-thermionic effect are discussed.

  2. Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Parihar, Usha; Ray, Jaymin; Panchal, C. J.; Padha, Naresh

    2016-06-01

    Al/p-CuInAlSe2 Schottky diodes were fabricated using the optimized thin layers of CuInAlSe2 semiconductor. These diodes were used to study their temperature-dependent current-voltage (I-V) and capacitance-voltage (C-V) analysis over a wide range of 233-353 K. Based on these measurements, diode parameters such as ideality factor ( η), barrier height (ϕbo) and series resistance ( R s) were determined from the downward curvature of I-V characteristics using Cheung and Cheung method. The extracted parameters were found to be strongly temperature dependent; ϕbo increases, while η and R s decrease with increasing temperature. This behavior of ϕbo and η with change in temperature has been explained on the basis of barrier inhomogeneities over the MS interface by assuming a Gaussian distribution (GD) of the ϕbo at the interface. GD of barrier height (BH) was confirmed from apparent BH (ϕap) versus q/2 kT plot, and the values of the mean BH and standard deviation (σs) obtained from this plot at zero bias were found to be 1.02 and 0.14 eV, respectively. Also, a modified ln ( {J_{{s}} /T2 } ) - q2 σ_{{s}}2 /2k2 T2 versus q/ kT plot for Al/p-CuInAlSe2 Schottky diodes according to the GD gives ϕbo and Richardson constant ( A ** ) as 1.01 eV and 26 Acm-2 K-2, respectively. The Richardson constant value of 26 Acm-2 K-2 is very close to the theoretical value of 30 Acm-2 K-2. The discrepancy between BHs obtained from I-V and C-V measurements has also been interpreted.

  3. Complementary Barrier Infrared Detector (CBIRD) Contact Methods

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.

    2013-01-01

    The performance of the CBIRD detector is enhanced by using new device contacting methods that have been developed. The detector structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.

  4. MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs

    NASA Astrophysics Data System (ADS)

    Abermann, S.; Pozzovivo, G.; Kuzmik, J.; Strasser, G.; Pogany, D.; Carlin, J.-F.; Grandjean, N.; Bertagnolli, E.

    2007-12-01

    We apply metal organic chemical vapour deposition (MOCVD) of HfO2 and of ZrO2 from β-diketonate precursors to grow high-k gate dielectrics for InAlN/AlN/GaN metal oxide semiconductor (MOS)-high electron mobility transistors (HEMTs). High-k oxides of about 12 nm-14 nm are deposited for the MOS-HEMTs incorporating Ni/Au gates, whereas as a reference, Ni-contact-based 'conventional' Schottky-barrier (SB)-HEMTs are processed. The processed dielectrics decrease the gate current leakage of the HEMTs by about four orders of magnitude if compared with the SB-gated HEMTs and show superior device characteristics in terms of IDS and breakdown.

  5. Electrical and NO2 sensing characteristics of Pd/ZnO nanoparticles based Schottky diode at room temperature

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-12-01

    The present work deals with Pd/ZnO nanoparticles based Schottky diode for detection of NO2 at room temperature (298 K). To fabricate Pd/ZnO Schottky diode, zinc oxide (ZnO) nanoparticles (NPs) based film was developed on glass substrate using sol-gel spin coating process. Subsequently; Pd was deposited on ZnO using thermal evaporation technique. The structural properties of developed ZnO film were studied using energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The particles size of the developed film was in range of ~25 to ~110 nm. The response of fabricated Pd/ZnO Schottky diode was studied upon exposure to NO2 in terms of change in I-V characteristics. The magnitude of barrier height and ideality factor has been evaluated with concentration of NO2 ranging from 10 to 50 ppm. The developed sensor has good sensitivity of ~45.2%, with fast response and recovery time; 67 s and 250 s respectively for 50 ppm concentration of NO2 with excellent repeatability. The obtained results have been explained in terms of surface and subsurface adsorption of NO2 on Pd, subsequently dissociation of NO2 and its diffusion, which creates dipole moment at the Pd/ZnO interface.

  6. Occipital blood-brain barrier permeability is an independent predictor of visual outcome in type 2 diabetes, irrespective of the retinal barrier: A longitudinal study.

    PubMed

    Abuhaiba, S I; Cordeiro, M; Amorim, A; Cruz, Â; Quendera, B; Ferreira, C; Ribeiro, L; Bernardes, R; Castelo-Branco, M

    2018-01-01

    Blood-brain barrier (BBB) permeability in type 2 diabetic patients has been previously shown to be altered in certain brain regions such as the basal ganglia and the hippocampus. Because of the histological and functional similarities between the BBB) and the blood-retinal barrier (BRB), we aimed to investigate how the permeability of both barriers predicts visual outcome. We included 2 control groups (acute unilateral stroke patients, n = 9; type 2 diabetics without BRB leakage n = 10) and a case study group of type 2 diabetics with established BRB leakage (n = 17). We evaluated sex, age, disease duration, metabolic impairment, retinopathy grade and BBB permeability as predictors of visual acuity at baseline, 12  and 24 months in the type 2 diabetics without BRB leakage group and the case study group. We have also explored differences in BBB permeability in the occipital lobe and frontal lobe in the 3 different groups. K trans (volume transfer coefficient) and V p (fractional plasma volume) were estimated. The BBB permeability parameter V p was higher in the case study group compared to the unaffected hemisphere of the stroke patient control group, suggesting vascular dynamics were changed in the occipital lobe of type 2 diabetics with established BRB leakage. These patients showed a significant correlation between glycated hemoglobin (HbA1C) levels and occipital and frontal K trans . We report for the first time that occipital BBB permeability is an independent predictor of visual acuity at baseline, as well as at 12 and 24 months, in type 2 diabetics with established BRB leakage. Our results suggest that occipital BBB permeability might be an independent biomarker for visual impairment in patients with established BRB leakage. © 2017 British Society for Neuroendocrinology.

  7. Method of Fabricating Schottky Barrier solar cell

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M. (Inventor)

    1982-01-01

    On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer.

  8. Simulation study on AlGaN/GaN diode with Γ-shaped anode for ultra-low turn-on voltage

    NASA Astrophysics Data System (ADS)

    Wang, Zeheng; Chen, Wanjun; Wang, Fangzhou; Cao, Jun; Sun, Ruize; Ren, Kailin; Luo, Yi; Guo, Songnan; Wang, Zirui; Jin, Xiaosheng; Yang, Lei; Zhang, Bo

    2018-05-01

    An ultra-low turn-on voltage (VT) Γ-shaped anode AlGaN/GaN Schottky barrier diode (GA-SBD) is proposed via modeling and simulation for the first time, in which a Γ-shaped anode consists of a metal-2DEG junction together with a metal-AlGaN junction beside a shallowly recessed MIS field plate (MFP). An analytic forward current-voltage model matching the simulation results well is presented where an ultra-low VT of 0.08 V is obtained. The turn-on and blocking mechanisms are investigated to reveal the GA-SBD's great potential for applications of highly efficient power ICs.

  9. On the Relationship Between Schottky Barrier Capacitance and Mixer Performance at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1996-01-01

    The flat-band voltage is the Schottky junction voltage required to shrink the depletion width to zero. At cryogenic temperatures, mixer diodes are generally biased and/or pumped beyond the flat-band condition to minimize conversion loss and noise figure. This occurs despite the presumed sharp increase in junction capacitance near flat-band, which should instead limit mixer performance. Past moderate forward bias, the diode C-V relationship is difficult to measure. A simple analytic expression for C(V) is usually used to model and predict mixer performance. This letter provides experimental data on C(V) at 77 K based on a microwave measurement and modeling technique. Data is also provided on the conversion loss of a singly balanced mixer optimized for 77 K operation. The connection between junction capacitance, flat-band potential, and conversion loss is examined. It is shown that the analytic expression greatly overestimates the junction capacitance that occurs as flat-band is approached.

  10. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes ofmore » both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.« less

  11. Vertical versus Lateral Two-Dimensional Heterostructures: On the Topic of Atomically Abrupt p/n-Junctions.

    PubMed

    Zhou, Ruiping; Ostwal, Vaibhav; Appenzeller, Joerg

    2017-08-09

    The key appeal of two-dimensional (2D) materials such as graphene, transition metal dichalcogenides (TMDs), or phosphorene for electronic applications certainly lies in their atomically thin nature that offers opportunities for devices beyond conventional transistors. It is also this property that makes them naturally suited for a type of integration that is not possible with any three-dimensional (3D) material, that is, forming heterostructures by stacking dissimilar 2D materials together. Recently, a number of research groups have reported on the formation of atomically sharp p/n-junctions in various 2D heterostructures that show strong diode-type rectification. In this article, we will show that truly vertical heterostructures do exhibit much smaller rectification ratios and that the reported results on atomically sharp p/n-junctions can be readily understood within the framework of the gate and drain voltage response of Schottky barriers that are involved in the lateral transport.

  12. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    PubMed

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerbeek, A. M., E-mail: a.m.kamerbeek@rug.nl; Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with thismore » trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.« less

  14. Wholly Aromatic Ether-Imides as n-Type Semiconductors

    NASA Technical Reports Server (NTRS)

    Weiser, Erik; St. Clair, Terry L.; Dingemans, Theo J.; Samulski, Edward T.; Irene, Gene

    2006-01-01

    Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able

  15. Transport mechanisms in Schottky diodes realized on GaN

    NASA Astrophysics Data System (ADS)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  16. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  17. Distinct persistence barriers in two types of ENSO: PERSISTENCE BARRIERS OF TWO ENSO TYPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Hong-Li; Jin, Fei-Fei; Tian, Ben

    El Niño–Southern Oscillation (ENSO) is usually subject to a persistence barrier (PB) in boreal spring. This study quantifies the PB and then reveals its distinct features in the two types of ENSO, the eastern Pacific (EP) and central Pacific (CP) types. We suggest that the PB of ENSO can be measured by the maximum rate of autocorrelation decline of Niño sea surface temperature anomaly (SSTA) indices. Results show that the PB of ENSO generally occurs in boreal late spring to early summer in terms of Niño3.4 index, and the EP ENSO has the PB in late spring, while the CPmore » type has the PB in summer. By defining an index to quantify PB intensity of ENSO, we find that the CP ENSO type features a much weaker PB, compared to the EP type, and the PB intensity of equatorial SSTAs is larger over the EP than the western Pacific and the far EP.« less

  18. Distinct persistence barriers in two types of ENSO: PERSISTENCE BARRIERS OF TWO ENSO TYPES

    DOE PAGES

    Ren, Hong-Li; Jin, Fei-Fei; Tian, Ben; ...

    2016-10-30

    El Niño–Southern Oscillation (ENSO) is usually subject to a persistence barrier (PB) in boreal spring. This study quantifies the PB and then reveals its distinct features in the two types of ENSO, the eastern Pacific (EP) and central Pacific (CP) types. We suggest that the PB of ENSO can be measured by the maximum rate of autocorrelation decline of Niño sea surface temperature anomaly (SSTA) indices. Results show that the PB of ENSO generally occurs in boreal late spring to early summer in terms of Niño3.4 index, and the EP ENSO has the PB in late spring, while the CPmore » type has the PB in summer. By defining an index to quantify PB intensity of ENSO, we find that the CP ENSO type features a much weaker PB, compared to the EP type, and the PB intensity of equatorial SSTAs is larger over the EP than the western Pacific and the far EP.« less

  19. Compositional grading of InxGa1-xAs/GaAs tunnel junctions enhanced by ErAs nanoparticles

    NASA Astrophysics Data System (ADS)

    Salas, R.; Krivoy, E. M.; Crook, A. M.; Nair, H. P.; Bank, S. R.

    2011-10-01

    We investigate the electrical conductivity of GaAs-based tunnel junctions enhanced with semimetallic ErAs nanoparticles. In particular, we examine the effects of digitally-graded InGaAs alloys on the n-type side of the tunnel junction, along with different p-type doping levels. Device characteristics of the graded structures indicate that the n-type Schottky barrier may not be the limiting factor in the tunneling current as initially hypothesized. Moreover, significantly improved forward and reverse bias tunneling currents were observed with increased p-type doping, suggesting p-side limitation.

  20. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  1. Mechanical and electrical characterization of semiconducting ZnO nanorings by direct nano-manipulation

    NASA Astrophysics Data System (ADS)

    Mai, Wenjie; Zhang, Long; Gu, Yudong; Huang, Shiqing; Zhang, Zongfu; Lao, Changshi; Yang, Peihua; Qiang, Pengfei; Chen, Zhongwei

    2012-08-01

    With assistance from a nano-manipulator system inside a scanning electron microscope chamber, mechanical and electrical properties of ZnO nanorings were investigated. The change of a fractured nanoring to nearly straight nanobelts was strong evidence to support the previously proposed electrostatic-force-induced self-coiling model, and our computational simulation results indicated the fracture force was 25-30 μN. The contact between a tungsten tip of the manipulator and a ZnO nanoring was confirmed as the Schottky type; therefore, the change of I-V curves of the nanoring under compression was attributed to the Schottky barrier height changes.

  2. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Goswami, Ankur; Jiang, Keren; Khan, Faheem; Kim, Seokbeom; McGee, Ryan; Li, Zhi; Hu, Zhiyu; Lee, Jungchul; Thundat, Thomas

    2018-02-01

    The direct conversion of mechanical energy into electricity by nanomaterial-based devices offers potential for green energy harvesting1-3. A conventional triboelectric nanogenerator converts frictional energy into electricity by producing alternating current (a.c.) triboelectricity. However, this approach is limited by low current density and the need for rectification2. Here, we show that continuous direct-current (d.c.) with a maximum density of 106 A m-2 can be directly generated by a sliding Schottky nanocontact without the application of an external voltage. We demonstrate this by sliding a conductive-atomic force microscope tip on a thin film of molybdenum disulfide (MoS2). Finite element simulation reveals that the anomalously high current density can be attributed to the non-equilibrium carrier transport phenomenon enhanced by the strong local electrical field (105-106 V m-2) at the conductive nanoscale tip4. We hypothesize that the charge transport may be induced by electronic excitation under friction, and the nanoscale current-voltage spectra analysis indicates that the rectifying Schottky barrier at the tip-sample interface plays a critical role in efficient d.c. energy harvesting. This concept is scalable when combined with microfabricated or contact surface modified electrodes, which makes it promising for efficient d.c. triboelectricity generation.

  3. Analysis of the Temperature Dependence of the Capacitance-Voltage and Conductance-Voltage Characteristics of Au/TiO2(rutile)/ n-Si Structures

    NASA Astrophysics Data System (ADS)

    KInacI, BarIş; Özçelik, Süleyman

    2013-06-01

    The capacitance-voltage-temperature ( C- V- T) and the conductance/angular frequency-voltage-temperature ( G/ω- V- T) characteristics of Au/TiO2(rutile)/ n-Si Schottky barrier diodes (SBDs) were investigated over the temperature range from 200 K to 380 K by considering the series resistance effect. Titanium dioxide (TiO2) was deposited on n-type silicon (Si) substrate using a direct-current (DC) magnetron sputtering system at 200°C. To improve the crystal quality, the deposited film was annealed at 900°C to promote a phase transition from the amorphous to rutile phase. The C -2 versus V plots gave a straight line in the reverse-bias region. The main electrical parameters, such as the doping concentration ( N D), Fermi energy level ( E F), depletion layer width ( W D), barrier height ( ф CV), and series resistance ( R S), of Au/TiO2(rutile)/ n-Si SBDs were calculated from the C- V- T and the G/ω- V- T characteristics. The obtained results show that ф CV, R S, and W D values decrease, while E F and N D values increase, with increasing temperature.

  4. Method for fabricating solar cells having integrated collector grids

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr. (Inventor)

    1979-01-01

    A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.

  5. Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.

    2005-10-01

    AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.

  6. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant ofmore » 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.« less

  7. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    DOEpatents

    Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  8. Growth and characterization of GaN nanostructures under various ammoniating time with fabricated Schottky gas sensor based on Si substrate

    NASA Astrophysics Data System (ADS)

    Abdullah, Q. N.; Ahmed, A. R.; Ali, A. M.; Yam, F. K.; Hassan, Z.; Bououdina, M.; Almessiere, M. A.

    2018-05-01

    This paper presents the investigation of the influence of the ammoniating time of GaN nanowires (NWs) on the crystalline structure, surface morphology, and optical characteristics. Morphological analysis indicates the growth of good quality and high density of NWs with diameters around 50 nm and lengths up to tens of microns after ammoniating for 30 min. Structural analysis shows that GaN NWs have a typical hexagonal wurtzite crystal structure. Raman spectroscopy confirms the formation of GaN compound with the presence of compressive stress. Photoluminescence (PL) measurements revealed two band emissions, an UV and a broad visible emission. Hydrogen sensor was subsequently fabricated by depositing Pt Schottky contact onto GaN NWs film. The sensor response was measured at various H2 concentrations ranged from 200 up to 1200 ppm at room temperature. It was found that the response increases significantly for low H2 concentration (200-300 ppm) to reach about 50% then increases smoothly to reach 60% at 1200 ppm. The as-fabricated sensor possesses higher performances as compared to similar devices reported in the literature.

  9. Barriers to and enablers of insulin self-titration in adults with Type 2 diabetes: a qualitative study.

    PubMed

    McBain, H; Begum, S; Rahman, S; Mulligan, K

    2017-02-01

    To identify the barriers to and enablers of effective insulin self-titration in people with Type 2 diabetes. A qualitative semi-structured interview approach was used. Questions were structured according to the Theoretical Domains Framework, which outlines 14 domains that can act as barriers to and enablers of changing behaviour. Interviews were audio-recorded and transcribed verbatim. The data were coded according to the 14 domains, belief statements were created within each domain, and a frequency count of the most reported barriers and enablers was then carried out. Analyses were conducted by two researchers, and discrepancies agreed with a third researcher. A total of 18 adults with Type 2 diabetes took part in an interview. The majority were of South-Asian ethnicity (n = 8) and were men (n = 12). Their mean age was 61 years old. The mean duration of diabetes was 16 years and time on insulin 9 years. Inter-rater reliability for each of the domains varied (29-100%). The most frequently reported domains were Social Influence and Beliefs about Consequences; the least frequently reported were Optimism and Reinforcement. Interviewees reported receiving support to self-titrate from a range of sources. Self-titrating was perceived to have a range of both positive and negative consequences, as was not titrating. The findings highlight that those interviewed experienced a range of barriers and enablers when attempting to self-titrate. Improved education and training when initiating insulin treatment among adults with Type 2 diabetes, and throughout their journey on insulin therapy could help identify and address these barriers in order to optimize self-titration. © 2016 Diabetes UK.

  10. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxidemore » devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.« less

  11. Direct control and characterization of a Schottky barrier by scanning tunneling microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.; Hecht, M. H.; Grunthaner, F. J.

    1988-01-01

    Scanning tunneling microscopy (STM) methods are used to directly control the barrier height of a metal tunnel tip-semiconductor tunnel junction. Barrier behavior is measured by tunnel current-voltage spectroscopy and compared to theory. A unique surface preparation method is used to prepare a low surface state density Si surface. Control of band bending with this method enables STM investigation of semiconductor subsurface properties.

  12. Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode

    NASA Astrophysics Data System (ADS)

    Rabehi, Abdelaziz; Amrani, Mohamed; Benamara, Zineb; Akkal, Boudali; Hatem-Kacha, Arslane; Robert-Goumet, Christine; Monier, Guillaume; Gruzza, Bernard

    2015-10-01

    This article reports the study of Au/GaN/GaAs Schottky diodes, where the thin GaN film is prepared by nitridation of GaAs substrates with thicknesses of 0.7 and 0.8 nm. The resulting GaN sample with thickness 0.8 nm is then treated with an annealing operation (heating to 620 °C) to improve the current transport. The current-voltage (I-V) and capacitance-voltage (C-V) of the Au/GaN/GaAs structures were investigated at room temperature. In fact, the I-V characteristics show that the annealed sample has low series resistance (Rs) and ideality factor (n) (63 Ω, 2.27 respectively) when compared to the values obtained in the untreated sample (1.83 kΩ, 3.31 respectively). The formation of the GaN layer on the gallium arsenide surface is investigated through calculation of the interface state density NSS with and without the presence of series resistance Rs. The value of the interface state density NSS(E) close to the mid-gap was estimated to be in the order of 4.7×1012 cm-2 eV-1 and 1.02× 1013 cm-2 eV-1 with and without the annealing operation, respectively. However, nitridation with the annealing operation at 620 °C improves the electrical properties of the resultant Schottky diode.

  13. Irradiation of 4H-SiC UV detectors with heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, E. V., E-mail: evk@mail.ioffe.ru; Lebedev, A. A.; Bogdanova, E.

    Ultraviolet (UV) photodetectors based on Schottky barriers to 4H-SiC are formed on lightly doped n-type epitaxial layers grown by the chemical vapor deposition method on commercial substrates. The diode structures are irradiated at 25°C by 167-MeV Xe ions with a mass of 131 amu at a fluence of 6 × 10{sup 9} cm{sup −2}. Comparative studies of the optical and electrical properties of as-grown and irradiated structures with Schottky barriers are carried out in the temperature range 23–180°C. The specific features of changes in the photosensitivity and electrical characteristics of the detector structures are accounted for by the capture ofmore » photogenerated carriers into traps formed due to fluctuations of the conduction-band bottom and valence-band top, with subsequent thermal dissociation.« less

  14. Modeling and Simulation of Capacitance-Voltage Characteristics of a Nitride GaAs Schottky Diode

    NASA Astrophysics Data System (ADS)

    Ziane, Abderrezzaq; Amrani, Mohammed; Benamara, Zineb; Rabehi, Abdelaziz

    2018-06-01

    A nitride GaAs Schottky diode has been fabricated by the nitridation of GaAs substrates using a radio frequency discharge nitrogen plasma source with a layer thickness of approximately 0.7 nm of GaN. The capacitance-voltage (C-V) characteristics of the Au/GaN/GaAs structure were investigated at room temperature for different frequencies, ranging from 1 kHz to 1 MHz. The C-V measurements for the Au/GaN/GaAs Schottky diode were found to be strongly dependent on the bias voltage and the frequency. The capacitance curves depict an anomalous peak and a negative capacitance phenomenon, indicating the presence of continuous interface state density behavior. A numerical drift-diffusion model based on the Scharfetter-Gummel algorithm was elaborated to solve a system composed of the Poisson and continuities equations. In this model, we take into account the continuous interface state density, and we have considered exponential and Gaussian distributions of trap states in the band gap. The effects of the GaAs doping concentration and the trap state density are discussed. We deduce the shape and values of the trap states, then we validate the developed model by fitting the computed C-V curves with experimental measurements at low frequency.

  15. Vertically aligned silicon microwire arrays of various lengths by repeated selective vapor-liquid-solid growth of n-type silicon/n-type silicon

    NASA Astrophysics Data System (ADS)

    Ikedo, Akihito; Kawashima, Takahiro; Kawano, Takeshi; Ishida, Makoto

    2009-07-01

    Repeated vapor-liquid-solid (VLS) growth with Au and PH3-Si2H6 mixture gas as the growth catalyst and silicon source, respectively, was used to construct n-type silicon/n-type silicon wire arrays of various lengths. Silicon wires of various lengths within an array could be grown by employing second growth over the first VLS grown wire. Additionally, the junction at the interface between the first and the second wires were examined. Current-voltage measurements of the wires exhibited linear behavior with a resistance of 850 Ω, confirming nonelectrical barriers at the junction, while bending tests indicated that the mechanical properties of the wire did not change.

  16. Highly efficient X-range AlGaN/GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Tural'chuk, P. A.; Kirillov, V. V.; Osipov, P. E.; Vendik, I. B.; Vendik, O. G.; Parnes, M. D.

    2017-09-01

    The development of microwave power amplifiers (PAs) based on transistors with an AlGaN/GaN heterojunction are discussed in terms of the possible enhancement of their efficiency. The main focus is on the synthesis of the transforming circuits, which ensure the reactive load at the second- and third-harmonic frequencies and complex impedance at the fundamental frequency. This makes it possible to optimize the complex operation mode of a PA; i.e., to reduce the scattering power and enhance the efficiency. A microwave PA based on the Schottky-barrier-gate field-effect transistor with 80 electrodes based on the GaN pHEMT transistor with a gate length of 0.25 nm and a gate width of 125 nm is experimentally investigated. The amplifier has a pulse output power of 35 W and a power-added efficiency of at least 50% at a working frequency of 9 GHz.

  17. Ab initio study of Ga-GaN system: Transition from adsorbed metal atoms to a metal–semiconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witczak, Przemysław; Kempisty, Pawel; Strak, Pawel

    2015-11-15

    Ab initio studies of a GaN(0001)-Ga system with various thicknesses of a metallic Ga layer were undertaken. The studied systems extend from a GaN(0001) surface with a fractional coverage of gallium atoms to a Ga-GaN metal–semiconductor (m–s) contact. Electronic properties of the system are simulated using density functional theory calculations for different doping of the bulk semiconductor. It is shown that during transition from a bare GaN(0001) surface to a m–s heterostructure, the Fermi level stays pinned at a Ga-broken bond highly dispersive surface state to Ga–Ga states at the m–s interface. Adsorption of gallium leads to an energy gainmore » of about 4 eV for a clean GaN(0001) surface and the energy decreases to 3.2 eV for a thickly Ga-covered surface. The transition to the m–s interface is observed. For a thick Ga overlayer such interface corresponds to a Schottky contact with a barrier equal to 0.9 and 0.6 eV for n- and p-type, respectively. Bond polarization-related dipole layer occurring due to an electron transfer to the metal leads to a potential energy jump of 1.5 eV, independent on the semiconductor doping. Additionally high electron density in the Ga–Ga bond region leads to an energy barrier about 1.2 eV high and 4 Å wide. This feature may adversely affect the conductivity of the n-type m–s system.« less

  18. The Study of Al0.29Ga0.71N-BASED Schottky Photodiodes Grown on Silicon by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Hassan, H. Abu; Abdullah, M. J.; Mohammad, N. N.; Ahmad, M. A.; Yusof, Y.

    2013-05-01

    In this paper, the growth and characterization of epitaxial Al0.29Ga0.71N grown on Si(111) by RF-plasma assisted molecular beam epitaxy (MBE) are described. The Al mole fraction was derived from the HR-XRD symmetric rocking curve (RC) ω/2θ scans of (0002) plane as x = 0.29. PL spectrum of sample has shown sharp and intense band edge emission of GaN without the existence of yellow emission band, showing that it is comparable in crystal quality of the sample when compared with previous reports. From the Raman measurement of as-grown Al0.29Ga0.71N layer on GaN/AlN/Si sample. We found that the dominant E2 (high) phonon mode of GaN appears at 572.7 cm-1. The E2 (high) mode of AlN appears at 656.7 cm-1 and deviates from the standard value of 655 cm-1 for unstrained AlN. Finally, AlGaN Schottky photodiode have been fabricated and analyzed by mean of electrical characterization, using current-voltage (I-V) measurement to evaluate the performance of this device.

  19. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    NASA Astrophysics Data System (ADS)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  20. Fundamental studies of graphene/graphite and graphene-based Schottky photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Miao, Xiaochang

    In the carbon allotropes family, graphene is one of the most versatile members and has been extensively studied since 2004. The goal of this dissertation is not only to investigate the novel fundamental science of graphene and its three-dimensional sibling, graphite, but also to explore graphene's promising potential in modern electronic and optoelectronic devices. The first two chapters provide a concise introduction to the fundamental solid state physics of graphene (as well as graphite) and the physics at the metal/semiconductor interfaces. In the third chapter, we demonstrate the formation of Schottky junctions at the interfaces of graphene (semimetal) and various inorganic semiconductors that play dominating roles in today's semiconductor technology, such as Si, SiC, GaAs and GaN. As shown from their current-voltage (I -V) and capacitance-voltage (C-V) characteristics, the interface physics can be well described within the framework of the Schottky-Mott model. The results are also well consist with that from our previous studies on graphite based Schottky diodes. In the fourth chapter, as an extension of graphene based Schottky work, we investigate the photovoltaic (PV) effect of graphene/Si junctions after chemically doped with an organic polymer (TFSA). The power conversion efficiency of the solar cell improves from 1.9% to 8.6% after TFSA doping, which is the record in all graphene based PVs. The I -V, C-V and external quantum efficiency measurements suggest 12 that such a significant enhancement in the device performance can be attributed to a doping-induced decrease in the series resistance and a simultaneous increase in the built-in potential. In the fifth chapter, we investigate for the first time the effect of uniaxial strains on magneto-transport properties of graphene. We find that low-temperature weak localization effect in monolayer graphene is gradually suppressed under increasing strains, which is due to a strain-induced decreased intervalley

  1. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  2. Enabling Energy Efficiency and Polarity Control in Germanium Nanowire Transistors by Individually Gated Nanojunctions.

    PubMed

    Trommer, Jens; Heinzig, André; Mühle, Uwe; Löffler, Markus; Winzer, Annett; Jordan, Paul M; Beister, Jürgen; Baldauf, Tim; Geidel, Marion; Adolphi, Barbara; Zschech, Ehrenfried; Mikolajick, Thomas; Weber, Walter M

    2017-02-28

    Germanium is a promising material for future very large scale integration transistors, due to its superior hole mobility. However, germanium-based devices typically suffer from high reverse junction leakage due to the low band-gap energy of 0.66 eV and therefore are characterized by high static power dissipation. In this paper, we experimentally demonstrate a solution to suppress the off-state leakage in germanium nanowire Schottky barrier transistors. Thereto, a device layout with two independent gates is used to induce an additional energy barrier to the channel that blocks the undesired carrier type. In addition, the polarity of the same doping-free device can be dynamically switched between p- and n-type. The shown germanium nanowire approach is able to outperform previous polarity-controllable device concepts on other material systems in terms of threshold voltages and normalized on-currents. The dielectric and Schottky barrier interface properties of the device are analyzed in detail. Finite-element drift-diffusion simulations reveal that both leakage current suppression and polarity control can also be achieved at highly scaled geometries, providing solutions for future energy-efficient systems.

  3. Fabrication and optimization of a whiskerless Schottky barrier diode for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Bishop, W.; Mattauch, R. J.

    1990-01-01

    The following accomplishments were made towards the goal of an optimized whiskerless diode chip for submillimeter wavelength applications. (1) Surface channel whiskerless diode structure was developed which offers excellent DC and RF characteristics, reduced shunt capacitance and simplified fabrication compared to mesa and proton isolated structures. (2) Reliable fabrication technology was developed for the surface channel structure. The new anode plating technology is a major improvement. (3) DC and RF characterization of the surface channel diode was compared with whisker contacted diodes. This data indicates electrical performance as good as the best reported for similar whisker contacted devices. (4) Additional batches of surface channel diodes were fabricated with excellent I-V and reduced shunt capacitance. (5) Large scale capacitance modelinng was done for the planar diode structure. This work revealed the importance of removing the substrate gallium arsenide for absolute minimum pad capacitance. (6) A surface channel diode was developed on quartz substrate and this substrate was completely removed after diode mounting for minimum parasitic capacitance. This work continues with the goal of producing excellent quality submillimeter wavelength planar diodes which satisfy the requirements of easy handling and robustness. These devices will allow the routine implementation of Schottky receivers into space-based applications at frequencies as high as 1 THz, and, in the future, beyond.

  4. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.

    PubMed

    Kim, Hong-Sik; Patel, Malkeshkumar; Park, Hyeong-Ho; Ray, Abhijit; Jeong, Chaehwan; Kim, Joondong

    2016-04-06

    Thermally stable silver nanowires (AgNWs)-embedding metal oxide was applied for Schottky junction solar cells without an intentional doping process in Si. A large scale (100 mm(2)) Schottky solar cell showed a power conversion efficiency of 6.1% under standard illumination, and 8.3% under diffused illumination conditions which is the highest efficiency for AgNWs-involved Schottky junction Si solar cells. Indium-tin-oxide (ITO)-capped AgNWs showed excellent thermal stability with no deformation at 500 °C. The top ITO layer grew in a cylindrical shape along the AgNWs, forming a teardrop shape. The design of ITO/AgNWs/ITO layers is optically beneficial because the AgNWs generate plasmonic photons, due to the AgNWs. Electrical investigations were performed by Mott-Schottky and impedance spectroscopy to reveal the formation of a single space charge region at the interface between Si and AgNWs-embedding ITO layer. We propose a route to design the thermally stable AgNWs for photoelectric device applications with investigation of the optical and electrical aspects.

  5. Potential barrier heights at metal on oxygen-terminated diamond interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muret, P., E-mail: pierre.muret@neel.cnrs.fr; Traoré, A.; Maréchal, A.

    2015-11-28

    Electrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO{sub 2} deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprised of a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on an Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that by Tung [Phys.more » Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones, (b) annealed at 350 °C, (c) annealed at 450 °C with the characteristic barrier heights of 2.2–2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients that are able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.« less

  6. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  7. Destructive Single-Event Failures in Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  8. Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier.

    PubMed

    Ji, Yun; Zhang, Zi-Hui; Tan, Swee Tiam; Ju, Zhen Gang; Kyaw, Zabu; Hasanov, Namig; Liu, Wei; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-01-15

    We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure.

  9. Transmission electron microscopy study of erbium silicide formation from Ti/Er stack for Schottky contact applications.

    PubMed

    Ratajczak, J; Łaszcz, A; Czerwinski, A; Katcki, J; Phillipp, F; Van Aken, P A; Reckinger, N; Dubois, E

    2010-03-01

    In this paper, we present results of transmission electron microscopy studies on erbium silicide structures fabricated under various thermal conditions. A titanium cap has been used as a protective layer against oxidation during rapid thermal annealing of an erbium layer in a temperature range of 300-700 degrees C. Both layers (200 nm Ti and 25 nm Er) were deposited by electron-beam sputtering. The investigations have shown that the transformation of the 25-nm-thick erbium into erbium silicide is completed after annealing at 500 degrees C. At higher temperatures, the formation of a titanium silicide layer above erbium silicide is observed. The lowest Schottky barrier has been measured in the sample annealed at 700 degrees C.

  10. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    NASA Astrophysics Data System (ADS)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  11. Kinetics of Schottky defect formation and annihilation in single crystal TlBr.

    PubMed

    Bishop, Sean R; Tuller, Harry L; Kuhn, Melanie; Ciampi, Guido; Higgins, William; Shah, Kanai S

    2013-07-28

    The kinetics for Schottky defect (Tl and Br vacancy pair) formation and annihilation in ionically conducting TlBr are characterized through a temperature induced conductivity relaxation technique. Near room temperature, defect generation-annihilation was found to take on the order of hours before equilibrium was reached after a step change in temperature, and that mechanical damage imparted on the sample rapidly increases this rate. The rate limiting step to Schottky defect formation-annihilation is identified as being the migration of lower mobility Tl (versus Br), with an estimate for source-sink density derived from calculated diffusion lengths. This study represents one of the first investigations of Schottky defect generation-annihilation kinetics and demonstrates its utility in quantifying detrimental mechanical damage in radiation detector materials.

  12. Using qualitative methods in developing an instrument to identify barriers to self-care among persons with type 2 diabetes mellitus.

    PubMed

    Caro-Bautista, Jorge; Martín-Santos, Francisco Javier; Villa-Estrada, Francisca; Morilla-Herrera, Juan Carlos; Cuevas-Fernández-Gallego, Magdalena; Morales-Asencio, José Miguel

    2015-04-01

    To develop a questionnaire to address barriers and self-care behaviour among persons with type 2 diabetes mellitus. Several instruments are available in the literature to measure barriers to self-care in this population, but many of them present limitations in its psychometric validation process, and lack of theoretical background. Content validation study using multiple qualitative methods. A systematic review was conducted, and two focus groups with fifteen participants (n = 15) were analysed to identify key topics and categories concerning barriers and self-care behaviour. These categories were used to generate items that were subjected to expert scrutiny, using the Delphi technique. The resulting list of items was tested for readability and comprehension by nine diabetic patients (n = 9), through cognitive interviews. The whole process was conducted in accordance with the Theory of Planned Behaviour. The mean age (standard deviation) of participants in the focus groups and cognitive interviews was 66·05 (8·47) and 63·11 (6·13) years, respectively. 46·7% of the members of the focus groups and 44·4% of those interviewed were female, and the mean duration (standard deviation) of their diabetes was 6·53 (3·17) and 4·89 (3·84) years, respectively. After the qualitative analysis, 27 codes were obtained. Thereafter, items were generated in accordance with the dimensions of this theory: attitudes towards the behaviour (n = 23), social norms (n = 13), perceived behavioural control (n = 17) and behavioural intention (n = 15). A rigorous process of content validation with multiple methods was implemented to obtain an instrument aimed at addressing barriers and self-care behaviour of patients with type 2 Diabetes Mellitus. An instrument theoretically rooted and supported on professional and patients' views is available to assess self-care behaviours in patients with type 2 Diabetes Mellitus. The evaluation of its reliability and construct validity will determine

  13. Stability diagrams for the surface patterns of GaN(0001bar) as a function of Schwoebel barrier height

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.

    2017-01-01

    Height and type of Schwoebel barriers (direct or inverse) decides about the character of the surface instability. Different surface morphologies are presented. Step bunches, double steps, meanders, mounds and irregular patterns emerge at the surface as a result of step (Schwoebel) barriers at some temperature or miscut values. The study was carried out on the two-component kinetic Monte Carlo (kMC) model of GaN(0001bar) surface grown in nitrogen rich conditions. Diffusion of gallium adatoms over N-polar surface is slow and nitrogen adatoms are almost immobile. We show that in such conditions surfaces remain smooth when gallium adatoms diffuse in the presence of low inverse Schwoebel barrier. It is illustrated by adequate stability diagrams for surface morphologies.

  14. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  15. Atomistic simulations of CO2 and N2 within cage-type silica zeolites.

    PubMed

    Madison, Lindsey; Heitzer, Henry; Russell, Colin; Kohen, Daniela

    2011-03-01

    The behavior of CO(2) and N(2), both as single components and as binary mixtures, in two cage-type silica zeolites was studied using atomistic simulations. The zeolites considered, ITQ-3 and paradigm cage-type zeolite ZK4 (the all-silica analog of LTA), were chosen so that the principles illustrated can be generalized to other adsorbent/adsorbate systems with similar topology and types of interactions. N(2) was chosen both because of the potential uses of N(2)/CO(2) separations and because it differs from CO(2) most significantly in the magnitude of its Coulombic interactions with zeolites. Despite similarities between N(2) and CO(2) diffusion in other materials, we show here that the diffusion of CO(2) within cage-type zeolites is dominated by an energy barrier to diffusion located at the entrance to the narrow channels connecting larger cages. This barrier originates in Coulombic interactions between zeolites and CO(2)'s quadrupole and results in well-defined orientations for the diffusing molecules. Furthermore, CO(2)'s favorable electrostatic interactions with the zeolite framework result in preferential binding in the windows between cages. N(2)'s behavior, in contrast, is more consistent with that of molecules previously studied. Our analysis suggests that CO(2)'s behavior might be common for adsorbates with quadrupoles that interact strongly with a material that has narrow windows between cages.

  16. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  17. General Practitioners' Barriers to Prescribe Physical Activity: The Dark Side of the Cluster Effects on the Physical Activity of Their Type 2 Diabetes Patients.

    PubMed

    Lanhers, Charlotte; Duclos, Martine; Guttmann, Aline; Coudeyre, Emmanuel; Pereira, Bruno; Ouchchane, Lemlih

    2015-01-01

    To describe barriers to physical activity (PA) in type 2 diabetes patients and their general practitioners (GPs), looking for practitioner's influence on PA practice of their patients. We conducted a cross-sectional study on GPs (n = 48) and their type 2 diabetes patients (n = 369) measuring respectively barriers to prescribe and practice PA using a self-assessment questionnaire: barriers to physical activity in diabetes (BAPAD). Statistical analysis was performed accounting hierarchical data structure. Similar practitioner's patients were considered a cluster sharing common patterns. The higher the patient's BAPAD score, the higher the barriers to PA, the higher the risk to declare practicing no PA (p<0.001), low frequency and low duration of PA (p<0.001). A high patient's BAPAD score was also associated with a higher risk to have HbA1c ≥7% (53 mmol/mol) (p = 0.001). The intra-class correlation coefficient between type 2 diabetes patients and GPs was 34%, indicating a high cluster effect. A high GP's BAPAD score, regarding the PA prescription, is predictive of a high BAPAD score with their patients, regarding their practice (p = 0.03). Type 2 diabetes patients with lower BAPAD score, thus lower barriers to physical activity, have a higher PA level and a better glycemic control. An important and deleterious cluster effect between GPs and their patients is demonstrated: the higher the GP's BAPAD score, the higher the type 2 diabetes patients' BAPAD score. This important cluster effect might designate GPs as a relevant lever for future interventions regarding patient's education towards PA and type 2 diabetes management.

  18. Temperature dependence of current-voltage characteristics in highly doped Ag/p-GaN/In Schottky diodes

    NASA Astrophysics Data System (ADS)

    Ćınar, K.; Yıldırım, N.; Coşkun, C.; Turut, A.

    2009-10-01

    To obtain detailed information about the conduction process of the Ag/p-GaN Schottky diodes (SDs) fabricated by us, we measured the I-V characteristics over the temperature range of 80-360 K by the steps of 20 K. The slope of the linear portion of the forward bias I-V plot and nkT =E0 of the device remained almost unchanged as independent of temperature with an average of 25.71±0.90 V-1 and 41.44±1.38 meV, respectively. Therefore, it can be said that the experimental I-V data quite well obey the field emission model rather than the thermionic emission or thermionic field emission model. The study is a very good experimental example for the FE model. Furthermore, the reverse bias saturation current ranges from 8.34×10-8 A at 80 K to 2.10×10-7 A at 360 K, indicating that the charge transport mechanism in the Ag/p-GaN SD is tunneling due to the weak temperature dependence of the saturation current. The possible origin of high experimental characteristic tunneling energy of E00=39 meV, which is ten times larger than possible theoretical value of 3.89 meV, is attributed to the accumulation of a large amount of defect states near the GaN surface or to the deep level defect band induced by high doping or to any mechanism which enhances the electric field and the state density at the semiconductor surface.

  19. High voltage semiconductor devices and methods of making the devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias.more » The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.« less

  20. High voltage semiconductor devices and methods of making the devices

    DOEpatents

    Matocha, Kevin; Chatty, Kiran; Banerjee, Sujit

    2017-02-28

    A multi-cell MOSFET device including a MOSFET cell with an integrated Schottky diode is provided. The MOSFET includes n-type source regions formed in p-type well regions which are formed in an n-type drift layer. A p-type body contact region is formed on the periphery of the MOSFET. The source metallization of the device forms a Schottky contact with an n-type semiconductor region adjacent the p-type body contact region of the device. Vias can be formed through a dielectric material covering the source ohmic contacts and/or Schottky region of the device and the source metallization can be formed in the vias. The n-type semiconductor region forming the Schottky contact and/or the n-type source regions can be a single continuous region or a plurality of discontinuous regions alternating with discontinuous p-type body contact regions. The device can be a SiC device. Methods of making the device are also provided.