Science.gov

Sample records for n-vector model collective

  1. Dualities in 3D large N vector models

    NASA Astrophysics Data System (ADS)

    Muteeb, Nouman; Zayas, Leopoldo A. Pando; Quevedo, Fernando

    2016-05-01

    Using an explicit path integral approach we derive non-abelian bosonization and duality of 3D systems in the large N limit. We first consider a fermionic U( N) vector model coupled to level k Chern-Simons theory, following standard techniques we gauge the original global symmetry and impose the corresponding field strength F μν to vanish introducing a Lagrange multiplier Λ. Exchanging the order of integrations we obtain the bosonized theory with Λ as the propagating field using the large N rather than the previously used large mass limit. Next we follow the same procedure to dualize the scalar U ( N) vector model coupled to Chern-Simons and find its corresponding dual theory. Finally, we compare the partition functions of the two resulting theories and find that they agree in the large N limit including a level/rank duality. This provides a constructive evidence for previous proposals on level/rank duality of 3D vector models in the large N limit. We also present a partial analysis at subleading order in large N and find that the duality does not generically hold at this level.

  2. Low Temperature Properties for Correlation Functions in Classical N-Vector Spin Models

    NASA Astrophysics Data System (ADS)

    Balaban, Tadeusz; O'Carroll, Michael

    We obtain convergent multi-scale expansions for the one-and two-point correlation functions of the low temperature lattice classical N- vector spin model in d>= 3 dimensions, N>= 2. The Gibbs factor is taken as where , , , are large and 0 < v<= 1. In the thermodynamic and limits, with h=e1, and Δ≡∂*∂, the expansion gives (spontaneous magnetization), , (Goldstone Bosons), , and , where , for some ρ > 0, and c0 is aprecisely determined constant.

  3. A n-vector model for charge transport in molecular semiconductors.

    PubMed

    Jackson, Nicholas E; Kohlstedt, Kevin L; Chen, Lin X; Ratner, Mark A

    2016-11-28

    We develop a lattice model utilizing coarse-grained molecular sites to study charge transport in molecular semiconducting materials. The model bridges atomistic descriptions and structureless lattice models by mapping molecular structure onto sets of spatial vectors isomorphic with spin vectors in a classical n-vector Heisenberg model. Specifically, this model incorporates molecular topology-dependent orientational and intermolecular coupling preferences, including the direct inclusion of spatially correlated transfer integrals and site energy disorder. This model contains the essential physics required to explicitly simulate the interplay of molecular topology and correlated structural disorder, and their effect on charge transport. As a demonstration of its utility, we apply this model to analyze the effects of long-range orientational correlations, molecular topology, and intermolecular interaction strength on charge motion in bulk molecular semiconductors.

  4. A n-vector model for charge transport in molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Jackson, Nicholas E.; Kohlstedt, Kevin L.; Chen, Lin X.; Ratner, Mark A.

    2016-11-01

    We develop a lattice model utilizing coarse-grained molecular sites to study charge transport in molecular semiconducting materials. The model bridges atomistic descriptions and structureless lattice models by mapping molecular structure onto sets of spatial vectors isomorphic with spin vectors in a classical n-vector Heisenberg model. Specifically, this model incorporates molecular topology-dependent orientational and intermolecular coupling preferences, including the direct inclusion of spatially correlated transfer integrals and site energy disorder. This model contains the essential physics required to explicitly simulate the interplay of molecular topology and correlated structural disorder, and their effect on charge transport. As a demonstration of its utility, we apply this model to analyze the effects of long-range orientational correlations, molecular topology, and intermolecular interaction strength on charge motion in bulk molecular semiconductors.

  5. Critical structure factors of bilinear fields in O(N) vector models.

    PubMed

    Calabrese, Pasquale; Pelissetto, Andrea; Vicari, Ettore

    2002-04-01

    We compute the two-point correlation functions of general quadratic operators in the high-temperature phase of the three-dimensional O(N) vector model by using field-theoretical methods. In particular, we study the small- and large-momentum behavior of the corresponding scaling functions, and give general interpolation formulas based on a dispersive approach. Moreover, we determine the crossover exponent phi(T) associated with the traceless tensorial quadratic field, by computing and analyzing its six-loop perturbative expansion in fixed dimension. We find phi(T)=1.184(12), phi(T)=1.271(21), and phi(T)=1.40(4) for N=2,3,5, respectively.

  6. Area term of the entanglement entropy of a supersymmetric O (N ) vector model in three dimensions

    NASA Astrophysics Data System (ADS)

    Hung, Ling-Yan; Jiang, Yikun; Wang, Yixu

    2017-04-01

    We studied the leading area term of the entanglement entropy of the N =1 supersymmetric O (N ) vector model in 2 +1 dimensions close to the line of the second order phase transition in the large N limit. We found that the area term is independent of the varying interaction coupling along the critical line, unlike what is expected in a perturbative theory. Along the way, we studied noncommuting limits n -1 →0 vs UV cutoff r →0 when evaluating the gap equation and found a match only when the appropriate counterterm is introduced and the coupling of which is chosen to take its fixed point value. As a bonus, we also studied fermionic Green functions in the conical background. We made the observation of a map between the problem and the relativistic hydrogen atom.

  7. O(n) vector model on a planar random lattice; spectrum of anomalous dimensions

    SciTech Connect

    Kostov, I.K.

    1989-01-01

    The O(n) model on a two-dimensional dynamical random lattice is reformulated as a random matrix problem. The critical properties of the model are encoded in the spectral density of the random matrix which satisfies an integral equation with Cauchy kernel. The analysis of its singularities shows that the model can be critical for - 2 /le/ eta /le/ 2 and allows the determination of the anomalous dimensions of an infinite series of magnetic operators. The results coincide with those found in Ref. 11 for 2d quantum gravity.

  8. Multicanonical sampling of the space of states of ℋ(2, n)-vector models

    NASA Astrophysics Data System (ADS)

    Shevchenko, Yu. A.; Makarov, A. G.; Andriushchenko, P. D.; Nefedev, K. V.

    2017-06-01

    Problems of temperature behavior of specific heat are solved by the entropy simulation method for Ising models on a simple square lattice and a square spin ice (SSI) lattice with nearest neighbor interaction, models of hexagonal lattices with short-range (SR) dipole interaction, as well as with long-range (LR) dipole interaction and free boundary conditions, and models of spin quasilattices with finite interaction radius. It is established that systems of a finite number of Ising spins with LR dipole interaction can have unusual thermodynamic properties characterized by several specific-heat peaks in the absence of an external magnetic field. For a parallel multicanonical sampling method, optimal schemes are found empirically for partitioning the space of states into energy bands for Ising and SSI models, methods of concatenation and renormalization of histograms are discussed, and a flatness criterion of histograms is proposed. It is established that there is no phase transition in a model with nearest neighbor interaction on a hexagonal lattice, while the temperature behavior of specific heat exhibits singularity in the same model, in case of LR interaction. A spin quasilattice is found that exhibits a nonzero value of residual entropy.

  9. Critical behavior of the n-vector model for 1

    NASA Astrophysics Data System (ADS)

    Lau, Man-Hot; Dasgupta, Chandan

    1987-01-01

    The Migdal-Kadanoff position-space renormalization-group scheme is used to study the critical behavior of the isotropic n-component-vector model in the previously unexplored region, 1=dl(n). The lower critical dimension dl(n) increases continuously, but nonlinearly from 1 to 2 as n changes from 1 to 2. For dl(n)<=d<2, the low-temperature phase is characterized by a power-law decay of the two-point correlation function with a temperature-independent exponent.

  10. CT and CJ up to next-to-leading order in {1}/{N} in the conformally invariant O( N) vector model for 2 < d < 4

    NASA Astrophysics Data System (ADS)

    Petkou, Anastasios C.

    1995-02-01

    Using operator product expansions and a graphical ansatz for the four-point function of the fundamental field φa( x) in the conformally invariant O( N) vector model, we calculate the next-to-leading order in {1}/{N} values of the quantities CT and CJ. We check the results against what is expected from possible generalisations of the C- and k-theorems in higher dimensions and also against known three-loop calculations in a O( N) invariant teta; 4 theory for d = 4 - ɛ.

  11. Off-equilibrium scaling behaviors driven by time-dependent external fields in three-dimensional O(N) vector models.

    PubMed

    Pelissetto, Andrea; Vicari, Ettore

    2016-03-01

    We consider the dynamical off-equilibrium behavior of the three-dimensional O(N) vector model in the presence of a slowly varying time-dependent spatially uniform magnetic field H(t)=h(t)e, where e is an N-dimensional constant unit vector, h(t)=t/t(s), and t(s) is a time scale, at fixed temperature T≤T(c), where T(c) corresponds to the continuous order-disorder transition. The dynamic evolutions start from equilibrium configurations at h(i)<0, correspondingly t(i)<0, and end at time t(f)>0 with h(t(f))>0, or vice versa. We show that the magnetization displays an off-equilibrium scaling behavior close to the transition line H(t)=0. It arises from the interplay among the time t, the time scale t(s), and the finite size L. The scaling behavior can be parametrized in terms of the scaling variables t(s)(κ)/L and t/t(s)(κ(t)), where κ>0 and κ(t)>0 are appropriate universal exponents, which differ at the critical point and for Tmodel under a purely relaxational dynamics. They confirm the predicted off-equilibrium scaling behaviors at and below T(c). We also discuss hysteresis phenomena in round-trip protocols for the time dependence of the external field. We define a scaling function for the hysteresis loop area of the magnetization that can be used to quantify how far the system is from equilibrium.

  12. Modeling collective cell motility

    NASA Astrophysics Data System (ADS)

    Rappel, Wouter-Jan

    Eukaryotic cells often move in groups, a critical aspect of many biological and medical processes including wound healing, morphogenesis and cancer metastasis. Modeling can provide useful insights into the fundamental mechanisms of collective cell motility. Constructing models that incorporate the physical properties of the cells, however, is challenging. Here, I discuss our efforts to build a comprehensive cell motility model that includes cell membrane properties, cell-substrate interactions, cell polarity, and cell-cell interaction. The model will be applied to a variety of systems, including motion on micropatterned substrates and the migration of border cells in Drosophila. This work was supported by NIH Grant No. P01 GM078586 and NSF Grant No. 1068869.

  13. Neurodynamical model of collective brain

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1992-01-01

    A dynamical system which mimics collective purposeful activities of a set of units of intelligence is introduced and discussed. A global control of the unit activities is replaced by the probabilistic correlations between them. These correlations are learned during a long term period of performing collective tasks, and are stored in the synaptic interconnections. The model is represented by a system of ordinary differential equations with terminal attractors and repellers, and does not contain any man-made digital devices.

  14. Bohr model as an algebraic collective model

    SciTech Connect

    Rowe, D. J.; Welsh, T. A.; Caprio, M. A.

    2009-05-15

    Developments and applications are presented of an algebraic version of Bohr's collective model. Illustrative examples show that fully converged calculations can be performed quickly and easily for a large range of Hamiltonians. As a result, the Bohr model becomes an effective tool in the analysis of experimental data. The examples are chosen both to confirm the reliability of the algebraic collective model and to show the diversity of results that can be obtained by its use. The focus of the paper is to facilitate identification of the limitations of the Bohr model with a view to developing more realistic, computationally tractable models.

  15. An Intelligence Collection Management Model.

    DTIC Science & Technology

    1984-06-01

    classification of inteligence collection requirements in terms of. the a-.- metnodo"c, .ev--e in Chaster Five. 116 APPgENDIX A A METHOD OF RANKING...of Artificial Intelligence Tools and Technigues to!TN’X n~l is n rs aa~emfft-.3-ufnyva: ’A TZ Ashby W. Ecss. An Introduction to Cybernetics. New York

  16. A model of electron collecting plasma contractors

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1989-01-01

    A model of plasma contractors is being developed, which can be used to describe electron collection in a laboratory test tank and in the space environment. To validate the model development, laboratory experiments are conducted in which the source plasma is separated from the background plasma by a double layer. Model calculations show that an increase in ionization rate with potential produces a steep rise in collected current with increasing potential.

  17. A model of electron collecting plasma contractors

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1989-01-01

    A model of plasma contractors is being developed, which can be used to describe electron collection in a laboratory test tank and in the space environment. To validate the model development, laboratory experiments are conducted in which the source plasma is separated from the background plasma by a double layer. Model calculations show that an increase in ionization rate with potential produces a steep rise in collected current with increasing potential.

  18. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  19. Modelling fuel consumption in kerbside source segregated food waste collection: separate collection and co-collection.

    PubMed

    Chu, T W; Heaven, S; Gredmaier, L

    2015-01-01

    Source separated food waste is a valuable feedstock for renewable energy production through anaerobic digestion, and a variety of collection schemes for this material have recently been introduced. The aim of this study was to identify options that maximize collection efficiency and reduce fuel consumption as part of the overall energy balance. A mechanistic model was developed to calculate the fuel consumption of kerbside collection of source segregated food waste, co-mingled dry recyclables and residual waste. A hypothetical city of 20,000 households was considered and nine scenarios were tested with different combinations of collection frequencies, vehicle types and waste types. The results showed that the potential fuel savings from weekly and fortnightly co-collection of household waste range from 7.4% to 22.4% and 1.8% to 26.6%, respectively, when compared to separate collection. A compartmentalized vehicle split 30:70 always performed better than one with two compartments of equal size. Weekly food waste collection with alternate weekly collection of the recyclables and residual waste by two-compartment collection vehicles was the best option to reduce the overall fuel consumption.

  20. Modeling collective cell migration in geometric confinement

    NASA Astrophysics Data System (ADS)

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S. R. K.; D'Alessandro, Joseph; Lim, C. T.; Ladoux, Benoit; Gov, Nir S.

    2017-06-01

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops ‘fingers’, which we have recently modeled using a proposed feedback between the curvature of the monolayer’s leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  1. Modeling collective cell migration in geometric confinement.

    PubMed

    Tarle, Victoria; Gauquelin, Estelle; Vedula, S R K; D'Alessandro, Joseph; Lim, C T; Ladoux, Benoit; Gov, Nir S

    2017-05-03

    Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops 'fingers', which we have recently modeled using a proposed feedback between the curvature of the monolayer's leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.

  2. Consistent quadrupole-octupole collective model

    NASA Astrophysics Data System (ADS)

    Dobrowolski, A.; Mazurek, K.; Góźdź, A.

    2016-11-01

    Within this work we present a consistent approach to quadrupole-octupole collective vibrations coupled with the rotational motion. A realistic collective Hamiltonian with variable mass-parameter tensor and potential obtained through the macroscopic-microscopic Strutinsky-like method with particle-number-projected BCS (Bardeen-Cooper-Schrieffer) approach in full vibrational and rotational, nine-dimensional collective space is diagonalized in the basis of projected harmonic oscillator eigensolutions. This orthogonal basis of zero-, one-, two-, and three-phonon oscillator-like functions in vibrational part, coupled with the corresponding Wigner function is, in addition, symmetrized with respect to the so-called symmetrization group, appropriate to the collective space of the model. In the present model it is D4 group acting in the body-fixed frame. This symmetrization procedure is applied in order to provide the uniqueness of the Hamiltonian eigensolutions with respect to the laboratory coordinate system. The symmetrization is obtained using the projection onto the irreducible representation technique. The model generates the quadrupole ground-state spectrum as well as the lowest negative-parity spectrum in 156Gd nucleus. The interband and intraband B (E 1 ) and B (E 2 ) reduced transition probabilities are also calculated within those bands and compared with the recent experimental results for this nucleus. Such a collective approach is helpful in searching for the fingerprints of the possible high-rank symmetries (e.g., octahedral and tetrahedral) in nuclear collective bands.

  3. Locust Collective Motion and Its Modeling

    PubMed Central

    Ariel, Gil; Ayali, Amir

    2015-01-01

    Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels. PMID:26656851

  4. The modelling cycle for collective animal behaviour.

    PubMed

    Sumpter, David J T; Mann, Richard P; Perna, Andrea

    2012-12-06

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches-theory-driven, data-driven and model selection-to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together.

  5. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  6. Developing New Models for Collection Development.

    ERIC Educational Resources Information Center

    Stoffle, Carla J.; Fore, Janet; Allen, Barbara

    1999-01-01

    Discusses the need to develop new models for collection development in academic libraries, based on experiences at the University of Arizona. Highlights include changes in the organizational chart; focusing on users' information goals and needs; integrative services; shared resources; interlibrary loans; digital technology; and funding. (LRW)

  7. Developing New Models for Collection Development.

    ERIC Educational Resources Information Center

    Stoffle, Carla J.; Fore, Janet; Allen, Barbara

    1999-01-01

    Discusses the need to develop new models for collection development in academic libraries, based on experiences at the University of Arizona. Highlights include changes in the organizational chart; focusing on users' information goals and needs; integrative services; shared resources; interlibrary loans; digital technology; and funding. (LRW)

  8. Relating ground truth collection to model sensitivity

    NASA Technical Reports Server (NTRS)

    Amar, Faouzi; Fung, Adrian K.; Karam, Mostafa A.; Mougin, Eric

    1993-01-01

    The importance of collecting high quality ground truth before a SAR mission over a forested area is two fold. First, the ground truth is used in the analysis and interpretation of the measured backscattering properties; second, it helps to justify the use of a scattering model to fit the measurements. Unfortunately, ground truth is often collected based on visual assessment of what is perceived to be important without regard to the mission itself. Sites are selected based on brief surveys of large areas, and the ground truth is collected by a process of selecting and grouping different scatterers. After the fact, it may turn out that some of the relevant parameters are missing. A three-layer canopy model based on the radiative transfer equations is used to determine, before hand, the relevant parameters to be collected. Detailed analysis of the contribution to scattering and attenuation of various forest components is carried out. The goal is to identify the forest parameters which most influence the backscattering as a function of frequency (P-, L-, and C-bands) and incident angle. The influence on backscattering and attenuation of branch diameters, lengths, angular distribution, and permittivity; trunk diameters, lengths, and permittivity; and needle sizes, their angular distribution, and permittivity are studied in order to maximize the efficiency of the ground truth collection efforts. Preliminary results indicate that while a scatterer may not contribute to the total backscattering, its contribution to attenuation may be significant depending on the frequency.

  9. Relating ground truth collection to model sensitivity

    NASA Technical Reports Server (NTRS)

    Amar, Faouzi; Fung, Adrian K.; Karam, Mostafa A.; Mougin, Eric

    1993-01-01

    The importance of collecting high quality ground truth before a SAR mission over a forested area is two fold. First, the ground truth is used in the analysis and interpretation of the measured backscattering properties; second, it helps to justify the use of a scattering model to fit the measurements. Unfortunately, ground truth is often collected based on visual assessment of what is perceived to be important without regard to the mission itself. Sites are selected based on brief surveys of large areas, and the ground truth is collected by a process of selecting and grouping different scatterers. After the fact, it may turn out that some of the relevant parameters are missing. A three-layer canopy model based on the radiative transfer equations is used to determine, before hand, the relevant parameters to be collected. Detailed analysis of the contribution to scattering and attenuation of various forest components is carried out. The goal is to identify the forest parameters which most influence the backscattering as a function of frequency (P-, L-, and C-bands) and incident angle. The influence on backscattering and attenuation of branch diameters, lengths, angular distribution, and permittivity; trunk diameters, lengths, and permittivity; and needle sizes, their angular distribution, and permittivity are studied in order to maximize the efficiency of the ground truth collection efforts. Preliminary results indicate that while a scatterer may not contribute to the total backscattering, its contribution to attenuation may be significant depending on the frequency.

  10. Connexions for the nuclear geometrical collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.; Sparks, N.

    2015-11-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM(3), has two hidden mathematical structures, one group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new feature that this paper investigates in some detail. Using the de Rham Laplacian \\triangle =\\star d \\star d for the kinetic energy extends significantly the physical scope of the GCM(3) model. This Laplacian contains a ‘magnetic’ term due to the connexion between base manifold rotational and fibre vortex degrees of freedom. When the connexion specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator.

  11. Model of electron collecting plasma contactors

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1991-01-01

    In laboratory experiments, plasma contactors are observed to collect ampere-level electron currents with low impedance. In order to extend the laboratory experience to the low-earth-orbit environment, a model of plasma contactors is being developed. Laboratory results are being used to support and validate the model development. The important physical processes observed in the laboratory are that the source plasma is separated from the background plasma by a double layer and that ionization of the expellant gas by the collected electrons creates the bulk of the ions that leave the source plasma. The model, which uses Poisson's equation with a physical charge density that includes the ion and electron components of both the source and the ambient plasmas, reproduces this phenomenon for typical experimental parameters. The calculations, in agreement with the laboratory results, show little convergence of the accelerated electrons. The angular momentum of the incoming electrons dramatically reduces the peak electron density. These electrons ionize enough gas to generate the source plasma. Calculations show that the increase in ionization rate with potential produces a steep rise in collected current with increasing potential as seen in the laboratory.

  12. Modeling traction forces in collective cell migration

    NASA Astrophysics Data System (ADS)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  13. Modeling pattern in collections of parameters

    USGS Publications Warehouse

    Link, W.A.

    1999-01-01

    Wildlife management is increasingly guided by analyses of large and complex datasets. The description of such datasets often requires a large number of parameters, among which certain patterns might be discernible. For example, one may consider a long-term study producing estimates of annual survival rates; of interest is the question whether these rates have declined through time. Several statistical methods exist for examining pattern in collections of parameters. Here, I argue for the superiority of 'random effects models' in which parameters are regarded as random variables, with distributions governed by 'hyperparameters' describing the patterns of interest. Unfortunately, implementation of random effects models is sometimes difficult. Ultrastructural models, in which the postulated pattern is built into the parameter structure of the original data analysis, are approximations to random effects models. However, this approximation is not completely satisfactory: failure to account for natural variation among parameters can lead to overstatement of the evidence for pattern among parameters. I describe quasi-likelihood methods that can be used to improve the approximation of random effects models by ultrastructural models.

  14. Modeling of Fabry-Perot collection optics

    SciTech Connect

    Frank, A.M.

    1984-07-16

    The purpose of these calculations was to determine whether the collection optics of the Fabry-Perot velocimeter could be improved by conversion to a relay system. In this study the optical design code ACCOS5 was used to model both the current system and a relay. The ACCOS5 printouts are given. Spot diagrams of 1000 rays each were computed from four locations for each of the two configurations. These include source points on axis and 150 ..mu..m off axis for the system both in focus and with the object advanced 40 mm towards the objective. The back focus (BF) of both systems is optimized by the program for best paraxial focus. The distance was then fixed for the 40 mm defocused case.

  15. 43 CFR 3186.2 - Model collective bond.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Model collective bond. 3186.2 Section 3186.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT... Model Forms § 3186.2 Model collective bond. Collective Corporate Surety Bond Know all men by these...

  16. Three Proposed Data Collection Models for Annual Inventories

    Treesearch

    Greg Reams; Bill Smith; Bill Bechtold; Ron McRoberts; Frank Spirek; Chuck Liff

    2005-01-01

    Three competing data collection models for the U.S. Department of Agriculture Forest Service Forest Inventory and Analysis (FIA) program?s annual inventories are presented. We show that in the presence of panel creep, the model now in place does not meet requirements of an annual inventory system mandated by the 1998 Farm Bill. Two data-collection models that use...

  17. Modeling crowdsourcing as collective problem solving

    PubMed Central

    Guazzini, Andrea; Vilone, Daniele; Donati, Camillo; Nardi, Annalisa; Levnajić, Zoran

    2015-01-01

    Crowdsourcing is a process of accumulating the ideas, thoughts or information from many independent participants, with aim to find the best solution for a given challenge. Modern information technologies allow for massive number of subjects to be involved in a more or less spontaneous way. Still, the full potentials of crowdsourcing are yet to be reached. We introduce a modeling framework through which we study the effectiveness of crowdsourcing in relation to the level of collectivism in facing the problem. Our findings reveal an intricate relationship between the number of participants and the difficulty of the problem, indicating the optimal size of the crowdsourced group. We discuss our results in the context of modern utilization of crowdsourcing. PMID:26552943

  18. Modeling of collection efficiency in lidar spectroscopy

    NASA Astrophysics Data System (ADS)

    Lienert, Barry; Sharma, Shiv K.; Chen, Teng; Price, Frank; Madey, John M. J.

    2005-08-01

    We performed a calibration experiment on a Spectralon Target using a wavelength of 0.532 μm and a 60 cm lidar system coupled to a photon counter via a Triax 190 monochrometer. The complete system optics, including the telescope and monchromator, were modeled using a commercial ray-tracing program. Energy efficiency was calculated by generating large numbers of equal-area rays on the telescope input pupil from points in the plane of the target. The number of these rays received by the PMT cathode was then used to estimate the optical efficiency. Comparison of the calculated and observed signals gave agreement to within 30%. We discuss the possible sources of disagreement between the calculated and observed signals.

  19. MMW turntable data collection, data analysis, and target model development

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; Barr, Douglas P.; Mobley, Scott B.; Leonard, Wayne

    2000-07-01

    Turntable data collection on ground targets using an instrumentation W-band monopulse radar is reported. The data collection site, instrumentation, and test methodology are described. Preliminary analysis results showing target RCS comparisons are reported. The turntable measurements are used to generate point scatterer target models for all-digital and real-time hardware-in-the-loop (HWIL) simulations. Model development techniques are described. The models are validated against measured data utilizing generic high range resolution acquisition and tracking algorithms.

  20. The Mathematical Concept of Set and the 'Collection' Model.

    ERIC Educational Resources Information Center

    Fischbein, Efraim; Baltsan, Madlen

    1999-01-01

    Hypothesizes that various misconceptions held by students with regard to the mathematical set concept may be explained by the initial collection model. Study findings confirm the hypothesis. (Author/ASK)

  1. Modelling Rho GTPase biochemistry to predict collective cell migration

    NASA Astrophysics Data System (ADS)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  2. Parity-violating asymmetry in the {sup 3}He(n-vector,p){sup 3}H reaction

    SciTech Connect

    Viviani, M.; Kievsky, A.; Schiavilla, R.; Girlanda, L.; Marcucci, L. E.

    2010-10-15

    The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction {sup 3}He(n-vector,p){sup 3}H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {sup 2S+1}L{sub J}={sup 1}S{sub 0} and {sup 3}S{sub 1} states in the incoming n-{sup 3}He channel to states with J=0 and 1 in the outgoing p-{sup 3}H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channel nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH ''best values'' set, range from -9.44 to -2.48 in units of 10{sup -8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions and is of course sensitive to the assumed values for the PV coupling constants.

  3. Physical models of collective cell motility: from cell to tissue

    NASA Astrophysics Data System (ADS)

    Camley, B. A.; Rappel, W.-J.

    2017-03-01

    In this article, we review physics-based models of collective cell motility. We discuss a range of techniques at different scales, ranging from models that represent cells as simple self-propelled particles to phase field models that can represent a cell’s shape and dynamics in great detail. We also extensively review the ways in which cells within a tissue choose their direction, the statistics of cell motion, and some simple examples of how cell–cell signaling can interact with collective cell motility. This review also covers in more detail selected recent works on collective cell motion of small numbers of cells on micropatterns, in wound healing, and the chemotaxis of clusters of cells.

  4. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2008-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  5. Particle Swarm Based Collective Searching Model for Adaptive Environment

    SciTech Connect

    Cui, Xiaohui; Patton, Robert M; Potok, Thomas E; Treadwell, Jim N

    2007-01-01

    This report presents a pilot study of an integration of particle swarm algorithm, social knowledge adaptation and multi-agent approaches for modeling the collective search behavior of self-organized groups in an adaptive environment. The objective of this research is to apply the particle swarm metaphor as a model of social group adaptation for the dynamic environment and to provide insight and understanding of social group knowledge discovering and strategic searching. A new adaptive environment model, which dynamically reacts to the group collective searching behaviors, is proposed in this research. The simulations in the research indicate that effective communication between groups is not the necessary requirement for whole self-organized groups to achieve the efficient collective searching behavior in the adaptive environment.

  6. Satellite image collection modeling for large area hazard emergency response

    NASA Astrophysics Data System (ADS)

    Liu, Shufan; Hodgson, Michael E.

    2016-08-01

    Timely collection of critical hazard information is the key to intelligent and effective hazard emergency response decisions. Satellite remote sensing imagery provides an effective way to collect critical information. Natural hazards, however, often have large impact areas - larger than a single satellite scene. Additionally, the hazard impact area may be discontinuous, particularly in flooding or tornado hazard events. In this paper, a spatial optimization model is proposed to solve the large area satellite image acquisition planning problem in the context of hazard emergency response. In the model, a large hazard impact area is represented as multiple polygons and image collection priorities for different portion of impact area are addressed. The optimization problem is solved with an exact algorithm. Application results demonstrate that the proposed method can address the satellite image acquisition planning problem. A spatial decision support system supporting the optimization model was developed. Several examples of image acquisition problems are used to demonstrate the complexity of the problem and derive optimized solutions.

  7. A semisupervised segmentation model for collections of images.

    PubMed

    Law, Yan Nei; Lee, Hwee Kuan; Ng, Michael K; Yip, Andy M

    2012-06-01

    In this paper, we consider the problem of segmentation of large collections of images. We propose a semisupervised optimization model that determines an efficient segmentation of many input images. The advantages of the model are twofold. First, the segmentation is highly controllable by the user so that the user can easily specify what he/she wants. This is done by allowing the user to provide, either offline or interactively, some (fully or partially) labeled pixels in images as strong priors for the model. Second, the model requires only minimal tuning of model parameters during the initial stage. Once initial tuning is done, the setup can be used to automatically segment a large collection of images that are distinct but share similar features. We will show the mathematical properties of the model such as existence and uniqueness of solution and establish a maximum/minimum principle for the solution of the model. Extensive experiments on various collections of biological images suggest that the proposed model is effective for segmentation and is computationally efficient.

  8. Collection methods of trematode eggs using experimental animal models.

    PubMed

    Tsubokawa, Daigo; Sugiyama, Hiromu; Mikami, Fusako; Shibata, Katsumasa; Shibahara, Toshiyuki; Fukuda, Koichi; Takamiya, Shinzaburo; Yamasaki, Hiroshi; Nakamura, Takeshi; Tsuji, Naotoshi

    2016-10-01

    Although observing the eggs of human parasitic helminth is essential for medical education in parasitology, opportunities for collection of the eggs are limited. Collection of the eggs using experimental animal models is needed for a sustainable supply. The metacercariae of three trematode species, Paragonimus westermani, Clonorchis sinensis and Metagonimus yokogawai, were collected from the second intermediate hosts: freshwater crabs and fishes, which were obtained using online shopping in Japan, and inoculated to experimental animal rat and dog. Consequently, eggs of the three trematode species were obtained abundantly from the feces of the animals. The eggs are being used for student training in several Japanese universities. In this article, we introduce the collection procedures for trematode eggs.

  9. Disease surveillance and data collection issues in epidemic modelling.

    PubMed

    Solomon, P J; Isham, V S

    2000-06-01

    This paper is founded on a tutorial session given to the School on Modern Statistical Methods in Medical Research which was held at the International Centre for Theoretical Physics, Trieste in September 1999. We review the aims, scope and purposes of infectious disease surveillance including determining transmission information to underpin model structure and parameterization in epidemic modelling. The practical problems inherent in collecting surveillance data are illustrated by a study of HIV/AIDS in Cambodia. We also review the basic elements of mathematical models developed to represent the transmission dynamics of infectious diseases, and discuss reasons for the gap between mathematical epidemic models and available data.

  10. A simple generative model of collective online behavior.

    PubMed

    Gleeson, James P; Cellai, Davide; Onnela, Jukka-Pekka; Porter, Mason A; Reed-Tsochas, Felix

    2014-07-22

    Human activities increasingly take place in online environments, providing novel opportunities for relating individual behaviors to population-level outcomes. In this paper, we introduce a simple generative model for the collective behavior of millions of social networking site users who are deciding between different software applications. Our model incorporates two distinct mechanisms: one is associated with recent decisions of users, and the other reflects the cumulative popularity of each application. Importantly, although various combinations of the two mechanisms yield long-time behavior that is consistent with data, the only models that reproduce the observed temporal dynamics are those that strongly emphasize the recent popularity of applications over their cumulative popularity. This demonstrates--even when using purely observational data without experimental design--that temporal data-driven modeling can effectively distinguish between competing microscopic mechanisms, allowing us to uncover previously unidentified aspects of collective online behavior.

  11. MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE PIPE TRUSS BRIDGE (NO LONGER EXTANT) SPANNING DEEP CREEK, SHACKELFORD COUNTY, TEXAS, CONSTRUCTED BY FLINN-MOYER COMPANY IN 1896. BARREL VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  12. MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE PIPE TRUSS BRIDGE (NO LONGER EXTANT) SPANNING DEEP CREEK, SHACKELFORD COUNTY, TEXAS, CONSTRUCTED BY FLINN-MOYER COMPANY IN 1896. 3/4 VIEW FROM ABOVE. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  13. MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE PIPE TRUSS BRIDGE (NO LONGER EXTANT) SPANNING DEEP CREEK, SHACKELFORD COUNTY, TEXAS, CONSTRUCTED BY FLINN-MOYER COMPANY IN 1896. ELEVATION VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  14. MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MODEL FROM COLLECTION OF DR. TIMOTHY L. FLINN, OF HOWE PIPE TRUSS BRIDGE (NO LONGER EXTANT) SPANNING DEEP CREEK, SHACKELFORD COUNTY, TEXAS, CONSTRUCTED BY FLINN-MOYER COMPANY IN 1896. 3/4 VIEW. - Clear Fork of Brazos River Suspension Bridge, Spanning Clear Fork of Brazos River at County Route 179, Albany, Shackelford County, TX

  15. Building and Sustaining Digital Collections: Models for Libraries and Museums.

    ERIC Educational Resources Information Center

    Council on Library and Information Resources, Washington, DC.

    In February 2001, the Council on Library and Information Resources (CLIR) and the National Initiative for a Networked Cultural Heritage (NINCH) convened a meeting to discuss how museums and libraries are building digital collections and what business models are available to sustain them. A group of museum and library senior executives met with…

  16. Emergent collective decision-making: Control, model and behavior

    NASA Astrophysics Data System (ADS)

    Shen, Tian

    In this dissertation we study emergent collective decision-making in social groups with time-varying interactions and heterogeneously informed individuals. First we analyze a nonlinear dynamical systems model motivated by animal collective motion with heterogeneously informed subpopulations, to examine the role of uninformed individuals. We find through formal analysis that adding uninformed individuals in a group increases the likelihood of a collective decision. Secondly, we propose a model for human shared decision-making with continuous-time feedback and where individuals have little information about the true preferences of other group members. We study model equilibria using bifurcation analysis to understand how the model predicts decisions based on the critical threshold parameters that represent an individual's tradeoff between social and environmental influences. Thirdly, we analyze continuous-time data of pairs of human subjects performing an experimental shared tracking task using our second proposed model in order to understand transient behavior and the decision-making process. We fit the model to data and show that it reproduces a wide range of human behaviors surprisingly well, suggesting that the model may have captured the mechanisms of observed behaviors. Finally, we study human behavior from a game-theoretic perspective by modeling the aforementioned tracking task as a repeated game with incomplete information. We show that the majority of the players are able to converge to playing Nash equilibrium strategies. We then suggest with simulations that the mean field evolution of strategies in the population resemble replicator dynamics, indicating that the individual strategies may be myopic. Decisions form the basis of control and problems involving deciding collectively between alternatives are ubiquitous in nature and in engineering. Understanding how multi-agent systems make decisions among alternatives also provides insight for designing

  17. Forecasting rain events - Meteorological models or collective intelligence?

    NASA Astrophysics Data System (ADS)

    Arazy, Ofer; Halfon, Noam; Malkinson, Dan

    2015-04-01

    Collective intelligence is shared (or group) intelligence that emerges from the collective efforts of many individuals. Collective intelligence is the aggregate of individual contributions: from simple collective decision making to more sophisticated aggregations such as in crowdsourcing and peer-production systems. In particular, collective intelligence could be used in making predictions about future events, for example by using prediction markets to forecast election results, stock prices, or the outcomes of sport events. To date, there is little research regarding the use of collective intelligence for prediction of weather forecasting. The objective of this study is to investigate the extent to which collective intelligence could be utilized to accurately predict weather events, and in particular rainfall. Our analyses employ metrics of group intelligence, as well as compare the accuracy of groups' predictions against the predictions of the standard model used by the National Meteorological Services. We report on preliminary results from a study conducted over the 2013-2014 and 2014-2015 winters. We have built a web site that allows people to make predictions on precipitation levels on certain locations. During each competition participants were allowed to enter their precipitation forecasts (i.e. 'bets') at three locations and these locations changed between competitions. A precipitation competition was defined as a 48-96 hour period (depending on the expected weather conditions), bets were open 24-48 hours prior to the competition, and during betting period participants were allowed to change their bets with no limitation. In order to explore the effect of transparency, betting mechanisms varied across study's sites: full transparency (participants able to see each other's bets); partial transparency (participants see the group's average bet); and no transparency (no information of others' bets is made available). Several interesting findings emerged from

  18. A Microscopic Quantal Model for Nuclear Collective Rotation

    SciTech Connect

    Gulshani, P.

    2007-10-26

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored.

  19. On effective temperature in network models of collective behavior

    SciTech Connect

    Porfiri, Maurizio; Ariel, Gil

    2016-04-15

    Collective behavior of self-propelled units is studied analytically within the Vectorial Network Model (VNM), a mean-field approximation of the well-known Vicsek model. We propose a dynamical systems framework to study the stochastic dynamics of the VNM in the presence of general additive noise. We establish that a single parameter, which is a linear function of the circular mean of the noise, controls the macroscopic phase of the system—ordered or disordered. By establishing a fluctuation–dissipation relation, we posit that this parameter can be regarded as an effective temperature of collective behavior. The exact critical temperature is obtained analytically for systems with small connectivity, equivalent to low-density ensembles of self-propelled units. Numerical simulations are conducted to demonstrate the applicability of this new notion of effective temperature to the Vicsek model. The identification of an effective temperature of collective behavior is an important step toward understanding order–disorder phase transitions, informing consistent coarse-graining techniques and explaining the physics underlying the emergence of collective phenomena.

  20. Adaptive network models of collective decision making in swarming systems

    NASA Astrophysics Data System (ADS)

    Chen, Li; Huepe, Cristián; Gross, Thilo

    2016-08-01

    We consider a class of adaptive network models where links can only be created or deleted between nodes in different states. These models provide an approximate description of a set of systems where nodes represent agents moving in physical or abstract space, the state of each node represents the agent's heading direction, and links indicate mutual awareness. We show analytically that the adaptive network description captures a phase transition to collective motion in some swarming systems, such as the Vicsek model, and that the properties of this transition are determined by the number of states (discrete heading directions) that can be accessed by each agent.

  1. Nonlinear model predictive control based on collective neurodynamic optimization.

    PubMed

    Yan, Zheng; Wang, Jun

    2015-04-01

    In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach.

  2. Collective rationality: the integrative model explains it (as) well.

    PubMed

    Van Lange, Paul A M

    2008-06-01

    In this commentary, I argue that there is indeed considerable evidence in support of the notion that people tend to reason from a collective (or team) perspective by asking themselves questions such as "What do we want, and what should I do help achieve it?" [Colman, A. M., Pulford, B. D., & Rose, J. (2008). Collective rationality in interactive decisions: Evidence for team reasoning. Acta Psychologica]. As such, in my view, team reasoning -- and thinking, feeling, and acting in terms of collective rationality -- is consistent with a social utility model (or transformational model) which considers the weights that people attach not only to outcomes for self, but also to outcomes for other, and to equality in outcomes [Van Lange, P. A. M. (1999). The pursuit of joint outcomes and equality in outcomes: An integrative model of social value orientation. Journal of Personality and Social Psychology,77, 337-349]. This commentary provides an illustration demonstrating that the integrative model is well-suited to account for the findings observed by Colman et al. (2008).

  3. Collective motion of cells: from experiments to models.

    PubMed

    Méhes, Előd; Vicsek, Tamás

    2014-09-01

    Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems that have been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals, therefore the study of collective motion of cells is likely to reveal some specific important features which we plan to overview in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is to present the related experimental observations and treat them in light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.

  4. Approximating nonequilibrium processes using a collection of surrogate diffusion models

    NASA Astrophysics Data System (ADS)

    Calderon, Christopher P.; Chelli, Riccardo

    2008-04-01

    The surrogate process approximation (SPA) is applied to model the nonequilibrium dynamics of a reaction coordinate (RC) associated with the unfolding and refolding processes of a deca-alanine peptide at 300K. The RC dynamics, which correspond to the evolution of the end-to-end distance of the polypeptide, are produced by steered molecular dynamics (SMD) simulations and approximated using overdamped diffusion models. We show that the collection of (estimated) SPA models contain structural information "orthogonal" to the RC monitored in this study. Functional data analysis ideas are used to correlate functions associated with the fitted SPA models with the work done on the system in SMD simulations. It is demonstrated that the shape of the nonequilibrium work distributions for the unfolding and refolding processes of deca-alanine can be predicted with functional data analysis ideas using a relatively small number of simulated SMD paths for calibrating the SPA diffusion models.

  5. Collective aspects of protein folding illustrated by a toy model

    SciTech Connect

    Stillinger, F.H.; Head-Gordon, T.

    1995-09-01

    A simple toy model for polypeptides serves as a testbed to illuminate some nonlocal, or collective, aspects of protein folding phenomena. The model is two dimensional and has only two amino acids, but involves a continuous range of backbone bend angles. Global potential energy minima and their folding structures have been determined for leading members of two special and contrasting polypeptide sequences, center doped and Fibonacci, named descriptively for their primary structures. The results display the presence of spontaneous symmetry breaking, elastic strain, and substantial conformational variation for specific embedded amino acid strings. We conclude that collective variables generated by the primary amino acid structure may be required for fully effective protein folding predictors, including those based on neural networks.

  6. Modeling closure of circular wounds through coordinated collective motion

    NASA Astrophysics Data System (ADS)

    Li, David S.; Zimmermann, Juliane; Levine, Herbert

    2016-02-01

    Wound healing enables tissues to restore their original states, and is achieved through collective cell migration into the wound space, contraction of the wound edge via an actomyosin filament ‘purse-string,’ as well as cell division. Recently, experimental techniques have been developed to create wounds with various regular morphologies in epithelial monolayers, and these experiments of circular closed-contour wounds support coordinated lamellipodial cell crawling as the predominant driver of gap closure. Through utilizing a particle-based mechanical tissue simulation, exhibiting long-range coordination of cell motility, we computationally model these closed-contour experiments with a high level of agreement between experimentally observed and simulated wound closure dynamics and tissue velocity profiles. We also determine the sensitivity of wound closure time in the model to changes in cell motility force and division rate. Our simulation results confirm that circular wounds can close due to collective cell migration without the necessity for a purse-string mechanism or for cell division, and show that the alignment mechanism of cellular motility force with velocity, leading to collective motion in the model, may speed up wound closure.

  7. Modeling human-flood interactions: Collective action and community resilience.

    NASA Astrophysics Data System (ADS)

    Yu, D. J.; Sangwan, N.; Sung, K.

    2016-12-01

    Stylized models of socio-hydrology have mainly used social memory aspects such as community awareness or sensitivity to connect hydrologic change and social response. However, social memory alone does not satisfactorily capture the details of how human behavior is translated into collective action for water resources governance. Nor is it the only mechanism by which the two-way feedbacks of socio-hydrology can be operationalized. This study contributes towards bridging of this gap by developing a stylized model of a human-flood system that includes two additional drivers of change: (1) institutions for collective action, and (2) connections to an external economic system. Motivated by the case of community-managed flood protection systems (polders) in coastal Bangladesh, we use the model to understand critical general features that affect long-term resilience of human-flood systems. Our findings suggest that occasional adversity can enhance long-term resilience. Allowing some hydrological variability to enter into the polder can increase its adaptive capacity and resilience through the preservation of social memory and institutions for collective action. Further, there are potential tradeoffs associated with optimization of flood resilience through structural measures. By reducing sensitivity to flooding, the system may become more fragile under the double impact of flooding and economic change

  8. Waste collection multi objective model with real time traceability data.

    PubMed

    Faccio, Maurizio; Persona, Alessandro; Zanin, Giorgia

    2011-12-01

    Waste collection is a highly visible municipal service that involves large expenditures and difficult operational problems, plus it is expensive to operate in terms of investment costs (i.e. vehicles fleet), operational costs (i.e. fuel, maintenances) and environmental costs (i.e. emissions, noise and traffic congestions). Modern traceability devices, like volumetric sensors, identification RFID (Radio Frequency Identification) systems, GPRS (General Packet Radio Service) and GPS (Global Positioning System) technology, permit to obtain data in real time, which is fundamental to implement an efficient and innovative waste collection routing model. The basic idea is that knowing the real time data of each vehicle and the real time replenishment level at each bin makes it possible to decide, in function of the waste generation pattern, what bin should be emptied and what should not, optimizing different aspects like the total covered distance, the necessary number of vehicles and the environmental impact. This paper describes a framework about the traceability technology available in the optimization of solid waste collection, and introduces an innovative vehicle routing model integrated with the real time traceability data, starting the application in an Italian city of about 100,000 inhabitants. The model is tested and validated using simulation and an economical feasibility study is reported at the end of the paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. [Hannover synthetic moulages. A singular collection of dermatologic teaching models].

    PubMed

    Schnalke, T

    1987-12-01

    Dermatological moulages rapidly lost their importance during the 1950s. The disadvantages of the classical moulage materials, plaster of Paris and wax, are pointed out. In the 1960s and 1970s modern plastics were introduced to moulage technology at the Linden Dermatological Clinic in Hannover. Silicon-caoutchouc and Vestolit-PVC were the substances used. This paper describes how the Hannover collection of plastic models was assembled and presents its current status. Wax and plastic models are set against each other in the illustrations.

  10. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  11. Collecting, Visualising, Communicating and Modelling Geographic Data for the Sciences

    NASA Astrophysics Data System (ADS)

    Crooks, A.; Hudson-Smith, A.; Milton, R.; Smith, D.; Batty, M.; Neuhaus, F.

    2009-12-01

    New web technologies and task specific software packages and services are fundamentally changing the way we share, collect, visualise, communicate and distribute geographic information. Coupled with these new technologies is the emergence of rich fine scale and extensive geographical datasets of the built environment. Such technologies and data are providing opportunities for both the social and physical sciences that were unimaginable ten years ago. Within this paper we discus such change from our own experiences at the Centre of Advanced Spatial Analysis. Specifically, how it is now possible to harness the crowd to collect peoples’ opinions about topical events such as the current financial crisis, in real time and map the results, through the use of our GMapCreator software and the MapTube website. Furthermore, such tools allow for widespread dissemination and visualisation of geographic data to whoever has an internet connection. We will explore how one can use new datasets to visualise the city using our Virtual London model as an example. Within the model individual buildings are tagged with multiple attributes providing a lens to explore the urban structure offering a plethora of research applications. We then turn to how one can visualise and communicate such data through low cost software and virtual worlds such as Crysis and Second Life with a look into their potential for modelling and finally how we disseminated much of this information through weblogs (blogs) such as Digital Urban, GIS and Agent-based modelling and Urban Tick.

  12. A model for collective dynamics in ant raids.

    PubMed

    Ryan, Shawn D

    2016-05-01

    Ant raiding, the process of identifying and returning food to the nest or bivouac, is a fascinating example of collective motion in nature. During such raids ants lay pheromones to form trails for others to find a food source. In this work a coupled PDE/ODE model is introduced to study ant dynamics and pheromone concentration. The key idea is the introduction of two forms of ant dynamics: foraging and returning, each governed by different environmental and social cues. The model accounts for all aspects of the raiding cycle including local collisional interactions, the laying of pheromone along a trail, and the transition from one class of ants to another. Through analysis of an order parameter measuring the orientational order in the system, the model shows self-organization into a collective state consisting of lanes of ants moving in opposite directions as well as the transition back to the individual state once the food source is depleted matching prior experimental results. This indicates that in the absence of direct communication ants naturally form an efficient method for transporting food to the nest/bivouac. The model exhibits a continuous kinetic phase transition in the order parameter as a function of certain system parameters. The associated critical exponents are found, shedding light on the behavior of the system near the transition.

  13. Minimal model for collective kinetochore–microtubule dynamics

    PubMed Central

    Banigan, Edward J.; Chiou, Kevin K.; Ballister, Edward R.; Mayo, Alyssa M.; Lampson, Michael A.; Liu, Andrea J.

    2015-01-01

    Chromosome segregation during cell division depends on interactions of kinetochores with dynamic microtubules (MTs). In many eukaryotes, each kinetochore binds multiple MTs, but the collective behavior of these coupled MTs is not well understood. We present a minimal model for collective kinetochore–MT dynamics, based on in vitro measurements of individual MTs and their dependence on force and kinetochore phosphorylation by Aurora B kinase. For a system of multiple MTs connected to the same kinetochore, the force–velocity relation has a bistable regime with two possible steady-state velocities: rapid shortening or slow growth. Bistability, combined with the difference between the growing and shrinking speeds, leads to center-of-mass and breathing oscillations in bioriented sister kinetochore pairs. Kinetochore phosphorylation shifts the bistable region to higher tensions, so that only the rapidly shortening state is stable at low tension. Thus, phosphorylation leads to error correction for kinetochores that are not under tension. We challenged the model with new experiments, using chemically induced dimerization to enhance Aurora B activity at metaphase kinetochores. The model suggests that the experimentally observed disordering of the metaphase plate occurs because phosphorylation increases kinetochore speeds by biasing MTs to shrink. Our minimal model qualitatively captures certain characteristic features of kinetochore dynamics, illustrates how biochemical signals such as phosphorylation may regulate the dynamics, and provides a theoretical framework for understanding other factors that control the dynamics in vivo. PMID:26417109

  14. Collective behavior in animal groups: theoretical models and empirical studies

    PubMed Central

    Giardina, Irene

    2008-01-01

    Collective phenomena in animal groups have attracted much attention in the last years, becoming one of the hottest topics in ethology. There are various reasons for this. On the one hand, animal grouping provides a paradigmatic example of self-organization, where collective behavior emerges in absence of centralized control. The mechanism of group formation, where local rules for the individuals lead to a coherent global state, is very general and transcends the detailed nature of its components. In this respect, collective animal behavior is a subject of great interdisciplinary interest. On the other hand, there are several important issues related to the biological function of grouping and its evolutionary success. Research in this field boasts a number of theoretical models, but much less empirical results to compare with. For this reason, even if the general mechanisms through which self-organization is achieved are qualitatively well understood, a quantitative test of the models assumptions is still lacking. New analysis on large groups, which require sophisticated technological procedures, can provide the necessary empirical data. PMID:19404431

  15. A New Model for Building Digital Science Education Collections

    NASA Astrophysics Data System (ADS)

    Niepold, F.; McCaffrey, M.; Morrill, C.; Ganse, J.; Weston, T.

    2005-12-01

    The Polar Regions play an integral role in how our Earth system operates. However, the Polar Regions are marginally studied in the K-12 classroom in the United States. The International Polar Year's (IPY) coordinated campaign of polar observations, research, and analysis that will be multidisciplinary in scope and international in participation offers a powerful opportunity for K-12 classroom. The IPY's scientific objective to better understand the key roles of the Polar Regions in global processes will allow students a window into the poles and this unique regions role in the Earth system. IPY will produce careful, useful scientific information that will advance our understanding of the Polar Regions and their connections to the rest of the globe. The IPY is an opportunity to inspire the next generation of very young Earth system scientists. The IPY's draft education & outreach position paper asks a key question that must guide future educational projects; "Why is the polar regions and polar research important to all people on earth?" In efforts to coordinate educational activities and collaborate with international projects, United States national agencies, and other educational initiatives, it is the purpose of this session to explore potential partnerships, while primarily recommending a model for educational product development and review. During such a large international science endeavor, numerous educational activities and opportunities are developed, but these educational programs can suffer from too many unconnected options being available to teachers and students. Additionally, activities often are incompatible with each other making classroom implementation unnecessarily complex and prohibitively time consuming for teachers. A newly develop educational activity collection technique developed for DLESE offers an effective model for IPY product gap analysis and development. The Climate Change Collection developed as a pilot project for the Digital Library

  16. Modeling local chemistry in the presence of collective phenomena.

    SciTech Connect

    Chandross, Michael Evan; Modine, Normand Arthur

    2005-01-01

    Confinement within the nanoscale pores of a zeolite strongly modifies the behavior of small molecules. Typical of many such interesting and important problems, realistic modeling of this phenomena requires simultaneously capturing the detailed behavior of chemical bonds and the possibility of collective dynamics occurring in a complex unit cell (672 atoms in the case of Zeolite-4A). Classical simulations alone cannot reliably model the breaking and formation of chemical bonds, while quantum methods alone are incapable of treating the extended length and time scales characteristic of complex dynamics. We have developed a robust and efficient model in which a small region treated with the Kohn-Sham density functional theory is embedded within a larger system represented with classical potentials. This model has been applied in concert with first-principles electronic structure calculations and classical molecular dynamics and Monte Carlo simulations to study the behavior of water, ammonia, the hydroxide ion, and the ammonium ion in Zeolite-4a. Understanding this behavior is important to the predictive modeling of the aging of Zeolite-based desiccants. In particular, we have studied the absorption of these molecules, interactions between water and the ammonium ion, and reactions between the hydroxide ion and the zeolite cage. We have shown that interactions with the extended Zeolite cage strongly modifies these local chemical phenomena, and thereby we have proven out hypothesis that capturing both local chemistry and collective phenomena is essential to realistic modeling of this system. Based on our results, we have been able to identify two possible mechanisms for the aging of Zeolite-based desiccants.

  17. Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation

    PubMed Central

    Carlson, Jean M.; Alderson, David L.; Stromberg, Sean P.; Bassett, Danielle S.; Craparo, Emily M.; Guiterrez-Villarreal, Francisco; Otani, Thomas

    2014-01-01

    Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the performance and predictability of social and technological systems. In many cases, system failures are traced to human factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a quantitative model for decision making that captures remarkably well the main features of observed collective behavior across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and control of evacuations that account for human behavior and network topologies. PMID:24520331

  18. User-friendly software for modeling collective spin wave excitations

    NASA Astrophysics Data System (ADS)

    Hahn, Steven; Peterson, Peter; Fishman, Randy; Ehlers, Georg

    There exists a great need for user-friendly, integrated software that assists in the scientific analysis of collective spin wave excitations measured with inelastic neutron scattering. SpinWaveGenie is a C + + software library that simplifies the modeling of collective spin wave excitations, allowing scientists to analyze neutron scattering data with sophisticated models fast and efficiently. Furthermore, one can calculate the four-dimensional scattering function S(Q,E) to directly compare and fit calculations to experimental measurements. Its generality has been both enhanced and verified through successful modeling of a wide array of magnetic materials. Recently, we have spent considerable effort transforming SpinWaveGenie from an early prototype to a high quality free open source software package for the scientific community. S.E.H. acknowledges support by the Laboratory's Director's fund, ORNL. Work was sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  19. Patient participation in collective healthcare decision making: the Dutch model.

    PubMed

    van de Bovenkamp, Hester M; Trappenburg, Margo J; Grit, Kor J

    2010-03-01

    To study whether the Dutch participation model is a good model of participation. Patient participation is on the agenda, both on the individual and the collective level. In this study, we focus on the latter by looking at the Dutch model in which patient organizations are involved in many formal decision-making processes. This model can be described as neo-corporatist. We did 52 interviews with actors in the healthcare field, 35 of which were interviews with representatives of patient organizations and 17 with actors that involved patient organizations in their decision making. Dutch patient organizations have many opportunities to participate in formal healthcare decision making and, as a result, have become institutionalized. Although there were several examples identified in which patient organizations were able to influence decision making, patient organizations remain in a dependent position, which they try to overcome through professionalization. Although this model of participation gives patient organizations many opportunities to participate, it also causes important tensions. Many organizations cannot cope with all the participation possibilities attributed to them. This participation abundance can therefore cause redistribution effects. Furthermore, their dependent position leads to the danger of being put to instrumental use. Moreover, professionalization causes tensions concerning empowerment possibilities and representativeness. Conclusion Although the Dutch model tries to make patient organizations an equal party in healthcare decision making, this goal is not reached in practice. It is therefore important to study more closely which subjects patients can and should contribute to, and in what way.

  20. Modelling Influence and Opinion Evolution in Online Collective Behaviour

    PubMed Central

    Gend, Pascal; Rentfrow, Peter J.; Hendrickx, Julien M.; Blondel, Vincent D.

    2016-01-01

    Opinion evolution and judgment revision are mediated through social influence. Based on a large crowdsourced in vitro experiment (n = 861), it is shown how a consensus model can be used to predict opinion evolution in online collective behaviour. It is the first time the predictive power of a quantitative model of opinion dynamics is tested against a real dataset. Unlike previous research on the topic, the model was validated on data which did not serve to calibrate it. This avoids to favor more complex models over more simple ones and prevents overfitting. The model is parametrized by the influenceability of each individual, a factor representing to what extent individuals incorporate external judgments. The prediction accuracy depends on prior knowledge on the participants’ past behaviour. Several situations reflecting data availability are compared. When the data is scarce, the data from previous participants is used to predict how a new participant will behave. Judgment revision includes unpredictable variations which limit the potential for prediction. A first measure of unpredictability is proposed. The measure is based on a specific control experiment. More than two thirds of the prediction errors are found to occur due to unpredictability of the human judgment revision process rather than to model imperfection. PMID:27336834

  1. A Bayesian subgroup analysis using collections of ANOVA models.

    PubMed

    Liu, Jinzhong; Sivaganesan, Siva; Laud, Purushottam W; Müller, Peter

    2017-03-20

    We develop a Bayesian approach to subgroup analysis using ANOVA models with multiple covariates, extending an earlier work. We assume a two-arm clinical trial with normally distributed response variable. We also assume that the covariates for subgroup finding are categorical and are a priori specified, and parsimonious easy-to-interpret subgroups are preferable. We represent the subgroups of interest by a collection of models and use a model selection approach to finding subgroups with heterogeneous effects. We develop suitable priors for the model space and use an objective Bayesian approach that yields multiplicity adjusted posterior probabilities for the models. We use a structured algorithm based on the posterior probabilities of the models to determine which subgroup effects to report. Frequentist operating characteristics of the approach are evaluated using simulation. While our approach is applicable in more general cases, we mainly focus on the 2 × 2 case of two covariates each at two levels for ease of presentation. The approach is illustrated using a real data example.

  2. Can we scan the supernova model space for collective oscillations?

    NASA Astrophysics Data System (ADS)

    Pehlivan, Y.; Subaşı, A. L.; Birol, S.; Ghazanfari, N.; Yuksel, H.; Balantekin, A. B.; Kajino, Toshitaka

    2016-06-01

    Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.

  3. Can we scan the supernova model space for collective oscillations?

    SciTech Connect

    Pehlivan, Y.; Subaşı, A. L.; Birol, S.; Ghazanfari, N.; Yuksel, H.; Balantekin, A. B.; Kajino, Toshitaka

    2016-06-21

    Collective neutrino oscillations in a core collapse supernova is a many-body phenomenon which can transform the neutrino energy spectra through emergent effects. One example of this behavior is the neutrino spectral swaps in which neutrinos of different flavors partially or completely exchange their spectra. In this talk, we address the question of how model dependent this behavior is. In particular, we demonstrate that these swaps may be independent of the mean field approximation that is typically employed in numerical treatments by showing an example of a spectral swap in the exact many-body picture.

  4. Collective field theory of a singular supersymmetric matrix model

    SciTech Connect

    de Mello Koch, R.; Rodrigues, J.P.

    1995-05-15

    The supersymmetric collective field theory with the potential {ital v}{prime}({ital x})={omega}{ital x}{minus}{eta}/{ital x} is studied. Consistency with supersymmetry enforces a two band solution. A supersymmetric classical configuration is found, and interpreted in terms of the density of zeroes of certain Laguerre polynomials. The spectrum of the model is then studied and is seen to correspond to a massless scalar and a Majorana fermion. The {ital x} space eigenfunctions are constructed and expressed in terms of Chebyshev polynomials. Higher order interactions are also discussed.

  5. Quantum chaos in the nuclear collective model. II. Peres lattices.

    PubMed

    Stránský, Pavel; Hruska, Petr; Cejnar, Pavel

    2009-06-01

    This is a continuation of our paper [Phys. Rev. E 79, 046202 (2009)] devoted to signatures of quantum chaos in the geometric collective model of atomic nuclei. We apply the method by Peres to study ordered and disordered patterns in quantum spectra drawn as lattices in the plane of energy vs average of a chosen observable. Good qualitative agreement with standard measures of chaos is manifested. The method provides an efficient tool for studying structural changes in eigenstates across quantum spectra of general systems.

  6. Simple model for multiple-choice collective decision making

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Lucas, Andrew

    2014-11-01

    We describe a simple model of heterogeneous, interacting agents making decisions between n ≥2 discrete choices. For a special class of interactions, our model is the mean field description of random field Potts-like models and is effectively solved by finding the extrema of the average energy E per agent. In these cases, by studying the propagation of decision changes via avalanches, we argue that macroscopic dynamics is well captured by a gradient flow along E . We focus on the permutation symmetric case, where all n choices are (on average) the same, and spontaneous symmetry breaking (SSB) arises purely from cooperative social interactions. As examples, we show that bimodal heterogeneity naturally provides a mechanism for the spontaneous formation of hierarchies between decisions and that SSB is a preferred instability to discontinuous phase transitions between two symmetric points. Beyond the mean field limit, exponentially many stable equilibria emerge when we place this model on a graph of finite mean degree. We conclude with speculation on decision making with persistent collective oscillations. Throughout the paper, we emphasize analogies between methods of solution to our model and common intuition from diverse areas of physics, including statistical physics and electromagnetism.

  7. Yang-Mills generalization of the geometrical collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, George; Sparks, Nick

    2015-04-01

    The geometrical or Bohr-Mottelson model is generalized and recast as a Yang-Mills theory. The gauge symmetry determines conservation of Kelvin circulation. The circulation commutes with the Hamiltonian when it is the sum of the kinetic energy and a potential that depends only on deformation. The conventional Bohr-Mottelson model is the special case of circulation zero, and wave functions are complex-valued. In the generalization, any quantized value of the circulation is allowed, and the wave functions are vector-valued. The Yang-Mills formulation introduces a new coupling between the geometrical and intrinsic degrees of freedom. The coupling appears in the covariant derivative term of the collective kinetic energy. This kind of coupling is sometimes called ``magnetic'' because of the analogy with electrodynamics.

  8. Collective Properties of a Transcription Initiation Model Under Varying Environment.

    PubMed

    Hu, Yucheng; Lowengrub, John S

    2016-01-01

    The dynamics of gene transcription is tightly regulated in eukaryotes. Recent experiments have revealed various kinds of transcriptional dynamics, such as RNA polymerase II pausing, that involves regulation at the transcription initiation stage, and the choice of different regulation pattern is closely related to the physiological functions of the target gene. Here we consider a simplified model of transcription initiation, a process including the assembly of transcription complex and the pausing and releasing of the RNA polymerase II. Focusing on the collective behaviors of a population level, we explore the potential regulatory functions this model can offer. These functions include fast and synchronized response to environmental change, or long-term memory about the transcriptional status. As a proof of concept we also show that, by selecting different control mechanisms cells can adapt to different environments. These findings may help us better understand the design principles of transcriptional regulation.

  9. AdS{sub 4}/CFT{sub 3} construction from collective fields

    SciTech Connect

    Mello Koch, Robert de; Rodrigues, Joao P.; Jevicki, Antal; Jin, Kewang

    2011-01-15

    We pursue the construction of higher-spin theory in AdS{sub 4} from CFT{sub 3} of the O(N) vector model in terms of canonical collective fields. In null-plane quantization an exact map is established between the two spaces. The coordinates of the AdS{sub 4} space-time are generated from the collective coordinates of the bi-local field. This, in the light-cone gauge, provides an exact one-to-one reconstruction of bulk AdS{sub 4} space-time and higher-spin fields.

  10. Collective signaling behavior in a networked-oscillator model

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  11. Modeling evaporative loss of oil mist collected by sampling filters.

    PubMed

    Raynor, P C; Volckens, J; Leith, D

    2000-01-01

    Oil mists can cause respiratory distress and have been linked to skin and gastrointestinal cancers in workers. Standard concentration assessment methods call for sampling these mists with fibrous or membrane filters. Previous experimental studies using glass fiber (GF) filters and polyvinyl chloride and polytetrafluoroethylene membrane filters indicate that mist sampled onto filters may volatilize. A model has been developed to predict the evaporation of mist collected on a fibrous sampling filter. Evaporation of retained fluid from membrane filters can be modeled by treating the filter as though it is a fibrous filter. Predictions from the model exhibit good agreement with experimental results. At low mist concentrations, the model indicates that evaporation of retained mineral oil occurs readily. At high mist concentrations, significant evaporation from the filters is not expected because the vapor accompanying the airborne mist is already saturated with the compounds in the oil. The findings from this study indicate that sampling mineral oil mist with filters in accordance with standard methods can lead to estimates of worker exposure to oil mist that are too low.

  12. Patient participation in collective healthcare decision making: the Dutch model

    PubMed Central

    Van De Bovenkamp, Hester M.; Trappenburg, Margo J.; Grit, Kor J.

    2009-01-01

    Abstract Objective  To study whether the Dutch participation model is a good model of participation. Background  Patient participation is on the agenda, both on the individual and the collective level. In this study, we focus on the latter by looking at the Dutch model in which patient organizations are involved in many formal decision‐making processes. This model can be described as neo‐corporatist. Design  We did 52 interviews with actors in the healthcare field, 35 of which were interviews with representatives of patient organizations and 17 with actors that involved patient organizations in their decision making. Results  Dutch patient organizations have many opportunities to participate in formal healthcare decision making and, as a result, have become institutionalized. Although there were several examples identified in which patient organizations were able to influence decision making, patient organizations remain in a dependent position, which they try to overcome through professionalization. Discussion  Although this model of participation gives patient organizations many opportunities to participate, it also causes important tensions. Many organizations cannot cope with all the participation possibilities attributed to them. This participation abundance can therefore cause redistribution effects. Furthermore, their dependent position leads to the danger of being put to instrumental use. Moreover, professionalization causes tensions concerning empowerment possibilities and representativeness. Conclusion  Although the Dutch model tries to make patient organizations an equal party in healthcare decision making, this goal is not reached in practice. It is therefore important to study more closely which subjects patients can and should contribute to, and in what way. PMID:19719537

  13. Transforming Monograph Collections with a Model of Collections as a Service

    ERIC Educational Resources Information Center

    Way, Doug

    2017-01-01

    Financial pressures, changes in scholarly communications, the rise of online content, and the ability to easily share materials have provided libraries the opportunity to rethink their collections practices. This article provides an overview of these changes and outlines a framework for viewing collections as a service. It describes how libraries…

  14. Collective modes in the paramagnetic phase of the Hubbard model

    NASA Astrophysics Data System (ADS)

    Dao, Vu Hung; Frésard, Raymond

    2017-04-01

    The charge dynamical response function of the Hubbard model is investigated on the square lattice in the thermodynamic limit. The obtained charge-excitation spectra consist of a continuum, a gapless collective mode with anisotropic zero-sound velocity, and a correlation-induced high-frequency mode at ω ≈U . The correlation function is calculated from Gaussian fluctuations around the paramagnetic saddle point within the Kotliar and Ruckenstein slave-boson representation. Its dependence on the on-site Coulomb repulsion U and density is studied in detail. An approximate analytical expression of the high-frequency mode, which holds for any lattice with one atom in the unit cell, is derived. Comparison with numerical simulations, perturbation theory, and the polarization potential theory is carried out. We also show that magnetic instabilities tend to vanish for T ≳t /6 , and finite-temperature phase diagrams are established.

  15. 3-dimensional current collection model. [of Tethered Satellite System 1

    NASA Technical Reports Server (NTRS)

    Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.

    1992-01-01

    A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).

  16. Nuclear structure and triaxiality with the algebraic collective model

    SciTech Connect

    Caprio, M. A.; Rowe, D. J.; Welsh, T. A.

    2009-01-28

    A tractable scheme for numerical diagonalization of the Bohr Hamiltonian, based on SU(1,1)xSO(5) algebraic methods, has recently been proposed. The direct product basis obtained from an optimally chosen set of SU(1,1){beta} wave functions and the SO(5) spherical harmonics {psi}{sub v{alpha}}{sub LM}({gamma},{omega}) provides an exceedingly efficient basis for numerical solution, as compared to conventional diagonalization in a five-dimensional oscillator basis. In this contribution, the status of the SU(1,1)xSO(5) algebraic collective model is summarized and applications are presented. In particular, the transition from axially symmetric to triaxial structure is explored.

  17. A semiclassical, microscopic model for nuclear collective rotation

    NASA Astrophysics Data System (ADS)

    Gulshani, P.

    2006-10-01

    In this article, a semiclassical, microscopic model (dubbed SMRM) is derived to describe collective rotation in deformed nuclei. The SMRM is derived by transforming the time-dependent, multiparticle Schrodinger equation to a rotating frame whose axes are chosen to coincide with the principal axes of the expectation value of an arbitrary, second-rank, symmetric, tensor (nuclear shape) operator . This transformation circumvents the difficulty associated with the introduction of redundant particle coordinates in the Villars' transformation. The SMRM Schrodinger equation, which resembles the cranking model (CM) equation, is a time-dependent, time-reversal-invariant, nonlinear integro-differential equation. In this equation, the angular velocity is determined by the wave function and deformation-rotation shear operators, and this introduces the nonlinearity in the equation. A variational method is proposed and justified to obtain: a stationary solution of the SMRM Schrodinger equation in the Rayleigh-Ritz Hartree-Fock particle-hole formalism, the rotational energy increment, and the associated moment of inertia. When exchange interaction terms are neglected or a separable interaction is used, the SMRM moment of inertia is shown to reduce to that given by the CM provided that a certain relationship exists between the moment of inertia and the expectation value of . However, the SMRM and CM wave functions are not the same (SMRM preserves and CM violates time-reversal invariance) implying that the calculated values of other parameters, including the moment of inertia at higher values of the angular momentum, may not be the same in the two models. In any case, the SMRM derives the CM moment of inertia from a microscopic, time-reversal invariant, nonlinear theory.

  18. Programmatic access to logical models in the Cell Collective modeling environment via a REST API.

    PubMed

    Kowal, Bryan M; Schreier, Travis R; Dauer, Joseph T; Helikar, Tomáš

    2016-01-01

    Cell Collective (www.cellcollective.org) is a web-based interactive environment for constructing, simulating and analyzing logical models of biological systems. Herein, we present a Web service to access models, annotations, and simulation data in the Cell Collective platform through the Representational State Transfer (REST) Application Programming Interface (API). The REST API provides a convenient method for obtaining Cell Collective data through almost any programming language. To ensure easy processing of the retrieved data, the request output from the API is available in a standard JSON format. The Cell Collective REST API is freely available at http://thecellcollective.org/tccapi. All public models in Cell Collective are available through the REST API. For users interested in creating and accessing their own models through the REST API first need to create an account in Cell Collective (http://thecellcollective.org). thelikar2@unl.edu. Technical user documentation: https://goo.gl/U52GWo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Models of Digital Collection Use in a University Community

    ERIC Educational Resources Information Center

    Bass, Kristin M.; Puckett, Cassidy; Rockman, Saul

    2008-01-01

    Digital collections enable university students and faculty to share academic scholarship across their campuses and beyond. Based on interviews, the authors present cases of faculty, graduate students, and undergraduates to illustrate some factors that seem to determine why they do or do not use digital collections in their research, teaching, and…

  20. Collectivity in the light xenon isotopes: A shell model study

    SciTech Connect

    Caurier, E.; Nowacki, F.; Sieja, K.; Poves, A.

    2010-12-15

    The lightest xenon isotopes are studied in the shell model framework, within a valence space that comprises all the orbits lying between the magic closures N=Z=50 and N=Z=82. The calculations produce collective deformed structures of triaxial nature that encompass nicely the known experimental data. Predictions are made for the (still unknown) N=Z nucleus {sup 108}Xe. The results are interpreted in terms of the competition between the quadrupole correlations enhanced by the pseudo-SU(3) structure of the positive parity orbits and the pairing correlations brought in by the 0h{sub 11/2} orbit. We also have studied the effect of the excitations from the {sup 100}Sn core on our predictions. We show that the backbending in this region is due to the alignment of two particles in the 0h{sub 11/2} orbit. In the N=Z case, one neutron and one proton align to J=11 and T=0. In {sup 110,112}Xe the alignment begins in the J=10, T=1 channel and it is dominantly of neutron-neutron type. Approaching the band termination the alignment of a neutron-proton pair to J=11 and T=0 takes over. In a more academic mood, we have studied the role of the isovector and isoscalar pairing correlations on the structure on the yrast bands of {sup 108,110}Xe and examined the possible existence of isovector and isoscalar pairing condensates in these N{approx}{approx}Z nuclei.

  1. Universal correlations of collective observables: Empirical phenomenology and model interpretations

    SciTech Connect

    Casten, R.F.; Zamfir, N.V. ||; Brenner, D.S.

    1994-11-01

    Universal and simple correlations of collective observables, with each other and with structural parameters such as N{sub p}N{sub n}, are discussed along with their implications for the evolution of nuclear structure.

  2. Models of collective cell spreading with variable cell aspect ratio: A motivation for degenerate diffusion models

    NASA Astrophysics Data System (ADS)

    Simpson, Matthew J.; Baker, Ruth E.; McCue, Scott W.

    2011-02-01

    Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.

  3. Phases of large N vector Chern-Simons theories on S 2 × S 1

    NASA Astrophysics Data System (ADS)

    Jain, Sachin; Minwalla, Shiraz; Sharma, Tarun; Takimi, Tomohisa; Wadia, Spenta R.; Yokoyama, Shuichi

    2013-09-01

    We study the thermal partition function of level k U( N) Chern-Simons theories on S 2 interacting with matter in the fundamental representation. We work in the 't Hooft limit, , with and held fixed where T is the temperature and V 2 the volume of the sphere. An effective action proposed in arXiv:1211.4843 relates the partition function to the expectation value of a `potential' function of the S1 holonomy in pure Chern-Simons theory; in several examples we compute the holonomy potential as a function of λ. We use level-rank duality of pure Chern-Simons theory to demonstrate the equality of thermal partition functions of previously conjectured dual pairs of theories as a function of the temperature. We reduce the partition function to a matrix integral over holonomies. The summation over flux sectors quantizes the eigenvalues of this matrix in units of and the eigenvalue density of the holonomy matrix is bounded from above by . The corresponding matrix integrals generically undergo two phase transitions as a function of temperature. For several Chern-Simons matter theories we are able to exactly solve the relevant matrix models in the low temperature phase, and determine the phase transition temperature as a function of λ. At low temperatures our partition function smoothly matches onto the N and λ independent free energy of a gas of non renormalized multi trace operators. We also find an exact solution to a simple toy matrix model; the large N Gross-Witten-Wadia matrix integral subject to an upper bound on eigenvalue density.

  4. Collective (Team) Learning Process Models: A Conceptual Review

    ERIC Educational Resources Information Center

    Knapp, Randall

    2010-01-01

    Teams have become a key resource for learning and accomplishing work in organizations. The development of collective learning in specific contexts is not well understood, yet has become critical to organizational success. The purpose of this conceptual review is to inform human resource development (HRD) practice about specific team behaviors and…

  5. Collective (Team) Learning Process Models: A Conceptual Review

    ERIC Educational Resources Information Center

    Knapp, Randall

    2010-01-01

    Teams have become a key resource for learning and accomplishing work in organizations. The development of collective learning in specific contexts is not well understood, yet has become critical to organizational success. The purpose of this conceptual review is to inform human resource development (HRD) practice about specific team behaviors and…

  6. California Cultures: Implementing a Model for Virtual Collections

    ERIC Educational Resources Information Center

    Guerard, Genie; Chandler, Robin L.

    2006-01-01

    This article highlights the California Cultures Project as a case study examining the architecture and framework required to support the deployment of digital objects as virtual collections at the California Digital Library. Chronologically arranged, it describes the Online Archive of California (OAC) Working Group's functional requirements for…

  7. Endogenous Crisis Waves: Stochastic Model with Synchronized Collective Behavior

    NASA Astrophysics Data System (ADS)

    Gualdi, Stanislao; Bouchaud, Jean-Philippe; Cencetti, Giulia; Tarzia, Marco; Zamponi, Francesco

    2015-02-01

    We propose a simple framework to understand commonly observed crisis waves in macroeconomic agent-based models, which is also relevant to a variety of other physical or biological situations where synchronization occurs. We compute exactly the phase diagram of the model and the location of the synchronization transition in parameter space. Many modifications and extensions can be studied, confirming that the synchronization transition is extremely robust against various sources of noise or imperfections.

  8. Information Processing and Collective Behavior in a Model Neuronal System

    DTIC Science & Technology

    2014-03-28

    at times weekly) telecoms with them and Eli Shlizerman at the University of Washington. In summary, we were happy to work with many groups within...states cause high intracellular calcium concentrations, which could trigger transcription of clock genes . The model also predicts that circadian...phenotypes of mutations or knockdown of clock genes as well as the time courses and relative expression of clock transcripts and proteins. Using this model

  9. Measuring and Modeling Behavioral Decision Dynamics in Collective Evacuation

    DTIC Science & Technology

    2014-02-10

    models, experimental observation in ‘‘ live ’’ and controlled environments are essential for improved understanding and modeling of social phenomena. Our...is a linear function of s (k~mszb). Line color indicates shelter capacity: s~10 (red; top), s~20 (orange), s~30 ( green ), s~40 (blue), and s~50 (black...individual crisis hot spots that might have been avoided with a more effective plan, and in many cases lives are ultimately lost. These shortcomings motivate

  10. Boolean modeling of collective effects in complex networks

    PubMed Central

    Norrell, Johannes; Socolar, Joshua E. S.

    2009-01-01

    Complex systems are often modeled as Boolean networks in attempts to capture their logical structure and reveal its dynamical consequences. Approximating the dynamics of continuous variables by discrete values and Boolean logic gates may, however, introduce dynamical possibilities that are not accessible to the original system. We show that large random networks of variables coupled through continuous transfer functions often fail to exhibit the complex dynamics of corresponding Boolean models in the disordered (chaotic) regime, even when each individual function appears to be a good candidate for Boolean idealization. A suitably modified Boolean theory explains the behavior of systems in which information does not propagate faithfully down certain chains of nodes. Model networks incorporating calculated or directly measured transfer functions reported in the literature on transcriptional regulation of genes are described by the modified theory. PMID:19658525

  11. Modeling performance and image collection utility for multiple look ATR

    NASA Astrophysics Data System (ADS)

    Snyder, William C.; Ettinger, Gil J.; Laprise, S.

    2004-09-01

    We present a performance model for estimating the likelihood function and posterior probability of classes in a multiple-look SAR ATR classifier. We extend performance estimation to performance prediction in order to assess the effects of additional looks at different targets in a scene. This likelihood improvement model depends on a variety of factors including the resulting look angle diversity and the resolution of the sensor. The performance model parameters are estimated from classification scores and multi-look performance with real data, but could also be developed from simulations in cases where no data exist. Finally, we propose a transformation from the predicted performance to a value for each look that is used to optimize asset tasking. The value transformation is based on the target importance and absolute posterior probability.

  12. Pricing Models and Payment Schemes for Library Collections.

    ERIC Educational Resources Information Center

    Stern, David

    2002-01-01

    Discusses new pricing and payment options for libraries in light of online products. Topics include alternative cost models rather than traditional subscriptions; use-based pricing; changes in scholarly communication due to information technology; methods to determine appropriate charges for different organizations; consortial plans; funding; and…

  13. The Diversity Challenge: A Collection of Model Programs.

    ERIC Educational Resources Information Center

    Mellander, Gustavo A., Ed.; Prochaska, Fred, Ed.

    Model programs designed to promote diversity within the West Valley-Mission Community College District (WVMCCD) in California are discussed and described in this report. First, an introductory chapter, "The Importance of Cultural Issues to Higher Education," by Gustavo A. Mellander and Fred Prochaska, reviews the diversity recommendations of the…

  14. Collective Philanthropy: Describing and Modeling the Ecology of Giving

    PubMed Central

    Gottesman, William L.; Reagan, Andrew James; Dodds, Peter Sheridan

    2014-01-01

    Reflective of income and wealth distributions, philanthropic gifting appears to follow an approximate power-law size distribution as measured by the size of gifts received by individual institutions. We explore the ecology of gifting by analysing data sets of individual gifts for a diverse group of institutions dedicated to education, medicine, art, public support, and religion. We find that the detailed forms of gift-size distributions differ across but are relatively constant within charity categories. We construct a model for how a donor's income affects their giving preferences in different charity categories, offering a mechanistic explanation for variations in institutional gift-size distributions. We discuss how knowledge of gift-sized distributions may be used to assess an institution's gift-giving profile, to help set fundraising goals, and to design an institution-specific giving pyramid. PMID:24983864

  15. Comparative analysis of data collection methods for individualized modeling of radiologists' visual similarity judgments in mammograms.

    PubMed

    Tourassi, Georgia; Yoon, Hong-Jun; Xu, Songhua; Morin-Ducote, Garnetta; Hudson, Kathy

    2013-11-01

    We conducted an observer study to investigate how the data collection method affects the efficacy of modeling individual radiologists' judgments regarding the perceptual similarity of breast masses on mammograms. Six observers of varying experience levels in breast imaging were recruited to assess the perceptual similarity of mammographic masses. The observers' subjective judgments were collected using (i) a rating method, (ii) a preference method, and (iii) a hybrid method combining rating and ranking. Personalized user models were developed with the collected data to predict observers' opinions. The relative efficacy of each data collection method was assessed based on the classification accuracy of the resulting user models. The average accuracy of the user models derived from data collected with the hybrid method was 55.5 ± 1.5%. The models were significantly more accurate (P < .0005) than those derived from the rating (45.3 ± 3.5%) and the preference (40.8 ± 5%) methods. On average, the rating data collection method was significantly faster than the other two methods (P < .0001). No time advantage was observed between the preference and the hybrid methods. A hybrid method combining rating and ranking is an intuitive and efficient way for collecting subjective similarity judgments to model human perceptual opinions with a higher accuracy than other, more commonly used data collection methods. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  16. Comparative analysis of data collection methods for individualized modeling of radiologists' visual similarity judgments

    SciTech Connect

    Tourassi, Georgia; Xu, Songhua; Yoon, Hong-Jun; Morin-Ducote, Garnetta; Hudson, Kathy

    2013-01-01

    Rationale and Objectives: We conducted an observer study to investigate how the data collection method affects the efficacy of modeling individual radiologists judgments regarding the perceptual similarity of breast masses on mammograms. Materials and Methods: Institutional review board approval was obtained prior to the study. Six observers of variable experience levels in breast imaging were recruited to assess the perceptual similarity of mammographic masses. The observers subjective judgments were collected using: (i) a rating method, (ii) a preference method, and (iii) a hybrid method combining rating and ranking. Personalized user models were developed with the collected data to predict observers opinions. The relative efficacy of each data collection method was assessed based on the classification accuracy of the resulting user models. Results: The hybrid data collection method produced significantly more accurate individualized user models of perceptual opinions with comparable and sometimes better time efficiency than the other two data collection methods. The user models derived from hybrid data were clearly superior even when developed with a dramatically smaller number of training cases. Conclusions: A hybrid method combining rating and ranking is an intuitive and efficient way for collecting subjective similarity judgments to model human perceptual opinions with a higher accuracy than other more commonly used data collection methods.

  17. Extension of the ADC Charge-Collection Model to Include Multiple Junctions

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    2011-01-01

    The ADC model is a charge-collection model derived for simple p-n junction silicon diodes having a single reverse-biased p-n junction at one end and an ideal substrate contact at the other end. The present paper extends the model to include multiple junctions, and the goal is to estimate how collected charge is shared by the different junctions.

  18. Energy and time modelling of kerbside waste collection: Changes incurred when adding source separated food waste.

    PubMed

    Edwards, Joel; Othman, Maazuza; Burn, Stewart; Crossin, Enda

    2016-10-01

    The collection of source separated kerbside municipal FW (SSFW) is being incentivised in Australia, however such a collection is likely to increase the fuel and time a collection truck fleet requires. Therefore, waste managers need to determine whether the incentives outweigh the cost. With literature scarcely describing the magnitude of increase, and local parameters playing a crucial role in accurately modelling kerbside collection; this paper develops a new general mathematical model that predicts the energy and time requirements of a collection regime whilst incorporating the unique variables of different jurisdictions. The model, Municipal solid waste collect (MSW-Collect), is validated and shown to be more accurate at predicting fuel consumption and trucks required than other common collection models. When predicting changes incurred for five different SSFW collection scenarios, results show that SSFW scenarios require an increase in fuel ranging from 1.38% to 57.59%. There is also a need for additional trucks across most SSFW scenarios tested. All SSFW scenarios are ranked and analysed in regards to fuel consumption; sensitivity analysis is conducted to test key assumptions.

  19. Backtracking search algorithm in CVRP models for efficient solid waste collection and route optimization.

    PubMed

    Akhtar, Mahmuda; Hannan, M A; Begum, R A; Basri, Hassan; Scavino, Edgar

    2017-03-01

    Waste collection is an important part of waste management that involves different issues, including environmental, economic, and social, among others. Waste collection optimization can reduce the waste collection budget and environmental emissions by reducing the collection route distance. This paper presents a modified Backtracking Search Algorithm (BSA) in capacitated vehicle routing problem (CVRP) models with the smart bin concept to find the best optimized waste collection route solutions. The objective function minimizes the sum of the waste collection route distances. The study introduces the concept of the threshold waste level (TWL) of waste bins to reduce the number of bins to be emptied by finding an optimal range, thus minimizing the distance. A scheduling model is also introduced to compare the feasibility of the proposed model with that of the conventional collection system in terms of travel distance, collected waste, fuel consumption, fuel cost, efficiency and CO2 emission. The optimal TWL was found to be between 70% and 75% of the fill level of waste collection nodes and had the maximum tightness value for different problem cases. The obtained results for four days show a 36.80% distance reduction for 91.40% of the total waste collection, which eventually increases the average waste collection efficiency by 36.78% and reduces the fuel consumption, fuel cost and CO2 emission by 50%, 47.77% and 44.68%, respectively. Thus, the proposed optimization model can be considered a viable tool for optimizing waste collection routes to reduce economic costs and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Collective Academic Supervision: A Model for Participation and Learning in Higher Education

    ERIC Educational Resources Information Center

    Nordentoft, Helle Merete; Thomsen, Rie; Wichmann-Hansen, Gitte

    2013-01-01

    Supervision of graduate students is a core activity in higher education. Previous research on graduate supervision focuses on individual and relational aspects of the supervisory relationship rather than collective, pedagogical and methodological aspects of the supervision process. In presenting a collective model we have developed for academic…

  1. Recent approaches to quadrupole collectivity: models, solutions and applications based on the Bohr hamiltonian

    NASA Astrophysics Data System (ADS)

    Buganu, Petricǎ; Fortunato, Lorenzo

    2016-09-01

    We review and discuss several recent approaches to quadrupole collectivity and developments of collective models and their solutions with many applications, examples and references. We focus in particular on analytic and approximate solutions of the Bohr hamiltonian of the last decade, because most of the previously published material has been already reviewed in other publications.

  2. 75 FR 34767 - Proposed Information Collection Request of the Resource Justification Model (RJM); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... Employment and Training Administration Proposed Information Collection Request of the Resource Justification Model (RJM); Comment Request AGENCY: Employment and Training Administration (ETA), Labor. ACTION: Notice.... Department of Labor, Employment and Training Administration, Office of Unemployment Insurance, 200...

  3. Seven Challenges for Model-Driven Data Collection in Experimental and Observational Studies

    PubMed Central

    Lessler, J.; Edmunds, W.J.; Halloran, M.E.; Hollingsworth, T.D.; Lloyd, A.L.

    2014-01-01

    Infectious disease models are both concise statements of hypotheses and powerful techniques for creating tools from hypotheses and theories. As such, they have tremendous potential for guiding data collection in experimental and observational studies, leading to more efficient testing of hypotheses and more robust study designs. In numerous instances, infectious disease models have played a key role in informing data collection, including the Garki project studying malaria, the response to the 2009 pandemic of H1N1 influenza in the United Kingdom and studies of T-cell immunodynamics in mammals. However, such synergies remain the exception rather than the rule; and a close marriage of dynamic modelling and empirical data collection is far from the norm in infectious disease research. Overcoming the challenges to using models to inform data collection has the potential to accelerate innovation and to improve practice in how we deal with infectious disease threats. PMID:25843389

  4. Yang-Mills equation for the nuclear geometrical collective model connexion

    NASA Astrophysics Data System (ADS)

    Sparks, N.; Rosensteel, G.

    2017-01-01

    The Bohr-Mottelson collective model of rotations and quadrupole vibrations is a foundational model in nuclear structure physics. A modern formulation using differential geometry of bundles builds on this legacy collective model to allow a deformation-dependent interaction between rotational and vortical degrees of freedom. The interaction is described by the bundle connexion. This article reports the Yang-Mills equation for the connexion. For a class of solutions to the Yang-Mills equation, the differential geometric collective model attains agreement between experiment and theory for the moments of inertia of deformed isotopes. More generally, the differential geometric framework applies to models of emergent phenomena in which two interacting sets of degrees of freedom must be unified.

  5. Simple Models of Self-Propelled Colloids and Liquid Drops: From Individual Motion to Collective Behaviors

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Natsuhiko

    2017-10-01

    In this review, we discuss recent developments in the theoretical models of self-propelled particles. We first summarize simple models, including active Brownian particles (ABPs), squirmers, and Janus particles (self-phoretic swimmers). We then consider the extension of these models in order to demonstrate the symmetry-breaking mechanism of the motion. Finally, we investigate the emergence of the rich collective behaviors of these models.

  6. Acting in solidarity: Testing an extended dual pathway model of collective action by bystander group members.

    PubMed

    Saab, Rim; Tausch, Nicole; Spears, Russell; Cheung, Wing-Yee

    2015-09-01

    We examined predictors of collective action among bystander group members in solidarity with a disadvantaged group by extending the dual pathway model of collective action, which proposes one efficacy-based and one emotion-based path to collective action (Van Zomeren, Spears, Fischer, & Leach, 2004). Based on two proposed functions of social identity performance (Klein, Spears, & Reicher, 2007), we distinguished between the efficacy of collective action at consolidating the identity of a protest movement and its efficacy at achieving social change (political efficacy). We expected identity consolidation efficacy to positively predict collective action tendencies directly and indirectly via political efficacy. We also expected collective action tendencies to be positively predicted by moral outrage and by sympathy in response to disadvantaged outgroup's suffering. These hypotheses were supported in two surveys examining intentions to protest for Palestine in Britain (Study 1), and intentions to attend the June 4th vigil in Hong Kong to commemorate the Tiananmen massacre among a sample of Hong Kong citizens (Study 2). The contributions of these findings to research on the dual pathway model of collective action and the different functions of collective action are discussed.

  7. 75 FR 16840 - Proposed Extension of Information Collection Request Submitted for Public Comment; Model Employer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... Comment; Model Employer CHIP Notice AGENCY: Employee Benefits Security Administration, Department of Labor... ] Administration is soliciting comments on the Model CHIP Employer Notice. A copy of the information collection... employee resides for premium assistance under Medicaid and CHIP for health coverage of the employee or the...

  8. Investigation of Field-Collected Data Using Diffuse and Specular, Forward and Reverse Radiative Transfer Models

    DTIC Science & Technology

    2015-03-26

    each panel. The laboratory-collected data is comprised of spectral hemispherical, specular, and diffuse directional reflectance (HDR, SDR , and DDR...Radiative Transfer Model (HDR only) ..........................................................19 Expanded Radiative Transfer Model (HDR, DDR, and SDR ...37 Figure 8. HDR, DDR, and SDR of an aged sample of Infragold® ................................. 40 Figure 9

  9. Dynamical modeling of collective behavior from pigeon flight data: flock cohesion and dispersion.

    PubMed

    Dieck Kattas, Graciano; Xu, Xiao-Ke; Small, Michael

    2012-01-01

    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred.

  10. Analytical Light Reflectance Models For Overlapping-Illumination and Collection Area Geometries

    PubMed Central

    Gomes, Andrew J.; Backman, Vadim

    2013-01-01

    Several biomedical applications, such as detection of dysplasia, require selective interrogation of superficial tissue structures less than a few hundred microns thick. Techniques and methods have been developed to limit the penetration depth of light in tissue including the design of systems such as fiber-optic probes that have overlapping illumination and collection areas on the tissue surface. For such geometries, the diffusion approximation to the light transport equation typically does not apply and as a result there is no general model to extract tissue optical properties from reflectance measurements. In the current study, we employ Monte Carlo simulations to develop simple and compact analytical models for the light reflectance from these overlapping geometries. These models incorporate the size of the illumination and collection areas, the collection angle, the polarization of the incident light, and the optical properties of the sample. Moreover, these Monte Carlo simulations use the Whittle-Matérn model to describe scattering from spatially continuous refractive index media such as tissue, which is more general than models based on the conventionally used Henyey and Greenstein model. We validated these models on tissue-simulating phantoms. The models developed herein will facilitate the extraction of optical properties and aid in the design of optical systems employing overlapping illumination and collection areas including fiber-optic probes for in vivo tissue diagnosis. PMID:23207312

  11. Academic Optimism and Collective Responsibility: An Organizational Model of the Dynamics of Student Achievement

    ERIC Educational Resources Information Center

    Wu, Jason H.

    2013-01-01

    This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…

  12. Academic Optimism and Collective Responsibility: An Organizational Model of the Dynamics of Student Achievement

    ERIC Educational Resources Information Center

    Wu, Jason H.

    2013-01-01

    This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…

  13. Collective Labor Supply: A Single-Equation Model and Some Evidence from French Data

    ERIC Educational Resources Information Center

    Donni, Olivier; Moreau, Nicolas

    2007-01-01

    In Chiappori's (1988) collective model of labor supply, hours of work are supposed flexible. In many countries, however, male labor supply does not vary much. In that case, the husband's labor supply is no longer informative about the household decision process and individual preferences. To identify structural components of the model, additional…

  14. Collective Bargaining in Four Year Institutions: A Faculty Perspective Viewed through the Easton Model.

    ERIC Educational Resources Information Center

    Rockman, Ilene F.

    A systems model, developed by David Easton, is used to provide some clarity to many of the issues involved with collective bargaining in American higher education. The model serves as an illustration for understanding how decisions are made, and as a conceptual frame of reference to analyze the political situation. The issues surrounding…

  15. Turbulent flow model for vapor collection efficiency of a high-purity silicon reactor

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1985-01-01

    In this study a mathematical model and a computer code based on this model was developed to allow prediction of the product distribution in chemical reactors for converting gaseous silicon compounds to condensed-phase silicon. Specifically, the model formulated describes the silicon vapor separation/collection from the developing turbulent flow stream within reactors of the Westinghouse type. Migration of the silicon vapor to the reactor walls was described by the parametric solutions presented here, in order to reduce the experimentation necessary in the design of such reactors. Calculations relating to the collection efficiencies of such reactors are presented as a function of the reactor throughflow and distance along its length.

  16. Collective Tunneling Model between Two-Dimensional Electron Gas to Si-Nano Dot

    NASA Astrophysics Data System (ADS)

    Muraguchi, M.; Sakurai, Y.; Takada, Y.; Nomura, S.; Shiraishi, K.; Makihara, K.; Ikeda, M.; Miyazaki, S.; Shigeta, Y.; Endoh, T.

    2011-12-01

    We study the temperature dependence of electron injection voltage in Si-Nano-Dot (Si-NDs) Floating Gate MOS capacitor by using the collective tunneling model, which models the tunneling between two-dimensional electron gas (2DEG) and the Si-NDs. We clarify the temperature dependence by numerical calculation, which emulate the experiment in this system, and we obtained a new insight into the origin of the temperature dependence. We have revealed that the collective tunneling model can reproduce the temperature dependence of electron tunneling.

  17. An agent-based model of collective emotions in online communities

    NASA Astrophysics Data System (ADS)

    Schweitzer, F.; Garcia, D.

    2010-10-01

    We develop an agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agent’s individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent’s arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.

  18. Modeling collective animal behavior with a cognitive perspective: a methodological framework.

    PubMed

    Weitz, Sebastian; Blanco, Stéphane; Fournier, Richard; Gautrais, Jacques; Jost, Christian; Theraulaz, Guy

    2012-01-01

    The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible, individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to discriminate among alternative individual rules by considering only observational data collected at the group level. Six individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They involve complementary experimental protocols specifically designed to address the behavioral rules successively, conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative examples are provided of the benefits expected

  19. Modeling Collective Animal Behavior with a Cognitive Perspective: A Methodological Framework

    PubMed Central

    Weitz, Sebastian; Blanco, Stéphane; Fournier, Richard; Gautrais, Jacques; Jost, Christian; Theraulaz, Guy

    2012-01-01

    The last decades have seen an increasing interest in modeling collective animal behavior. Some studies try to reproduce as accurately as possible the collective dynamics and patterns observed in several animal groups with biologically plausible, individual behavioral rules. The objective is then essentially to demonstrate that the observed collective features may be the result of self-organizing processes involving quite simple individual behaviors. Other studies concentrate on the objective of establishing or enriching links between collective behavior researches and cognitive or physiological ones, which then requires that each individual rule be carefully validated. Here we discuss the methodological consequences of this additional requirement. Using the example of corpse clustering in ants, we first illustrate that it may be impossible to discriminate among alternative individual rules by considering only observational data collected at the group level. Six individual behavioral models are described: They are clearly distinct in terms of individual behaviors, they all reproduce satisfactorily the collective dynamics and distribution patterns observed in experiments, and we show theoretically that it is strictly impossible to discriminate two of these models even in the limit of an infinite amount of data whatever the accuracy level. A set of methodological steps are then listed and discussed as practical ways to partially overcome this problem. They involve complementary experimental protocols specifically designed to address the behavioral rules successively, conserving group-level data for the overall model validation. In this context, we highlight the importance of maintaining a sharp distinction between model enunciation, with explicit references to validated biological concepts, and formal translation of these concepts in terms of quantitative state variables and fittable functional dependences. Illustrative examples are provided of the benefits expected

  20. Shoreline Change and Storm-Induced Beach Erosion Modeling: A Collection of Seven Papers

    DTIC Science & Technology

    1990-03-01

    seasonal variations in wave climate , such as changes in predominant direction and wave steepness, on shoreline position. Duration of Simulation The...used by both the shoreline change model and the nearshore wave transformation model to describe the characteristics of the wave climate . These are the...DTEC FpLE copy MISCELLANEOUS PAPER CERC-90-2 DSHORELINE CHANGE AND STORM-INDUCED BEACH EROSION MODELING: A COLLECTION OF SEVEN PAPERS Edited by

  1. Stochastic modeling of animal epidemics using data collected over three different spatial scales

    PubMed Central

    Rorres, Chris; Pelletier, Sky T. K.; Smith, Gary

    2011-01-01

    A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e.g., vaccination schedules and culling policies). PMID:21552370

  2. Singular perturbation analysis of a reduced model for collective motion: a renormalization group approach.

    PubMed

    Lee, Chiu Fan

    2011-03-01

    In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles is beyond a critical density. Starting with a reduced model for collective motion, we determine how the critical density depends on the form of the initial perturbation. Specifically, we employ a renormalization-group improved perturbative method to analyze the model equations and show analytically, up to first order in the perturbation parameter, how the critical density is modified by the strength of the initial angular perturbation in the system.

  3. Model-driven approach to data collection and reporting for quality improvement

    PubMed Central

    Curcin, Vasa; Woodcock, Thomas; Poots, Alan J.; Majeed, Azeem; Bell, Derek

    2014-01-01

    Continuous data collection and analysis have been shown essential to achieving improvement in healthcare. However, the data required for local improvement initiatives are often not readily available from hospital Electronic Health Record (EHR) systems or not routinely collected. Furthermore, improvement teams are often restricted in time and funding thus requiring inexpensive and rapid tools to support their work. Hence, the informatics challenge in healthcare local improvement initiatives consists of providing a mechanism for rapid modelling of the local domain by non-informatics experts, including performance metric definitions, and grounded in established improvement techniques. We investigate the feasibility of a model-driven software approach to address this challenge, whereby an improvement model designed by a team is used to automatically generate required electronic data collection instruments and reporting tools. To that goal, we have designed a generic Improvement Data Model (IDM) to capture the data items and quality measures relevant to the project, and constructed Web Improvement Support in Healthcare (WISH), a prototype tool that takes user-generated IDM models and creates a data schema, data collection web interfaces, and a set of live reports, based on Statistical Process Control (SPC) for use by improvement teams. The software has been successfully used in over 50 improvement projects, with more than 700 users. We present in detail the experiences of one of those initiatives, Chronic Obstructive Pulmonary Disease project in Northwest London hospitals. The specific challenges of improvement in healthcare are analysed and the benefits and limitations of the approach are discussed. PMID:24874182

  4. Model-driven approach to data collection and reporting for quality improvement.

    PubMed

    Curcin, Vasa; Woodcock, Thomas; Poots, Alan J; Majeed, Azeem; Bell, Derek

    2014-12-01

    Continuous data collection and analysis have been shown essential to achieving improvement in healthcare. However, the data required for local improvement initiatives are often not readily available from hospital Electronic Health Record (EHR) systems or not routinely collected. Furthermore, improvement teams are often restricted in time and funding thus requiring inexpensive and rapid tools to support their work. Hence, the informatics challenge in healthcare local improvement initiatives consists of providing a mechanism for rapid modelling of the local domain by non-informatics experts, including performance metric definitions, and grounded in established improvement techniques. We investigate the feasibility of a model-driven software approach to address this challenge, whereby an improvement model designed by a team is used to automatically generate required electronic data collection instruments and reporting tools. To that goal, we have designed a generic Improvement Data Model (IDM) to capture the data items and quality measures relevant to the project, and constructed Web Improvement Support in Healthcare (WISH), a prototype tool that takes user-generated IDM models and creates a data schema, data collection web interfaces, and a set of live reports, based on Statistical Process Control (SPC) for use by improvement teams. The software has been successfully used in over 50 improvement projects, with more than 700 users. We present in detail the experiences of one of those initiatives, Chronic Obstructive Pulmonary Disease project in Northwest London hospitals. The specific challenges of improvement in healthcare are analysed and the benefits and limitations of the approach are discussed.

  5. Modeling the efficiency of a magnetic needle for collecting magnetic cells

    NASA Astrophysics Data System (ADS)

    Butler, Kimberly S.; Adolphi, Natalie L.; Bryant, H. C.; Lovato, Debbie M.; Larson, Richard S.; Flynn, Edward R.

    2014-07-01

    As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.

  6. Collection of Culicoides spp. with four light trap models during different seasons in the Balearic Islands.

    PubMed

    del Río, R; Monerris, M; Miquel, M; Borràs, D; Calvete, C; Estrada, R; Lucientes, J; Miranda, M A

    2013-07-01

    Bluetongue (BT) is a viral disease that affects ruminants, being especially pathogenic in certain breeds of sheep. Its viral agent (bluetongue virus; BTV) is transmitted by several species of Culicoides biting midges (Diptera: Ceratopogonidae). Different models of suction light traps are being used in a number of countries for the collection of BTV vector species. To determine the relative effectiveness of different light traps under field conditions, four traps (Onderstepoort, Mini-CDC, Rieb and Pirbright) were compared. These traps were rotated between four sites on a cattle farm in Mallorca (Balearic Islands, Spain) for several non-consecutive nights. Results showed remarkable disparities in the efficacy of the traps for the collection of Culicoides midges. The highest number of midges collected in the Onderstepoort trap (x¯±SD=62±94.2) was not significantly different from that collected in the Mini-CDC (x¯±SD=58±139.2). The Rieb trap collected the lowest number of midges (x¯±SD=3±4.0). Significantly higher mean numbers of midges were collected in the Onderstepoort than in either the Pirbright (P=0.002) or Rieb traps (P=0.008). There were also differences in the Culicoides species composition as determine with the various traps. These results indicate that the Onderstepoort or Mini-CDC traps will be more effective than either the Rieb or Pirbright traps for the collection of large numbers of Culicoides midges.

  7. Collective motion of motile cilia: from human airways to model systems

    NASA Astrophysics Data System (ADS)

    Cicuta, Pietro; Feriani, Luigi; Chioccioli, Maurizio; Kotar, Jurij

    Mammalian airways are a fantastic playground of nonlinear phenomena, from the function of individual active filaments, to the emerging collective behaviour, to the rheology of the mucus solution surrounding cilia. We have been investigating the fundamental physics of this system through a variety of model system approaches, both experimental and computational. In the last year we have started measurements on living human cells, observing cilia shape during beating, and measuring speed and coherence of the collective dynamics. We report on significant differences in the collective motion in ciliated cell carpets from a variety of diseases, and we attempt to reconcile the collective dynamical phenotypes to the properties of individual filaments and the mechanics of the environment.

  8. Exploring the dynamics of collective cognition using a computational model of cognitive dissonance

    NASA Astrophysics Data System (ADS)

    Smart, Paul R.; Sycara, Katia; Richardson, Darren P.

    2013-05-01

    The socially-distributed nature of cognitive processing in a variety of organizational settings means that there is increasing scientific interest in the factors that affect collective cognition. In military coalitions, for example, there is a need to understand how factors such as communication network topology, trust, cultural differences and the potential for miscommunication affects the ability of distributed teams to generate high quality plans, to formulate effective decisions and to develop shared situation awareness. The current paper presents a computational model and associated simulation capability for performing in silico experimental analyses of collective sensemaking. This model can be used in combination with the results of human experimental studies in order to improve our understanding of the factors that influence collective sensemaking processes.

  9. Dynamical Modeling of Collective Behavior from Pigeon Flight Data: Flock Cohesion and Dispersion

    PubMed Central

    Xu, Xiao-Ke; Small, Michael

    2012-01-01

    Several models of flocking have been promoted based on simulations with qualitatively naturalistic behavior. In this paper we provide the first direct application of computational modeling methods to infer flocking behavior from experimental field data. We show that this approach is able to infer general rules for interaction, or lack of interaction, among members of a flock or, more generally, any community. Using experimental field measurements of homing pigeons in flight we demonstrate the existence of a basic distance dependent attraction/repulsion relationship and show that this rule is sufficient to explain collective behavior observed in nature. Positional data of individuals over time are used as input data to a computational algorithm capable of building complex nonlinear functions that can represent the system behavior. Topological nearest neighbor interactions are considered to characterize the components within this model. The efficacy of this method is demonstrated with simulated noisy data generated from the classical (two dimensional) Vicsek model. When applied to experimental data from homing pigeon flights we show that the more complex three dimensional models are capable of simulating trajectories, as well as exhibiting realistic collective dynamics. The simulations of the reconstructed models are used to extract properties of the collective behavior in pigeons, and how it is affected by changing the initial conditions of the system. Our results demonstrate that this approach may be applied to construct models capable of simulating trajectories and collective dynamics using experimental field measurements of herd movement. From these models, the behavior of the individual agents (animals) may be inferred. PMID:22479176

  10. A branch scale analytical model for predicting the vegetation collection efficiency of ultrafine particles

    NASA Astrophysics Data System (ADS)

    Lin, M.; Katul, G. G.; Khlystov, A.

    2012-05-01

    The removal of ultrafine particles (UFP) by vegetation is now receiving significant attention given their role in cloud physics, human health and respiratory related diseases. Vegetation is known to be a sink for UFP, prompting interest in their collection efficiency. A number of models have tackled the UFP collection efficiency of an isolated leaf or a flat surface; however, up-scaling these theories to the ecosystem level has resisted complete theoretical treatment. To progress on a narrower scope of this problem, simultaneous experimental and theoretical investigations are carried out at the “intermediate” branch scale. Such a scale retains the large number of leaves and their interaction with the flow without the heterogeneities and added geometric complexities encountered within ecosystems. The experiments focused on the collection efficiencies of UFP in the size range 12.6-102 nm for pine and juniper branches in a wind tunnel facility. Scanning mobility particle sizers were used to measure the concentration of each diameter class of UFP upstream and downstream of the vegetation branches thereby allowing the determination of the UFP vegetation collection efficiencies. The UFP vegetation collection efficiency was measured at different wind speeds (0.3-1.5 m s-1), packing density (i.e. volume fraction of leaf or needle fibers; 0.017 and 0.040 for pine and 0.037, 0.055 for juniper), and branch orientations. These measurements were then used to investigate the performance of a proposed analytical model that predicts the branch-scale collection efficiency using conventional canopy properties such as the drag coefficient and leaf area density. Despite the numerous simplifications employed, the proposed analytical model agreed with the wind tunnel measurements mostly to within 20%. This analytical tractability can benefit future air quality and climate models incorporating UFP.

  11. Seven challenges for model-driven data collection in experimental and observational studies.

    PubMed

    Lessler, J; Edmunds, W J; Halloran, M E; Hollingsworth, T D; Lloyd, A L

    2015-03-01

    Infectious disease models are both concise statements of hypotheses and powerful techniques for creating tools from hypotheses and theories. As such, they have tremendous potential for guiding data collection in experimental and observational studies, leading to more efficient testing of hypotheses and more robust study designs. In numerous instances, infectious disease models have played a key role in informing data collection, including the Garki project studying malaria, the response to the 2009 pandemic of H1N1 influenza in the United Kingdom and studies of T-cell immunodynamics in mammals. However, such synergies remain the exception rather than the rule; and a close marriage of dynamic modeling and empirical data collection is far from the norm in infectious disease research. Overcoming the challenges to using models to inform data collection has the potential to accelerate innovation and to improve practice in how we deal with infectious disease threats. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Self-organized energetic model for collective activity on animal tissue

    NASA Astrophysics Data System (ADS)

    Dos Santos, Michelle C. Varela; Macedo-Filho, Antonio; Dos Santos Lima, Gustavo Zampier; Corso, Gilberto

    We construct a self-organized critical (SOC) model to explain spontaneous collective activity in animal tissue without the necessity of a muscular or a central control nervous system. Our prototype model is an epithelial cuboid tissue formed by a single layer of cells as the internal digestive cavity of primitive animals. The tissue is composed by cells that absorb nutrients and store energy, with probability p, to participate in a collective tissue activity. Each cell can be in two states: at high energy and able to became active or at low metabolic energy and remain at rest. Any cell can spontaneously, with a very low probability, spark a collective activity across its neighbors that share a minimal energy. Cells participating in tissue activity consume all their energy. A power-law relation P(s)∝sγ for the probability of having a collective activity with s cells is observed. By construction this model is analogue to the forest fire SOC model. Our approach produces naturally a critical state for the activity in animal tissue, besides it explains self-sustained activity in a living animal tissue without feedback control.

  13. Does the Race of Neighborhood Role Models Matter? Collective Socialization Effects on Educational Achievement

    ERIC Educational Resources Information Center

    Ainsworth, James W.

    2010-01-01

    This study examines whether neighborhood level collective socialization processes are racialized. It addresses whether Black and White students are affected differentially by their general neighborhood characteristics; whether the racial composition of positive and negative role models in a neighborhood shape student performance differently; and…

  14. Collective Bargaining and the Community College: A Process Model for Management Teams.

    ERIC Educational Resources Information Center

    Langan, Alfred "Bud"; And Others

    The model presented in this monograph was designed to aid state and district school systems and college administrators in dealing with the challenge of faculty collective bargaining in Washington community colleges. First, Chapter 1 provides a historical analysis of the laws and statutes relating to negotiations in the state's community colleges.…

  15. The Data Collection Matrix Model: A Tool for Functional Area and Program Evaluation.

    ERIC Educational Resources Information Center

    Coker, Dana Rosenberg; Friedel, Janice Nahra

    1991-01-01

    The data collection matrix makes possible the integration of functional area data from numerous assessment sources and presentation of the information in a unified composite report. This model is discussed in relation to the various assessment instruments and the evaluation of functional areas and programs in colleges and universities. (Author/MSE)

  16. A Field-Study/Data-Collection Model for Developing an Education-Business Liaison Network.

    ERIC Educational Resources Information Center

    Church, Olive D.

    Thirteen Wyoming teachers and counselors interviewed managers in 215 businesses covering 9,515 jobs. This field study served as a basis for developing a field study-data collection model to be used in establishing an education-business liaison network. Each interviewer participating in the study was instructed to contact from 10 to 20 local…

  17. Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration.

    PubMed

    Nava-Sedeño, J M; Hatzikirou, H; Peruani, F; Deutsch, A

    2017-02-27

    Cellular automata (CA) are discrete time, space, and state models which are extensively used for modeling biological phenomena. CA are "on-lattice" models with low computational demands. In particular, lattice-gas cellular automata (LGCA) have been introduced as models of single and collective cell migration. The interaction rule dictates the behavior of a cellular automaton model and is critical to the model's biological relevance. The LGCA model's interaction rule has been typically chosen phenomenologically. In this paper, we introduce a method to obtain lattice-gas cellular automaton interaction rules from physically-motivated "off-lattice" Langevin equation models for migrating cells. In particular, we consider Langevin equations related to single cell movement (movement of cells independent of each other) and collective cell migration (movement influenced by cell-cell interactions). As examples of collective cell migration, two different alignment mechanisms are studied: polar and nematic alignment. Both kinds of alignment have been observed in biological systems such as swarms of amoebae and myxobacteria. Polar alignment causes cells to align their velocities parallel to each other, whereas nematic alignment drives cells to align either parallel or antiparallel to each other. Under appropriate assumptions, we have derived the LGCA transition probability rule from the steady-state distribution of the off-lattice Fokker-Planck equation. Comparing alignment order parameters between the original Langevin model and the derived LGCA for both mechanisms, we found different areas of agreement in the parameter space. Finally, we discuss potential reasons for model disagreement and propose extensions to the CA rule derivation methodology.

  18. Accuracy of growth model parameters: effects of frequency and duration of data collection, and missing information.

    PubMed

    Aggrey, Samuel E

    2008-01-01

    This study was done to compare the accuracy of prediction of growth parameters using the Gompertz model when (1) data was collected infrequently, (2) data collection was truncated, and (3) data was missing. Initial growth rate and rate of decay were reduced by half when the model was fitted to data collected biweekly compared to data collected weekly. This reduction led to an increase in age of maximum growth and subsequently over-predicted the asymptotic body weight. When only part of the growth duration was used for prediction, both the initial growth rate and rate of decay were reduced. The degree of data truncation also affected sexual dimorphism of the parameters estimated. Using pre-asymptotic data for growth parameter prediction does not allow the intrinsic efficiency of growth to be determined accurately. However, using growth data with body weights missing at different phases of the growth curve does not seem to significantly affect the predicted growth parameters. Speculative or diagnostic conclusions on intrinsic growth should be done with data collected at short intervals to avoid potential inaccuracies in the prediction of initial growth rate, exponential decay rate, age of maximum growth and asymptotic weight.

  19. HOCOMOCO: a comprehensive collection of human transcription factor binding sites models

    PubMed Central

    Kulakovskiy, Ivan V.; Medvedeva, Yulia A.; Schaefer, Ulf; Kasianov, Artem S.; Vorontsov, Ilya E.; Bajic, Vladimir B.; Makeev, Vsevolod J.

    2013-01-01

    Transcription factor (TF) binding site (TFBS) models are crucial for computational reconstruction of transcription regulatory networks. In existing repositories, a TF often has several models (also called binding profiles or motifs), obtained from different experimental data. Having a single TFBS model for a TF is more pragmatic for practical applications. We show that integration of TFBS data from various types of experiments into a single model typically results in the improved model quality probably due to partial correction of source specific technique bias. We present the Homo sapiens comprehensive model collection (HOCOMOCO, http://autosome.ru/HOCOMOCO/, http://cbrc.kaust.edu.sa/hocomoco/) containing carefully hand-curated TFBS models constructed by integration of binding sequences obtained by both low- and high-throughput methods. To construct position weight matrices to represent these TFBS models, we used ChIPMunk software in four computational modes, including newly developed periodic positional prior mode associated with DNA helix pitch. We selected only one TFBS model per TF, unless there was a clear experimental evidence for two rather distinct TFBS models. We assigned a quality rating to each model. HOCOMOCO contains 426 systematically curated TFBS models for 401 human TFs, where 172 models are based on more than one data source. PMID:23175603

  20. A model for cell density effect on stress fiber alignment and collective directional migration.

    PubMed

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-31

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes--including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements--are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement.

  1. A model for cell density effect on stress fiber alignment and collective directional migration

    NASA Astrophysics Data System (ADS)

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-01

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes—including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements—are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement.

  2. Thermal conductivity of group-IV semiconductors from a kinetic-collective model

    PubMed Central

    de Tomas, C.; Cantarero, A.; Lopeandia, A. F.; Alvarez, F. X.

    2014-01-01

    The thermal conductivity of group-IV semiconductors (silicon, germanium, diamond and grey tin) with several isotopic compositions has been calculated from a kinetic-collective model. From this approach, significantly different to Callaway-like models in its physical interpretation, the thermal conductivity expression accounts for a transition from a kinetic (individual phonon transport) to a collective (hydrodynamic phonon transport) behaviour of the phonon field. Within the model, we confirm the theoretical proportionality between the phonon–phonon relaxation times of the group-IV semiconductors. This proportionality depends on some materials properties and it allows us to predict the thermal conductivity of the whole group of materials without the need to fit each material individually. The predictions on thermal conductivities are in good agreement with experimental data over a wide temperature range. PMID:25197256

  3. Flocking and Turning: a New Model for Self-organized Collective Motion

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2015-02-01

    Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

  4. Modeling and analysis of collective cell migration in an in vivo three-dimensional environment.

    PubMed

    Cai, Danfeng; Dai, Wei; Prasad, Mohit; Luo, Junjie; Gov, Nir S; Montell, Denise J

    2016-04-12

    A long-standing question in collective cell migration has been what might be the relative advantage of forming a cluster over migrating individually. Does an increase in the size of a collectively migrating group of cells enable them to sample the chemical gradient over a greater distance because the difference between front and rear of a cluster would be greater than for single cells? We combined theoretical modeling with experiments to study collective migration of the border cells in-between nurse cells in the Drosophila egg chamber. We discovered that cluster size is positively correlated with migration speed, up to a particular point above which speed plummets. This may be due to the effect of viscous drag from surrounding nurse cells together with confinement of all of the cells within a stiff extracellular matrix. The model predicts no relationship between cluster size and velocity for cells moving on a flat surface, in contrast to movement within a 3D environment. Our analyses also suggest that the overall chemoattractant profile in the egg chamber is likely to be exponential, with the highest concentration in the oocyte. These findings provide insights into collective chemotaxis by combining theoretical modeling with experimentation.

  5. Models in animal collective decision-making: information uncertainty and conflicting preferences.

    PubMed

    Conradt, Larissa

    2012-04-06

    Collective decision-making plays a central part in the lives of many social animals. Two important factors that influence collective decision-making are information uncertainty and conflicting preferences. Here, I bring together, and briefly review, basic models relating to animal collective decision-making in situations with information uncertainty and in situations with conflicting preferences between group members. The intention is to give an overview about the different types of modelling approaches that have been employed and the questions that they address and raise. Despite the use of a wide range of different modelling techniques, results show a coherent picture, as follows. Relatively simple cognitive mechanisms can lead to effective information pooling. Groups often face a trade-off between decision accuracy and speed, but appropriate fine-tuning of behavioural parameters could achieve high accuracy while maintaining reasonable speed. The right balance of interdependence and independence between animals is crucial for maintaining group cohesion and achieving high decision accuracy. In conflict situations, a high degree of decision-sharing between individuals is predicted, as well as transient leadership and leadership according to needs and physiological status. Animals often face crucial trade-offs between maintaining group cohesion and influencing the decision outcome in their own favour. Despite the great progress that has been made, there remains one big gap in our knowledge: how do animals make collective decisions in situations when information uncertainty and conflict of interest operate simultaneously?

  6. Modeling and analysis of collective cell migration in an in vivo three-dimensional environment

    PubMed Central

    Dai, Wei; Prasad, Mohit; Luo, Junjie; Gov, Nir S.; Montell, Denise J.

    2016-01-01

    A long-standing question in collective cell migration has been what might be the relative advantage of forming a cluster over migrating individually. Does an increase in the size of a collectively migrating group of cells enable them to sample the chemical gradient over a greater distance because the difference between front and rear of a cluster would be greater than for single cells? We combined theoretical modeling with experiments to study collective migration of the border cells in-between nurse cells in the Drosophila egg chamber. We discovered that cluster size is positively correlated with migration speed, up to a particular point above which speed plummets. This may be due to the effect of viscous drag from surrounding nurse cells together with confinement of all of the cells within a stiff extracellular matrix. The model predicts no relationship between cluster size and velocity for cells moving on a flat surface, in contrast to movement within a 3D environment. Our analyses also suggest that the overall chemoattractant profile in the egg chamber is likely to be exponential, with the highest concentration in the oocyte. These findings provide insights into collective chemotaxis by combining theoretical modeling with experimentation. PMID:27035964

  7. Analytical model of particle and heat flux collection by dust immersed in dense magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Vignitchouk, L.; Ratynskaia, S.; Tolias, P.

    2017-10-01

    A comprehensive analytical description is presented for the particle and heat fluxes collected by dust in dense magnetized plasmas. Compared to the widely used orbital motion limited theory, the suppression of cross-field transport leads to a strong reduction of the electron fluxes, while ion collection is inhibited by thin-sheath effects and the formation of a potential overshoot along the field lines. As a result, the incoming heat flux loses its sensitivity to the floating potential, thereby diminishing the importance of electron emission processes in dust survivability. Numerical simulations implementing the new model for ITER-like detached divertor plasmas predict a drastic enhancement of the dust lifetime.

  8. Data Collection for Dynamic Temperature Modeling in High-Gradient Mountain Streams

    NASA Astrophysics Data System (ADS)

    Neilson, B. T.; Schmadel, N.; Bingham, J. D.; Hobson, A. J.

    2007-12-01

    Neilson [2006] published results from a study in the Virgin River, UT where a data collection methodology was developed to assist in modeling the separate effects of hyporheic and dead zones on heat and solute transport. This study was unique in that temperature and tracer data were collected in the main channel, hyporheic zone, and dead zones to help estimate parameters associated with a two zone modeling approach rather than previous one zone modeling approaches that lump the effects of hyporheic and dead zones (transient storage). Research on a small section of Curtis Creek, UT, USA, has begun to investigate whether the data collection methodology and modeling approach developed by Neilson in the Virgin River, a desert river system with sand/gravel substrate and relatively low average channel slopes, could be implemented in a mountain stream with gravel/cobble substrate and higher average channel slopes that are highly influenced by groundwater. Initial data suggested that instream temperatures in this small high-gradient steam are significantly affected by riparian shading, deep groundwater, surface groundwater seeps, hyporheic exchange, and bed conduction. Therefore, new data types were collected in the current study in order to begin to separate out some of the complex and confounded sources and sinks of heat found in mountain streams that need to be quantified for temperature model population and testing. These included riparian shading mapping, detailed channel surveys, groundwater observation wells, and an increased number of tracer tests to assist in quantifying groundwater influx through dilution studies. Additionally, new installation techniques had to be applied for equipment inserted in the bed sediments. Preliminary data, analyses, and installation techniques will be presented. Neilson, B. T. (2006), Dynamic Stream Temperature Modeling: Understanding the Causes and Effects of Temperature Impairments and Uncertainty in Predictions, Dissertation thesis

  9. Development of model for analysing respective collections of intended hematopoietic stem cells and harvests of unintended mature cells in apheresis for autologous hematopoietic stem cell collection.

    PubMed

    Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B

    2014-04-01

    Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (p<0.0001) and their respective shares remained stable throughout the BV processes (p non-significant). We analysed the role of intrinsic (patient's features) and extrinsic (features before starting leukapheresis sessions) factors in collections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (p<0.001) and shares of HSC collections and mature unintended cells harvests (p<0.001) throughout the BV processes. Altogether, our results suggested that the main factors likely

  10. Onset of collective motion in locusts is captured by a minimal model

    NASA Astrophysics Data System (ADS)

    Dyson, Louise; Yates, Christian A.; Buhl, Jerome; McKane, Alan J.

    2015-11-01

    We present a minimal model to describe the onset of collective motion seen when a population of locusts are placed in an annular arena. At low densities motion is disordered, while at high densities locusts march in a common direction, which may reverse during the experiment. The data are well captured by an individual-based model, in which demographic noise leads to the observed density-dependent effects. By fitting the model parameters to equation-free coefficients, we give a quantitative comparison, showing time series, stationary distributions, and the mean switching times between states.

  11. A model for individual and collective cell movement in Dictyostelium discoideum

    PubMed Central

    Palsson, Eirikur; Othmer, Hans G.

    2000-01-01

    The cellular slime mold Dictyostelium discoideum is a widely used model system for studying a variety of basic processes in development, including cell–cell signaling, signal transduction, pattern formation, cell motility, and the movement of tissue-like aggregates of cells. Many aspects of cell motion are poorly understood, including how individual cell behavior produces the collective motion of cells observed within the mound and slug. Herein, we describe a biologically realistic model for motile D. discoideum cells that can generate active forces, that interact via surface molecules, and that can detect and respond to chemotactic signals. We model the cells as deformable viscoelastic ellipsoids and incorporate signal transduction and cell–cell signaling by using a previously developed model. The shape constraint restricts the admissible deformations but makes the simulation of a large number of interacting cells feasible. Because the model is based on known processes, the parameters can be estimated or measured experimentally. We show that this model can reproduce the observations on the chemotactic behavior of single cells, streaming during aggregation, and the collective motion of an aggregate of cells driven by a small group of pacemakers. The model predicts that the motion of two-dimensional slugs [Bonner, J. T. (1998) Proc. Natl. Acad. Sci. USA 95, 9355–9359] results from the same behaviors that are exhibited by individual cells; it is not necessary to invoke different mechanisms or behaviors. Our computational experiments also suggest previously uncharacterized phenomena that may be experimentally observable. PMID:10984537

  12. Computational model of collective nest selection by ants with heterogeneous acceptance thresholds

    PubMed Central

    Masuda, Naoki; O'shea-Wheller, Thomas A.; Doran, Carolina; Franks, Nigel R.

    2015-01-01

    Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed–accuracy trade-offs and speed–cohesion trade-offs when we vary the number of scouts or the quorum threshold. PMID:26543578

  13. Computational model of collective nest selection by ants with heterogeneous acceptance thresholds.

    PubMed

    Masuda, Naoki; O'shea-Wheller, Thomas A; Doran, Carolina; Franks, Nigel R

    2015-06-01

    Collective decision-making is a characteristic of societies ranging from ants to humans. The ant Temnothorax albipennis is known to use quorum sensing to collectively decide on a new home; emigration to a new nest site occurs when the number of ants favouring the new site becomes quorate. There are several possible mechanisms by which ant colonies can select the best nest site among alternatives based on a quorum mechanism. In this study, we use computational models to examine the implications of heterogeneous acceptance thresholds across individual ants in collective nest choice behaviour. We take a minimalist approach to develop a differential equation model and a corresponding non-spatial agent-based model. We show, consistent with existing empirical evidence, that heterogeneity in acceptance thresholds is a viable mechanism for efficient nest choice behaviour. In particular, we show that the proposed models show speed-accuracy trade-offs and speed-cohesion trade-offs when we vary the number of scouts or the quorum threshold.

  14. Analyzing mHealth Engagement: Joint Models for Intensively Collected User Engagement Data

    PubMed Central

    Ben-Zeev, Dror; Li, Zhigang; Kane, John M

    2017-01-01

    Background Evaluating engagement with an intervention is a key component of understanding its efficacy. With an increasing interest in developing behavioral interventions in the mobile health (mHealth) space, appropriate methods for evaluating engagement in this context are necessary. Data collected to evaluate mHealth interventions are often collected much more frequently than those for clinic-based interventions. Additionally, missing data on engagement is closely linked to level of engagement resulting in the potential for informative missingness. Thus, models that can accommodate intensively collected data and can account for informative missingness are required for unbiased inference when analyzing engagement with an mHealth intervention. Objective The objectives of this paper are to discuss the utility of the joint modeling approach in the analysis of longitudinal engagement data in mHealth research and to illustrate the application of this approach using data from an mHealth intervention designed to support illness management among people with schizophrenia. Methods Engagement data from an evaluation of an mHealth intervention designed to support illness management among people with schizophrenia is analyzed. A joint model is applied to the longitudinal engagement outcome and time-to-dropout to allow unbiased inference on the engagement outcome. Results are compared to a naïve model that does not account for the relationship between dropout and engagement. Results The joint model shows a strong relationship between engagement and reduced risk of dropout. Using the mHealth app 1 day more per week was associated with a 23% decreased risk of dropout (P<.001). The decline in engagement over time was steeper when the joint model was used in comparison with the naïve model. Conclusions Naïve longitudinal models that do not account for informative missingness in mHealth data may produce biased results. Joint models provide a way to model intensively collected

  15. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-07

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  16. From Mindless Masses to Small Groups: Conceptualizing Collective Behavior in Crowd Modeling.

    PubMed

    Templeton, Anne; Drury, John; Philippides, Andrew

    2015-09-01

    Computer simulations are increasingly used to monitor and predict behavior at large crowd events, such as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and call for future simulations of crowd behavior to be based more closely on findings from current social psychological research. A systematic review was conducted on the crowd modeling literature (N = 140 articles) to identify the assumptions about crowd behavior that modelers use in their simulations. Articles were coded according to the way in which crowd structure was modeled. It was found that 2 broad types are used: mass approaches and small group approaches. However, neither the mass nor the small group approaches can accurately simulate the large collective behavior that has been found in extensive empirical research on crowd events. We argue that to model crowd behavior realistically, simulations must use methods which allow crowd members to identify with each other, as suggested by self-categorization theory.

  17. Collective Flocking Dynamics: Long Rang Order in a Non-Equilibrium 2D XY Model

    NASA Astrophysics Data System (ADS)

    Tu, Yuhai

    1996-03-01

    We propose and study a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, schools of fishs, etc.) (J. Toner and Y. Tu, Phys. Rev. Lett.), 75(23), 4326(1995) Our model becomes highly non-trivial, and different from the equilibrium model, for dmodel exhibits a broken continuous symmetry even in d=2. Our model describes a large universality class of microscopic rules, including those recently simulated by Vicsek et. al.( T. Vicsek et. al. , Phys. Rev. Lett.) 75, 1226(95).

  18. From Mindless Masses to Small Groups: Conceptualizing Collective Behavior in Crowd Modeling

    PubMed Central

    2015-01-01

    Computer simulations are increasingly used to monitor and predict behavior at large crowd events, such as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and call for future simulations of crowd behavior to be based more closely on findings from current social psychological research. A systematic review was conducted on the crowd modeling literature (N = 140 articles) to identify the assumptions about crowd behavior that modelers use in their simulations. Articles were coded according to the way in which crowd structure was modeled. It was found that 2 broad types are used: mass approaches and small group approaches. However, neither the mass nor the small group approaches can accurately simulate the large collective behavior that has been found in extensive empirical research on crowd events. We argue that to model crowd behavior realistically, simulations must use methods which allow crowd members to identify with each other, as suggested by self-categorization theory. PMID:26388685

  19. Modeling age-specific cancer incidences using logistic growth equations: implications for data collection.

    PubMed

    Shen, Xing-Rong; Feng, Rui; Chai, Jing; Cheng, Jing; Wang, De-Bin

    2014-01-01

    Large scale secular registry or surveillance systems have been accumulating vast data that allow mathematical modeling of cancer incidence and mortality rates. Most contemporary models in this regard use time series and APC (age-period-cohort) methods and focus primarily on predicting or analyzing cancer epidemiology with little attention being paid to implications for designing cancer registry, surveillance or evaluation initiatives. This research models age-specific cancer incidence rates using logistic growth equations and explores their performance under different scenarios of data completeness in the hope of deriving clues for reshaping relevant data collection. The study used China Cancer Registry Report 2012 as the data source. It employed 3-parameter logistic growth equations and modeled the age-specific incidence rates of all and the top 10 cancers presented in the registry report. The study performed 3 types of modeling, namely full age-span by fitting, multiple 5-year- segment fitting and single-segment fitting. Measurement of model performance adopted adjusted goodness of fit that combines sum of squred residuals and relative errors. Both model simulation and performance evalation utilized self-developed algorithms programed using C# languade and MS Visual Studio 2008. For models built upon full age-span data, predicted age-specific cancer incidence rates fitted very well with observed values for most (except cervical and breast) cancers with estimated goodness of fit (Rs) being over 0.96. When a given cancer is concerned, the R valuae of the logistic growth model derived using observed data from urban residents was greater than or at least equal to that of the same model built on data from rural people. For models based on multiple-5-year-segment data, the Rs remained fairly high (over 0.89) until 3-fourths of the data segments were excluded. For models using a fixed length single-segment of observed data, the older the age covered by the corresponding

  20. Mapping out the solid waste generation and collection models: The case of Kampala City.

    PubMed

    Kinobe, Joel R; Niwagaba, Charles B; Gebresenbet, Girma; Komakech, Allan J; Vinnerås, Björn

    2015-02-01

    This paper presents a mapping of the waste collection systems in Kampala city, using geographical information system (GIS) ArcGIS mapping software. It discusses the existing models of waste collection to the final disposal destinations. It was found that food and yard wastes constitute 92.7% of the waste generated in Kampala. Recyclables and other special wastes constitute only 7.3% of the total waste, mainly because of the increased level of reuse and recycling activities. The generation rate of solid wastes was on average, 582, 169, 105, and 90 tons/day from poor areas, upscale wealthier areas, business centers, and market areas respectively. This tonnage of waste was collected, transported, and disposed of at the city landfill. The study found that in total, residential areas of poor people generate more waste than other categories stated earlier, mainly because of their large populations. In total, there were 133 unofficial temporary storage sites acknowledged by Kampala Capital City Authority (KCCA) but not formally designated, 59 illegal dump sites, and 35 officially recognized temporary waste storage locations. This paper presents large-scale data that can help with understanding the collection models and their influence on solid waste management in Kampala city, which could be used for similar cities in developing countries.

  1. Collective Molecular Superrotation: A Model for Extremely Flexible Molecules Applied to Protonated Methane

    NASA Astrophysics Data System (ADS)

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-11-01

    The concept of molecular structure is traditionally considered to be virtually fundamental. However, it breaks down in extremely flexible molecules, whose dynamics are governed by large-amplitude motions. For the dynamics of molecules with free internal rotations, we therefore propose a five-dimensional rigid rotor model, with states characterized by two generalized angular momentum quantum numbers and a rotational constant B . The quantum numbers characterize a 5D angular-momentum vector, super-j , which describes collective rotations that involve both the internal and the overall rotation. This model predicts the lowest energy states of the prototypical, extremely flexible molecule, CH5+ . Both energies and symmetries compare very favorably to recent experimental results. The respective assignment to the new quantum numbers indicates the validity of our concept of collective rotations in extremely flexible molecules.

  2. Models of population-based analyses for data collected from large extended families.

    PubMed

    Wang, Wenyu; Lee, Elisa T; Howard, Barbara V; Fabsitz, Richard R; Devereux, Richard B; MacCluer, Jean W; Laston, Sandra; Comuzzie, Anthony G; Shara, Nawar M; Welty, Thomas K

    2010-12-01

    Large studies of extended families usually collect valuable phenotypic data that may have scientific value for purposes other than testing genetic hypotheses if the families were not selected in a biased manner. These purposes include assessing population-based associations of diseases with risk factors/covariates and estimating population characteristics such as disease prevalence and incidence. Relatedness among participants however, violates the traditional assumption of independent observations in these classic analyses. The commonly used adjustment method for relatedness in population-based analyses is to use marginal models, in which clusters (families) are assumed to be independent (unrelated) with a simple and identical covariance (family) structure such as those called independent, exchangeable and unstructured covariance structures. However, using these simple covariance structures may not be optimally appropriate for outcomes collected from large extended families, and may under- or over-estimate the variances of estimators and thus lead to uncertainty in inferences. Moreover, the assumption that families are unrelated with an identical family structure in a marginal model may not be satisfied for family studies with large extended families. The aim of this paper is to propose models incorporating marginal models approaches with a covariance structure for assessing population-based associations of diseases with their risk factors/covariates and estimating population characteristics for epidemiological studies while adjusting for the complicated relatedness among outcomes (continuous/categorical, normally/non-normally distributed) collected from large extended families. We also discuss theoretical issues of the proposed models and show that the proposed models and covariance structure are appropriate for and capable of achieving the aim.

  3. Effective lattice model for the collective modes in a Fermi liquid with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Maslov, Dmitrii L.

    2017-04-01

    A Fermi liquid (FL) with spin-orbit coupling (SOC) supports a special type of collective modes—chiral spin waves—which are oscillations of magnetization that occur even in the absence of the external magnetic field. We study the chiral spin waves of a two-dimensional FL in the presence of both the Rashba and Dresselhaus types of SOC and also subject to the in-plane magnetic field. We map the system of coupled kinetic equations for the angular harmonics of the occupation number onto an effective one-dimensional tight-binding model, in which the lattice sites correspond to angular-momentum channels. Linear-in-momentum SOC ensures that the effective tight-binding model has only nearest-neighbor hopping on a bipartite lattice. In this language, the continuum of spin-flip particle-hole excitations becomes a conduction band of the lattice model, whereas electron-electron interaction, parametrized by harmonics of the Landau function, is mapped onto lattice defects of both on-site and bond type. The collective modes correspond to bound states formed by such defects. All the features of the collective-mode spectrum receive natural explanation in the lattice picture as resulting from the competition between on-site and bond defects.

  4. Utilizing a language model to improve online dynamic data collection in P300 spellers.

    PubMed

    Mainsah, Boyla O; Colwell, Kenneth A; Collins, Leslie M; Throckmorton, Chandra S

    2014-07-01

    P300 spellers provide a means of communication for individuals with severe physical limitations, especially those with locked-in syndrome, such as amyotrophic lateral sclerosis. However, P300 speller use is still limited by relatively low communication rates due to the multiple data measurements that are required to improve the signal-to-noise ratio of event-related potentials for increased accuracy. Therefore, the amount of data collection has competing effects on accuracy and spelling speed. Adaptively varying the amount of data collection prior to character selection has been shown to improve spelling accuracy and speed. The goal of this study was to optimize a previously developed dynamic stopping algorithm that uses a Bayesian approach to control data collection by incorporating a priori knowledge via a language model. Participants ( n = 17) completed online spelling tasks using the dynamic stopping algorithm, with and without a language model. The addition of the language model resulted in improved participant performance from a mean theoretical bit rate of 46.12 bits/min at 88.89% accuracy to 54.42 bits/min ( ) at 90.36% accuracy.

  5. Incorporating institutions and collective action into a sociohydrological model of flood resilience

    NASA Astrophysics Data System (ADS)

    Yu, David J.; Sangwan, Nikhil; Sung, Kyungmin; Chen, Xi; Merwade, Venkatesh

    2017-02-01

    Stylized sociohydrological models have mainly used social memory aspects such as community awareness or sensitivity to connect hydrologic change and social response. However, social memory alone does not satisfactorily capture the details of how human behavior is translated into collective action for water resources governance. Nor is it the only social mechanism by which the two-way feedbacks of sociohydrology can be operationalized. This study contributes toward bridging of this gap by developing a sociohydrological model of a flood resilience that includes two additional components: (1) institutions for collective action, and (2) connections to an external economic system. Motivated by the case of community-managed flood protection systems (polders) in coastal Bangladesh, we use the model to understand critical general features that affect long-term resilience of human-flood systems. Our findings suggest that occasional adversity can enhance long-term resilience. Allowing some hydrological variability to enter into the polder can increase its adaptive capacity for resilience through the preservation of social norm for collective action. Further, there are potential trade-offs associated with optimization of flood resistance through structural measures. By reducing sensitivity to floods, the system may become more fragile under the double impact of floods and economic change.

  6. Length scale competition in nonlinear Klein-Gordon models: A collective coordinate approach

    SciTech Connect

    Cuenda, Sara; Sanchez, Angel

    2005-06-01

    Working within the framework of nonlinear Klein-Gordon models as a paradigmatic example, we show that length scale competition, an instability of solitons subjected to perturbations of an specific length, can be understood by means of a collective coordinate approach in terms of soliton position and width. As a consequence, we provide a natural explanation of the phenomenon in much simpler terms than any previous treatment of the problem. Our technique allows us to study the existence of length scale competition in most soliton bearing nonlinear models and can be extended to coherent structures with more degrees of freedom.

  7. Isotopic Dependence of the Shape of Se Nuclei in the Collective-Model Representation

    SciTech Connect

    Davidovskaya, O.I.; Kashuba, I.E.; Porodzinsky, Yu.V.

    2005-06-01

    The energy structure of low-lying excited states in the nuclei of even selenium isotopes is considered on the basis of a soft-nucleus model. The nuclei are treated as nonaxial rotors, longitudinal and transverse vibrations of their surface being taken into account in the quadrupole-deformation approximation featuring an admixture of an octupole deformation. The parameters of a phenomenological collective model for the {sup 72,74,76,78,80,82}Se nuclei are found both in the case of {beta} vibrations (longitudinal vibrations) and in the presence of additional {gamma} vibrations (transverse vibrations) of the nuclear surface.

  8. A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments

    PubMed Central

    Collignon, Bertrand; Séguret, Axel; Halloy, José

    2016-01-01

    Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences. PMID:26909173

  9. Illustrations of the anatomical wax model collection in the "La Specola" Zoology Museum, Florence.

    PubMed

    Lotti, S; Altobelli, A; Bambi, S; Poggesi, M

    2006-01-01

    Anatomical illustration has evolved through the centuries, first having artistic and educational purposes and later more strictly medical objectives. Between the eleventh and fifteenth centuries, the analytical model (representation of individual parts, organs and systems) gave way to the composite model (description of the human body as a whole). Between the seventeenth and eighteenth centuries, there was a reversal of tendency: initially the anatomist requested the help of artists, but later the artist asked anatomists to check the accuracy of his work. In this way, anatomical illustration reached a high level of precision. This period also saw the creation of the "La Specola" Zoology Museum's collection of anatomical wax models. Initiated in the eighteenth century, it also included a series of contemporary colour illustrations executed by various artists. Most of the illustrations concern human anatomy, while a small number deal with comparative anatomy. These illustrations, each accompanied by one or more explanatory sheets, were produced to help explain the corresponding wax models. The anatomical wax model collection has been well preserved through the centuries, maintaining its ancient splendour, and it is the object of continuing research and restoration interventions.

  10. A lateral thoracotomy approach for thoracic duct cannulation and lymphatic fluid collection in a feline model.

    PubMed

    Hardie, Robert J; Sheehan, Nora K

    2016-10-01

    This study describes a lateral thoracotomy approach for thoracic duct cannulation and lymphatic fluid collection in a feline model. The thoracic duct was cannulated via a left lateral intercostal thoracotomy in 12 cats. Lymphatic fluid was collected for up to 16 days and analyzed on days 3, 9 and 16. The volume collected and duration of cannula patency were recorded. Contrast imaging of the thoracic duct was performed if fluid ceased to flow or at the end of the 16-day study period. In two cats, the cannula became dislodged within 24 h. For the remaining 10 cats, mean daily volume collected was 43.7 mL (median 41.0, range 2.3 to 152.4 mL), and mean duration of cannula patency was 8.2 days (median 6.5, range 3 to 16 days). Contrast imaging revealed that the cannula was patent in three cats, obstructed in two cats, and the thoracic duct had ruptured or had extravasation of contrast outside the duct in five cats. Cytological examination of lymphatic fluid from the three time points revealed normal appearing small lymphocytes (97%) and few (3%) non-degenerate neutrophils, macrophages, eosinophils, and plasma cells. Based on the results of this study, lateral thoracotomy approach for thoracic duct cannulation is a feasible technique for collecting lymphatic fluid in cats. This technique may have application as a model for short-term evaluation of thoracic fluid in cats; however, cannula patency was unpredictable and should be considered when utilizing this technique.

  11. Using Synchronous Boolean Networks to Model Several Phenomena of Collective Behavior

    PubMed Central

    Kochemazov, Stepan; Semenov, Alexander

    2014-01-01

    In this paper, we propose an approach for modeling and analysis of a number of phenomena of collective behavior. By collectives we mean multi-agent systems that transition from one state to another at discrete moments of time. The behavior of a member of a collective (agent) is called conforming if the opinion of this agent at current time moment conforms to the opinion of some other agents at the previous time moment. We presume that at each moment of time every agent makes a decision by choosing from the set (where 1-decision corresponds to action and 0-decision corresponds to inaction). In our approach we model collective behavior with synchronous Boolean networks. We presume that in a network there can be agents that act at every moment of time. Such agents are called instigators. Also there can be agents that never act. Such agents are called loyalists. Agents that are neither instigators nor loyalists are called simple agents. We study two combinatorial problems. The first problem is to find a disposition of instigators that in several time moments transforms a network from a state where the majority of simple agents are inactive to a state with the majority of active agents. The second problem is to find a disposition of loyalists that returns the network to a state with the majority of inactive agents. Similar problems are studied for networks in which simple agents demonstrate the contrary to conforming behavior that we call anticonforming. We obtained several theoretical results regarding the behavior of collectives of agents with conforming or anticonforming behavior. In computational experiments we solved the described problems for randomly generated networks with several hundred vertices. We reduced corresponding combinatorial problems to the Boolean satisfiability problem (SAT) and used modern SAT solvers to solve the instances obtained. PMID:25526612

  12. Modeling of parasitic current collection by solar arrays in low-earth orbit

    SciTech Connect

    Davis, V.A.; Gardner, B.M.; Guidice, D.A.

    1996-11-01

    In this paper we describe the development of a model of the electron current collected by solar arrays from the ionospheric plasma. This model will assist spacecraft designers in minimizing the impact of plasma interactions on spacecraft operations as they move to higher-voltage solar arrays. The model was developed by first examining in detail the physical processes of importance and then finding an analytic fit to the results over the parameter range of interest. The analytic model is validated by comparison with flight data from the Photovoltaic Array for Space Power Plus diagnostics (PASP Plus) flight experiment [D. A. Guidice, 34{ital th} {ital Aerospace} {ital Sciences} {ital Meeting} {ital and} {ital Exhibit}, Reno, NV, 1996, AIAA 96-0926 (American Institute of Aeronautics and Astronautics, Washington, DC, 1996)]. {copyright} {ital 1996 American Institute of Physics.}

  13. Automatic method for building indoor boundary models from dense point clouds collected by laser scanners.

    PubMed

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2012-11-22

    In this paper we present a method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled.

  14. Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners

    PubMed Central

    Valero, Enrique; Adán, Antonio; Cerrada, Carlos

    2012-01-01

    In this paper we present a method that automatically yields Boundary Representation Models (B-rep) for indoors after processing dense point clouds collected by laser scanners from key locations through an existing facility. Our objective is particularly focused on providing single models which contain the shape, location and relationship of primitive structural elements of inhabited scenarios such as walls, ceilings and floors. We propose a discretization of the space in order to accurately segment the 3D data and generate complete B-rep models of indoors in which faces, edges and vertices are coherently connected. The approach has been tested in real scenarios with data coming from laser scanners yielding promising results. We have deeply evaluated the results by analyzing how reliably these elements can be detected and how accurately they are modeled. PMID:23443369

  15. Three Models of Classroom Collections of Trade Books: A Summary Report of the 1994 Grolier Award Research.

    ERIC Educational Resources Information Center

    Doiron, Ray

    1995-01-01

    Describes elementary school classroom trade book collections in the Prince Edward Island (Canada) school district, and explores the relationship between the collections and school library resource center program. The report is based on a survey of 46 classroom teachers, teacher-librarians, and principals. Three models of classroom collections are…

  16. Toward an Integrative Social Identity Model of Collective Action: A Quantitative Research Synthesis of Three Socio-Psychological Perspectives

    ERIC Educational Resources Information Center

    van Zomeren, Martijn; Postmes, Tom; Spears, Russell

    2008-01-01

    An integrative social identity model of collective action (SIMCA) is developed that incorporates 3 socio-psychological perspectives on collective action. Three meta-analyses synthesized a total of 182 effects of perceived injustice, efficacy, and identity on collective action (corresponding to these socio-psychological perspectives). Results…

  17. A Relational Model of the Financial Data Collected from Local Education Agencies by a State Department of Education.

    ERIC Educational Resources Information Center

    Mills, Richard P.

    The educational community is recognizing that it has had little direct control over or knowledge of educational data collection. The objective of this paper is to present a description of presently collected financial data collected by a state education department. An entity set model is used to create a relational view of the data to facilitate…

  18. Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Nüske, Feliks; Paul, Fabian; Klus, Stefan; Koltai, Péter; Noé, Frank

    2017-04-01

    Markov state models (MSMs) and master equation models are popular approaches to approximate molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been introduced, the variational approach conformation dynamics/molecular kinetics (VAC) and its special case the time-lagged independent component analysis (TICA), which allow us to approximate slow collective variables and molecular kinetics by linear combinations of smooth basis functions or order parameters. While it is known how to estimate MSMs from trajectories whose starting points are not sampled from an equilibrium ensemble, this has not yet been the case for TICA and the VAC. Previous estimates from short trajectories have been strongly biased and thus not variationally optimal. Here, we employ the Koopman operator theory and the ideas from dynamic mode decomposition to extend the VAC and TICA to non-equilibrium data. The main insight is that the VAC and TICA provide a coefficient matrix that we call Koopman model, as it approximates the underlying dynamical (Koopman) operator in conjunction with the basis set used. This Koopman model can be used to compute a stationary vector to reweight the data to equilibrium. From such a Koopman-reweighted sample, equilibrium expectation values and variationally optimal reversible Koopman models can be constructed even with short simulations. The Koopman model can be used to propagate densities, and its eigenvalue decomposition provides estimates of relaxation time scales and slow collective variables for dimension reduction. Koopman models are generalizations of Markov state models, TICA, and the linear VAC and allow molecular kinetics to be described without a cluster discretization.

  19. Ground water flow modeling with sensitivity analyses to guide field data collection in a mountain watershed

    USGS Publications Warehouse

    Johnson, Raymond H.

    2007-01-01

    In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.

  20. Evaluation of a collective kitchens program: using the Population Health Promotion Model.

    PubMed

    Fano, Tara J; Tyminski, Sheila M; Flynn, Mary A T

    2004-01-01

    To evaluate the impact of the Calgary Health Region Collective Kitchen Program on various Population Health Promotion Model health determinants, data were collected through mail-in questionnaires that examined the members' (n=331) and coordinators' (n=58) perspectives of the program. Seventy-nine members (24%) and 26 coordinators (45%) were included in the study. Three incomplete questionnaires (from prenatal program members) were discarded. Sixty-one percent of members who reported income level and family size (n=61) had incomes below the low-income cut-off. Fifty-eight members (73%) reported improvements in their lives because of the program. Sixty-four members (81%) perceived they learned to feed their families healthier foods. The members reported their fruit and vegetable consumption before and since joining a collective kitchen, and the proportion of those consuming at least five fruit and vegetable servings a day rose from 29% to 47%. The most common reasons for joining this program concerned social interactions and support. Over 90% of the coordinators perceived that they were competent to coordinate a kitchen. The results indicate that the collective kitchens program addresses several health determinants, and may increase members' capacity to attain food security and to achieve improved nutritional health.

  1. An evaluation of 1D loss model collections for the off-design performance prediction of automotive turbocharger compressors

    NASA Astrophysics Data System (ADS)

    Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.

    2013-12-01

    Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.

  2. Analysis and classification of collective behavior using generative modeling and nonlinear manifold learning.

    PubMed

    Butail, Sachit; Bollt, Erik M; Porfiri, Maurizio

    2013-11-07

    In this paper, we build a framework for the analysis and classification of collective behavior using methods from generative modeling and nonlinear manifold learning. We represent an animal group with a set of finite-sized particles and vary known features of the group structure and motion via a class of generative models to position each particle on a two-dimensional plane. Particle positions are then mapped onto training images that are processed to emphasize the features of interest and match attainable far-field videos of real animal groups. The training images serve as templates of recognizable patterns of collective behavior and are compactly represented in a low-dimensional space called embedding manifold. Two mappings from the manifold are derived: the manifold-to-image mapping serves to reconstruct new and unseen images of the group and the manifold-to-feature mapping allows frame-by-frame classification of raw video. We validate the combined framework on datasets of growing level of complexity. Specifically, we classify artificial images from the generative model, interacting self-propelled particle model, and raw overhead videos of schooling fish obtained from the literature. © 2013 Elsevier Ltd. All rights reserved.

  3. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors

    PubMed Central

    Ren, Jiaping; Wang, Xinjie; Manocha, Dinesh

    2016-01-01

    We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each individual insect. Furthermore, we model the noise as a constructive force at the collective level and present a technique to generate noise-induced insect movements in a large swarm that are similar to those observed in real-world trajectories. We use a data-driven formulation that is based on pre-recorded insect trajectories. We also present a novel evaluation metric and a statistical validation approach that takes into account various characteristics of insect motions. In practice, the combination of Curl noise function with our dynamics model is used to generate realistic swarm simulations and emergent behaviors. We highlight its performance for simulating large flying swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors, including aggregation, migration, phase transition, and escape responses. PMID:27187068

  4. Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an in Vitro Model.

    PubMed

    Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin

    2015-10-21

    Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.

  5. Serving Collections of Forecast Model Runs with the THREDDS Data Server

    NASA Astrophysics Data System (ADS)

    Caron, J.

    2006-12-01

    The THREDDS Data Server (TDS) is a web server that provides metadata and data access for scientific datasets. It provides OPeNDAP, WCS, HTTP and netCDF subsetting services for a number of data formats, including netCDF, HDF5, GRIB, BUFR, etc. The TDS is 100% Java, and runs within the Tomcat web server. We have added a new way to serve model data, which takes a collection of Forecast Model Run datasets, and constructs a single dataset with a 2D time coordinate (run time, forecast time). In the case of Unidata's server, these are collections of GRIB files, and we deal correctly with missing data records by using the forecast and run dates, rather than array indices. The TDS also creates various other "synthetic" datasets from the collection: 1) all data from one analysis run; 2) data with the same forecast offset hour (eg all the 3 hour forecasts, from different runs); 3) data with a constant forecast date (eg all the data with forecast/valid time of 2006-08-08T12:00:00Z, from different runs); and 4) the "best" time series, taking the data from the most recent run available. We are currently working with a number of data partners to test and extend this functionality.

  6. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    SciTech Connect

    Gulshani, P.

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  7. Recasting Janis's Groupthink Model: The Key Role of Collective Efficacy in Decision Fiascoes.

    PubMed

    Whyte

    1998-02-01

    This paper advances an explanation for decision fiascoes that reflects recent theoretical trends and was developed in response to a growing body of research that has failed to substantiate the groupthink model (Janis, 1982). In this new framework, the lack of vigilance and preference for risk that characterizes groups contaminated by groupthink are attributed in large part to perceptions of collective efficacy that unduly exceed capability. High collective efficacy may also contribute to the negative framing of decisions and to certain administrative and structural organizational faults. In the making of critical decisions, these factors induce a preference for risk and a powerful concurrence seeking tendency that, facilitated by group polarization, crystallize around a decision option that is likely to fail. Implications for research and some evidence in support of this approach to the groupthink phenomenon are also discussed. Copyright 1998 Academic Press.

  8. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    NASA Astrophysics Data System (ADS)

    Gulshani, P.

    2016-07-01

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  9. Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms.

    PubMed

    Yuan, DeJian; Zhu, ZuoBin; Tan, XiaoHua; Liang, Jie; Zeng, Chen; Zhang, JieGen; Chen, Jun; Ma, Long; Dogan, Ayca; Brockmann, Gudrun; Goldmann, Oliver; Medina, Eva; Rice, Amanda D; Moyer, Richard W; Man, Xian; Yi, Ke; Li, YanKe; Lu, Qing; Huang, YiMin; Huang, Shi

    2014-09-01

    It has long been assumed that most parts of a genome and most genetic variations or SNPs are non-functional with regard to reproductive fitness. However, the collective effects of SNPs have yet to be examined by experimental science. We here developed a novel approach to examine the relationship between traits and the total amount of SNPs in panels of genetic reference populations. We identified the minor alleles (MAs) in each panel and the MA content (MAC) that each inbred strain carried for a set of SNPs with genotypes determined in these panels. MAC was nearly linearly linked to quantitative variations in numerous traits in model organisms, including life span, tumor susceptibility, learning and memory, sensitivity to alcohol and anti-psychotic drugs, and two correlated traits poor reproductive fitness and strong immunity. These results suggest that the collective effects of SNPs are functional and do affect reproductive fitness.

  10. Collective I/O Tuning Using Analytical and Machine-Learning Models

    SciTech Connect

    Isaila, Florin; Balaprakash, Prasanna; Wild, Stefan M.; Kimpe, Dries; Latham, Rob; Ross, Rob; Hovland, Paul

    2015-01-01

    The ever larger demand of scientific applications for computation and data is currently driving a continuous increase in scale of parallel computers. The inherent complexity of scaling up a computing systems in terms of both hardware and software stack exposes an increasing number of factors impacting the performance and complicating the process of optimization. In particular, the optimization of parallel I/O has become increasingly challenging due to increasing storage hierarchy and well known performance variability of shared storage systems. This paper focuses on model-based autotuning of the two-phase collective I/O algorithm from a popular MPI distribution on the Blue Gene/Q architecture. We propose a novel hybrid model, constructed as a composition of analytical models for communication and storage operations and black-box models for the performance of the individual operations. We perform an in-depth study of the complexity involved in performance modeling including architecture, software stack and noise. In particular we address this challenges of modeling the performance of shared storage systems by building a benchmark that helps synthesizing factors such as topology, file caching, and noise. The experimental results show that the hybrid approach produces significantly better results than state-of-the-art machine learning approaches and shows a higher robustness to noise, at the cost of a higher modeling complexity

  11. Collective effects and multifragmentation in heavy-ion collisions at intermediate energies within a hybrid model

    NASA Astrophysics Data System (ADS)

    Heide, B.; Barz, H. W.

    1995-02-01

    Central and semi-central Au + Au collisions at 150 and 250 A·MeV are investigated in the framework of a hybrid model with dynamical and statistical components. Starting from the BUU approach and ansatz for the Wigner function is made which describes thermal and collective motion of the nucleons and models the transition from the one-source to the two-source behavior. Anisotropic flow energies and temperatures as well as angular momenta are extracted. Nucleonic flow and pre-equilibrium emission reduce considerably the excitation energy of the matter. The cluster formation is described by the Copenhagen multifragmentation model. Charge spectra, energy spectra and two-particle correlations of the fragments are reproduced. Agreement with experiment can be improved by assuming a reduced transverse flow.

  12. Collective behavior of asperities as a model for friction and adhesion

    NASA Astrophysics Data System (ADS)

    Hulikal, Srivatsan

    Understanding friction and adhesion in static and sliding contact of surfaces is important in numerous physical phenomena and technological applications. Most surfaces are rough at the microscale, and thus the real area of contact is only a fraction of the nominal area. The macroscopic frictional and adhesive response is determined by the collective behavior of the population of evolving and interacting microscopic contacts. This collective behavior can be very different from the behavior of individual contacts. It is thus important to understand how the macroscopic response emerges from the microscopic one. In this thesis, we develop a theoretical and computational framework to study the collective behavior. Our philosophy is to assume a simple behavior of a single asperity and study the collective response of an ensemble. Our work bridges the existing well-developed studies of single asperities with phenomenological laws that describe macroscopic rate-and-state behavior of frictional interfaces. We find that many aspects of the macroscopic behavior are robust with respect to the microscopic response. This explains why qualitatively similar frictional features are seen for a diverse range of materials. We first show that the collective response of an ensemble of one-dimensional independent viscoelastic elements interacting through a mean field reproduces many qualitative features of static and sliding friction evolution. The resulting macroscopic behavior is different from the microscopic one: for example, even if each contact is velocity-strengthening, the macroscopic behavior can be velocity-weakening. The framework is then extended to incorporate three-dimensional rough surfaces, long- range elastic interactions between contacts, and time-dependent material behaviors such as viscoelasticity and viscoplasticity. Interestingly, the mean field behavior dominates and the elastic interactions, though important from a quantitative perspective, do not change the

  13. The development of empirical models to evaluate energy use and energy cost in wastewater collection

    NASA Astrophysics Data System (ADS)

    Young, David Morgan

    This research introduces a unique data analysis method and develops empirical models to evaluate energy use and energy cost in wastewater collection systems using operational variables. From these models, several Best Management Processes (BMPs) are identified that should benefit utilities and positively impact the operation of existing infrastructure as well as the design of new infrastructure. Further, the conclusions generated herein display high transferability to certain manufacturing processes. Therefore, it is anticipated that these findings will also benefit pumping applications outside of the water sector. Wastewater treatment is often the single largest expense at the local government level. Not surprisingly, significant research effort has been expended on examining the energy used in wastewater treatment. However, the energy used in wastewater collection systems remains underexplored despite significant potential for energy savings. Estimates place potential energy savings as high as 60% within wastewater collection; which, if applied across the United States equates to the energy used by nearly 125,000 American homes. Employing three years of data from Renewable Water Resources (ReWa), the largest wastewater utility in the Upstate of South Carolina, this study aims to develop useful empirical equations that will allow utilities to efficiently evaluate the energy use and energy cost of its wastewater collection system. ReWa's participation was motivated, in part, by their recent adoption of the United States Environmental Protection Agency "Effective Utility Strategies" within which exists a focus on energy management. The study presented herein identifies two primary variables related to the energy use and cost associated with wastewater collection: Specific Energy (Es) and Specific Cost (Cs). These two variables were found to rely primarily on the volume pumped by the individual pump stations and exhibited similar power functions for the three year

  14. A Mathematical Model of Collective Cell Migration in a Three-Dimensional, Heterogeneous Environment

    PubMed Central

    Stonko, David P.; Manning, Lathiena; Starz-Gaiano, Michelle; Peercy, Bradford E.

    2015-01-01

    Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest. PMID:25875645

  15. User-experience surveys with maternity services: a randomized comparison of two data collection models.

    PubMed

    Bjertnaes, Oyvind Andresen; Iversen, Hilde Hestad

    2012-08-01

    To compare two ways of combining postal and electronic data collection for a maternity services user-experience survey. Cross-sectional survey. Maternity services in Norway. All women who gave birth at a university hospital in Norway between 1 June and 27 July 2010. Patients were randomized into the following groups (n= 752): Group A, who were posted questionnaires with both electronic and paper response options for both the initial and reminder postal requests; and Group B, who were posted questionnaires with an electronic response option for the initial request, and both electronic and paper response options for the reminder postal request. Response rate, the amount of difference in background variables between respondents and non-respondents, main study results and estimated cost-effectiveness. The final response rate was significantly higher in Group A (51.9%) than Group B (41.1%). None of the background variables differed significantly between the respondents and non-respondents in Group A, while two variables differed significantly between the respondents and non-respondents in Group B. None of the 11 user-experience scales differed significantly between Groups A and B. The estimated costs per response for the forthcoming national survey was €11.7 for data collection Model A and €9.0 for Model B. The model with electronic-only response option in the first request had lowest response rate. However, this model performed equal to the other model on non-response bias and better on estimated cost-effectiveness, and is the better of the two models in large-scale user experiences surveys with maternity services.

  16. Modeling the Emergence of Modular Leadership Hierarchy During the Collective Motion of Herds Made of Harems

    NASA Astrophysics Data System (ADS)

    Ozogány, Katalin; Vicsek, Tamás

    2015-02-01

    Gregarious animals need to make collective decisions in order to keep their cohesiveness. Several species of them live in multilevel societies, and form herds composed of smaller communities. We present a model for the development of a leadership hierarchy in a herd consisting of loosely connected sub-groups (e.g. harems) by combining self organization and social dynamics. It starts from unfamiliar individuals without relationships and reproduces the emergence of a hierarchical and modular leadership network that promotes an effective spreading of the decisions from more capable individuals to the others, and thus gives rise to a beneficial collective decision. Our results stemming from the model are in a good agreement with our observations of a Przewalski horse herd (Hortobágy, Hungary). We find that the harem-leader to harem-member ratio observed in Przewalski horses corresponds to an optimal network in this approach regarding common success, and that the observed and modeled harem size distributions are close to a lognormal.

  17. Here the data: the new FLUXNET collection and the future for model-data integration

    NASA Astrophysics Data System (ADS)

    Papale, D.; Pastorello, G.; Trotta, C.; Chu, H.; Canfora, E.; Agarwal, D.; Baldocchi, D. D.; Torn, M. S.

    2016-12-01

    Seven years after the release of the LaThuile FLUXNET database, widely used in synthesis activities and model-data fusion exercises, a new FLUXNET collection has been released (FLUXNET 2015 - http://fluxnet.fluxdata.org) with the aim to increase the quality of the measurements and provide high quality standardized data obtained by a new processing pipeline. The new FLUXNET collection includes also sites with timeseries of 20 years of continuous carbon and energy fluxes, opening new opportunities in their use in the context of models parameterization and validation. The main characteristics of the FLUXNET 2015 dataset are the uncertainty quantification, the multiple products (e.g. partitioning in photosynthesis and ecosystem respiration) that allow consistency analysis for each site, and new long term downscaled meteorological data provided with the data. Feedbacks from new users, in particular from the modelling communities, are crucial to further improve the quality of the products and move in the direction of a coherent integration across multi-disciplinary communities. In this presentation, the new FLUXNET2015 dataset will be explained and explored, with particular focus on the meaning of the different products and variables, their potentiality but also their limitations. The future development of the dataset will be discussed, with the role of the regional networks and the ongoing efforts to provide new and advanced services such a near real time data provision and a completely open access policy to high quality standardized measurements of GHGs exchanges and additional ecological quantities.

  18. Crises and Collective Socio-Economic Phenomena: Simple Models and Challenges

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jean-Philippe

    2013-05-01

    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the so-called Random Field Ising model ( rfim) provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilizing self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and that account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of rfim-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can fail badly at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria from being reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.

  19. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S.; Melillo, Stefania; Viale, Massimiliano

    2016-12-01

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  20. Hamiltonian Lattice Studies of Pionic Collective Excitations in the Non-linear Sigma Model

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.

    2001-04-01

    The latticization of the non-linear sigma model reduces a chiral meson field theory to an O(4) spin system with quantum fluctuations. By solving the resulting lattice Hamiltonian by Monte Carlo methods, the dynamics and thermodynamics of pions can be determined non-perturbatively. In particular, the mas gap of pionic collective excitations with quantum number of vector mesons can be determined as the chiral phase transition is approached. Results based on a newly discovered 4th order method of solving for the ground state of a quantum many-body Hamitonian will be presented.

  1. Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules.

    PubMed

    Chen, Minxin; Li, Xiantao; Liu, Chun

    2014-08-14

    We present a numerical method to approximate the memory functions in the generalized Langevin models for the collective dynamics of macromolecules. We first derive the exact expressions of the memory functions, obtained from projection to subspaces that correspond to the selection of coarse-grain variables. In particular, the memory functions are expressed in the forms of matrix functions, which will then be approximated by Krylov-subspace methods. It will also be demonstrated that the random noise can be approximated under the same framework, and the second fluctuation-dissipation theorem is automatically satisfied. The accuracy of the method is examined through several numerical examples.

  2. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  3. Self-Organized Criticality in a Model of Collective Bank Bankruptcies

    NASA Astrophysics Data System (ADS)

    Aleksiejuk, Agata; HoŁyst, Janusz A.; Kossinets, Gueorgi

    The question we address here is of whether phenomena of collective bankruptcies are related to self-organized criticality. In order to answer it we propose a simple model of banking networks based on the random directed percolation. We study effects of one bank failure on the nucleation of contagion phase in a financial market. We recognize the power law distribution of contagion sizes in 3d- and 4d-networks as an indicator of SOC behavior. The SOC dynamics was not detected in 2d-lattices. The difference between 2d- and 3d- or 4d-systems is explained due to the percolation theory.

  4. A computational model of the collective fluid dynamics of motile micro-organisms

    NASA Astrophysics Data System (ADS)

    Hopkins, Matthew M.; Fauci, Lisa J.

    2002-03-01

    A mathematical model and numerical method for studying the collective dynamics of geotactic, gyrotactic and chemotactic micro-organisms immersed in a viscous fluid is presented. The Navier Stokes equations of fluid dynamics are solved in the presence of a discrete collection of micro-organisms. These microbes act as point sources of gravitational force in the fluid equations, and thus affect the fluid flow. Physical factors, e.g. vorticity and gravity, as well as sensory factors affect swimming speed and direction. In the case of chemotactic microbes, the swimming orientation is a function of a molecular field. In the model considered here, the molecules are a nutrient whose consumption results in an upward gradient of concentration that drives its downward diffusion. The resultant upward chemotactically induced accumulation of cells results in (Rayleigh Taylor) instability and eventually in steady or chaotic convection that transports molecules and affects the translocation of organisms. Computational results that examine the long-time behaviour of the full nonlinear system are presented.The actual dynamical system consisting of fluid and suspended swimming organisms is obviously three-dimensional, as are the basic modelling equations. While the computations presented in this paper are two-dimensional, they provide results that match remarkably well the spatial patterns and long-time temporal dynamics of actual experiments; various physically applicable assumptions yield steady states, chaotic states, and bottom-standing plumes. The simplified representation of microbes as point particles allows the variation of input parameters and modelling details, while performing calculations with very large numbers of particles ([approximate]104 105), enough so that realistic cell concentrations and macroscopic fluid effects can be modelled with one particle representing one microbe, rather than some collection of microbes. It is demonstrated that this modelling framework

  5. Using Neutron Spectroscopy to Study Collective Dynamics of Biological and Model Membrane Systems

    NASA Astrophysics Data System (ADS)

    Rheinstadter, Maikel

    2007-03-01

    Only recently, it has become possible to study collective dynamics of planar lipid bilayers using neutron spectroscopy techniques. By combining different neutron scattering techniques, namely three-axis, backscattering and spin-echo spectroscopy, we present measurements of short and long wavelength collective fluctuations in biomimetic and biological membranes in a large range in momentum and energy transfer, covering time scales from about 0.1ps to almost 1μs and length scales from 3å to about 0.1μm [1-4]. The measurements offer a large window of length and time scales to test and refine theoretical models of dynamics of biomimetic and biological membranes. The objective of this project is to establish dynamics-function relationships in artificial and biological membranes to relate in particular the collective dynamics, i.e., phonons, to key functions of the membranes, as, e.g., transport processes within and across the bilayers. M.C. Rheinst"adter, C. Ollinger, G. Fragneto, F. Demmel, T. Salditt, Phys. Rev. Lett. 93, 108107 (2004).^2 Maikel C. Rheinst"adter, Tilo Seydel, Franz Demmel, Tim Salditt, Phys. Rev. E 71, 061908 (2005).^3 Maikel C. Rheinst"adter, Wolfgang H"außler, Tim Salditt, Phys. Rev. Lett. 97, 048103 (2006).^4 Maikel C. Rheinst"adter, Tilo Seydel, Tim Salditt, submitted to PRE, cond-mat/0607514.

  6. Technique of right lymphatic duct cannulation for pulmonary lymph collection in an acute porcine model.

    PubMed

    Chuang, G J; Gao, C X; Mulder, D S; Chiu, R C

    1986-12-01

    The pig is an increasingly preferred model for biomedical research, including studies for pulmonary pathophysiology. However, in piglets, the technique for cannulating the right lymphatic duct, which is subject to more anatomical variations and technically more demanding than that in dogs, has not been described. Our technique evolved to enable this collection of porcine lung lymph in acute experiments. The lymphatic ampulla is cannulated via one of the cervical lymphatics. The right lymphatic duct is invariably dorsal to the cranial vena cava and classically leads to the lymphatic ampulla. Yet in 18% of our pigs, cannulation was difficult or not feasible because the lymphatic duct either drained directly into the cranial vena cava at a distance from the lymphatic ampulla, or into the axillary lymph node of the first rib or the caudal deep cervical lymph nodes. Gently squeezing back regurgitated blood in the lymphatic ampulla before tying the suture and frequently withdrawing lymph with a syringe when the flow is small enabled us to collect clear lymph, usually immediately after completing the cannulation. The rate of lymph flow varied widely (1.7 +/- 0.6 ml/hr) and increased when the left atrial pressure was raised. The lymph protein was 2.8 +/- 0.2 g% with lymph/plasma protein ratio at 0.55 +/- 0.04. The anatomical variations encountered in our 34 dissections, as well as the technical maneuvers found to be useful in the successful cannulation and collection of the porcine lung lymph, are described in detail.

  7. Optimizing Numerical Modeling and Field Data Collection in an Interdisciplinary Study of Upper Klamath Lake, Oregon

    NASA Astrophysics Data System (ADS)

    Cheng, R. T.; Wood, T. M.; Gartner, J. W.

    2005-12-01

    collection network for the summer 2005 field season. Up to five wind anemometers have been installed around the lake to define the spatial variability of the wind field, and five ADCPs have been deployed in the lake to capture essential circulation features. The water quality monitoring network has been extended to cover the entire UKL, and monitoring stations have been placed at locations that will optimize the observation of important temporal and spatial variability in water quality as indicated by the circulation patterns predicted by the numerical model. The 2005 field data set will be used to refine the numerical hydrodynamic model upon which water quality modeling modules will be built. This case study demonstrated the use of field data to support numerical model implementation, and then the use of the numerical model results to improve the next cycle of field data collection. This loop optimizes the implementation of the numerical model and the effectiveness of field data collection.

  8. Critical Comparison of Information Models used by US Water Data Collection Agencies and Projects

    NASA Astrophysics Data System (ADS)

    Valentine, D. W.; Zaslavsky, I.; Whitenack, T.

    2009-12-01

    The CUAHSI Hydrologic Information System (HIS) project has been working to simply access to repositories of hydrologic information by developing information models, and data exchange standards. We are presently working with international community through the Open GIS Consortium to create standard that uses hydrologic semantics to communicate time series. As part of the process to create a water data exchange language, we reviewed the information structures that are presently being used by several agencies to define the requirements of the data model. In the US, federal agencies, the USGS and US EPA, collect and distribute information that is utilized by scientists in the hydrologic sciences. We determined that there are two orthogonal information sets utilized; observation data, such as stream gauge and temperature data, and water quality data, such as analytical chemistry analyses. While the data values can be represented in a time series in a common manner, the process used to collect and manage the information represent separate information sets. For continuous observations an organization manages information single point location, are managed as a set of data streams from instruments that produce a set of observations that are processed into a set of public data. For analytical data, and organization collects information as part of a project, which has a set of collection locations; at each location, a set of methods is used to collect samples, which are analyzed to produce water quality information. While the details of the observations between the two information sets differ, a common set of information can be conveyed as a time series. The CUAHSI Observations Data Model (ODM), a core set of information can be represented as “data value”: variable, location, date & time, value, units, quality control level (QCL), source, and method. The ODM also included optional attributes that are associated with a data value such as qualifier, accuracy, sample medium

  9. Activated sludge rheology: a critical review on data collection and modelling.

    PubMed

    Ratkovich, N; Horn, W; Helmus, F P; Rosenberger, S; Naessens, W; Nopens, I; Bentzen, T R

    2013-02-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtration). It therefore is an important property related to process performance, including process economics. To account for this, rheological behaviour is being included in process design, necessitating its measurement. However, measurements and corresponding protocols in literature are quite diverse, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have frequently been used to build viscosity models. However, this is not that straightforward and a lot of errors can be detected with respect to good modelling practice, including fair model selection criteria, qualitative parameter estimations and proper model validation. These important steps are however recurrently violated, severely affecting the model reliability and predictive power. This is illustrated with several examples. In conclusion, dedicated research is required to improve the rheological measurements and the models derived from them. At this moment, there is no guidance with respect to proper rheological measurements. Moreover, the rheological models are not very trustworthy and remain very "black box". More insight in the physical background needs to be gained. A model-based approach with dedicated experimental data collection is the key to address this.

  10. A model to improve the accuracy of US Poison Center data collection.

    PubMed

    Krenzelok, E P; Reynolds, K M; Dart, R C; Green, J L

    2014-01-01

    Over 2 million human exposure calls are reported annually to United States regional poison information centers. All exposures are documented electronically and submitted to the American Association of Poison Control Center's National Poison Data System. This database represents the largest data source available on the epidemiology of pharmaceutical and non-pharmaceutical poisoning exposures. The accuracy of these data is critical; however, research has demonstrated that inconsistencies and inaccuracies exist. This study outlines the methods and results of a training program that was developed and implemented to enhance the quality of data collection using acetaminophen exposures as a model. Eleven poison centers were assigned randomly to receive either passive or interactive education to improve medical record documentation. A task force provided recommendations on educational and training strategies and the development of a quality-measurement scorecard to serve as a data collection tool to assess poison center data quality. Poison centers were recruited to participate in the study. Clinical researchers scored the documentation of each exposure record for accuracy. Results. Two thousand two hundred cases were reviewed and assessed for accuracy of data collection. After training, the overall mean quality scores were higher for both the passive (95.3%; + 1.6% change) and interactive intervention groups (95.3%; + 0.9% change). Data collection accuracy improved modestly for the overall accuracy score and significantly for the substance identification component. There was little difference in accuracy measures between the different training methods. Despite the diversity of poison centers, data accuracy, specifically substance identification data fields, can be improved by developing a standardized, systematic, targeted, and mandatory training process. This process should be considered for training on other important topics, thus enhancing the value of these data in

  11. Modeling the emergence of language as an embodied collective cognitive activity.

    PubMed

    Hutchins, Edwin; Johnson, Christine M

    2009-07-01

    Two decades of attempts to model the emergence of language as a collective cognitive activity have demonstrated a number of principles that might have been part of the historical process that led to language. Several models have demonstrated the emergence of structure in a symbolic medium, but none has demonstrated the emergence of the capacity for symbolic representation. The current shift in cognitive science toward theoretical frameworks based on embodiment is already furnishing computational models with additional mechanisms relevant to the emergence of symbolic language. An analysis of embodied interaction among captive, but not human-enculturated, bonobo chimpanzees reveals a number of additional features of embodiment that are relevant to the emergence of symbolic language, but that have not yet been explored in computational simulation models; for example, complementarity of action in addition to imitation, iconic in addition to indexical gesture, coordination among multiple sensory and perceptual modalities, and the orchestration of intra- and inter-individual motor coordination. The bonobos provide an evolutionarily plausible intermediate stage in the development of symbolic expression that can inform efforts to model the emergence of symbolic language.

  12. A computer code for calculations in the algebraic collective model of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Welsh, T. A.; Rowe, D. J.

    2016-03-01

    A Maple code is presented for algebraic collective model (ACM) calculations. The ACM is an algebraic version of the Bohr model of the atomic nucleus, in which all required matrix elements are derived by exploiting the model's SU(1 , 1) × SO(5) dynamical group. This paper reviews the mathematical formulation of the ACM, and serves as a manual for the code. The code enables a wide range of model Hamiltonians to be analysed. This range includes essentially all Hamiltonians that are rational functions of the model's quadrupole moments qˆM and are at most quadratic in the corresponding conjugate momenta πˆN (- 2 ≤ M , N ≤ 2). The code makes use of expressions for matrix elements derived elsewhere and newly derived matrix elements of the operators [ π ˆ ⊗ q ˆ ⊗ π ˆ ] 0 and [ π ˆ ⊗ π ˆ ] LM. The code is made efficient by use of an analytical expression for the needed SO(5)-reduced matrix elements, and use of SO(5) ⊃ SO(3) Clebsch-Gordan coefficients obtained from precomputed data files provided with the code.

  13. A data collection scheme for identification of parameters in a driver model

    NASA Technical Reports Server (NTRS)

    Mooring, B. W.; Mcdermott, M.; Su, J. M.

    1981-01-01

    A high gain steering controller to compensate for limitations in a handicapped driver's range of motion is employed when adapting vehicle to his use. A driver/vehicle system can become unstable as vehicle speed is increased, therefore it is desirable to use a computer simulation of the driver/vehicle combination as a design tool to investigate the system response prior to construction of a controller and road testing. Unknown driver parameters must be identified prior to use of the model for system analysis. A means to collect the data necessary for identification of these driver model parameters without extensive instrumentation of a vehicle to measure and record vehicle states is addressed. Initial tests of the procedure identified all of the driver parameters with errors of 6% or less.

  14. An adaptive scheduling model for a multi-agent based VEPR data collection actions.

    PubMed

    Vieira-Marques, Pedro; Jácome, Jorge; Hilário-Patriarca, José; Cruz-Correia, Ricardo

    2015-01-01

    With the purpose of improving the access to departmental legacy information systems, a multi agent based Virtual Electronic Patient Record (VEPR) was deployed at a major Portuguese Hospital. The agent module (MAID) is in charge of identifying new data produced (reports), collecting and making it available through an integrated web interface. The deployed MAID system uses a static interval for checking the existence of new data, however from the gathered data regarding each department data production it is observable a variable rate throughout the day. In order to address this variability an adaptive model was developed and tested in a simulated environment with real data. The model takes in consideration the past report production profiles for determining a variable query frequency in order to reduce the average time to make data available minimizing the number of departmental requests.

  15. Kinetic models of collective decision-making in the presence of equality bias

    NASA Astrophysics Data System (ADS)

    Pareschi, Lorenzo; Vellucci, Pierluigi; Zanella, Mattia

    2017-02-01

    We introduce and discuss kinetic models describing the influence of the competence in the evolution of decisions in a multi-agent system. The original exchange mechanism, which is based on the human tendency to compromise and change opinion through self-thinking, is here modified to include the role of the agents' competence. In particular, we take into account the agents' tendency to behave in the same way as if they were as good, or as bad, as their partner: the so-called equality bias. This occurred in a situation where a wide gap separated the competence of group members. We discuss the main properties of the kinetic models and numerically investigate some examples of collective decision under the influence of the equality bias. The results confirm that the equality bias leads the group to suboptimal decisions.

  16. Modeling the collective magnetic behavior of highly-packed arrays of multi-segmented nanowires

    NASA Astrophysics Data System (ADS)

    Agramunt-Puig, S.; Del-Valle, N.; Pellicer, E.; Zhang, J.; Nogués, J.; Navau, C.; Sanchez, A.; Sort, J.

    2016-01-01

    A powerful model to evaluate the collective magnetic response of large arrays of segmented nanowires comprising two magnetic segments of dissimilar coercivity separated by a non-magnetic spacer is introduced. The model captures the essential aspects of the underlying physics in these systems while being at the same time computationally tractable for relatively large arrays. The minimum lateral and vertical distances rendering densely packed weakly-interacting nanowires and segments are calculated for optimizing their performance in applications like magnetic sensors or recording media. The obtained results are appealing for the design of multifunctional miniaturized devices actuated by external magnetic fields, whose successful implementation relies on achieving a delicate balance between two opposing technological demands: the need for an ultra-high density of nanowires per unit area and the minimization of inter-wire and inter-segment dipolar interactions.

  17. Shell-model investigation of spectroscopic properties and collectivity in the nuclei beyond 132Sn

    NASA Astrophysics Data System (ADS)

    Naïdja, H.; Nowacki, F.; Bounthong, B.

    2017-09-01

    The recent shell-model results of even-even chains of nuclei: 134,136,138Te, 136,138,140Xe, 138,140,142Ba, 140,142,144Ce, and 142,144,146Nd are explored in this manuscript. The low-lying states energies, E2 and M1 transitions, are investigated using the s a m e effective interaction based on the realistic effective field theory potential N3LO. Significant quadrupole correlations appear in the N =86 isotonic chain, with the signature of nonaxial γ band . This class of collectivity is interpreted within the SU(3) symmetries scheme and confirmed by constrained Hartree-Fock shell-model calculations.

  18. Modelling energy production by small hydro power plants in collective irrigation networks of Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Zema, Demetrio Antonio; Nicotra, Angelo; Tamburino, Vincenzo; Marcello Zimbone, Santo

    2017-04-01

    The availability of geodetic heads and considerable water flows in collective irrigation networks suggests the possibility of recovery potential energy using small hydro power plants (SHPP) at sustainable costs. This is the case of many Water Users Associations (WUA) in Calabria (Southern Italy), where it could theoretically be possible to recovery electrical energy out of the irrigation season. However, very few Calabrian WUAs have currently built SHPP in their irrigation networks and thus in this region the potential energy is practically fully lost. A previous study (Zema et al., 2016) proposed an original and simple model to site turbines and size their power output as well as to evaluate profits of SHPP in collective irrigation networks. Applying this model at regional scale, this paper estimates the theoretical energy production and the economic performances of SHPP installed in collective irrigation networks of Calabrian WUAs. In more detail, based on digital terrain models processed by GIS and few parameters of the water networks, for each SHPP the model provides: (i) the electrical power output; (iii) the optimal water discharge; (ii) costs, revenues and profits. Moreover, the map of the theoretical energy production by SHPP in collective irrigation networks of Calabria was drawn. The total network length of the 103 water networks surveyed is equal to 414 km and the total geodetic head is 3157 m, of which 63% is lost due to hydraulic losses. Thus, a total power output of 19.4 MW could theoretically be installed. This would provide an annual energy production of 103 GWh, considering SHPPs in operation only out of the irrigation season. The single irrigation networks have a power output in the range 0.7 kW - 6.4 MW. However, the lowest SHPPs (that is, turbines with power output under 5 kW) have been neglected, because the annual profit is very low (on average less than 6%, Zema et al., 2016). On average each irrigation network provides an annual revenue from

  19. A Mechanistic Collective Cell Model for Epithelial Colony Growth and Contact Inhibition

    PubMed Central

    Aland, Sebastian; Hatzikirou, Haralambos; Lowengrub, John; Voigt, Axel

    2015-01-01

    We present a mechanistic hybrid continuum-discrete model to simulate the dynamics of epithelial cell colonies. Collective cell dynamics are modeled using continuum equations that capture plastic, viscoelastic, and elastic deformations in the clusters while providing single-cell resolution. The continuum equations can be viewed as a coarse-grained version of previously developed discrete models that treat epithelial clusters as a two-dimensional network of vertices or stochastic interacting particles and follow the framework of dynamic density functional theory appropriately modified to account for cell size and shape variability. The discrete component of the model implements cell division and thus influences cell size and shape that couple to the continuum component. The model is validated against recent in vitro studies of epithelial cell colonies using Madin-Darby canine kidney cells. In good agreement with experiments, we find that mechanical interactions and constraints on the local expansion of cell size cause inhibition of cell motion and reductive cell division. This leads to successively smaller cells and a transition from exponential to quadratic growth of the colony that is associated with a constant-thickness rim of growing cells at the cluster edge, as well as the emergence of short-range ordering and solid-like behavior. A detailed analysis of the model reveals a scale invariance of the growth and provides insight into the generation of stresses and their influence on the dynamics of the colonies. Compared to previous models, our approach has several advantages: it is independent of dimension, it can be parameterized using classical elastic properties (Poisson’s ratio and Young’s modulus), and it can easily be extended to incorporate multiple cell types and general substrate geometries. PMID:26445436

  20. A Mechanistic Collective Cell Model for Epithelial Colony Growth and Contact Inhibition.

    PubMed

    Aland, Sebastian; Hatzikirou, Haralambos; Lowengrub, John; Voigt, Axel

    2015-10-06

    We present a mechanistic hybrid continuum-discrete model to simulate the dynamics of epithelial cell colonies. Collective cell dynamics are modeled using continuum equations that capture plastic, viscoelastic, and elastic deformations in the clusters while providing single-cell resolution. The continuum equations can be viewed as a coarse-grained version of previously developed discrete models that treat epithelial clusters as a two-dimensional network of vertices or stochastic interacting particles and follow the framework of dynamic density functional theory appropriately modified to account for cell size and shape variability. The discrete component of the model implements cell division and thus influences cell size and shape that couple to the continuum component. The model is validated against recent in vitro studies of epithelial cell colonies using Madin-Darby canine kidney cells. In good agreement with experiments, we find that mechanical interactions and constraints on the local expansion of cell size cause inhibition of cell motion and reductive cell division. This leads to successively smaller cells and a transition from exponential to quadratic growth of the colony that is associated with a constant-thickness rim of growing cells at the cluster edge, as well as the emergence of short-range ordering and solid-like behavior. A detailed analysis of the model reveals a scale invariance of the growth and provides insight into the generation of stresses and their influence on the dynamics of the colonies. Compared to previous models, our approach has several advantages: it is independent of dimension, it can be parameterized using classical elastic properties (Poisson's ratio and Young's modulus), and it can easily be extended to incorporate multiple cell types and general substrate geometries.

  1. Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks

    NASA Astrophysics Data System (ADS)

    Lekouch, Imad; Lekouch, Khalid; Muselli, Marc; Mongruel, Anne; Kabbachi, Belkacem; Beysens, Daniel

    2012-07-01

    SummaryTwo coastal sites were investigated in an arid region of southwest Morocco to determine the amount of dew, fog and rain that could be collected from rooftops for household use. Systematic measurements were performed in Mirleft (43 m asl, 200 m from the coast) for 1 year (May 1, 2007 to April 30, 2008) and in Id Ouasskssou (240 m asl, 8 km from the coast) for three summer months (July 1, 2007 to September 30, 2007). Dew water was collected using standard passive dew condensers and fog water by utilizing planar fog collectors. The wind flow was simulated on the rooftop to establish the location of the fog collector. At both sites, dew yields and, to a lesser extent, fog water yields, were found to be significant in comparison to rain events. Mirleft had 178 dew events (48.6% of the year, 18 ± 2 L m-2 cumulated amount) and 20 fog episodes (5.5% of the year, 1.4 L m-2 with uncertainty -0.2/+0.4 L m-2 cumulated amount), corresponding to almost 40% of the yearly rain contribution (31 rain events, 8.5% of the year, 49 ± 7 mm cumulated amount). At Id Ouasskssou there were 50 dew events (7.1 ± 0.3 L m-2, 54.3% frequency), 16 fog events (6.5 L m-2 with uncertainty -0.1/+1.8 L m-2, 17.4% frequency) and six rain events (16 ± 2 mm, 6.5% frequency). Meteorological data (air and dew point temperature and/or relative humidity, wind speed and wind direction, cloud cover) were recorded continuously at Mirleft to assess the influence of local meteorological conditions on dew and fog formation. Using the set of collected data, a new model for dew yield prediction based on artificial neural networks was developed and tested for the Mirleft site. This model was then extrapolated to 15 major cities in Morocco to assess their potential for dew water collection. It was found that the location of the cities with respect to the Atlas mountain chain, which controls the circulation of the humid marine air, is the main factor that influences dew production.

  2. Distribution models for koalas in South Australia using citizen science-collected data.

    PubMed

    Sequeira, Ana M M; Roetman, Philip E J; Daniels, Christopher B; Baker, Andrew K; Bradshaw, Corey J A

    2014-06-01

    The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAIC c ∼ 1) included all variables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R (2)(m) (76.4) and R (2)(c) (81.0), and had a good performance according to Cohen's κ (0.46). Cross-validation error was low (∼ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km(2)) of the Adelaide-Mount Lofty Ranges, a density-suitability relationship predicts a population of 113,704 (95% confidence interval: 27,685-199,723; average density = 5.0-35.8 km(-2)). We demonstrate the power of citizen science data for predicting species

  3. Distribution models for koalas in South Australia using citizen science-collected data

    PubMed Central

    Sequeira, Ana M M; Roetman, Philip E J; Daniels, Christopher B; Baker, Andrew K; Bradshaw, Corey J A

    2014-01-01

    The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAICc ∼ 1) included all variables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R2(m) (76.4) and R2(c) (81.0), and had a good performance according to Cohen's κ (0.46). Cross-validation error was low (∼ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km2) of the Adelaide–Mount Lofty Ranges, a density–suitability relationship predicts a population of 113,704 (95% confidence interval: 27,685–199,723; average density = 5.0–35.8 km−2). We demonstrate the power of citizen science data for predicting species

  4. Study on collection efficiency of fission products by spray: Experimental device and modelling

    SciTech Connect

    Ducret, D.; Roblot, D.; Vendel, J.; Billarand, Y.

    1997-08-01

    Consequences of an hypothetical overheating reactor accident in nuclear power plants can be limited by spraying cold water drops into containment building. The spray reduces the pressure and the temperature levels by condensation of steam and leads to the washout of fission products (aerosols and gaseous iodine). The present study includes a large program devoted to the evaluation of realistic washout rates. An experimental device (named CARAIDAS) was designed and built in order to determine the collection efficiency of aerosols and iodine absorption by drops with representative conditions of post-accident atmosphere. This experimental device is presented in the paper and more particularly: (1) the experimental enclosure in which representative thermodynamic conditions can be achieved, (2) the monosized drops generator, the drops diameter measurement and the drops collector, (3) the cesium iodide aerosols generator and the aerosols measurements. Modelling of steam condensation on drops aerosols collection and iodine absorption are described. First experimental and code results on drops and aerosols behaviour are compared. 8 refs., 18 figs.

  5. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    DOE PAGES

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; ...

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less

  6. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    SciTech Connect

    Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; Lopez, Javier Garicia; Jaksic, Milko; Raisanen, Jyrki; Siegele, Rainer; Simon, Aliz; Vizkelethy, Gyorgy

    2016-02-08

    This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  7. Geostatistical Modeling of Malaria Endemicity using Serological Indicators of Exposure Collected through School Surveys

    PubMed Central

    Ashton, Ruth A.; Kefyalew, Takele; Rand, Alison; Sime, Heven; Assefa, Ashenafi; Mekasha, Addis; Edosa, Wasihun; Tesfaye, Gezahegn; Cano, Jorge; Teka, Hiwot; Reithinger, Richard; Pullan, Rachel L.; Drakeley, Chris J.; Brooker, Simon J.

    2015-01-01

    Ethiopia has a diverse ecology and geography resulting in spatial and temporal variation in malaria transmission. Evidence-based strategies are thus needed to monitor transmission intensity and target interventions. A purposive selection of dried blood spots collected during cross-sectional school-based surveys in Oromia Regional State, Ethiopia, were tested for presence of antibodies against Plasmodium falciparum and P. vivax antigens. Spatially explicit binomial models of seroprevalence were created for each species using a Bayesian framework, and used to predict seroprevalence at 5 km resolution across Oromia. School seroprevalence showed a wider prevalence range than microscopy for both P. falciparum (0–50% versus 0–12.7%) and P. vivax (0–53.7% versus 0–4.5%), respectively. The P. falciparum model incorporated environmental predictors and spatial random effects, while P. vivax seroprevalence first-order trends were not adequately explained by environmental variables, and a spatial smoothing model was developed. This is the first demonstration of serological indicators being used to detect large-scale heterogeneity in malaria transmission using samples from cross-sectional school-based surveys. The findings support the incorporation of serological indicators into periodic large-scale surveillance such as Malaria Indicator Surveys, and with particular utility for low transmission and elimination settings. PMID:25962770

  8. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  9. Emergence of cluster structures and collectivity within a no-core shell-model framework

    NASA Astrophysics Data System (ADS)

    Launey, K. D.; Dreyfuss, A. C.; Draayer, J. P.; Dytrych, T.; Baker, R.

    2014-12-01

    An innovative symmetry-guided concept, which capitalizes on partial as well as exact symmetries that underpin the structure of nuclei, is discussed. Within this framework, ab initio applications of the theory to light nuclei reveal the origin of collective modes and the emergence a simple orderly pattern from first principles. This provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small fraction of the complete shell-model space, which, in turn, can be used to explore ultra-large model spaces for a description of alpha-cluster and highly deformed structures together with the associated rotations. We find that by using only a fraction of the model space extended far beyond current no-core shell-model limits and a long-range interaction that respects the symmetries in play, the outcome reproduces characteristic features of the low-lying 0+ states in 12 C (including the elusive Hoyle state and its 2+ excitation) and agrees with ab initio results in smaller spaces. This is achieved by selecting those particle configurations and components of the interaction found to be foremost responsible for the primary physics governing clustering phenomena and large spatial deformation in the ground-state and Hoyle-state rotational bands of 12 C. For these states, we offer a novel perspective emerging out of no-core shell-model considerations, including a discussion of associated nuclear deformation, matter radii, and density distribution. The framework we find is also extensible to negative-parity states (e.g., the 3-1 state in 12C) and beyond, namely, to the low-lying 0+ states of 8Be as well as the ground-state rotational band of Ne, Mg, and Si isotopes. The findings inform key features of the nuclear interaction and point to a new insight into the formation of highly-organized simple patterns in nuclear dynamics.

  10. Optimal Number and Allocation of Data Collection Points for Linear Spline Growth Curve Modeling: A Search for Efficient Designs

    ERIC Educational Resources Information Center

    Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D.

    2017-01-01

    Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…

  11. Using a communication model to collect measurement data through mobile devices.

    PubMed

    Bravo, José; Villarreal, Vladimir; Hervás, Ramón; Urzaiz, Gabriel

    2012-01-01

    Wireless systems and services have undergone remarkable development since the first mobile phone system was introduced in the early 1980s. The use of sensors in an Ambient Intelligence approach is a great solution in a medical environment. We define a communication architecture to facilitate the information transfer between all connected devices. This model is based in layers to allow the collection of measurement data to be used in our framework monitoring architecture. An overlay-based solution is built between network elements in order to provide an efficient and highly functional communication platform that allows the connection of a wide variety of devices and technologies, and serves also to perform additional functions such as the possibility to perform some processing in the network that may help to improve overall performance.

  12. Multiscale Modelling and Analysis of Collective Decision Making in Swarm Robotics

    PubMed Central

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable. PMID:25369026

  13. Standardized data collection to build prediction models in oncology: a prototype for rectal cancer.

    PubMed

    Meldolesi, Elisa; van Soest, Johan; Damiani, Andrea; Dekker, Andre; Alitto, Anna Rita; Campitelli, Maura; Dinapoli, Nicola; Gatta, Roberto; Gambacorta, Maria Antonietta; Lanzotti, Vito; Lambin, Philippe; Valentini, Vincenzo

    2016-01-01

    The advances in diagnostic and treatment technology are responsible for a remarkable transformation in the internal medicine concept with the establishment of a new idea of personalized medicine. Inter- and intra-patient tumor heterogeneity and the clinical outcome and/or treatment's toxicity's complexity, justify the effort to develop predictive models from decision support systems. However, the number of evaluated variables coming from multiple disciplines: oncology, computer science, bioinformatics, statistics, genomics, imaging, among others could be very large thus making traditional statistical analysis difficult to exploit. Automated data-mining processes and machine learning approaches can be a solution to organize the massive amount of data, trying to unravel important interaction. The purpose of this paper is to describe the strategy to collect and analyze data properly for decision support and introduce the concept of an 'umbrella protocol' within the framework of 'rapid learning healthcare'.

  14. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  15. Efficient Data Collection and Event Boundary Detection in Wireless Sensor Networks Using Tiny Models

    NASA Astrophysics Data System (ADS)

    King, Kraig; Nittel, Silvia

    Using wireless geosensor networks (WGSN), sensor nodes often monitor a phenomenon that is both continuous in time and space. However, sensor nodes take discrete samples, and an analytical framework inside or outside the WSN is used to analyze the phenomenon. In both cases, expensive communication is used to stream a large number of data samples to other nodes and to the base station. In this work, we explore a novel alternative that utilizes predictive process knowledge of the observed phenomena to minimize upstream communication. Often, observed phenomena adhere to a process with predictable behavior over time. We present a strategy for developing and running so-called 'tiny models' on individual sensor nodes that capture the predictable behavior of the phenomenon; nodes now only communicate when unexpected events are observed. Using multiple simulations, we demonstrate that a significant percentage of messages can be reduced during data collection.

  16. Using a Communication Model to Collect Measurement Data through Mobile Devices

    PubMed Central

    Bravo, José; Villarreal, Vladimir; Hervás, Ramón; Urzaiz, Gabriel

    2012-01-01

    Wireless systems and services have undergone remarkable development since the first mobile phone system was introduced in the early 1980s. The use of sensors in an Ambient Intelligence approach is a great solution in a medical environment. We define a communication architecture to facilitate the information transfer between all connected devices. This model is based in layers to allow the collection of measurement data to be used in our framework monitoring architecture. An overlay-based solution is built between network elements in order to provide an efficient and highly functional communication platform that allows the connection of a wide variety of devices and technologies, and serves also to perform additional functions such as the possibility to perform some processing in the network that may help to improve overall performance. PMID:23012542

  17. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  18. Bias correction in species distribution models: pooling survey and collection data for multiple species

    PubMed Central

    Fithian, William; Elith, Jane; Hastie, Trevor; Keith, David A.

    2016-01-01

    Summary Presence-only records may provide data on the distributions of rare species, but commonly suffer from large, unknown biases due to their typically haphazard collection schemes. Presence–absence or count data collected in systematic, planned surveys are more reliable but typically less abundant.We proposed a probabilistic model to allow for joint analysis of presence-only and survey data to exploit their complementary strengths. Our method pools presence-only and presence–absence data for many species and maximizes a joint likelihood, simultaneously estimating and adjusting for the sampling bias affecting the presence-only data. By assuming that the sampling bias is the same for all species, we can borrow strength across species to efficiently estimate the bias and improve our inference from presence-only data.We evaluate our model’s performance on data for 36 eucalypt species in south-eastern Australia. We find that presence-only records exhibit a strong sampling bias towards the coast and towards Sydney, the largest city. Our data-pooling technique substantially improves the out-of-sample predictive performance of our model when the amount of available presence–absence data for a given species is scarceIf we have only presence-only data and no presence–absence data for a given species, but both types of data for several other species that suffer from the same spatial sampling bias, then our method can obtain an unbiased estimate of the first species’ geographic range. PMID:27840673

  19. Ottawa's urban forest: A geospatial approach to data collection for the UFORE/i-Tree Eco ecosystem services valuation model

    NASA Astrophysics Data System (ADS)

    Palmer, Michael D.

    The i-Tree Eco model, developed by the U.S. Forest Service, is commonly used to estimate the value of the urban forest and the ecosystem services trees provide. The model relies on field-based measurements to estimate ecosystem service values. However, the methods for collecting the field data required for the model can be extensive and costly for large areas, and data collection can thus be a barrier to implementing the model for many cities. This study investigated the use of geospatial technologies as a means to collect urban forest structure measurements within the City of Ottawa, Ontario. Results show that geospatial data collection methods can serve as a proxy for urban forest structure parameters required by i-Tree Eco. Valuations using the geospatial approach are shown to be less accurate than those developed from field-based data, but significantly less expensive. Planners must weigh the limitations of either approach when planning assessment projects.

  20. Collective properties of injection-induced earthquake sequences: 1. Model description and directivity bias

    NASA Astrophysics Data System (ADS)

    Dempsey, David; Suckale, Jenny

    2016-05-01

    Induced seismicity is of increasing concern for oil and gas, geothermal, and carbon sequestration operations, with several M > 5 events triggered in recent years. Modeling plays an important role in understanding the causes of this seismicity and in constraining seismic hazard. Here we study the collective properties of induced earthquake sequences and the physics underpinning them. In this first paper of a two-part series, we focus on the directivity ratio, which quantifies whether fault rupture is dominated by one (unilateral) or two (bilateral) propagating fronts. In a second paper, we focus on the spatiotemporal and magnitude-frequency distributions of induced seismicity. We develop a model that couples a fracture mechanics description of 1-D fault rupture with fractal stress heterogeneity and the evolving pore pressure distribution around an injection well that triggers earthquakes. The extent of fault rupture is calculated from the equations of motion for two tips of an expanding crack centered at the earthquake hypocenter. Under tectonic loading conditions, our model exhibits a preference for unilateral rupture and a normal distribution of hypocenter locations, two features that are consistent with seismological observations. On the other hand, catalogs of induced events when injection occurs directly onto a fault exhibit a bias toward ruptures that propagate toward the injection well. This bias is due to relatively favorable conditions for rupture that exist within the high-pressure plume. The strength of the directivity bias depends on a number of factors including the style of pressure buildup, the proximity of the fault to failure and event magnitude. For injection off a fault that triggers earthquakes, the modeled directivity bias is small and may be too weak for practical detection. For two hypothetical injection scenarios, we estimate the number of earthquake observations required to detect directivity bias.

  1. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study

    PubMed Central

    Li, Wang; Pi, Xitian; Qiao, Panpan; Liu, Hongying

    2016-01-01

    Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance. PMID:26934615

  2. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    PubMed

    Li, Wang; Pi, Xitian; Qiao, Panpan; Liu, Hongying

    2016-01-01

    Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  3. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    PubMed Central

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose’ N

    2015-01-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) – have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT). PMID:26627083

  4. Collective behavior and predation success in a predator-prey model inspired by hunting bats.

    PubMed

    Lin, Yuan; Abaid, Nicole

    2013-12-01

    We establish an agent-based model to study the impact of prey behavior on the hunting success of predators. The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey. The prey either align velocity directions with peers, defined as "interacting" prey, or swarm "independently" of peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey using low noise have the maximum predation avoidance because they form localized large groups, while they suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit more ordered collective behavior or more uniform spatial distribution as they are interacting or independent, respectively.

  5. Collective behavior and predation success in a predator-prey model inspired by hunting bats

    NASA Astrophysics Data System (ADS)

    Lin, Yuan; Abaid, Nicole

    2013-12-01

    We establish an agent-based model to study the impact of prey behavior on the hunting success of predators. The predators and prey are modeled as self-propelled particles moving in a three-dimensional domain and subject to specific sensing abilities and behavioral rules inspired by bat hunting. The predators randomly search for prey. The prey either align velocity directions with peers, defined as "interacting" prey, or swarm "independently" of peer presence; both types of prey are subject to additive noise. In a simulation study, we find that interacting prey using low noise have the maximum predation avoidance because they form localized large groups, while they suffer high predation as noise increases due to the formation of broadly dispersed small groups. Independent prey, which are likely to be uniformly distributed in the domain, have higher predation risk under a low noise regime as they traverse larger spatial extents. These effects are enhanced in large prey populations, which exhibit more ordered collective behavior or more uniform spatial distribution as they are interacting or independent, respectively.

  6. Universal model for collective access patterns in the Internet traffic dynamics: A superstatistical approach

    NASA Astrophysics Data System (ADS)

    Tamazian, A.; Nguyen, V. D.; Markelov, O. A.; Bogachev, M. I.

    2016-07-01

    We suggest a universal phenomenological description for the collective access patterns in the Internet traffic dynamics both at local and wide area network levels that takes into account erratic fluctuations imposed by cooperative user behaviour. Our description is based on the superstatistical approach and leads to the q-exponential inter-session time and session size distributions that are also in perfect agreement with empirical observations. The validity of the proposed description is confirmed explicitly by the analysis of complete 10-day traffic traces from the WIDE backbone link and from the local campus area network downlink from the Internet Service Provider. Remarkably, the same functional forms have been observed in the historic access patterns from single WWW servers. The suggested approach effectively accounts for the complex interplay of both “calm” and “bursty” user access patterns within a single-model setting. It also provides average sojourn time estimates with reasonable accuracy, as indicated by the queuing system performance simulation, this way largely overcoming the failure of Poisson modelling of the Internet traffic dynamics.

  7. Modeling the Transitions between Collective and Solitary Migration Phenotypes in Cancer Metastasis

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Jolly, Mohit Kumar; Lu, Mingyang; Tsarfaty, Ilan; Ben-Jacob, Eshel; Onuchic, Jose' N.

    2015-12-01

    Cellular plasticity during cancer metastasis is a major clinical challenge. Two key cellular plasticity mechanisms —Epithelial-to-Mesenchymal Transition (EMT) and Mesenchymal-to-Amoeboid Transition (MAT) - have been carefully investigated individually, yet a comprehensive understanding of their interconnections remains elusive. Previously, we have modeled the dynamics of the core regulatory circuits for both EMT (miR-200/ZEB/miR-34/SNAIL) and MAT (Rac1/RhoA). We now extend our previous work to study the coupling between these two core circuits by considering the two microRNAs (miR-200 and miR-34) as external signals to the core MAT circuit. We show that this coupled circuit enables four different stable steady states (phenotypes) that correspond to hybrid epithelial/mesenchymal (E/M), mesenchymal (M), amoeboid (A) and hybrid amoeboid/mesenchymal (A/M) phenotypes. Our model recapitulates the metastasis-suppressing role of the microRNAs even in the presence of EMT-inducing signals like Hepatocyte Growth Factor (HGF). It also enables mapping the microRNA levels to the transitions among various cell migration phenotypes. Finally, it offers a mechanistic understanding for the observed phenotypic transitions among different cell migration phenotypes, specifically the Collective-to-Amoeboid Transition (CAT).

  8. A Mathematical Model of Demand-Supply Dynamics with Collectability and Saturation Factors

    NASA Astrophysics Data System (ADS)

    Li, Y. Charles; Yang, Hong

    We introduce a mathematical model on the dynamics of demand and supply incorporating collectability and saturation factors. Our analysis shows that when the fluctuation of the determinants of demand and supply is strong enough, there is chaos in the demand-supply dynamics. Our numerical simulation shows that such a chaos is not an attractor (i.e. dynamics is not approaching the chaos), instead a periodic attractor (of period-3 under the Poincaré period map) exists near the chaos, and coexists with another periodic attractor (of period-1 under the Poincaré period map) near the market equilibrium. Outside the basins of attraction of the two periodic attractors, the dynamics approaches infinity indicating market irrational exuberance or flash crash. The period-3 attractor represents the product’s market cycle of growth and recession, while period-1 attractor near the market equilibrium represents the regular fluctuation of the product’s market. Thus our model captures more market phenomena besides Marshall’s market equilibrium. When the fluctuation of the determinants of demand and supply is strong enough, a three leaf danger zone exists where the basins of attraction of all attractors intertwine and fractal basin boundaries are formed. Small perturbations in the danger zone can lead to very different attractors. That is, small perturbations in the danger zone can cause the market to experience oscillation near market equilibrium, large growth and recession cycle, and irrational exuberance or flash crash.

  9. Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks.

    PubMed

    Anbari, Mohammad Javad; Tabesh, Massoud; Roozbahani, Abbas

    2017-04-01

    In wastewater systems as one of the most important urban infrastructures, the adverse consequences and effects of unsuitable performance and failure event can sometimes lead to disrupt part of a city functioning. By identifying high failure risk areas, inspections can be implemented based on the system status and thus can significantly increase the sewer network performance. In this study, a new risk assessment model is developed to prioritize sewer pipes inspection using Bayesian Networks (BNs) as a probabilistic approach for computing probability of failure and weighted average method to calculate the consequences of failure values. Finally to consider uncertainties, risk of a sewer pipe is obtained from integration of probability and consequences of failure values using a fuzzy inference system (FIS). As a case study, sewer pipes of a local wastewater collection network in Iran are prioritized to inspect based on their criticality. Results show that majority of sewers (about 62%) has moderate risk, but 12%of sewers are in a critical situation. Regarding the budgetary constraints, the proposed model and resultant risk values are expected to assist wastewater agencies to repair or replace risky sewer pipelines especially in dealing with incomplete and uncertain datasets.

  10. Assessing Historical Fish Community Composition Using Surveys, Historical Collection Data, and Species Distribution Models

    PubMed Central

    Labay, Ben; Cohen, Adam E.; Sissel, Blake; Hendrickson, Dean A.; Martin, F. Douglas; Sarkar, Sahotra

    2011-01-01

    Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of

  11. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  12. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  13. Collective Political Violence in Easton’s Political Systems Model (La Violence Politique Collective dans le Modele de Systeme Politique d’Easton)

    DTIC Science & Technology

    2011-09-01

    Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence,.2011 © Sa Majesté la Reine (en droit du Canada...d’autocorrection du système. Le recours à la violence peut – dans une certaine mesure – permettre à un régime de restaurer le niveau critique ...Model ............................................................................................. 3 4 A Critique of Easton’s Model

  14. Enabling School Structure, Collective Responsibility, and a Culture of Academic Optimism: Toward a Robust Model of School Performance in Taiwan

    ERIC Educational Resources Information Center

    Wu, Jason H.; Hoy, Wayne K.; Tarter, C. John

    2013-01-01

    Purpose: The purpose of this research is twofold: to test a theory of academic optimism in Taiwan elementary schools and to expand the theory by adding new variables, collective responsibility and enabling school structure, to the model. Design/methodology/approach: Structural equation modeling was used to test, refine, and expand an…

  15. Enabling School Structure, Collective Responsibility, and a Culture of Academic Optimism: Toward a Robust Model of School Performance in Taiwan

    ERIC Educational Resources Information Center

    Wu, Jason H.; Hoy, Wayne K.; Tarter, C. John

    2013-01-01

    Purpose: The purpose of this research is twofold: to test a theory of academic optimism in Taiwan elementary schools and to expand the theory by adding new variables, collective responsibility and enabling school structure, to the model. Design/methodology/approach: Structural equation modeling was used to test, refine, and expand an…

  16. [How does collective violence shape the health status of its victims? Conceptual model and design of the ISAVIC study].

    PubMed

    Larizgoitia, Itziar; Izarzugaza, Isabel; Markez, Iñaki; Fernández, Itziar; Iraurgi, Ioseba; Larizgoitia, Arantza; Ballesteros, Javier; Fernández-Liria, Alberto; Moreno, Florentino; Retolaza, Ander; Páez, Darío; Martín-Beristaín, Carlos; Alonso, Jordi

    2011-01-01

    Epidemiologic research on collective violence (violence exerted by and within groups in pursuit of political, social or economic goals) is very scarce despite its growing recognition as a major public health issue. This paper describes the conceptual model and design of one of the first research studies conducted in Spain aiming to assess the impact of collective violence in the health status of its victims (study known as ISAVIC, based on its Spanish title Impacto en la SAlud de la VIolencia Colectiva). Starting with a comprehensive but non-systematic review of the literature, the authors describe the sequelae likely produced by collective violence and propose a conceptual model to explain the nature of the relationships between collective violence and health status. The conceptual model informed the ISAVIC study design and its measurement instruments. The possible sequelae of collective violence, in the physical, emotional and social dimensions of health, are described. Also, the review distinguishes the likely impact in primary and secondary victims, as well as the interplay with the social environment. The mixed methodological design of the ISAVIC study supports the coherence of the conceptual model described. The ISAVIC study suggests that collective violence may affect the main dimensions of the health status of its victims, in intimate relation to the societal factors where it operates. It is necessary to validate these results with new studies. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  17. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    NASA Astrophysics Data System (ADS)

    Séran, E.; Berthelier, J.-J.; Saouri, F. Z.; Lebreton, J.-P.

    2005-07-01

    The segmented Langmuir probe (SLP) has been recently proposed by one of the authors (Lebreton, 2002) as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell) model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966) for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc.) for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions reproducing the

  18. Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions

    NASA Astrophysics Data System (ADS)

    Gupta, Shamik

    2017-10-01

    In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on a very rich phase diagram in presence of thermal noise and an additional non-local interaction on a one-dimensional periodic lattice. Remarkably, the phase diagram involves both equilibrium and non-equilibrium phase transitions. In two contrasting limits of the dynamics, we obtain exact analytical results for the phase transitions. These two limits correspond to (i) the absence of thermal noise, when the dynamics reduces to that of a non-linear dynamical system, and (ii) the oscillators having the same natural frequency, when the dynamics becomes that of a statistical system in contact with a heat bath and relaxing to a statistical equilibrium state. In the former case, our exact analysis is based on the use of the so-called Ott-Antonsen ansatz to derive a reduced set of nonlinear partial differential equations for the macroscopic evolution of the system. Our results for the case of statistical equilibrium are on the other hand obtained by extending the well-known transfer matrix approach for nearest-neighbor Ising model to consider non-local interactions. The work offers a case study of exact analysis in many-body interacting systems. The results obtained underline the crucial role of additional non-local interactions in either destroying or enhancing the possibility of observing synchrony in mean-field systems exhibiting spontaneous synchronization.

  19. Receptor modeling of globally circulating airborne particles collected at Mauna Loa Observatory, Hawaii

    SciTech Connect

    Hermann, D.M.

    1988-01-01

    Weekly airborne particle samples were collected at Mauna Loa Observatory (MLO), Hawaii from February 1979 through May 1985. Receptor models were used to identify sources of airborne particles at MLO, determine compositions of particles from these sources, and assess the relative impacts of them. Major sources of ambient particles at MLO include Asian continental material, oceanic biological production of Se and SO{sub 4} species, marine particles, Asian anthropogenic material, local volcanic emissions, and basalt. Source composition profiles were developed for each component. The Asian continental component represents particles transported from Eastern Asia to the North Pacific, and the component consists of crustal material contaminated by anthropogenic emissions. To account for variations in the relative strengths of anthropogenic and crustal sources, a separate Asian anthropogenic component was also developed. During the dust season, Asian continental material accounts for 80% of total suspended particulate material (TSP) at MLO, oceanic productions of Se and SO{sub 4} 11%, marine particles 2.8%, basalt 1.9%, volcanic emissions 1.7%, and Asian anthropogenic material in excess of Asian continental material 3.2%. During the clean season, the oceanic biological production of Se and SO{sub 4} contributes 62% of TSP at MLO. Continental material contributes 22%, marine particles 6.4%, basalt 2.7%, volcanic emissions 2.4%, and anthropogenic materials in excess of continental material 4.3%.

  20. InterRett, a model for international data collection in a rare genetic disorder

    PubMed Central

    Louise, Sandra; Fyfe, Sue; Bebbington, Ami; Bahi-Buisson, Nadia; Anderson, Alison; Pineda, Mercé; Percy, Alan; Ben Zeev, Bruria; Wu, Xi Ru; Bao, Xinhua; Mac Leod, Patrick; Armstrong, Judith; Leonard, Helen

    2009-01-01

    Rett syndrome (RTT) is a rare genetic disorder within the autistic spectrum. This study compared socio-demographic, clinical and genetic characteristics of the international database, InterRett, and the population based Australian Rett syndrome database (ARSD). It also explored the strengths and limitations of InterRett in comparison with other studies. A literature review compared InterRett with RTT population-based and case-based studies of thirty or more cases that investigated genotype and/or phenotype relationships. Questionnaire data were used to determine case status and to investigate the comparability of InterRett and ARSD. Twenty four case series, five population based studies and a MECP2 mutation database were identified of which twenty one (70%) collected phenotype and genotype data. Only three studies were representative of their underlying case population and many had low numbers. Of one thousand one hundred and fourteen InterRett subjects, nine hundred and thirty five born after 1976 could be verified as Rett cases and compared with the two hundred and ninety five ARSD subjects. Although more InterRett families had higher education and occupation levels and their children were marginally less severe, the distribution of MECP2 mutation types was similar. The InterRett can be used with confidence to investigate genotype phenotype associations and clinical variation in RTT and provides an exemplary international model for other rare disorders. PMID:24348750

  1. Data-collection program for Pamlico River Estuary model calibration and validation

    USGS Publications Warehouse

    Bales, Jerad D.

    1989-01-01

    An investigation is being conducted to collect and interpret continuous records relating to the flow characteristics of the Pamlico River Estuary, North Carolina, and to calibrate and validate a numerical model of estuarine hydrodynamics. The study reach is 50 kilometers long and ranges in width from 330 meters at the upstream boundary to 6.4 kilometers at the downstream end. Water levels are recorded at 6 locations along the estuary; daily water-level range is typically greater at the head of the estuary than at the mouth, most likely due to upstream narrowing of the channel. Water-quality data are recorded at 14 locations. These data indicate that saline waters with low dissolved oxygen concentrations move upstream along the bottom of the estuary. Point velocities were monitored for 3 weeks at 7 locations; vertical profiles of horizontal velocity were made at the boundaries of the study reach for about 32 hours. Local tributary inflows and wind speed and direction are also being determined.

  2. Urban solid waste collection system using mathematical modelling and tools of geographic information systems.

    PubMed

    Arribas, Claudia Andrea; Blazquez, Carola Alejandra; Lamas, Alejandro

    2010-04-01

    A poorly designed urban solid waste collection system has an enormous impact on labour, operational and transport costs, and on society in general due to road contamination and negative effects on public health and the environment. This study proposes a methodology for designing an urban solid waste collection system. This methodology uses combinatorial optimisation and integer programing, and GIS tools to minimise collection time, and operational and transport costs while enhancing the current solid waste collection system. This methodology establishes feasible collection routes, determines an adequate vehicle fleet size and presents a comparative cost and sensitivity analysis of the results. The implementation of this methodology in a study case of a zone in Santiago yields significant cost savings in the total collection system.

  3. Tavis-Cummings model and collective multiqubit entanglement in trapped ions

    SciTech Connect

    Retzker, A.; Solano, E.; Reznik, B.

    2007-02-15

    We present a method of generating collective multiqubit entanglement via global addressing of an ion chain performing blue and red Tavis-Cummings interactions, where several qubits are coupled to a collective motional mode. We show that a wide family of Dicke states and irradiant states can be generated by single global laser pulses, unitarily or helped with suitable postselection techniques.

  4. Modelling informally collected quantities of bulky waste and reusable items in Austria

    SciTech Connect

    Ramusch, R. Pertl, A.; Scherhaufer, S.; Schmied, E.; Obersteiner, G.

    2015-10-15

    Highlights: • Informal collectors from Hungary collect bulky waste and reusable items in Austria. • Two methodologies were applied to estimate the informally collected quantities. • Both approaches lead to an estimation of roughly 100,000 t p.a. informally collected. • The formal Austrian system collects 72 kg/cap/yr of bulky waste, WEE & scrap metal. • Informal collection amounts to approx. 12 kg/cap/yr. - Abstract: Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector.

  5. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    PubMed

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.

  6. Identifying robustness in the regulation of collective foraging of ant colonies using an interaction-based model with backward bifurcation.

    PubMed

    Udiani, Oyita; Pinter-Wollman, Noa; Kang, Yun

    2015-02-21

    Collective behaviors in social insect societies often emerge from simple local rules. However, little is known about how these behaviors are dynamically regulated in response to environmental changes. Here, we use a compartmental modeling approach to identify factors that allow harvester ant colonies to regulate collective foraging activity in response to their environment. We propose a set of differential equations describing the dynamics of: (1) available foragers inside the nest, (2) active foragers outside the nest, and (3) successful returning foragers, to understand how colony-specific parameters, such as baseline number of foragers, interactions among foragers, food discovery rates, successful forager return rates, and foraging duration might influence collective foraging dynamics, while maintaining functional robustness to perturbations. Our analysis indicates that the model can undergo a forward (transcritical) bifurcation or a backward bifurcation depending on colony-specific parameters. In the former case, foraging activity persists when the average number of recruits per successful returning forager is larger than one. In the latter case, the backward bifurcation creates a region of bistability in which the size and fate of foraging activity depends on the distribution of the foraging workforce among the model's compartments. We validate the model with experimental data from harvester ants (Pogonomyrmex barbatus) and perform sensitivity analysis. Our model provides insights on how simple, local interactions can achieve an emergent and robust regulatory system of collective foraging activity in ant colonies.

  7. Emergence of collective strategies in a prey-predator game model.

    PubMed

    Nishimura, S I; Ikegami, T

    1997-01-01

    The emergence of collective strategies in a prey-predator system is studied. We use the term "collective" in the sense of the collective motion of defense or attack often found in behaviors of animal groups. In our prey-predator system, both prey and predators move around on a two-dimensional plane, interacting by playing a game; predators can score by touching the backside of a prey. Thresholds are assumed for the scores of both prey and predators. The species with the higher scores can reproduce more, and that with the lower scores will be diminished. As a result, strategies as collective motions are observed; these consist of rotating cluster motions, line formations, disordered but one-way marching, and random swarming. In particular, the strategy of random swarming encourages symbiosis in the sense that it is associated with a low extinction probability for the whole system.

  8. Computer modeling of current collection by the CHARGE-2 mother payload

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Lilley, J. R., Jr.; Katz, I.; Neubert, T.; Myers, Neil B.

    1990-01-01

    The three-dimensional computer codes NASCAP/LEO and POLAR have been used to calculate current collection by the mother payload of the CHARGE-2 rocket under conditions of positive and negative potential up to several hundred volts. For negative bias (ion collection), the calculations lie about 25 percent above the data, indicating that the ions were less dense, colder, or heavier than the input parameters. For positive bias (electron collection), NASCAP/LEO and POLAR calculations show similar agreement with the measurements at the highest altitudes. This agreement indicates that the current is classically magnetically limited, even during electron beam emission. However, the calculated values fall well below the data at lower altitudes. It is suggested that beam-plasma-neutral interactions are responsible for the high values of collected current at altitudes below 240 km.

  9. Computer modeling of current collection by the CHARGE-2 mother payload

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Lilley, J. R., Jr.; Katz, I.; Neubert, T.; Myers, Neil B.

    1990-01-01

    The three-dimensional computer codes NASCAP/LEO and POLAR have been used to calculate current collection by the mother payload of the CHARGE-2 rocket under conditions of positive and negative potential up to several hundred volts. For negative bias (ion collection), the calculations lie about 25 percent above the data, indicating that the ions were less dense, colder, or heavier than the input parameters. For positive bias (electron collection), NASCAP/LEO and POLAR calculations show similar agreement with the measurements at the highest altitudes. This agreement indicates that the current is classically magnetically limited, even during electron beam emission. However, the calculated values fall well below the data at lower altitudes. It is suggested that beam-plasma-neutral interactions are responsible for the high values of collected current at altitudes below 240 km.

  10. A proposal for a model of informed consent for the collection, storage and use of biological materials for research purposes.

    PubMed

    Porteri, Corinna; Borry, Pascal

    2008-04-01

    To suggest a model of informed consent for the collection, storage and use of biological materials in local biobanks for health research purposes. Review of the major ethical issues related to collection, storage and use of human biological materials for research purposes. An informed consent form for the collection and use of biological materials in a specific research project, and an informed consent form for the collection, storage and use of biological materials in a biobank were separately developed. Two main rules govern the proposed model, as follows: the informed consent for the use of biological materials shall (i) give donors sufficient information to take informed decisions about possible present and future uses of their biological materials and (ii) consider the specific biological and genetic aims of the research being performed. Even if informed consent for the collection, storage and use of biological materials is a hard process, donors can actually be provided with sufficient information and choices to give a 'really informed consent'. The proposed model can be a useful guideline for the development of specific informed consent forms to be used by researchers. It can also be a good tool to let the donors know which information and guarantees they can request from researchers.

  11. Use Cases of airborne in-situ and remote sensing data sets for assessing proposed collection-level metadata models

    NASA Astrophysics Data System (ADS)

    Chen, G.; Silverman, M. L.; Northup, E. A.; Shook, M.; Beach, A. L., III; Early, A. B.; Walter, J.; Ramapriyan, H.; DiGangi, J. P.; Beyersdorf, A. J.

    2016-12-01

    NASA Earth Science Data System Working Groups (ESDSWG) established a new working group in March 2016 on Airborne Metadata, aiming to evaluate the current Unified Metadata Model (UMM) for collection level metadata, which is derived from the Common Metadata Repository (CMR). Several improvements on the current standards will be proposed from this working group in upcoming months. It is important to assess these changes using actual airborne data sets to validate the applicability to various airborne measurements. This presentation will examine particular examples of the proposed improvements using the data from atmospheric composition focused airborne field studies. Example collection level metadata files will be created for in-situ and remote sensing data collected from field studies, including NASA Earth Venture Suborbital Program's - DISCOVER-AQ and ATTREX - as well as SEAC4RS. Several data collections will be selected to represent different types of airborne measurements. For example, the volatile organic hydrocarbons data collection will be shown to illustrate that one in-situ instrument (i.e., proton-transfer reaction mass spectrometer) can provide a wide range of trace gas measurements. The aerosol number concentration collection will be used to demonstrate the relevant data within one collection were collected by multiple instruments and different configuration of the instruments. In addition, the Nitrogen dioxide column observations will be used to represent airborne remote sensing column measurement instruments. Finally, the high spectral resolution lidar measurement of aerosol extinction vertical profile data sets will be used as an example for airborne vertical profile measurements. These examples will provide a good indicator if the proposed metadata model improvements can accommodate the current and future airborne field study datasets.

  12. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  13. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    ERIC Educational Resources Information Center

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  14. EVALUATION OF SEVERAL PM 2.5 FORECAST MODELS USING DATA COLLECTED DURING THE ICARTT/NEAQS 2004 FIELD STUDY

    EPA Science Inventory

    Real-time forecasts of PM2.5 aerosol mass from seven air-quality forecast models (AQFMs) are statistically evaluated against observations collected in the northeastern U.S. and southeastern Canada from two surface networks and aircraft data during the summer of 2004 IC...

  15. EVALUATION OF SEVERAL PM 2.5 FORECAST MODELS USING DATA COLLECTED DURING THE ICARTT/NEAQS 2004 FIELD STUDY

    EPA Science Inventory

    Real-time forecasts of PM2.5 aerosol mass from seven air-quality forecast models (AQFMs) are statistically evaluated against observations collected in the northeastern U.S. and southeastern Canada from two surface networks and aircraft data during the summer of 2004 IC...

  16. Data collection for cooperative water resources modeling in the Lower Rio Grande Basin, Fort Quitman to the Gulf of Mexico.

    SciTech Connect

    Passell, Howard David; Pallachula, Kiran; Tidwell, Vincent Carroll; Villalobos, Joshua; Piccinni, Giovanni; Brainard, James Robert; Gerik, Thomas; Morrison, Wendy; Serrat-Capdevila, Aleix; Valdes, Juan; Sheng, Zhuping; Lovato, Rene; Guitron, Alberto; Ennis, Martha Lee; Aparicio, Javier; Newman, Gretchen Carr; Michelsen, Ari M.

    2004-10-01

    Water resource scarcity around the world is driving the need for the development of simulation models that can assist in water resources management. Transboundary water resources are receiving special attention because of the potential for conflict over scarce shared water resources. The Rio Grande/Rio Bravo along the U.S./Mexican border is an example of a scarce, transboundary water resource over which conflict has already begun. The data collection and modeling effort described in this report aims at developing methods for international collaboration, data collection, data integration and modeling for simulating geographically large and diverse international watersheds, with a special focus on the Rio Grande/Rio Bravo. This report describes the basin, and the data collected. This data collection effort was spatially aggregated across five reaches consisting of Fort Quitman to Presidio, the Rio Conchos, Presidio to Amistad Dam, Amistad Dam to Falcon Dam, and Falcon Dam to the Gulf of Mexico. This report represents a nine-month effort made in FY04, during which time the model was not completed.

  17. Modelling informally collected quantities of bulky waste and reusable items in Austria.

    PubMed

    Ramusch, R; Pertl, A; Scherhaufer, S; Schmied, E; Obersteiner, G

    2015-10-01

    Disparities in earnings between Western and Eastern European countries are the reason for a well-established informal sector actively involved in collection and transboundary shipment activities from Austria to Hungary. The preferred objects are reusable items and wastes within the categories bulky waste, WEEE and metals, intended to be sold on flea markets. Despite leading to a loss of recyclable resources for Austrian waste management, these informal activities may contribute to the extension of the lifetime of certain goods when they are reused in Hungary; nevertheless they are discussed rather controversially. The aim of this paper is to provide objective data on the quantities informally collected and transhipped. The unique activities of informal collectors required the development and implementation of a new set of methodologies. The concept of triangulation was used to verify results obtained by field visits, interviews and a traffic counting campaign. Both approaches lead to an estimation of approx. 100,000 t per year of reusable items informally collected in Austria. This means that in addition to the approx. 72 kg/cap/yr formally collected bulky waste, bulky waste wood, household scrap (excluding packaging) and WEEE, up to a further 12 kg/cap/yr might, in the case that informal collection is abandoned, end up as waste or in the second-hand sector.

  18. Collective migration models: Dynamic monitoring of leader cells in migratory/invasive disease processes

    NASA Astrophysics Data System (ADS)

    Dean, Zachary Steven

    Leader cells are a fundamental biological process that have only been investigated since the early 2000s. These cells have often been observed emerging at the edge of an artificial wound in 2D epithelial cell collective invasion, created with either a mechanical scrape from a pipette tip or from the removal of a plastic, physical blocker. During migration, the moving cells maintain cell-cell contacts, an important quality of collective migration; the leader cells originate from either the first or the second row, they increase in size compared to other cells, and they establish ruffled lamellipodia. Recent studies in 3D have also shown that cells emerging from an invading collective group that also exhibit leader-like properties. Exactly how leader cells influence and interact with follower cells as well as other cells types during collective migration, however, is another matter, and is a subject of intense investigation between many different labs and researchers. The majority of leader cell research to date has involved epithelial cells, but as collective migration is implicated in many different pathogenic diseases, such as cancer and wound healing, a better understanding of leader cells in many cell types and environments will allow significant improvement to therapies and treatments for a wide variety of disease processes. In fact, more recent studies on collective migration and invasion have broadened the field to include other cell types, including mesenchymal cancer cells and fibroblasts. However, the proper technology for picking out dynamic, single cells within a moving and changing cell population over time has severely limited previous investigation into leader cell formation and influence over other cells. In line with these previous studies, we not only bring new technology capable of dynamically monitoring leader cell formation, but we propose that leader cell behavior is more than just an epithelial process, and that it is a critical physiological

  19. A study of randomness, correlations, and collectivity in the nuclear shell model

    NASA Astrophysics Data System (ADS)

    Velázquez, V.; Hirsch, J. G.; Frank, A.; Zuker, A. P.

    2003-03-01

    A variable combination of realistic and random two-body interactions allows the study of collective properties [such as the energy spectra and B(E2) transition strengths] in 44Ti, 48Cr, and 24Mg. It is found that the average energies of the yrast band states maintain the ordering for any degree of randomness, but the B(E2) values lose their quadrupole collectivity when randomness dominates the Hamiltonian. The high probability of the yrast band to be ordered in the presence of pure random forces exhibits the strong correlations between the different members of the band.

  20. Collective excitation of Rydberg-atom ensembles beyond the superatom model.

    PubMed

    Gärttner, Martin; Whitlock, Shannon; Schönleber, David W; Evers, Jörg

    2014-12-05

    In an ensemble of laser-driven atoms involving strongly interacting Rydberg states, the steady-state excitation probability is usually substantially suppressed. In contrast, here we identify a regime in which the Rydberg excited fraction is enhanced by the interaction. This effect is associated with the buildup of many-body coherences induced by coherent multiphoton excitations between collective states. The excitation enhancement should be observable under currently existing experimental conditions and may serve as a direct probe for the presence of coherent multiphoton dynamics involving collective quantum states.

  1. Collective Enumeration

    PubMed Central

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2012-01-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a 2-alternative forced-choice task and when in disagreement, they negotiated joint decisions via verbal communication and received feedback about accuracy at the end of each trial. The results showed that two people could collectively count better than either one alone, but not as well as expected by previous models of collective sensory decision making in more basic perceptual domains (e.g., luminance contrast). Moreover, such collective enumeration benefited from prior, noninteractive practice showing that social learning of how to combine shared information about enumeration required substantial individual experience. Finally, the collective context had a positive but transient impact on an individual's enumeration sensitivity. This transient social influence may be explained as a motivational factor arising from the fact that members of a collective must take responsibility for their individual decisions and face the consequences of their judgments. PMID:22889187

  2. Collective enumeration.

    PubMed

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2013-04-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a 2-alternative forced-choice task and when in disagreement, they negotiated joint decisions via verbal communication and received feedback about accuracy at the end of each trial. The results showed that two people could collectively count better than either one alone, but not as well as expected by previous models of collective sensory decision making in more basic perceptual domains (e.g., luminance contrast). Moreover, such collective enumeration benefited from prior, noninteractive practice showing that social learning of how to combine shared information about enumeration required substantial individual experience. Finally, the collective context had a positive but transient impact on an individual's enumeration sensitivity. This transient social influence may be explained as a motivational factor arising from the fact that members of a collective must take responsibility for their individual decisions and face the consequences of their judgments.

  3. Online Data Collection to Evaluate a Theoretical Cognitive Model of Tinnitus.

    PubMed

    Handscomb, Lucy; Hall, Deborah A; Shorter, Gillian W; Hoare, Derek J

    2016-10-01

    The purpose of this article is to describe data collection considerations, methods, and response rates for a survey available both online and on paper. Methodological issues in the design of online data collection, and advantages and disadvantages of different data collection methods are discussed. A survey was compiled that included 9 full or partial clinical questionnaires designed to measure different components relevant to tinnitus distress. It was completed once by 342 members of the public with tinnitus. Respondents could choose whether to complete the survey online or on paper. Ninety-five percent of participants chose to complete the survey online. The advantages of an online self-administered questionnaire include low numbers of unanswered questions, convenience (particularly in a longer survey such as this), a fast return rate, and reduced expense. Age emerged as an important variable, with those opting to complete the paper-based version of the survey being older. Online data collection has several advantages to both participants and researchers. However, cross-sectional studies such as that presented here should also offer paper questionnaires to avoid excluding certain subgroups of the population. Ethics and reporting guidelines for Internet-delivered questionnaire studies are available. These can usefully inform study design and guide high-quality reporting.

  4. Combinatoric Models of Information Retrieval Ranking Methods and Performance Measures for Weakly-Ordered Document Collections

    ERIC Educational Resources Information Center

    Church, Lewis

    2010-01-01

    This dissertation answers three research questions: (1) What are the characteristics of a combinatoric measure, based on the Average Search Length (ASL), that performs the same as a probabilistic version of the ASL?; (2) Does the combinatoric ASL measure produce the same performance result as the one that is obtained by ranking a collection of…

  5. Sustainment of Individual and Collective Future Combat Skills: Modeling and Research Methods

    DTIC Science & Technology

    2010-01-01

    U.S. Army Research Institute for the Behavioral and Social Sciences Research Report 1918 Sustainment of Individual and Collective... Army Research Institute Steven Jackson, & Jeff Grover Dynamics Research Corporation January 2010 Approved for public release...distribution is unlimited. U.S. Army Research Institute for the Behavioral and Social Sciences A Directorate of the Department of the Army

  6. Efficiently Maintaining a National Resource of Historical and Contemporary Biological Collections: The NHLBI Biorepository Model

    PubMed Central

    Wagner, Elizabeth L.; Marchesani, Leah; Meagher, Kevin; Giffen, Carol

    2017-01-01

    Introduction: Reducing costs by improving storage efficiency has been a focus of the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimen Repository (Biorepository) and Biologic Specimen and Data Repositories Information Coordinating Center (BioLINCC) programs for several years. Methods: Study specimen profiles were compiled using the BioLINCC collection catalog. Cost assessments and calculations on the return on investments to consolidate or reduce a collection, were developed and implemented. Results: Over the course of 8 months, the NHLBI Biorepository evaluated 35 collections that consisted of 1.8 million biospecimens. A total of 23 collections were selected for consolidation, with a total of 1.2 million specimens located in 21,355 storage boxes. The consolidation resulted in a savings of 4055 boxes of various sizes and 10.2 mechanical freezers (∼275 cubic feet) worth of space. Conclusion: As storage costs in a biorepository increase over time, the development and use of information technology tools to assess the potential advantage and feasiblity of vial consolidation can reduce maintenance expenses. PMID:28186851

  7. Efficiently Maintaining a National Resource of Historical and Contemporary Biological Collections: The NHLBI Biorepository Model.

    PubMed

    Shea, Katheryn E; Wagner, Elizabeth L; Marchesani, Leah; Meagher, Kevin; Giffen, Carol

    2017-02-01

    Reducing costs by improving storage efficiency has been a focus of the National Heart, Lung, and Blood Institute (NHLBI) Biologic Specimen Repository (Biorepository) and Biologic Specimen and Data Repositories Information Coordinating Center (BioLINCC) programs for several years. Study specimen profiles were compiled using the BioLINCC collection catalog. Cost assessments and calculations on the return on investments to consolidate or reduce a collection, were developed and implemented. Over the course of 8 months, the NHLBI Biorepository evaluated 35 collections that consisted of 1.8 million biospecimens. A total of 23 collections were selected for consolidation, with a total of 1.2 million specimens located in 21,355 storage boxes. The consolidation resulted in a savings of 4055 boxes of various sizes and 10.2 mechanical freezers (∼275 cubic feet) worth of space. As storage costs in a biorepository increase over time, the development and use of information technology tools to assess the potential advantage and feasiblity of vial consolidation can reduce maintenance expenses.

  8. Development and Implementation of a Collective Gaining Model in Teacher Negotiations.

    ERIC Educational Resources Information Center

    Brynildson, Gerald

    The traditional approach to collective bargaining as a win/loss situation in the educational field adversely affects staff members' confidence, security, and morale. Typically, those involved in this form of negotiation see only two ways to negotiate: soft and hard. Neither approach proves satisfactory because the soft negotiator often ends up…

  9. Development and Implementation of a Collective Gaining Model in Teacher Negotiations.

    ERIC Educational Resources Information Center

    Brynildson, Gerald

    The traditional approach to collective bargaining as a win/loss situation in the educational field adversely affects staff members' confidence, security, and morale. Typically, those involved in this form of negotiation see only two ways to negotiate: soft and hard. Neither approach proves satisfactory because the soft negotiator often ends up…

  10. Alignment vs noise in self-propelled particles: minimal models for collective motion and their continuous descriptions

    NASA Astrophysics Data System (ADS)

    Chate, Hugues

    2012-02-01

    Two important 1995 papers have marked the birth of collective motion studies in physics: Vicsek et al introduced what could now be described as the ``Ising model'' of this new subfield. This prompted Toner and Tu to propose a continuum theory of flocks which they showed to give rise to long-range orientational order even in two space dimensions. In this setting, the complexity of most natural instances of collective motion is reduced to the competition between local alignment and noise in interacting self-propelled particles. As I will show, this nevertheless gives rise to important and new physics. In this talk, I will give an update of our current knowledge about the Vicsek model, the Toner-Tu theory, and their relationship. I will also present the emerging picture of universality classes brought about by recent progress in the study of Vicsek-like models together with their continuous descriptions.

  11. Building a bridge with the customer to facilitate collecting and validating information in modeling sessions

    SciTech Connect

    Eaton, S.M.

    1994-07-21

    To build a bridge with customers, we balance the linear modeling process with the dynamics of the individuals we serve, who may feel unfamiliar, even confused, with that process. While it is recognized that human factors engineers improve the physical aspect of the workplace, they also work to integrate customers` cognitive styles, feelings, and concerns into the workplace tools. We take customers` feelings into consideration and integrate their expressed needs and concerns into the modeling sessions. After establishing an agreeable, professional relationship, we use a simple, portable CASE tool to reveal the effectiveness of NIAM. This tool, Modeler`s Assistant, is friendly enough to use directly with people who know nothing of NIAM, yet it captures all the information necessary to create complete models. The Modeler`s Assistant succeeds because it organizes the detailed information in an enhanced text format for customer validation. Customer cooperation results from our modeling sessions as they grow comfortable and become enthused about providing information.

  12. Conducting requirements analyses for research using routinely collected health data: a model driven approach.

    PubMed

    de Lusignan, Simon; Cashman, Josephine; Poh, Norman; Michalakidis, Georgios; Mason, Aaron; Desombre, Terry; Krause, Paul

    2012-01-01

    Medical research increasingly requires the linkage of data from different sources. Conducting a requirements analysis for a new application is an established part of software engineering, but rarely reported in the biomedical literature; and no generic approaches have been published as to how to link heterogeneous health data. Literature review, followed by a consensus process to define how requirements for research, using, multiple data sources might be modeled. We have developed a requirements analysis: i-ScheDULEs - The first components of the modeling process are indexing and create a rich picture of the research study. Secondly, we developed a series of reference models of progressive complexity: Data flow diagrams (DFD) to define data requirements; unified modeling language (UML) use case diagrams to capture study specific and governance requirements; and finally, business process models, using business process modeling notation (BPMN). These requirements and their associated models should become part of research study protocols.

  13. Mechanism to support generic collective communication across a variety of programming models

    DOEpatents

    Almasi, Gheorghe; Dozsa, Gabor; Kumar, Sameer

    2011-07-19

    A system and method for supporting collective communications on a plurality of processors that use different parallel programming paradigms, in one aspect, may comprise a schedule defining one or more tasks in a collective operation, an executor that executes the task, a multisend module to perform one or more data transfer functions associated with the tasks, and a connection manager that controls one or more connections and identifies an available connection. The multisend module uses the available connection in performing the one or more data transfer functions. A plurality of processors that use different parallel programming paradigms can use a common implementation of the schedule module, the executor module, the connection manager and the multisend module via a language adaptor specific to a parallel programming paradigm implemented on a processor.

  14. 78 FR 14838 - Proposed Information Collection Request of the Resource Justification Model (RJM); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ...The Department of Labor, as part of its continuing effort to reduce paperwork and respondent burden, conducts a preclearance consultation program to provide the general public and Federal agencies with an opportunity to comment on proposed and/or continuing collections of information in accordance with the Paperwork Reduction Act of 1995 (PRA95) [44 U.S.C. 3506(c)(2)(A)]. This program helps to......

  15. Collection efficiency model based on boundary-layer characteristics for cyclones

    SciTech Connect

    Kim, W.S.; Lee, J.W.

    1997-10-01

    In cyclones, the boundary layer formed on the collecting-wall surface acts as a barrier for particle migration toward the wall due to a decreased centrifugal force on particles inside the boundary layer. A new theory for high-efficiency cyclones based on the boundary-layer characteristics is presented. The cyclone was divided into two regions: the turbulent-core region where the centrifugal force is large, and the near-wall region where the centrifugal force is small. Particle trajectories in the turbulent-core region are calculated from the mean fluid motion based on the quasi-steady drag assumption, and the collection probability of particles in the near-wall region is calculated by the deposition velocity that results from both turbulent diffusion and centrifugal force. The deposition velocity by centrifugal force was assumed equal to the equilibrium migration velocity at a certain point inside the boundary layer, and the distance to that point from the wall is assumed to be linearly proportional to the dimensionless-particle relaxation time. When the proportional constant was determined by fitting the theoretical results to experimental data, the theory showed an excellent enhancement in predicting the variation of collection efficiency with the inlet flow velocity and particle size.

  16. Mass collecting and the diet breadth model: A Great Basin example

    USGS Publications Warehouse

    Madsen, D.B.; Schmitt, D.N.

    1998-01-01

    The energetic return rates of many small animal and plant resources are often density dependent. When these resources are collected in mass, change in abundance can dramatically affect diet rank, and challenges the assumption that return rates are generally correlated with body size. When mass collecting is employed, as a result of either natural events (e.g. windrows) or technological developments (e.g. nets), population density may largely determine the overall return rate for a resource. Since a single food or resource type can be many prey types, an increase in the abundance of a food resource can change its diet rank. We examined this relationship at Lakeside Cave in northwestern Utah, and discovered that when the abundance of grasshoppers is high, and mass collecting is productive, the hunting of bighorn sheep and other large animal resources may have been abandoned, contradicting commonly held assumptions about prey size. In archaeological situations it may be necessary to determine what foraging technique was used before assuming that the presence of small animals and fish in the diet is a result of reduced foraging efficiency. ?? 1998 Academic Press Limited.

  17. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states.

    PubMed

    García-Morales, Vladimir; Manzanares, José A; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  18. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  19. A Model Using Local Weather Data to Determine the Effective Sampling Volume for PCB Congeners Collected on Passive Air Samplers

    PubMed Central

    2016-01-01

    We have developed and evaluated a mathematical model to determine the effective sampling volumes (Veff) of PCBs and similar compounds captured using polyurethane foam passive air samplers (PUF–PAS). We account for the variability in wind speed, air temperature, and equilibrium partitioning over the course of the deployment of the samplers. The model, provided as an annotated Matlab script, predicts the Veff as a function of physical-chemical properties of each compound and meteorology from the closest Integrated Surface Database (ISD) data set obtained through NOAA’s National Centers for Environmental Information (NCEI). The model was developed to be user-friendly, only requiring basic Matlab knowledge. To illustrate the effectiveness of the model, we evaluated three independent data sets of airborne PCBs simultaneously collected using passive and active samplers: at sites in Chicago, Lancaster, UK, and Toronto, Canada. The model provides Veff values comparable to those using depuration compounds and calibration against active samplers, yielding an average congener specific concentration method ratio (active/passive) of 1.1 ± 1.2. We applied the model to PUF–PAS samples collected in Chicago and show that previous methods can underestimate concentrations of PCBs by up to 40%, especially for long deployments, deployments conducted under warming conditions, and compounds with log Koa values less than 8. PMID:26963482

  20. A Model Using Local Weather Data to Determine the Effective Sampling Volume for PCB Congeners Collected on Passive Air Samplers.

    PubMed

    Herkert, Nicholas J; Martinez, Andres; Hornbuckle, Keri C

    2016-07-05

    We have developed and evaluated a mathematical model to determine the effective sampling volumes (Veff) of PCBs and similar compounds captured using polyurethane foam passive air samplers (PUF-PAS). We account for the variability in wind speed, air temperature, and equilibrium partitioning over the course of the deployment of the samplers. The model, provided as an annotated Matlab script, predicts the Veff as a function of physical-chemical properties of each compound and meteorology from the closest Integrated Surface Database (ISD) data set obtained through NOAA's National Centers for Environmental Information (NCEI). The model was developed to be user-friendly, only requiring basic Matlab knowledge. To illustrate the effectiveness of the model, we evaluated three independent data sets of airborne PCBs simultaneously collected using passive and active samplers: at sites in Chicago, Lancaster, UK, and Toronto, Canada. The model provides Veff values comparable to those using depuration compounds and calibration against active samplers, yielding an average congener specific concentration method ratio (active/passive) of 1.1 ± 1.2. We applied the model to PUF-PAS samples collected in Chicago and show that previous methods can underestimate concentrations of PCBs by up to 40%, especially for long deployments, deployments conducted under warming conditions, and compounds with log Koa values less than 8.

  1. Validation and refinement of an Australian customised birthweight model using routinely collected data.

    PubMed

    Gibbons, Kristen; Chang, Allan; Flenady, Vicki; Mahomed, Kassam; Gardener, Glenn; Gray, Peter H

    2010-12-01

    Published customised birthweight models designed to account for individual constitutional variation have not been validated in an independent population to verify the results. To validate our previously reported customised birthweight model with additional data from the same hospital and to revise this model using a larger, more refined dataset. With the accumulation of further data, a set of coefficients was derived based on the 12-year dataset. Using shrinkage statistics, records between July 2005 and December 2008 were used to validate the model. Stepwise multiple regression using a more refined dataset of births between January 1997 and December 2008 was used to derive updated coefficients. Performance of the model was assessed using individualised birthweight ratios and the absolute difference between customised and actual birthweight. Previous coefficients were validated, with shrinkage of less than 1%, indicating that the model is stable over time. An updated set of coefficients based on a dataset of 61,630 births, including refined ethnicity categories and the addition of a smoking term, is presented, which resulted in improved model statistics (primarily an improved multiple correlation coefficient of 0.51). The customised birthweight model appears to be stable over time in the same hospital. Initial comparisons to literature indicate that models from different geographic locations may lead to similar coefficients; but, there remains a need to formally assess this aspect of birthweight models. The updated coefficients differ slightly from those previously published and are considered superior because of refinement in the dataset. © 2010 The Authors. Australian and New Zealand Journal of Obstetrics and Gynaecology © 2010 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  2. Verification and adjustment of regional regression models for urban storm-runoff quality using data collected in Little Rock, Arkansas

    USGS Publications Warehouse

    Barks, C.S.

    1995-01-01

    Storm-runoff water-quality data were used to verify and, when appropriate, adjust regional regression models previously developed to estimate urban storm- runoff loads and mean concentrations in Little Rock, Arkansas. Data collected at 5 representative sites during 22 storms from June 1992 through January 1994 compose the Little Rock data base. Comparison of observed values (0) of storm-runoff loads and mean concentrations to the predicted values (Pu) from the regional regression models for nine constituents (chemical oxygen demand, suspended solids, total nitrogen, total ammonia plus organic nitrogen as nitrogen, total phosphorus, dissolved phosphorus, total recoverable copper, total recoverable lead, and total recoverable zinc) shows large prediction errors ranging from 63 to several thousand percent. Prediction errors for six of the regional regression models are less than 100 percent, and can be considered reasonable for water-quality models. Differences between 0 and Pu are due to variability in the Little Rock data base and error in the regional models. Where applicable, a model adjustment procedure (termed MAP-R-P) based upon regression with 0 against Pu was applied to improve predictive accuracy. For 11 of the 18 regional water-quality models, 0 and Pu are significantly correlated, that is much of the variation in 0 is explained by the regional models. Five of these 11 regional models consistently overestimate O; therefore, MAP-R-P can be used to provide a better estimate. For the remaining seven regional models, 0 and Pu are not significanfly correlated, thus neither the unadjusted regional models nor the MAP-R-P is appropriate. A simple estimator, such as the mean of the observed values may be used if the regression models are not appropriate. Standard error of estimate of the adjusted models ranges from 48 to 130 percent. Calibration results may be biased due to the limited data set sizes in the Little Rock data base. The relatively large values of

  3. Invasion process of induced deep nodular endometriosis in an experimental baboon model: similarities with collective cell migration?

    PubMed

    Donnez, Olivier; Orellana, Renan; Van Kerk, Olivier; Dehoux, Jean-Paul; Donnez, Jacques; Dolmans, Marie-Madeleine

    2015-08-01

    To determine the implications of collective cell migration in the invasion phenomenon observed in deep endometriotic lesions induced in a baboon model. Study of morphology and collective cell migration markers in invasive and noninvasive deep endometriotic lesions induced in a baboon model. Invasive lesions were defined as the presence of endometrial glands and stroma in surrounding organs, and a distinction was made between the center of the lesion (glands present in the main lesion) and the invasion front (glands present in surrounding organs). Academic research unit. Ten female baboons (Papio anubis). Recovery of induced deep nodular endometriotic nodules. Evaluation of the morphology of glands by analysis of noninvasive and invasive lesions (center of the lesion and invasion front); staining with specific antibodies (Ki67, E-cadherin, β-catenin) for immunohistochemical study of mitotic activity and cell-cell junctions. Glands from invasive lesions, particularly from the invasion front, showed a significantly lower thickness coefficient, higher mitotic activity, and lower expression of E-cadherin and β-catenin than glands from noninvasive lesions and the center of invasive lesions. We report altered morphology, increased mitotic activity, and fewer adhesion molecules in invasive glands present in induced nodular endometriosis, particularly along the invasion front, suggesting that collective cell migration is involved in the invasion process of deep endometriotic lesions induced in a baboon model. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Aquaporin-2 abundance in the renal collecting duct: new insights from cultured cell models.

    PubMed

    Hasler, Udo; Leroy, Valérie; Martin, Pierre-Yves; Féraille, Eric

    2009-07-01

    The renal cortico-papillary osmotic gradient is generated by sodium reabsorption in the thick ascending limb. The antidiuretic hormone arginine vasopressin (AVP) increases collecting duct water permeability by enhancing aquaporin-2 (AQP2) water channel insertion in the apical membrane of principal cells, allowing water to passively flow along the osmotic gradient from the tubule lumen to the interstitium. In addition to short-term AQP2 redistribution between intracellular compartments and the cell surface, AQP2 whole cell abundance is tightly regulated. AVP is a major transcriptional activator of the AQP2 gene, and stimulation of insulin- and calcium-sensing receptors respectively potentiate and reduce its action. Extracellular tonicity is another key factor that determines the levels of AQP2 abundance. Its effect is dependent on activation of the tonicity-responsive enhancer binding protein that reinforces AVP-induced AQP2 transcriptional activation. Conversely, activation of the NF-kappaB transcriptional factor by proinflammatory factors reduces AQP2 gene transcription. Aldosterone additionally regulates AQP2 whole cell abundance by simultaneously reducing AQP2 gene transcription and stimulating AQP2 mRNA translation. These examples illustrate how cross talk between various stimuli regulates AQP2 abundance in collecting duct principal cells and consequently contributes to maintenance of body water homeostasis.

  5. Performance evaluation model of a pilot food waste collection system in Suzhou City, China.

    PubMed

    Wen, Zongguo; Wang, Yuanjia; De Clercq, Djavan

    2015-05-01

    This paper analyses the food waste collection and transportation (C&T) system in a pilot project in Suzhou by using a novel performance evaluation method. The method employed to conduct this analysis involves a unified performance evaluation index containing qualitative and quantitative indicators applied to data from Suzhou City. Two major inefficiencies were identified: a) low system efficiency due to insufficient processing capacity of commercial food waste facilities; and b) low waste resource utilization due to low efficiency of manual sorting. The performance evaluation indicated that the pilot project collection system's strong points included strong economics, low environmental impact and low social impact. This study also shows that Suzhou's integrated system has developed a comprehensive body of laws and clarified regulatory responsibilities for each of the various government departments to solve the problems of commercial food waste management. Based on Suzhou's experience, perspectives and lessons can be drawn for other cities and areas where food waste management systems are in the planning stage, or are encountering operational problems.

  6. An approach to collective behavior in cell cultures: modeling and analysis of ECIS data

    NASA Astrophysics Data System (ADS)

    Rabson, David; Lafalce, Evan; Lovelady, Douglas; Lo, Chun-Min

    2011-03-01

    We review recent results in which statistical measures of noise in ECIS data distinguished healthy cell cultures from cancerous or poisoned ones: after subtracting the ``signal,'' the 1 /fα noise in the healthy cultures shows longer short-time and long-time correlations. We discuss application of an artificial neural network to detect the cancer signal, and we demonstrate a computational model of cell-cell communication that produces signals similar to those of the experimental data. The simulation is based on the q -state Potts model with inspiration from the Bak-Tang-Wiesenfeld sand-pile model. We view the level of organization larger than cells but smaller than organs or tissues as a kind of ``mesoscopic'' biological physics, in which few-body interactions dominate, and the experiments and computational model as ways of exploring this regime.

  7. Modelling equilibrium shoreline response: application across multiple sites and minimum data collection requirements

    NASA Astrophysics Data System (ADS)

    Splinter, K.; Davidson, M. A.; Turner, I. L.

    2012-12-01

    The ability to predict shoreline variability and trends for a range of potential future climate scenarios is of increasing interest to coastal scientists. Here we introduce a new shoreline equilibrium model driven by cross-shore processes via changes in non-dimensional fall velocity (i.e., sediment characteristics and wave steepness) and offshore wave power (Davidson et al., submitted). The equilibrium shoreline position is modeled based on a weighted time-average of past non-dimensional fall velocity following the work of Wright et al. (1985). When the prevailing wave conditions are steeper than the time varying equilibrium, the shoreline erodes as sand is expected to move offshore and form a breaker bar. Conversely, when waves are flatter, sand moves onshore and the shoreline builds seawards. The model is applied at a number of sites within Australia and the US to quantify model skill, and to examine free parameter sensitivity and generic transferability between differing sites. Further testing using real-world and synthetic data sets is used to determine the minimum data requirements for calibration of the model, providing useful guidance to future coastline monitoring program requirements. Model hindcasts at six locations within Australia indicate this simple cross-shore equilibrium shoreline model is capable of reproducing multi-year shoreline variability with significant skill. Shoreline variance explained by the model (currently driven only by cross-shore processes) is between 40% (downdrift of an Artificial surfing reef on an exposed open coast) to 66% percent (on a central location of a storm-driven embayed beach, Fig. 1).Hindcast results for the Narrabeen embayment at alongshore locations y=2200m (a), 2600m (b) and 3200m (c). R 2 ranged from 0.57 (y=2600m) to 0.66 (y=3200m). The thickness of the data curve (grey) indicates the potential measurement error.

  8. Statistical mechanics model for the dynamics of collective epigenetic histone modification.

    PubMed

    Zhang, Hang; Tian, Xiao-Jun; Mukhopadhyay, Abhishek; Kim, K S; Xing, Jianhua

    2014-02-14

    Epigenetic histone modifications play an important role in the maintenance of different cell phenotypes. The exact molecular mechanism for inheritance of the modification patterns over cell generations remains elusive. We construct a Potts-type model based on experimentally observed nearest-neighbor enzyme lateral interactions and nucleosome covalent modification state biased enzyme recruitment. The model can lead to effective nonlocal interactions among nucleosomes suggested in previous theoretical studies, and epigenetic memory is robustly inheritable against stochastic cellular processes.

  9. Statistical Mechanics Model for the Dynamics of Collective Epigenetic Histone Modification

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Tian, Xiao-Jun; Mukhopadhyay, Abhishek; Kim, K. S.; Xing, Jianhua

    2014-02-01

    Epigenetic histone modifications play an important role in the maintenance of different cell phenotypes. The exact molecular mechanism for inheritance of the modification patterns over cell generations remains elusive. We construct a Potts-type model based on experimentally observed nearest-neighbor enzyme lateral interactions and nucleosome covalent modification state biased enzyme recruitment. The model can lead to effective nonlocal interactions among nucleosomes suggested in previous theoretical studies, and epigenetic memory is robustly inheritable against stochastic cellular processes.

  10. Collection of Calibration and Validation Data for an Airport Landside Dynamic Simulation Model.

    DTIC Science & Technology

    1980-04-01

    34 The Trans- portation Systems Center has developed a computer model which simulates the movements of passengers in an airport terminal and vehicles on...conditions to efforts leading to the development of detailed mathematical models simulating the entire landside passenger and vehicular system...Denver-Stapleton International Airport, during the period December 12-15, 1975. -1- cut! AWAG9CLAI XII SAGWA CLIR REGIONALL ICKETING ENTANC SEURT CTAS OR

  11. A hemodynamics model to study the collective behavior of the ventricular-arterial system

    NASA Astrophysics Data System (ADS)

    Lin Wang, Yuh-Ying; Wang, Wei-Kung

    2013-01-01

    Applying principles from complex systems to study the efficacy of integrative therapies has become a new interest in medical research. We aimed to construct a concise model for the ventricular-arterial (VA) system and to provide a systematic method for exploring its overall behavior. The transportation of blood from the heart to the peripheral arterioles via hydraulic pressure forces was described by a multi-rank model. Parts of the VA system that have strong mutual interactions were combined into a single sub system. Sub systems of four different ranks were characterized. We then applied the multi-rank model to analyze the aortic pressure wave generated by the periodic ventricular blood ejection, the renal pressure in response to the input from the VA system, and the blood flowing from the renal artery to its arterioles. Maintaining the pressure distribution along the main arteries and in all of the organs with the lowest possible ventricular input turned out to be the first principle for the operation of an efficient VA system. By this principle, we pointed out the benefit of some arterial structures in mammals, derived specific regulation rules and deduced some fundamental concepts for healing. The justification of the biomechanics in our model that differed greatly from those in the prevailing models was given. We concluded that the oscillatory motion and the pressure pulse of the arterial system can be analyzed as steady states with resonance behaviors and suggested utilizing this model to construct integrative therapies for diseases correlated with abnormality in blood circulation.

  12. The Transportation Leapfrog: Using Smart Phones to Collect Driving Data and Model Fuel Economy in India

    SciTech Connect

    Gopal, Anand; Schewel, Laura; Saxena, Samveg; Phadke, Amol

    2013-05-01

    Car ownership in India is expected to skyrocket in the coming decades, strongly driven by rising incomes. This phenomenon provides unprecedented opportunities for automakers and equally unprecedented social and environmental challenges. Policymakers, urban planners and civil society see this car boom leading to an explosion in problems related to congestion, infrastructure, air pollution, safety, higher oil imports and climate change. For all these stakeholders to take effective action, good data on how people use their cars, their demand for mobility and their behavior in mobility is essential. Unfortunately, there is very little data on the Indian transport sector as a whole and virtually none on real-world vehicle performance and use. The rapid development of high quality mobile telecommunications infrastructure provides India with the opportunity to leapfrog the West in cheaply collecting vast amounts of useful data from transportation. In this paper, we describe a pilot project in which we use commercial smart phone apps to collect per second car driving data from the city of Pune, instantly upload it through 3G and prepare it for analysis using advanced noise filtering algorithms for less than $1 per day per car. We then use our data in an Autonomie simulation to show that India’s currently planned fuel economy test procedures will result in over-estimates of fuel economy of approximately 35% for a typical Indian car when it is operated in real world conditions. Supporting better driving cycle development is just one of many applications for smart phone derived data in Indian transportation.

  13. Micro-Tom Tomato as an Alternative Plant Model System: Mutant Collection and Efficient Transformation.

    PubMed

    Shikata, Masahito; Ezura, Hiroshi

    2016-01-01

    Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.

  14. Harmonic oscillator potential with a quartic anharmonicity in the prolate γ-rigid collective geometrical model

    NASA Astrophysics Data System (ADS)

    Budaca, Radu

    2015-12-01

    An analytical expression for the energy spectrum of the ground and β bands was obtained in the axially symmetric γ-rigid regime of the Bohr-Mottelson Hamiltonian with a general quartic anharmonic oscillator potential in the β shape variable. As the Schrodinger equation for such a potential is not exactly solvable, the energy formula is derived on the basis of the JWKB approximation. Due to the scaling property of the quartic oscillator problem, the resulting energy depends on a single parameter up to an overall multiplicative constant. The upper limit of the domain of values for the free parameter is established by comparing the ground state eigenvalues with the corresponding numerically calculated results. Studying the behavior of the potential and of the whole energy spectrum as function of the free parameter, one establishes the present model's place between other γ-rigid models. The agreement with experiment is achieved through model fits for few near-vibrational nuclei.

  15. Collective learning modeling based on the kinetic theory of active particles.

    PubMed

    Burini, D; De Lillo, S; Gibelli, L

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mechanism underlying the diverse collective behavior in the swarm oscillator model

    NASA Astrophysics Data System (ADS)

    Iwasa, Masatomo; Tanaka, Dan

    2017-09-01

    The swarm oscillator model describes the long-time behavior of interacting chemotactic particles, and it shows numerous types of macroscopic patterns. However, the reason why so many kinds of patterns emerge is not clear. In this study, we elucidate the mechanism underlying the diversity of the pattens by analyzing the model for two particles. Focusing on the behavior when the two particles are spatially close, we find that the dynamics is classified into eight types, which explain most of the observed 13 types of patterns.

  17. Modeling municipal solid waste collection: A generalized vehicle routing model with multiple transfer stations, gather sites and inhomogeneous vehicles in time windows.

    PubMed

    Son, Le Hoang; Louati, Amal

    2016-06-01

    Municipal Solid Waste (MSW) collection is a necessary process in any municipality resulting in the quality-of-life, economic aspects and urban structuralization. The intrinsic nature of MSW collection relates to the development of effective vehicle routing models that optimize the total traveling distances of vehicles, the environmental emission and the investment costs. In this article, we propose a generalized vehicle routing model including multiple transfer stations, gather sites and inhomogeneous vehicles in time windows for MSW collection. It takes into account traveling in one-way routes, the number of vehicles per m(2) and waiting time at traffic stops for reduction of operational time. The proposed model could be used for scenarios having similar node structures and vehicles' characteristics. A case study at Danang city, Vietnam is given to illustrate the applicability of this model. The experimental results have clearly shown that the new model reduces both total traveling distances and operational hours of vehicles in comparison with those of practical scenarios. Optimal routes of vehicles on streets and markets at Danang are given. Those results are significant to practitioners and local policy makers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Moretti, Simone; Martinez, Eduardo; Serpico, Claudio; Durin, Gianfranco

    2017-03-01

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work.

  19. Double Stimulation in the Waiting Experiment with Collectives: Testing a Vygotskian Model of the Emergence of Volitional Action.

    PubMed

    Sannino, Annalisa

    2016-03-01

    This study explores what human conduct looks like when research embraces uncertainty and distance itself from the dominant methodological demands of control and predictability. The context is the waiting experiment originally designed in Kurt Lewin's research group, discussed by Vygotsky as an instance among a range of experiments related to his notion of double stimulation. Little attention has been paid to this experiment, despite its great heuristic potential for charting the terrain of uncertainty and agency in experimental settings. Behind the notion of double stimulation lays Vygotsky's distinctive view of human beings' ability to intentionally shape their actions. Accordingly, human beings in situations of uncertainty and cognitive incongruity can rely on artifacts which serve the function of auxiliary motives and which help them undertake volitional actions. A double stimulation model depicting how such actions emerge is tested in a waiting experiment conducted with collectives, in contrast with a previous waiting experiment conducted with individuals. The model, validated in the waiting experiment with individual participants, applies only to a limited extent to the collectives. The analysis shows the extent to which double stimulation takes place in the waiting experiment with collectives, the differences between the two experiments, and what implications can be drawn for an expanded view on experiments.

  20. Data Collection and Analysis for a Cross-Cultural Competence Model

    DTIC Science & Technology

    2013-01-01

    intercultural experiences. Each general competency domain has three associated competencies : Diplomatic Stance: Three core competencies relate to the...establish strategic intercultural relationships. Second, is the ability to think about oneself within a cultural context. This general competency ...within a model of 3C. Intercultural Interaction: Three core competencies relate to the individual’s ability to be effective within intercultural

  1. Utility of Modeling and Simulation in the Department of Defense: Initial Data Collection.

    DTIC Science & Technology

    1996-05-01

    missiles. Only 8 live warheads have been used in the approximately 175 launches to date. The end-game effectiveness model, SHAZAM , has been... SHAZAM precludes this environmental problem. • In actuality, the use of simulation permits the assessment of the entire end game, including the fly

  2. Hydrothermal germination models: Improving experimental efficiency by limiting data collection to the relevant hydrothermal range

    USDA-ARS?s Scientific Manuscript database

    Hydrothermal models used to predict germination response in the field are usually parameterized with data from laboratory experiments that examine the full range of germination response to temperature and water potential. Inclusion of low water potential and high and low-temperature treatments, how...

  3. Making the Transition from Print to Electronic Serial Collections: A New Model for Academic Chemistry Libraries?

    ERIC Educational Resources Information Center

    Chrzastowski, Tina E.

    2003-01-01

    Proposes a new model for an academic chemistry library based on experiences at the University of Illinois at Urbana-Champaign in which primary access to journals is electronic and print journals are archived unbound in a remote storage facility following local access for one year. Discusses results of a feasibility study. (Author/LRW)

  4. Promoting a Collective Conscience: Designing a Resilient Staff-Student Partnership Model for Educational Development

    ERIC Educational Resources Information Center

    Little, Sabine

    2016-01-01

    This paper discusses experiences of a student-ambassador network within one UK-based Centre for Excellence in Teaching and Learning, problematising key issues in relation to transience in staff-student partnerships in high education, and highlighting the importance of the educational developer in facilitating institution-wide partnership models.…

  5. Promoting a Collective Conscience: Designing a Resilient Staff-Student Partnership Model for Educational Development

    ERIC Educational Resources Information Center

    Little, Sabine

    2016-01-01

    This paper discusses experiences of a student-ambassador network within one UK-based Centre for Excellence in Teaching and Learning, problematising key issues in relation to transience in staff-student partnerships in high education, and highlighting the importance of the educational developer in facilitating institution-wide partnership models.…

  6. A Model of Epithelial Invagination Driven by Collective Mechanics of Identical Cells

    PubMed Central

    Hočevar Brezavšček, Ana; Rauzi, Matteo; Leptin, Maria; Ziherl, Primož

    2012-01-01

    We propose a 2D mechanical model of a tubular epithelium resembling the early Drosophila embryo. The model consists of a single layer of identical cells with energy associated with the tension of cell cortex. Depending on the relative tension of the apical, basal, and lateral sides of the cells, tissue thickness, and the degree of external constraint, the minimal-energy states of the epithelial cross section include circular shapes as well as a range of inward-buckled shapes. Some of the solutions are characterized by a single deep groove, which shows that an epithelium consisting of cells of identical mechanical properties can infold. This is consistent with what is seen in embryos of certain Drosophila mutants. To ensure that the infolding occurs at a predetermined section of the epithelium, we extend the model by increasing the cross-sectional area of a subset of cells, which is consistent with observations in wild-type embryos. This variation of cell parameters across the epithelium is sufficient to make it fold at a specific site. The model explores previously untested minimal conditions for tissue invagination and is devoid of specificity needed to accurately describe an in vivo situation in Drosophila. PMID:23009857

  7. Refinement of a model of repeated cerebrospinal fluid collection in conscious rats.

    PubMed

    Amen, Eva Maria; Brecheisen, Muriel; Sach-Peltason, Lisa; Bergadano, Alessandra

    2017-02-01

    The cannulation of the cisterna magna in rats for in vivo sampling of cerebrospinal fluid serves as a valuable model for studying the delivery of new drugs into the central nervous system or disease models. It offers the advantages of repeated sampling without anesthesia-induced bias and using animals as their own controls. An established model was retrospectively reviewed for the outcomes and it was hypothesized that by refining the method, i.e. by (1) implementing pathophysiological-based anesthesia and analgesia, (2) using state-of-the-art peri-operative monitoring and supportive care, (3) increasing stability of the cement-cannula assembly, and (4) selecting a more adaptable animal strain, the outcome in using the model - quantified by peri-operative mortality, survival time and stability of the implant - could be improved and could enhance animal welfare. After refinement of the technique, peri-operative mortality decreased significantly (7 animals out of 73 compared with 4 out of 322; P = 0.001), survival time increased significantly (36 ± 14 days compared with 28 ± 18 days; P < 0.001), as well as the stability of the cement-cannula assembly (47 ± 8 days of adhesion compared with 33 ± 15 days and 34 ± 13 days using two other cement types; P < 0.001). Overall, the 3R concept of Russell and Burch was successfully addressed and animal welfare was improved by (1) the reduction in the total number of animals needed as a result of lower mortality or fewer euthanizations due to technical failure, and frequent use of individual rats over a time frame; and (2) improving the scientific quality of the model.

  8. Human Development IX: a model of the wholeness of man, his consciousness, and collective consciousness.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Rald, Erik; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    In this paper we look at the rational and the emotional interpretation of reality in the human brain and being, and discuss the representation of the brain-mind (ego), the body-mind (Id), and the outer world in the human wholeness (the I or "soul"). Based on this we discuss a number of factors including the coherence between perception, attention and consciousness, and the relation between thought, fantasies, visions and dreams. We discuss and explain concepts as intent, will, morals and ethics. The Jungian concept of the human collective conscious and unconscious is also analyzed. We also hypothesis on the nature of intuition and consider the source of religious experience of man. These phenomena are explained based on the concept of deep quantum chemistry and infinite dancing fractal spirals making up the energetic backbone of the world. In this paper we consider man as a real wholeness and debate the concepts of subjectivity, consciousness and intent that can be deduced from such a perspective.

  9. Modeling the 360° Innovating Firm as a Multiple System or Collective Being

    NASA Astrophysics Data System (ADS)

    Bouchard, Véronique

    Confronted with fast changing technologies and markets and with increasing competitive pressures, firms are now required to innovate fast and continuously. In order to do so, several firms superpose an intrapreneurial layer (IL) to their formal organization (FO). The two systems are in complex relations: the IL is embedded in the FO, sharing human, financial and technical components, but strongly diverges from it when it comes to representation, structure, values and behavior of the shared components. Furthermore, the two systems simultaneously cooperate and compete. In the long run, the organizational dynamics usually end to the detriment of the intrapreneurial layer, which remains marginal or regresses after an initial period of boom. The concepts of Multiple Systems and Collective Beings, proposed by Minati and Pessa, can help students of the firm adopt a different viewpoint on this issue. These concepts can help them move away from a rigid, Manichean view of the two systems' respective functions and roles towards a more fluid and elaborate vision of their relations, allowing for greater flexibility and coherence.

  10. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    NASA Astrophysics Data System (ADS)

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized.

  11. Solvable model of the collective motion of heterogeneous particles interacting on a sphere

    NASA Astrophysics Data System (ADS)

    Tanaka, Takuma

    2014-02-01

    I propose a model of mutually interacting particles on an M-dimensional unit sphere. I derive the dynamics of the particles by extending the dynamics of the Kuramoto-Sakaguchi model. The dynamics include a natural-frequency matrix, which determines the motion of a particle with no external force, and an external force vector. The position (state variable) of a particle at a given time is obtained by the projection transformation of the initial position of the particle. The same projection transformation gives the position of the particles with the same natural-frequency matrix. I show that the motion of the center of mass of an infinite number of heterogeneous particles whose natural-frequency matrices are obtained from a class of multivariate Lorentz distribution is given by an M-dimensional ordinary differential equation in closed form. This result is an extension of the Ott-Antonsen theory.

  12. Analysis and Modeling of Complex Geomorphic Systems: Technique Development, Data Collection, and Application to Rangeland Terrain

    DTIC Science & Technology

    2008-10-01

    Einstein, H., 1937, Bedload transport as a probability problem: Mitteilung der. Einstein, H.A., 1950. The Bed Load Function for Sediment Transport in...16. SECURITY CLASSIFICATION OF: This report describes the results of a four-year, multi-faceted investigation into the physics of sediment transport ...modeling complex land-surface systems, and in particular the applicability of stochastic transport theory and fractional calculus; and (2) use numerical

  13. A Predictive Model to Optimize the Collection of Data Needed to Characterize Fluvial Sand Bodies

    DTIC Science & Technology

    1994-04-01

    a particular sand body has been determined, the appropriate hydrologic or physical control can be implemented. From the above ideas, a predictive... modern are based on those observed in modem-day environments of deposition. Each environment of deposition has a characteristic distribution of...a range of meander belt widths of approximately 10 ft, from physical models, to near 15,000 ft, from natural streams. The estimated sand body width

  14. Data collection handbook to support modeling the impacts of radioactive material in soil

    SciTech Connect

    Yu, C.; Cheng, J.J.; Jones, L.G.; Wang, Y.Y.; Faillace, E.; Loureiro, C.; Chia, Y.P.

    1993-04-01

    A pathway analysis computer code called RESRAD has been developed for implementing US Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), and material-related (soil, concrete) parameters are used in the RESRAD code. This handbook discusses parameter definitions, typical ranges, variations, measurement methodologies, and input screen locations. Although this handbook was developed primarily to support the application of RESRAD, the discussions and values are valid for other model applications.

  15. First-passage distributions in a collective model of anomalous diffusion with tunable exponent.

    PubMed

    Amitai, Assaf; Kantor, Yacov; Kardar, Mehran

    2010-01-01

    We consider a model system in which anomalous diffusion is generated by superposition of underlying linear modes with a broad range of relaxation times. In the language of Gaussian polymers, our model corresponds to Rouse (Fourier) modes whose friction coefficients scale as wave number to the power 2-z. A single (tagged) monomer then executes subdiffusion over a broad range of time scales, and its mean square displacement increases as t(alpha) with alpha = 1/z. To demonstrate nontrivial aspects of the model, we numerically study the absorption of the tagged particle in one dimension near an absorbing boundary or in the interval between two such boundaries. We obtain absorption probability densities as a function of time, as well as the position-dependent distribution for unabsorbed particles, at several values of alpha. Each of these properties has features characterized by exponents that depend on alpha. Characteristic distributions found for different values of alpha have similar qualitative features, but are not simply related quantitatively. Comparison of the motion of translocation coordinate of a polymer moving through a pore in a membrane with the diffusing tagged monomer with identical alpha also reveals quantitative differences.

  16. Enhancing Social Search: A Computational Collective Intelligence Model of Behavioural Traits, Trust and Time

    NASA Astrophysics Data System (ADS)

    Longo, Luca; Dondio, Pierpaolo; Barrett, Stephen

    The Web has been growing in size and with the proliferation of large-scale collaborative computing environments, Social Search has become increasingly important. This recent field focuses on assigning relevance to Web-pages by considering the reader's perspective rather than Web-masters' point of view. Current searching technologies of this form tend to rely on explicit human recommendations. In part because it is hard to obtain user feedback, these methods are hard to scale. The challenge is in producing implicit rankings, by reasoning over users' Web-search activity, without recourse to explicit human intervention. This paper focuses on a novel Social Search model based on Information Foraging Theory, Effort and Computational Trust, showing a different way to implicitly judge Web-entities. The formalism has been divided in two sub-models. The first considers the effort expended by users, in viewing Web-sites, to assess their relevance to a given searching problem. The second enhances the first sub-model by considering only the most trustworthy users' opinions, identified by Computational Trust techniques.

  17. Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: Application to polyisobutylene

    NASA Astrophysics Data System (ADS)

    Colmenero, Juan; Alvarez, Fernando; Khairy, Yasmin; Arbe, Arantxa

    2013-07-01

    In a recent paper [V. N. Novikov, K. S. Schweizer, and A. P. Sokolov, J. Chem. Phys. 138, 164508 (2013)], 10.1063/1.4802771 a simple analytical ansatz has been proposed to describe the momentum transfer (Q) dependence of the collective relaxation time of glass-forming systems in a wide Q-range covering the region of the first maximum of the static structure factor S(Q) and the so-called intermediate length scale regime. In this work we have generalized this model in order to deal with glass-forming systems where the atomic diffusive processes are sub-linear in nature. This is for instance the case of glass-forming polymers. The generalized expression considers a sub-linear jump-diffusion model and reduces to the expression previously proposed for normal diffusion. The generalized ansatz has been applied to the experimental results of the Q- and temperature-dependence of polyisobutylene (PIB), which were previously published. To reduce the number of free parameters of the model to only one, we have taken advantage of atomistic molecular dynamics simulations of PIB properly validated by neutron scattering results. The model perfectly describes the experimental results capturing both, Q- and temperature-dependences. Moreover, the model also reproduces the experimental Q-dependence of the effective activation energy of the collective relaxation time in the temperature range of observation. This non-trivial result gives additional support to the way the crossover between two different relaxation mechanisms of density fluctuations is formulated in the model.

  18. Resilience, tipping, and hydra effects in public health: emergent collective behavior in two agent-based models.

    PubMed

    Keane, Christopher Robert

    2016-03-15

    Collective health behavior often demonstrates counter-intuitive dynamics, sometimes resisting interventions designed to produce change, or even producing effects that are in the opposite direction than intended by the intervention, e.g. lowering infectivity resulting in increased infections. At other times collective health behavior exhibits sudden large-scale change in response to small interventions or change in the environment, a phenomenon often called "tipping." I hypothesize that these seemingly very different phenomena can all be explained by the same dynamic, a type of collective resilience. I compared two simple agent-based models of interactions in networks: a public health behavior game, in which individuals decide whether or not to adopt protective behavior, and a microbial-level game, in which three different strains of bacteria attack each other. I examined the type of networks and other conditions that support a dynamic balance, and determined what changes of conditions will tip the balance. Both models show lasting dynamic equilibrium and resilience, resulting from negative feedback that supports oscillating coexistence of diversity under a range of conditions. In the public health game, health protection is followed by free-riding defectors, followed by a rise in infection, in long-lasting cycles. In the microbial game, each of three strains takes turns dominating. In both games, the dynamic balance is tipped by lowering the level of local clustering, changing the level of benefit, or lowering infectivity or attack rate. Lowering infectivity has the surprising effect of increasing the numbers of infected individuals. We see parallel results in the microbial game of three bacterial strains, where lowering one strain's attack rate (analogous to lowering infectivity) increases the numbers of the restrained attacker, a phenomenon captured by the phrase, "the enemy of my enemy is my friend." Collective behavior often shows a dynamic balance, resulting

  19. Modelling the rheology of sea ice as a collection of diamond-shaped floes

    NASA Astrophysics Data System (ADS)

    Wilchinsky, A. V.; Feltham, D. L.

    2007-12-01

    In polar oceans, seawater freezes to form a layer of sea ice of several metres thickness that can cover up to 8% of the Earth's surface. The modelled sea ice cover state is described by thickness and the orientational distribution of interlocking, anisotropic diamond-shaped ice floes delineated by slip lines, as supported by observation. The purpose of this study is to develop a set of equations describing the mean-field sea ice stresses that result from interactions between the ice floes and the evolution of the ice floe orientation, which are simple enough to be incorporated into a climate model. The sea ice stress caused by a deformation of the ice cover is determined by employing an existing kinematic model of ice floe motion, which enables us to calculate the forces acting on the ice floes due to crushing into and sliding past each other, and then by averaging over all possible floe orientations. We describe the orientational floe distribution with a structure tensor and propose an evolution equation for this tensor that accounts for rigid body rotation of the floes, their apparent re-orientation due to new slip line formation, and change of shape of the floes due to freezing and melting. The form of the evolution equation proposed is motivated by laboratory observations of sea ice failure under controlled conditions. Finally, we present simulations of the evolution of sea ice stress and floe orientation for several imposed flow types. Although evidence to test the simulations against is lacking, the simulations seem physically reasonable.

  20. New Microscopic foundation of Interacting Boson Model and collectivities in exotic nuclei

    SciTech Connect

    Nomura, K.; Shimizu, N.; Otsuka, T.

    2009-01-28

    We propose a novel way of determining the Hamiltonian of the Interacting Boson Model (IBM), based on the Mean-field theory. The quadrupole deformations in a fermion system, indicated by a Potential Energy Surface (PES) obtained by the constrained Skyrme Hartree-Fock calculations, are mapped, to a good approximation, onto the appropriate boson system. A merit is that levels and wave functions of excited states are calculated with the exact treatments of angular momentum and particle number. The validity of the process is examined for Sm and Ba isotopes, and predictions are made for unexplored territories on the nuclear chart, namely the right-lower corner of {sup 208}Pb.

  1. The impact of Local Authorities' interventions on household waste collection: a case study approach using time series modelling.

    PubMed

    Cole, Christine; Quddus, Mohammed; Wheatley, Andrew; Osmani, Mohamed; Kay, Kath

    2014-02-01

    At a local Government level there have been many interventions and changes made to household waste collection services to meet new regulatory requirements. These changes include separate collection of recyclable and organic materials. This paper has used a time series model to quantify the success of interventions introduced by a LA. The case study was a medium sized UK LA, Charnwood Borough Council (CBC), the research analyses monthly data of quantities of recyclates, garden waste for composting and residual waste for landfill disposal. The time series model was validated with a five year data set and used to measure the impacts of the various changes to identify which intervention was the most successful, while controlling for season and number of working days. The results show the interventions analysed both had abrupt and permanent positive impacts on the yield of recyclable materials, and a corresponding negative impact on the residual waste. The model could be added to the National data base to help LAs to compare interventions and to understand which schemes encourage householder participation and improve recycling performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data Creates Robust Models for Enhancing Selection of Accessions

    PubMed Central

    Jarquin, Diego; Specht, James; Lorenz, Aaron

    2016-01-01

    The identification and mobilization of useful genetic variation from germplasm banks for use in breeding programs is critical for future genetic gain and protection against crop pests. Plummeting costs of next-generation sequencing and genotyping is revolutionizing the way in which researchers and breeders interface with plant germplasm collections. An example of this is the high density genotyping of the entire USDA Soybean Germplasm Collection. We assessed the usefulness of 50K single nucleotide polymorphism data collected on 18,480 domesticated soybean (Glycine max) accessions and vast historical phenotypic data for developing genomic prediction models for protein, oil, and yield. Resulting genomic prediction models explained an appreciable amount of the variation in accession performance in independent validation trials, with correlations between predicted and observed reaching up to 0.92 for oil and protein and 0.79 for yield. The optimization of training set design was explored using a series of cross-validation schemes. It was found that the target population and environment need to be well represented in the training set. Second, genomic prediction training sets appear to be robust to the presence of data from diverse geographical locations and genetic clusters. This finding, however, depends on the influence of shattering and lodging, and may be specific to soybean with its presence of maturity groups. The distribution of 7608 nonphenotyped accessions was examined through the application of genomic prediction models. The distribution of predictions of phenotyped accessions was representative of the distribution of predictions for nonphenotyped accessions, with no nonphenotyped accessions being predicted to fall far outside the range of predictions of phenotyped accessions. PMID:27247288

  3. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    PubMed Central

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized. PMID:24463569

  4. Hydrodynamic model of the collective electron resonances in C60 fullerene

    NASA Astrophysics Data System (ADS)

    Gildenburtg, V. B.; Pavlichenko, I. A.

    2017-08-01

    The polarization-response spectrum of the fullerene C60 modeled as a homogeneous spherical plasma shell is calculated in the framework of the hydrodynamic approach, allowing for the spatial dispersion caused by the Fermi-distributed valence electrons. The dipole eigenoscillation spectrum of the shell is found to contain a series of plasmons distinguished by the frequency and the radial structure. The first two of them (whose structures for C60 are the subject of discussion up to now) pass to the lower and higher surface plasmons of the plasma shell if its thickness is much larger than the Tomas-Fermi length. However, under parameter values corresponding to the C60 molecule, when these lengths are of the same order, both these plasmons (providing the main contribution to the fullerene absorption spectrum) are found to be actually volume ones in their spatial structure, and the frequency of the higher of them becomes larger than the plasma frequency (as with all the higher volume plasmons). The resonance curve of the fullerene absorption cross-section calculated on the basis of the developed model with allowance for the surface losses caused by the reflection of electrons at the shell boundaries agrees well with the experimental data.

  5. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    PubMed

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  6. Collective responsibility for freeway rear-ending accidents? An application of probabilistic casual models.

    PubMed

    Davis, Gary A; Swenson, Tait

    2006-07-01

    Determining whether or not an event was a cause of a road accident often involves determining the truth of a counterfactual conditional, where what happened is compared to what would have happened had the supposed cause been absent. Using structural causal models, Pearl and his associates have recently developed a rigorous method for posing and answering causal questions, and this approach is especially well suited to the reconstruction and analysis of road accidents. Here, we applied these methods to three freeway rear-end collisions. Starting with video recordings of the accidents, trajectory information for a platoon of vehicles involved in and preceding the collision was extracted from the video record, and this information was used to estimate each driver's initial speed, following distance, reaction time, and braking rate. Using Brill's model of rear-end accidents, it was then possible to simulate what would have happened, other things being equal, had certain driver actions been other than they were. In each of the three accidents we found evidence that: (1) short following headways by the colliding drivers were probable causal factors for the collisions, (2) for each collision, at least one driver ahead of the colliding vehicles probably had a reaction time that was longer than his or her following headway, and (3) had that driver's reaction time been equal to his or her following headway, the rear-end collision probably would not have happened.

  7. Practice Models and Challenges in Teledermatology: A Study of Collective Experiences from Teledermatologists

    PubMed Central

    Armstrong, April W.; Kwong, Mei W.; Ledo, Lynda; Nesbitt, Thomas S.; Shewry, Sandra L.

    2011-01-01

    Background Despite increasing practice of teledermatology in the U.S., teledermatology practice models and real-world challenges are rarely studied. Methods The primary objective was to examine teledermatology practice models and shared challenges among teledermatologists in California, focusing on practice operations, reimbursement considerations, barriers to sustainability, and incentives. We conducted in-depth interviews with teledermatologists that practiced store-and-forward or live-interactive teledermatology from January 1, 2007 through March 30, 2011 in California. Results Seventeen teledermatologists from academia, private practice, health maintenance organizations, and county settings participated in the study. Among them, 76% practiced store-and-forward only, 6% practiced live-interactive only, and 18% practiced both modalities. Only 29% received structured training in teledermatology. The average number of years practicing teledermatology was 4.29 years (SD±2.81). Approximately 47% of teledermatologists served at least one Federally Qualified Health Center. Over 75% of patients seen via teledermatology were at or below 200% federal poverty level and usually lived in rural regions without dermatologist access. Practice challenges were identified in the following areas. Teledermatologists faced delays in reimbursements and non-reimbursement of teledermatology services. The primary reason for operational inefficiency was poor image quality and/or inadequate history. Costly and inefficient software platforms and lack of communication with referring providers also presented barriers. Conclusion Teledermatology enables underserved populations to access specialty care. Improvements in reimbursement mechanisms, efficient technology platforms, communication with referring providers, and teledermatology training are necessary to support sustainable practices. PMID:22194887

  8. New development of the projected shell model and description of low-lying collective states in transitional nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Fang-Qi; Sun, Yang

    2013-12-01

    Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited Kπ = 0+ states in the Gd isotopes have characters of shape vibration.

  9. The relationship between the interacting boson model and the algebraic version of Bohrʼs collective model in its triaxial limit

    NASA Astrophysics Data System (ADS)

    Thiamova, G.; Rowe, D. J.; Caprio, M. A.

    2012-12-01

    Recent developments and applications of an algebraic version of Bohr's collective model, known as the algebraic collective model (ACM), have shown that fully converged calculations can be performed for a large range of Hamiltonians. Examining the algebraic structure underlying the Bohr model (BM) has also clarified its relationship with the interacting boson model (IBM), with which it has related solvable limits and corresponding dynamical symmetries. In particular, the algebraic structure of the IBM is obtained as a compactification of the BM and conversely the BM is regained in various contraction limits of the IBM. In a previous paper, corresponding contractions were identified and confirmed numerically for axially-symmetric states of relatively small deformation. In this paper, we extend the comparisons to realistic deformations and compare results of the two models in the rotor-vibrator limit. These models describe rotations and vibrations about an axially symmetric prolate or oblate rotor, and rotations and vibrations of a triaxial rotor. It is determined that most of the standard results of the BM can be obtained as contraction limits of the IBM in its U(5)-SO(6) dynamical symmetries.

  10. Collective dynamics in atomistic models with coupled translational and spin degrees of freedom

    DOE PAGES

    Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; ...

    2017-01-26

    When using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. Furthermore, by calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. A comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnonsmore » leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.« less

  11. Statistical analysis and modeling of collective cell motion and pattern formation

    NASA Astrophysics Data System (ADS)

    Czirok, Andras; Szabo, Andras

    2009-03-01

    Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in several other morphogenic processes as well. During vasculogenesis multicellular sprouts invade rapidly into avascular areas, eventually creating an interconnected network pattern. Epithelial cell sheets migrate during organogenesis or wound healing. These phenomena were studied with time-lapse microscopy both in vivo and in vitro. Statistical analysis of cell trajectories reveals that motile confluent cultures may behave either as vortical fluids or as deforming elastic sheets. The observed flow fields and pattern formation can be explained by our generalized cellular Potts model -- representing cell polarization and self-propulsion, links between the cytoskeleton of adjacent cells as well as an asymmetric preferential attraction to the surface of adjacent cells.

  12. Collective dynamics in atomistic models with coupled translational and spin degrees of freedom

    NASA Astrophysics Data System (ADS)

    Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; Stocks, G. Malcolm; Landau, David P.

    2017-01-01

    Using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. By calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. Comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnons leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.

  13. Testing prediction capabilities of an 131I terrestrial transport model by using measurements collected at the Hanford nuclear facility.

    PubMed

    Apostoaei, A Iulian

    2005-05-01

    A model describing transport of 131I in the environment was developed by SENES Oak Ridge, Inc., for assessment of radiation doses and excess lifetime risk from 131I atmospheric releases from Oak Ridge Reservation in Oak Ridge, Tennessee, and from Idaho National Engineering and Environmental Laboratory in southeast Idaho. This paper describes the results of an exercise designed to test the reliability of this model and to identify the main sources of uncertainty in doses and risks estimated by this model. The testing of the model was based on materials published by the International Atomic Energy Agency BIOMASS program, specifically environmental data collected after the release into atmosphere of 63 curies of 131I during 2-5 September 1963, after an accident at the Hanford PUREX Chemical Separations Plant, in Hanford, Washington. Measurements of activity in air, vegetation, and milk were collected in nine counties around Hanford during the first couple of months after the accident. The activity of 131I in the thyroid glands of two children was measured 47 d after the accident. The model developed by SENES Oak Ridge, Inc., was used to estimate concentrations of 131I in environmental media, thyroid doses for the general population, and the activity of 131I in thyroid glands of the two children. Predicted concentrations of 131I in pasture grass and milk and thyroid doses were compared with similar estimates produced by other modelers. The SENES model was also used to estimate excess lifetime risk of thyroid cancer due to the September 1963 releases of 131I from Hanford. The SENES model was first calibrated and then applied to all locations of interest around Hanford without fitting the model parameters to a given location. Predictions showed that the SENES model reproduces satisfactorily the time-dependent and the time-integrated measured concentrations in vegetation and milk, and provides reliable estimates of 131I activity in thyroids of children. SENES model

  14. Developing a model for understanding patient collection of observations of daily living: A qualitative meta-synthesis of the Project HealthDesign Program

    PubMed Central

    Cohen, Deborah J.; Keller, Sara R.; Hayes, Gillian R.; Dorr, David A.; Ash, Joan S.; Sittig, Dean F.

    2016-01-01

    We conducted a meta-synthesis of five different studies that developed, tested, and implemented new technologies for the purpose of collecting Observations of Daily Living (ODL). From this synthesis, we developed a model to explain user motivation as it relates to ODL collection. We describe this model that includes six factors that motivate patients’ collection of ODL data: usability, illness experience, relevance of ODLs, information technology infrastructure, degree of burden, and emotional activation. We show how these factors can act as barriers or facilitators to the collection of ODL data and how interacting with care professionals and sharing ODL data may also influence ODL collection, health-related awareness, and behavior change. The model we developed and used to explain ODL collection can be helpful to researchers and designers who study and develop new, personal health technologies to empower people to improve their health. PMID:26949381

  15. Developing a model for understanding patient collection of observations of daily living: A qualitative meta-synthesis of the Project HealthDesign Program.

    PubMed

    Cohen, Deborah J; Keller, Sara R; Hayes, Gillian R; Dorr, David A; Ash, Joan S; Sittig, Dean F

    2015-01-01

    We conducted a meta-synthesis of five different studies that developed, tested, and implemented new technologies for the purpose of collecting Observations of Daily Living (ODL). From this synthesis, we developed a model to explain user motivation as it relates to ODL collection. We describe this model that includes six factors that motivate patients' collection of ODL data: usability, illness experience, relevance of ODLs, information technology infrastructure, degree of burden, and emotional activation. We show how these factors can act as barriers or facilitators to the collection of ODL data and how interacting with care professionals and sharing ODL data may also influence ODL collection, health-related awareness, and behavior change. The model we developed and used to explain ODL collection can be helpful to researchers and designers who study and develop new, personal health technologies to empower people to improve their health.

  16. Collective molecular dissipation on Navier-Stokes macroscopic scales: Accretion disc viscous modeling in SPH

    NASA Astrophysics Data System (ADS)

    Lanzafame, Giuseppe

    2015-02-01

    In the nonlinear Navier-Stokes viscous flow dynamics, physical damping is mathematically accomplished by a braking term in the momentum equation, corresponding to a heating term in the energy equation, both responsible of the conversion of mechanical energy into heat. In such two terms, it is essential the role of the viscous stress tensor, relative to contiguous macroscopic moving flow components, depending on the macroscopic viscosity coefficient ν. A working formulation for ν can always be found analytically, tuning some arbitrary parameters in the current known formulations, according to the geometry, morphology and physics of the flow. Instead, in this paper, we write an alternative hybrid formulation for ν, where molecular parameters are also included. Our expression for ν has a more physical interpretation of the internal damping in dilute gases because the macroscopic viscosity is related to the small scale molecular dissipation, not strictly dependent on the flow morphology, as well as it is free of any arbitrary parameter. Results for some basic 2D tests are shown in the smoothed particle hydrodynamics (SPH) framework. An application to the 3D accretion disc modeling for low mass cataclysmic variables is also discussed. Consequences of the macroscopic viscosity coefficient reformulation in a more strictly physical terms on the thermal conductivity coefficient for dilute gases are also discussed.

  17. {Sigma}PAH: A model to predict the toxicity of polynuclear aromatic hydrocarbon mixtures in field-collected sediments

    SciTech Connect

    Swartz, R.C.; Schults, D.W.; Ozretich, R.J.; Lamberson, J.O.; Cole, F.A.; Ferraro, S.P.; DeWitt, T.H.; Redmond, M.S.

    1995-11-01

    The {Sigma}PAH model estimates the probability of toxicity of PAH-contaminated sediments using a combination of equilibrium partitioning, WSAR, toxic unit, additivity, and concentration-response models. The sediment concentration of organic carbon and 13 PAH (polynuclear aromatic hydrocarbon) compounds were measured. Interstitial water concentrations (PAH{sub iw}) of the 13 compounds were predicted by equilibrium partitioning. The 10-d LC50 of each compound in interstitial water (10-d LC50{sub iw}) was predicted by a QSAR regression of 10-d LC50{sub iw} (From spiked sediment tests) to K{sub ow}. Toxic unit concentrations of individual compounds (TU{sub i}) were predicted as PAH{sub iw}/10-d LC50{sub iw}. The total number of toxic units of the 13 compounds ({Sigma}TU{sub i}) was calculated assuming the additivity of toxic effects of PAHs. {Sigma}TU{sub i} was used to predict the probability of toxicity to marine and estuarine amphipods using a concentration-response model derived from spiked sediment toxicity tests. The {Sigma}PAH model was verified by comparing predicted and observed toxicity in field-collected sediment samples. There was 86.6% correspondence and no significant difference between predicted and observed toxicity at PAH-contaminated sites. Ecological-effect levels predicted by the {Sigma}PAH model correspond with several sediment-quality guidelines.

  18. Collective Cell Motion in an Epithelial Sheet Can Be Quantitatively Described by a Stochastic Interacting Particle Model

    PubMed Central

    Cochet, Olivier; Grasland-Mongrain, Erwan; Silberzan, Pascal; Hakim, Vincent

    2013-01-01

    Modelling the displacement of thousands of cells that move in a collective way is required for the simulation and the theoretical analysis of various biological processes. Here, we tackle this question in the controlled setting where the motion of Madin-Darby Canine Kidney (MDCK) cells in a confluent epithelium is triggered by the unmasking of free surface. We develop a simple model in which cells are described as point particles with a dynamic based on the two premises that, first, cells move in a stochastic manner and, second, tend to adapt their motion to that of their neighbors. Detailed comparison to experimental data show that the model provides a quantitatively accurate description of cell motion in the epithelium bulk at early times. In addition, inclusion of model “leader” cells with modified characteristics, accounts for the digitated shape of the interface which develops over the subsequent hours, providing that leader cells invade free surface more easily than other cells and coordinate their motion with their followers. The previously-described progression of the epithelium border is reproduced by the model and quantitatively explained. PMID:23505356

  19. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: a shared input DEA-model.

    PubMed

    Rogge, Nicky; De Jaeger, Simon

    2012-10-01

    This paper proposed an adjusted "shared-input" version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  20. Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: Coupled optical and electrical modeling

    NASA Astrophysics Data System (ADS)

    Abdelraouf, Omar A. M.; Allam, Nageh K.

    2016-04-01

    Earth-abundant Cu2ZnSnS4 (CZTS) is being considered as a potential photon-absorbing layer for low cost thin film solar cells. Nanostructured light trapping is recently investigated as a technique for enhancing the efficiency of CZTS solar cells. Herein, we used coupled electrical and optical modeling for different combinations of nanostructured CZTS solar cells to guide optimization of such nanostructures. The model is validated by a comparison of simulated I-V curves with previously reported experimental data. A very good agreement is achieved. Simulations are used to demonstrate that nanostructures can be tailored to maximize the absorption, carrier generation, carrier collection, and efficiency in CZTS solar cells. All proposed nanostructured solar cells showed enhancement in the overall conversion efficiency.

  1. Collective Commitment and Collective Efficacy: A Theoretical Model for Understanding the Motivational Dynamics of Dilemma Resolution in Inter-Professional Work

    ERIC Educational Resources Information Center

    Rose, Jo; Norwich, Brahm

    2014-01-01

    This paper presents a new theoretical model which conceptualizes inter-professional and multi-agency collaborative working, at the level of the individual within a group. This arises from a review of the literature around joint working, and is based on social psychological theories which refer to shared goals. The model assumes that collective…

  2. Collective Commitment and Collective Efficacy: A Theoretical Model for Understanding the Motivational Dynamics of Dilemma Resolution in Inter-Professional Work

    ERIC Educational Resources Information Center

    Rose, Jo; Norwich, Brahm

    2014-01-01

    This paper presents a new theoretical model which conceptualizes inter-professional and multi-agency collaborative working, at the level of the individual within a group. This arises from a review of the literature around joint working, and is based on social psychological theories which refer to shared goals. The model assumes that collective…

  3. Does Model Development Ahead of Data Collection Have Merit? A Case for Advancing Non-Local Fluvial Transport Theories

    NASA Astrophysics Data System (ADS)

    Voller, V. R.; Falcini, F.; Foufoula-Georgiou, E.; Ganti, V.; Paola, C.; Hill, K. M.; Swenson, J. B.; Longjas, A.

    2013-12-01

    The purpose of this work is to suggest how experiments might be constructed to provide data to test recently proposed phenomenological non-local model of depositional transport; formulated on the basis of morphological arguments but with limited data. A sound methodology for developing models of geological systems is to first collect significant data and then carefully identify an appropriate model form and parameters. An alternative approach is to construct what might be referred to as a phenomenological model, where limited observation of the system is used to suggest an appropriate mathematical form that matches the critical nature of the physical system behavior. By their nature, phenomenological models are often developed within a fairly narrow range of observations. In this way, interesting findings can occur when the models are modified and exercised across wider physical domains, in particular in domains where there is an absence of hard data to corroborate or invalidate the model predictions. Although this approach might be frown on my some, it is important to recognize the stellar and proven track record of phenomenological models, which despite the original scarcity of data, often pave the way to new perspectives and important findings. The poster child example is the Higgs boson. In the early 60's manipulation of the quantum field equations revealed a critical inconsistency related to the masses of fundamental particles that could only be mathematically resolved by assuming that they operated within a field that would exert drag; this conjecture took almost fifty years and the vast experimental operation of the Large Hadron Collider to physically confirm. In this work we examine a current phenomenological model used to describe non-local transport in fluvial sediment domains. This model has its genesis in attempting to describe the shapes of hill slope profiles, while acknowledging the fact that two points of the landscape with the same local slope are

  4. An optimization model for collection, haul, transfer, treatment and disposal of infectious medical waste: Application to a Greek region.

    PubMed

    Mantzaras, Gerasimos; Voudrias, Evangelos A

    2017-09-05

    The objective of this work was to develop an optimization model to minimize the cost of a collection, haul, transfer, treatment and disposal system for infectious medical waste (IMW). The model calculates the optimum locations of the treatment facilities and transfer stations, their design capacities (t/d), the number and capacities of all waste collection, transport and transfer vehicles and their optimum transport path and the minimum IMW management system cost. Waste production nodes (hospitals, healthcare centers, peripheral health offices, private clinics and physicians in private practice) and their IMW production rates were specified and used as model inputs. The candidate locations of the treatment facilities, transfer stations and sanitary landfills were designated, using a GIS-based methodology. Specifically, Mapinfo software with exclusion criteria for non-appropriate areas was used for siting candidate locations for the construction of the treatment plant and calculating the distance and travel time of all possible vehicle routes. The objective function was a non-linear equation, which minimized the total collection, transport, treatment and disposal cost. Total cost comprised capital and operation costs for: (1) treatment plant, (2) waste transfer stations, (3) waste transport and transfer vehicles and (4) waste collection bins and hospital boxes. Binary variables were used to decide whether a treatment plant and/or a transfer station should be constructed and whether a collection route between two or more nodes should be followed. Microsoft excel software was used as installation platform of the optimization model. For the execution of the optimization routine, two completely different software were used and the results were compared, thus, resulting in higher reliability and validity of the results. The first software was Evolver, which is based on the use of genetic algorithms. The second one was Crystal Ball, which is based on Monte Carlo

  5. Collective motion

    NASA Astrophysics Data System (ADS)

    Vicsek, Tamás; Zafeiris, Anna

    2012-08-01

    We review the observations and the basic laws describing the essential aspects of collective motion - being one of the most common and spectacular manifestation of coordinated behavior. Our aim is to provide a balanced discussion of the various facets of this highly multidisciplinary field, including experiments, mathematical methods and models for simulations, so that readers with a variety of background could get both the basics and a broader, more detailed picture of the field. The observations we report on include systems consisting of units ranging from macromolecules through metallic rods and robots to groups of animals and people. Some emphasis is put on models that are simple and realistic enough to reproduce the numerous related observations and are useful for developing concepts for a better understanding of the complexity of systems consisting of many simultaneously moving entities. As such, these models allow the establishing of a few fundamental principles of flocking. In particular, it is demonstrated, that in spite of considerable differences, a number of deep analogies exist between equilibrium statistical physics systems and those made of self-propelled (in most cases living) units. In both cases only a few well defined macroscopic/collective states occur and the transitions between these states follow a similar scenario, involving discontinuity and algebraic divergences.

  6. Report on Development of CFEA (Collective Front-End Analysis) Procedures: Specification of CFEA Model & Results of the HAWK CFEA

    DTIC Science & Technology

    1985-03-01

    neceasary and Identify by block number) -"w’ ’- L ’-..L Collective Training Task Analysis Collective Task Systems Approach Collective Front-End Analysis ...Criticality Assessment Mission HAWK Missile System Mission Analysis 14L. ANT11ACTedimome aid% fl eceIt msd dewuify by block number) ---,Collective...front-end analysis is the process by which the critical missionsand collective tasks of a battalion are specified. Collective tasks are units of work

  7. Computational modeling of river flow using bathymetry collected with an experimental, water-penetrating, green LiDAR

    NASA Astrophysics Data System (ADS)

    Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.

    2009-12-01

    Airborne bathymetric Light Detection and Ranging (LiDAR) systems designed for coastal and marine surveys are increasingly being deployed in fluvial environments. While the adaptation of this technology to rivers and streams would appear to be straightforward, currently technical challenges remain with regard to achieving high levels of vertical accuracy and precision when mapping bathymetry in shallow fluvial settings. Collectively these mapping errors have a direct bearing on hydraulic model predictions made using these data. We compared channel surveys conducted along the Platte River, Nebraska, and the Trinity River, California, using conventional ground-based methods with those made with the hybrid topographic/bathymetric Experimental Advanced Airborne Research LiDAR (EAARL). In the turbid and braided Platte River, a bathymetric-waveform processing algorithm was shown to enhance the definition of thalweg channels over a more simplified, first-surface waveform processing algorithm. Consequently flow simulations using data processed with the shallow bathymetric algorithm resulted in improved prediction of wetted area relative to the first-surface algorithm, when compared to the wetted area in concurrent aerial imagery. However, when compared to using conventionally collected data for flow modeling, the inundation extent was over predicted with the EAARL topography due to higher bed elevations measured by the LiDAR. In the relatively clear, meandering Trinity River, bathymetric processing algorithms were capable of defining a 3 meter deep pool. However, a similar bias in depth measurement was observed, with the LiDAR measuring the elevation of the river bottom above its actual position, resulting in a predicted water surface higher than that measured by field data. This contribution addresses the challenge of making bathymetric measurements with the EAARL in different environmental conditions encountered in fluvial settings, explores technical issues related to

  8. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions.

    PubMed

    Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J

    2016-10-07

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  9. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions

    NASA Astrophysics Data System (ADS)

    Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.

    2016-10-01

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  10. Collection Mapping.

    ERIC Educational Resources Information Center

    Harbour, Denise

    2002-01-01

    Explains collection mapping for library media collections. Discusses purposes for creating collection maps, including helping with selection and weeding decisions, showing how the collection supports the curriculum, and making budget decisions; and methods of data collection, including evaluating a collaboratively taught unit with the classroom…

  11. Collection Mapping.

    ERIC Educational Resources Information Center

    Harbour, Denise

    2002-01-01

    Explains collection mapping for library media collections. Discusses purposes for creating collection maps, including helping with selection and weeding decisions, showing how the collection supports the curriculum, and making budget decisions; and methods of data collection, including evaluating a collaboratively taught unit with the classroom…

  12. Collective modes and Kosterlitz-Thouless transition in a magnetic field in the planar Nambu–Jona-Lasinio model

    DOE PAGES

    Cao, Gaoqing; He, Lianyi; Zhuang, Pengfei

    2014-09-15

    It is known that a constant magnetic field is a strong catalyst of dynamical chiral symmetry breaking in 2+1 dimensions, leading to generating dynamical fermion mass even at weakest attraction. In this work we investigate the collective modes associated with the dynamical chiral symmetry breaking in a constant magnetic field in the (2+1)-dimensional Nambu–Jona-Lasinio model with continuous U(1) chiral symmetry. We introduce a self-consistent scheme to evaluate the propagators of the collective modes at the leading order in 1/N. The contributions from the vacuum and from the magnetic field are separated such that we can employ the well-established regularization schememore » for the case of vanishing magnetic field. The same scheme can be applied to the study of the next-to-leading order correction in 1/N. We show that the sigma mode is always a lightly bound state with its mass being twice the dynamical fermion mass for arbitrary strength of the magnetic field. Since the dynamics of the collective modes is always 2+1 dimensional, the finite temperature transition should be of the Kosterlitz-Thouless (KT) type. We determine the KT transition temperature TKT as well as the mass melting temperature T* as a function of the magnetic field. It is found that the pseudogap domain TKT < T < T* is enlarged with increasing strength of the magnetic field. The influence of a chiral imbalance or axial chemical potential μ5 is also studied. We find that even a constant axial chemical potential μ5 can lead to inverse magnetic catalysis of the KT transition temperature in 2+1 dimensions. As a result, the inverse magnetic catalysis behavior is actually the de Haas–van Alphen oscillation induced by the interplay between the magnetic field and the Fermi surface.« less

  13. Collective modes and Kosterlitz-Thouless transition in a magnetic field in the planar Nambu–Jona-Lasinio model

    SciTech Connect

    Cao, Gaoqing; He, Lianyi; Zhuang, Pengfei

    2014-09-15

    It is known that a constant magnetic field is a strong catalyst of dynamical chiral symmetry breaking in 2+1 dimensions, leading to generating dynamical fermion mass even at weakest attraction. In this work we investigate the collective modes associated with the dynamical chiral symmetry breaking in a constant magnetic field in the (2+1)-dimensional Nambu–Jona-Lasinio model with continuous U(1) chiral symmetry. We introduce a self-consistent scheme to evaluate the propagators of the collective modes at the leading order in 1/N. The contributions from the vacuum and from the magnetic field are separated such that we can employ the well-established regularization scheme for the case of vanishing magnetic field. The same scheme can be applied to the study of the next-to-leading order correction in 1/N. We show that the sigma mode is always a lightly bound state with its mass being twice the dynamical fermion mass for arbitrary strength of the magnetic field. Since the dynamics of the collective modes is always 2+1 dimensional, the finite temperature transition should be of the Kosterlitz-Thouless (KT) type. We determine the KT transition temperature TKT as well as the mass melting temperature T* as a function of the magnetic field. It is found that the pseudogap domain TKT < T < T* is enlarged with increasing strength of the magnetic field. The influence of a chiral imbalance or axial chemical potential μ5 is also studied. We find that even a constant axial chemical potential μ5 can lead to inverse magnetic catalysis of the KT transition temperature in 2+1 dimensions. As a result, the inverse magnetic catalysis behavior is actually the de Haas–van Alphen oscillation induced by the interplay between the magnetic field and the Fermi surface.

  14. The Fried Transdisciplinary Model of Technological and Social Organization of the Collection Establishment, Development, Maintenance, and Monitoring Process; An Operational Systems Approach for Diagnosing, Measuring, Evaluating, and Designing Improvements in Library Collection Building Organizational Policies and Practices.

    ERIC Educational Resources Information Center

    DeHart, Florence E.

    Jacob Fried and Paul Molnar developed a model to simulate the interaction between technological change and social interaction which consists of two zones: (1) task requisites; and (2) the corresponding organizational responses. To define task requisites for library collections, it is necessary to identify the dimensions of the problem and the…

  15. Developing a Sustainable Model of Oral Health Care for Disadvantaged Aboriginal People Living in Rural and Remote Communities in NSW, Using Collective Impact Methodology.

    PubMed

    Gwynne, Kylie; Irving, Michelle J; McCowen, Debbie; Rambaldini, Boe; Skinner, John; Naoum, Steve; Blinkhorn, Anthony

    2016-02-01

    A sustainable model of oral health care for disadvantaged Aboriginal people living in rural and remote communities in New South Wales was developed using collective impact methodology. Collective impact is a structured process which draws together organizations to develop a shared agenda and design solutions which are jointly resourced, measured and reported upon.

  16. Developing a Sustainable Model of Oral Health Care for Disadvantaged Aboriginal People Living in Rural and Remote Communities in NSW, Using Collective Impact Methodology.

    PubMed

    Gwynne, Kylie; Irving, Michelle J; McCowen, Debbie; Rambaldini, Boe; Skinner, John; Naoum, Steve; Blinkhorn, Anthony

    2016-01-01

    A sustainable model of oral health care for disadvantaged Aboriginal people living in rural and remote communities in New South Wales was developed using collective impact methodology. Collective impact is a structured process which draws together organizations to develop a shared agenda and design solutions which are jointly resourced, measured and reported upon.

  17. Understanding emergent collectivity and clustering in nuclei from a symmetry-based no-core shell-model perspective

    NASA Astrophysics Data System (ADS)

    Dreyfuss, A. C.; Launey, K. D.; Dytrych, T.; Draayer, J. P.; Baker, R. B.; Deibel, C. M.; Bahri, C.

    2017-04-01

    We present a detailed discussion of the structure of the low-lying positive-parity energy spectrum of 12C from a no-core shell-model perspective. The approach utilizes a fraction of the usual shell-model space and extends its multishell reach via the symmetry-based no-core symplectic shell model (NCSpM) with a simple, physically informed effective interaction. We focus on the ground-state rotational band, the Hoyle state, and its 2+ and 4+ excitations, as well as the giant monopole 0+ resonance, which is a vibrational breathing mode of the ground state. This, in turn, allows us to address the open question about the structure of the Hoyle state and its rotational band. In particular, we find that the Hoyle state is best described through deformed prolate collective modes rather than vibrational modes, while we show that the higher lying giant monopole 0+ resonance resembles the oblate deformation of the 12C ground state. In addition, we identify the giant monopole 0+ and quadrupole 2+ resonances of selected light- and intermediate-mass nuclei, along with other observables of 12C, including matter rms radii, electric quadrupole moments, and E 2 and E 0 transition rates.

  18. PsN-Toolkit--a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM.

    PubMed

    Lindbom, Lars; Pihlgren, Pontus; Jonsson, E Niclas; Jonsson, Niclas

    2005-09-01

    PsN-Toolkit is a collection of statistical tools for pharmacometric data analysis using the non-linear mixed effect modeling software NONMEM. The toolkit is object oriented and written in the programming language Perl using the programming library Perl-speaks-NONMEM (PsN). Five methods: the Bootstrap, the Jackknife, Log-likelihood Profiling, Case-deletion Diagnostics and Stepwise Covariate Model building are included as separate classes and may be used in user-written Perl scripts or through stand-alone command line applications. The tools are designed with the ability to cooperate and with an emphasis on common structures for workflow and result handling. Parallel execution of independent tool sections is supported on shared memory multiprocessor (SMP) computers, Mosix/openMosix clusters and distributed computing environments following the NorduGrid standard. In conclusion, PsN-Toolkit makes it easier to use the Bootstrap, the Jackknife, Log-likelihood Profiling, Case-deletion Diagnostics and Stepwise Covariate Model building in pharmacometric data analysis.

  19. Linking collection of stormwater runoff to managed aquifer recharge using a geographic information system and hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Teo, E. K.; Young, K. S.; Beganskas, S.; Fisher, A. T.; Lozano, S.; Weir, W. B.; Harmon, R. E.

    2016-12-01

    We are completing a regional analysis of Santa Cruz and northern Monterey Counties, CA to assess conditions for using distributed stormwater collection to support managed aquifer recharge (DSC-MAR). DSC-MAR constitutes an important component in a portfolio of innovative techniques being developed in order to improve groundwater management and to adapt to prolonged drought and changes in climate and anthropogenic water demands by increasing recharge during and soon after winter precipitation events, the season when excess water is most abundant. Our analyses focus specifically on the distributed collection of stormwater runoff, a source that has historically been treated as a nuisance, with the goal of infiltrating ≥100 ac-ft/yr within individual projects. The first part of this project is a spatial analysis, using a geographic information system to combine surface and subsurface data. There is complete spatial coverage for most surface data (elevation, soil and bedrock properties, land use) for the full study region ( 1,400 km2), but subsurface data (aquifer distribution, properties, and storage space) are available for only 43% of the region. Sites that are most suitable for DSC-MAR have high soil infiltration capacity, are well-connected to an underlying aquifer with good transmissive and storage properties, and have space to receive water. Based on surface data, 35% of the region is suitable for MAR (480 km2). In contrast, 14% of the area for which both surface and subsurface datasets are available is suitable for MAR (84 km2). We have assessed the availability of hillslope runoff for collection in support of MAR using a distributed hydrologic model (PRMS) and a catalog of historical, high-resolution climate data. In the simulations, enclosed topographic basins are divided into hydrologic response units (HRUs) having an area of 25 to 250 acres (0.1 to 1 km2). Simulations of the San Lorenzo River Basin (SLRB), northern Santa Cruz County, suggest that during

  20. Collection Directions: The Evolution of Library Collections and Collecting

    ERIC Educational Resources Information Center

    Dempsey, Lorcan; Malpas, Constance; Lavoie, Brian

    2014-01-01

    This article takes a broad view of the evolution of collecting behaviors in a network environment and suggests some future directions based on various simple models. The authors look at the changing dynamics of print collections, at the greater engagement with research and learning behaviors, and at trends in scholarly communication. The goal is…

  1. Collection Directions: The Evolution of Library Collections and Collecting

    ERIC Educational Resources Information Center

    Dempsey, Lorcan; Malpas, Constance; Lavoie, Brian

    2014-01-01

    This article takes a broad view of the evolution of collecting behaviors in a network environment and suggests some future directions based on various simple models. The authors look at the changing dynamics of print collections, at the greater engagement with research and learning behaviors, and at trends in scholarly communication. The goal is…

  2. Calcium dynamics and homeostasis in a mathematical model of the principal cell of the cortical collecting tubule

    PubMed Central

    1996-01-01

    Calcium (Ca) dynamics are incorporated into a mathematical model of the principal cell in the cortical collecting tubule developed earlier in Strieter et al. (1992a. Am. J Physiol. 263:F1063-1075). The Ca components are modeled after the Othmer-Tang model for IP(3)-sensitive calcium channels (1993, in Experimental and Theoretical Advances in Biological Pattern Formation, 295-319). There are IP(3)-sensitive Ca channels and ATP-driven pumps on the membrane of the endoplasmic reticulum. Calcium enters the cell passively down its electrochemical gradient. A Ca pump and Na/Ca exchange in the basolateral membrane are responsible for the extrusion of cytoplasmic calcium. Na/Ca exchange can also operate in reverse mode to transport Ca into the cell. Regulatory effects of cytoplasmic Ca on the apical Na channels are modeled after experimental data that indicate apical Na permeability varies inversely with cytoplasmic Ca concentration. Numerical results on changes in intracellular Ca caused by decreasing NaCl in the bath and the lumen are similar to those from experiments in Bourdeau and Lau (1990. Am. J Physiol. 258:F1497-1503). This match of simulation and experiment requires the synergistic action of the Na/Ca exchanger and the Ca regulated apical Na permeability. In a homogeneous medium, cytoplasmic Ca becomes oscillatory when extracellular Na is severely decreased, as observed in experiments of cultured principal cells (Koster, H., C. van Os and R. Bindels. 1993. Kidney Int.43:828-836). This essentially pathological situation arises because the hyperpolarization of membrane potential caused by Na-free medium increases Ca influx into the cell, while the Na/Ca exchanger is inactivated by the low extracellular Na and can no longer move Ca out of the cell effectively. The raising of the total amount of intracellular Ca induces oscillatory Ca movement between the cytoplasm and the endoplasmic reticulum. Ca homeostasis is investigated under the condition of severe

  3. A model for the implementation of a two-shift municipal solid waste and recyclable material collection plan that offers greater convenience to residents.

    PubMed

    Lin, Hung-Yueh; Tsai, Zong-Pei; Chen, Guan-Hwa; Kao, Jehng-Jung

    2011-01-01

    Separating recyclables from municipal solid waste (MSW) before collection reduces not only the quantity of MSW that needs to be treated but also the depletion of resources. However, the participation of residents is essential for a successful recycling program, and the level of participation usually depends on the degree of convenience associated with accessing recycling collection points. The residential accessing convenience (RAC) of a collection plan is determined by the proximity of its collection points to all residents and its temporal flexibility in response to resident requirements. The degree of proximity to all residents is determined by using a coverage radius that represents the maximum distance residents need to travel to access a recycling point. The temporal flexibility is assessed by the availability of proximal recycling points at times suitable to the lifestyles of all residents concerned. In Taiwan, the MSW collection is implemented at fixed locations and at fixed times. Residents must deposit their garbage directly into the collection vehicle. To facilitate the assignment of collection vehicles and to encourage residents to thoroughly separate their recyclables, in Taiwan MSW and recyclable materials are usually collected at the same time by different vehicles. A heuristic procedure including an integer programming (IP) model and ant colony optimization (ACO) is explored in this study to determine an efficient two-shift collection plan that takes into account RAC factors. The IP model has been developed to determine convenient collection points in each shift on the basis of proximity, and then the ACO algorithm is applied to determine the most effective routing plan of each shift. With the use of a case study involving a city in Taiwan, this study has demonstrated that collection plans generated using the above procedure are superior to current collection plans on the basis of proximity and total collection distance.

  4. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    SciTech Connect

    Rogge, Nicky; De Jaeger, Simon

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Complexity in local waste management calls for more in depth efficiency analysis. Black-Right-Pointing-Pointer Shared-input Data Envelopment Analysis can provide solution. Black-Right-Pointing-Pointer Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted 'shared-input' version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  5. Can Government Be Self-Organized? A Mathematical Model of the Collective Social Organization of Ancient Teotihuacan, Central Mexico

    PubMed Central

    Froese, Tom; Gershenson, Carlos; Manzanilla, Linda R.

    2014-01-01

    Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city’s origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city’s hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city’s eventual disintegration. PMID:25303308

  6. Can government be self-organized? A mathematical model of the collective social organization of ancient Teotihuacan, central Mexico.

    PubMed

    Froese, Tom; Gershenson, Carlos; Manzanilla, Linda R

    2014-01-01

    Teotihuacan was the first urban civilization of Mesoamerica and one of the largest of the ancient world. Following a tradition in archaeology to equate social complexity with centralized hierarchy, it is widely believed that the city's origin and growth was controlled by a lineage of powerful individuals. However, much data is indicative of a government of co-rulers, and artistic traditions expressed an egalitarian ideology. Yet this alternative keeps being marginalized because the problems of collective action make it difficult to conceive how such a coalition could have functioned in principle. We therefore devised a mathematical model of the city's hypothetical network of representatives as a formal proof of concept that widespread cooperation was realizable in a fully distributed manner. In the model, decisions become self-organized into globally optimal configurations even though local representatives behave and modify their relations in a rational and selfish manner. This self-optimization crucially depends on occasional communal interruptions of normal activity, and it is impeded when sections of the network are too independent. We relate these insights to theories about community-wide rituals at Teotihuacan and the city's eventual disintegration.

  7. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    NASA Astrophysics Data System (ADS)

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; Bossert, D. J.; Doyle, B. L.

    2017-05-01

    The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

  8. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    DOE PAGES

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; ...

    2017-03-24

    Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holesmore » recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less

  9. Analysis of Diffusion-Controlled Dissolution from Polydisperse Collections of Drug Particles with an Assessed Mathematical Model.

    PubMed

    Wang, Yanxing; Abrahamsson, Bertil; Lindfors, Lennart; Brasseur, James G

    2015-09-01

    We introduce a "hierarchical" modeling strategy designed to be systematically extensible to increase the detail of dissolution predictions from polydisperse collections of drug particles and to be placed on firm mathematical and physical foundations with diffusion-dominated dissolution at its core to predict dissolution and the evolution of particle size distribution. We assess the model with experimental data and demonstrate higher accuracy by treating the polydisperse nature of dissolution. A level in the hierarchy is applied to study elements of diffusion-driven dissolution, in particular the role of particle-size distribution width with varying dose level and the influences of "confinement" on the process of dissolution. Confinement influences surface molecular flux, directly by the increase in bulk concentration and indirectly by the relative volume of particles to container. We find that the dissolution process can be broadly categorized within three "regimes" defined by the ratio of total concentration Ctot to solubility CS . Sink conditions apply in the first regime, when C tot /CS<∼0.1. When C tot /CS>∼5 (regime 3) dissolution is dominated by confinement and normalized saturation time follows a simple power law relationship. Regime 2 is characterized by a "saturation singularity" where dissolution is sensitive to both initial particle size distribution and confinement.

  10. Modeling the influence of string collective phenomena on the long range rapidity correlations between the transverse momentum and the multiplicities

    SciTech Connect

    Andronov, E.; Vechernin, V.

    2016-01-22

    The long-range rapidity correlations between the multiplicities (n-n) and the transverse momentum and the multiplicity (pT-n) of charge particles are analyzed in the framework of the simple string inspired model with two types of sources. The sources of the first type correspond to the initial strings formed in a hadronic collision. The sources of the second type imitate the appearance of the emitters of a new kind resulting from interaction (fusion) of the initial strings. The model enabled to describe effectively the influence of the string fusion effects on the strength both the n-n and the pT-n correlations. It was found that in the region, where the process of string fusion comes into play, the calculation results predict the non-monotonic behaviour of the n-n and pT-n correlation coefficients with the growth of the mean number of initial strings, i.e. with the increase of the collision centrality. It was shown also that the increase of the event-by-event fluctuation in the number of primary strings leads to the change of the pT-n correlation sign from negative to positive. One can try to search these signatures of string collective phenomena in interactions of various nuclei at different energies varying the class of collision centrality and its width.

  11. Method to Rapidly Collect Thousands of Velocity Observations to Validate Million-Element 2D Hydrodynamic Models

    NASA Astrophysics Data System (ADS)

    Barker, J. R.; Pasternack, G. B.; Bratovich, P.; Massa, D.; Reedy, G.; Johnson, T.

    2010-12-01

    Two-dimensional (depth-averaged) hydrodynamic models have existed for decades and are used to study a variety of hydrogeomorphic processes as well as to design river rehabilitation projects. Rapid computer and coding advances are revolutionizing the size and detail of 2D models. Meanwhile, advances in topo mapping and environmental informatics are providing the data inputs to drive large, detailed simulations. Million-element computational meshes are in hand. With simulations of this size and detail, the primary challenge has shifted to finding rapid and inexpensive means for testing model predictions against observations. Standard methods for collecting velocity data include boat-mounted ADCP and point-based sensors on boats or wading rods. These methods are labor intensive and often limited to a narrow flow range. Also, they generate small datasets at a few cross-sections, which is inadequate to characterize the statistical structure of the relation between predictions and observations. Drawing on the long-standing oceanographic method of using drogues to track water currents, previous studies have demonstrated the potential of small dGPS units to obtain surface velocity in rivers. However, dGPS is too inaccurate to test 2D models. Also, there is financial risk in losing drogues in rough currents. In this study, an RTK GPS unit was mounted onto a manned whitewater kayak. The boater positioned himself into the current and used floating debris to maintain a speed and heading consistent with the ambient surface flow field. RTK GPS measurements were taken ever 5 sec. From these positions, a 2D velocity vector was obtained. The method was tested over ~20 km of the lower Yuba River in California in flows ranging from 500-5000 cfs, yielding 5816 observations. To compare velocity magnitude against the 2D model-predicted depth-averaged value, kayak-based surface values were scaled down by an optimized constant (0.72), which had no negative effect on regression analysis

  12. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    NASA Astrophysics Data System (ADS)

    Xiang, Lin

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8 th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on natural selection implemented in a charter school of a major California city during spring semester of 2009. Eight 8th grade students, two boys and six girls, participated in this study. All of them were low socioeconomic status (SES). English was a second language for all of them, but they had been identified as fluent English speakers at least a year before the study. None of them had learned either natural selection or programming before the study. The study spanned over 7 weeks and was comprised of two study phases. In phase one the subject students learned natural selection in science classroom and how to do programming in NetLogo, an ABPM tool, in a computer lab; in phase two, the subject students were asked to program a simulation of adaptation based on the natural selection model in NetLogo. Both qualitative and quantitative data were collected in this study. The data resources included (1) pre and post test questionnaire, (2) student in-class worksheet, (3) programming planning sheet, (4) code-conception matching sheet, (5) student NetLogo projects, (6) videotaped programming processes, (7) final interview, and (8) investigator's field notes. Both qualitative and quantitative approaches were applied to analyze the gathered data. The findings suggested that students made progress on understanding adaptation phenomena and natural selection at the end of ABPM-supported MBI learning but the progress was limited. These students still held some misconceptions in their conceptual models, such as the idea that animals need to "learn" to adapt into the environment. Besides, their models of natural selection appeared to be

  13. The Collective Impact Model and Its Potential for Health Promotion: Overview and Case Study of a Healthy Retail Initiative in San Francisco

    ERIC Educational Resources Information Center

    Flood, Johnna; Minkler, Meredith; Lavery, Susana Hennessey; Estrada, Jessica; Falbe, Jennifer

    2015-01-01

    As resources for health promotion become more constricted, it is increasingly important to collaborate across sectors, including the private sector. Although many excellent models for cross-sector collaboration have shown promise in the health field, collective impact (CI), an emerging model for creating larger scale change, has yet to receive…

  14. The Eastern Iowa Community College District Data Collection Matrix Model: A Tool for Functional Area and Program Evaluation. AIR 1990 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Coker, Dana Rosenberg; Friedel, Janice Nahra

    A matrix model for the collection, management, and utilization of data was developed at Eastern Iowa Community College District, (Davenport, Iowa) for evaluating institutional effectiveness. The model was examined in relation to various assessment instruments and the evaluation of functional areas and programs. Surveys of six different target…

  15. The Collective Impact Model and Its Potential for Health Promotion: Overview and Case Study of a Healthy Retail Initiative in San Francisco

    ERIC Educational Resources Information Center

    Flood, Johnna; Minkler, Meredith; Lavery, Susana Hennessey; Estrada, Jessica; Falbe, Jennifer

    2015-01-01

    As resources for health promotion become more constricted, it is increasingly important to collaborate across sectors, including the private sector. Although many excellent models for cross-sector collaboration have shown promise in the health field, collective impact (CI), an emerging model for creating larger scale change, has yet to receive…

  16. Collecting apparatus

    DOEpatents

    Duncan, Charles P.

    1983-01-01

    An improved collecting apparatus for small aquatic or airborne organisms such as plankton, larval fish, insects, etc. The improvement constitutes an apertured removal container within which is retained a collecting bag, and which is secured at the apex of a conical collecting net. Such collectors are towed behind a vessel or vehicle with the open end of the conical net facing forward for trapping the aquatic or airborne organisms within the collecting bag, while allowing the water or air to pass through the apertures in the container. The container is readily removable from the collecting net whereby the collecting bag can be quickly removed and replaced for further sample collection. The collecting bag is provided with means for preventing the bag from being pulled into the container by the water or air flowing therethrough.

  17. Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model.

    PubMed

    Carey, Shawn P; Starchenko, Alina; McGregor, Alexandra L; Reinhart-King, Cynthia A

    2013-06-01

    Solid tumors consist of genetically and phenotypically diverse subpopulations of cancer cells with unique capacities for growth, differentiation, and invasion. While the molecular and microenvironmental bases for heterogeneity are increasingly appreciated, the outcomes of such intratumor heterogeneity, particularly in the context of tumor invasion and metastasis, remain poorly understood. To study heterotypic cell-cell interactions and elucidate the biological consequences of intratumor heterogeneity, we developed a tissue-engineered multicellular spheroid (MCS) co-culture model that recapitulates the cellular diversity and fully three-dimensional cell-cell and cell-matrix interactions that characterize human carcinomas. We found that "invasion-competent" malignant cells induced the collective invasion of otherwise "invasion-incompetent" epithelial cells, and that these two cell types consistently exhibited distinct leader and follower roles during invasion. Analysis of extracellular matrix (ECM) microarchitecture revealed that malignant cell invasion was accompanied by extensive ECM remodeling including matrix alignment and proteolytic track-making. Inhibition of cell contractility- and proteolysis-mediated matrix reorganization prevented leader-follower behavior and malignant cell-induced epithelial cell invasion. These results indicate that heterogeneous subpopulations within a tumor may possess specialized roles during tumor progression and suggest that complex interactions among the various subpopulations of cancer cells within a tumor may regulate critical aspects of tumor biology and affect clinical outcome.

  18. An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology.

    PubMed

    Marchese Robinson, Richard L; Cronin, Mark T D; Richarz, Andrea-Nicole; Rallo, Robert

    2015-01-01

    Analysis of trends in nanotoxicology data and the development of data driven models for nanotoxicity is facilitated by the reporting of data using a standardised electronic format. ISA-TAB-Nano has been proposed as such a format. However, in order to build useful datasets according to this format, a variety of issues has to be addressed. These issues include questions regarding exactly which (meta)data to report and how to report them. The current article discusses some of the challenges associated with the use of ISA-TAB-Nano and presents a set of resources designed to facilitate the manual creation of ISA-TAB-Nano datasets from the nanotoxicology literature. These resources were developed within the context of the NanoPUZZLES EU project and include data collection templates, corresponding business rules that extend the generic ISA-TAB-Nano specification as well as Python code to facilitate parsing and integration of these datasets within other nanoinformatics resources. The use of these resources is illustrated by a "Toy Dataset" presented in the Supporting Information. The strengths and weaknesses of the resources are discussed along with possible future developments.

  19. An Efficient Method to Create Digital Terrain Models from Point Clouds Collected by Mobile LiDAR Systems

    NASA Astrophysics Data System (ADS)

    Gézero, L.; Antunes, C.

    2017-05-01

    The digital terrain models (DTM) assume an essential role in all types of road maintenance, water supply and sanitation projects. The demand of such information is more significant in developing countries, where the lack of infrastructures is higher. In recent years, the use of Mobile LiDAR Systems (MLS) proved to be a very efficient technique in the acquisition of precise and dense point clouds. These point clouds can be a solution to obtain the data for the production of DTM in remote areas, due mainly to the safety, precision, speed of acquisition and the detail of the information gathered. However, the point clouds filtering and algorithms to separate "terrain points" from "no terrain points", quickly and consistently, remain a challenge that has caught the interest of researchers. This work presents a method to create the DTM from point clouds collected by MLS. The method is based in two interactive steps. The first step of the process allows reducing the cloud point to a set of points that represent the terrain's shape, being the distance between points inversely proportional to the terrain variation. The second step is based on the Delaunay triangulation of the points resulting from the first step. The achieved results encourage a wider use of this technology as a solution for large scale DTM production in remote areas.

  20. An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology

    PubMed Central

    Marchese Robinson, Richard L; Richarz, Andrea-Nicole; Rallo, Robert

    2015-01-01

    Summary Analysis of trends in nanotoxicology data and the development of data driven models for nanotoxicity is facilitated by the reporting of data using a standardised electronic format. ISA-TAB-Nano has been proposed as such a format. However, in order to build useful datasets according to this format, a variety of issues has to be addressed. These issues include questions regarding exactly which (meta)data to report and how to report them. The current article discusses some of the challenges associated with the use of ISA-TAB-Nano and presents a set of resources designed to facilitate the manual creation of ISA-TAB-Nano datasets from the nanotoxicology literature. These resources were developed within the context of the NanoPUZZLES EU project and include data collection templates, corresponding business rules that extend the generic ISA-TAB-Nano specification as well as Python code to facilitate parsing and integration of these datasets within other nanoinformatics resources. The use of these resources is illustrated by a “Toy Dataset” presented in the Supporting Information. The strengths and weaknesses of the resources are discussed along with possible future developments. PMID:26665069

  1. Collective pinning model of the mixed state in YBa2Cu3O7-δ : Critical currents and flux creep

    NASA Astrophysics Data System (ADS)

    Farmer, J. W.; Cowan, D. L.; Kornecki, M.

    2008-02-01

    Magnetic hysteresis and flux creep measurements in single crystal samples of YBa2Cu3O7-δ (YBCO) are presented for a wide range of B , T phase space. Some of these samples can be described as weakly or collectively pinned. For these, over a large portion of this phase space, the flux creep can be described in terms of thermally activated single-fluxoid motion. A simple model based on maximizing the pinning energy of a fluxoid segment provides a good, semiquantitative picture of the low-temperature data, where the experimentally measured critical current density j is proportional to 1/T and the activation barrier height is proportional to j-μ , where μ=1 . In this model individual fluxoids are pinned by stochastic fluctuations in defect concentration, and are driven over the pinning barriers by critical currents and thermal activation. Incorporating flux lattice elasticity into this simple model leads to new predictions for the low-temperature data and allows the simple model to be extended to higher temperature. There are two distinct effects, both of which can be put in the form of effective current densities. One effective current density js arises from direct fluxoid-fluxoid repulsion, and the second effective current density jr arises from fluxoid relaxation. In YBCO at 7K and 2T , where the measured critical current density is j=8.9×109A/m2 , we find js=0.57×109A/m2(6%) and jr=-2.1×109A/m2 (-20%) . We present a discussion of their origin that leads to plausible temperature and field dependences. The model accounts for the rapid drop of j(T) with increasing temperature, the peak effect in j(B) at high temperature, and the temperature and field dependence of the “critical exponent” μ . Thermal fluxoid vibrations play an important role in the pinning, and we find effects consistent with calculations in the literature. The model postulates that fluxoid motion takes place by hopping in segments on a characteristic length scale lmodel . In the model we

  2. Collections Conservation.

    ERIC Educational Resources Information Center

    DeCandido, Robert

    Collections conservation is an approach to the preservation treatment of books and book-like materials that is conceptualized and organized in terms of large groups of materials. This guide is intended to enable a library to evaluate its current collections conservation activities. The introduction describes collections conservation and gives…

  3. Modeling the inflammatory response in the hypothalamus ensuing heat stroke: iterative cycle of model calibration, identifiability analysis, experimental design and data collection.

    PubMed

    Klett, Hagen; Rodriguez-Fernandez, Maria; Dineen, Shauna; Leon, Lisa R; Timmer, Jens; Doyle, Francis J

    2015-02-01

    Heat Stroke (HS) is a life-threatening illness caused by prolonged exposure to heat that causes severe hyperthermia and nervous system abnormalities. The long term consequences of HS are poorly understood and deeper insight is required to find possible treatment strategies. Elevated pro- and anti-inflammatory cytokines during HS recovery suggest to play a major role in the immune response. In this study, we developed a mathematical model to understand the interactions and dynamics of cytokines in the hypothalamus, the main thermoregulatory center in the brain. Uncertainty and identifiability analysis of the calibrated model parameters revealed non-identifiable parameters due to the limited amount of data. To overcome the lack of identifiability of the parameters, an iterative cycle of optimal experimental design, data collection, re-calibration and model reduction was applied and further informative experiments were suggested. Additionally, a new method of approximating the prior distribution of the parameters for Bayesian optimal experimental design based on the profile likelihood is presented.

  4. Methods for Using Ground-Water Model Predictions to Guide Hydrogeologic Data Collection, with Applications to the Death Valley Regional Ground-Water Flow System

    SciTech Connect

    Claire R. Tiedeman; M.C. Hill; F.A. D'Agnese; C.C. Faunt

    2001-07-31

    Calibrated models of ground-water systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions, by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow-system features that can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new ''value of improved information'' (VOII) method, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. The PSS and VOII methods are demonstrated using a model of the Death Valley regional ground-water flow system. The predictions of interest are advective-transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated, the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow-system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  5. Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system

    USGS Publications Warehouse

    Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2003-01-01

    Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  6. MODEL IMPLEMENTATION TO EVALUATE THE COLLECTIVE FUTURE RADIONUCLIDE RELEASES FROM MULTIPLE FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hiergesell, R.; Smith, F.; Hamm, L.; Phifer, M.; Swingle, R.

    2009-12-15

    A comprehensive Composite Analysis (CA) has been performed considering 152 sources of residual radioactive material at the Savannah River Site (SRS). As part of the CA a model was developed to perform deterministic base case calculations using the commercial GoldSim software. The model treated transport and decay of radionuclides as they are released at the source location and transported through the source region, vadose zone and aquifer to stream outcrops and from there to the Savannah River. A dose to the public was calculated assuming recreational use of stream water and residential use of river water. The specific results from the GoldSim modeling evaluation conducted as part of the CA indicate that the collective maximum dose resulting from the release of radionuclides from all 152 anticipated SRS End State sources of residual radionuclides demonstrate that maximum exposures expected to occur to any offsite MOP will not approach the 300 uSv/yr (30 mrem/yr) dose constraint, and in fact are currently estimated to be only 10% of this. For each of the POA's evaluated, the highest cumulative dose is realized at the Lower Three Runs POA and is calculated to be 29.7 uSv/yr (2.97 mrem/yr). The major dose contributing radionuclide for all of the POA's, with the exception of Upper Three Runs, was {sup 137}Cs in the contaminated streambed sediments. In Upper Three Runs {sup 237}Np from the H-Area Canyon Building was the major dose contributing radionuclide. The major exposure pathway for the SRS streams (where the Recreational Scenario was evaluated) was by the ingestion of fish. In the Savannah River, where the Residential Scenario was evaluated, ingestion of vegetation was the dominant exposure pathway. The uncertainty evaluation lends added assurance to the conclusion that the 30 mrem/yr dose constraint will not be exceeded, in that even at the 95th Percentile, this performance measure is not expected to be exceeded. It must also be added that these conclusions

  7. Collection Mapping and Collection Development.

    ERIC Educational Resources Information Center

    Murray, William; And Others

    1985-01-01

    Describes the use of collection mapping to assess media collections of Aurora, Colorado, Public Schools. Case studies of elementary, middle, and high school media centers describe materials selection and weeding and identify philosophies that library collections should support school curriculum, and teacher-library media specialist cooperation in…

  8. Collection Mapping and Collection Development.

    ERIC Educational Resources Information Center

    Murray, William; And Others

    1985-01-01

    Describes the use of collection mapping to assess media collections of Aurora, Colorado, Public Schools. Case studies of elementary, middle, and high school media centers describe materials selection and weeding and identify philosophies that library collections should support school curriculum, and teacher-library media specialist cooperation in…

  9. Proposal of a new model to improve the collection of small WEEE: a pilot project for the recovery and recycling of toys.

    PubMed

    Solé, Miquel; Watson, Jenna; Puig, Rita; Fullana-i-Palmer, Pere

    2012-11-01

    A new collection model was designed and tested in Catalonia (Spain) to foster the separate collection and recycling of electrical and electronic toys, with the participation of selected primary and secondary schools, as well as waste collection points and municipalities. This project approach is very original and important because small household WEEE has low rates of collection (16-21% WEEE within the EU or 5-7% WEEE in Spain) and no research on new approaches to enhance the collection of small WEEE is found in the literature. The project was successful in achieving enhanced toys collection and recycling rates, which went up from the national Spanish average of 0.5% toys before the project to 1.9 and 6% toys during the two project years, respectively. The environmental benefits of the campaign were calculated through a life-cycle approach, accounting for the avoided impact afforded by the reuse of the toys and the recycling of the valuable materials contained therein (such as metals, batteries and circuit boards) and subtracting the additional environmental burdens associated with the establishment of the collection campaign.

  10. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: drawbacks and potential direction.

    PubMed

    Sun, Yue; Yue, Dongbei; Li, Rundong; Yang, Ting; Liu, Shiliang

    2015-01-01

    In China, municipal solid waste (MSW) is primarily treated by landfilling. Landfill gas (LFG) collection effectively reduces methane emission from MSW landfills. An accurate system of LFG collection is important in landfill planning, design, and operation. However, China has not developed such systems. In this study, the efficiency of methane collection is calculated in three Chinese landfills with different collection systems (A: vertical wells for MSW before 2010; combined horizontal trenches and under-membrane pipes for MSW from 2011 onwards; B: combined horizontal trenches and vertical wells; C: vertical wells only). This efficiency was computed by dividing the quantity of methane obtained from landfill operation records by the quantity estimated based on the LandGEM model. Results show that the collection efficiencies of landfills with vertical wells and/or horizontal pipes ranged from 8.3% to 27.9%, whereas those of a system equipped with geomembrane reached 65.3%. The poor performance of the landfills was attributed to the open burning of early-stage LFG, LFG release from cracks in high-density polyethylene covers, and high levels of leachate within a landfill site. Therefore, this study proposes an integrated LFG collection system that can remove leachate and collect gas from landfills that accept waste with high moisture content.

  11. Jay's Collectibles

    ERIC Educational Resources Information Center

    Cappel, James J.; Gillman, Jason R., Jr.

    2011-01-01

    There is growing interest in collectibles of many types, as indicated by the popularity of television programs such as the History Channel's "Pawn Stars" and "American Pickers" and the Public Broadcasting Service's "Antiques Road Show." The availability of online auction sites such as eBay has enabled many people to collect items of interest as a…

  12. Collective Enumeration

    ERIC Educational Resources Information Center

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2013-01-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a…

  13. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  14. Collective Enumeration

    ERIC Educational Resources Information Center

    Bahrami, Bahador; Didino, Daniele; Frith, Chris; Butterworth, Brian; Rees, Geraint

    2013-01-01

    Many joint decisions in everyday life (e.g., Which bar is less crowded?) depend on approximate enumeration, but very little is known about the psychological characteristics of counting together. Here we systematically investigated collective approximate enumeration. Pairs of participants made individual and collective enumeration judgments in a…

  15. Jay's Collectibles

    ERIC Educational Resources Information Center

    Cappel, James J.; Gillman, Jason R., Jr.

    2011-01-01

    There is growing interest in collectibles of many types, as indicated by the popularity of television programs such as the History Channel's "Pawn Stars" and "American Pickers" and the Public Broadcasting Service's "Antiques Road Show." The availability of online auction sites such as eBay has enabled many people to collect items of interest as a…

  16. Calculation of the number of collective degrees of freedom and of the admissible cluster size for isotherms in the Van-der-Waals model in supercritical states

    NASA Astrophysics Data System (ADS)

    Maslov, V. P.

    2014-10-01

    In this paper, general questions concerning equilibrium and non-equilibrium states are discussed. Using the Van-der-Waals model, the relationship between Gentile statistics and non-ideal gas is demonstrated. The second virial coefficient is expressed in terms of collective degrees of freedom. The admissible cluster size at given temperature is determined.

  17. EVALUATION OF THE CMB AND PMF MODELS USING ORGANIC MOLECULAR MARKERS IN FINE PARTICULATE MATTER COLLECTED DURING THE PITTSBURGH AIR QUALITY STUDY

    EPA Science Inventory

    This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...

  18. EVALUATION OF THE CMB AND PMF MODELS USING ORGANIC MOLECULAR MARKERS IN FINE PARTICULATE MATTER COLLECTED DURING THE PITTSBURGH AIR QUALITY STUDY

    EPA Science Inventory

    This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...

  19. Cost-effectiveness of an HPV self-collection campaign in Uganda: comparing models for delivery of cervical cancer screening in a low-income setting.

    PubMed

    Campos, Nicole G; Tsu, Vivien; Jeronimo, Jose; Njama-Meya, Denise; Mvundura, Mercy; Kim, Jane J

    2017-09-01

    With the availability of a low-cost HPV DNA test that can be administered by either a healthcare provider or a woman herself, programme planners require information on the costs and cost-effectiveness of implementing cervical cancer screening programmes in low-resource settings under different models of healthcare delivery. Using data from the START-UP demonstration project and a micro-costing approach, we estimated the health and economic impact of once-in-a-lifetime HPV self-collection campaign relative to clinic-based provider-collection of HPV specimens in Uganda. We used an individual-based Monte Carlo simulation model of the natural history of HPV and cervical cancer to estimate lifetime health and economic outcomes associated with screening with HPV DNA testing once in a lifetime (clinic-based provider-collection vs a self-collection campaign). Test performance and cost data were obtained from the START-UP demonstration project using a micro-costing approach. Model outcomes included lifetime risk of cervical cancer, total lifetime costs (in 2011 international dollars [I$]), and life expectancy. Cost-effectiveness ratios were expressed using incremental cost-effectiveness ratios (ICERs). When both strategies achieved 75% population coverage, ICERs were below Uganda's per capita GDP (self-collection: I$80 per year of life saved [YLS]; provider-collection: I$120 per YLS). When the self-collection campaign achieved coverage gains of 15-20%, it was more effective than provider-collection, and had a lower ICER unless coverage with both strategies was 50% or less. Findings were sensitive to cryotherapy compliance among screen-positive women and relative HPV test performance. The primary limitation of this analysis is that self-collection costs are based on a hypothetical campaign but are based on unit costs from Uganda. Once-in-a-lifetime screening with HPV self-collection may be very cost-effective and reduce cervical cancer risk by > 20% if coverage is high

  20. Study on Commercialization of Biogasification Systems in Ishikari Bay New Port Area - Proposal of Estimation Method of Collectable Amount of Food Waste by using Binary Logit Model -

    NASA Astrophysics Data System (ADS)

    Watanabe, Sho; Furuichi, Toru; Ishii, Kazuei

    This study proposed an estimation method for collectable amount of food waste considering the food waste generator's cooperation ratio ant the amount of food waste generation, and clarified the factors influencing the collectable amount of food waste. In our method, the cooperation ratio was calculated by using the binary logit model which is often used for the traffic multiple choice question. In order to develop a more precise binary logit model, the factors influencing on the cooperation ratio were extracted by a questionnaire survey asking food waste generator's intention, and the preference investigation was then conducted at the second step. As a result, the collectable amount of food waste was estimated to be 72 [t/day] in the Ishikari bay new port area under a condition of current collection system by using our method. In addition, the most critical factor influencing on the collectable amount of food waste was the treatment fee for households, and was the permitted mixture degree of improper materials for retail trade and restaurant businesses

  1. Micrometeorite Collecting

    ERIC Educational Resources Information Center

    Toubes, Joe; Hoff, Darrel

    1974-01-01

    Describes how to collect micrometeorites and suggests a number of related activities such as determining the number of meteors entering the atmosphere and determining the composition of the micrometeorites. (BR)

  2. Micrometeorite Collecting

    ERIC Educational Resources Information Center

    Toubes, Joe; Hoff, Darrel

    1974-01-01

    Describes how to collect micrometeorites and suggests a number of related activities such as determining the number of meteors entering the atmosphere and determining the composition of the micrometeorites. (BR)

  3. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor

    USDA-ARS?s Scientific Manuscript database

    To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 14,739 SNPs. The SNPs were produced using a highly multiplexed g...

  4. Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches.

    PubMed

    Plank, Michael J; Simpson, Matthew J

    2012-11-07

    Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice-based model is that a proliferative population will always eventually fill the lattice. Here, we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental set-ups. Lattice-free simulation results are compared with these mean-field descriptions and with a corresponding lattice-based model. Data from a proliferation experiment are used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.

  5. Response surface modeling of photogenerated charge collection of silver-based plasmonic dye-sensitized solar cell using central composite design experiments

    NASA Astrophysics Data System (ADS)

    Buda, Samaila; Shafie, Suhaidi; Rashid, Suraya Abdul; Jaafar, Haslina; Khalifa, Ali

    In this study, silver nanoparticles (AgNP) have been prepared and successfully incorporated in TiO2 nanopowder and used in dye-sensitized solar cell as photoanode. The effect of the AgNP concentration and photoanode film thickness on the charge collection efficiency of a photogenerated electron at the external circuit was investigated using response surface methodology. A multiple regression analysis of second order polynomial was employed to fit the experimental data and an empirical model was subsequently developed using analysis of variance (ANOVA). The results show that two independent variables (AgNP concentration and photoanode film thickness) have significantly influenced the charge collection efficiency of the silver-based plasmonic DSSC. An optimum charge collection of 64.3% was obtained at AgNP concentration and film thickness of 5%wt and 10 μm, respectively.

  6. Investment into the future of microbial resources: culture collection funding models and BRC business plans for biological resource centres.

    PubMed

    Smith, David; McCluskey, Kevin; Stackebrandt, Erko

    2014-01-01

    Through their long history of public service, diverse microbial Biological Resource Centres (mBRCs) have made myriad contributions to society and science. They have enabled the maintenance of specimens isolated before antibiotics, made available strains showing the development and change of pathogenicity toward animals, humans and plants, and have maintained and provided reference strains to ensure quality and reproducibility of science. However, this has not been achieved without considerable financial commitment. Different collections have unique histories and their support is often tied to their origins. However many collections have grown to serve large constituencies and need to develop novel funding mechanisms. Moreover, several international initiatives have described mBRCs as a factor in economic development and have led to the increased professionalism among mBRCs.

  7. Blood Collection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The method that is used for the collection, storage and real-time analysis of blood and other bodily fluids has been licensed to DBCD, Inc. by NASA. The result of this patent licensing agreement has been the development of a commercial product that can provide serum or plasma from whole blood volumes of 20 microliters to 4 milliliters. The device has a fibrous filter with a pore size of less than about 3 microns, and is coated with a mixture of mannitol and plasma fraction protein. The coating causes the cellular fraction to be trapped by the small pores, leaving the cellular fraction intact on the fibrous filter while the acellular fraction passes through the filter for collection in unaltered form from the serum sample collection chamber. The method used by this product is useful to NASA for blood analysis on manned space missions.

  8. A New Model for the Brittle-to-Ductile Transition Based on a Collective Dislocation Generation Instability: Theory and Experiment

    DTIC Science & Technology

    2007-11-02

    Khantha 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Univ of Pennsylvania 133 South 36th St ., Suite 300 Philadelphia, PA 19104-3246 9...Khantha, D. P. Pope and V. Vitek, Acta mater. 45, 4687 (1997). 6. C. St . John , Philos. Mag. 32,1193 (1975). 7. H. A. Lipsitt, D. Shechtman and E...Collective Dislocation Generation Instability: Theory and Experiment 1998 5. FUNDING NUMBERS F49620-95-1-0143 6. AUTHOR( S ) V. Vitek, D. P. Pope, M

  9. Numerical simulations on active rod like particles as a model for the collective behavior of Myxococcus xanthus

    NASA Astrophysics Data System (ADS)

    Wigbers, Manon; Thutupalli, Shashi; Shaevitz, Joshua

    2015-03-01

    We study collective behavior of Myxococcus xanthus using numerical simulations. Under starvation conditions, these social bacteria organize into multi-cellular structures, called ``fruiting bodies,'' within which cells sporulate. During the process of fruiting body formation, cells show various collective motion patterns. One of the most striking of these patterns is the so called rippling motility, characterized by standing density waves of reversing bacteria. Similar rippling behaviour is also observed during predatory feeding of the bacteria. Until now, the principles underlying this rippling behavior are not fully elucidated. Analogous to the well studied liquid crystalline phases in condensed matter physics, the ordering of the baceria within these rippling waves resembles a smectic like layered structure. In contrast to active nematic liquid crystalline phases widely studied in recent times, this represents the first known empirical example of an active smectic phase. Inspired by single-cell resolution experimental data of the bacteria, we develop a modelof active rod like particles and use numerical simulations to study the organizing principles that drive the transitions between the various active liquid crystalline phases in the myxobacterial collective behavior.

  10. Collectively Operated Fellow-Initiated Research as a Novel Teaching Model to Bolster Interest and Increase Proficiency in Academic Research.

    PubMed

    Marquis-Gravel, Guillaume; Avram, Robert; Tremblay-Gravel, Maxime; Desplantie, Olivier; Ly, Hung Q; Ducharme, Anique; Jolicoeur, E Marc

    2017-05-01

    Research is a core aspect of training in academic medicine, but fellows face many challenges thwarting their ability to perform clinically meaningful projects. The concept of a multicentre clinical trial collectively operated by fellows, and integrated longitudinally into training, has never been described. In this article, the authors expose the key principles of Collectively Operated Fellow-Initiated Research (COFIR) that they put in place. The aim of COFIR is to introduce a cohort of fellows to the career of clinician-scientists by conducting a longitudinal research project integrated into the curriculum of their clinical fellowship at a level they would not have access to as single individuals. First, fellows must formulate the research hypothesis to generate a patient-oriented research idea that resonates with a large group of trainees. Second, fellows must be actively involved in the multifaceted aspects of research under the mentorship of clinical scientists. Third, fellows must document and disseminate the newly acquired methodological know-how. Finally, fellows must put the safety of patients above any other consideration. Examples of how these principles were applied in a research project are provided in this article; it represents a call to action for fellows to collectively contribute to the production of significant medical research. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  11. Comparative study of spectral diffuse-only and diffuse-specular radiative transfer models and field-collected data in the LWIR

    NASA Astrophysics Data System (ADS)

    Stoyanov, Dimitar M.; Marciniak, Michael A.; Meola, Joseph

    2015-09-01

    The sensitivity of hyper-spectral remote sensing to the directional reflectance of surfaces was studied using both laboratory and field measurements. Namely, the effects of the specular- and diffuse-reflectance properties of a set of eight samples, ranging from high to low in both total reflectance and specularity, on diffuse-only and diffusespecular radiative transfer models in the long-wave infrared (LWIR, 7-14-μm wavelength) were studied. The samples were measured in the field as a set of eight panels, each in two orientations, with surface normal pointing toward zenith and tipped at 45° from zenith. The field-collected data also included down-welling spectral sky radiance at several angles from zenith to the horizon, ground spectral radiance, panel spectral radiances in both orientations, Infragold® spectral radiances in both orientations near each panel location, and panel temperatures. Laboratory measurements included spectral hemispherical, specular and diffuse directional reflectance (HDR, SDR and DDR) for each sample for several reflectance angles with respect to the surface normal. The diffuse-only radiative transfer model used the HDR data, while the diffuse-specular model used the SDR and DDR data. Both calculated spectral reflected and self-emitted radiances for each panel, using the field-collected sky radiance data to avoid uncertainties associated with atmospheric models. The modeled spectral radiances were then compared to the field-collected values to quantify differences in moving from an HDR-based model to an SDR/DDR model in the LWIR for a variety of surface-reflectance types.

  12. Monte Carlo model of the penetration depth for polarization gating spectroscopy: influence of illumination-collection geometry and sample optical properties

    PubMed Central

    Gomes, Andrew J.; Turzhitsky, Vladimir; Ruderman, Sarah; Backman, Vadim

    2013-01-01

    Polarization-gating has been widely used to probe superficial tissue structures, but the penetration depth properties of this method have not been completely elucidated. This study employs a polarization-sensitive Monte Carlo method to characterize the penetration depth statistics of polarization-gating. The analysis demonstrates that the penetration depth depends on both the illumination-collection geometry [illumination-collection area (R) and collection angle (θc)] and on the optical properties of the sample, which include the scattering coefficient (μs), absorption coefficient (μa), anisotropy factor (g), and the type of the phase function. We develop a mathematical expression relating the average penetration depth to the illumination-collection beam properties and optical properties of the medium. Finally, we quantify the sensitivity of the average penetration depth to changes in optical properties for different geometries of illumination and collection. The penetration depth model derived in this study can be applied to optimizing application-specific fiber-optic probes to target a sampling depth of interest with minimal sensitivity to the optical properties of the sample. PMID:22781238

  13. Collecting Artifacts

    ERIC Educational Resources Information Center

    Coffey, Natalie

    2004-01-01

    Fresh out of college, the author had only a handful of items worthy of displaying, which included some fossils she had collected in her paleontology class. She had binders filled with great science information, but kids want to see "real" science, not paper science. Then it came to her: she could fill the shelves with science artifacts with the…

  14. Collecting Artifacts

    ERIC Educational Resources Information Center

    Coffey, Natalie

    2004-01-01

    Fresh out of college, the author had only a handful of items worthy of displaying, which included some fossils she had collected in her paleontology class. She had binders filled with great science information, but kids want to see "real" science, not paper science. Then it came to her: she could fill the shelves with science artifacts with the…

  15. Wastewater Collection.

    ERIC Educational Resources Information Center

    Chatterjee, Samar; And Others

    1978-01-01

    Presents a literature review of wastewater collection systems and components. This review covers: (1) planning, (2) construction; (3) sewer system evaluation; (4) maintenance; (5) rehabilitation; (6) overview prevention; and (7) wastewater pumping. A list of 111 references is also presented. (HM)

  16. Wastewater Collection.

    ERIC Educational Resources Information Center

    Chatterjee, Samar; And Others

    1978-01-01

    Presents a literature review of wastewater collection systems and components. This review covers: (1) planning, (2) construction; (3) sewer system evaluation; (4) maintenance; (5) rehabilitation; (6) overview prevention; and (7) wastewater pumping. A list of 111 references is also presented. (HM)

  17. Using Physical and Computer Simulations of Collective Behaviour as an Introduction to Modelling Concepts for Applied Biologists

    ERIC Educational Resources Information Center

    Rands, Sean A.

    2012-01-01

    Models are an important tool in science: not only do they act as a convenient device for describing a system or problem, but they also act as a conceptual tool for framing and exploring hypotheses. Models, and in particular computer simulations, are also an important education tool for training scientists, but it is difficult to teach students the…

  18. Using Physical and Computer Simulations of Collective Behaviour as an Introduction to Modelling Concepts for Applied Biologists

    ERIC Educational Resources Information Center

    Rands, Sean A.

    2012-01-01

    Models are an important tool in science: not only do they act as a convenient device for describing a system or problem, but they also act as a conceptual tool for framing and exploring hypotheses. Models, and in particular computer simulations, are also an important education tool for training scientists, but it is difficult to teach students the…

  19. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    PubMed

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  20. A Latent Markov Model for the Analysis of Longitudinal Data Collected in Continuous Time: States, Durations, and Transitions

    ERIC Educational Resources Information Center

    Bockenholt, Ulf

    2005-01-01

    Markov models provide a general framework for analyzing and interpreting time dependencies in psychological applications. Recent work extended Markov models to the case of latent states because frequently psychological states are not directly observable and subject to measurement error. This article presents a further generalization of latent…

  1. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  2. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor.

    PubMed

    Wang, Yi-Hong; Upadhyaya, Hari D; Burrell, A Millie; Sahraeian, Sayed Mohammad Ebrahim; Klein, Robert R; Klein, Patricia E

    2013-05-20

    To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 13,390 single-nucleotide polymorphims. The single-nucleotide polymorphisms were produced using a highly multiplexed genotyping-by-sequencing methodology. Genetic structure was established using principal component, Neighbor-Joining phylogenetic, and Bayesian cluster analyses. These analyses indicated that the mini-core collection was structured along both geographic origin and sorghum race classification. Examples of the former were accessions from Southern Africa, East Asia, and Yemen. Examples of the latter were caudatums with widespread geographical distribution, durras from India, and guineas from West Africa. Race bicolor, the most primitive and the least clearly defined sorghum race, clustered among other races and formed only one clear bicolor-centric cluster. Genome-wide linkage disequilibrium analyses showed linkage disequilibrium decayed, on average, within 10-30 kb, whereas the short arm of SBI-06 contained a linkage disequilibrium block of 20.33 Mb, confirming a previous report of low recombination on this chromosome arm. Four smaller but equally significant linkage disequilibrium blocks of 3.5-35.5 kb were detected on chromosomes 1, 2, 9, and 10. We examined the genes encoded within each block to provide a first look at candidates such as homologs of GS3 and FT that may indicate a selective sweep during sorghum domestication.

  3. Failure Orientation in Stretch Forming and Its Correlation with a Polycrystal Plasticity-Based Material Model for a Collection of Highly Formable Sheet Steels

    NASA Astrophysics Data System (ADS)

    An, Yuguo; Boterman, Romke; Atzema, Eisso; Abspoel, Michael; Scholting, Marc

    2016-07-01

    Robust design optimization techniques have been developed in recent years within the automotive industry with the aim of reducing scrap rates and improving process stability in sheet metal forming. These new techniques are able to take process variations and other sources of material scatter into account. Among the many material variables and inputs used, the yield criterion is an important aspect and this is used to describe the plastic behavior of sheet metals. To achieve a reliable output in an optimization study, the yield criterion selected must be representative of material response and scatter. However, simple material models that deviate from real material behavior are often used due to a lack of material data, which is usually a requirement when using more complex models. In the present research, a polycrystal plasticity-based CTFP model has been evaluated in stretch forming for a collection of highly formable sheet steel materials. The results demonstrate that the CTFP model can capture the yielding character and also detect the minor deviations presented by different coils. The stretching factor derived from the CTFP model, as opposed to the work hardening and ductility, has a dominant effect on failure for a collection of materials with similar mechanical properties. Results also indicate that plastic deformation causes texture evolution and, consequently, an evolving yield locus. Such changes in the yield locus during deformation have an effect on stretching and friction calibration in FE simulations.

  4. Collective instabilities

    SciTech Connect

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  5. Collective Electrodynamics

    NASA Astrophysics Data System (ADS)

    Mead, Carver A.

    2002-08-01

    In this book Carver Mead offers a radically new approach to the standard problems of electromagnetic theory. Motivated by the belief that the goal of scientific research should be the simplification and unification of knowledge, he describes a new way of doing electrodynamics--collective electrodynamics--that does not rely on Maxwell's equations, but rather uses the quantum nature of matter as its sole basis. Collective electrodynamics is a way of looking at how electrons interact, based on experiments that tell us about the electrons directly. (As Mead points out, Maxwell had no access to these experiments.) The results Mead derives for standard electromagnetic problems are identical to those found in any text. Collective electrodynamics reveals, however, that quantities that we usually think of as being very different are, in fact, the same--that electromagnetic phenomena are simple and direct manifestations of quantum phenomena. Mead views his approach as a first step toward reformulating quantum concepts in a clear and comprehensible manner. The book is divided into five sections: magnetic interaction of steady currents, propagating waves, electromagnetic energy, radiation in free space, and electromagnetic interaction of atoms. In an engaging preface, Mead tells how his approach to electromagnetic theory was inspired by his interaction with Richard Feynman. Carver A. Mead is the Gordon and Betty Moore Professor of Engineering and Applied Science, Emeritus, at the California Institute of Technology. He won the 1999 Lemelson-MIT Prize for Invention and Innovation.

  6. From the model of El Sistema in Venezuela to current applications: learning and integration through collective music education.

    PubMed

    Majno, Maria

    2012-04-01

    Over the last years, El Sistema--the Venezuelan project started in 1975 and now acknowledged worldwide as the most significant example of collective music education--has inspired a profusion of remarkable initiatives on all continents. From the original impulse by founder José Antonio Abreu, strong social principles of integration are combined with specific musical approaches to achieve individual empowerment as a large-scale alternative to endemic juvenile crime, counteracting the risk factors of social unease, serving as a stimulating example toward emancipation, and providing professional opportunities to the talented. Such a network, in turn, proves to be a powerful instrument of cultural progress: the tenets of "Sistema" become shared values able to foster development, reaching into issues of disability and rehabilitation. This paper presents continuities and contrasts in various ramifications of such a successful trend and outlines perspectives for further impact of this powerful transformational agent. © 2012 New York Academy of Sciences.

  7. Modeling contextual effects using individual-level data and without aggregation: an illustration of multilevel factor analysis (MLFA) with collective efficacy.

    PubMed

    Dunn, Erin C; Masyn, Katherine E; Johnston, William R; Subramanian, S V

    2015-01-01

    Population health scientists increasingly study how contextual-level attributes affect individual health. A major challenge in this domain relates to measurement, i.e., how best to measure and create variables that capture characteristics of individuals and their embedded contexts. This paper presents an illustration of multilevel factor analysis (MLFA), an analytic method that enables researchers to model contextual effects using individual-level data without using derived variables. MLFA uses the shared variance in sets of observed items among individuals within the same context to estimate a measurement model for latent constructs; it does this by decomposing the total sample variance-covariance matrix into within-group (e.g., individual-level) and between-group (e.g., contextual-level) matrices and simultaneously modeling distinct latent factor structures at each level. We illustrate the MLFA method using items capturing collective efficacy, which were self-reported by 2,599 adults in 65 census tracts from the Los Angeles Family and Neighborhood Survey (LAFANS). MLFA identified two latent factors at the individual level and one factor at the neighborhood level. Indicators of collective efficacy performed differently at each level. The ability of MLFA to identify different latent factor structures at each level underscores the utility of this analytic tool to model and identify attributes of contexts relevant to health.

  8. Collective dynamics of glass-forming polymers at intermediate length scales . A synergetic combination of neutron scattering, atomistic simulations and theoretical modelling

    NASA Astrophysics Data System (ADS)

    Colmenero, Juan; Alvarez, Fernando; Arbe, Arantxa

    2015-01-01

    Motivated by the proposition of a new theoretical ansatz [V.N. Novikov, K.S. Schweizer, A.P. Sokolov, J. Chem. Phys. 138, 164508 (2013)], we have revisited the question of the characterization of the collective response of polyisobutylene at intermediate length scales observed by neutron spin echo (NSE) experiments. The model, generalized for sublinear diffusion -as it is the case of glass-forming polymers- has been successfully applied by using the information on the total self-motions available from MD-simulations properly validated by direct comparison with experimental results. From the fits of the coherent NSE data, the collective time at Q → 0 has been extracted that agrees very well with compiled results from different experimental techniques directly accessing such relaxation time. We show that a unique temperature dependence governs both, the Q → 0 and Q →∞ asymptotic characteristic times. The generalized model also gives account for the modulation of the apparent activation energy of the collective times with the static structure factor. It mainly results from changes of the short-range order at inter-molecular length scales.

  9. Data collection and development of a hydrodynamic and temperature model to evaluate causeway modifications at the mouth of the Yakima River

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.

    2012-12-01

    Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima

  10. Exploring the Relevance of the Personal and Social Responsibility Model in Adapted Physical Activity: A Collective Case Study

    ERIC Educational Resources Information Center

    Wright, Paul M.; White, Katherine; Gaebler-Spira, Deborah

    2004-01-01

    The purpose of this study was to examine the application of the Personal and Social Responsibility Model (PSRM) in an adapted physical activity program. Although the PSRM was developed for use with underserved youth, scholars in the field of adapted physical activity have noted its potential relevance for children with disabilities. Using a…

  11. Exploring the Relevance of the Personal and Social Responsibility Model in Adapted Physical Activity: A Collective Case Study

    ERIC Educational Resources Information Center

    Wright, Paul M.; White, Katherine; Gaebler-Spira, Deborah

    2004-01-01

    The purpose of this study was to examine the application of the Personal and Social Responsibility Model (PSRM) in an adapted physical activity program. Although the PSRM was developed for use with underserved youth, scholars in the field of adapted physical activity have noted its potential relevance for children with disabilities. Using a…

  12. Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields

    NASA Astrophysics Data System (ADS)

    Génois, Mathieu; Hersen, Pascal; du Pont, Sylvain Courrech; Grégoire, Guillaume

    2013-11-01

    In order to test parameters of the peculiar dynamics occurring in barchan fields, and compute statistical analysis over large numbers of dunes, we build and study an agent-based model, which includes the well-known physics of an isolated barchan, and observations of interactions between dunes. We showed in a previous study that such a model, where barchans interact through short-range sand recapture and collisions, reproduces the peculiar behaviours of real fields, namely its spatial structuring along the wind direction, and the size selection by the local density. In this paper we focus on the mechanisms that drives these features. In particular, we show that eolian remote sand transfer between dunes ensures that a dense field structures itself into a very heterogeneous pattern, which alternates dense and diluted stripes in the wind direction. In these very dense clusters of dunes, the accumulation of collisions leads to the local emergence of a new size for the dunes.

  13. Physics-Based Compact Model for CIGS and CdTe Solar Cells: From Voltage-Dependent Carrier Collection to Light-Enhanced Reverse Breakdown: Preprint

    SciTech Connect

    Sun, Xingshu; Alam, Muhammad Ashraful; Raguse, John; Garris, Rebekah; Deline, Chris; Silverman, Timothy

    2015-10-15

    In this paper, we develop a physics-based compact model for copper indium gallium diselenide (CIGS) and cadmium telluride (CdTe) heterojunction solar cells that attributes the failure of superposition to voltage-dependent carrier collection in the absorber layer, and interprets light-enhanced reverse breakdown as a consequence of tunneling-assisted Poole-Frenkel conduction. The temperature dependence of the model is validated against both simulation and experimental data for the entire range of bias conditions. The model can be used to characterize device parameters, optimize new designs, and most importantly, predict performance and reliability of solar panels including the effects of self-heating and reverse breakdown due to partial-shading degradation.

  14. San Francisco Central Bay Suspended Sediment Movement. Report 1. Summer Condition Data Collection Program and Numerical Model Verification

    DTIC Science & Technology

    1990-09-01

    79 PLATES 1-21 APPENDIX A: BIBLIOGRAPHY ON SAN FRANCISCO BAY SEDIMENTATION ......... Al APPENDIX B: THE TABS-2...north, the Farallon Islands to the west, and Half Moon Bay to the south, which are all approximately 22 nautical miles from the Golden Cate Bridge...physical model 58 results for water levels and velocities are compared in Plates 1-7. The sta- tion locations for comparisons are shown in Figure 22

  15. Insights from socio-hydrology modelling on dealing with flood risk: roles of collective memory, risk-taking attitude and trust (Invited)

    NASA Astrophysics Data System (ADS)

    Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.

    2013-12-01

    The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.

  16. Lessons Learned from Near Field Modeling and Data Collected at the SPE Chemical Explosions in Jointed Rock Masses

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Ezzedine, S. M.; Hurley, R.; Antoun, T.; Glenn, L.

    2016-12-01

    This work describes the near-field modeling of wave propagation from underground chemicalexplosions conducted at the Nevada National Security Site (NNSS) in fractured granitic rock. Lab testsperformed on granite samples excavated from various locations at the SPE site have shown littlevariability in mechanical properties. Granite at this scale can be considered as an isotropic medium. Wehave shown, however, that on the scale of the pressure waves generated during chemical explosions(tens of meters), the effective mechanical properties may vary significantly and exhibit both elastic andplastic anisotropies due to local variations in joint properties such as spacing orientation, joint aperture,cohesion and saturation. Since including every joint in a discrete fashion in computational model is notfeasible, especially for large-scale calculations ( 1.5 km domain), we have developed a computationaltechnique to upscale mechanical properties for various scales (frequencies) using geophysicalcharacterization conducted during recent SPE tests at the NNSS. Stochastic representation of thesefeatures based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode.Scale dependency in mechanical properties is important in order to understand how the ground motionscales with yield. We hope that such an approach will not only provide a better prediction of theground motion observed in the SPE (where the yield varies from 100 kg to few tons of TNT equivalent)but also will allow us to extrapolate results of the SPE to sources with bigger yields. We have validatedour computational results by comparing the measured and computed ground motion at various rangesfor experiments of various yields (SPE1-SPE5). Using the new model we performed severalcomputational studies to identify the most important mechanical properties of the rock mass specific tothe SPE site and to understand their roles in the observed ground motion in the near-field. We willpresent a series

  17. Modeling the 1913 eruption of Colima volcano, Mexico, based on data collected by Jim Luhr and colleagues

    NASA Astrophysics Data System (ADS)

    Connor, L. J.; Connor, C.

    2007-12-01

    Jim Luhr and colleagues spent more than a decade characterizing the explosive eruptions of Colima volcano, particularly the January 20, 1913 Plinian eruption that sent a tephra cloud to the NNE of the volcano, by some reports depositing tephra up to 725 km from the volcano. Their data are modeled using TEPHRA2, a computer model that calculates the expected accumulation of tephra at specific geographical locations as a result of a volcanic eruption with specific input parameters using the advection diffusion equation. TEPHRA2 has numerous input parameters so it is literally impossible to find a best-fit solution using brute force iteration. Instead, we use nonlinear inversion techniques to explore best-fit solutions. Here we use a downhill simplex inversion algorithm. No parameter correlations (for example between eruption column height and eruption mass) are assumed a priori in the inversion. Overall, it appears from inversion results that acceptable solutions for total eruption mass lie between 0.8 x 1011 kg and 1.3 x 1011 kg and acceptable solutions for eruption column height lie between about 20 and 38 km above mean sea-level. In order to better understand the solution space, we ran the inversion numerous times, each time limiting the ranges of eruption column height and erupted mass. All other eruption parameters are allowed to vary over wide ranges to identify best-fit solutions. These results show that best-fit solutions for total erupted mass are constrained between approximately 0.6 x 1011 kg and 1.6 x 1011 kg. Best-fit solutions of essentially equal quality are identified for a wide range of eruption column heights (20-40 km). The plot of best-fit solutions suggests that slightly better results are obtained by the model in the region of 30-38 km and 1.4 x 1010 to 1.8 x 1011 kg, with all other parameters allowed to vary over their entire ranges. We note that eruption physics places some additional constraints on the maximum column height. For an

  18. A collection of the collapsed results of general tank tests of miscellaneous flying-boat-hull models

    NASA Technical Reports Server (NTRS)

    Locke, F W S , Jr

    1947-01-01

    Presented here are the summary charts of the collapsed results of general tank tests of about 100 flying boat hull models. These summary charts are intended to be used as an engineering tool to enable a flying boat designer to grasp more quickly the significance of various hull form parameters as they influence his particular airplane. The form in which the charts are prepared is discussed in some detail in order to make them clearer to the designer. This is a data report, and no attempt has been made to produce conclusions or correlations of the usual sort. However, some generalizations are put forward on the various methods in which summary charts may be used.

  19. Modified Glauber model and a new interpretation of collective effects in AA and pA at LHC

    NASA Astrophysics Data System (ADS)

    Seryakov, Andrey; Feofilov, Grigory

    2016-01-01

    The Monte Carlo version of the Modified Glauber Model (MGM) [1] is updated and applied to the analysis of the total multiplicity yields of charged particles in mucleus-nucleus and proton-nucleus collisions in a broad energy range. The MGM takes into account the energy conservation and momentum loss for particle production in each nucleon-nucleon inelastic collision. This is done by introducing a mean fraction of the initial nucleon momentum which is allowed to be lost in each inelastic interaction between nucleons of colliding nuclei. Therefore, the next nucleon-nucleon inelastic collision takes place at a lower energy √{s } and with the relevant cross-section σinel (√{s }) . Comparison of the MGM calculations to the available experimental data on mean total multiplicity < Nch > in central nucleus-nucleus collisions from AGS to RHIC energies allows to fit a single model parameter k=0.35. The same value of k is found to be valid for successful description of the scaling of < Nch >/2Npart with the number of nucleon-participants Npart in Pb-Pb collisions observed in ALICE at the LHC [2]. A considerable reduction of Ncoll is obtained in MGM for the case of nucleus-nucleus collisions at the LHC energy in omparison with the standard Glauber approach, while the number of participants Npart is practically unchanged. In the MGM approach the nucleon stopping phenomenon is observed, that has dramatic effect in case of proton-nucleus collisions. The MGM predicts considerable decrease (by a factor of about 3 for central collisions in comparison with the standard Glauber-based estimates) of the number of participants < Npart >= < Ncoll > +1 in case of pA interactions at the LHC.

  20. Neutron-Rich {sup 62,64,64}Fe Show Enhanced Collectivity: The Washout of N = 40 in Terms of Experiment, Valence Proton Symmetry and Shell Model

    SciTech Connect

    Rother, W.; Dewald, A.; Fransen, C.; Hackstein, M.; Jolie, J.; Pissulla, Th.; Zel, K.-O.; Iwasaki, H.; Baugher, T.; Brown, B. A.; Gade, A.; Glasmacher, T.; McDaniel, S.; Ratkiewicz, A.; Voss, P.; Walsh, K. A.; Lenzi, S. M.; Ur, C. A.; Starosta, K.; Bazin, D.

    2011-10-28

    Probing shell structure at a large neutron excess has been of particular interest in recent times. Neutron-rich nuclei between the proton shell closures Z = 20 and Z = 28 offer an exotic testing ground for shell evolution. The development of the N = 40gap between neutron fp and lg{sub 9/2} shells gives rise to highly interesting variations of collectivity for nuclei in this region. While {sup 68}Ni shows doubly magic properties in level energies and transition strengths, this was not observed in neighbouring nuclei. Especially neutron-rich Fe isotopes proved particularly resistant to calculational approaches using the canonical valence space (fpg) resulting in important deviations of the predicted collectivity. Only an inclusion of the d{sub 5/2}-orbital could solve the problem [1]. Hitherto no transition strengths for {sup 66}Fe have been reported. We determined B(E2,2{sup +}{sub 1}{yields}0{sup +}{sub 1}) values from lifetimes measured with the recoil distance Doppler-shift method using the Cologne plunger for radioactive beams at National Superconducting Cyclotron Laboratory at Michigan State University. Excited states were populated by projectile Coulomb excitation for {sup 62,64,66}Fe. The data show a rise in collectivity for Fe isotopes towards N = 40. Results [2] are interpreted by means of a modified version of the Valence Proton Symmetry [3] and compared to shell model calculations using a new effective interaction recently developed for the fpgd valence space [4].

  1. Quantitative structure-activity relationship models for predicting drug-induced liver injury based on FDA-approved drug labeling annotation and using a large collection of drugs.

    PubMed

    Chen, Minjun; Hong, Huixiao; Fang, Hong; Kelly, Reagan; Zhou, Guangxu; Borlak, Jürgen; Tong, Weida

    2013-11-01

    Drug-induced liver injury (DILI) is one of the leading causes of the termination of drug development programs. Consequently, identifying the risk of DILI in humans for drug candidates during the early stages of the development process would greatly reduce the drug attrition rate in the pharmaceutical industry but would require the implementation of new research and development strategies. In this regard, several in silico models have been proposed as alternative means in prioritizing drug candidates. Because the accuracy and utility of a predictive model rests largely on how to annotate the potential of a drug to cause DILI in a reliable and consistent way, the Food and Drug Administration-approved drug labeling was given prominence. Out of 387 drugs annotated, 197 drugs were used to develop a quantitative structure-activity relationship (QSAR) model and the model was subsequently challenged by the left of drugs serving as an external validation set with an overall prediction accuracy of 68.9%. The performance of the model was further assessed by the use of 2 additional independent validation sets, and the 3 validation data sets have a total of 483 unique drugs. We observed that the QSAR model's performance varied for drugs with different therapeutic uses; however, it achieved a better estimated accuracy (73.6%) as well as negative predictive value (77.0%) when focusing only on these therapeutic categories with high prediction confidence. Thus, the model's applicability domain was defined. Taken collectively, the developed QSAR model has the potential utility to prioritize compound's risk for DILI in humans, particularly for the high-confidence therapeutic subgroups like analgesics, antibacterial agents, and antihistamines.

  2. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  3. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  4. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin

    1993-01-01

    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  5. Modeling short-range delivery and collection of light: incorporating the influence of the phase function (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Post, Anouk L.; Ruis, Roosje M.; Bloemen, Paul R.; van Leeuwen, Ton G.; Sterenborg, Henricus J. C. M.; Faber, Dirk J.

    2017-02-01

    The scattering phase function (the probability distribution of the scattering angle) is intimately associated with the cellular organization and ultrastructure of tissue. Since these physical parameters change during e.g. carcinogenesis; quantification of the phase function and related parameters may allow for improved non-invasive, in vivo discrimination between healthy and diseased tissue. Furthermore, for the derivation of models to interpret measured optical signals, assumptions about the phase function of tissue are often made - regularly assuming a Modified Henyey Greenstein. However, in contrast to other optical properties, the phase function has not yet been extensively measured for different tissue types. With conventional goniometers, the exact backscatter direction of 180 degrees cannot be measured. Especially for techniques that detect backscattered light - such as Optical Coherence Tomography and Elastic Scattering spectroscopy - the details of the backward part of the phase function will have a considerable impact on the measured signal. We have therefore developed a setup that can measure the backward part of the phase function: 134 to 180 degrees. Our design is based on full field Optical Coherence Tomography. We detect all angles simultaneously with a camera, while scanning the reference mirror. The phase function scales with the amplitude of the OCT signal for each angle. We will show our results for validation measurements on two silica bead samples of 200 nm and 400 nm beads.

  6. OPC model data collection for 45-nm technology node using automatic CD-SEM offline recipe creation

    NASA Astrophysics Data System (ADS)

    Fischer, Daniel; Talbi, Mohamed; Wei, Alex; Menadeva, Ovadya; Cornell, Roger

    2007-03-01

    Optical and Process Correction in the 45nm node is requiring an ever higher level of characterization. The greater complexity drives a need for automation of the metrology process allowing more efficient, accurate and effective use of the engineering resources and metrology tool time in the fab, helping to satisfy what seems an insatiable appetite for data by lithographers and modelers charged with development of 45nm and 32nm processes. The scope of the work referenced here is a 45nm design cycle "full-loop automation", starting with gds formatted target design layout and ending with the necessary feedback of one and two dimensional printed wafer metrology. In this paper the authors consider the key elements of software, algorithmic framework and Critical Dimension Scanning Electron Microscope (CDSEM) functionality necessary to automate its recipe creation. We evaluate specific problems with the methodology of the former art, "on-tool on-wafer" recipe construction, and discuss how the implementation of the design based recipe generation improves upon the overall metrology process. Individual target-by-target construction, use of a one pattern recognition template fits all approach, a blind navigation to the desired measurement feature, lengthy sessions on tool to construct recipes and limited ability to determine measurement quality in the resultant data set are each discussed as to how the state of the art Design Based Metrology (DBM) approach is implemented. The offline created recipes have shown pattern recognition success rates of up to 100% and measurement success rates of up to 93% for line/space as well as for 2D Minimum/Maximum measurements without manual assists during measurement.

  7. Participatory data collection and monitoring of agricultural pest dynamics for climate-resilient coffee production using Tiko'n, a generic tool to develop agroecological food web models

    NASA Astrophysics Data System (ADS)

    Rojas, M.; Malard, J. J.; Adamowski, J. F.; Tuy, H.

    2016-12-01

    Climate variability impacts agricultural processes through many mechanisms. For example, the proliferation of pests and diseases increases with warmer climate and alternated wind patterns, as longer growing seasons allow pest species to complete more reproductive cycles and changes in the weather patterns alter the stages and rates of development of pests and pathogens. Several studies suggest that enhancing plant diversity and complexity in farming systems, such as in agroforestry systems, reduces the vulnerability of farms to extreme climatic events. On the other hand, other authors have argued that vegetation diversity does not necessarily reduce the incidence of pests and diseases, highlighting the importance of understanding how, where and when it is recommendable to diversify vegetation to improve pest and disease control, and emphasising the need for tools to develop, monitor and evaluate agroecosystems. In order to understand how biodiversity can enhance ecosystem services provided by the agroecosystem in the context of climatic variability, it is important to develop comprehensive models that include the role of trophic chains in the regulation of pests, which can be achieved by integrating crop models with pest-predator models, also known as agroecosystem network (AEN) models. Here we present a methodology for the participatory data collection and monitoring necessary for running Tiko'n, an AEN model that can also be coupled to a crop model such as DSSAT. This methodology aims to combine the local and practical knowledge of farmers with the scientific knowledge of entomologists and agronomists, allowing for the simplification of complex ecological networks of plant and insect interactions. This also increases the acceptability, credibility, and comprehension of the model by farmers, allowing them to understand their relationship with the local agroecosystem and their potential to use key agroecosystem principles such as functional diversity to mitigate

  8. Boltzmann equation modelling of Learning Dynamics. Comment on "Collective learning modeling based on the kinetic theory of active particles" by D. Burini et al.

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie

    2016-03-01

    The paper by Burini et al. [7] presents an interesting use of the Boltzmann equation of kinetic theory to model real learning processes. The authors provide a comprehensive discussion of the basic concepts involved in their modelling work. The Boltzmann equation as used by physicists and chemists to model a variety of transport processes in many diverse fields is based on the notion of the binary collisions between identifiable particles in the defined system [9]. The particles exchange energy on collision and the distribution function, which depends on the three velocity components and the three spatial coordinates, varies with time. The classical or quantum collision dynamics between particles play a central role in the definition of the kernels in the integral operators that define the Boltzmann equation [8].

  9. Collective Quartics from Simple Groups

    SciTech Connect

    Hook, Anson; Wacker, Jay G.; /SLAC

    2010-08-26

    This article classifies Little Higgs models that have collective quartic couplings. There are two classes of collective quartics: Special Cosets and Special Quartics. After taking into account dangerous singlets, the smallest Special Coset models are SU(5)/SO(5) and SU(6)/Sp(6). The smallest Special Quartic model is SU(5)/SU(3) x SU(2) x U(1) and has not previously been considered as a candidate Little Higgs model.

  10. Urine sampling and collection system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.; Mangialardi, J. K.; Reinhardt, C. G.

    1971-01-01

    This specification defines the performance and design requirements for the urine sampling and collection system engineering model and establishes requirements for its design, development, and test. The model shall provide conceptual verification of a system applicable to manned space flight which will automatically provide for collection, volume sensing, and sampling of urine.

  11. Learning dynamics: A fundamental building block in social models. Comment on "Collective learning modeling based on the kinetic theory of active particles" by D. Burini et al.

    NASA Astrophysics Data System (ADS)

    Knopoff, Damián A.

    2016-03-01

    In the last several years there has been an increasing interest in the development of mathematical tools to study a vast number of social phenomena. The recent paper by Burini, De Lillo and Gibelli [7] constitutes a novel and valuable contribution on the modelling of learning dynamics over networks. In the spectrum of social sciences, this approach will surely provide new and useful tools for the progress of this field of interdisciplinary science.

  12. Learning dynamics towards modeling living systems. Reply to comments on "Collective learning modeling based on the kinetic theory of active particles"

    NASA Astrophysics Data System (ADS)

    Burini, D.; De Lillo, S.; Gibelli, L.

    2016-03-01

    Our paper [19] presents a review and critical analysis on a mathematical theory of learning in populations composed of many interacting individuals. Furthermore, it attempts to provide a foundational mathematical framework which may incorporate the main features of the learning process in view of applications to modeling complex systems, including crowds [15,39], swarms [2,4], and social systems [1,24,35,41].

  13. Collective Self-Esteem and Depressive Symptomatology in Lesbians and Gay Men: A Moderated Mediation Model of Self-Stigma and Psychological Abuse.

    PubMed

    Longares, Lara; Escartín, Jordi; Rodríguez-Carballeira, Álvaro

    2016-08-17

    The context of stigma, in which lesbians and gay men live in most countries, exposes them to possible discrimination and promotes the internalization of negative attitudes about their own sexual orientation, which may have negative consequences for their mental health. Their psychological distress may increase when lesbians and gay men are exposed to other sources of stress such as intimate partner violence. With the aim of analysing the relationship between these variables, this study intends to present a moderated mediation model that proposes: a) self-stigma mediates the relationship between private collective self-esteem and depressive symptomatology; b) receiving psychological abuse within same-sex couples moderates the relationship between self-stigma and depressive symptomatology. For this purpose we conducted an online survey with a sample of 357 Spanish lesbians and gay men. Our findings show that self-stigma mediates the relationship between private collective self-esteem and depressive symptomatology. Furthermore, participants who had higher levels of self-stigma and received more psychological abuse by the partner showed stronger negative effects on depressive symptomatology. Theoretical and practical implications are discussed.

  14. The physics of a single-event upset in integrated circuits: A review and critique of analytical models for charge collection

    NASA Technical Reports Server (NTRS)

    Vonroos, O.; Zoutendyk, J.

    1983-01-01

    When an energetic particle (kinetic energy 0.5 MeV) originating from a radioactive decay or a cosmic ray transverse the active regions of semiconductor devices used in integrated circuit (IC) chips, it leaves along its track a high density electron hole plasma. The subsequent decay of this plasma by drift and diffusion leads to charge collection at the electrodes large enough in most cases to engender a false reading, hence the name single-event upset (SEU). The problem of SEU's is particularly severe within the harsh environment of Jupiter's radiation belts and constitutes therefore a matter of concern for the Galileo mission. The physics of an SEU event is analyzed in some detail. Owing to the predominance of nonlinear space charge effects and the fact that positive (holes) and negative (electrons) charges must be treated on an equal footing, analytical models for the ionized-charge collection and their corresponding currents as a function of time prove to be inadequate even in the simplest case of uniformly doped, abrupt p-n junctions in a one-dimensional geometry. The necessity for full-fledged computer simulation of the pertinent equations governing the electron-hole plasma therefore becomes imperative.

  15. Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    SciTech Connect

    McFarquhar, Greg M.

    2003-06-11

    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 μm, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals.

  16. Improvements in Representations of Cloud Microphysics for BBHRP and Models using Data Collected during M-PACE and TWP-ICE

    SciTech Connect

    Greg M. McFarquhar

    2010-02-22

    In our research we proposed to use data collected during the 2004 Mixed-Phase Arctic Cloud Experiment (MPACE) and the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) to improve retrievals of ice and mixed-phase clouds, to improve our understanding of how cloud and radiative processes affect cloud life cycles, and to develop and test methods for using ARM data more effectively in model. In particular, we proposed to: 1) use MPACE in-situ data to determine how liquid water fraction and cloud ice and liquid effective radius (r{sub ei} and r{sub ew}) vary with temperature, normalized cloud altitude and other variables for Arctic mixed-phase clouds, and to use these data to evaluate the performance of model parameterization schemes and remote sensing retrieval algorithms; 2) calculate rei and size/shape distributions using TWP-ICE in-situ data, investigate their dependence on cirrus type (oceanic or continental anvils or cirrus not directly traced to convection), and develop and test representations for MICROBASE; 3) conduct fundamental research enhancing our understanding of cloud/radiative interactions, concentrating on effects of small crystals and particle shapes and sizes on radiation; and 4) improve representations of microphysical processes for models (fall-out, effective density, mean scattering properties, rei and rew) and provide them to ARM PIs. In the course of our research, we made substantial progress on all four goals.

  17. The Collective Impact Model and Its Potential for Health Promotion: Overview and Case Study of a Healthy Retail Initiative in San Francisco.

    PubMed

    Flood, Johnna; Minkler, Meredith; Hennessey Lavery, Susana; Estrada, Jessica; Falbe, Jennifer

    2015-10-01

    As resources for health promotion become more constricted, it is increasingly important to collaborate across sectors, including the private sector. Although many excellent models for cross-sector collaboration have shown promise in the health field, collective impact (CI), an emerging model for creating larger scale change, has yet to receive much study. Complementing earlier collaboration approaches, CI has five core tenets: a shared agenda, shared measurement systems, mutually reinforcing activities, continuous communication, and a central infrastructure. In this article, we describe the CI model and its key dimensions and constructs. We briefly compare CI to community coalition action theory and discuss our use of the latter to provide needed detail as we apply CI in a critical case study analysis of the Tenderloin Healthy Corner Store Coalition in San Francisco, California. Using Yin's multimethod approach, we illustrate how CI strategies, augmented by the community coalition action theory, are being used, and with what successes or challenges, to help affect community- and policy-level change to reduce tobacco and alcohol advertising and sales, while improving healthy, affordable, and sustainable food access. We discuss the strengths and weaknesses of CI as a framework for health promotion, as well as the benefits, challenges, and initial outcomes of the healthy retail project and its opportunities for scale-up. Implications for health promotion practice and research also are discussed. © 2015 Society for Public Health Education.

  18. Forward problem solution as the operator of filtered and back projection matrix to reconstruct the various method of data collection and the object element model in electrical impedance tomography

    SciTech Connect

    Ain, Khusnul; Kurniadi, Deddy; Suprijanto; Santoso, Oerip; Wibowo, Arif

    2015-04-16

    Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection and various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element.

  19. Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

    NASA Astrophysics Data System (ADS)

    Xue, W. X.; Yao, J. M.; Hagino, K.; Li, Z. P.; Mei, H.; Tanimura, Y.

    2015-02-01

    Background: The impurity effect of hyperons on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E 2 transition strength in low-lying states of the hypernucleus Λ7Li . Many more data on low-lying states of Λ hypernuclei will be measured soon for s d -shell nuclei, providing good opportunities to study the Λ impurity effect on nuclear low-energy excitations. Purpose: We carry out a quantitative analysis of the Λ hyperon impurity effect on the low-lying states of s d -shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ hyperon is injected into the lowest positive-parity (Λs) and negative-parity (Λp) states. Method: We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ binding energies of hypernuclei as well as the potential-energy surfaces (PESs) in the (β ,γ ) deformation plane. We also calculate the PESs for the Λ hypernuclei with good quantum numbers by using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking 25,27Mg Λ and Si31Λ as examples, we analyze the impurity effects of Λs and Λp on the low-lying states of the core nuclei. Results: We show that Λs increases the excitation energy of the 21+ state and decreases the E 2 transition strength from this state to the ground state by 12 %to17 % . On the other hand, Λp tends to develop pronounced energy minima with larger deformation, although it modifies the collective parameters in such a way that the collectivity of the core nucleus can be either increased or decreased. Conclusions: The quadrupole deformation significantly affects the

  20. Increased Na+/H+ exchanger activity on the apical surface of a cilium-deficient cortical collecting duct principal cell model of polycystic kidney disease

    PubMed Central

    Olteanu, Dragos; Liu, Xiaofen; Liu, Wen; Roper, Venus C.; Sharma, Neeraj; Yoder, Bradley K.; Satlin, Lisa M.; Schwiebert, Erik M.

    2012-01-01

    Pathophysiological anomalies in autosomal dominant and recessive forms of polycystic kidney disease (PKD) may derive from impaired function/formation of the apical central monocilium of ductal epithelia such as that seen in the Oak Ridge polycystic kidney or orpk (Ift88Tg737Rpw) mouse and its immortalized cell models for the renal collecting duct. According to a previous study, Na/H exchanger (NHE) activity may contribute to hyperabsorptive Na+ movement in cilium-deficient (“mutant”) cortical collecting duct principal cell monolayers derived from the orpk mice compared with cilium-competent (“rescued”) monolayers. To examine NHE activity, we measured intracellular pH (pHi) by fluorescence imaging with the pH-sensitive dye BCECF, and used a custom-designed perfusion chamber to control the apical and basolateral solutions independently. Both mutant and rescued monolayers exhibited basolateral Na+-dependent acid-base transporter activity in the nominal absence of CO2/HCO3−. However, only the mutant cells displayed appreciable apical Na+-induced pHi recoveries from NH4+ prepulse-induced acid loads. Similar results were obtained with isolated, perfused collecting ducts from orpk vs. wild-type mice. The pHi dependence of basolateral cariporide/HOE-694-sensitive NHE activity under our experimental conditions was similar in both mutant and rescued cells, and 3.5- to 4.5-fold greater than apical HOE-sensitive NHE activity in the mutant cells (pHi 6.23–6.68). Increased apical NHE activity correlated with increased apical NHE1 expression in the mutant cells, and increased apical localization in collecting ducts of kidney sections from orpk vs. control mice. A kidney-specific conditional cilium-knockout mouse produced a more acidic urine compared with wild-type littermates and became alkalotic by 28 days of age. This study provides the first description of altered NHE activity, and an associated acid-base anomaly in any form of PKD. PMID:22301060