Science.gov

Sample records for n-well cmos process

  1. Reliability in CMOS IC processing

    NASA Technical Reports Server (NTRS)

    Shreeve, R.; Ferrier, S.; Hall, D.; Wang, J.

    1990-01-01

    Critical CMOS IC processing reliability monitors are defined in this paper. These monitors are divided into three categories: process qualifications, ongoing production workcell monitors, and ongoing reliability monitors. The key measures in each of these categories are identified and prioritized based on their importance.

  2. Characteristics of Various Photodiode Structures in CMOS Technology with Monolithic Signal Processing Electronics

    SciTech Connect

    Mukhopadhyay, Sourav; Chandratre, V. B.; Sukhwani, Menka; Pithawa, C. K.

    2011-10-20

    Monolithic optical sensor with readout electronics are needed in optical communication, medical imaging and scintillator based gamma spectroscopy system. This paper presents the design of three different CMOS photodiode test structures and two readout channels in a commercial CMOS technology catering to the need of nuclear instrumentation. The three photodiode structures each of 1 mm{sup 2} with readout electronics are fabricated in 0.35 um, 4 metal, double poly, N-well CMOS process. These photodiode structures are based on available P-N junction of standard CMOS process i.e. N-well/P-substrate, P+/N-well/P-substrate and inter-digitized P+/N-well/P-substrate. The comparisons of typical characteristics among three fabricated photo sensors are reported in terms of spectral sensitivity, dark current and junction capacitance. Among the three photodiode structures N-well/P-substrate photodiode shows higher spectral sensitivity compared to the other two photodiode structures. The inter-digitized P+/N-well/P-substrate structure has enhanced blue response compared to N-well/P-substrate and P+/N-well/P-substrate photodiode. Design and test results of monolithic readout electronics, for three different CMOS photodiode structures for application related to nuclear instrumentation, are also reported.

  3. Carbon nanotube integration with a CMOS process.

    PubMed

    Perez, Maximiliano S; Lerner, Betiana; Resasco, Daniel E; Pareja Obregon, Pablo D; Julian, Pedro M; Mandolesi, Pablo S; Buffa, Fabian A; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture.

  4. Carbon Nanotube Integration with a CMOS Process

    PubMed Central

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  5. End-of-fabrication CMOS process monitor

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Allen, R. A.; Blaes, B. R.; Hannaman, D. J.; Lieneweg, U.; Lin, Y.-S.; Sayah, H. R.

    1990-01-01

    A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's).

  6. IGBT scaling principle toward CMOS compatible wafer processes

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Omura, Ichiro

    2013-02-01

    A scaling principle for trench gate IGBT is proposed. CMOS technology on large diameter wafer enables to produce various digital circuits with higher performance and lower cost. The transistor cell structure becomes laterally smaller and smaller and vertically shallower and shallower. In contrast, latest IGBTs have rather deeper trench structure to obtain lower on-state voltage drop and turn-off loss. In the aspect of the process uniformity and wafer warpage, manufacturing such structure in the CMOS factory is difficult. In this paper, we show the scaling principle toward shallower structure and better performance. The principle is theoretically explained by our previously proposed "Structure Oriented" analytical model. The principle represents a possibility of technology direction and roadmap for future IGBT for improving the device performance consistent with lower cost and high volume productivity with CMOS compatible large diameter wafer technologies.

  7. Optimisation of add-on NPN Transistor for a CMOS Process

    NASA Astrophysics Data System (ADS)

    Aurola, Artto; Ronkainen, Hannu; Mellin, Joni

    2004-01-01

    The objective of this research was to add an npn-bipolar transistor for a CMOS process. This was to be done with minimal additional process steps and without changing any existing CMOS parameters. The minimum line width of the process was 1.2µm, the wafers were p-type and 100mm in diameter and no epitaxial or polysilicon layers were used. To minimise the additional process steps a triple diffused transistor was selected as the basis of the research. The emitter was formed from a diffusion contacting NMOSFET source and drain to aluminium. As collector diffusion two approaches were investigated the pnpbipolar transistors isolation nwell and the PMOSFET n-well. The only additional step to the CMOS process due to the npn-transistor fabrication resulted from the formation of base diffusion. The specifications for the npn-transistor were 80 for the current gain, 100V for the early voltage and 60MHz for the transition frequency at 1µA collector current. Four different transistor structures were investigated two octagonal transistors having either emitter or base in the centre and two minimum area rectangular transistors having either base or emitter in the middle. The octagonal transistor having the emitter in the centre was chosen as the basis of simulations. It was first simulated with a device simulator. Next combined process and device simulations were done. Based on simulation results different processes were tested on wafers. Only the octagonal transistor having the emitter in the middle satisfied the specifications when a pnp isolation n-well was used as a collector.

  8. Low voltage electron multiplying CCD in a CMOS process

    NASA Astrophysics Data System (ADS)

    Dunford, Alice; Stefanov, Konstantin; Holland, Andrew

    2016-07-01

    Low light level and high-speed image sensors as required for space applications can suffer from a decrease in the signal to noise ratio (SNR) due to the photon-starved environment and limitations of the sensor's readout noise. The SNR can be increased by the implementation of Time Delay Integration (TDI) as it allows photoelectrons from multiple exposures to be summed in the charge domain with no added noise. Electron Multiplication (EM) can further improve the SNR and lead to an increase in device performance. However, both techniques have traditionally been confined to Charge Coupled Devices (CCD) due to the efficient charge transfer required. With the increase in demand for CMOS sensors with equivalent or superior functionality and performance, this paper presents findings from the characterisation of a low voltage EMCCD in a CMOS process using advanced design features to increase the electron multiplying gain. By using the CMOS process, it is possible to increase chip integration and functionality and achieve higher readout speeds and reduced pixel size. The presented characterisation results include analysis of the photon transfer curve, the dark current, the electron multiplying gain and analysis of the parameters' dependence on temperature and operating voltage.

  9. CMOS prototype for retinal prosthesis applications with analog processing

    NASA Astrophysics Data System (ADS)

    Castillo-Cabrera, G.; García-Lamont, J.; Reyes-Barranca, M. A.; Matsumoto-Kuwabara, Y.; Moreno-Cadenas, J. A.; Flores-Nava, L. M.

    2014-12-01

    A core architecture for analog processing, which emulates a retina's receptive field, is presented in this work. A model was partially implemented and built on CMOS standard technology through MOSIS. It considers that the receptive field is the basic unit for image processing in the visual system. That is why the design is concerned on a partial solution of receptive field properties in order to be adapted in the future as an aid to people with retinal diseases. A receptive field is represented by an array of 3×3 pixels. Each pixel carries out a process based on four main operations. This means that image processing is developed at pixel level. Operations involved are: (1) photo-transduction by photocurrent integration, (2) signal averaging from eight neighbouring pixels executed by a neu-NMOS (ν-NMOS) neuron, (3) signal average gradient between central pixel and the average value from the eight neighbouring pixels (this gradient is performed by a comparator) and finally (4) a pulse generator. Each one of these operations gives place to circuital blocks which were built on 0.5 μm CMOS technology.

  10. Pixel architectures in a HV-CMOS process for the ATLAS inner detector upgrade

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Krüger, H.; Lachkar, M.; Liu, J.; Orsini, F.; Pangaud, P.; Rymaszewski, P.; Wang, T.

    2016-12-01

    In this paper, design details and simulation results of new pixel architectures designed in LFoundry 150 nm high voltage CMOS process in the framework of the ATLAS high luminosity inner detector upgrade are presented. These pixels can be connected to the FE-I4 readout chip via bump bonding or glue and some of them can also be tested without a readout chip. Negative high voltage is applied to the high resistivity (> 2 kΩ .cm) substrate in order to deplete the deep n-well charge collection diode, ensuring good charge collection and radiation tolerance. In these pixels, the front-end has been implemented inside the diode using both NMOS and PMOS transistors. The pixel pitch is 50 μm × 250 μm for all pixels. These pixels have been implemented in a demonstrator chip called LFCPIX.

  11. Development of a radiation-hard CMOS process

    NASA Technical Reports Server (NTRS)

    Power, W. L.

    1983-01-01

    It is recommended that various techniques be investigated which appear to have the potential for improving the radiation hardness of CMOS devices for prolonged space flight mission. The three key recommended processing techniques are: (1) making the gate oxide thin. It has been shown that radiation degradation is proportional to the cube of oxide thickness so that a relatively small reduction in thickness can greatly improve radiation resistance; (2) cleanliness and contamination control; and (3) to investigate different oxide growth (low temperature dry, TCE and HCL). All three produce high quality clean oxides, which are more radiation tolerant. Technique 2 addresses the reduction of metallic contamination. Technique 3 will produce a higher quality oxide by using slow growth rate conditions, and will minimize the effects of any residual sodium contamination through the introduction of hydrogen and chlorine into the oxide during growth.

  12. Front-end electronics in a 65 nm CMOS process for high density readout of pixel sensors

    NASA Astrophysics Data System (ADS)

    Gaioni, Luigi; Manghisoni, Massimo; Ratti, Lodovico; Re, Valerio; Traversi, Gianluca

    2011-09-01

    In future high energy physics experiments (HEP), readout integrated circuits for vertexing and tracking applications will be implemented by means of CMOS devices belonging to processes with minimum feature size in the 100 nm span. In these nanoscale technologies the impact of new dielectric materials and processing techniques on the analog behavior of MOSFETs has to be carefully evaluated. This paper is concerned with the study of the analog properties, in particular in terms of noise performance and radiation hardness, of MOSFET devices belonging to a 65 nm CMOS low power technology. The behavior of the 1/ f and white noise terms is studied as a function of the main device parameters before and after exposure to 10 keV X-rays and 60Co γ-rays. A prototype chip designed in a 65 nm CMOS process including deep n-well MAPS structures and a fast front-end conceived for the readout of high-resistivity pixel sensors will be introduced.

  13. Growth of carbon nanotubes on fully processed silicon-on-insulator CMOS substrates.

    PubMed

    Haque, M Samiul; Ali, S Zeeshan; Guha, P K; Oei, S P; Park, J; Maeng, S; Teo, K B K; Udrea, F; Milne, W I

    2008-11-01

    This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.

  14. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  15. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    NASA Astrophysics Data System (ADS)

    Yasaitis, John A.; Judy, Michael; Brosnihan, Tim; Garone, Peter M.; Pokrovskiy, Nikolay; Sniderman, Debbie; Limb, Scott; Howe, Roger T.; Boser, Bernhard E.; Palaniapan, Moorthi; Jiang, Xuesong; Bhave, Sunil

    2003-01-01

    A new MEMS process module, called Mod MEMS, has been developed to monolithically integrate thick (5-10um), multilayer polysilicon MEMS structures with sub-micron CMOS. This process is particularly useful for advanced inertial MEMS products such as automotive airbag accelerometers where reduced cost and increased functionality is required, or low cost, high performance gyroscopes where thick polysilicon (>6um) and CMOS integration is required to increase poly mass and stiffness, and reduce electrical parasitics in order to optimize angular rate sensing. In this paper we will describe the new modular process flow, development of the critical unit process steps, integration of the module with a foundry sub-micron CMOS process, and provide test data on several inertial designs fabricated with this process.

  16. Overview of CMOS process and design options for image sensor dedicated to space applications

    NASA Astrophysics Data System (ADS)

    Martin-Gonthier, P.; Magnan, P.; Corbiere, F.

    2005-10-01

    With the growth of huge volume markets (mobile phones, digital cameras...) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35μm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques.

  17. A high-speed lateral PIN polysilicon photodiode on standard bulk CMOS process

    NASA Astrophysics Data System (ADS)

    Zou, Wanghui; Xia, Yu; Chen, Diping; Zeng, Yun

    2017-03-01

    This paper reports a lateral PIN polysilicon photodiode on standard bulk complementary metal-oxidesemiconductor (CMOS) process for monolithically integrated high-speed optoelectronic integrated circuits (OEIC). A nominal undoped polysilicon as the photodetection area is intentionally created without introducing any process modification. With the device area of 50 × 50 μm2, a measured responsivity of 46 mA/W and a quantum efficiency of 11% were observed under the reverse voltage of 10 V and the wavelength of 520 nm. A compact equivalent circuit model for the proposed lateral photodiode is built to analyze the frequency response, and a bandwidth of over 20 GHz was obtained from the measured data, which is to the best of our knowledge the largest bandwidth ever reported based on standard bulk CMOS process.

  18. On the determination of the substrate effective doping concentration of irradiated HV-CMOS sensors using an edge-TCT technique based on the Two-Photon-Absorption process

    NASA Astrophysics Data System (ADS)

    Fernández García, M.; González Sánchez, J.; Jaramillo Echeverría, R.; Moll, M.; Montero, R.; Moya, D.; Palomo Pinto, R.; Vila, I.

    2017-01-01

    We introduce a new method based on the transient-current technique (TCT) for the radiation tolerance assessment of an n-in-p junction with a deep n-well on a relatively low-resistivity p-type substrate commonly used for HV-CMOS pixel sensors. The transient-current method here employed uses a femtosecond laser to generate excess carriers via a two-photon-absorption (TPA) process. Special attention has been paid to overcome the limitations of the conventional transient-current method based on single-photon-absorption carrier generation when applied to the HV-CMOS sensors. Specifically, we tackle the precise determination of the depletion region boundaries, including the deep-n-well spatial location, needed to calculate the effective doping concentration of the substrate. As illustration, we have applied this new TPA-based method to both a fresh and a neutron irradiated single-pixel deep-n-well diode manufactured in a 180 nm high-voltage CMOS process. In the irradiated device, concurrent with the expected effective acceptor removal in the p-type substrate, an indication of an effective donor removal in the DNW implant was also observed.

  19. Improving manufacturability of an rf graded channel CMOS process for wireless applications

    NASA Astrophysics Data System (ADS)

    Lamey, Daniel J.; Mackie, Troy; Liang, Han-Bin; Ma, Jun; Robert, Georges; Jasper, Craig; Ngo, David; Papworth, Ken; Cheng, Sunny; Wilcock, Christy; Gurrola, Rosemary; Spears, Edward; Yeung, Bruce

    1998-09-01

    Motorola's Graded Channel CMOS (GCMOS) provides a low cost and highly integrated solution for mixed-mode and RF applications. The GCMOS transistor has demonstrated performance advantages over standard CMOS processes with the same physical gate length. The graded channel, fabricated using lateral diffusion, provides a deep submicron Leff even with a gate length of 0.6 micrometer. The technology is constructed using a process that is fully compatible with standard CMOS manufacturing. However, in order to assure adequate threshold control, the lateral diffusions must be well-behaved. This means that both the channel implant and the source/drain implant must be truly self-aligned, requiring good control of the implants as well as the gate electrode profile. For aggressively designed GCMOS devices, small deviations of the implant beam from normal incidence can lead to unacceptable shifts in threshold. The sources of such error, and current industry standard machine tolerances for each, are discussed. Strategies for ensuring adequate control include a regimen of in-line process monitors, approximate error cancellation of the channel and source/drain implants, and the use of quadrature implants. By using these strategies a manufacturable process has been achieved.

  20. Alternative post-processing on a CMOS chip to fabricate a planar microelectrode array.

    PubMed

    López-Huerta, Francisco; Herrera-May, Agustín L; Estrada-López, Johan J; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S

    2011-01-01

    We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+ -type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications.

  1. Alternative Post-Processing on a CMOS Chip to Fabricate a Planar Microelectrode Array

    PubMed Central

    López-Huerta, Francisco; Herrera-May, Agustín L.; Estrada-López, Johan J.; Zuñiga-Islas, Carlos; Cervantes-Sanchez, Blanca; Soto, Enrique; Soto-Cruz, Blanca S.

    2011-01-01

    We present an alternative post-processing on a CMOS chip to release a planar microelectrode array (pMEA) integrated with its signal readout circuit, which can be used for monitoring the neuronal activity of vestibular ganglion neurons in newborn Wistar strain rats. This chip is fabricated through a 0.6 μm CMOS standard process and it has 12 pMEA through a 4 × 3 electrodes matrix. The alternative CMOS post-process includes the development of masks to protect the readout circuit and the power supply pads. A wet etching process eliminates the aluminum located on the surface of the p+-type silicon. This silicon is used as transducer for recording the neuronal activity and as interface between the readout circuit and neurons. The readout circuit is composed of an amplifier and tunable bandpass filter, which is placed on a 0.015 mm2 silicon area. The tunable bandpass filter has a bandwidth of 98 kHz and a common mode rejection ratio (CMRR) of 87 dB. These characteristics of the readout circuit are appropriate for neuronal recording applications. PMID:22346681

  2. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  3. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  4. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1977-01-01

    Progress in developing the application of ion implantation techniques to silicon gate CMOS/SOS processing is described. All of the conventional doping techniques such as in situ doping of the epi-film and diffusion by means of doped oxides are replaced by ion implantation. Various devices and process parameters are characterized to generate an optimum process by the use of an existing SOS test array. As a result, excellent circuit performance is achieved. A general description of the all ion implantation process is presented.

  5. Analog CMOS Nonlinear Cells and Their Applications in VLSI Signal and Information Processing

    NASA Astrophysics Data System (ADS)

    Khachab, Nabil Ibrahim

    1990-01-01

    The development of reconfigurable analog CMOS building blocks and their applications in analog VLSI is discussed and introduced in much the same way a logic gate is used in digital VLSI. They simultaneously achieve four -quadrant multiplication and division. These applications include multiplication, signal squaring, division, signal inversion, amplitude modulation. New all MOS implementations of the Hopfield like neural networks are developed by using the new cells. In addition new and novel techniques for sensor linearization and for MOSFET-C programmable-Q and omega_{n} filters are introduced. The new designs are simple, versatile, programmable and make effective use of analog CAD tools. Moreover, they are easily extendable to other technologies such as GaAs and BiCMOS. The objective of these designs is to achieve reduction in Silicon area and power consumption and reduce the interconnections between cells. It is also sought to provide a robust design that is CAD-compatible and make effective use of the standard cell library approach. This will offer more versatility and flexibility for analog signal processing systems and neural networks. Some of these new cells and a 3-neuron neural system are fabricated in a 2mum CMOS process. Experimental results of these circuits verify the validity of this new design approach.

  6. Photo-Spectrometer Realized In A Standard Cmos Ic Process

    DOEpatents

    Simpson, Michael L.; Ericson, M. Nance; Dress, William B.; Jellison, Gerald E.; Sitter, Jr., David N.; Wintenberg, Alan L.

    1999-10-12

    A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.

  7. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  8. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  9. Integration of III-V materials and Si-CMOS through double layer transfer process

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Hong; Bao, Shuyu; Fitzgerald, Eugene; Tan, Chuan Seng

    2015-03-01

    A method to integrate III-V compound semiconductor and SOI-CMOS on a common Si substrate is demonstrated. The SOI-CMOS layer is temporarily bonded on a Si handle wafer. Another III-V/Si substrate is then bonded to the SOI-CMOS containing handle wafer. Finally, the handle wafer is released to realize the SOI-CMOS on III-V/Si hybrid structure on a common substrate. Through this method, high temperature III-V materials growth can be completed without the presence of the temperature sensitive CMOS layer, hence damage to the CMOS layer is avoided.

  10. A linearity-enhanced time-domain CMOS thermostat with process-variation calibration.

    PubMed

    Chen, Chun-Chi; Lin, Yi

    2014-10-10

    This study proposes a linearity-enhanced time-domain complementary metal-oxide semiconductor (CMOS) thermostat with process-variation calibration for improving the accuracy, expanding the operating temperature range, and reducing test costs. For sensing temperatures in the time domain, the large characteristic curve of a CMOS inverter markedly affects the accuracy, particularly when the operating temperature range is increased. To enhance the on-chip linearity, this study proposes a novel temperature-sensing cell comprising a simple buffer and a buffer with a thermal-compensation circuit to achieve a linearised delay. Thus, a linearity-enhanced oscillator consisting of these cells can generate an oscillation period with high linearity. To achieve one-point calibration support, an adjustable-gain time stretcher and calibration circuit were adopted for the process-variation calibration. The programmable temperature set point was determined using a reference clock and a second (identical) adjustable-gain time stretcher. A delay-time comparator with a built-in customised hysteresis circuit was used to perform a time comparison to obtain an appropriate response. Based on the proposed design, a thermostat with a small area of 0.067 mm2 was fabricated using a TSMC 0.35-μm 2P4M CMOS process, and a robust resolution of 0.05 °C and dissipation of 25 μW were achieved at a sample rate of 10 samples/s. An inaccuracy of -0.35 °C to 1.35 °C was achieved after one-point calibration at temperatures ranging from -40 °C to 120 °C. Compared with existing thermostats, the proposed thermostat substantially improves the circuit area, accuracy, operating temperature range, and test costs.

  11. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.

  12. A new laterally conductive bridge random access memory by fully CMOS logic compatible process

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Che; Chin, Yung-Wen; Lin, Yu-Cheng; Chih, Yu-Der; Tsai, Kan-Hsueh; Tsai, Ming-Jinn; King, Ya-Chin; Lin, Chrong Jung

    2014-01-01

    This paper proposes a novel laterally conductive bridge random access memory (L-CBRAM) module using a fully CMOS logic compatible process. A contact buffer layer between the poly-Si and contact plug enables the lateral Ti-based atomic layer to provide on/off resistance ratio via bipolar operations. The proposed device reached more than 100 pulse cycles with an on/off ratio over 10 and very stable data retention under high temperature operations. These results make this Ti-based L-CBRAM cell a promising solution for advanced embedded multi-time programmable (MTP) memory applications.

  13. A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations.

    PubMed

    Tsai, Tsung-Heng; Tsai, Hao-Cheng; Wu, Tien-Keng

    2014-10-01

    This paper presents a capacitive tactile sensor fabricated in a standard CMOS process. Both of the sensor and readout circuits are integrated on a single chip by a TSMC 0.35 μm CMOS MEMS technology. In order to improve the sensitivity, a T-shaped protrusion is proposed and implemented. This sensor comprises the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few post-processing steps. By a nano-indenter, the measured spring constant of the T-shaped structure is 2.19 kNewton/m. Fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction are utilized to compensate process variations and improve the accuracy of the readout circuits. The measured displacement-to-voltage transductance is 7.15 mV/nm, and the sensitivity is 3.26 mV/μNewton. The overall power dissipation is 132.8 μW.

  14. Lithography with infrared illumination alignment for advanced BiCMOS backside processing

    NASA Astrophysics Data System (ADS)

    Kulse, P.; Schulz, K.; Behrendt, U.; Wietstruck, M.; Kaynak, M.; Marschmeyer, S.; Tillack, B.

    2014-10-01

    Driven by new applications such as BiCMOS embedded RF-MEMS, high-Q passives, Si-based microfluidics for bio sensing and InP-Si BiCMOS heterointegration [1-4], accurate alignment between back and front side is highly desired. In this paper, we present an advanced back to front side alignment technique and implementation of it into the back side processing module of IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS technology. Using the Nikon i-line Stepper NSR-SF150, a new infrared alignment system has been introduced. The developed technique enables a high resolution and accurate lithography on the back side of the BiCMOS-processed Si wafers for additional backside processing, such as backside routing metallization. In comparison to previous work [5] with overlay values of 500 nm and the requirement of two-step lithography, the new approach provides significant improvement in the overlay accuracy with overlay values of 200 nm and a significant increase of the fabrication throughput by eliminating the need of the two-step lithography. The new non-contact alignment procedure allows a direct back to front side alignment using any front side alignment mark (Fig. 2), which generated a signal by reflecting the IR light beam. Followed by a measurement of the misalignment between both front to back side overlay marks (Fig. 3) using EVG®NT40 automated measurement system, a final lithography process with wafer interfield corrections is applied to obtain a minimum overlay of 200 nm. For the specific application of deep Si etching using Bosch process, the etch profile angle deviation across the wafer (tilting) has to be considered as well. From experimental data, an etch profile angle deviation of 8 μm across the wafer has been measured (Fig. 7). The overlay error caused by tilting was corrected by optimization and adjustment of the stepper offset parameters. All measurements of back to front side misalignment were performed with the EVG®40NT automated measurement system

  15. Optical modulation techniques for analog signal processing and CMOS compatible electro-optic modulation

    NASA Astrophysics Data System (ADS)

    Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.

    2008-02-01

    Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.

  16. Modeling and Manufacturing of a Micromachined Magnetic Sensor Using the CMOS Process without Any Post-Process

    PubMed Central

    Tseng, Jian-Zhi; Wu, Chyan-Chyi; Dai, Ching-Liang

    2014-01-01

    The modeling and fabrication of a magnetic microsensor based on a magneto-transistor were presented. The magnetic sensor is fabricated by the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process without any post-process. The finite element method (FEM) software Sentaurus TCAD is utilized to analyze the electrical properties and carriers motion path of the magneto-transistor. A readout circuit is used to amplify the voltage difference of the bases into the output voltage. Experiments show that the sensitivity of the magnetic sensor is 354 mV/T at the supply current of 4 mA. PMID:24732100

  17. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    PubMed Central

    Wang, Zhenwei; Al-Jawhari, Hala A.; Nayak, Pradipta K.; Caraveo-Frescas, J. A.; Wei, Nini; Hedhili, M. N.; Alshareef, H. N.

    2015-01-01

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field. PMID:25892711

  18. An integrating CMOS APS for X-ray imaging with an in-pixel preamplifier

    NASA Astrophysics Data System (ADS)

    Abdalla, M. A.; Fröjdh, C.; Petersson, C. S.

    2001-06-01

    We present in this paper an integrating CMOS Active Pixel Sensor (APS) circuit coated with scintillator type sensors for intra-oral dental X-ray imaging systems. The photosensing element in the pixel is formed by the p-diffusion on the n-well diode. The advantage of this photosensor is its very low direct absorption of X-rays compared to the other available photosensing elements in the CMOS pixel. The pixel features an integrating capacitor in the feedback loop of a preamplifier of a finite gain in order to increase the optical sensitivity. To verify the effectiveness of this in-pixel preamplification, a prototype 32×80 element CMOS active pixel array was implemented in a 0.8 μm CMOS double poly, n-well process with a pixel pitch of 50 μm. Measured results confirmed the improved optical sensitivity performance of the APS. Various measurements on device performance are presented.

  19. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    NASA Astrophysics Data System (ADS)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard

  20. Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhu, Hongbo; Zhang, Liang; Fu, Min

    2016-09-01

    The proposed Circular Electron Positron Collider (CEPC) will be primarily aimed for precision measurements of the discovered Higgs boson. Its innermost vertex detector, which will play a critical role in heavy-flavor tagging, must be constructed with fine-pitched silicon pixel sensors with low power consumption and fast readout. CMOS pixel sensor (CPS), as one of the most promising candidate technologies, has already demonstrated its excellent performance in several high energy physics experiments. Therefore it has been considered for R&D for the CEPC vertex detector. In this paper, we present the preliminary studies to improve the collected signal charge over the equivalent input capacitance ratio (Q / C), which will be crucial to reduce the analog power consumption. We have performed detailed 3D device simulation and evaluated potential impacts from diode geometry, epitaxial layer properties and non-ionizing radiation damage. We have proposed a new approach to improve the treatment of the boundary conditions in simulation. Along with the TCAD simulation, we have designed the exploratory prototype utilizing the TowerJazz 0.18 μm CMOS imaging sensor process and we will verify the simulation results with future measurements.

  1. Design of fast signal processing readout front-end electronics implemented in CMOS 40 nm technology

    NASA Astrophysics Data System (ADS)

    Kleczek, Rafal

    2016-12-01

    The author presents considerations on the design of fast readout front-end electronics implemented in a CMOS 40 nm technology with an emphasis on the system dead time, noise performance and power dissipation. The designed processing channel consists of a charge sensitive amplifier with different feedback types (Krummenacher, resistive and constant current blocks), a threshold setting block, a discriminator and a counter with logic circuitry. The results of schematic and post-layout simulations with randomly generated input pulses in a time domain according to the Poisson distribution are presented and analyzed. Dead time below 20 ns is possible while keeping noise ENC ≈ 90 e- for a detector capacitance CDET = 160 fF.

  2. Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process.

    PubMed

    Shinkawa, Mizuki; Ishikura, Norihiro; Hama, Yosuke; Suzuki, Keijiro; Baba, Toshihiko

    2011-10-24

    We have studied low-dispersion slow light and its nonlinear enhancement in photonic crystal waveguides. In this work, we fabricated the waveguides using Si CMOS-compatible process. It enables us to integrate spotsize converters, which greatly simplifies the optical coupling from fibers as well as demonstration of the nonlinear enhancement. Two-photon absorption, self-phase modulation and four-wave mixing were observed clearly for picosecond pulses in a 200-μm-long device. In comparison with Si wire waveguides, a 60-120 fold higher nonlinearity was evaluated for a group index of 51. Unique intensity response also occurred due to the specific transmission spectrum and enhanced nonlinearities. Such slow light may add various functionalities in Si photonics, while loss reduction is desired for ensuring the advantage of slow light.

  3. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    PubMed

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  4. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    PubMed Central

    He, Diwei; Nguyen, Hoang C.; Hayes-Gill, Barrie R.; Zhu, Yiqun; Crowe, John A.; Gill, Cally; Clough, Geraldine F.; Morgan, Stephen P.

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  5. A CMOS high resolution, process/temperature variation tolerant RSSI for WIA-PA transceiver

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Yu, Jiang; Jie, Li; Jiangfei, Guo; Hua, Chen; Jingyu, Han; Guiliang, Guo; Yuepeng, Yan

    2015-08-01

    This paper presents a high resolution, process/temperature variation tolerant received signal strength indicator (RSSI) for wireless networks for industrial automation process automation (WIA-PA) transceiver fabricated in 0.18 μm CMOS technology. The active area of the RSSI is 0.24 mm2. Measurement results show that the proposed RSSI has a dynamic range more than 70 dB and the linearity error is within ±0.5 dB for an input power from -70 to 0 dBm (dBm to 50 Ω), the corresponding output voltage is from 0.81 to 1.657 V and the RSSI slope is 12.1 mV/dB while consuming all of 2 mA from a 1.8 V power supply. Furthermore, by the help of the integrated compensation circuit, the proposed RSSI shows the temperature error within ±1.5 dB from -40 to 85 °C, and process variation error within ±0.25 dB, which exhibits good temperature-independence and excellent robustness against process variation characteristics. Project supported by the National High Technology Research and Development Program of China (No. 2011AA040102).

  6. Performance of buried channel n-type MOSFETs in 0.18-μm CMOS image sensor process

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.; Zhang, Zhige; Damerell, Chris; Burt, David; Kar-Roy, Arjun

    2013-09-01

    Buried channel (BC) MOSFETs are known to have better noise performance than surface channel (SC) MOSFETs when used as source followers in modern Charge Coupled Devices (CCD). CMOS image sensors find increasing range of applications and compete with CCDs in high performance imaging, however BC transistors are rarely used in CMOS. As a part of the development of charge storage using BC CCDs in CMOS, we designed and manufactured deep depletion BC n-type MOSFETs in 0.18 μm CMOS image sensor process. The transistors are designed in a way similar to the source followers in a typical BC CCD. In this paper we report the results from their characterization and compare with enhancement mode and "zero-threshold" SC devices. In addition to the detailed current-voltage and noise measurements, semiconductor device simulation results are presented to illustrate and understand the different conditions affecting the channel conduction and the noise performance of the BC transistors at low operating voltages. We show that the biasing of the BC transistors has to be carefully adjusted for optimal operation, and that their noise performance at the right operating conditions can be superior to SC devices, despite their lower gain as in-pixel source followers.

  7. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1982-01-01

    The procedure used to generate MEBES masks and produce test wafers from the 10X Mann 1600 Pattern Generator Tape using existing CAD utility programs and the MEBES machine in the RCA Solid State Technology Center are described. The test vehicle used is the MSFC-designed SC102 Solar House Timing Circuit. When transforming the Mann 1600 tapes into MEBES tapes, extreme care is required in order to obtain accurate minimum linewidths when working with two different coding systems because the minimum grid sizes may be different for the two systems. The minimum grid sizes are 0.025 mil for MSFC Mann 1600 and 0.02 mil for MEBES. Some snapping to the next grid is therefore inevitable, and the results of this snapping effect are significant when submicron lines are present. However, no problem was noticed in the SC102 circuit because its minimum linewidth is 0.3 mil (7.6 microns). MEBES masks were fabricated and wafers were processed using the silicon-gate CMOS/SOS and aluminum-gate COS/MOS processing.

  8. Design and implementation of non-linear image processing functions for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel

    2012-11-01

    Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.

  9. A low-phase-noise ring oscillator with coarse and fine tuning in a standard CMOS process

    NASA Astrophysics Data System (ADS)

    Haijun, Gao; Lingling, Sun; Xiaofei, Kuang; Liheng, Lou

    2012-07-01

    A low-phase-noise wideband ring oscillator with coarse and fine tuning techniques implemented in a standard 65 nm CMOS process is presented. Direct frequency modulation in the ring oscillator is analyzed and a switched capacitor array is introduced to produce the lower VCO gain required to suppress this effect. A two-dimensional high-density stacked MOM-capacitor was adopted as the switched capacitor to make the proposed ring VCO compatible with standard CMOS processes. The designed ring VCO exhibits an output frequency from 480 to 1100 MHz, resulting in a tuning range of 78%, and the measured phase noise is -120 dBc/Hz @ 1 MHz at 495 MHz output. The VCO core consumes 3.84 mW under a 1.2 V supply voltage and the corresponding FOM is -169 dBc/Hz.

  10. Study of drain-extended NMOS under electrostatic discharge stress in 28 nm and 40 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Wang, Weihuai; Jin, Hao; Dong, Shurong; Zhong, Lei; Han, Yan

    2016-02-01

    Researches on the electrostatic discharge (ESD) performance of drain-extended NMOS (DeNMOS) under the state-of-the-art 28 nm and 40 nm bulk CMOS process are performed in this paper. Three distinguishing phases of avalanche breakdown stage, depletion region push-out stage and parasitic NPN turn on stage of the gate-grounded DeNMOS (GG-DeNMOS) fabricated under 28 nm CMOS process measured with transmission line pulsing (TLP) test are analyzed through TCAD simulations and tape-out silicon verification detailedly. Damage mechanisms and failure spots of GG-DeNMOS under both CMOS processes are thermal breakdown of drain junction. Improvements based on the basic structure adjustments can increase the GG-DeNMOS robustness from original 2.87 mA/μm to the highest 5.41 mA/μm. Under 40 nm process, parameter adjustments based on the basic structure have no significant benefits on the robustness improvements. By inserting P+ segments in the N+ implantation of drain or an entire P+ strip between the N+ implantation of drain and polysilicon gate to form the typical DeMOS-SCR (silicon-controlled rectifier) structure, the ESD robustness can be enhanced from 1.83 mA/μm to 8.79 mA/μm and 29.78 mA/μm, respectively.

  11. Scaling trends in SET pulse widths in Sub-100 nm bulk CMOS processes.

    SciTech Connect

    Narasimham, Balaji; Ahlbin, Jonathan R.; Schrimpf, Ronald D.; Gadlage, Matthew J.; Massengill, Lloyd W.; Vizkelethy, Gyorgy; Reed, Robert A.; Bhuva, Bharat L.

    2010-07-01

    Digital single-event transient (SET) measurements in a bulk 65-nm process are compared to transients measured in 130-nm and 90-nm processes. The measured SET widths are shorter in a 65-nm test circuit than SETs measured in similar 90-nm and 130-nm circuits, but, when the factors affecting the SET width measurements (in particular pulse broadening and the parasitic bipolar effect) are considered, the actual SET width trends are found to be more complex. The differences in the SET widths between test circuits can be attributed in part to differences in n-well contact area. These results help explain some of the inconsistencies in SET measurements presented by various researchers over the past few years.

  12. Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit

    NASA Technical Reports Server (NTRS)

    Bolton, Eric K.; Sayler, Gary S.; Nivens, David E.; Rochelle, James M.; Ripp, Steven; Simpson, Michael L.

    2002-01-01

    We report an integrated CMOS microluminometer optimized for the detection of low-level bioluminescence as part of the bioluminescent bioreporter integrated circuit (BBIC). This microluminometer improves on previous devices through careful management of the sub-femtoampere currents, both signal and leakage, that flow in the front-end processing circuitry. In particular, the photodiode is operated with a reverse bias of only a few mV, requiring special attention to the reset circuitry of the current-to-frequency converter (CFC) that forms the front-end circuit. We report a sub-femtoampere leakage current and a minimum detectable signal (MDS) of 0.15 fA (1510 s integration time) using a room temperature 1.47 mm2 CMOS photodiode. This microluminometer can detect luminescence from as few as 5000 fully induced Pseudomonas fluorescens 5RL bacterial cells. c2002 Elsevier Science B.V. All rights reserved.

  13. Integrated circuit design considerations for spacecraft VLSI implemented in standard CMOS processes

    NASA Astrophysics Data System (ADS)

    Martin, Mark Noel

    2000-10-01

    In this dissertation I will examine issues concerning the use of custom Application Specific Integrated Circuits (ASIC)s, fabricated at commercial foundries, for use in spacecraft. I will examine this subject from the fabrication, device, circuit and system level. I begin with an overview of integrated circuit fabrication and post processing technology used to physically alter the circuit and enhance its electrical performance. I examine the MOS transistor and its variant the Floating-Gate MOS transistor from a device perspective. I discuss a model, derived from the electrostatics of the MOS structure, that is continuous over the entire region of operation while maintaining a small set of physical parameters. Secondly, the operation of the Floating-Gate MOSFET, a device finding increasing usage in adaptive systems, will be presented. The model is then expanded to include the effects of exposure to ionizing radiation on MOSFETs. From a circuit perspective, I will examine the issue of power and energy usage in a digital system. The current-mode design approach will be reviewed as an introduction to Current-Mode-Differential-Logic, a low energy logic family. I will discuss Floating-Gate-Logic, an application of floating-gate transistors to solve the low-power problem by adjusting device thresholds. The second half of the dissertation will be focused on radiation effects in MOS devices. I begin by describing the, rather unpleasant, environment that spacecraft operate in. I continue with a discussion on two main effects of radiation exposure that engineers need to contend with, radiation induced latchup and total-dose exposure. I will provide results from different experiments designed to evaluate a commercial CMOS process's usability for a space application. Finally I describe an application that utilizes the negative effects of radiation on floating-gate MOS devices, an integrated, electronic micro-dosimeter.

  14. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  15. On-chip skin color detection using a triple-well CMOS process

    NASA Astrophysics Data System (ADS)

    Boussaid, Farid; Chai, Douglas; Bouzerdoum, Abdesselam

    2004-03-01

    In this paper, a current-mode VLSI architecture enabling on read-out skin detection without the need for any on-chip memory elements is proposed. An important feature of the proposed architecture is that it removes the need for demosaicing. Color separation is achieved using the strong wavelength dependence of the absorption coefficient in silicon. This wavelength dependence causes a very shallow absorption of blue light and enables red light to penetrate deeply in silicon. A triple-well process, allowing a P-well to be placed inside an N-well, is chosen to fabricate three vertically integrated photodiodes acting as the RGB color detector for each pixel. Pixels of an input RGB image are classified as skin or non-skin pixels using a statistical skin color model, chosen to offer an acceptable trade-off between skin detection performance and implementation complexity. A single processing unit is used to classify all pixels of the input RGB image. This results in reduced mismatch and also in an increased pixel fill-factor. Furthermore, the proposed current-mode architecture is programmable, allowing external control of all classifier parameters to compensate for mismatch and changing lighting conditions.

  16. Additive electroplating technology as a post-CMOS process for the production of MEMS acceleration-threshold switches for transportation applications

    NASA Astrophysics Data System (ADS)

    Michaelis, Sven; Timme, Hans-Jörg; Wycisk, Michael; Binder, Josef

    2000-06-01

    This paper presents an acceleration-threshold sensor fabricated with an electroplating technology which can be integrated on top of a pre-processed CMOS signal processing circuit. The device can be manufactured using a standard low-cost CMOS production line and then adding the mechanical sensor elements via a specialized back-end process. This makes the system especially interesting for automotive applications, such as airbag safety systems or transportation shock monitoring systems, where smaller size, improved functionality, high reliability and low costs are important.

  17. Analysis of pixel circuits in CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Mei, Zou; Chen, Nan; Yao, Li-bin

    2015-04-01

    CMOS image sensors (CIS) have lower power consumption, lower cost and smaller size than CCD image sensors. However, generally CCDs have higher performance than CIS mainly due to lower noise. The pixel circuit used in CIS is the first part of the signal processing circuit and connected to photodiode directly, so its performance will greatly affect the CIS or even the whole imaging system. To achieve high performance, CMOS image sensors need advanced pixel circuits. There are many pixel circuits used in CIS, such as passive pixel sensor (PPS), 3T and 4T active pixel sensor (APS), capacitive transimpedance amplifier (CTIA), and passive pixel sensor (PPS). At first, the main performance parameters of each pixel structure including the noise, injection efficiency, sensitivity, power consumption, and stability of bias voltage are analyzed. Through the theoretical analysis of those pixel circuits, it is concluded that CTIA pixel circuit has good noise performance, high injection efficiency, stable photodiode bias, and high sensitivity with small integrator capacitor. Furthermore, the APS and CTIA pixel circuits are simulated in a standard 0.18-μm CMOS process and using a n-well/p-sub photodiode by SPICE and the simulation result confirms the theoretical analysis result. It shows the possibility that CMOS image sensors can be extended to a wide range of applications requiring high performance.

  18. An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-01-01

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm. PMID:25036331

  19. A CMOS floating point multiplier

    NASA Astrophysics Data System (ADS)

    Uya, M.; Kaneko, K.; Yasui, J.

    1984-10-01

    This paper describes a 32-bit CMOS floating point multiplier. The chip can perform 32-bit floating point multiplication (based on the proposed IEEE Standard format) and 24-bit fixed point multiplication (two's complement format) in less than 78.7 and 71.1 ns, respectively, and the typical power dissipation is 195 mW at 10 million operations per second. High-speed multiplication techniques - a modified Booth's allgorithm, a carry save adder scheme, a high-speed CMOS full adder, and a modified carry select adder - are used to achieve the above high performance. The chip is designed for compatibility with 16-bit microcomputer systems, and is fabricated in 2 micron n-well CMOS technology; it contains about 23000 transistors of 5.75 x 5.67 sq mm in size.

  20. Multipurpose Test Structures and Process Characterization using 0.13 μm CMOS: The CHAMP ASIC

    NASA Astrophysics Data System (ADS)

    Cooney, Michael; Andrew, Matt; Nishimura, Kurtis; Ruckman, Larry; Varner, Gary; Grabas, Hervé; Oberla, Eric; Genat, Jean-Francois; Large Area Picosecond Photodetector Collaboration

    The University of Hawaii (UH) in collaboration with the University of Chicago (UC) submitted a test Application Specific Integrated Circuit (ASIC), the Chicago-Hawaii ASIC MultiPurpose (CHAMP), composed of a number of discrete test elements in a 0.13 μm CMOS process. This paper describes the structures submitted by UH and UC. Hawaii designs include high speed flip-flops, voltage controlled ring oscillators and delay lines, an Low Voltage Differential Signal (LVDS) receiver, a set of four 64-cell waveform samplers with shared input, an analog storage and comparator structure, as well as a 12-bit Digital to Analog Converter (DAC). The Chicago designs include voltage controlled delay lines, delay locked loops, voltage controlled ring oscillators, transmission lines, and resistors. Each of the structures will be described, with simulation and test results presented.

  1. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  2. The 1.2 micron CMOS technology

    NASA Technical Reports Server (NTRS)

    Pina, C. A.

    1985-01-01

    A set of test structures was designed using the Jet Propulsion Laboratory (JPL) test chip assembler and was used to evaluate the first CMOS-bulk foundry runs with feature sizes of 1.2 microns. In addition to the problems associated with the physical scaling of the structures, this geometry provided an additional set of problems, since the design files had to be generated in such a way as to be capable of being processed through p-well, n-well, and twin-well processing lines. This requirement meant that the files containing the geometric design rules as well as the structure design files had to produce process-insensitive designs, a requirement that does not apply to the more mature 3.0-micron CMOS feature size technology. Because of the photolithographic steps required with this feature size, the maximum allowable chip size was 10 x 10 mm, and this chip was divided into 24 project areas, with each area being 1.6 x 1.6 mm in size. The JPL-designed structures occupied 13 out of the 21 allowable project sizes and provided the only test information obtained from these three preliminary runs. The structures were used to successfully evaluate three different manufacturing runs through two separate foundries.

  3. Infrared sensor by inkjet printing cytochrome c on suspending aluminum electrodes of post CMOS process

    NASA Astrophysics Data System (ADS)

    Liang, Shuo-Feng; Yen, Po-Hsien; Su, Guo-Dung John

    2016-09-01

    Cytochrome c protein thin film possesses a high temperature coefficient of resistance. In this paper, we systematically investigated the characteristics of cytochrome c, whose absorption coefficient is 65% at wavelengths of 8 12 μm. We found that the changes in resistance resulted from surface roughness. We also discovered that, while cytochrome c improves the temperature coefficient of resistance, a pure protein solution does not conduct well. It needs a buffer solution, acting as an electrolyte, to increase electrical conductance. However, the buffer solution decreases the temperature coefficient. Therefore, optimization of the ratio of cytochrome c protein to buffer solution is required. We determined the best mixing ratio of the protein solution for a sensing material. We then designed a chip for an infrared microbolometer with a MEMS structure of suspended aluminum electrodes. The protein solution was deposited on the sensing pixel using an inkjet printer. The temperature coefficient of resistance, thermal conductance, time constant and responsivity were 25.98%/K, 7.96 × 10-5 W/K, 1.094 ms and 2.57 × 105 V/W at 2 μA bias current, respectively. We experimentally demonstrated integrating cytochrome c protein with a CMOS circuit as a sensing pixel for a longwavelength infrared microbolometer. Based on our experimental results, such a microbolometer array holds promise for the future.

  4. Grayscale lithography process study applied to zero-gap microlenses for sub-2μm CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Audran, S.; Vaillant, J.; Farys, V.; Hirigoyen, F.; Huss, E.; Mortini, B.; Cowache, C.; Berthier, L.; Mortini, E.; Fantuz, J.; Arnaud, O.; Depoyan, L.; Sundermann, F.; Baron, C.; Reynard, J.-P.

    2010-04-01

    Microlens arrays are used on CMOS image sensors to focus incident light onto the appropriate photodiode and thus improve the device quantum efficiency. As the pixel size shrinks, the fill factor of the sensor (i.e. ratio of the photosensitive area to the total pixel area) decreases and one way to compensate this loss of sensibility is to improve the microlens photon collection efficiency. This can be achieved by developing zero-gap microlens processes. One elegant solution to pattern zero-gap microlenses is to use a grayscale reticle with varying optical densities which locally modulate the UV light intensity, allowing the creation of continuous relief structure in the resist layer after development. Contrary to conventional lithography for which high resist contrast is appreciated to achieve straight resist pattern profiles, grayscale lithography requires smooth resist contrast curve. In this study we demonstrate the efficiency of grayscale lithography to generate sub-2μm diameter microlens with a positive-tone photoresist. We also show that this technique is resist and process (film thickness, development normality and exposure conditions) dependent. Under the best conditions, spherical zero-gap microlenses as well as aspherical and off-axis microlenses, which are impossible to obtain with the conventional reflow method, were obtained with satisfying process latitude.

  5. CMOS array design automation techniques

    NASA Technical Reports Server (NTRS)

    Lombardi, T.; Feller, A.

    1976-01-01

    The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable.

  6. Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm. PMID:24072022

  7. PNP PIN bipolar phototransistors for high-speed applications built in a 180 nm CMOS process

    PubMed Central

    Kostov, P.; Gaberl, W.; Hofbauer, M.; Zimmermann, H.

    2012-01-01

    This work reports on three speed optimized pnp bipolar phototransistors build in a standard 180 nm CMOS process using a special starting wafer. The starting wafer consists of a low doped p epitaxial layer on top of the p substrate. This low doped p epitaxial layer leads to a thick space-charge region between base and collector and thus to a high −3 dB bandwidth at low collector–emitter voltages. For a further increase of the bandwidth the presented phototransistors were designed with small emitter areas resulting in a small base-emitter capacitance. The three presented phototransistors were implemented in sizes of 40 × 40 μm2 and 100 × 100 μm2. Optical DC and AC measurements at 410 nm, 675 nm and 850 nm were done for phototransistor characterization. Due to the speed optimized design and the layer structure of the phototransistors, bandwidths up to 76.9 MHz and dynamic responsivities up to 2.89 A/W were achieved. Furthermore simulations of the electric field strength and space-charge regions were done. PMID:23482349

  8. A High-Voltage-Tolerant and Precise Charge-Balanced Neuro-Stimulator in Low Voltage CMOS Process.

    PubMed

    Luo, Zhicong; Ker, Ming-Dou

    2016-12-01

    This paper presents a 4 × VDD neuro-stimulator in a 0.18- μm 1.8 V/3.3 V CMOS process. The self-adaption bias technique and stacked MOS configuration are used to prevent transistors from the electrical overstress and gate-oxide reliability issue. A high-voltage-tolerant level shifter with power-on protection is used to drive the neuro-stimulator The reliability measurement of up to 100 million periodic cycles with 3000- μA biphasic stimulations in 12-V power supply has verified that the proposed neuro-stimulator is robust. Precise charge balance is achieved by using a novel current memory cell with the dual calibration loops and leakage current compensation. The charge mismatch is down to 0.25% over all the stimulus current ranges (200-300 μA) The residual average dc current is less than 6.6 nA after shorting operation.

  9. Designing a Ring-VCO for RFID Transponders in 0.18 μm CMOS Process

    PubMed Central

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5–2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of −126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency. PMID:24587731

  10. A 0.1-1.5 GHz, low jitter, area efficient PLL in 55-nm CMOS process

    NASA Astrophysics Data System (ADS)

    Bo, Zhong; Zhangming, Zhu

    2016-05-01

    A 0.1-1.5 GHz, 3.07 pS root mean squares (RMS) jitter, area efficient phase locked loop (PLL) with multiphase clock outputs is presented in this paper. The size of capacitor in the low pass filter (LPF) is significantly decreased by implementing a dual path charge pump (CP) technique in this PLL. Subject to specified power consumption, a novel optimization method is introduced to optimize the transistor size in the voltage control oscillator (VCO), CP and phase/frequency detector (PFD) in order to minimize clock jitter. This method could improve 3-6 dBc/Hz phase noise. The proposed PLL has been fabricated in 55 nm CMOS process with an integrated 16 pF metal-oxide-metal (MOM) capacitor, occupies 0.05 mm2 silicon area, the measured total power consumption is 2.8 mW @ 1.5 GHz and the phase noise is -102 dBc/Hz @ 1 MHz offset frequency. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the National High-Tech Program of China (No. 2013AA014103).

  11. Designing a ring-VCO for RFID transponders in 0.18 μm CMOS process.

    PubMed

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5-2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of -126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency.

  12. Radiation Characteristics of a 0.11 Micrometer Modified Commercial CMOS Process

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Kim, Hak; Berg, Melanie D.; Forney, Jim; Seidleck, Christina; Vilchis, Miguel A.; Phan, Anthony; Irwin, Tim; LaBel, Kenneth A.; Saigusa, Rajan K.; Mirabedini, Mohammad R.; Finlinson, Rick; Suvkhanov, Agajan; Hornback, Verne; Sung, Jun; Tung, Jeffrey

    2006-01-01

    We present radiation data, Total Ionizing Dose and Single Event Effects, on the LSI Logic 0.11 micron commercial process and two modified versions of this process. Modified versions include a buried layer to guarantee Single Event Latchup immunity.

  13. Active pixel sensors in AMS H18/H35 HV-CMOS technology for the ATLAS HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Ristic, Branislav

    2016-09-01

    Deep sub micron HV-CMOS processes offer the opportunity for sensors built by industry standard techniques while being HV tolerant, making them good candidates for drift-based, fast collecting, thus radiation-hard pixel detectors. For the upgrade of the ATLAS Pixel Detector towards the HL-LHC requirements, active pixel sensors in HV-CMOS technology were investigated. These implement signal processing electronics in deep n-wells, which also act as collecting electrodes. The deep n-wells allow for bias voltages up to 150 V leading to a depletion depth of several 10 μm. Prototype sensors in the AMS H18 180 nm and H35 350 nm HV-CMOS processes were thoroughly tested in lab measurements as well as in testbeam experiments. Irradiations with X-rays and protons revealed a tolerance to ionizing doses of 1 Grad while Edge-TCT studies assessed the effects of radiation on the charge collection. The sensors showed high detection efficiencies after neutron irradiation to 1015neq cm-2 in testbeam experiments. A full reticle size demonstrator chip, implemented in the H35 process is being submitted to prove the large scale feasibility of the HV-CMOS concept.

  14. SEMICONDUCTOR INTEGRATED CIRCUITS: An enhanced close-in phase noise LC-VCO using parasitic V-NPN transistors in a CMOS process

    NASA Astrophysics Data System (ADS)

    Peijun, Gao; J, Oh N.; Hao, Min

    2009-08-01

    A differential LC voltage controlled oscillator (VCO) employing parasitic vertical-NPN (V-NPN) transistors as a negative gm-cell is presented to improve the close-in phase noise. The V-NPN transistors have lower flicker noise compared to MOS transistors. DC and AC characteristics of the V-NPN transistors are measured to facilitate the VCO design. The proposed VCO is implemented in a 0.18 μm CMOS RF/mixed signal process, and the measurement results show the close-in phase noise is improved by 3.5-9.1 dB from 100 Hz to 10 kHz offset compared to that of a similar CMOS VCO. The proposed VCO consumes only 0.41 mA from a 1.5 V power supply.

  15. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  16. Fabrication and Structural Characterization of Co-implanted Ultra Shallow Junctions for Integration in Piezoresistive Silicon Sensors Compatible with CMOS Processing

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Mustafa, R.

    2013-12-01

    Fabrication and structural characterization of Indium and Carbon implanted n-type Silicon layers forming ultra-shallow junction for integration in piezoresistive sensors compatible with CMOS processing is studied in detail. The co-implantation technology together with medium range annealing temperature regimes seem to play an important role at atomistic level and provide a process control to engineer the strain and maintain the quality of surface/layer/active device region for further manufacturing process cycle. This is likely to impact the yield and reliability for the fabrication of these devices for diverse applications.

  17. CMOS Integrated Carbon Nanotube Sensor

    SciTech Connect

    Perez, M. S.; Lerner, B.; Boselli, A.; Lamagna, A.; Obregon, P. D. Pareja; Julian, P. M.; Mandolesi, P. S.; Buffa, F. A.

    2009-05-23

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  18. A RF receiver frontend for SC-UWB in a 0.18-μm CMOS process

    NASA Astrophysics Data System (ADS)

    Rui, Guo; Haiying, Zhang

    2012-12-01

    A radio frequency (RF) receiver frontend for single-carrier ultra-wideband (SC-UWB) is presented. The front end employs direct-conversion architecture, and consists of a differential low noise amplifier (LNA), a quadrature mixer, and two intermediate frequency (IF) amplifiers. The proposed LNA employs source inductively degenerated topology. First, the expression of input impedance matching bandwidth in terms of gate-source capacitance, resonant frequency and target S11 is given. Then, a noise figure optimization strategy under gain and power constraints is proposed, with consideration of the integrated gate inductor, the bond-wire inductance, and its variation. The LNA utilizes two stages with different resonant frequencies to acquire flat gain over the 7.1-8.1 GHz frequency band, and has two gain modes to obtain a higher receiver dynamic range. The mixer uses a double balanced Gilbert structure. The front end is fabricated in a TSMC 0.18-μm RF CMOS process and occupies an area of 1.43 mm2. In high and low gain modes, the measured maximum conversion gain are 42 dB and 22 dB, input 1 dB compression points are -40 dBm and -20 dBm, and S11 is better than -18 dB and -14.5 dB. The 3 dB IF bandwidth is more than 500 MHz. The double sideband noise figure is 4.7 dB in high gain mode. The total power consumption is 65 mW from a 1.8 V supply.

  19. CMOS Image Sensors for High Speed Applications

    PubMed Central

    El-Desouki, Munir; Deen, M. Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps). PMID:22389609

  20. CMOS Image Sensors for High Speed Applications.

    PubMed

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  1. High-speed binary CMOS image sensor using a high-responsivity MOSFET-type photodetector

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Jo, Sung-Hyun; Bae, Myunghan; Choi, Pyung; Shin, Jang-Kyoo

    2015-03-01

    In this paper, a complementary metal oxide semiconductor (CMOS) binary image sensor based on a gate/body-tied (GBT) MOSFET-type photodetector is proposed. The proposed CMOS binary image sensor was simulated and measured using a standard CMOS 0.18-μm process. The GBT MOSFET-type photodetector is composed of a floating gate (n+- polysilicon) tied to the body (n-well) of the p-type MOSFET. The size of the active pixel sensor (APS) using GBT photodetector is smaller than that of APS using the photodiode. This means that the resolution of the image can be increased. The high-gain GBT photodetector has a higher photosensitivity compared to the p-n junction photodiode that is used in a conventional APS. Because GBT has a high sensitivity, fast operation of the binary processing is possible. A CMOS image sensor with the binary processing can be designed with simple circuits composed of a comparator and a Dflip- flop while a complex analog to digital converter (ADC) is not required. In addition, the binary image sensor has low power consumption and high speed operation with the ability to switch back and forth between a binary mode and an analog mode.

  2. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced

  3. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity

    PubMed Central

    Zhang, Fan; Niu, Hanben

    2016-01-01

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 107 when illuminated by a 405-nm diode laser and 1/1.4 × 104 when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e− rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena. PMID:27367699

  4. A 75-ps Gated CMOS Image Sensor with Low Parasitic Light Sensitivity.

    PubMed

    Zhang, Fan; Niu, Hanben

    2016-06-29

    In this study, a 40 × 48 pixel global shutter complementary metal-oxide-semiconductor (CMOS) image sensor with an adjustable shutter time as low as 75 ps was implemented using a 0.5-μm mixed-signal CMOS process. The implementation consisted of a continuous contact ring around each p+/n-well photodiode in the pixel array in order to apply sufficient light shielding. The parasitic light sensitivity of the in-pixel storage node was measured to be 1/8.5 × 10⁷ when illuminated by a 405-nm diode laser and 1/1.4 × 10⁴ when illuminated by a 650-nm diode laser. The pixel pitch was 24 μm, the size of the square p+/n-well photodiode in each pixel was 7 μm per side, the measured random readout noise was 217 e(-) rms, and the measured dynamic range of the pixel of the designed chip was 5500:1. The type of gated CMOS image sensor (CIS) that is proposed here can be used in ultra-fast framing cameras to observe non-repeatable fast-evolving phenomena.

  5. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    NASA Astrophysics Data System (ADS)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2017-02-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  6. Towards a high performance vertex detector based on 3D integration of deep N-well MAPS

    NASA Astrophysics Data System (ADS)

    Re, V.

    2010-06-01

    The development of deep N-Well (DNW) CMOS active pixel sensors was driven by the ambitious goal of designing a monolithic device with similar functionalities as in hybrid pixel readout chips, such as pixel-level sparsification and time stamping. The implementation of the DNW MAPS concept in a 3D vertical integration process naturally leads the designer towards putting more intelligence in the chip and in the pixels themselves, achieving novel device structures based on the interconnection of two or more layers fabricated in the same technology. These devices are read out with a data-push scheme that makes it possible to use pixel data for the generation of a flexible level 1 track trigger, based on associative memories, with short latency and high efficiency. This paper gives an update of the present status of DNW MAPS design in both 2D and 3D versions, and presents a discussion of the architectures that are being devised for the Layer 0 of the SuperB Silicon Vertex Tracker.

  7. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  8. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  9. Development of CMOS Active Pixel Image Sensors for Low Cost Commercial Applications

    NASA Technical Reports Server (NTRS)

    Fossum, E.; Gee, R.; Kemeny, S.; Kim, Q.; Mendis, S.; Nakamura, J.; Nixon, R.; Ortiz, M.; Pain, B.; Zhou, Z.; Ackland, B.; Dickinson, A.; Eid, E.; Inglis, D.

    1994-01-01

    This paper describes ongoing research and development of CMOS active pixel image sensors for low cost commercial applications. A number of sensor designs have been fabricated and tested in both p-well and n-well technologies. Major elements in the development of the sensor include on-chip analog signal processing circuits for the reduction of fixed pattern noise, on-chip timing and control circuits and on-chip analog-to-digital conversion (ADC). Recent results and continuing efforts in these areas will be presented.

  10. A zirconium dioxide ammonia microsensor integrated with a readout circuit manufactured using the 0.18 μm CMOS process.

    PubMed

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-03-15

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  11. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    PubMed Central

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  12. A 200 mV low leakage current subthreshold SRAM bitcell in a 130 nm CMOS process

    NASA Astrophysics Data System (ADS)

    Na, Bai; Baitao, Lü

    2012-06-01

    A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage (200 mV) applications. Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes. To minimize leakage, a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty. Combined with buffering circuit and reconfigurable operation, the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region. Compared to the referenced subthreshold SRAM bitcell, the proposed bitcell shows: (1) a better critical state noise margin, and (2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13 μW power consumption at 138 kHz frequency.

  13. Design of High Speed and Low Offset Dynamic Latch Comparator in 0.18 µm CMOS Process

    PubMed Central

    Rahman, Labonnah Farzana; Reaz, Mamun Bin Ibne; Yin, Chia Chieu; Ali, Mohammad Alauddin Mohammad; Marufuzzaman, Mohammad

    2014-01-01

    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2. PMID:25299266

  14. Photon counting readout pixel array in 0.18-μm CMOS technology for on-line gamma-ray imaging of 103palladium seeds for permanent breast seed implant (PBSI) brachytherapy

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Karim, K. S.; Reznik, A.; Caldwell, C. B.; Rowlands, J. A.

    2008-03-01

    Permanent breast seed implant (PBSI) brachytherapy technique was recently introduced as an alternative to high dose rate (HDR) brachytherapy and involves the permanent implantation of radioactive 103Palladium seeds into the surgical cavity of the breast for cancer treatment. To enable accurate seed implantation, this research introduces a gamma camera based on a hybrid amorphous selenium detector and CMOS readout pixel architecture for real-time imaging of 103Palladium seeds during the PBSI procedure. A prototype chip was designed and fabricated in 0.18-μm n-well CMOS process. We present the experimental results obtained from this integrated photon counting readout pixel.

  15. CAOS-CMOS camera.

    PubMed

    Riza, Nabeel A; La Torre, Juan Pablo; Amin, M Junaid

    2016-06-13

    Proposed and experimentally demonstrated is the CAOS-CMOS camera design that combines the coded access optical sensor (CAOS) imager platform with the CMOS multi-pixel optical sensor. The unique CAOS-CMOS camera engages the classic CMOS sensor light staring mode with the time-frequency-space agile pixel CAOS imager mode within one programmable optical unit to realize a high dynamic range imager for extreme light contrast conditions. The experimentally demonstrated CAOS-CMOS camera is built using a digital micromirror device, a silicon point-photo-detector with a variable gain amplifier, and a silicon CMOS sensor with a maximum rated 51.3 dB dynamic range. White light imaging of three different brightness simultaneously viewed targets, that is not possible by the CMOS sensor, is achieved by the CAOS-CMOS camera demonstrating an 82.06 dB dynamic range. Applications for the camera include industrial machine vision, welding, laser analysis, automotive, night vision, surveillance and multispectral military systems.

  16. Review of radiation damage studies on DNW CMOS MAPS

    NASA Astrophysics Data System (ADS)

    Traversi, G.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Ratti, L.; Re, V.; Zucca, S.; Bettarini, S.; Rizzo, G.; Morsani, F.; Bosisio, L.; Rashevskaya, I.; Cindro, V.

    2013-12-01

    Monolithic active pixel sensors fabricated in a bulk CMOS technology with no epitaxial layer and standard resistivity (10 Ω cm) substrate, featuring a deep N-well as the collecting electrode (DNW MAPS), have been exposed to γ-rays, up to a final dose of 10 Mrad (SiO2), and to neutrons from a nuclear reactor, up to a total 1 MeV neutron equivalent fluence of about 3.7 ·1013cm-2. The irradiation campaign was aimed at studying the effects of radiation on the most significant parameters of the front-end electronics and on the charge collection properties of the sensors. Device characterization has been carried out before and after irradiations. The DNW MAPS irradiated with 60Co γ-rays were also subjected to high temperature annealing (100 °C for 168 h). Measurements have been performed through a number of different techniques, including electrical characterization of the front-end electronics and of DNW diodes, laser stimulation of the sensors and tests with 55Fe and 90Sr radioactive sources. This paper reviews the measurement results, their relation with the damage mechanisms underlying performance degradation and provides a new comparison between DNW devices and MAPS fabricated in a CMOS process with high resistivity (1 kΩ cm) epitaxial layer.

  17. A 50Mbit/Sec. CMOS Video Linestore System

    NASA Astrophysics Data System (ADS)

    Jeung, Yeun C.

    1988-10-01

    This paper reports the architecture, design and test results of a CMOS single chip programmable video linestore system which has 16-bit data words with 1024 bit depth. The delay is fully programmable from 9 to 1033 samples by a 10 bit binary control word. The large 16 bit data word width makes the chip useful for a wide variety of digital video signal processing applications such as DPCM coding, High-Definition TV, and Video scramblers/descramblers etc. For those applications, the conventional large fixed-length shift register or static RAM scheme is not very popular because of its lack of versatility, high power consumption, and required support circuitry. The very high throughput of 50Mbit/sec is made possible by a highly parallel, pipelined dynamic memory architecture implemented in a 2-um N-well CMOS technology. The basic cell of the programmable video linestore chip is an four transistor dynamic RAM element. This cell comprises the majority of the chip's real estate, consumes no static power, and gives good noise immunity to the simply designed sense amplifier. The chip design was done using Bellcore's version of the MULGA virtual grid symbolic layout system. The chip contains approximately 90,000 transistors in an area of 6.5 x 7.5 square mm and the I/Os are TTL compatible. The chip is packaged in a 68-pin leadless ceramic chip carrier package.

  18. A CMOS In-Pixel CTIA High Sensitivity Fluorescence Imager

    PubMed Central

    Murari, Kartikeya; Etienne-Cummings, Ralph; Thakor, Nitish; Cauwenberghs, Gert

    2012-01-01

    Traditionally, charge coupled device (CCD) based image sensors have held sway over the field of biomedical imaging. Complementary metal oxide semiconductor (CMOS) based imagers so far lack sensitivity leading to poor low-light imaging. Certain applications including our work on animal-mountable systems for imaging in awake and unrestrained rodents require the high sensitivity and image quality of CCDs and the low power consumption, flexibility and compactness of CMOS imagers. We present a 132×124 high sensitivity imager array with a 20.1 μm pixel pitch fabricated in a standard 0.5 μ CMOS process. The chip incorporates n-well/p-sub photodiodes, capacitive transimpedance amplifier (CTIA) based in-pixel amplification, pixel scanners and delta differencing circuits. The 5-transistor all-nMOS pixel interfaces with peripheral pMOS transistors for column-parallel CTIA. At 70 fps, the array has a minimum detectable signal of 4 nW/cm2 at a wavelength of 450 nm while consuming 718 μA from a 3.3 V supply. Peak signal to noise ratio (SNR) was 44 dB at an incident intensity of 1 μW/cm2. Implementing 4×4 binning allowed the frame rate to be increased to 675 fps. Alternately, sensitivity could be increased to detect about 0.8 nW/cm2 while maintaining 70 fps. The chip was used to image single cell fluorescence at 28 fps with an average SNR of 32 dB. For comparison, a cooled CCD camera imaged the same cell at 20 fps with an average SNR of 33.2 dB under the same illumination while consuming over a watt. PMID:23136624

  19. SiGe BiCMOS manufacturing platform for mmWave applications

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Howard, David; Preisler, Edward; Racanelli, Marco; Chaudhry, Samir; Blaschke, Volker

    2010-10-01

    TowerJazz offers high volume manufacturable commercial SiGe BiCMOS technology platforms to address the mmWave market. In this paper, first, the SiGe BiCMOS process technology platforms such as SBC18 and SBC13 are described. These manufacturing platforms integrate 200 GHz fT/fMAX SiGe NPN with deep trench isolation into 0.18μm and 0.13μm node CMOS processes along with high density 5.6fF/μm2 stacked MIM capacitors, high value polysilicon resistors, high-Q metal resistors, lateral PNP transistors, and triple well isolation using deep n-well for mixed-signal integration, and, multiple varactors and compact high-Q inductors for RF needs. Second, design enablement tools that maximize performance and lowers costs and time to market such as scalable PSP and HICUM models, statistical and Xsigma models, reliability modeling tools, process control model tools, inductor toolbox and transmission line models are described. Finally, demonstrations in silicon for mmWave applications in the areas of optical networking, mobile broadband, phased array radar, collision avoidance radar and W-band imaging are listed.

  20. Ion traps fabricated in a CMOS foundry

    SciTech Connect

    Mehta, K. K.; Ram, R. J.; Eltony, A. M.; Chuang, I. L.; Bruzewicz, C. D.; Sage, J. M. Chiaverini, J.

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  1. Fundamental performance differences of CMOS and CCD imagers: part V

    NASA Astrophysics Data System (ADS)

    Janesick, James R.; Elliott, Tom; Andrews, James; Tower, John; Pinter, Jeff

    2013-02-01

    Previous papers delivered over the last decade have documented developmental progress made on large pixel scientific CMOS imagers that match or surpass CCD performance. New data and discussions presented in this paper include: 1) a new buried channel CCD fabricated on a CMOS process line, 2) new data products generated by high performance custom scientific CMOS 4T/5T/6T PPD pixel imagers, 3) ultimate CTE and speed limits for large pixel CMOS imagers, 4) fabrication and test results of a flight 4k x 4k CMOS imager for NRL's SoloHi Solar Orbiter Mission, 5) a progress report on ultra large stitched Mk x Nk CMOS imager, 6) data generated by on-chip sub-electron CDS signal chain circuitry used in our imagers, 7) CMOS and CMOSCCD proton and electron radiation damage data for dose levels up to 10 Mrd, 8) discussions and data for a new class of PMOS pixel CMOS imagers and 9) future CMOS development work planned.

  2. Optical waveguide taps on silicon CMOS circuits

    NASA Astrophysics Data System (ADS)

    Stenger, Vincent E.; Beyette, Fred R., Jr.

    2000-11-01

    As silicon CMOS circuit technology is scaled beyond the GHz range, both chipmakers and board makers face increasingly difficult challenges in implementing high speed metal interconnects. Metal traces are limited in density-speed performance due to the skin effect, electrical conductivity, and cross talk. Optical based interconnects have higher available bandwidth by virtue of the extremely high carrier frequencies of optical signals (> 100 THz). For this work, an effort has been made to determine an optimal optical tap receiver design for integration with commercial CMOS processes. Candidate waveguide tap technologies were considered in terms of optical loss, bandwidth, economy, and CMOS process compatibility. A new device, which is based on a variation of the multimode interference effect, has been found to be especially promising. BeamProp simulation results show nearly zero excess optical loss for the design, and up to 70% coupling into a 25 micrometer traveling wave CMOS photodetector device. Single-mode waveguides make the design readily compatible with wavelength multiplexing/demultiplexing elements. Polymer waveguide materials are targeted for fabrication due to planarization properties, low cost, broad index control, and poling abilities for modulation/tuning functions. Low cost, silicon CMOS based processing makes the new tap technology especially suitable for computer chip and board level interconnects, as well as metro fiber-to-the- home/desk telecommunications applications.

  3. ESD protection design for advanced CMOS

    NASA Astrophysics Data System (ADS)

    Huang, Jin B.; Wang, Gewen

    2001-10-01

    ESD effects in integrated circuits have become a major concern as today's technologies shrink to sub-micron/deep- sub-micron dimensions. The thinner gate oxide and shallower junction depth used in the advanced technologies make them very vulnerable to ESD damages. The advanced techniques like silicidation and STI (shallow trench insulation) used for improving other device performances make ESD design even more challenging. For non-silicided technologies, a certain DCGS (drain contact to gate edge spacing) is needed to achieve ESD hardness for nMOS output drivers and nMOS protection transistors. The typical DCGS values are 4-5um and 2-3um for 0.5um and 0.25um CMOS, respectively. The silicidation reduces the ballast resistance provided by DCGS with at least a factor of 10. As a result, scaling of the ESD performance with device width is lost and even zero ESD performance is reported for standard silicided devices. The device level ESD design is focused in this paper, which includes GGNMOS (gate grounded NMOS) and GCNMOS (gate coupled NMOS). The device level ESD testing including TLP (transmission line pulse) is given. Several ESD issues caused by advanced technologies have been pointed out. The possible solutions have been developed and summarized including silicide blocking, process optimization, back-end ballasting, and new protection scheme, dummy gate/n-well resistor ballsting, etc. Some of them require process cost increase, and others provide novel, compact, and simple design but involving royalty/IP (intellectual property) issue. Circuit level ESD design and layout design considerations are covered. The top-level ESD protection strategies are also given.

  4. Radiation tolerant back biased CMOS VLSI

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)

    2003-01-01

    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.

  5. A 0.23 pJ 11.05-bit ENOB 125-MS/s pipelined ADC in a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Yong, Wang; Jianyun, Zhang; Rui, Yin; Yuhang, Zhao; Wei, Zhang

    2015-05-01

    This paper describes a 12-bit 125-MS/s pipelined analog-to-digital converter (ADC) that is implemented in a 0.18 μm CMOS process. A gate-bootstrapping switch is used as the bottom-sampling switch in the first stage to enhance the sampling linearity. The measured differential and integral nonlinearities of the prototype are less than 0.79 least significant bit (LSB) and 0.86 LSB, respectively, at the full sampling rate. The ADC exhibits an effective number of bits (ENOB) of more than 11.05 bits at the input frequency of 10.5 MHz. The ADC also achieves a 10.5 bits ENOB with the Nyquist input frequency at the full sample rate. In addition, the ADC consumes 62 mW from a 1.9 V power supply and occupies 1.17 mm2, which includes an on-chip reference buffer. The figure-of-merit of this ADC is 0.23 pJ/step. Project supported by the Foundation of Shanghai Municipal Commission of Economy and Informatization (No. 130311).

  6. Commercially developed mixed-signal CMOS process features for application in advanced ROICs in 0.18μm technology node

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Hurwitz, Paul; Mann, Richard; Qamar, Yasir; Chaudhry, Samir; Zwingman, Robert; Howard, David; Racanelli, Marco

    2012-06-01

    Increasingly complex specifications for next-generation focal plane arrays (FPAs) require smaller pixels, larger array sizes, reduced power consumption and lower cost. We have previously reported on the favorable features available in the commercially available TowerJazz CA18 0.18μm mixed-signal CMOS technology platform for advanced read-out integrated circuit (ROIC) applications. In his paper, new devices in development for commercial purposes and which may have applications in advanced ROICs are reported. First, results of buried-channel 3.3V field effect transistors (FETs) are detailed. The buried-channel pFETs show flicker (1/f) noise reductions of ~5X in comparison to surface-channel pFETs along with a significant reduction of the body constant parameter. The buried-channel nFETs show ~2X reduction of 1/f noise versus surface-channel nFETs. Additional reduced threshold voltage nFETs and pFETs are also described. Second, a high-density capacitor solution with a four-stacked linear (metal-insulator-metal) MIM capacitor having capacitance density of 8fF/μm2 is reported. Additional stacking with MOS capacitor in a 5V tolerant process results in >50fC/μm2 charge density. Finally, one-time programmable (OTP) and multi-time programmable (MTP) non-volatile memory options in the CA18 technology platform are outlined.

  7. Josephson-CMOS Hybrid Memories

    DTIC Science & Technology

    2007-04-25

    Liu, X . Meng, S. R. Whiteley, and T. Van Duzer, “Characterization of 4 K CMOS devices and circuits for hybrid Josephson- CMOS systems,” IEEE Trans. on...Josephson- CMOS hybrid memories Qingguo Liu Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB...to 00-00-2007 4. TITLE AND SUBTITLE Josephson- CMOS hybrid memories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  8. CMOS sensor for face tracking and recognition

    NASA Astrophysics Data System (ADS)

    Ginhac, Dominique; Prasetyo, Eri; Paindavoine, Michel

    2005-03-01

    This paper describes the main principles of a vision sensor dedicated to the detecting and tracking faces in video sequences. For this purpose, a current mode CMOS active sensor has been designed using an array of pixels that are amplified by using current mirrors of column amplifier. This circuit is simulated using Mentor Graphics software with parameters of a 0.6 μm CMOS process. The circuit design is added with a sequential control unit which purpose is to realise capture of subwindows at any location and any size in the whole image.

  9. Lab-on-CMOS integration of microfluidics and electrochemical sensors.

    PubMed

    Huang, Yue; Mason, Andrew J

    2013-10-07

    This paper introduces a CMOS-microfluidics integration scheme for electrochemical microsystems. A CMOS chip was embedded into a micro-machined silicon carrier. By leveling the CMOS chip and carrier surface to within 100 nm, an expanded obstacle-free surface suitable for photolithography was achieved. Thin film metal planar interconnects were microfabricated to bridge CMOS pads to the perimeter of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device containing SU-8 microfluidic mixers and detection channels crossing over microelectrodes on a CMOS integrated circuit was constructed using the chip-carrier assembly scheme. Functional integrity of microfluidic structures and on-CMOS electrodes was verified by a simultaneous sample dilution and electrochemical detection experiment within multi-channel microfluidics. This lab-on-CMOS integration process is capable of high packing density, is suitable for wafer-level batch production, and opens new opportunities to combine the performance benefits of on-CMOS sensors with lab-on-chip platforms.

  10. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  11. Improving CMOS-compatible Germanium photodetectors.

    PubMed

    Li, Guoliang; Luo, Ying; Zheng, Xuezhe; Masini, Gianlorenzo; Mekis, Attila; Sahni, Subal; Thacker, Hiren; Yao, Jin; Shubin, Ivan; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2012-11-19

    We report design improvements for evanescently coupled Germanium photodetectors grown at low temperature. The resulting photodetectors with 10 μm Ge length manufactured in a commercial CMOS process achieve >0.8 A/W responsivity over the entire C-band, with a device capacitance of <7 fF based on measured data.

  12. A CMOS high speed imaging system design based on FPGA

    NASA Astrophysics Data System (ADS)

    Tang, Hong; Wang, Huawei; Cao, Jianzhong; Qiao, Mingrui

    2015-10-01

    CMOS sensors have more advantages than traditional CCD sensors. The imaging system based on CMOS has become a hot spot in research and development. In order to achieve the real-time data acquisition and high-speed transmission, we design a high-speed CMOS imaging system on account of FPGA. The core control chip of this system is XC6SL75T and we take advantages of CameraLink interface and AM41V4 CMOS image sensors to transmit and acquire image data. AM41V4 is a 4 Megapixel High speed 500 frames per second CMOS image sensor with global shutter and 4/3" optical format. The sensor uses column parallel A/D converters to digitize the images. The CameraLink interface adopts DS90CR287 and it can convert 28 bits of LVCMOS/LVTTL data into four LVDS data stream. The reflected light of objects is photographed by the CMOS detectors. CMOS sensors convert the light to electronic signals and then send them to FPGA. FPGA processes data it received and transmits them to upper computer which has acquisition cards through CameraLink interface configured as full models. Then PC will store, visualize and process images later. The structure and principle of the system are both explained in this paper and this paper introduces the hardware and software design of the system. FPGA introduces the driven clock of CMOS. The data in CMOS is converted to LVDS signals and then transmitted to the data acquisition cards. After simulation, the paper presents a row transfer timing sequence of CMOS. The system realized real-time image acquisition and external controls.

  13. CMOS floating-point vector-arithmetic unit

    NASA Astrophysics Data System (ADS)

    Timmermann, D.; Rix, B.; Hahn, H.; Hosticka, B. J.

    1994-05-01

    This work describes a floating-point arithmetic unit based on the CORDIC algorithm. The unit computes a full set of high level arithmetic and elementary functions: multiplication, division, (co)sine, hyperbolic (co)sine, square root, natural logarithm, inverse (hyperbolic) tangent, vector norm, and phase. The chip has been integrated in 1.6 micron double-metal n-well CMOS technology and achieves a normalized peak performance of 220 MFLOPS.

  14. Delta Doping High Purity CCDs and CMOS for LSST

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill

    2006-01-01

    A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.

  15. Ink-Jet Printed CMOS Electronics from Oxide Semiconductors.

    PubMed

    Garlapati, Suresh Kumar; Baby, Tessy Theres; Dehm, Simone; Hammad, Mohammed; Chakravadhanula, Venkata Sai Kiran; Kruk, Robert; Hahn, Horst; Dasgupta, Subho

    2015-08-05

    Complementary metal oxide semiconductor (CMOS) technology with high transconductance and signal gain is mandatory for practicable digital/analog logic electronics. However, high performance all-oxide CMOS logics are scarcely reported in the literature; specifically, not at all for solution-processed/printed transistors. As a major step toward solution-processed all-oxide electronics, here it is shown that using a highly efficient electrolyte-gating approach one can obtain printed and low-voltage operated oxide CMOS logics with high signal gain (≈21 at a supply voltage of only 1.5 V) and low static power dissipation.

  16. A Hybrid CMOS-Memristor Neuromorphic Synapse.

    PubMed

    Azghadi, Mostafa Rahimi; Linares-Barranco, Bernabe; Abbott, Derek; Leong, Philip H W

    2017-04-01

    Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.

  17. All-CMOS night vision viewer with integrated microdisplay

    NASA Astrophysics Data System (ADS)

    Goosen, Marius E.; Venter, Petrus J.; du Plessis, Monuko; Faure, Nicolaas M.; Janse van Rensburg, Christo; Rademeyer, Pieter

    2014-02-01

    The unrivalled integration potential of CMOS has made it the dominant technology for digital integrated circuits. With the advent of visible light emission from silicon through hot carrier electroluminescence, several applications arose, all of which rely upon the advantages of mature CMOS technologies for a competitive edge in a very active and attractive market. In this paper we present a low-cost night vision viewer which employs only standard CMOS technologies. A commercial CMOS imager is utilized for near infrared image capturing with a 128x96 pixel all-CMOS microdisplay implemented to convey the image to the user. The display is implemented in a standard 0.35 μm CMOS process, with no process alterations or post processing. The display features a 25 μm pixel pitch and a 3.2 mm x 2.4 mm active area, which through magnification presents the virtual image to the user equivalent of a 19-inch display viewed from a distance of 3 meters. This work represents the first application of a CMOS microdisplay in a low-cost consumer product.

  18. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  19. Lateral drift-field photodiode for low noise, high-speed, large photoactive-area CMOS imaging applications

    NASA Astrophysics Data System (ADS)

    Durini, Daniel; Spickermann, Andreas; Mahdi, Rana; Brockherde, Werner; Vogt, Holger; Grabmaier, Anton; Hosticka, Bedrich J.

    2010-12-01

    In this work a theoretical concept and simulations are presented for a novel lateral drift-field photodetector pixel to be fabricated in a 0.35 μm CMOS process. The proposed pixel consists of a specially designed n-well with a non-uniform lateral doping profile that follows a square-root spatial dependence. "Buried" MOS capacitor-based collection-gate, a transfer-gate, and an n-type MOSFET source/drain n + floating-diffusion serve to realize a non-destructive readout. The pixel readout is performed using an in-pixel source-follower pixel buffer configuration followed by an output amplifier featuring correlated double-sampling. The concentration gradient formed in the n-well employs a single extra implantation step in the 0.35 μm CMOS process mentioned and requires only a single extra mask. It generates an electrostatic potential gradient, i.e. a lateral drift-field, in the photoactive area of the pixel which enables high charge transfer speed and low image-lag. According to the simulation results presented, charge transfer times of less than 3 ns are to be expected.

  20. A CMOS silicon spin qubit

    NASA Astrophysics Data System (ADS)

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; de Franceschi, S.

    2016-11-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  1. A CMOS silicon spin qubit

    PubMed Central

    Maurand, R.; Jehl, X.; Kotekar-Patil, D.; Corna, A.; Bohuslavskyi, H.; Laviéville, R.; Hutin, L.; Barraud, S.; Vinet, M.; Sanquer, M.; De Franceschi, S.

    2016-01-01

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal–oxide–semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform. PMID:27882926

  2. A CMOS silicon spin qubit.

    PubMed

    Maurand, R; Jehl, X; Kotekar-Patil, D; Corna, A; Bohuslavskyi, H; Laviéville, R; Hutin, L; Barraud, S; Vinet, M; Sanquer, M; De Franceschi, S

    2016-11-24

    Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.

  3. Fully CMOS-compatible titanium nitride nanoantennas

    SciTech Connect

    Briggs, Justin A.; Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A.; Petach, Trevor A.; Goldhaber-Gordon, David

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  4. Monolithic CMUT on CMOS Integration for Intravascular Ultrasound Applications

    PubMed Central

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F. Levent

    2012-01-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter based volumetric imaging arrays where the elements need to be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom designed CMOS receiver electronics from a commercial IC foundry. The CMUT on CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT to CMOS interconnection. This CMUT to CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire bonding method. Characterization experiments indicate that the CMUT on CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Experiments on a 1.6 mm diameter dual-ring CMUT array with a 15 MHz center frequency show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging CTOs located 1 cm away from the CMUT array. PMID:23443701

  5. Developments and Applications of High-Performance CCD and CMOS Imaging Arrays

    NASA Astrophysics Data System (ADS)

    Janesick, James; Putnam, Gloria

    2003-12-01

    For over 20 years, charge-coupled devices (CCDs) have dominated most digital imaging applications and markets. Today, complementary metal oxide semiconductor (CMOS) arrays are displacing CCDs in some applications, and this trend is expected to continue. Low cost, low power, on-chip system integration, and high-speed operation are unique features that have generated interest in CMOS arrays. This paper reviews current CCD and CMOS sensor developments and related applications. We compare fundamental performance parameters common to these technologies and describe why the CCD is considered a mature technology, whereas CMOS arrays have significant room for growth. The paper presents custom CMOS pixel designs and related fabrication processes that address performance deficiencies of the CCD in high-performance applications. We discuss areas of development for future CCD and CMOS imagers. The paper also briefly reviews hybrid imaging arrays that combine the advantages of CCD and CMOS, producing better sensors than either technology alone can provide.

  6. Low-Power SOI CMOS Transceiver

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Technical Monitor); Cheruiyot, K.; Cothern, J.; Huang, D.; Singh, S.; Zencir, E.; Dogan, N.

    2003-01-01

    The work aims at developing a low-power Silicon on Insulator Complementary Metal Oxide Semiconductor (SOI CMOS) Transceiver for deep-space communications. RF Receiver must accomplish the following tasks: (a) Select the desired radio channel and reject other radio signals, (b) Amplify the desired radio signal and translate them back to baseband, and (c) Detect and decode the information with Low BER. In order to minimize cost and achieve high level of integration, receiver architecture should use least number of external filters and passive components. It should also consume least amount of power to minimize battery cost, size, and weight. One of the most stringent requirements for deep-space communication is the low-power operation. Our study identified that two candidate architectures listed in the following meet these requirements: (1) Low-IF receiver, (2) Sub-sampling receiver. The low-IF receiver uses minimum number of external components. Compared to Zero-IF (Direct conversion) architecture, it has less severe offset and flicker noise problems. The Sub-sampling receiver amplifies the RF signal and samples it using track-and-hold Subsampling mixer. These architectures provide low-power solution for the short- range communications missions on Mars. Accomplishments to date include: (1) System-level design and simulation of a Double-Differential PSK receiver, (2) Implementation of Honeywell SOI CMOS process design kit (PDK) in Cadence design tools, (3) Design of test circuits to investigate relationships between layout techniques, geometry, and low-frequency noise in SOI CMOS, (4) Model development and verification of on-chip spiral inductors in SOI CMOS process, (5) Design/implementation of low-power low-noise amplifier (LNA) and mixer for low-IF receiver, and (6) Design/implementation of high-gain LNA for sub-sampling receiver. Our initial results show that substantial improvement in power consumption is achieved using SOI CMOS as compared to standard CMOS

  7. Building strong partnerships with CMOs.

    PubMed

    Dye, Carson F

    2014-07-01

    CFOs and chief medical officers (CMOs) can build on common traits to form productive partnerships in guiding healthcare organizations through the changes affecting the industry. CFOs can strengthen bonds with CMOs by taking steps to engage physicians on their own turf--by visiting clinical locations and attending medical-executive committee meetings, for example. Steps CFOs can take to help CMOs become more acquainted with the financial operations of health systems include demonstrating the impact of clinical decisions on costs and inviting CMOs to attend finance-related meetings.

  8. CMOS Compatible 3-Axis Magnetic Field Sensor using Hall Effect Sensing

    NASA Astrophysics Data System (ADS)

    Locke, Joshua R.

    The purpose of this study is to design, fabricate and test a CMOS compatible 3-axis Hall effect sensor capable of detecting the earth's magnetic field, with strength's of ˜50 muT. Preliminary testing of N-well Van Der Pauw structures using strong neodymium magnets showed proof of concept for hall voltage sensing, however, poor geometry of the structures led to a high offset voltage. A 1-axis Hall effect sensor was designed, fabricated and tested with a sensitivity of 1.12x10-3 mV/Gauss using the RIT metal gate PMOS process. Poor geometry and insufficient design produced an offset voltage of 0.1238 volts in the 1-axis design; prevented sensing of the earth's magnetic field. The new design features improved geometry for sensing application, improved sensitivity and use the RIT sub-CMOS process. The completed 2-axis device showed an average sensitivity to large magnetic fields of 0.0258 muV/Gauss at 10 mA supply current.

  9. Development of a real-time data processing system for a prototype of the Tomo-e Gozen wide field CMOS camera

    NASA Astrophysics Data System (ADS)

    Ohsawa, Ryou; Sako, Shigeyuki; Takahashi, Hidenori; Kikuchi, Yuki; Doi, Mamoru; Kobayashi, Naoto; Aoki, Tsutomu; Arimatsu, Ko; Ichiki, Makoto; Ikeda, Shiro; Ita, Yoshifusa; Kasuga, Toshihiro; Kawakita, Hideo; Kokubo, Mitsuru; Maehara, Hiroyuki; Matsunaga, Noriyuki; Mito, Hiroyuki; Mitsuda, Kazuma; Miyata, Takashi; Mori, Kiyoshi; Mori, Yuki; Morii, Mikio; Morokuma, Tomoki; Motohara, Kentaro; Nakada, Yoshikazu; Okumura, Shin-ichiro; Onozato, Hiroki; Osawa, Kentaro; Sarugaku, Yuki; Sato, Mikiya; Shigeyama, Toshikazu; Soyano, Takao; Tanaka, Masaomi; Taniguchi, Yuki; Tanikawa, Ataru; Tarusawa, Ken'ichi; Tominaga, Nozomu; Totani, Tomonori; Urakawa, Seitaro; Usui, Fumihiko; Watanabe, Junichi; Yamaguchi, Jumpei; Yoshikawa, Makoto

    2016-08-01

    The Tomo-e Gozen camera is a next-generation, extremely wide field optical camera, equipped with 84 CMOS sensors. The camera records about a 20 square degree area at 2 Hz, providing "astronomical movie data". We have developed a prototype of the Tomo-e Gozen camera (hereafter, Tomo-e PM), to evaluate the basic design of the Tomo-e Gozen camera. Tomo-e PM, equipped with 8 CMOS sensors, can capture a 2 square degree area at up to 2 Hz. Each CMOS sensor has about 2.6 M pixels. The data rate of Tomo-e PM is about 80 MB/s, corresponding to about 280 GB/hour. We have developed an operating system and reduction softwares to handle such a large amount of data. Tomo-e PM was mounted on 1.0-m Schmidt Telescope in Kiso Observatory at the University of Tokyo. Experimental observations were carried out in the winter of 2015 and the spring of 2016. The observations and software implementation were successfully completed. The data reduction is now in execution.

  10. CMOS serial link for fully duplexed data communication

    NASA Astrophysics Data System (ADS)

    Lee, Kyeongho; Kim, Sungjoon; Ahn, Gijung; Jeong, Deog-Kyoon

    1995-04-01

    This paper describes a CMOS serial link allowing fully duplexed 500 Mbaud serial data communication. The CMOS serial link is a robust and low-cost solution to high data rate requirements. A central charge pump PLL for generating multiphase clocks for oversampling is shared by several serial link channels. Fully duplexed serial data communication is realized in the bidirectional bridge by separating incoming data from the mixed signal on the cable end. The digital PLL accomplishes process-independent data recovery by using a low-ratio oversampling, a majority voting, and a parallel data recovery scheme. Mostly, digital approach could extend its bandwidth further with scaled CMOS technology. A single channel serial link and a charge pump PLL are integrated in a test chip using 1.2 micron CMOS process technology. The test chip confirms upto 500 Mbaud unidirectional mode operation and 320 Mbaud fully duplexed mode operation with pseudo random data patterns.

  11. A 16-channel CMOS preamplifier for laser ranging radar receivers

    NASA Astrophysics Data System (ADS)

    Liu, Ru-qing; Zhu, Jing-guo; Jiang, Yan; Li, Meng-lin; Li, Feng

    2015-10-01

    A 16-channal front-end preamplifier array has been design in a 0.18um CMOS process for pulse Laser ranging radar receiver. This front-end preamplifier array incorporates transimpedance amplifiers(TIAs) and differential voltage post-amplifier(PAMP),band gap reference and other interface circuits. In the circuit design, the regulated cascade (RGC) input stage, Cherry-Hooper and active inductor peaking were employed to enhance the bandwidth. And in the layout design, by applying the layout isolation structure combined with P+ guard-ring(PGR), N+ guard-ring(NGR),and deep-n-well(DNW) for amplifier array, the crosstalk and the substrate noise coupling was reduced effectively. The simulations show that a single channel receiver front-end preamplifier achieves 95 dBΩ transimpedance gain and 600MHz bandwidth for 3 PF photodiode capacitance. The total power of 16-channel front-end amplifier array is about 800mW for 1.8V supply.

  12. Advancement of CMOS Doping Technology in an External Development Framework

    NASA Astrophysics Data System (ADS)

    Jain, Amitabh; Chambers, James J.; Shaw, Judy B.

    2011-01-01

    The consumer appetite for a rich multimedia experience drives technology development for mobile hand-held devices and the infrastructure to support them. Enhancements in functionality, speed, and user experience are derived from advancements in CMOS technology. The technical challenges in developing each successive CMOS technology node to support these enhancements have become increasingly difficult. These trends have motivated the CMOS business towards a collaborative approach based on strategic partnerships. This paper describes our model and experience of CMOS development, based on multi-dimensional industrial and academic partnerships. We provide to our process equipment, materials, and simulation partners, as well as to our silicon foundry partners, the detailed requirements for future integrated circuit products. This is done very early in the development cycle to ensure that these requirements can be met. In order to determine these fundamental requirements, we rely on a strategy that requires strong interaction between process and device simulation, physical and chemical analytical methods, and research at academic institutions. This learning is shared with each project partner to address integration and manufacturing issues encountered during CMOS technology development from its inception through product ramp. We utilize TI's core strengths in physical analysis, unit processes and integration, yield ramp, reliability, and product engineering to support this technological development. Finally, this paper presents examples of the advancement of CMOS doping technology for the 28 nm node and beyond through this development model.

  13. SEMICONDUCTOR INTEGRATED CIRCUITS: Low power CMOS preamplifier for neural recording applications

    NASA Astrophysics Data System (ADS)

    Xu, Zhang; Weihua, Pei; Beiju, Huang; Hongda, Chen

    2010-04-01

    A fully-differential bandpass CMOS (complementary metal oxide semiconductor) preamplifier for extracellular neural recording is presented. The capacitive-coupled and capacitive-feedback topology is adopted. The preamplifier has a midband gain of 20.4 dB and a DC gain of 0. The -3 dB upper cut-off frequency of the preamplifier is 6.7 kHz. The lower cut-off frequency can be adjusted for amplifying the field or action potentials located in different bands. It has an input-referred noise of 8.2 μVrms integrated from 0.15 Hz to 6.7 kHz for recording the local field potentials and the mixed neural spikes with a power dissipation of 23.1 μW from a 3.3 V supply. A bandgap reference circuitry is also designed for providing the biasing voltage and current. The 0.22 mm2 prototype chip, including the preamplifier and its biasing circuitry, is fabricated in the 0.35-μm N-well CMOS 2P4M process.

  14. Interferometric comparison of the performance of a CMOS and sCMOS detector

    NASA Astrophysics Data System (ADS)

    Flores-Moreno, J. M.; De la Torre I., Manuel H.; Hernández-Montes, M. S.; Pérez-López, Carlos; Mendoza S., Fernando

    2015-08-01

    We present an analysis of the imaging performance of two state-of-the-art sensors widely used in the nondestructive- testing area (NDT). The analysis is based on the quantification of the signal-to-noise (SNR) ratio from an optical phase image. The calculation of the SNR is based on the relation of the median (average) and standard deviation measurements over specific areas of interest in the phase images of both sensors. This retrieved phase is coming from the vibrational behavior of a large object by means of an out-of-plane holographic interferometer. The SNR is used as a figure-of-merit to evaluate and compare the performance of the CMOS and scientific CMOS (sCMOS) camera as part of the experimental set-up. One of the cameras has a high speed CMOS sensor while the other has a high resolution sCMOS sensor. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The vibration induced to the sample is performed by a linear step motor with an attached tip in the motion stage. Each camera is used once at the time to record the deformation keeping the same experimental conditions for each case. These measurements may complement the conventional procedures or technical information commonly used to evaluate a camerás performance such as: quantum efficiency, spatial resolution and others. Results present post processed images from both cameras, but showing a smoother and easy to unwrap optical phase coming from those recorded with the sCMOS camera.

  15. SOI-CMOS-MEMS electrothermal micromirror arrays

    NASA Astrophysics Data System (ADS)

    Gilgunn, Peter J.

    A fabrication technology called SOI-CMOS-MEMS is developed to realize arrays of electrothermally actuated micromirror arrays with fill factors up to 90% and mechanical scan ranges up to +/-45°. SOI-CMOS-MEMS features bonding of a CMOS-MEMS folded electrothermal actuator chip with a SOI mirror chip. Actuators and micromirrors are separately released using Bosch-type and isotropic Si etch processes. A 1-D, 3 x 3 SOI-CMOS-MEMS mirror array is characterized at a 1 mm scale that meets fill factor and scan range targets with a power sensitivity of 1.9 deg·m W-1 and -0.9 deg·m W-1 on inner and outer actuator legs, respectively. Issues preventing fabrication of SOI-CMOS-MEMS micromirror arrays designed for 1-D and 3-D motion at scales from 500 microm to 50 microm are discussed. Electrothermomechanical analytic models of power response of a generic folded actuator topology are developed that provide insight into the trends in actuator behavior for actuator design elements such as beam geometry and heater type, among others. Adverse power and scan range scaling and favorable speed scaling are demonstrated. Mechanical constraints on device geometry are derived. Detailed material, process, test structure and device characterization is presented that demonstrates the consistency of measured device behavior with analytic models. A unified model for aspect ratio dependent etch modulation is developed that achieves depth prediction accuracy of better than 10% up to 160 microm depth over a range of feature shapes and dimensions. The technique is applied extensively in the SOI-CMOS-MEMS process to produce deep multi-level structures in Si with a single etch mask and to control uniformity and feature profiles. TiW attack during release etch is shown to be the driving factor in mirror coplanarity loss. The effect is due to thermally accelerated etching caused by heating of released structures by the exothermic reaction of Si and F. The effect is quantified using in situ infrared

  16. Advanced CMOS Radiation Effects Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; Phan, A. M.; Seidleck, C. M.

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  17. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  18. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  19. Ultralow-Loss CMOS Copper Plasmonic Waveguides.

    PubMed

    Fedyanin, Dmitry Yu; Yakubovsky, Dmitry I; Kirtaev, Roman V; Volkov, Valentyn S

    2016-01-13

    Surface plasmon polaritons can give a unique opportunity to manipulate light at a scale well below the diffraction limit reducing the size of optical components down to that of nanoelectronic circuits. At the same time, plasmonics is mostly based on noble metals, which are not compatible with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which can outperform gold plasmonic waveguides simultaneously providing long (>40 μm) propagation length and deep subwavelength (∼λ(2)/50, where λ is the free-space wavelength) mode confinement in the telecommunication spectral range. These results create the backbone for the development of a CMOS plasmonic platform and its integration in future electronic chips.

  20. Surface enhanced biodetection on a CMOS biosensor chip

    NASA Astrophysics Data System (ADS)

    Belloni, Federico; Sandeau, Laure; Contié, Sylvain; Vicaire, Florence; Owens, Roisin; Rigneault, Hervé

    2012-03-01

    We present a rigorous electromagnetic theory of the electromagnetic power emitted by a dipole located in the vicinity of a multilayer stack. We applied this formalism to a luminescent molecule attached to a CMOS photodiode surface and report light collection efficiency larger than 80% toward the CMOS silicon substrate. We applied this result to the development of a low-cost, simple, portable device based on CMOS photodiodes technology for the detection and quantification of biological targets through light detection, presenting high sensitivity, multiplex ability, and fast data processing. The key feature of our approach is to perform the analytical test directly on the CMOS sensor surface, improving dramatically the optical detection of the molecule emitted light into the high refractive index semiconductor CMOS material. Based on adequate surface chemistry modifications, probe spotting and micro-fluidics, we performed proof-of-concept bio-assays directed against typical immuno-markers (TNF-α and IFN-γ). We compared the developed CMOS chip with a commercial micro-plate reader and found similar intrinsic sensitivities in the pg/ml range.

  1. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    SciTech Connect

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 μm. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 erms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  2. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    PubMed Central

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  3. Design and fabrication of vertically-integrated CMOS image sensors.

    PubMed

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors.

  4. A CMOS compatible, ferroelectric tunnel junction.

    PubMed

    Ambriz Vargas, Fabian; Kolhatkar, Gitanjali; Broyer, Maxime; Hadj Youssef, Azza; Nouar, Rafik; Sarkissian, Andranik; Thomas, Reji; Gomez-Yanez, Carlos; Gauthier, Marc A; Ruediger, Andreas

    2017-04-03

    In recent years, the experimental demonstration of Ferroelectric Tunnel Junctions (FTJ) based on perovskite tunnel barriers has been reported. However, integrating these perovskite materials into conventional silicon memory technology remains challenging due to their lack of compatibility with the complementary metal oxide semiconductor process (CMOS). The present communication reports the fabrication of an FTJ based on a CMOS compatible tunnel barrier Hf0.5Zr0.5O2 (6 unit cells thick) on an equally CMOS compatible TiN electrode. Analysis of the FTJ by grazing angle incidence X-ray diffraction confirmed the formation of the non-centrosymmetric orthorhombic phase (Pbc2_1, ferroelectric phase). The FTJ characterization is followed by the reconstruction of the electrostatic potential profile in the as-grown TiN/Hf0.5Zr0.5O2/Pt heterostructure. A direct tunneling current model across a trapezoidal barrier was used to correlate the electronic and electrical properties of our FTJ devices. The good agreement between the experimental and the theoretical model attests to the tunneling electroresistance effect (TER) in our FTJ device. A TER ratio of ~15 was calculated for the present FTJ device at low read voltage (+0.2 V). This study makes Hf0.5Zr0.5O2 a promising candidate for integration into conventional Si memory technology.

  5. On noise in time-delay integration CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Levski, Deyan; Choubey, Bhaskar

    2016-05-01

    Time delay integration sensors are of increasing interest in CMOS processes owing to their low cost, power and ability to integrate with other circuit readout blocks. This paper presents an analysis of the noise contributors in current day CMOS Time-Delay-Integration image sensors with various readout architectures. An analysis of charge versus voltage domain readout modes is presented, followed by a noise classification of the existing Analog Accumulator Readout (AAR) and Digital Accumulator Readout (DAR) schemes for TDI imaging. The analysis and classification of existing readout schemes include, pipelined charge transfer, buffered direct injection, voltage as well as current-mode analog accumulators and all-digital accumulator techniques. Time-Delay-Integration imaging modes in CMOS processes typically use an N-number of readout steps, equivalent to the number of TDI pixel stages. In CMOS TDI sensors, where voltage domain readout is used, the requirements over speed and noise of the ADC readout chain are increased due to accumulation of the dominant voltage readout and ADC noise with every stage N. Until this day, the latter is the primary reason for a leap-back of CMOS TDI sensors as compared to their CCD counterparts. Moreover, most commercial CMOS TDI implementations are still based on a charge-domain readout, mimicking a CCD-like operation mode. Thus, having a good understanding of each noise contributor in the signal chain, as well as its magnitude in different readout architectures, is vital for the design of future generation low-noise CMOS TDI image sensors based on a voltage domain readout. This paper gives a quantitative classification of all major noise sources for all popular implementations in the literature.

  6. Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications.

    PubMed

    Zahorian, Jaime; Hochman, Michael; Xu, Toby; Satir, Sarp; Gurun, Gokce; Karaman, Mustafa; Degertekin, F Levent

    2011-12-01

    One of the most important promises of capacitive micromachined ultrasonic transducer (CMUT) technology is integration with electronics. This approach is required to minimize the parasitic capacitances in the receive mode, especially in catheter-based volumetric imaging arrays, for which the elements must be small. Furthermore, optimization of the available silicon area and minimized number of connections occurs when the CMUTs are fabricated directly above the associated electronics. Here, we describe successful fabrication and performance evaluation of CMUT arrays for intravascular imaging on custom-designed CMOS receiver electronics from a commercial IC foundry. The CMUT-on-CMOS process starts with surface isolation and mechanical planarization of the CMOS electronics to reduce topography. The rest of the CMUT fabrication is achieved by modifying a low-temperature micromachining process through the addition of a single mask and developing a dry etching step to produce sloped sidewalls for simple and reliable CMUT-to-CMOS interconnection. This CMUT-to-CMOS interconnect method reduced the parasitic capacitance by a factor of 200 when compared with a standard wire-bonding method. Characterization experiments indicate that the CMUT-on-CMOS elements are uniform in frequency response and are similar to CMUTs simultaneously fabricated on standard silicon wafers without electronics integration. Ex- periments on a 1.6-mm-diameter dual-ring CMUT array with a center frequency of 15 MHz show that both the CMUTs and the integrated CMOS electronics are fully functional. The SNR measurements indicate that the performance is adequate for imaging chronic total occlusions located 1 cm from the CMUT array.

  7. Silicon CMOS-based vertical multimode interference optical taps

    NASA Astrophysics Data System (ADS)

    Stenger, Vincent E.; Beyette, Fred R., Jr.

    2001-12-01

    A compact, low loss, optical tap technology is critical for the incorporation of optical interconnects into mainstream CMOS processes. A recently introduced multimode interference effect based device has the potential for very high speed performance in a compact geometry and in a CMOS compatible process. For this work, 2-D and 3-D device simulations confirm a low excess optical loss on order of 0.1 dB, and a nominal 40% (2.2 dB) optical coupling into the CMOS circuitry over a wide range of guide to substrate distances. Simulated devices are on the order of 25micrometers in length and as narrow as 1 um. High temperature, hybrid polymer materials used for commercial CMOS inter-metal dielectric layers are targeted for tap fabrication and are incorporated into the models. Low cost, silicon CMOS based processing makes the new tap technology especially suitable for computer multi-chip module and board level interconnects, as well as for metro fiber to the home and desk telecommunications applications.

  8. A CMOS humidity sensor for passive RFID sensing applications.

    PubMed

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  9. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  10. Large-area low-temperature ultrananocrystaline diamond (UNCD) films and integration with CMOS devices for monolithically integrated diamond MEMD/NEMS-CMOS systems.

    SciTech Connect

    Sumant, A.V.; Auciello, O.; Yuan, H.-C; Ma, Z.; Carpick, R. W.; Mancini, D. C.; Univ. of Wisconsin; Univ. of Pennsylvania

    2009-05-01

    Because of exceptional mechanical, chemical, and tribological properties, diamond has a great potential to be used as a material for the development of high-performance MEMS and NEMS such as resonators and switches compatible with harsh environments, which involve mechanical motion and intermittent contact. Integration of such MEMS/NEMS devices with complementary metal oxide semiconductor (CMOS) microelectronics will provide a unique platform for CMOS-driven commercial MEMS/NEMS. The main hurdle to achieve diamond-CMOS integration is the relatively high substrate temperatures (600-800 C) required for depositing conventional diamond thin films, which are well above the CMOS operating thermal budget (400 C). Additionally, a materials integration strategy has to be developed to enable diamond-CMOS integration. Ultrananocrystalline diamond (UNCD), a novel material developed in thin film form at Argonne, is currently the only microwave plasma chemical vapor deposition (MPCVD) grown diamond film that can be grown at 400 C, and still retain exceptional mechanical, chemical, and tribological properties comparable to that of single crystal diamond. We have developed a process based on MPCVD to synthesize UNCD films on up to 200 mm in diameter CMOS wafers, which will open new avenues for the fabrication of monolithically integrated CMOS-driven MEMS/NEMS based on UNCD. UNCD films were grown successfully on individual Si-based CMOS chips and on 200 mm CMOS wafers at 400 C in a MPCVD system, using Ar-rich/CH4 gas mixture. The CMOS devices on the wafers were characterized before and after UNCD deposition. All devices were performing to specifications with very small degradation after UNCD deposition and processing. A threshold voltage degradation in the range of 0.08-0.44V and transconductance degradation in the range of 1.5-9% were observed.

  11. Improved Space Object Observation Techniques Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Hinze, A.; Schlatter, P.; Silha, J.; Peltonen, J.; Santti, T.; Flohrer, T.

    2013-08-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contain their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. Presently applied and proposed optical observation strategies for space debris surveys and space surveillance applications had to be analyzed. The major design drivers were identified and potential benefits from using available and future CMOS sensors were assessed. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, the characteristics of a particular CMOS sensor available at the Zimmerwald observatory were analyzed by performing laboratory test measurements.

  12. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  13. Black silicon enhanced photodetectors: a path to IR CMOS

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Homayoon, H.; Alie, S.; Sickler, J.; Li, X.; Jiang, J.; Miller, D.; Palsule, C.; McKee, J.

    2010-04-01

    SiOnyx has developed a novel silicon processing technology for CMOS sensors that will extend spectral sensitivity into the near/shortwave infrared (NIR/SWIR) and enable a full performance digital night vision capability comparable to that of current image-intensifier based night vision goggles. The process is compatible with established CMOS manufacturing infrastructure and has the promise of much lower cost than competing approaches. The measured thin layer quantum efficiency is as much as 10x that of incumbent imaging sensors with spectral sensitivity from 400 to 1200 nm.

  14. IR CMOS: ultrafast laser-enhanced silicon detection

    NASA Astrophysics Data System (ADS)

    Pralle, M. U.; Carey, J. E.; Homayoon, H.; Sickler, J.; Li, X.; Jiang, J.; Miller, D.; Palsule, C.; McKee, J.

    2011-06-01

    SiOnyx has developed a novel silicon processing technology for CMOS sensors that will extend spectral sensitivity into the near/shortwave infrared (NIR/SWIR) and enable a full performance digital night vision capability comparable to that of current image-intensifier based night vision goggles. The process is compatible with established CMOS manufacturing infrastructure and has the promise of much lower cost than competing approaches. The measured thin layer quantum efficiency is as much as 10x that of incumbent imaging sensors with spectral sensitivity from 400 to 1200 nm.

  15. A 1 V 186-μW 50-MS/s 10-bit subrange SAR ADC in 130-nm CMOS process

    NASA Astrophysics Data System (ADS)

    Mingyuan, Yu; Ting, Li; Jiaqi, Yang; Shuangshuang, Zhang; Fujiang, Lin; Lin, He

    2016-07-01

    This paper presents a 10-bit 50-MS/s subrange successive-approximation register (SAR) analog-to-digital converter (ADC) composed of a 4-bit SAR coarse ADC and a 6-bit SAR fine ADC. In the coarse ADC, multi-comparator SAR architecture is used to reduce the digital logic propagation delay, and a traditional asynchronous SAR ADC with monotonic switching method is used as the fine ADC. With that combination, power dissipation also can be much reduced. Meanwhile, a modified SAR control logic is adopted in the fine ADC to speed up the conversion and other techniques, such as splitting capacitors array, are borrowed to reduce the power consumption. Fabricated with 1P8M 130-nm CMOS technology, the proposed SAR ADC achieves 51.6-dB signal to noise and distortion ratio (SNDR) and consumes 186 μW at 50 MS/s with a 1-V supply, resulting in a figure of merit (FOM) of 12 fJ/conversion-step. The core area is only 0.045 mm2. Project supported by the National Natural Science Foundation of China (Nos. 61204033, 61331015), the Fundamental Research Funds for the Central Universities (No. WK2100230015), and the Funds of Science and Technology on Analog Integrated Circuit Laboratory (No. 9140C090111150C09041).

  16. Fault detection in CMOS manufacturing using MBPCA

    NASA Astrophysics Data System (ADS)

    Lachman-Shalem, Sivan; Haimovitch, Nir; Shauly, Eitan N.; Lewin, Daniel R.

    2000-08-01

    This paper describes the application of model-based principal component analysis (MBPCA) to the identification and isolation of faults in CMOS manufacture. Some of the CMOS fabrication processing steps are well understood, with first principles mathematical models available which can describe the physical and chemical phenomena that takes place. The fabrication of the device using a known industrial process is therefore first modeled 'ideally', using ATHENA and MATLAB. Detailed furnace models are used to investigate the effect of errors in furnace control on the device fabrication and the subsequent effect on the device electrical properties. This models the distribution of device properties resulting from processing a stack of wafers in a furnace, and allows faults and production errors to be simulated for analysis. The analysis is performed using MBPCA. which has been shown to improve fault-detection resolution for batch processes. The diagnosis method is demonstrated on an industrial NMOS transistor fabrication process with faults introduced in places where they might realistically occur.

  17. MonoColor CMOS sensor

    NASA Astrophysics Data System (ADS)

    Wang, Ynjiun P.

    2009-02-01

    A new breed of CMOS color sensor called MonoColor sensor is developed for a barcode reading application in AIDC industry. The RGBW color filter array (CFA) in a MonoColor sensor is arranged in a 8 x 8 pixels CFA with only 4 pixels of them are color (RGB) pixels and the rest of 60 pixels are transparent or monochrome. Since the majority of pixels are monochrome, MonoColor sensor maintains 98% barcode decode performance compared with a pure monochrome CMOS sensor. With the help of monochrome and color pixel fusion technique, the resulting color pictures have similar color quality in terms of Color Semantic Error (CSE) compared with a Bayer pattern (RGB) CMOS color camera. Since monochrome pixels are more sensitive than color pixels, a MonoColor sensor produces in general about 2X brighter color picture and higher luminance pixel resolution.

  18. Figures of merit for CMOS SPADs and arrays

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Villa, F.; Bellisai, S.; Tisa, S.; Ripamonti, G.; Tosi, A.

    2013-05-01

    SPADs (Single Photon Avalanche Diodes) are emerging as most suitable photodetectors for both single-photon counting (Fluorescence Correlation Spectroscopy, Lock-in 3D Ranging) and single-photon timing (Lidar, Fluorescence Lifetime Imaging, Diffuse Optical Imaging) applications. Different complementary metal-oxide semiconductor (CMOS) implementations have been reported in literature. We present some figure of merit able to summarize the typical SPAD performances (i.e. Dark Counting Rate, Photo Detection Efficiency, afterpulsing probability, hold-off time, timing jitter) and to identify a proper metric for SPAD comparison, both as single detectors and also as imaging arrays. The goal is to define a practical framework within which it is possible to rank detectors based on their performances in specific experimental conditions, for either photon-counting or photon-timing applications. Furthermore we review the performances of some CMOS and custom-made SPADs. Results show that CMOS SPADs performances improve as the technology scales down; moreover, miniaturization of SPADs and new solutions adopted to counteract issues related with the SPAD design (electric field uniformity, premature edge breakdown, tunneling effects, defect-rich STI interface) along with advances in standard CMOS processes led to a general improvement in all fabricated photodetectors; therefore, CMOS SPADs can be suitable for very dense and cost-effective many-pixels imagers with high performances.

  19. CMOS Conductometric System for Growth Monitoring and Sensing of Bacteria.

    PubMed

    Lei Yao; Lamarche, P; Tawil, N; Khan, R; Aliakbar, A M; Hassan, M H; Chodavarapu, V P; Mandeville, R

    2011-06-01

    We present the design and implementation of a prototype complementary metal-oxide semiconductor (CMOS) conductometric integrated circuit (IC) for colony growth monitoring and specific sensing of Escherichia coli (E. coli) bacteria. The detection of E. coli is done by employing T4 bacteriophages as receptor organisms. The conductometric system operates by measuring the resistance of the test sample between the electrodes of a two-electrode electrochemical system (reference electrode and working electrode). The CMOS IC is fabricated in a TSMC 0.35-μm process and uses a current-to-frequency (I to F) conversion circuit to convert the test sample resistance into a digital output modulated in frequency. Pulsewidth control (one-shot circuit) is implemented on-chip to control the pulsewidth of the output digital signal. The novelty in the current work lies in the ability of the CMOS sensor system to monitor very low initial concentrations of bacteria (4×10(2) to 4×10(4) colony forming unit (CFU)/mL). The CMOS system is also used to record the interaction between E. coli and its specific receptor T4 bacteriophage. The prototype CMOS IC consumes an average power of 1.85 mW with a 3.3-V dc power supply.

  20. Challenges of nickel silicidation in CMOS technologies

    SciTech Connect

    Breil, Nicolas; Lavoie, Christian; Ozcan, Ahmet; Baumann, Frieder; Klymko, Nancy; Nummy, Karen; Sun, Bing; Jordan-Sweet, Jean; Yu, Jian; Zhu, Frank; Narasimha, Shreesh; Chudzik, Michael

    2015-04-01

    In our paper, we review some of the key challenges associated with the Ni silicidation process in the most recent CMOS technologies. The introduction of new materials (e.g.SiGe), and of non-planar architectures bring some important changes that require fundamental investigation from a material engineering perspective. Following a discussion of the device architecture and silicide evolution through the last CMOS generations, we focus our study on a very peculiar defect, termed NiSi-Fangs. We describe a mechanism for the defect formation, and present a detailed material analysis that supports this mechanism. We highlight some of the possible metal enrichment processes of the nickel monosilicide such as oxidation or various RIE (Reactive Ion Etching) plasma process, leading to a metal source available for defect formation. Furthermore, we investigate the NiSi formation and re-formation silicidation differences between Si and SiGe materials, and between (1 0 0) and (1 1 1) orientations. Finally, we show that the thermal budgets post silicidation can lead to the formation of NiSi-Fangs if the structure and the processes are not optimized. Beyond the understanding of the defect and the discussion on the engineering solutions used to prevent its formation, the interest of this investigation also lies in the fundamental learning within the Ni–Pt–Si–Ge system and some additional perspective on Ni-based contacts to advanced microelectronic devices.

  1. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications.

    PubMed

    Lei, Ka-Meng; Mak, Pui-In; Law, Man-Kay; Martins, Rui P

    2016-09-21

    Complementary metal oxide semiconductor (CMOS) technology enables low-cost and large-scale integration of transistors and physical sensing materials on tiny chips (e.g., <1 cm(2)), seamlessly combining the two key functions of biosensors: transducing and signal processing. Recent CMOS biosensors unified different transducing mechanisms (impedance, fluorescence, and nuclear spin) and readout electronics have demonstrated competitive sensitivity for in vitro diagnosis, such as detection of DNA (down to 10 aM), protein (down to 10 fM), or bacteria/cells (single cell). Herein, we detail the recent advances in CMOS biosensors, centering on their key principles, requisites, and applications. Together, these may contribute to the advancement of our healthcare system, which should be decentralized by broadly utilizing point-of-care diagnostic tools.

  2. Integration of GMR-based spin torque oscillators and CMOS circuitry

    NASA Astrophysics Data System (ADS)

    Chen, Tingsu; Eklund, Anders; Sani, Sohrab; Rodriguez, Saul; Malm, B. Gunnar; Åkerman, Johan; Rusu, Ana

    2015-09-01

    This paper demonstrates the integration of giant magnetoresistance (GMR) spin torque oscillators (STO) with dedicated high frequency CMOS circuits. The wire-bonding-based integration approach is employed in this work, since it allows easy implementation, measurement and replacement. A GMR STO is wire-bonded to the dedicated CMOS integrated circuit (IC) mounted on a PCB, forming a (GMR STO + CMOS IC) pair. The GMR STO has a lateral size of 70 nm and more than an octave of tunability in the microwave frequency range. The proposed CMOS IC provides the necessary bias-tee for the GMR STO, as well as electrostatic discharge (ESD) protection and wideband amplification targeting high frequency GMR STO-based applications. It is implemented in a 65 nm CMOS process, offers a measured gain of 12 dB, while consuming only 14.3 mW and taking a total silicon area of 0.329 mm2. The measurement results show that the (GMR STO + CMOS IC) pair has a wide tunability range from 8 GHz to 16.5 GHz and improves the output power of the GMR STO by about 10 dB. This GMR STO-CMOS integration eliminates wave reflections during the signal transmission and therefore exhibits good potential for developing high frequency GMR STO-based applications, which combine the features of CMOS and STO technologies.

  3. Development of CMOS integrated circuits

    NASA Technical Reports Server (NTRS)

    Bertino, F.; Feller, A.; Greenhouse, J.; Lombardi, T.; Merriam, A.; Noto, R.; Ozga, S.; Pryor, R.; Ramondetta, P.; Smith, A.

    1979-01-01

    Report documents life cycles of two custom CMOS integrated circuits: (1) 4-bit multiplexed register with shift left and shift right capabilities, and (2) dual 4-bit registers. Cycles described include conception as logic diagrams through design, fabrication, testing, and delivery.

  4. Fabrication and characterization of CMOS-MEMS thermoelectric micro generators.

    PubMed

    Kao, Pin-Hsu; Shih, Po-Jen; Dai, Ching-Liang; Liu, Mao-Chen

    2010-01-01

    This work presents a thermoelectric micro generator fabricated by the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process and the post-CMOS process. The micro generator is composed of 24 thermocouples in series. Each thermocouple is constructed by p-type and n-type polysilicon strips. The output power of the generator depends on the temperature difference between the hot and cold parts in the thermocouples. In order to prevent heat-receiving in the cold part in the thermocouples, the cold part is covered with a silicon dioxide layer with low thermal conductivity to insulate the heat source. The hot part of the thermocouples is suspended and connected to an aluminum plate, to increases the heat-receiving area in the hot part. The generator requires a post-CMOS process to release the suspended structures. The post-CMOS process uses an anisotropic dry etching to remove the oxide sacrificial layer and an isotropic dry etching to etch the silicon substrate. Experimental results show that the micro generator has an output voltage of 67 μV at the temperature difference of 1 K.

  5. Fundamental Problems of Hybrid CMOS/Nanodevice Circuits

    DTIC Science & Technology

    2010-12-14

    allowing individual access to each via from the peripheral contact pads . Such layout is sufficient for a broad range of experiments with CMOS...mechanical polishing ( CMP ). For that, we have modified a commercial, 2- inch CMP tool for individual chip processing. Inspection and testing of the polished

  6. A 0.06 mm2 1.0 V 2.5 mW 10 bit 250 MS/s current-steering D/A converter in 65 nm GP CMOS process

    NASA Astrophysics Data System (ADS)

    Yawei, Guo; Li, Li; Peng, Ou; Zhida, Hui; Xu, Cheng; Xiaoyang, Zeng

    2014-06-01

    A 10 bit 250 MS/s current-steering digital-to-analog converter is presented. Only standard VT core devices are available for the sake of simplicity and low cost. In order to meet the INL performance, a Monte Carlo model is built to analyze the impact of mismatch on integral nonlinearity (INL) yield with both end-point line and best-fit line. A formula is derived for the relationship of INL and output impedance. The relation of dynamic range and output impedance is also discussed. The double centroid layout is adopted for the current source array in order to mitigate the effect of electrical, process, and temperature gradient. An adapted current mirror is used to overcome the gate leakage of the current source array, which cannot be ignored in the 65 nm GP CMOS process. The digital-to-analog converter occupies 0.06 mm2, and consumes 2.5 mW from a single 1.0 V supply at 250 MS/s.

  7. Spectrometer with CMOS demodulation of fiber optic Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Christiansen, Martin Brokner

    A CMOS imager based spectrometer is developed to interrogate a network containing a large number of Bragg grating sensors. The spectrometer uses a Prism-Grating- Prism (PGP) to spectrally separate serially multiplexed Bragg reflections on a single fiber. As a result, each Bragg grating produces a discrete spot on the CMOS imager that shifts horizontally as the Bragg grating experiences changes in strain or temperature. The reflected wavelength of the spot can be determined by finding the center of the spot produced. The use of a randomly addressable CMOS imager enables a flexible sampling rate. Some fibers can be interrogated at a high sampling rate while others can be interrogated at a low sampling rate. However, the use of a CMOS imager leads to several unique problems in terms of signal processing. These include a logarithmic pixel response, a low signal-to-noise ratio, a long pixel time constant, and software issues. The expected capabilities of the CMOS imager based spectrometer are determined with a theoretical model. The theoretical model tests three algorithms for determining the center of the spot: single row centroid, single row parabolic fit, and entire spot centroid. The theoretical results are compared to laboratory test data and field test data. The CMOS based spectrometer is capable of interrogating many optical fibers, and in the configuration tested, the fiber bundle consisted of 23 fibers. Using this system, a single fiber can be interrogated from 778 nm to 852 nm at 2100 Hz or multiple fibers can be interrogated over the same wavelength so that the total number of fiber interrogations is up to 2100 per second. The reflected Bragg wavelength can be determined within +/-3pm, corresponding to a +/-3μɛ uncertainty.

  8. CMOS Time-Resolved, Contact, and Multispectral Fluorescence Imaging for DNA Molecular Diagnostics

    PubMed Central

    Guo, Nan; Cheung, Ka Wai; Wong, Hiu Tung; Ho, Derek

    2014-01-01

    Instrumental limitations such as bulkiness and high cost prevent the fluorescence technique from becoming ubiquitous for point-of-care deoxyribonucleic acid (DNA) detection and other in-field molecular diagnostics applications. The complimentary metal-oxide-semiconductor (CMOS) technology, as benefited from process scaling, provides several advanced capabilities such as high integration density, high-resolution signal processing, and low power consumption, enabling sensitive, integrated, and low-cost fluorescence analytical platforms. In this paper, CMOS time-resolved, contact, and multispectral imaging are reviewed. Recently reported CMOS fluorescence analysis microsystem prototypes are surveyed to highlight the present state of the art. PMID:25365460

  9. Characterization of spectral optical responsivity of Si-photodiode junction combinations available in a 0.35μm HV-CMOS technology

    NASA Astrophysics Data System (ADS)

    Kraxner, A.; Wachmann, E.; Jonak-Auer, I.; Teva, J.; Park, J. M.; Minixhofer, R.

    2013-05-01

    The 0.35μm HV-CMOS process technology utilizes several junctions with different doping levels and depths. This process supports complete modular 3V and 5V standard CMOS functionality and offers a wide set of HV transistor types capable for operating voltages from 20V to 120V made available with only 2 more mask adders [1]. Compared to other reported integration of photo detection functionalities in normal CMOS processes [2] or special modified process technologies [3] a much wider variety of junction combinations is already intrinsically available in the investigated technology. Such junctions include beside the standard n+ and p+ source/drain dopings also several combinations of shallow and deep tubs for both p-wells and n-wells. The availability of junction from submicron to 7μm depths enables the selection of appropriate spectral sensitivity ranging from ultraviolet to infrared wavelengths. On the other side by appropriate layouts the contributions of photocurrents of shallower or deeper photo carrier generation can be kept to a minimum. We also show that by analytically modelling the space charge regions of the selected junctions the drift and diffusion carrier contributions can be calculated with a very good match indicating also the suppression of diffusion current contribution. We present examples of spectral responsivity of junction combinations optimized for peak sensitivity in the ranges of 380-450nm, 450-600nm or 700-900nm. By appropriate junction choice the ratios of the generated photo currents in their respective peak zones can exhibit more than a factor of 10 compared to the other photo diode combinations. This enables already without further filter implementation a very good spectral resolution for colour sensing applications. Finally the possible junction combinations are also assessed by the achievable dark current for optimized signal to noise characteristic.

  10. Planar CMOS analog SiPMs: design, modeling, and characterization

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Villa, Federica; Bronzi, Danilo; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2015-11-01

    Silicon photomultipliers (SiPMs) are large area detectors consisting of an array of single-photon-sensitive microcells, which make SiPMs extremely attractive to substitute the photomultiplier tubes in many applications. We present the design, fabrication, and characterization of analog SiPMs in standard planar 0.35 μm CMOS technology, with about 1 mm × 1 mm total area and different kinds of microcells, based on single-photon avalanche diodes with 30 μm diameter reaching 21.0% fill-factor (FF), 50 μm diameter (FF = 58.3%) or 50 μm square active area with rounded corner of 5 μm radius (FF = 73.7%). We also developed the electrical SPICE model for CMOS SiPMs. Our CMOS SiPMs have 25 V breakdown voltage, in line with most commercial SiPMs and higher gain (8.8 × 106, 13.2 × 106, and 15.0 × 106, respectively). Although dark count rate density is slightly higher than state-of-the-art analog SiPMs, the proposed standard CMOS processing opens the feasibility of integration with active electronics, for switching hot pixels off, drastically reducing the overall dark count rate, or for further on-chip processing.

  11. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  12. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  13. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  14. Delta-Doped Back-Illuminated CMOS Imaging Arrays: Progress and Prospects

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.; Jones, Todd J.; Dickie, Matthew R.; Greer, Frank; Cunningham, Thomas J.; Blazejewski, Edward; Nikzad, Shouleh

    2009-01-01

    In this paper, we report the latest results on our development of delta-doped, thinned, back-illuminated CMOS imaging arrays. As with charge-coupled devices, thinning and back-illumination are essential to the development of high performance CMOS imaging arrays. Problems with back surface passivation have emerged as critical to the prospects for incorporating CMOS imaging arrays into high performance scientific instruments, just as they did for CCDs over twenty years ago. In the early 1990's, JPL developed delta-doped CCDs, in which low temperature molecular beam epitaxy was used to form an ideal passivation layer on the silicon back surface. Comprising only a few nanometers of highly-doped epitaxial silicon, delta-doping achieves the stability and uniformity that are essential for high performance imaging and spectroscopy. Delta-doped CCDs were shown to have high, stable, and uniform quantum efficiency across the entire spectral range from the extreme ultraviolet through the near infrared. JPL has recently bump-bonded thinned, delta-doped CMOS imaging arrays to a CMOS readout, and demonstrated imaging. Delta-doped CMOS devices exhibit the high quantum efficiency that has become the standard for scientific-grade CCDs. Together with new circuit designs for low-noise readout currently under development, delta-doping expands the potential scientific applications of CMOS imaging arrays, and brings within reach important new capabilities, such as fast, high-sensitivity imaging with parallel readout and real-time signal processing. It remains to demonstrate manufacturability of delta-doped CMOS imaging arrays. To that end, JPL has acquired a new silicon MBE and ancillary equipment for delta-doping wafers up to 200mm in diameter, and is now developing processes for high-throughput, high yield delta-doping of fully-processed wafers with CCD and CMOS imaging devices.

  15. Development of CMOS-compatible membrane projection lithography

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Samora, Sally; Wiwi, Mike; Wendt, Joel R.

    2013-09-01

    Recently we have demonstrated membrane projection lithography (MPL) as a fabrication approach capable of creating 3D structures with sub-micron metallic inclusions for use in metamaterial and plasmonic applications using polymer material systems. While polymers provide several advantages in processing, they are soft and subject to stress-induced buckling. Furthermore, in next generation active photonic structures, integration of photonic components with CMOS electronics is desirable. While the MPL process flow is conceptually simple, it requires matrix, membrane and backfill materials with orthogonal processing deposition/removal chemistries. By transitioning the MPL process flow into an entirely inorganic material set based around silicon and standard CMOS-compatible materials, several elements of silicon microelectronics can be integrated into photonic devices at the unit-cell scale. This paper will present detailed fabrication and characterization data of these materials, emphasizing the processing trade space as well as optical characterization of the resulting structures.

  16. CMOS in-pixel optical pulse frequency modulator

    NASA Astrophysics Data System (ADS)

    Nel, Nicolaas E.; du Plessis, M.; Joubert, T.-H.

    2016-02-01

    This paper covers the design of a complementary metal oxide semiconductor (CMOS) pixel readout circuit with a built-in frequency conversion feature. The pixel contains a CMOS photo sensor along with all signal-to-frequency conversion circuitry. An 8×8 array of these pixels is also designed. Current imaging arrays often use analog-to-digital conversion (ADC) and digital signal processing (DSP) techniques that are off-chip1. The frequency modulation technique investigated in this paper is preferred over other ADC techniques due to its smaller size, and the possibility of a higher dynamic range. Careful considerations are made regarding the size of the components of the pixel, as various characteristics of CMOS devices are limited by decreasing the scale of the components2. The methodology used was the CMOS design cycle for integrated circuit design. All components of the pixel were designed from first principles to meet necessary requirements of a small pixel size (30×30 μm2) and an output resolution greater than that of an 8-bit ADC. For the photodetector, an n+-p+/p-substrate diode was designed with a parasitic capacitance of 3 fF. The analog front-end stage was designed around a Schmitt trigger circuit. The photo current is integrated on an integration capacitor of 200 fF, which is reset when the Schmitt trigger output voltage exceeds a preset threshold. The circuit schematic and layout were designed using Cadence Virtuoso and the process used was the AMS CMOS 350 nm process using a power supply of 5V. The simulation results were confirmed to comply with specifications, and the layout passed all verification checks. The dynamic range achieved is 58.828 dB per pixel, with the output frequencies ranging from 12.341kHz to 10.783 MHz. It is also confirmed that the output frequency has a linear relationship to the photocurrent generated by the photodiode.

  17. Digital-Centric RF CMOS Technologies

    NASA Astrophysics Data System (ADS)

    Matsuzawa, Akira

    Analog-centric RFCMOS technology has played an important role in motivating the change of technology from conventional discrete device technology or bipolar IC technology to CMOS technology. However it introduces many problems such as poor performance, susceptibility to PVT fluctuation, and cost increase with technology scaling. The most important advantage of CMOS technology compared with legacy RF technology is that CMOS can use more high performance digital circuits for very low cost. In fact, analog-centric RF-CMOS technology has failed the FM/AM tuner business and the digital-centric CMOS technology is becoming attractive for many users. It has many advantages; such as high performance, no external calibration points, high yield, and low cost. From the above facts, digital-centric CMOS technology which utilizes the advantages of digital technology must be the right path for future RF technology. Further investment in this technology is necessary for the advancement of RF technology.

  18. Research on evaluation method of CMOS camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoqiang; Han, Weiqiang; Cui, Lanfang

    2014-09-01

    In some professional image application fields, we need to test some key parameters of the CMOS camera and evaluate the performance of the device. Aiming at this requirement, this paper proposes a perfect test method to evaluate the CMOS camera. Considering that the CMOS camera has a big fixed pattern noise, the method proposes the `photon transfer curve method' based on pixels to measure the gain and the read noise of the camera. The advantage of this method is that it can effectively wipe out the error brought by the response nonlinearity. Then the reason of photoelectric response nonlinearity of CMOS camera is theoretically analyzed, and the calculation formula of CMOS camera response nonlinearity is deduced. Finally, we use the proposed test method to test the CMOS camera of 2560*2048 pixels. In addition, we analyze the validity and the feasibility of this method.

  19. CMOS output buffer wave shaper

    NASA Technical Reports Server (NTRS)

    Albertson, L.; Whitaker, S.; Merrell, R.

    1990-01-01

    As the switching speeds and densities of Digital CMOS integrated circuits continue to increase, output switching noise becomes more of a problem. A design technique which aids in the reduction of switching noise is reported. The output driver stage is analyzed through the use of an equivalent RLC circuit. The results of the analysis are used in the design of an output driver stage. A test circuit based on these techniques is being submitted to MOSIS for fabrication.

  20. Design and characterization of high precision in-pixel discriminators for rolling shutter CMOS pixel sensors with full CMOS capability

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu-Guo, C.; Dorokhov, A.; Pham, H.; Hu, Y.

    2013-07-01

    In order to exploit the ability to integrate a charge collecting electrode with analog and digital processing circuitry down to the pixel level, a new type of CMOS pixel sensors with full CMOS capability is presented in this paper. The pixel array is read out based on a column-parallel read-out architecture, where each pixel incorporates a diode, a preamplifier with a double sampling circuitry and a discriminator to completely eliminate analog read-out bottlenecks. The sensor featuring a pixel array of 8 rows and 32 columns with a pixel pitch of 80 μm×16 μm was fabricated in a 0.18 μm CMOS process. The behavior of each pixel-level discriminator isolated from the diode and the preamplifier was studied. The experimental results indicate that all in-pixel discriminators which are fully operational can provide significant improvements in the read-out speed and the power consumption of CMOS pixel sensors.

  1. A platform for monolithic CMOS-MEMS integration on SOI wafers

    NASA Astrophysics Data System (ADS)

    Villarroya, María; Figueras, Eduard; Montserrat, Josep; Verd, Jaume; Teva, Jordi; Abadal, Gabriel; Pérez Murano, Francesc; Esteve, Jaume; Barniol, Núria

    2006-10-01

    A new platform for micro- and nano-electromechanical systems based on crystalline silicon as the structural layer in CMOS substrates is presented. This platform is fabricated using silicon on insulator (SOI) substrates, which allows the monolithic integration of the mechanical transducer on crystalline silicon while the characteristics of the structural layer are kept independent from the CMOS technology. We report the design characteristics, the fabrication process and an example of application of the CMOS SOI-MEMS platform to obtain a mass sensor based on a crystalline silicon resonating cantilever.

  2. Steps toward fabricating cryogenic CMOS compatible single electron devices for future qubits.

    SciTech Connect

    Wendt, Joel Robert; Childs, Kenton David; Ten Eyck, Gregory A.; Tracy, Lisa A.; Eng, Kevin; Stevens, Jeffrey; Nordberg, Eric; Carroll, Malcolm S.; Lilly, Michael Patrick

    2008-08-01

    We describe the development of a novel silicon quantum bit (qubit) device architecture that involves using materials that are compatible with a Sandia National Laboratories (SNL) 0.35 mum complementary metal oxide semiconductor (CMOS) process intended to operate at 100 mK. We describe how the qubit structure can be integrated with CMOS electronics, which is believed to have advantages for critical functions like fast single electron electrometry for readout compared to current approaches using radio frequency techniques. Critical materials properties are reviewed and preliminary characterization of the SNL CMOS devices at 4.2 K is presented.

  3. Radiation tolerant 1 micron CMOS technology

    NASA Astrophysics Data System (ADS)

    Crevel, P.; Rodde, K.

    1991-03-01

    Starting from a standard one micron Complementary Metal Oxide Semiconductor (CMOS) for high density, low power memory applications, the degree of radiation tolerance of the baseline process is evaluated. Implemented process modifications to improve latchup sensitivity under heavy ion irradiation as well as total dose effects without changing layout rules are described. By changing doping profiles in Metal Nitride Oxide Semiconductors (MNOS) and P-channel MOS (PMOS) device regions, it is possible to guarantee data sheet specification of a 64 K low power static RAM for total gamma dose up to 35 krad (Si) (and even higher values for the gate array family) without latch up for Linear Energy Transfer LET up to 115 MeV/(mg/cm squared).

  4. A Multipurpose CMOS Platform for Nanosensing

    PubMed Central

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L.; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-01-01

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μm × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW–229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus. PMID:27916911

  5. A Multipurpose CMOS Platform for Nanosensing.

    PubMed

    Bonanno, Alberto; Sanginario, Alessandro; Marasso, Simone L; Miccoli, Beatrice; Bejtka, Katarzyna; Benetto, Simone; Demarchi, Danilo

    2016-11-30

    This paper presents a customizable sensing system based on functionalized nanowires (NWs) assembled onto complementary metal oxide semiconductor (CMOS) technology. The Micro-for-Nano (M4N) chip integrates on top of the electronics an array of aluminum microelectrodes covered with gold by means of a customized electroless plating process. The NW assembly process is driven by an array of on-chip dielectrophoresis (DEP) generators, enabling a custom layout of different nanosensors on the same microelectrode array. The electrical properties of each assembled NW are singularly sensed through an in situ CMOS read-out circuit (ROC) that guarantees a low noise and reliable measurement. The M4N chip is directly connected to an external microcontroller for configuration and data processing. The processed data are then redirected to a workstation for real-time data visualization and storage during sensing experiments. As proof of concept, ZnO nanowires have been integrated onto the M4N chip to validate the approach that enables different kind of sensing experiments. The device has been then irradiated by an external UV source with adjustable power to measure the ZnO sensitivity to UV-light exposure. A maximum variation of about 80% of the ZnO-NW resistance has been detected by the M4N system when the assembled 5 μ m × 500 nm single ZnO-NW is exposed to an estimated incident radiant UV-light flux in the range of 1 nW-229 nW. The performed experiments prove the efficiency of the platform conceived for exploiting any kind of material that can change its capacitance and/or resistance due to an external stimulus.

  6. Research-grade CMOS image sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Saint-Pe, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Martin-Gonthier, Philippe; Corbiere, Franck; Belliot, Pierre; Estribeau, Magali

    2004-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding space applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this paper will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments and performances of CIS prototypes built using an imaging CMOS process will be presented in the corresponding section.

  7. Research-grade CMOS image sensors for demanding space applications

    NASA Astrophysics Data System (ADS)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2004-06-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid-90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  8. Characterizations of and Radiation Effects in Several Emerging CMOS Technologies

    NASA Astrophysics Data System (ADS)

    Shufeng Ren

    As the conventional scaling of Si based CMOS is approaching its limit at 7 nm technology node, many perceive that the adoption of novel materials and/or device structures are inevitable to keep Moore's law going. High mobility channel materials such as III-V compound semiconductors or Ge are considered promising to replace Si in order to achieve high performance as well as low power consumption. However, interface and oxide traps have become a major obstacle for high-mobility semiconductors (such as Ge, GaAs, InGaAs, GaSb, etc) to replace Si CMOS technology. Therefore novel high-k dielectrics, such as epitaxially grown crystalline oxides, have been explored to be incorporated onto the high mobility channel materials. Moreover, to enable continued scaling, extremely scaled devices structures such as nanowire gate-all-around structure are needed in the near future. Moreover, as the CMOS industry moves into the 7 nm node and beyond, novel lithography techniques such as EUV are believed to be adopted soon, which can bring radiation damage to CMOS devices and circuit during the fabrication process. Therefore radiation hardening technology in future generations of CMOS devices has again become an interesting research topic to deal with the possible process-induced damage as well as damage caused by operating in radiation harsh environment such as outer space, nuclear plant, etc. In this thesis, the electrical properties of a few selected emerging novel CMOS devices are investigated, which include InGaAs based extremely scaled ultra-thin body nanowire gate-all-around MOSFETs, GOI (Ge On Insulator) CMOS with recessed channel and source/drain, GaAs MOSFETs with crystalline La based gate stack, and crystalline SrTiO3, are investigated to extend our understanding of their electrical characteristics, underlying physical mechanisms, and material properties. Furthermore, the radiation responses of these aforementioned novel devices are thoroughly investigated, with a focus on

  9. CMOS-based smart-electrode-type retinal stimulator with bullet-shaped bulk Pt electrodes.

    PubMed

    Tokuda, T; Ito, T; Kitao, T; Noda, T; Sasagawa, K; Terasawa, Y; Tashiro, H; Kanda, H; Fujikado, T; Ohta, J

    2011-01-01

    A CMOS-based flexible retinal stimulator equipped with bullet-shaped bulk Pt electrodes was fabricated and demonstrated. We designed a new CMOS unit chip with an on-chip stimulator, single- and multi-site stimulation modes, and monitoring functions. We have developed a new structure and packaging process of flexible retinal stimulator with bullet-type bulk Pt electrode. We have confirmed the retinal stimulation functionality in an in vivo stimulation trial on rabbit's retina.

  10. CMOS foveal image sensor chip

    NASA Technical Reports Server (NTRS)

    Bandera, Cesar (Inventor); Scott, Peter (Inventor); Sridhar, Ramalingam (Inventor); Xia, Shu (Inventor)

    2002-01-01

    A foveal image sensor integrated circuit comprising a plurality of CMOS active pixel sensors arranged both within and about a central fovea region of the chip. The pixels in the central fovea region have a smaller size than the pixels arranged in peripheral rings about the central region. A new photocharge normalization scheme and associated circuitry normalizes the output signals from the different size pixels in the array. The pixels are assembled into a multi-resolution rectilinear foveal image sensor chip using a novel access scheme to reduce the number of analog RAM cells needed. Localized spatial resolution declines monotonically with offset from the imager's optical axis, analogous to biological foveal vision.

  11. Nanosecond monolithic CMOS readout cell

    DOEpatents

    Souchkov, Vitali V.

    2004-08-24

    A pulse shaper is implemented in monolithic CMOS with a delay unit formed of a unity gain buffer. The shaper is formed of a difference amplifier having one input connected directly to an input signal and a second input connected to a delayed input signal through the buffer. An elementary cell is based on the pulse shaper and a timing circuit which gates the output of an integrator connected to the pulse shaper output. A detector readout system is formed of a plurality of elementary cells, each connected to a pixel of a pixel array, or to a microstrip of a plurality of microstrips, or to a detector segment.

  12. Smart CMOS image sensor for lightning detection and imaging.

    PubMed

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  13. Micromachined high-performance RF passives in CMOS substrate

    NASA Astrophysics Data System (ADS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-11-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications.

  14. A back-illuminated megapixel CMOS image sensor

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Nikzad, Shouleh; Hoenk, Michael; Jones, Todd; Wrigley, Chris; Hancock, Bruce

    2005-01-01

    In this paper, we present the test and characterization results for a back-illuminated megapixel CMOS imager. The imager pixel consists of a standard junction photodiode coupled to a three transistor-per-pixel switched source-follower readout [1]. The imager also consists of integrated timing and control and bias generation circuits, and provides analog output. The analog column-scan circuits were implemented in such a way that the imager could be configured to run in off-chip correlated double-sampling (CDS) mode. The imager was originally designed for normal front-illuminated operation, and was fabricated in a commercially available 0.5 pn triple-metal CMOS-imager compatible process. For backside illumination, the imager was thinned by etching away the substrate was etched away in a post-fabrication processing step.

  15. Dark current study for CMOS fully integrated-PIN-photodiodes

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Jessenig, Stefan; Jonak-Auer, Ingrid; Schrank, Franz; Wachmann, Ewald

    2011-05-01

    PIN photodiodes are semiconductor devices widely used in a huge range of applications, such as photoconductors, charge-coupled devices and pulse oximeters for medical applications. The possibility to combine and to integrate the fabrication of the sensor with its signal conditioning circuitry in a CMOS process allows device miniaturization in addition to enhance its properties lowering the production and assembly costs. This paper presents the design and characterization of silicon based PIN photodiodes integrated in a CMOS commercial process. A high-resistivity, low impurity substrate is chosen as the start material for the PIN photodiode array fabrication in order to fabricate devices with a minimum dark current. The dark current is studied, analyzed and measured for two different starting materials and for different geometries. A model previously proposed is reviewed and compared with experimental data.

  16. Low power and high accuracy spike sorting microprocessor with on-line interpolation and re-alignment in 90 nm CMOS process.

    PubMed

    Chen, Tung-Chien; Ma, Tsung-Chuan; Chen, Yun-Yu; Chen, Liang-Gee

    2012-01-01

    Accurate spike sorting is an important issue for neuroscientific and neuroprosthetic applications. The sorting of spikes depends on the features extracted from the neural waveforms, and a better sorting performance usually comes with a higher sampling rate (SR). However for the long duration experiments on free-moving subjects, the miniaturized and wireless neural recording ICs are the current trend, and the compromise on sorting accuracy is usually made by a lower SR for the lower power consumption. In this paper, we implement an on-chip spike sorting processor with integrated interpolation hardware in order to improve the performance in terms of power versus accuracy. According to the fabrication results in 90nm process, if the interpolation is appropriately performed during the spike sorting, the system operated at the SR of 12.5 k samples per second (sps) can outperform the one not having interpolation at 25 ksps on both accuracy and power.

  17. Performance Analysis of Visible Light Communication Using CMOS Sensors.

    PubMed

    Do, Trong-Hop; Yoo, Myungsik

    2016-02-29

    This paper elucidates the fundamentals of visible light communication systems that use the rolling shutter mechanism of CMOS sensors. All related information involving different subjects, such as photometry, camera operation, photography and image processing, are studied in tandem to explain the system. Then, the system performance is analyzed with respect to signal quality and data rate. To this end, a measure of signal quality, the signal to interference plus noise ratio (SINR), is formulated. Finally, a simulation is conducted to verify the analysis.

  18. Hardening of commercial CMOS PROMs with polysilicon fusible links

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Rauchfuss, J. E.

    1985-01-01

    The method by which a commercial 4K CMOS PROM with polysilicon fuses was hardened and the feasibility of applying this method to a 16K PROM are presented. A description of the process and the necessary minor modifications to the original layout are given. The PROM circuit and discrete device characteristics over radiation to 1000K rad-Si are summarized. The dose rate sensitivity of the 4K PROMs is also presented.

  19. A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass.

    PubMed

    Khir, Mohd Haris Md; Qu, Peng; Qu, Hongwei

    2011-01-01

    This paper reports a low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass. In the device fabricated using ON Semiconductor 0.5 μm CMOS technology, an inherent CMOS polysilicon thin film is utilized as the piezoresistive sensing material. A full Wheatstone bridge was constructed through easy wiring allowed by the three metal layers in the 0.5 μm CMOS technology. The device fabrication process consisted of a standard CMOS process for sensor configuration, and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. A bulk single-crystal silicon (SCS) substrate is included in the proof mass to increase sensor sensitivity. In device design and analysis, the self heating of the polysilicon piezoresistors and its effect to the sensor performance is also discussed. With a low operating power of 1.5 mW, the accelerometer demonstrates a sensitivity of 0.077 mV/g prior to any amplification. Dynamic tests have been conducted with a high-end commercial calibrating accelerometer as reference.

  20. Enhancement in open-circuit voltage of implantable CMOS-compatible glucose fuel cell by improving the anodic catalyst

    NASA Astrophysics Data System (ADS)

    Niitsu, Kiichi; Ando, Takashi; Kobayashi, Atsuki; Nakazato, Kazuo

    2017-01-01

    This paper presents an implantable CMOS-compatible glucose fuel cell that generates an open-circuit voltage (OCV) of 880 mV. The developed fuel cell is solid-catalyst-based and manufactured from biocompatible materials; thus, it can be implanted to the human body. Additionally, since the cell can be manufactured using a semiconductor (CMOS) fabrication process, it can also be manufactured together with CMOS circuits on a single silicon wafer. In the literature, an implantable CMOS-compatible glucose fuel cell has been reported. However, its OCV is 192 mV, which is insufficient for CMOS circuit operation. In this work, we have enhanced the performance of the fuel cell by improving the electrocatalytic ability of the anode. The prototype with the newly proposed Pt/carbon nanotube (CNT) anode structure successfully achieved an OCV of 880 mV, which is the highest ever reported.

  1. A single-supply, monolithic, MIL-STD-1553 transceiver implemented in BiCMOS wafer fabrication technology

    NASA Astrophysics Data System (ADS)

    Albrecht, Thomas L.; Molinari, Lou

    An integrated circuit has been designed for use as a single supply, MIL-STD-1553 transceiver using BiCMOS technology. Use of the BiCMOS fabrication process has advantages over both Bipolar and CMOS technologies. These advantages include: reduced standby current drain, increased flexibility in mating the transceiver to various remote terminals, increased control over output amplitude and rise/fall times, easier methods for adjusting filter response and residual voltage, and reduced chip size (over a CMOS transceiver). Development of this monolithic transceiver opens the door to future advances in remote terminal design. By combining the current driving capacity of Bipolar with the digital design capability of CMOS, the next probable step in the progression of MIL-STD-1553 technology would be a fully monolithic remote terminal. This device would combine a transceiver with the encoder/decoder and protocol logic on a single semiconductor device.

  2. Accelerated life testing effects on CMOS microcircuit characteristics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Accelerated life tests were performed on CMOS microcircuits to predict their long term reliability. The consistency of the CMOS microcircuit activation energy between the range of 125 C to 200 C and the range 200 C to 250 C was determined. Results indicate CMOS complexity and the amount of moisture detected inside the devices after testing influences time to failure of tested CMOS devices.

  3. Improved Space Object Orbit Determination Using CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Schildknecht, T.; Peltonen, J.; Sännti, T.; Silha, J.; Flohrer, T.

    2014-09-01

    CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration, and the potential to perform image processing operations on-chip and in real-time. The major challenges and design drivers for ground-based and space-based optical observation strategies have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Similarly, the desirable on-chip processing functionalities which would further enhance the object detection and image segmentation were identified. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and space-based strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey using a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario

  4. Low-frequency noise reduction in vertical MOSFETs having tunable threshold voltage fabricated with 60 nm CMOS technology on 300 mm wafer process

    NASA Astrophysics Data System (ADS)

    Imamoto, Takuya; Ma, Yitao; Muraguchi, Masakazu; Endoh, Tetsuo

    2015-04-01

    In this paper, DC and low-frequency noise (LFN) characteristics have been investigated with actual measurement data in both n- and p-type vertical MOSFETs (V-MOSFETs) for the first time. The V-MOSFETs which was fabricated on 300 mm bulk silicon wafer process have realized excellent DC performance and a significant reduction of flicker (1/f) noise. The measurement results show that the fabricated V-MOSFETs with 60 nm silicon pillar and 100 nm gate length achieve excellent steep sub-threshold swing (69 mV/decade for n-type and 66 mV/decade for p-type), good on-current (281 µA/µm for n-type 149 µA/µm for p-type), low off-leakage current (28.1 pA/µm for n-type and 79.6 pA/µm for p-type), and excellent on-off ratio (1 × 107 for n-type and 2 × 106 for p-type). In addition, it is demonstrated that our fabricated V-MOSFETs can control the threshold voltage (Vth) by changing the channel doping condition, which is the useful and low-cost technique as it has been widely used in the conventional bulk planar MOSFET. This result indicates that V-MOSFETs can control Vth more finely and flexibly by the combined the use of the doping technique with other techniques such as work function engineering of metal-gate. Moreover, it is also shown that V-MOSFETs can suppress 1/f noise (L\\text{gate}WS\\text{Id}/I\\text{d}2 of 10-13-10-11 µm2/Hz for n-type and 10-12-10-10 µm2/Hz for p-type) to one or two order lower level than previously reported nanowire type MOSFET, FinFET, Tri-Gate, and planar MOSFETs. The results have also proved that both DC and 1/f noise performances are independent from the bias voltage which is applied to substrate or well layer. Therefore, it is verified that V-MOSFETs can eliminate the effects from substrate or well layer, which always adversely affects the circuit performances due to this serial connection.

  5. Diffuse reflectance measurements using lensless CMOS imaging chip

    NASA Astrophysics Data System (ADS)

    Schelkanova, I.; Pandya, A.; Shah, D.; Lilge, L.; Douplik, A.

    2014-10-01

    To assess superficial epithelial microcirculation, a diagnostic tool should be able to detect the heterogeneity of microvasculature, and to monitor qualitative derangement of perfusion in a diseased condition. Employing a lensless CMOS imaging chip with an RGB Bayer filter, experiments were conducted with a microfluidic platform to obtain diffuse reflectance maps. Haemoglobin (Hb) solution (160 g/l) was injected in the periodic channels (grooves) of the microfluidic phantom which were covered with ~250 μm thick layer of intralipid to obtain a diffusive environment. Image processing was performed on data acquired on the surface of the phantom to evaluate the diffuse reflectance from the subsurface periodic pattern. Thickness of the microfluidic grooves, the wavelength dependent contrast between Hb and the background, and effective periodicity of the grooves were evaluated. Results demonstrate that a lens-less CMOS camera is capable of capturing images of subsurface structures with large field of view.

  6. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  7. A novel noise optimization technique for inductively degenerated CMOS LNA

    NASA Astrophysics Data System (ADS)

    Zhiqing, Geng; Haiyong, Wang; Nanjian, Wu

    2009-10-01

    This paper proposes a novel noise optimization technique. The technique gives analytical formulae for the noise performance of inductively degenerated CMOS low noise amplifier (LNA) circuits with an ideal gate inductor for a fixed bias voltage and nonideal gate inductor for a fixed power dissipation, respectively, by mathematical analysis and reasonable approximation methods. LNA circuits with required noise figure can be designed effectively and rapidly just by using hand calculations of the proposed formulae. We design a 1.8 GHz LNA in a TSMC 0.25 μm CMOS process. The measured results show a noise figure of 1.6 dB with a forward gain of 14.4 dB at a power consumption of 5 mW, demonstrating that the designed LNA circuits can achieve low noise figure levels at low power dissipation.

  8. Monolithic CMOS-MEMS integration for high-g accelerometers

    NASA Astrophysics Data System (ADS)

    Narasimhan, Vinayak; Li, Holden; Tan, Chuan Seng

    2014-10-01

    This paper highlights work-in-progress towards the conceptualization, simulation, fabrication and initial testing of a silicon-germanium (SiGe) integrated CMOS-MEMS high-g accelerometer for military, munition, fuze and shock measurement applications. Developed on IMEC's SiGe MEMS platform, the MEMS offers a dynamic range of 5,000 g and a bandwidth of 12 kHz. The low noise readout circuit adopts a chopper-stabilization technique implementing the CMOS through the TSMC 0.18 µm process. The device structure employs a fully differential split comb-drive set up with two sets of stators and a rotor all driven separately. Dummy structures acting as protective over-range stops were designed to protect the active components when under impacts well above the designed dynamic range.

  9. Spectrometry with consumer-quality CMOS cameras.

    PubMed

    Scheeline, Alexander

    2015-01-01

    Many modern spectrometric instruments use diode arrays, charge-coupled arrays, or CMOS cameras for detection and measurement. As portable or point-of-use instruments are desirable, one would expect that instruments using the cameras in cellular telephones and tablet computers would be the basis of numerous instruments. However, no mass market for such devices has yet developed. The difficulties in using megapixel CMOS cameras for scientific measurements are discussed, and promising avenues for instrument development reviewed. Inexpensive alternatives to use of the built-in camera are also mentioned, as the long-term question is whether it is better to overcome the constraints of CMOS cameras or to bypass them.

  10. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  11. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  12. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-04-21

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  13. System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.

    PubMed

    Datta-Chaudhuri, Timir; Smela, Elisabeth; Abshire, Pamela A

    2016-12-01

    CMOS chips are increasingly used for direct sensing and interfacing with fluidic and biological systems. While many biosensing systems have successfully combined CMOS chips for readout and signal processing with passive sensing arrays, systems that co-locate sensing with active circuits on a single chip offer significant advantages in size and performance but increase the complexity of multi-domain design and heterogeneous integration. This emerging class of lab-on-CMOS systems also poses distinct and vexing technical challenges that arise from the disparate requirements of biosensors and integrated circuits (ICs). Modeling these systems must address not only circuit design, but also the behavior of biological components on the surface of the IC and any physical structures. Existing tools do not support the cross-domain simulation of heterogeneous lab-on-CMOS systems, so we recommend a two-step modeling approach: using circuit simulation to inform physics-based simulation, and vice versa. We review the primary lab-on-CMOS implementation challenges and discuss practical approaches to overcome them. Issues include new versions of classical challenges in system-on-chip integration, such as thermal effects, floor-planning, and signal coupling, as well as new challenges that are specifically attributable to biological and fluidic domains, such as electrochemical effects, non-standard packaging, surface treatments, sterilization, microfabrication of surface structures, and microfluidic integration. We describe these concerns as they arise in lab-on-CMOS systems and discuss solutions that have been experimentally demonstrated.

  14. Polycrystalline Mercuric Iodide Films on CMOS Readout Arrays

    PubMed Central

    Hartsough, Neal E.; Iwanczyk, Jan S.; Nygard, Einar; Malakhov, Nail; Barber, William C.; Gandhi, Thulasidharan

    2009-01-01

    We have created high-resolution x-ray imaging devices using polycrystalline mercuric iodide (HgI2) films grown directly onto CMOS readout chips using a thermal vapor transport process. Images from prototype 400×400 pixel HgI2-coated CMOS readout chips are presented, where the pixel grid is 30 μm × 30 μm. The devices exhibited sensitivity of 6.2 μC/Rcm2 with corresponding dark current of ∼2.7 nA/cm2, and a 80 μm FWHM planar image response to a 50 μm slit aperture. X-ray CT images demonstrate a point spread function sufficient to obtain a 50 μm spatial resolution in reconstructed CT images at a substantially reduced dose compared to phosphor-coated readouts. The use of CMOS technology allows for small pixels (30 μm), fast readout speeds (8 fps for a 3200×3200 pixel array), and future design flexibility due to the use of well-developed fabrication processes. PMID:20161098

  15. Seamless integration of CMOS and microfluidics using flip chip bonding

    NASA Astrophysics Data System (ADS)

    Welch, David; Blain Christen, Jennifer

    2013-03-01

    We demonstrate the microassembly of PDMS (polydimethylsiloxane) microfluidics with integrated circuits made in complementary metal-oxide-semiconductor (CMOS) processes. CMOS-sized chips are flip chip bonded to a flexible polyimide printed circuit board (PCB) with commercially available solder paste patterned using a SU-8 epoxy. The average resistance of each flip chip bond is negligible and all connections are electrically isolated. PDMS is attached to the flexible polyimide PCB using a combination of oxygen plasma treatment and chemical bonding with 3-aminopropyltriethoxysilane. The total device has a burst pressure of 175 kPA which is limited by the strength of the flip chip attachment. This technique allows the sensor area of the die to act as the bottom of the microfluidic channel. The SU-8 provides a barrier between the pad ring (electrical interface) and the fluids; post-processing is not required on the CMOS die. This assembly method shows great promise for developing analytic systems which combine the strengths of microelectronics and microfluidics into one device.

  16. Aluminum nitride on titanium for CMOS compatible piezoelectric transducers

    PubMed Central

    Doll, Joseph C; Petzold, Bryan C; Ninan, Biju; Mullapudi, Ravi; Pruitt, Beth L

    2010-01-01

    Piezoelectric materials are widely used for microscale sensors and actuators but can pose material compatibility challenges. This paper reports a post-CMOS compatible fabrication process for piezoelectric sensors and actuators on silicon using only standard CMOS metals. The piezoelectric properties of aluminum nitride (AlN) deposited on titanium (Ti) by reactive sputtering are characterized and microcantilever actuators are demonstrated. The film texture of the polycrystalline Ti and AlN films is improved by removing the native oxide from the silicon substrate in situ and sequentially depositing the films under vacuum to provide a uniform growth surface. The piezoelectric properties for several AlN film thicknesses are measured using laser doppler vibrometry on unpatterned wafers and released cantilever beams. The film structure and properties are shown to vary with thickness, with values of d33f, d31 and d33 of up to 2.9, −1.9 and 6.5 pm V−1, respectively. These values are comparable with AlN deposited on a Pt metal electrode, but with the benefit of a fabrication process that uses only standard CMOS metals. PMID:20333316

  17. Cryogenic CMOS circuits for single charge digital readout.

    SciTech Connect

    Gurrieri, Thomas M.; Longoria, Erin Michelle; Eng, Kevin; Carroll, Malcolm S.; Hamlet, Jason R.; Young, Ralph Watson

    2010-03-01

    The readout of a solid state qubit often relies on single charge sensitive electrometry. However the combination of fast and accurate measurements is non trivial due to large RC time constants due to the electrometers resistance and shunt capacitance from wires between the cold stage and room temperature. Currently fast sensitive measurements are accomplished through rf reflectrometry. I will present an alternative single charge readout technique based on cryogenic CMOS circuits in hopes to improve speed, signal-to-noise, power consumption and simplicity in implementation. The readout circuit is based on a current comparator where changes in current from an electrometer will trigger a digital output. These circuits were fabricated using Sandia's 0.35 {micro}m CMOS foundry process. Initial measurements of comparators with an addition a current amplifier have displayed current sensitivities of < 1nA at 4.2K, switching speeds up to {approx}120ns, while consuming {approx}10 {micro}W. I will also discuss an investigation of noise characterization of our CMOS process in hopes to obtain a better understanding of the ultimate limit in signal to noise performance.

  18. Integrated CMOS transceiver for indoor optical wireless links

    NASA Astrophysics Data System (ADS)

    Holburn, David M.; Lalithambika, Vinod A.; Joyner, Valencia M.; Samsudin, Rina J.; Mears, Robert J.

    2001-11-01

    The purpose of this work is to develop integrated CMOS designs for optical transceivers at 1.55um wavelength that both meet the current system specification of 155Mb/s and provide a viable upgrade path to higher bit-rates. We present the design and implementation of an integrated multi-channel CMOS transceiver for use in a cellular 155Mb/s Manchester-coded optical wireless link. The receiver is an angle-diversity design and consists of multiple sectors with relatively small field of view; each driving an individual pre-amplifier channel. An on-chip selector selects signals to be passed to the combiner depending on the signal level and external control signals. The outputs of all the selected channels are combined using a current summing junction, implemented using a transconductance-transimpedance approach. In order to achieve a receiver design that will be robust in the face of process variations, an on-chip circuit is provided to maintain the operating point of the amplifier chain. The design has been optimized to achieve -30dBm sensitivity at a BER of 10-9. The CMOS transmitter circuit is tailored to match the electro-optic response of the resonant cavity LEDs being used. The transmitter driver incorporates current-peaking and charge-extraction circuitry using a novel timing generator, and has been designed to achieve rise and fall times of better than 0.2ns. Considerable effort is being directed towards the development of integrated designs which do not require significant numbers of discrete components. The prototype designs are being realised in a 0.7μm commodity mixed-signal CMOS process by Alcatel Microelectronics. We report results from the first prototype multi-channel demonstrator system and discuss future research directions.

  19. CMOS analog switches for adaptive filters

    NASA Technical Reports Server (NTRS)

    Dixon, C. E.

    1980-01-01

    Adaptive active low-pass filters incorporate CMOS (Complimentary Metal-Oxide Semiconductor) analog switches (such as 4066 switch) that reduce variation in switch resistance when filter is switched to any selected transfer function.

  20. Device Design and Modeling for Beyond-CMOS Information Technology Based on Integrated Electronic-Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Duan, Xiaopeng

    This thesis focuses on exploiting the correlation between insulating ferromagnets and 2- dimensional Dirac electronic systems in graphene and topological insulators (TI) to develop beyond-CMOS devices for information processing. (Abstract shortened by ProQuest.).

  1. Multi-target electrochemical biosensing enabled by integrated CMOS electronics

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Lewandowska, M. K.; Heer, F.; Frey, O.; Hierlemann, A.

    2011-05-01

    An integrated electrochemical measurement system, based on CMOS technology, is presented, which allows the detection of several analytes in parallel (multi-analyte) and enables simultaneous monitoring at different locations (multi-site). The system comprises a 576-electrode CMOS sensor chip, an FPGA module for chip control and data processing, and the measurement laptop. The advantages of the highly versatile system are demonstrated by two applications. First, a label-free, hybridization-based DNA sensor is enabled by the possibility of large-scale integration in CMOS technology. Second, the detection of the neurotransmitter choline is presented by assembling the chip with biosensor microprobe arrays. The low noise level enables a limit of detection of, e.g., 0.3 µM choline. The fully integrated system is self-contained: it features cleaning, functionalization and measurement functions without the need for additional electrical equipment. With the power supplied by the laptop, the system is very suitable for on-site measurements.

  2. Fully depleted and backside biased monolithic CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.; Clarke, Andrew S.; Holland, Andrew D.

    2016-07-01

    We are presenting a novel concept for a fully depleted, monolithic, pinned photodiode CMOS image sensor using reverse substrate bias. The principle of operation allows the manufacture of backside illuminated CMOS sensors with active thickness in excess of 100 μm. This helps increase the QE at near-IR and soft X-ray wavelengths, while preserving the excellent characteristics associated with the pinned photodiode sensitive elements. Such sensors are relevant to a wide range of applications, including scientific imaging, astronomy, Earth observation and surveillance. A prototype device with 10 μm and 5.4 μm pixels using this concept has been designed and is being manufactured on a 0.18 μm CMOS image sensor process. Only one additional implantation step has been introduced to the normal manufacturing flow to make this device. The paper discusses the design of the sensor and the challenges that had to be overcome to realise it in practice, and in particular the method of achieving full depletion without parasitic substrate currents. It is expected that this new technology can be competitive with modern backside illuminated thick CCDs for use at visible to near-IR telescopes and synchrotron light sources.

  3. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  4. Photonic circuits integrated with CMOS compatible photodetectors

    NASA Astrophysics Data System (ADS)

    Cristea, Dana; Craciunoiu, F.; Modreanu, M.; Caldararu, M.; Cernica, I.

    2001-06-01

    This paper presents the integration of photodetectors and photonic circuits (waveguides and interferometers, coupling elements and chemo-optical transducing layer) on one silicon chip. Different materials: silicon, doped or undoped silica, SiO xN y, polymers, and different technologies: LPCVD, APCVD, sol-gel, spinning, micromachining have been used to realize the photonic and micromechanical components and the transducers. Also, MOS compatible processes have been used for optoelectronic circuits. The attention was focused on the matching of all the involved technologies, to allow the monolithic integration of all components, and also on the design and fabrication of special structures of photodetectors. Two types of high responsivity photodetectors, a photo-FET and a bipolar NPN phototransistor, with modified structures that allow the optical coupling to the waveguides have been designed and experimented. An original 3-D model was developed for the system: opto-FET-coupler-waveguide. A test circuit for sensor applications was experimented. All the components of the test circuits, photodetectors, waveguides, couplers, were obtained using CMOS-compatible processes. The aim of our research activity was to obtain microsensors with optical read-out.

  5. A quasi-passive CMOS pipeline D/A converter

    NASA Technical Reports Server (NTRS)

    Wang, Fong-Jim; Temes, Gabor C.; Law, Simon

    1989-01-01

    A novel pipeline digital-to-analog converter configuration, based on switched-capacitor techniques, is described. An n-bit D/A conversion can be implemented by cascading n + 1 unit cells. The device count of the circuit increases linearly, not exponentially, with the conversion accuracy. The new configuration can be pipelined. Hence, the conversion rate can be increased without requiring a higher clock rate. An experimental 10-bit DAC prototype has been fabricated using a 3-micron CMOS process. The results show that high-speed, high-accuracy, and low-power operation can be achieved without special process or postprocess trimming.

  6. New integration concept of PIN photodiodes in 0.35μm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Jonak-Auer, I.; Teva, J.; Park, J. M.; Jessenig, S.; Rohrbacher, M.; Wachmann, E.

    2012-06-01

    We report on a new and very cost effective way to integrate PIN photo detectors into a standard CMOS process. Starting with lowly p-doped (intrinsic) EPI we need just one additional mask and ion implantation in order to provide doping concentrations very similar to standard CMOS substrates to areas outside the photoactive regions. Thus full functionality of the standard CMOS logic can be guaranteed while the photo detectors highly benefit from the low doping concentrations of the intrinsic EPI. The major advantage of this integration concept is that complete modularity of the CMOS process remains untouched by the implementation of PIN photodiodes. Functionality of the implanted region as host of logic components was confirmed by electrical measurements of relevant standard transistor as well as ESD protection devices. We also succeeded in establishing an EPI deposition process in austriamicrosystems 200mm wafer fabrication which guarantees the formation of very lowly p-doped intrinsic layers, which major semiconductor vendors could not provide. With our EPI deposition process we acquire doping levels as low as 1•1012/cm3. In order to maintain those doping levels during CMOS processing we employed special surface protection techniques. After complete CMOS processing doping concentrations were about 4•1013/cm3 at the EPI surface while the bulk EPI kept its original low doping concentrations. Photodiode parameters could further be improved by bottom antireflective coatings and a special implant to reduce dark currents. For 100×100μm2 photodiodes in 20μm thick intrinsic EPI on highly p-doped substrates we achieved responsivities of 0.57A/W at λ=675nm, capacitances of 0.066pF and dark currents of 0.8pA at 2V reverse voltage.

  7. Fundamental study on identification of CMOS cameras

    NASA Astrophysics Data System (ADS)

    Kurosawa, Kenji; Saitoh, Naoki

    2003-08-01

    In this study, we discussed individual camera identification of CMOS cameras, because CMOS (complementary-metal-oxide-semiconductor) imaging detectors have begun to make their move into the CCD (charge-coupled-device) fields for recent years. It can be identified whether or not the given images have been taken with the given CMOS camera by detecting the imager's intrinsic unique fixed pattern noise (FPN) just like the individual CCD camera identification method proposed by the authors. Both dark and bright pictures taken with the CMOS cameras can be identified by the method, because not only dark current in the photo detectors but also MOS-FET amplifiers incorporated in each pixel may produce pixel-to-pixel nonuniformity in sensitivity. Each pixel in CMOS detectors has the amplifier, which degrades image quality of bright images due to the nonuniformity of the amplifier gain. Two CMOS cameras were evaluated in our experiments. They were WebCamGoPlus (Creative), and EOS D30 (Canon). WebCamGoPlus is a low-priced web camera, whereas EOS D30 is for professional use. Image of a white plate were recorded with the cameras under the plate's luminance condition of 0cd/m2 and 150cd/m2. The recorded images were multiply integrated to reduce the random noise component. From the images of both cameras, characteristic dots patterns were observed. Some bright dots were observed in the dark images, whereas some dark dots were in the bright images. The results show that the camera identification method is also effective for CMOS cameras.

  8. NSC 800, 8-bit CMOS microprocessor

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1984-01-01

    The NSC 800 is an 8-bit CMOS microprocessor manufactured by National Semiconductor Corp., Santa Clara, California. The 8-bit microprocessor chip with 40-pad pin-terminals has eight address buffers (A8-A15), eight data address -- I/O buffers (AD(sub 0)-AD(sub 7)), six interrupt controls and sixteen timing controls with a chip clock generator and an 8-bit dynamic RAM refresh circuit. The 22 internal registers have the capability of addressing 64K bytes of memory and 256 I/O devices. The chip is fabricated on N-type (100) silicon using self-aligned polysilicon gates and local oxidation process technology. The chip interconnect consists of four levels: Aluminum, Polysi 2, Polysi 1, and P(+) and N(+) diffusions. The four levels, except for contact interface, are isolated by interlevel oxide. The chip is packaged in a 40-pin dual-in-line (DIP), side brazed, hermetically sealed, ceramic package with a metal lid. The operating voltage for the device is 5 V. It is available in three operating temperature ranges: 0 to +70 C, -40 to +85 C, and -55 to +125 C. Two devices were submitted for product evaluation by F. Stott, MTS, JPL Microprocessor Specialist. The devices were pencil-marked and photographed for identification.

  9. Simulation of SEU transients in CMOS ICs

    SciTech Connect

    Kaul, N.; Bhuva, B.L.; Kerns, S.E. )

    1991-12-01

    This paper reports that available analytical models of the number of single-event-induced errors (SEU) in combinational logic systems are not easily applicable to real integrated circuits (ICs). An efficient computer simulation algorithm set, SITA, predicts the vulnerability of data stored in and processed by complex combinational logic circuits to SEU. SITA is described in detail to allow researchers to incorporate it into their error analysis packages. Required simulation algorithms are based on approximate closed-form equations modeling individual device behavior in CMOS logic units. Device-level simulation is used to estimate the probability that ion-device interactions produce erroneous signals capable of propagating to a latch (or n output node), and logic-level simulation to predict the spread of such erroneous, latched information through the IC. Simulation results are compared to those from SPICE for several circuit and logic configurations. SITA results are comparable to this established circuit-level code, and SITA can analyze circuits with state-of-the-art device densities (which SPICE cannot). At all IC complexity levels, SITAS offers several factors of 10 savings in simulation time over SPICE.

  10. Deposition of titanium dioxide nanoparticles on the membrane of a CMOS-MEMS resonator

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Y.; Dennis, J. O.; Khir, M. H. Md; Saad, M. N. Mohamad

    2014-10-01

    A CMOS-MEMS resonator is optimized as a highly sensitive gas sensor. The principle of detection is based on change in resonant frequency of the resonator due to adsorption/absorption of trace gases onto the active material on the resonator membrane. The resonator was successfully fabricated using 0.35 μm CMOS technology and post-CMOS micromachining process. The post-CMOS process is used to etch the silicon substrate and silicon oxide to release the suspended structures of the devices. Preliminary trials of nanocrystalline Titania paste (TiO2) was screen-printed on three aluminum plates of sizes 2mm × 2 mm. One of the samples was analysed as prepared while the other two samples were sintered at 300°C and 550°C, respectively. Physical observation indicated a change of the color for heated samples as compared to the unheated one. EDX results indicates a carbon (C) peak with average weight % of 18.816 in the as prepared sample and absence of the peaks for the samples sintered at 300°C and 550°C. EDX results also show that the TiO2 used consists of a uniform distribution of spherical shaped nanoparticles with a diameter of about 13.49 to 48.42 nm. Finally, the Titania paste was successfully deposit on the membrane of the CMOS-MEMS resonator for use as the gas sensitive membrane of the sensor.

  11. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  12. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications.

  13. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    NASA Astrophysics Data System (ADS)

    Degerli, Y.; Guilloux, F.; Orsini, F.

    2014-05-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented.

  14. Volumetric imaging using single chip integrated CMUT-on-CMOS IVUS array.

    PubMed

    Tekes, Coskun; Zahorian, Jaime; Gurun, Gokce; Satir, Sarp; Xu, Toby; Hochman, Michael; Degertekin, F Levent

    2012-01-01

    An intravascular ultrasound (IVUS) catheter that can provide forward viewing volumetric ultrasound images would be an invaluable clinical tool for guiding interventions. Single chip integration of front-end electronics with capacitive micromachined ultrasonic transducers (CMUTs) is highly desirable to reduce the interconnection complexity and enable miniaturization in IVUS catheters. For this purpose we use the monolithic CMUT-on-CMOS integration where CMUTs are fabricated directly on top of pre-processed CMOS wafers. This minimizes parasitic capacitances associated with connection lines. We have recently implemented a system design including all the required electronics using 0.35-µm CMOS process integrated with a 1.4-mm diameter CMUT array. In this study, we present the experimental volumetric imaging results from an ex-vivo chicken heart phantom. The imaging results demonstrate that the single-chip forward looking IVUS (FL-IVUS) system with monolithically integrated electronics has potential to visualize the front view of coronary arteries.

  15. Design of a CMOS-based multichannel integrated biosensor chip for bioelectronic interface with neurons.

    PubMed

    Zhang, Xin; Wong, Wai Man; Zhang, Yulong; Zhang, Yandong; Gao, Fei; Nelson, Richard D; Larue, John C

    2009-01-01

    In this paper we present the design and prototyping of a 24-channel mixed signal full-customized CMOS integrated biosensor chip for in vitro extracellular recording of neural signals. Design and implementation of hierarchical modules including microelectrode electrophysiological sensors, analog signal buffers, high gain amplifier and control/interface units are presented in detail. The prototype chip was fabricated by MOSIS with AMI C5 0.5 microm, double poly, triple metal layer CMOS technology. The electroless gold plating process is used to replace the aluminum material obtained from the standard CMOS process with biocompatible metal gold in the planner microelectrode array sensors to prevent cell poisoning and undesirable electrochemical corrosion. The biosensor chip provides a satisfactory signal-to-noise ratio for neural signals with amplitudes and frequencies within the range of 600microV - 2mV and 100 Hz to 10KHz, respectively.

  16. A CMOS-compatible, surface-micromachined pressure sensor for aqueous ultrasonic application

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1994-12-31

    A surface micromachined pressure sensor array is under development at the Integrated Micromechanics, Microsensors, and CMOS Technologies organization at Sandia National Laboratories. This array is designed to sense absolute pressures from ambient pressure to 650 psia with frequency responses from DC to 2 MHz. The sensor is based upon a sealed, deformable, circular LPCVD silicon nitride diaphragm. Absolute pressure is determined from diaphragm deflection, which is sensed with low-stress, micromechanical, LPCVD polysilicon piezoresistors. All materials and processes used for sensor fabrication are CMOS compatible, and are part of Sandia`s ongoing effort of CMOS integration with Micro-ElectroMechanical Systems (MEMS). Test results of individual sensors are presented along with process issues involving the release etch and metal step coverage.

  17. A scalable neural chip with synaptic electronics using CMOS integrated memristors.

    PubMed

    Cruz-Albrecht, Jose M; Derosier, Timothy; Srinivasa, Narayan

    2013-09-27

    The design and simulation of a scalable neural chip with synaptic electronics using nanoscale memristors fully integrated with complementary metal-oxide-semiconductor (CMOS) is presented. The circuit consists of integrate-and-fire neurons and synapses with spike-timing dependent plasticity (STDP). The synaptic conductance values can be stored in memristors with eight levels, and the topology of connections between neurons is reconfigurable. The circuit has been designed using a 90 nm CMOS process with via connections to on-chip post-processed memristor arrays. The design has about 16 million CMOS transistors and 73 728 integrated memristors. We provide circuit level simulations of the entire chip performing neuronal and synaptic computations that result in biologically realistic functional behavior.

  18. A 512-channels, whole array readout, CMOS implantable probe for acute recordings from the brain.

    PubMed

    Angotzi, G N; Malerba, M; Zucca, S; Berdondini, L

    2015-08-01

    The integration of implantable CMOS neural probes with thousands of simultaneously recording microelectrodes is a promising approach for neuroscience and might allow to literally image electrophysiological neuronal activity in multiple brain circuits as we have previously shown in vitro. Here, we present a complete system based on a fully multiplexed CMOS neural probe that was designed for in-vivo acute recordings with a scalable circuit architecture. In particular, a first prototype of a single-shaft probe with 512 electrodes was realized in a standard CMOS 0.18μm technology and post-processed to structure the shaft with a wedge-like geometry of 30μm in thickness at the tip and 80μm at the base. The design of the system and of the probe as well as the post-processing techniques are discussed. Finally, preliminary results on electrical, mechanical and implantation tests are presented to demonstrate the feasibility of our approach.

  19. Adiabatic circuits: converter for static CMOS signals

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Amirante, E.; Bargagli-Stoffi, A.; Schmitt-Landsiedel, D.

    2003-05-01

    Ultra low power applications can take great advantages from adiabatic circuitry. In this technique a multiphase system is used which consists ideally of trapezoidal voltage signals. The input signals to be processed will often come from a function block realized in static CMOS. The static rectangular signals must be converted for the oscillating multiphase system of the adiabatic circuitry. This work shows how to convert the input signals to the proposed pulse form which is synchronized to the appropriate supply voltage. By means of adder structures designed for a 0.13µm technology in a 4-phase system there will be demonstrated, which additional circuits are necessary for the conversion. It must be taken into account whether the data arrive in parallel or serial form. Parallel data are all in one phase and therefore it is advantageous to use an adder structure with a proper input stage, e.g. a Carry Lookahead Adder (CLA). With a serial input stage it is possible to read and to process four signals during one cycle due to the adiabatic 4-phase system. Therefore input signals with a frequency four times higher than the adiabatic clock frequency can be used. This reduces the disadvantage of the slow clock period typical for adiabatic circuits. By means of an 8 bit Ripple Carry Adder (8 bit RCA) the serial reading will be introduced. If the word width is larger than 4 bits the word can be divided in 4 bit words which are processed in parallel. This is the most efficient way to minimize the number of input lines and pads. At the same time a high throughput is achieved.

  20. Label free sensing of creatinine using a 6 GHz CMOS near-field dielectric immunosensor.

    PubMed

    Guha, S; Warsinke, A; Tientcheu, Ch M; Schmalz, K; Meliani, C; Wenger, Ch

    2015-05-07

    In this work we present a CMOS high frequency direct immunosensor operating at 6 GHz (C-band) for label free determination of creatinine. The sensor is fabricated in standard 0.13 μm SiGe:C BiCMOS process. The report also demonstrates the ability to immobilize creatinine molecules on a Si3N4 passivation layer of the standard BiCMOS/CMOS process, therefore, evading any further need of cumbersome post processing of the fabricated sensor chip. The sensor is based on capacitive detection of the amount of non-creatinine bound antibodies binding to an immobilized creatinine layer on the passivated sensor. The chip bound antibody amount in turn corresponds indirectly to the creatinine concentration used in the incubation phase. The determination of creatinine in the concentration range of 0.88-880 μM is successfully demonstrated in this work. A sensitivity of 35 MHz/10 fold increase in creatinine concentration (during incubation) at the centre frequency of 6 GHz is gained by the immunosensor. The results are compared with a standard optical measurement technique and the dynamic range and sensitivity is of the order of the established optical indication technique. The C-band immunosensor chip comprising an area of 0.3 mm(2) reduces the sensing area considerably, therefore, requiring a sample volume as low as 2 μl. The small analyte sample volume and label free approach also reduce the experimental costs in addition to the low fabrication costs offered by the batch fabrication technique of CMOS/BiCMOS process.

  1. CMOS detectors at Rome "Tor Vergata" University

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Cantarano, S.; Egidi, A.; Giordano, S.

    The new class of CMOS panoramic detectors represents an innovative tool for the experimental astronomy of the forthcoming years. While current charge-coupled device (CCD) technology can produce nearly ideal detectors for astronomical use, the scientific quality CMOS detectors made today have characteristics similar to those of CCD devices but a simpler electronics and a reduced cost. Moreover, the high frame rate capability and the amplification of each pixel - active pixel - in a CMOS detector, allows the implementation of a specific data management. So, it is possible to design cameras with very high dynamic range suitable for the imaging of solar active regions. In fact, in such regions, the onset of a flare can produce problems of saturation in a CCD-based camera. In this work we present the preliminary result obtained with the Tor Vergata C-Cam APS camera used at the University Solar Station.

  2. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  3. Experiments with synchronized sCMOS cameras

    NASA Astrophysics Data System (ADS)

    Steele, Iain A.; Jermak, Helen; Copperwheat, Chris M.; Smith, Robert J.; Poshyachinda, Saran; Soonthorntham, Boonrucksar

    2016-07-01

    Scientific-CMOS (sCMOS) cameras can combine low noise with high readout speeds and do not suffer the charge multiplication noise that effectively reduces the quantum efficiency of electron multiplying CCDs by a factor 2. As such they have strong potential in fast photometry and polarimetry instrumentation. In this paper we describe the results of laboratory experiments using a pair of commercial off the shelf sCMOS cameras based around a 4 transistor per pixel architecture. In particular using a both stable and a pulsed light sources we evaluate the timing precision that may be obtained when the cameras readouts are synchronized either in software or electronically. We find that software synchronization can introduce an error of 200-msec. With electronic synchronization any error is below the limit ( 50-msec) of our simple measurement technique.

  4. Resistor Extends Life Of Battery In Clocked CMOS Circuit

    NASA Technical Reports Server (NTRS)

    Wells, George H., Jr.

    1991-01-01

    Addition of fixed resistor between battery and clocked complementary metal oxide/semiconductor (CMOS) circuit reduces current drawn from battery. Basic idea to minimize current drawn from battery by operating CMOS circuit at lowest possible current consistent with use of simple, fixed off-the-shelf components. Prolongs lives of batteries in such low-power CMOS circuits as watches and calculators.

  5. High-temperature Complementary Metal Oxide Semiconductors (CMOS)

    NASA Technical Reports Server (NTRS)

    Mcbrayer, J. D.

    1981-01-01

    The results of an investigation into the possibility of using complementary metal oxide semiconductor (CMOS) technology for high temperature electronics are presented. A CMOS test chip was specifically developed as the test bed. This test chip incorporates CMOS transistors that have no gate protection diodes; these diodes are the major cause of leakage in commercial devices.

  6. Low power, CMOS digital autocorrelator spectrometer for spaceborne applications

    NASA Technical Reports Server (NTRS)

    Chandra, Kumar; Wilson, William J.

    1992-01-01

    A 128-channel digital autocorrelator spectrometer using four 32 channel low power CMOS correlator chips was built and tested. The CMOS correlator chip uses a 2-bit multiplication algorithm and a full-custom CMOS VLSI design to achieve low DC power consumption. The digital autocorrelator spectrometer has a 20 MHz band width, and the total DC power requirement is 6 Watts.

  7. A high speed CMOS A/D converter

    NASA Technical Reports Server (NTRS)

    Wiseman, Don R.; Whitaker, Sterling R.

    1992-01-01

    This paper presents a high speed analog-to-digital (A/D) converter. The converter is a 7 bit flash converter with one half LSB accuracy. Typical parts will function at approximately 200 MHz. The converter uses a novel comparator circuit that is shown to out perform more traditional comparators, and thus increases the speed of the converter. The comparator is a clocked, precharged circuit that offers very fast operation with a minimal offset voltage (2 mv). The converter was designed using a standard 1 micron digital CMOS process and is 2,244 microns by 3,972 microns.

  8. Design and optimization of BCCD in CMOS technology

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Li, Yi; Gao, Zhi-yuan; Luo, Tao

    2016-09-01

    This paper optimizes the buried channel charge-coupled device (BCCD) structure fabricated by complementary metal oxide semiconductor (CMOS) technology. The optimized BCCD has advantages of low noise, high integration and high image quality. The charge transfer process shows that interface traps, weak fringing fields and potential well between adjacent gates all cause the decrease of charge transfer efficiency ( CTE). CTE and well capacity are simulated with different operating voltages and gap sizes. CTE can achieve 99.999% and the well capacity reaches up to 25 000 electrons for the gap size of 130 nm and the maximum operating voltage of 3 V.

  9. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique

    PubMed Central

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581

  10. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique.

    PubMed

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.

  11. Optical addressing technique for a CMOS RAM

    NASA Technical Reports Server (NTRS)

    Wu, W. H.; Bergman, L. A.; Allen, R. A.; Johnston, A. R.

    1988-01-01

    Progress on optically addressing a CMOS RAM for a feasibility demonstration of free space optical interconnection is reported in this paper. The optical RAM chip has been fabricated and functional testing is in progress. Initial results seem promising. New design and SPICE simulation of optical gate cell (OGC) circuits have been carried out to correct the slow fall time of the 'weak pull down' OGC, which has been characterized experimentally. Methods of reducing the response times of the photodiodes and the associated circuits are discussed. Even with the current photodiode, it appears that an OGC can be designed with a performance that is compatible with a CMOS circuit such as the RAM.

  12. New generation CMOS 2D imager evaluation and qualification for semiconductor inspection applications

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Hart, Darcy

    2013-09-01

    Semiconductor fabrication process defect inspection industry is always driven by inspection resolution and through-put. With fabrication technology node advances to 2X ~1Xnm range, critical macro defect size approaches to typical CMOS camera pixel size range, therefore single pixel defect detection technology becomes more and more essential, which is fundamentally constrained by camera performance. A new evaluation model is presented here to specifically describe the camera performance for semiconductor machine vision applications, especially targeting at low image contrast high speed applications. Current mainline cameras and high-end OEM cameras are evaluated with this model. Camera performances are clearly differentiated among CMOS technology generations and vendors, which will facilitate application driven camera selection and operation optimization. The new challenges for CMOS detectors are discussed for semiconductor inspection applications.

  13. A Glucose Biosensor Using CMOS Potentiostat and Vertically Aligned Carbon Nanofibers.

    PubMed

    Al Mamun, Khandaker A; Islam, Syed K; Hensley, Dale K; McFarlane, Nicole

    2016-08-01

    This paper reports a linear, low power, and compact CMOS based potentiostat for vertically aligned carbon nanofibers (VACNF) based amperometric glucose sensors. The CMOS based potentiostat consists of a single-ended potential control unit, a low noise common gate difference-differential pair transimpedance amplifier and a low power VCO. The potentiostat current measuring unit can detect electrochemical current ranging from 500 nA to 7 [Formula: see text] from the VACNF working electrodes with high degree of linearity. This current corresponds to a range of glucose, which depends on the fiber forest density. The potentiostat consumes 71.7 [Formula: see text] of power from a 1.8 V supply and occupies 0.017 [Formula: see text] of chip area realized in a 0.18 [Formula: see text] standard CMOS process.

  14. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  15. A CMOS current-mode log(x) and log(1/x) functions generator

    NASA Astrophysics Data System (ADS)

    Al-Absi, Munir A.; Al-Tamimi, Karama M.

    2014-08-01

    A novel Complementary Metal Oxide Semiconductor (CMOS) current-mode low-voltage and low-power controllable logarithmic function circuit is presented. The proposed design utilises one Operational Transconductance Amplifier (OTA) and two PMOS transistors biased in weak inversion region. The proposed design provides high dynamic range, controllable amplitude, high accuracy and is insensitive to temperature variations. The circuit operates on a ±0.6 V power supply and consumes 0.3 μW. The functionality of the proposed circuit was verified using HSPICE with 0.35 μm 2P4M CMOS process technology.

  16. Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices

    NASA Technical Reports Server (NTRS)

    Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

    2012-01-01

    Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

  17. Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies

    NASA Astrophysics Data System (ADS)

    Lopez, J. L.; Verd, J.; Teva, J.; Murillo, G.; Giner, J.; Torres, F.; Uranga, A.; Abadal, G.; Barniol, N.

    2009-01-01

    Integration of electrostatically driven and capacitively transduced MEMS resonators in commercial CMOS technologies is discussed. A figure of merit to study the performance of different structural layers and different technologies is defined. High frequency (HF) and very high frequency (VHF) resonance MEMS metal resonators are fabricated on a deep submicron 0.18 µm commercial CMOS technology and are characterized using electrical tests without amplification, demonstrating the applicability of the MEMS fabrication process for future technologies. Moreover, the fabricated devices show comparable performance in terms of Q × fres with previously presented MEMS resonators, whereas the small gap allows obtaining a low motional resistance with a single resonator approach.

  18. Second Generation Monolithic Full-depletion Radiation Sensor with Integrated CMOS Circuitry

    SciTech Connect

    Segal, J.D.; Kenney, C.J.; Parker, S.I.; Aw, C.H.; Snoeys, W.J.; Wooley, B.; Plummer, J.D.; /Stanford U., Elect. Eng. Dept.

    2011-05-20

    A second-generation monolithic silicon radiation sensor has been built and characterized. This pixel detector has CMOS circuitry fabricated directly in the high-resistivity floatzone substrate. The bulk is fully depleted from bias applied to the backside diode. Within the array, PMOS pixel circuitry forms the first stage amplifiers. Full CMOS circuitry implementing further amplification as well as column and row logic is located in the periphery of the pixel array. This allows a sparse-field readout scheme where only pixels with signals above a certain threshold are readout. We describe the fabrication process, circuit design, system performance, and results of gamma-ray radiation tests.

  19. Fabrication and characterization of a charge-biased CMOS-MEMS resonant gate field effect transistor

    NASA Astrophysics Data System (ADS)

    Chin, C. H.; Li, C. S.; Li, M. H.; Wang, Y. L.; Li, S. S.

    2014-09-01

    A high-frequency charge-biased CMOS-MEMS resonant gate field effect transistor (RGFET) composed of a metal-oxide composite resonant-gate structure and an FET transducer has been demonstrated utilizing the TSMC 0.35 μm CMOS technology with Q > 1700 and a signal-to-feedthrough ratio greater than 35 dB under a direct two-port measurement configuration. As compared to the conventional capacitive-type MEMS resonators, the proposed CMOS-MEMS RGFET features an inherent transconductance gain (gm) offered by the FET transduction capable of enhancing the motional signal of the resonator and relaxing the impedance mismatch issue to its succeeding electronics or 50 Ω-based test facilities. In this work, we design a clamped-clamped beam resonant-gate structure right above a floating gate FET transducer as a high-Q building block through a maskless post-CMOS process to combine merits from the large capacitive transduction areas of the large-width beam resonator and the high gain of the underneath FET. An analytical model is also provided to simulate the behavior of the charge-biased RGFET; the theoretical prediction is in good agreement with the experimental results. Thanks to the deep-submicrometer gap spacing enabled by the post-CMOS polysilicon release process, the proposed resonator under a purely capacitive transduction already attains motional impedance less than 10 kΩ, a record-low value among CMOS-MEMS capacitive resonators. To go one step further, the motional signal of the proposed RGFET is greatly enhanced through the FET transduction. Such a strong transmission and a sharp phase transition across 0° pave a way for future RGFET-type oscillators in RF and sensor applications. A time-elapsed characterization of the charge leakage rate for the floating gate is also carried out.

  20. Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors

    PubMed Central

    Hsieh, Chen-Hsuan; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    This study investigates the design and fabrication of magnetic microsensors using the commercial 0.35 μm complementary metal oxide semiconductor (CMOS) process. The magnetic sensor is composed of springs and interdigitated electrodes, and it is actuated by the Lorentz force. The finite element method (FEM) software CoventorWare is adopted to simulate the displacement and capacitance of the magnetic sensor. A post-CMOS process is utilized to release the suspended structure. The post-process uses an anisotropic dry etching to etch the silicon dioxide layer and an isotropic dry etching to remove the silicon substrate. When a magnetic field is applied to the magnetic sensor, it generates a change in capacitance. A sensing circuit is employed to convert the capacitance variation of the sensor into the output voltage. The experimental results show that the output voltage of the magnetic microsensor varies from 0.05 to 1.94 V in the magnetic field range of 5–200 mT. PMID:24172287

  1. HV-CMOS detectors in BCD8 technology

    NASA Astrophysics Data System (ADS)

    Andreazza, A.; Castoldi, A.; Ceriale, V.; Chiodini, G.; Citterio, M.; Darbo, G.; Gariano, G.; Gaudiello, A.; Guazzoni, C.; Joshi, A.; Liberali, V.; Passadore, S.; Ragusa, F.; Ruscino, E.; Sbarra, C.; Shrimali, H.; Sidoti, A.; Stabile, A.; Yadav, I.; Zaffaroni, E.

    2016-11-01

    This paper presents the first pixel detector realized using the BCD8 technology of STMicroelectronics. The BCD8 is a 160 nm process with bipolar, CMOS and DMOS devices; mainly targeted for an automotive application. The silicon particle detector is realized as a pixel sensor diode with a dimension of 250 × 50 μm2. To support the signal sensitivity of pixel diode, the circuit simulations have been performed with a substrate voltage of 50 V. The analog signal processing circuitry and the digital operation of the circuit is designed with the supply voltage of 1.8 V. Moreover, an analog processing part of the pixel detector circuit is confined in a unit pixel (diode sensor) to achieve 100 % fill factor. As a first phase of the design, an array of 8 pixels and 4 passive diodes have been designed and measured experimentally. The entire analog circuitry including passive diodes is implemented in a single chip. This chip has been tested experimentally with 70 V voltage capability, to evaluate its suitability. The sensor on a 125 Ωcm resistivity substrate has been characterized in the laboratory. The CMOS sensor realizes a depleted region of several tens of micrometer. The characterization shows a uniform breakdown at 70 V before irradiation and an approximate capacitance of 80 fF at 50 V of reverse bias voltage. The response to ionizing radiation is tested using radioactive sources and an X-ray tube.

  2. Fully depleted CMOS pixel sensor development and potential applications

    SciTech Connect

    Baudot, J.; Kachel, M.

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  3. Design and realization of CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Xiao, Zexin

    2008-02-01

    A project was presented that instrumental design of an economical CMOS microscope image sensor. A high performance, low price, black-white camera chip OV5116P was used as the core of the sensor circuit; Designing and realizing peripheral control circuit of sensor; Through the control on dial switch to realize different functions of the sensor chip in the system. For example: auto brightness level descending function on or off; gamma correction function on or off; auto and manual backlight compensation mode conversion and so on. The optical interface of sensor is designed for commercialization and standardization. The images of sample were respectively gathered with CCD and CMOS. Result of the experiment indicates that both performances were identical in several aspects as follows: image definition, contrast control, heating degree and the function can be adjusted according to the demand of user etc. The imperfection was that the CMOS with smaller field and higher noise than CCD; nevertheless, the maximal advantage of choosing the CMOS chip is its low cost. And its imaging quality conformed to requirement of the economical microscope image sensor.

  4. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  5. Low energy CMOS for space applications

    NASA Technical Reports Server (NTRS)

    Panwar, Ramesh; Alkalaj, Leon

    1992-01-01

    The current focus of NASA's space flight programs reflects a new thrust towards smaller, less costly, and more frequent space missions, when compared to missions such as Galileo, Magellan, or Cassini. Recently, the concept of a microspacecraft was proposed. In this concept, a small, compact spacecraft that weighs tens of kilograms performs focused scientific objectives such as imaging. Similarly, a Mars Lander micro-rover project is under study that will allow miniature robots weighing less than seven kilograms to explore the Martian surface. To bring the microspacecraft and microrover ideas to fruition, one will have to leverage compact 3D multi-chip module-based multiprocessors (MCM) technologies. Low energy CMOS will become increasingly important because of the thermodynamic considerations in cooling compact 3D MCM implementations and also from considerations of the power budget for space applications. In this paper, we show how the operating voltage is related to the threshold voltage of the CMOS transistors for accomplishing a task in VLSI with minimal energy. We also derive expressions for the noise margins at the optimal operating point. We then look at a low voltage CMOS (LVCMOS) technology developed at Stanford University which improves the power consumption over conventional CMOS by a couple of orders of magnitude and consider the suitability of the technology for space applications by characterizing its SEU immunity.

  6. CMOS preamplifiers for detectors large and small

    SciTech Connect

    O`Connor, P.

    1997-12-31

    We describe four CMOS preamplifiers developed for multiwire proportional chambers (MWPC) and silicon drift detectors (SDD) covering a capacitance range from 150 pF to 0.15 pF. Circuit techniques to optimize noise performance, particularly in the low-capacitance regime, are discussed.

  7. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; ...

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  8. A 64 single photon avalanche diode array in 0.18 µm CMOS standard technology with versatile quenching circuit for quick prototyping

    NASA Astrophysics Data System (ADS)

    Uhring, Wilfried; Le Normand, Jean-Pierre; Zint, Virginie; Dumas, Norbert; Dadouche, Foudil; Malasse, Imane; Scholz, Jeremy

    2012-04-01

    Several works have demonstrated the successfully integration of Single-photon avalanche photodiodes (SPADs) operating in Geiger mode in a standard CMOS circuit for the last 10 years. These devices offer an exceptional temporal resolution as well as a very good optical sensitivity. Nevertheless, it is difficult to predict the expected performances of such a device. Indeed, for a similar structure of SPAD, some parameter values can differ by two orders of magnitude from a technology to another. We proposed here a procedure to identify in just one or two runs the optimal structure of SPAD available for a given technology. A circuit with an array of 64 SPAD has been realized in the Tower-Jazz 0.18 μm CMOS image sensor process. It encompasses an array of 8 different structures of SPAD reproduced in 8 diameters in the range from 5 μm up to 40 μm. According to the SPAD structures, efficient shallow trench insulator and/or P-Well guard ring are used for preventing edge breakdown. Low dark count rate of about 100 Hz are expected thanks to the use of buried n-well layer and a high resistivity substrate. Each photodiode is embedded in a pixel which includes a versatile quenching circuitry and an analog output of its cathode voltage. The quenching system is configurable in four operation modes; the SPAD is disabled, the quenching is completely passive, the reset of the photodiode is active and the quenching is fully active. The architecture of the array makes possible the characterization of every single photodiode individually. The parameters to be measured for a SPAD are the breakdown avalanche voltage, the dark count rate, the dead time, the timing jitter, the photon detection probability and the after-pulsing rate.

  9. CMOS-compatible spintronic devices: a review

    NASA Astrophysics Data System (ADS)

    Makarov, Alexander; Windbacher, Thomas; Sverdlov, Viktor; Selberherr, Siegfried

    2016-11-01

    For many decades CMOS devices have been successfully scaled down to achieve higher speed and increased performance of integrated circuits at lower cost. Today’s charge-based CMOS electronics encounters two major challenges: power dissipation and variability. Spintronics is a rapidly evolving research and development field, which offers a potential solution to these issues by introducing novel ‘more than Moore’ devices. Spin-based magnetoresistive random-access memory (MRAM) is already recognized as one of the most promising candidates for future universal memory. Magnetic tunnel junctions, the main elements of MRAM cells, can also be used to build logic-in-memory circuits with non-volatile storage elements on top of CMOS logic circuits, as well as versatile compact on-chip oscillators with low power consumption. We give an overview of CMOS-compatible spintronics applications. First, we present a brief introduction to the physical background considering such effects as magnetoresistance, spin-transfer torque (STT), spin Hall effect, and magnetoelectric effects. We continue with a comprehensive review of the state-of-the-art spintronic devices for memory applications (STT-MRAM, domain wall-motion MRAM, and spin-orbit torque MRAM), oscillators (spin torque oscillators and spin Hall nano-oscillators), logic (logic-in-memory, all-spin logic, and buffered magnetic logic gate grid), sensors, and random number generators. Devices with different types of resistivity switching are analyzed and compared, with their advantages highlighted and challenges revealed. CMOS-compatible spintronic devices are demonstrated beginning with predictive simulations, proceeding to their experimental confirmation and realization, and finalized by the current status of application in modern integrated systems and circuits. We conclude the review with an outlook, where we share our vision on the future applications of the prospective devices in the area.

  10. IR CMOS: near infrared enhanced digital imaging (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Carey, James E.; Joy, Thomas; Vineis, Chris J.; Palsule, Chintamani

    2015-08-01

    SiOnyx has demonstrated imaging at light levels below 1 mLux (moonless starlight) at video frame rates with a 720P CMOS image sensor in a compact, low latency camera. Low light imaging is enabled by the combination of enhanced quantum efficiency in the near infrared together with state of the art low noise image sensor design. The quantum efficiency enhancements are achieved by applying Black Silicon, SiOnyx's proprietary ultrafast laser semiconductor processing technology. In the near infrared, silicon's native indirect bandgap results in low absorption coefficients and long absorption lengths. The Black Silicon nanostructured layer fundamentally disrupts this paradigm by enhancing the absorption of light within a thin pixel layer making 5 microns of silicon equivalent to over 300 microns of standard silicon. This results in a demonstrate 10 fold improvements in near infrared sensitivity over incumbent imaging technology while maintaining complete compatibility with standard CMOS image sensor process flows. Applications include surveillance, nightvision, and 1064nm laser see spot. Imaging performance metrics will be discussed. Demonstrated performance characteristics: Pixel size : 5.6 and 10 um Array size: 720P/1.3Mpix Frame rate: 60 Hz Read noise: 2 ele/pixel Spectral sensitivity: 400 to 1200 nm (with 10x QE at 1064nm) Daytime imaging: color (Bayer pattern) Nighttime imaging: moonless starlight conditions 1064nm laser imaging: daytime imaging out to 2Km

  11. A Low-Cost CMOS Programmable Temperature Switch.

    PubMed

    Li, Yunlong; Wu, Nanjian

    2008-05-15

    A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature Tth can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature Tth variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 μm CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature Tths from 45-120°C with a 5°C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm² and power consumption is 3.1 μA at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.

  12. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor

    PubMed Central

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-01-01

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  13. Fabrication and Characterization of a CMOS-MEMS Humidity Sensor.

    PubMed

    Dennis, John-Ojur; Ahmed, Abdelaziz-Yousif; Khir, Mohd-Haris

    2015-07-10

    This paper reports on the fabrication and characterization of a Complementary Metal Oxide Semiconductor-Microelectromechanical System (CMOS-MEMS) device with embedded microheater operated at relatively elevated temperatures (40 °C to 80 °C) for the purpose of relative humidity measurement. The sensing principle is based on the change in amplitude of the device due to adsorption or desorption of humidity on the active material layer of titanium dioxide (TiO2) nanoparticles deposited on the moving plate, which results in changes in the mass of the device. The sensor has been designed and fabricated through a standard 0.35 µm CMOS process technology and post-CMOS micromachining technique has been successfully implemented to release the MEMS structures. The sensor is operated in the dynamic mode using electrothermal actuation and the output signal measured using a piezoresistive (PZR) sensor connected in a Wheatstone bridge circuit. The output voltage of the humidity sensor increases from 0.585 mV to 30.580 mV as the humidity increases from 35% RH to 95% RH. The output voltage is found to be linear from 0.585 mV to 3.250 mV as the humidity increased from 35% RH to 60% RH, with sensitivity of 0.107 mV/% RH; and again linear from 3.250 mV to 30.580 mV as the humidity level increases from 60% RH to 95% RH, with higher sensitivity of 0.781 mV/% RH. On the other hand, the sensitivity of the humidity sensor increases linearly from 0.102 mV/% RH to 0.501 mV/% RH with increase in the temperature from 40 °C to 80 °C and a maximum hysteresis of 0.87% RH is found at a relative humidity of 80%. The sensitivity is also frequency dependent, increasing from 0.500 mV/% RH at 2 Hz to reach a maximum value of 1.634 mV/% RH at a frequency of 12 Hz, then decreasing to 1.110 mV/% RH at a frequency of 20 Hz. Finally, the CMOS-MEMS humidity sensor showed comparable response, recovery, and repeatability of measurements in three cycles as compared to a standard sensor that directly

  14. Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS.

    PubMed

    Shainline, Jeffrey M; Orcutt, Jason S; Wade, Mark T; Nammari, Kareem; Moss, Benjamin; Georgas, Michael; Sun, Chen; Ram, Rajeev J; Stojanović, Vladimir; Popović, Miloš A

    2013-08-01

    We demonstrate the first (to the best of our knowledge) depletion-mode carrier-plasma optical modulator fabricated in a standard advanced complementary metal-oxide-semiconductor (CMOS) logic process (45 nm node SOI CMOS) with no process modifications. The zero-change CMOS photonics approach enables this device to be monolithically integrated into state-of-the-art microprocessors and advanced electronics. Because these processes support lateral p-n junctions but not efficient ridge waveguides, we accommodate these constraints with a new type of resonant modulator. It is based on a hybrid microring/disk cavity formed entirely in the sub-90 nm thick monocrystalline silicon transistor body layer. Electrical contact of both polarities is made along the inner radius of the multimode ring cavity via an array of silicon spokes. The spokes connect to p and n regions formed using transistor well implants, which form radially extending lateral junctions that provide index modulation. We show 5 Gbps data modulation at 1265 nm wavelength with 5.2 dB extinction ratio and an estimated 40 fJ/bit energy consumption. Broad thermal tuning is demonstrated across 3.2 THz (18 nm) with an efficiency of 291 GHz/mW. A single postprocessing step to remove the silicon handle wafer was necessary to support low-loss optical confinement in the device layer. This modulator is an important step toward monolithically integrated CMOS photonic interconnects.

  15. Design and fabrication of a CMOS-compatible MHP gas sensor

    SciTech Connect

    Li, Ying; Yu, Jun Wu, Hao; Tang, Zhenan

    2014-03-15

    A novel micro-hotplate (MHP) gas sensor is designed and fabricated with a standard CMOS technology followed by post-CMOS processes. The tungsten plugging between the first and the second metal layer in the CMOS processes is designed as zigzag resistor heaters embedded in the membrane. In the post-CMOS processes, the membrane is released by front-side bulk silicon etching, and excellent adiabatic performance of the sensor is obtained. Pt/Ti electrode films are prepared on the MHP before the coating of the SnO{sub 2} film, which are promising to present better contact stability compared with Al electrodes. Measurements show that at room temperature in atmosphere, the device has a low power consumption of ∼19 mW and a rapid thermal response of 8 ms for heating up to 300 °C. The tungsten heater exhibits good high temperature stability with a slight fluctuation (<0.3%) in the resistance at an operation temperature of 300 °C under constant heating mode for 336 h, and a satisfactory temperature coefficient of resistance of about 1.9‰/°C.

  16. Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.

    2017-01-01

    The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.

  17. Failure analysis of a half-micron CMOS IC technology

    SciTech Connect

    Liang, A.Y.; Tangyunyong, P.; Bennett, R.S.; Flores, R.S.

    1996-08-01

    We present the results of recent failure analysis of an advanced, 0.5 {mu}m, fully planarized, triple metallization CMOS technology. A variety of failure analysis (FA) tools and techniques were used to localize and identify defects generated by wafer processing. These include light (photon) emission microscopy (LE), fluorescent microthermal imaging (FMI), focused ion beam cross sectioning, SEM/voltage contrast imaging, resistive contrast imaging (RCI), and e-beam testing using an IDS-5000 with an HP 82000. The defects identified included inter- and intra-metal shorts, gate oxide shorts due to plasma processing damage, and high contact resistance due to the contact etch and deposition process. Root causes of these defects were determined and corrective action was taken to improve yield and reliability.

  18. Development of a low power Delay-Locked Loop in two 130 nm CMOS technologies

    NASA Astrophysics Data System (ADS)

    Firlej, M.; Fiutowski, T.; Idzik, M.; Moron, J.; Swientek, K.

    2016-02-01

    The design and measurement results of two low power DLL prototypes for applications in particle physics readout systems are presented. The DLLs were fabricated in two different 130 nm CMOS technologies, called process A and process B, giving the opportunity to compare these two CMOS processes. Both circuits generate 64 uniform clock phases and operate at similar frequency range, from 20 MHz up to 60 MHz (10 MHz - 90 MHz in process B). The period jitter of both DLLs is in the range 2.5 ps - 12.1 ps (RMS) and depends on the selected output phase. The complete DLL functionality was experimentally verified, confirming a very low and frequency scalable power consumption of around 0.7 mW at typical 40 MHz input. The DLL prototype, designed in process A, occupies 680 μm × 210 μm, while the same circuit designed in process B occupies 430 μm × 190 μm.

  19. A CMOS Smart Temperature and Humidity Sensor with Combined Readout

    PubMed Central

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-01-01

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 μA. PMID:25230305

  20. Improvement to the signaling interface for CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Tang, Zhenan; Feng, Chong; Cai, Hong

    2016-10-01

    The development of the readout speed of CMOS pixel sensors (CPS) is motivated by the demanding requirements of future high energy physics (HEP) experiments. As the interface between CPS and the data acquisition (DAQ) system, which inputs clock from the DAQ system and outputs data from CPS, the signaling interface should also be improved in terms of data rates. Meanwhile, the power consumption of the signaling interface should be maintained as low as possible. Consequently, a reduced swing differential signaling (RSDS) driver was adopted instead of a low-voltage differential signaling (LVDS) driver to transmit data from CPS to the DAQ system. In order to increase the capability of data rates, a serial source termination technique was employed. A LVDS/RSDS receiver was employed for transmitting clock from the DAQ system to CPS. A new method of generating hysteresis and a special current comparator were used to achieve a higher speed with lower power consumption. The signaling interface was designed and submitted for fabrication in a 0.18 μm CMOS image sensor (CIS) process. Measurement results indicate that the RSDS driver and the LVDS receiver can operate correctly at a data rate of 2 Gb/s with a power consumption of 19.1 mW.

  1. BiCMOS-integrated photodiode exploiting drift enhancement

    NASA Astrophysics Data System (ADS)

    Swoboda, Robert; Schneider-Hornstein, Kerstin; Wille, Holger; Langguth, Gernot; Zimmermann, Horst

    2014-08-01

    A vertical pin photodiode with a thick intrinsic layer is integrated in a 0.5-μm BiCMOS process. The reverse bias of the photodiode can be increased far above the circuit supply voltage, enabling a high-drift velocity. Therefore, a highly efficient and very fast photodiode is achieved. Rise/fall times down to 94 ps/141 ps at a bias of 17 V were measured for a wavelength of 660 nm. The bandwidth was increased from 1.1 GHz at 3 V to 2.9 GHz at 17 V due to the drift enhancement. A quantum efficiency of 85% with a 660-nm light was verified. The technological measures to avoid negative effects on an NPN transistor due to the Kirk effect caused by the low-doped I-layer epitaxy are described. With a high-energy collector implant, the NPN transit frequency is held above 20 GHz. CMOS devices are unaffected. This photodiode is suitable for a wide variety of high-sensitivity optical sensor applications, for optical communications, for fiber-in-the-home applications, and for optical interconnects.

  2. High-stage analog accumulator for TDI CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Jianxin, Li; Fujun, Huang; Yong, Zong; Jing, Gao

    2016-02-01

    The impact of the parasitic phenomenon on the performance of the analog accumulator in TDI CMOS image sensor is analyzed and resolved. A 128-stage optimized accumulator based on 0.18-μm one-poly four-metal 3.3 V CMOS technology is designed and simulated. A charge injection effect from the top plate sampling is employed to compensate the un-eliminated parasitics based on the accumulator with a decoupling switch, and then a calibration circuit is designed to restrain the mismatch and Process, Voltage and Temperature (PVT) variations. The post layout simulation indicates that the improved SNR of the accumulator upgrades from 17.835 to 21.067 dB, while an ideal value is 21.072 dB. In addition, the linearity of the accumulator is 99.62%. The simulation results of two extreme cases and Monte Carlo show that the mismatch and PVT variations are restrained by the calibration circuit. Furthermore, it is promising to design a higher stage accumulator based on the proposed structure. Project supported by the National Natural Science Foundation of China (Nos. 61404090, 61434004).

  3. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  4. W-CMOS blanking device for projection multibeam lithography

    NASA Astrophysics Data System (ADS)

    Jurisch, Michael; Irmscher, Mathias; Letzkus, Florian; Eder-Kapl, Stefan; Klein, Christof; Loeschner, Hans; Piller, Walter; Platzgummer, Elmar

    2010-05-01

    As the designs of future mask nodes become more and more complex the corresponding pattern writing times will rise significantly when using single beam writing tools. Projection multi-beam lithography [1] is one promising technology to enhance the throughput compared to state of the art VSB pattern generators. One key component of the projection multi-beam tool is an Aperture Plate System (APS) to form and switch thousands of individual beamlets. In our present setup a highly parallel beam is divided into 43,008 individual beamlets by a Siaperture- plate. These micrometer sized beams pass through larger openings in a blanking-plate and are individually switched on and off by applying a voltage to blanking-electrodes which are placed around the blanking-plate openings. A charged particle 200x reduction optics demagnifies the beamlet array to the substrate. The switched off beams are filtered out in the projection optics so that only the beams which are unaffected by the blanking-plate are projected to the substrate with 200x reduction. The blanking-plate is basically a CMOS device for handling the writing data. In our work the blanking-electrodes are fabricated using CMOS compatible add on processes like SiO2-etching or metal deposition and structuring. A new approach is the implementation of buried tungsten electrodes for beam blanking.

  5. CMOS mm-wave transceivers for Gbps wireless communication

    NASA Astrophysics Data System (ADS)

    Baoyong, Chi; Zheng, Song; Lixue, Kuang; Haikun, Jia; Xiangyu, Meng; Zhihua, Wang

    2016-07-01

    The challenges in the design of CMOS millimeter-wave (mm-wave) transceiver for Gbps wireless communication are discussed. To support the Gbps data rate, the link bandwidth of the receiver/transmitter must be wide enough, which puts a lot of pressure on the mm-wave front-end as well as on the baseband circuit. This paper discusses the effects of the limited link bandwidth on the transceiver system performance and overviews the bandwidth expansion techniques for mm-wave amplifiers and IF programmable gain amplifier. Furthermore, dual-mode power amplifier (PA) and self-healing technique are introduced to improve the PA's average efficiency and to deal with the process, voltage, and temperature variation issue, respectively. Several fully-integrated CMOS mm-wave transceivers are also presented to give a short overview on the state-of-the-art mm-wave transceivers. Project supported in part by the National Natural Science Foundation of China (No. 61331003).

  6. CMOS-TDI detector technology for reconnaissance application

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Jung, Melanie; Sengebusch, Karsten

    2014-10-01

    The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design CMOS in a TDI (Time Delay and Integration) architecture. This project includes the technological design of future high or multi-spectral resolution spaceborne instruments and the possibility of higher integration. DLR OS and the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) in Duisburg were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large-swath and high-spectral resolution with intelligent synchronization control, fast-readout ADC (analog digital converter) chains and new focal-plane concepts opens the door to new remote-sensing and smart deep-space instruments. The paper gives an overview of the detector development status and verification program at DLR, as well as of new control possibilities for CMOS-TDI detectors in synchronization control mode.

  7. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  8. High-performance VGA-resolution digital color CMOS imager

    NASA Astrophysics Data System (ADS)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  9. UHF2: a 0.6-μm 25-GHz BiCMOS technology for mixed-signal wireless communications applications

    NASA Astrophysics Data System (ADS)

    Hemmenway, Don; Baldwin, Frank; Butler, John D.; Crouch, Clay; Delgado, Jose; Jayne, Mike; Johnston, Jeffrey M.; Lowther, Rex; Netzer, Michael; Richmond, Susan; Rivoli, Anthony; Rouse, George; Santi, Ron; Yue, Yun

    1999-09-01

    A 0.6 micrometers RF BiCMOS technology was developed by the modular integration of a 25 GHz fT, 35 GHz fMAX NPN transistor and high-quality passive components into an existing 0.6 micrometers analog CMOS process. The resultant process technology supports low-cost, mixed-signal RF applications up to 2.5 GHz.

  10. Design and Fabrication of High-Efficiency CMOS/CCD Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2007-01-01

    An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the

  11. Radiation effects on scientific CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Liyan, Liu; Xiaohui, Liu; Xiaofeng, Jin; Xiang, Li

    2015-11-01

    A systemic solution for radiation hardened design is presented. Besides, a series of experiments have been carried out on the samples, and then the photoelectric response characteristic and spectral characteristic before and after the experiments have been comprehensively analyzed. The performance of the CMOS image sensor with the radiation hardened design technique realized total-dose resilience up to 300 krad(Si) and resilience to single-event latch up for LET up to 110 MeV·cm2/mg.

  12. CMOS-array design-automation techniques

    NASA Technical Reports Server (NTRS)

    Feller, A.; Lombardt, T.

    1979-01-01

    Thirty four page report discusses design of 4,096-bit complementary metal oxide semiconductor (CMOS) read-only memory (ROM). CMOSROM is either mask or laser programable. Report is divided into six sections; section one describes background of ROM chips; section two presents design goals for chip; section three discusses chip implementation and chip statistics; conclusions and recommendations are given in sections four thru six.

  13. CMOS Camera Array With Onboard Memory

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2009-01-01

    A compact CMOS (complementary metal oxide semiconductor) camera system has been developed with high resolution (1.3 Megapixels), a USB (universal serial bus) 2.0 interface, and an onboard memory. Exposure times, and other operating parameters, are sent from a control PC via the USB port. Data from the camera can be received via the USB port and the interface allows for simple control and data capture through a laptop computer.

  14. CMOS-controlled rapidly tunable photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  15. Correct CMOS IC defect models for quality testing

    NASA Technical Reports Server (NTRS)

    Soden, Jerry M.; Hawkins, Charles F.

    1993-01-01

    Leading edge, high reliability, and low escape CMOS IC test practices have now virtually removed the stuck-at fault model and replaced it with more defect-orientated models. Quiescent power supply current testing (I(sub DDQ)) combined with strategic use of high speed test patterns is the recommended approach to zero defect and high reliability testing goals. This paper reviews the reasons for the change in CMOS IC test practices and outlines an improved CMOS IC test methodology.

  16. Behavior of faulty double BJT BiCMOS logic gates

    NASA Technical Reports Server (NTRS)

    Menon, Sankaran M.; Malaiya, Yashwant K.; Jayasumana, Anura P.

    1992-01-01

    Logic Behavior of a Double BJT BiCMOS device under transistor level shorts and opens is examined. In addition to delay faults, faults that cause the gate to exhibit sequential behavior were observed. Several faults can be detected only by monitoring the current. The faulty behavior of Bipolar (TTL) and CMOS logic families is compared with BiCMOS, to bring out the testability differences.

  17. Small-area and compact CMOS emulator circuit for CMOS/nanoscale memristor co-design.

    PubMed

    Shin, Sanghak; Choi, Jun-Myung; Cho, Seongik; Min, Kyeong-Sik

    2013-11-01

    In this paper, a CMOS emulator circuit that can reproduce nanoscale memristive behavior is proposed. The proposed emulator circuit can mimic the pinched hysteresis loops of nanoscale memristor memory's current-voltage relationship without using any resistor array, complicated circuit blocks, etc. that may occupy very large layout area. Instead of using a resistor array, other complicated circuit blocks, etc., the proposed emulator circuit can describe the nanoscale memristor's current-voltage relationship using a simple voltage-controlled resistor, where its resistance can be programmed by the stored voltage at the state variable capacitor. Comparing the layout area between the previous emulator circuit and the proposed one, the layout area of the proposed emulator circuit is estimated to be 32 times smaller than the previous emulator circuit. The proposed CMOS emulator circuit of nanoscale memristor memory will be very useful in developing hybrid circuits of CMOS/nanoscale memristor memory.

  18. Development of a Depleted Monolithic CMOS Sensor in a 150 nm CMOS Technology for the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Rymaszewski, P.; Barbero, M.; Degerli, Y.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Liu, J.; Orsini, F.; Pangaud, P.; Rozanov, A.; Wermes, N.

    2017-01-01

    The recent R&D focus on CMOS sensors with charge collection in a depleted zone has opened new perspectives for CMOS sensors as fast and radiation hard pixel devices. These sensors, labelled as depleted CMOS sensors (DMAPS), have already shown promising performance as feasible candidates for the ATLAS Inner Tracker (ITk) upgrade, possibly replacing the current passive sensors. A further step to exploit the potential of DMAPS is to investigate the suitability of equipping the outer layers of the ATLAS ITk upgrade with fully monolithic CMOS sensors. This paper presents the development of a depleted monolithic CMOS pixel sensor designed in the LFoundry 150 nm CMOS technology, with the focus on design details and simulation results.

  19. Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

    PubMed

    Gurun, Gokce; Hasler, Paul; Degertekin, F

    2011-08-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

  20. Frontend Receiver Electronics for High Frequency Monolithic CMUT-on-CMOS Imaging Arrays

    PubMed Central

    Gurun, Gokce; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for high-frequency intravascular ultrasound imaging. A custom 8-inch wafer is fabricated in a 0.35 μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulse-echo measurement. Transducer noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 MHz to 20 MHz. PMID:21859585

  1. A single-photon sensitive ebCMOS camera: The LUSIPHER prototype

    NASA Astrophysics Data System (ADS)

    Barbier, R.; Cajgfinger, T.; Calabria, P.; Chabanat, E.; Chaize, D.; Depasse, P.; Doan, Q. T.; Dominjon, A.; Guérin, C.; Houles, J.; Vagneron, L.; Baudot, J.; Dorokhov, A.; Dulinski, W.; Winter, M.; Kaiser, C. T.

    2011-08-01

    Processing high-definition images with single-photon sensitivity acquired above 500 frames per second (fps) will certainly find ground-breaking applications in scientific and industrial domains such as nano-photonics. However, current technologies for low light imaging suffer limitations above the standard 30 fps to keep providing both excellent spatial resolution and signal-over-noise. This paper presents the state of the art on a promising way to answer this challenge, the electron bombarded CMOS (ebCMOS) detector. A large-scale ultra fast single-photon tracker camera prototype produced with an industrial partner is described. The full characterization of the back-thinned CMOS sensor is presented and a method for Point Spread Function measurements is elaborated. Then the study of the ebCMOS performance is presented for two different multi-alkali cathodes, S20 and S25. Point Spread Function measurements carried out on an optical test bench are analysed to extract the PSF of the tube by deconvolution. The resolution of the tube is studied as a function of temperature, high voltage and incident wavelength. Results are discussed for both multi-alkali cathodes as well as a Maxwellian modelization of the radial initial energy of the photo-electrons.

  2. Noise analysis for infrared focal plane arrays CMOS readout integrated circuit

    NASA Astrophysics Data System (ADS)

    Lin, Jiamu; Ding, Ruijun; Chen, Honglei; Shen, Xiao; Liu, Fei

    2008-12-01

    With the development of the infrared focal plane detectors, the internal noises in the infrared focal plane arrays (IRFPAs) CMOS readout integrated circuit gradually became an important factor of the development of the IRFPAs. The internal noises in IRFPAs CMOS readout integrated circuit are researched in this work. Part of the motivation for this work is to analyze the mechanism and influence of the internal noises in readout integrated circuit. And according to the signal transporting process, many kinds of internal noises are analyzed. According to the results of theory analysis, it is shown that 1/f noise, KTC noise and pulse switch noise have greater amplitude in frequency domain. These noises have seriously affected the performance of output signal. Also this work has frequency test on the signals of a readout integrated circuit chip which is using DI readout mode. After analyzing the frequency test results, it is shown that 1/f noises and pulse switch noises are the main components of the internal noises in IRFPAS CMOS readout integrated circuit and they are the noises which give a major impact to the output signal. In accordance with the type of noise, some design methods for noise suppression are put forward. And after the simulation of these methods with EDA software, the results show that noises have been reduced. The results of this work gave the referenced gist for improving the noise suppression design of IRFPAs CMOS readout integrated circuit.

  3. CMOS VCSEL driver circuit for 25+Gbps/channel short-reach parallel optical links

    NASA Astrophysics Data System (ADS)

    Shibata, Masumi

    This thesis proposes a new CMOS driver for Vertical Cavity Surface Emitting LASER (VCSEL) diode arrays. A VCSEL is a promising light source for optical communication. However, its threshold voltage (1.5V for a 850-nm VCSEL) exceeds the rated supply voltage of nanoscale CMOS technologies. This makes difficult designing a driver sourcing a modulated current to a VCSELs anode directly, an arrangement suitable for low-cost parallel optical links. To overcome this problem, a combination of analog circuit techniques is proposed including a novel pad shield driving technique. A prototype fabricated in a 65-nm CMOS technology achieved 26-Gb/s bit-rate and 1.80-pJ/b power efficiency with an optical modulation amplitude (OMA) of +1.8dBm and 3.1ps-rms jitter when driving a 850-nm 14Gb/s commercial VCSEL. This is the highest-speed anode-driving CMOS VCSEL driver reported to date. Also it has the best power efficiency and the smallest area (0:024 mm2) amongst anode-driving drivers in any process technology.

  4. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.

    PubMed

    Wang, Tiantian; Devadhasan, Jasmine Pramila; Lee, Do Young; Kim, Sanghyo

    2016-01-01

    In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

  5. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    PubMed

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  6. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    PubMed Central

    Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented. PMID:22163884

  7. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.

    PubMed

    Graham, Anthony H D; Robbins, Jon; Bowen, Chris R; Taylor, John

    2011-01-01

    The adaptation of standard integrated circuit (IC) technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS) IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs) form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  8. Analysis of incomplete charge transfer effects in a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Liqiang, Han; Suying, Yao; Jiangtao, Xu; Chao, Xu; Zhiyuan, Gao

    2013-05-01

    A method to judge complete charger transfer is proposed for a four-transistor CMOS image sensor with a large pixel size. Based on the emission current theory, a qualitative photoresponse model is established to the preliminary prediction. Further analysis of noise for incomplete charge transfer predicts the noise variation. The test pixels were fabricated in a specialized 0.18 μm CMOS image sensor process and two different processes of buried N layer implantation are compared. The trend prediction corresponds with the test results, especially as it can distinguish an unobvious incomplete charge transfer. The method helps us judge whether the charge transfer time satisfies the requirements of the readout circuit for the given process especially for pixels of a large size.

  9. Radiation Hardening of CMOS Microelectronics

    SciTech Connect

    McCarthy, A.; Sigmon, T.W.

    2000-02-20

    A unique methodology, silicon transfer to arbitrary substrates, has been developed under this program and is being investigated as a technique for significantly increasing the radiation insensitivity of limited quantities of conventional silicon microelectronic circuits. In this approach, removal of the that part of the silicon substrate not required for circuit operation is carried out, following completion of the circuit fabrication process. This post-processing technique is therefore applicable to state-of-the-art ICs, effectively bypassing the 3-generation technology/performance gap presently separating today's electronics from available radiation-hard electronics. Also, of prime concern are the cost savings that result by eliminating the requirement for costly redesign of commercial circuits for Rad-hard applications. Successful deployment of this technology will result in a major impact on the radiation hard electronics community in circuit functionality, design and software availability and fabrication costs.

  10. Rapid Bacterial Detection via an All-Electronic CMOS Biosensor

    PubMed Central

    Nikkhoo, Nasim; Cumby, Nichole; Gulak, P. Glenn; Maxwell, Karen L.

    2016-01-01

    The timely and accurate diagnosis of infectious diseases is one of the greatest challenges currently facing modern medicine. The development of innovative techniques for the rapid and accurate identification of bacterial pathogens in point-of-care facilities using low-cost, portable instruments is essential. We have developed a novel all-electronic biosensor that is able to identify bacteria in less than ten minutes. This technology exploits bacteriocins, protein toxins naturally produced by bacteria, as the selective biological detection element. The bacteriocins are integrated with an array of potassium-selective sensors in Complementary Metal Oxide Semiconductor technology to provide an inexpensive bacterial biosensor. An electronic platform connects the CMOS sensor to a computer for processing and real-time visualization. We have used this technology to successfully identify both Gram-positive and Gram-negative bacteria commonly found in human infections. PMID:27618185

  11. Pauli spin blockade in CMOS double quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kotekar-Patil, D.; Corna, A.; Maurand, R.; Crippa, A.; Orlov, A.; Barraud, S.; Hutin, L.; Vinet, M.; Jehl, X.; De Franceschi, S.; Sanquer, M.

    2017-03-01

    Silicon quantum dots are attractive candidates for the development of scalable, spin-based qubits. Pauli spin blockade in double quantum dots provides an efficient, temperature independent mechanism for qubit readout. Here we report on transport experiments in double gate nanowire transistors issued from a CMOS process on 300 mm silicon-on-insulator wafers. At low temperature the devices behave as two few-electron quantum dots in series. We observe signatures of Pauli spin blockade with a singlet-triplet splitting ranging from 0.3 to 1.3 meV. Magneto-transport measurements show that transitions which conserve spin are shown to be magnetic-field independent up to B = 6 T.

  12. Ultra low power CMOS technology

    NASA Technical Reports Server (NTRS)

    Burr, J.; Peterson, A.

    1991-01-01

    This paper discusses the motivation, opportunities, and problems associated with implementing digital logic at very low voltages, including the challenge of making use of the available real estate in 3D multichip modules, energy requirements of very large neural networks, energy optimization metrics and their impact on system design, modeling problems, circuit design constraints, possible fabrication process modifications to improve performance, and barriers to practical implementation.

  13. An 8.12 μW wavelet denoising chip for PPG detection and portable heart rate monitoring in 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Zhang; Peng, Li; Xiaohui, Hu; Hongda, Chen

    2016-05-01

    A low power wavelet denoising chip for photoplethysmography (PPG) detection and portable heart rate monitoring is presented. To eliminate noise and improve detection accuracy, Harr wavelet (HWT) is chosen as the processing tool. An optimized finite impulse response structure is proposed to lower the computational complexity of proposed algorithm, which is benefit for reducing the power consumption of proposed chip. The modulus maxima pair location module is design to accurately locate the PPG peaks. A clock control unit is designed to further reduce the power consumption of the proposed chip. Fabricated with the 0.18 μm N-well CMOS 1P6M technology, the power consumption of proposed chip is only 8.12 μW in 1 V voltage supply. Validated with PPG signals in multiparameter intelligent monitoring in intensive care databases and signals acquired by the wrist photoelectric volume detection front end, the proposed chip can accurately detect PPG signals. The average sensitivity and positive prediction are 99.91% and 100%, respectively.

  14. Precision of FLEET Velocimetry Using High-speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 micro sec, precisions of 0.5 m/s in air and 0.2 m/s in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision High Speed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  15. Precision of FLEET Velocimetry Using High-Speed CMOS Camera Systems

    NASA Technical Reports Server (NTRS)

    Peters, Christopher J.; Danehy, Paul M.; Bathel, Brett F.; Jiang, Naibo; Calvert, Nathan D.; Miles, Richard B.

    2015-01-01

    Femtosecond laser electronic excitation tagging (FLEET) is an optical measurement technique that permits quantitative velocimetry of unseeded air or nitrogen using a single laser and a single camera. In this paper, we seek to determine the fundamental precision of the FLEET technique using high-speed complementary metal-oxide semiconductor (CMOS) cameras. Also, we compare the performance of several different high-speed CMOS camera systems for acquiring FLEET velocimetry data in air and nitrogen free-jet flows. The precision was defined as the standard deviation of a set of several hundred single-shot velocity measurements. Methods of enhancing the precision of the measurement were explored such as digital binning (similar in concept to on-sensor binning, but done in post-processing), row-wise digital binning of the signal in adjacent pixels and increasing the time delay between successive exposures. These techniques generally improved precision; however, binning provided the greatest improvement to the un-intensified camera systems which had low signal-to-noise ratio. When binning row-wise by 8 pixels (about the thickness of the tagged region) and using an inter-frame delay of 65 microseconds, precisions of 0.5 meters per second in air and 0.2 meters per second in nitrogen were achieved. The camera comparison included a pco.dimax HD, a LaVision Imager scientific CMOS (sCMOS) and a Photron FASTCAM SA-X2, along with a two-stage LaVision HighSpeed IRO intensifier. Excluding the LaVision Imager sCMOS, the cameras were tested with and without intensification and with both short and long inter-frame delays. Use of intensification and longer inter-frame delay generally improved precision. Overall, the Photron FASTCAM SA-X2 exhibited the best performance in terms of greatest precision and highest signal-to-noise ratio primarily because it had the largest pixels.

  16. Star sensor image acquisition and preprocessing hardware system based on CMOS image sensor and FGPA

    NASA Astrophysics Data System (ADS)

    Hao, Xuetao; Jiang, Jie; Zhang, Guangjun

    2003-09-01

    Star Sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft utilizing star observations. It consists of an electronic camera and associated processing electronics. As outcome of advancing state-of-the-art, new generation star sensor features faster, lower cost, power dissipation and size than the first generation star sensor. This paper describes a star sensor anterior image acquisition and pre-processing hardware system based on CMOS image-sensor and FPGA technology. Practically, star images are produced by a simple simulator on PC, acquired by CMOS image sensor, pre-processed by FPGA, saved in SRAM, read out by EPP protocol and validated by an image process software on PC. The hardware part of system acquires images thought CMOS image-sensor controlled by FPGA, then processes image data by a circuit module of FPGA, and save images to SRAM for test. Basic image data for star recognition and attitude determination of spacecrafts are provided by it. As an important reference for developing star sensor prototype, the system validates the performance advantages of new generation star sensor.

  17. High responsivity CMOS imager pixel implemented in SOI technology

    NASA Technical Reports Server (NTRS)

    Zheng, X.; Wrigley, C.; Yang, G.; Pain, B.

    2000-01-01

    Availability of mature sub-micron CMOS technology and the advent of the new low noise active pixel sensor (APS) concept have enabled the development of low power, miniature, single-chip, CMOS digital imagers in the decade of the 1990's.

  18. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    NASA Astrophysics Data System (ADS)

    Esposito, M.; Anaxagoras, T.; Konstantinidis, A. C.; Zheng, Y.; Speller, R. D.; Evans, P. M.; Allinson, N. M.; Wells, K.

    2014-07-01

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  19. Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging.

    PubMed

    Esposito, M; Anaxagoras, T; Konstantinidis, A C; Zheng, Y; Speller, R D; Evans, P M; Allinson, N M; Wells, K

    2014-07-07

    Recently CMOS active pixels sensors (APSs) have become a valuable alternative to amorphous silicon and selenium flat panel imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However, despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ⩽1.9%. The uniformity of the image quality performance has been further investigated in a typical x-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practice. Finally, in order to compare the detection capability of this novel APS with the technology currently used (i.e. FPIs), theoretical evaluation of the detection quantum efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this

  20. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders - from Optical Triangulation to the Automotive Field.

    PubMed

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-03-13

    With their significant features, the applications of complementary metal-oxidesemiconductor (CMOS) image sensors covers a very extensive range, from industrialautomation to traffic applications such as aiming systems, blind guidance, active/passiverange finders, etc. In this paper CMOS image sensor-based active and passive rangefinders are presented. The measurement scheme of the proposed active/passive rangefinders is based on a simple triangulation method. The designed range finders chieflyconsist of a CMOS image sensor and some light sources such as lasers or LEDs. Theimplementation cost of our range finders is quite low. Image processing software to adjustthe exposure time (ET) of the CMOS image sensor to enhance the performance oftriangulation-based range finders was also developed. An extensive series of experimentswere conducted to evaluate the performance of the designed range finders. From theexperimental results, the distance measurement resolutions achieved by the active rangefinder and the passive range finder can be better than 0.6% and 0.25% within themeasurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests onapplications of the developed CMOS image sensor-based range finders to the automotivefield were also conducted. The experimental results demonstrated that our range finders arewell-suited for distance measurements in this field.

  1. CMOS-integrated geometrically tunable optical filters.

    PubMed

    Lerose, Damiana; Hei, Evie Kho Siaw; Ching, Bong Ching; Sterger, Martin; Yaw, Liau Chu; Schulze, Frank Michael; Schmidt, Frank; Schmidt, Andrei; Bach, Konrad

    2013-03-10

    We present a method for producing monolithically integrated complementary metal-oxide-semiconductor (CMOS) optical filters with different and customer-specific responses. The filters are constituted by a Fabry-Perot resonator formed by two Bragg mirrors separated by a patterned cavity. The filter response can be tuned by changing the geometric parameters of the patterning, and consequently the cavity effective refractive index. In this way, many different filters can be produced at once on a single chip, allowing multichanneling. The filter has been designed, produced, and characterized. The results for a chip with 24 filters are presented.

  2. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  3. Vertical Isolation for Photodiodes in CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    In a proposed improvement in complementary metal oxide/semi conduct - or (CMOS) image detectors, two additional implants in each pixel would effect vertical isolation between the metal oxide/semiconductor field-effect transistors (MOSFETs) and the photodiode of the pixel. This improvement is expected to enable separate optimization of the designs of the photodiode and the MOSFETs so as to optimize their performances independently of each other. The purpose to be served by enabling this separate optimization is to eliminate or vastly reduce diffusion cross-talk, thereby increasing sensitivity, effective spatial resolution, and color fidelity while reducing noise.

  4. Diurnal measurements with prototype CMOS Omega receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    Diurnal signals from eight omega channels have been monitored at 10.2 KHz for selected station pairs. All eight Omega stations have been received at least 50 percent of the time over a 24 hour period during the month of October 1976. The data presented confirm the expected performance of the CMOS omega sensor processor in being able to digsignals out of a noisy environment. Of particular interest are possibilities for use of antipodal reception phenomena and a need for some ways of correcting for multi-modal propagation effects.

  5. Design of high speed camera based on CMOS technology

    NASA Astrophysics Data System (ADS)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  6. Monolithically integrated Ge CMOS laser

    NASA Astrophysics Data System (ADS)

    Camacho-Aguilera, Rodolfo

    2014-02-01

    Ge-on-Si devices are explored for photonic integration. Through the development of better growth techniques, monolithic integration, laser design and prototypes, it was possible to probe Ge light emitters with emphasis on lasers. Preliminary worked shows thermal photonic behavior capable of enhancing lamination at high temperatures. Increase luminescence is observed up to 120°C from L-band contribution. Higher temperatures show contribution from Δ -band. The increase carrier thermal contribution suggests high temperature applications for Ge light emitters. A Ge electrically pumped laser was probed under 0.2% biaxial strain and doping concentration ~4.5×1019cm-3 n-type. Ge pnn lasers exhibit a gain >1000cm-1 with 8mW power output, presenting a spectrum range of over 200nm, making Ge the ideal candidate for Si photonics. Large temperatures fluctuations and process limit the present device. Theoretically a gain of >4000cm- gain is possible with a threshold of as low as 1kA/cm2. Improvements in Ge work

  7. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide.

    PubMed

    Djordjevic, Stevan S; Shang, Kuanping; Guan, Binbin; Cheung, Stanley T S; Liao, Ling; Basak, Juthika; Liu, Hai-Feng; Yoo, S J B

    2013-06-17

    We present the design, fabrication and characterization of athermal nano-photonic silicon ring modulators. The athermalization method employs compensation of the silicon core thermo-optic contribution with that from the amorphous titanium dioxide (a-TiO(2)) overcladding with a negative thermo-optic coefficient. We developed a new CMOS-compatible fabrication process involving low temperature RF magnetron sputtering of high-density and low-loss a-TiO(2) that can withstand subsequent elevated-temperature CMOS processes. Silicon ring resonators with 275 nm wide rib waveguide clad with a-TiO(2) showed near complete athermalization and moderate optical losses. Small-signal testing of the micro-resonator modulators showed high extinction ratio and gigahertz bandwidth.

  8. Design of a Tunable All-Digital UWB Pulse Generator CMOS Chip for Wireless Endoscope.

    PubMed

    Chul Kim; Nooshabadi, S

    2010-04-01

    A novel tunable all-digital, ultrawideband pulse generator (PG) has been implemented in a standard 0.18-¿ m complementary metal-oxide semiconductor (CMOS) process for implantable medical applications. The chip shows that an ultra-low dynamic energy consumption of 27 pJ per pulse without static current flow at a 200-MHz pulse repetition frequency (PRF) with a 1.8-V power supply and low area of 90 × 50 ¿m(2). The PG generates tunable pulsewidth, amplitude, and transmit (Tx) power by using simple circuitry, through precise timing control of the H-bridge output stage. The all-digital architecture allows easy integration into a standard CMOS process, thus making it the most suitable candidate for in-vivo biotelemetry applications.

  9. CMOS-compatible fabrication of metamaterial-based absorbers for the mid-IR spectral range

    NASA Astrophysics Data System (ADS)

    Karimi Shahmarvandi, Ehsan; Ghaderi, Mohammadamir; Wolffenbuttel, Reinoud F.

    2016-10-01

    A CMOS-compatible approach is presented for the fabrication of a wideband mid-IR metamaterial-based absorber on top of a Si3N4 membrane, which contains poly-Si thermopiles. The application is in IR microspectrometers that are intended for implementation in portable microsystem for use in absorption spectroscopy. Although Au is the conventional material of choice, we demonstrate by simulation that near-perfect absorption can be achieved over a wider band when using the more CMOS-compatible Al. The absorber design is based on Al disk resonators and an Al backplane, which are separated by a SiO2 layer. The fabrication process involves the deposition of Al and SiO2 layers on top of a Si3N4 membrane, lithography and a lift-off process for patterning of the top Al layer.

  10. Packaging commercial CMOS chips for lab on a chip integration.

    PubMed

    Datta-Chaudhuri, Timir; Abshire, Pamela; Smela, Elisabeth

    2014-05-21

    Combining integrated circuitry with microfluidics enables lab-on-a-chip (LOC) devices to perform sensing, freeing them from benchtop equipment. However, this integration is challenging with small chips, as is briefly reviewed with reference to key metrics for package comparison. In this paper we present a simple packaging method for including mm-sized, foundry-fabricated dies containing complementary metal oxide semiconductor (CMOS) circuits within LOCs. The chip is embedded in an epoxy handle wafer to yield a level, large-area surface, allowing subsequent photolithographic post-processing and microfluidic integration. Electrical connection off-chip is provided by thin film metal traces passivated with parylene-C. The parylene is patterned to selectively expose the active sensing area of the chip, allowing direct interaction with a fluidic environment. The method accommodates any die size and automatically levels the die and handle wafer surfaces. Functionality was demonstrated by packaging two different types of CMOS sensor ICs, a bioamplifier chip with an array of surface electrodes connected to internal amplifiers for recording extracellular electrical signals and a capacitance sensor chip for monitoring cell adhesion and viability. Cells were cultured on the surface of both types of chips, and data were acquired using a PC. Long term culture (weeks) showed the packaging materials to be biocompatible. Package lifetime was demonstrated by exposure to fluids over a longer duration (months), and the package was robust enough to allow repeated sterilization and re-use. The ease of fabrication and good performance of this packaging method should allow wide adoption, thereby spurring advances in miniaturized sensing systems.

  11. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis

    PubMed Central

    Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.

    2015-01-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  12. Voltage-tolerant circuit design for fully CMOS-compatible differential multiple-time programmable nonvolatile memories

    NASA Astrophysics Data System (ADS)

    Wu, Chia-You; Lin, Hongchin; Chiu, Hou-Jen

    2017-04-01

    In this paper, a fully CMOS-compatible differential multiple-time programmable (DFMTP) nonvolatile memory (NVM) circuit, fabricated by the standard TSMC 0.18 µm CMOS process without violating the design and electrical rules, is proposed. Novel voltage-tolerant circuits were designed using the standard 3.3 and 1.8 V devices for the bit line (BL) and control gate (CG) drivers for ‑3 and 6 V program/erase operations, as well as the negative voltage isolation circuits for sense amplifiers. The DFMTP array with these voltage-tolerant control circuits was used and measured to confirm the correct program/erase/read operations.

  13. MEMS with integrated CMOS read-out circuit based on sub-micrometric cantilevers array for multiple sensing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Villarroya, Maria; Verd, Jaume; Teva, Jordi; Abadal, Gabriel; Figueras, Eduard; Perez-Murano, Francesc; Esteve, Jaume; Barniol, Nuria

    2005-07-01

    A Micro Electro Mechanical System (MEMS) for mass detection is presented. It has been developed by the monolithic integration of the mechanical transducer with the CMOS control circuit. The sensor transducer consists on an array of four resonating cantilevers; oscillation is achieved by electrostatic excitation. The independent control on each cantilever of the arrays allows multiple sensing on a single device. The microresonators are fabricated on polysilicon in a compatibilized process with the front-end CMOS circuitry. The readout of the cantilevers oscillation is achieved by a current amplifier. Expected Mass resolution in air is 80 ag/Hz.

  14. Bulk CMOS VLSI Technology Studies. Part 1. Scalable CMOS Design Rules. Part 2. CMOS Approaches to PLA (Programmable Logic Array) Design.

    DTIC Science & Technology

    2014-09-26

    microns %H*SIC dimensions. Part 2: Various Programmable Logic Array (PLA) implementations with clocked CMOS technology are explored inthis project...Previous research at MSU has dealt with clocked CMOS circuit styles with some application to gate array and microprocessor applications. Work under this...in this report deals with structured logic schemes based on Programmable Logic Arrays (PLAs). Three different PLA design methods are reported with a

  15. Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings.

    PubMed

    Rutkowska, K A; Duchesne, D; Strain, M J; Morandotti, R; Sorel, M; Azaña, J

    2011-09-26

    We report the first realization of integrated, all-optical first- and higher-order photonic differentiators operating at terahertz (THz) processing speeds. This is accomplished in a Silicon-on-Insulator (SOI) CMOS-compatible platform using a simple integrated geometry based on (π-)phase-shifted Bragg gratings. Moreover, we achieve on-chip generation of sub-picosecond Hermite-Gaussian pulse waveforms, which are noteworthy for applications in next-generation optical telecommunications.

  16. A low jitter all - digital phase - locked loop in 180 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Shumkin, O. V.; Butuzov, V. A.; Normanov, D. D.; Ivanov, P. Yu

    2016-02-01

    An all-digital phase locked loop (ADPLL) was implemented in 180 nm CMOS technology. The proposed ADPLL uses a digitally controlled oscillator to achieve 3 ps resolution. The pure digital phase locked loop is attractive because it is less sensitive to noise and operating conditions than its analog counterpart. The proposed ADPLL can be easily applied to different process as a soft IP block, making it very suitable for system-on-chip applications.

  17. A 1 GHz sample rate, 256-channel, 1-bit quantization, CMOS, digital correlator chip

    NASA Technical Reports Server (NTRS)

    Timoc, C.; Tran, T.; Wongso, J.

    1992-01-01

    This paper describes the development of a digital correlator chip with the following features: 1 Giga-sample/second; 256 channels; 1-bit quantization; 32-bit counters providing up to 4 seconds integration time at 1 GHz; and very low power dissipation per channel. The improvements in the performance-to-cost ratio of the digital correlator chip are achieved with a combination of systolic architecture, novel pipelined differential logic circuits, and standard 1.0 micron CMOS process.

  18. Modulated CMOS camera for fluorescence lifetime microscopy.

    PubMed

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition.

  19. Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

    NASA Astrophysics Data System (ADS)

    Popović, Miloš A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanović, Vladimir; Ram, Rajeev J.

    2015-02-01

    We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.

  20. A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits

    NASA Astrophysics Data System (ADS)

    Moradi, Behzad; Mirzaei, Abdolreza

    2016-11-01

    A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.

  1. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    PubMed Central

    Wei, Liping.; Doughan, Samer.; Han, Yi.; DaCosta, Matthew V.; Krull, Ulrich J.; Ho, Derek.

    2014-01-01

    Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs) offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR) wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV) wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS) technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies. PMID:25211198

  2. MNOS stack for reliable, low optical loss, Cu based CMOS plasmonic devices.

    PubMed

    Emboras, Alexandros; Najar, Adel; Nambiar, Siddharth; Grosse, Philippe; Augendre, Emmanuel; Leroux, Charles; de Salvo, Barbara; de Lamaestre, Roch Espiau

    2012-06-18

    We study the electro optical properties of a Metal-Nitride-Oxide-Silicon (MNOS) stack for a use in CMOS compatible plasmonic active devices. We show that the insertion of an ultrathin stoichiometric Si(3)N(4) layer in a MOS stack lead to an increase in the electrical reliability of a copper gate MNOS capacitance from 50 to 95% thanks to a diffusion barrier effect, while preserving the low optical losses brought by the use of copper as the plasmon supporting metal. An experimental investigation is undertaken at a wafer scale using some CMOS standard processes of the LETI foundry. Optical transmission measurments conducted in a MNOS channel waveguide configuration coupled to standard silicon photonics circuitry confirms the very low optical losses (0.39 dB.μm(-1)), in good agreement with predictions using ellipsometric optical constants of Cu.

  3. A low noise CMOS RF front-end for UWB 6-9 GHz applications

    NASA Astrophysics Data System (ADS)

    Feng, Zhou; Ting, Gao; Fei, Lan; Wei, Li; Ning, Li; Junyan, Ren

    2010-11-01

    An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented. A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13 μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB, an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of -12.6 dBm while in the low gain mode. This RF front-end consumes 17 mA from a 1.2 V supply voltage.

  4. A 2.2M CMOS image sensor for high-speed machine vision applications

    NASA Astrophysics Data System (ADS)

    Wang, Xinyang; Bogaerts, Jan; Vanhorebeek, Guido; Ruythoren, Koen; Ceulemans, Bart; Lepage, Gérald; Willems, Pieter; Meynants, Guy

    2010-01-01

    This paper describes a 2.2 Megapixel CMOS image sensor made in 0.18 μm CMOS process for high-speed machine vision applications. The sensor runs at 340 fps with digital output using 16 LVDS channels at 480MHz. The pixel array counts 2048x1088 pixels with a 5.5um pitch. The unique pixel architecture supports a true correlated double sampling, thus yields a noise level as low as 13 e- and a pixel parasitic light sensitivity (PLS) of 1/60 000. The sensitivity of the sensor is measured to be 4.64 Vlux.s and the pixel full well charge is 18k e-.

  5. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique.

    PubMed

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-10-23

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm.

  6. A New Fully Differential CMOS Capacitance to Digital Converter for Lab-on-Chip Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Mirzaei, Maryam; Ayala-Charca, Giancarlo; Awwad, Falah; Sawan, Mohamad

    2015-06-01

    In this paper, we present a new differential CMOS capacitive sensor for Lab-on-Chip applications. The proposed integrated sensor features a DC-input ΣΔ capacitance to digital converter (CDC) and two reference and sensing microelectrodes integrated on the top most metal layer in 0.35 μm CMOS process. Herein, we describe a readout circuitry with a programmable clocking strategy using a Charge Based Capacitance Measurement technique. The simulation and experimental results demonstrate a high capacitive dynamic range of 100 fF-110 fF, the sensitivity of 350 mV/fF and the minimum detectable capacitance variation of as low as 10 aF. We also demonstrate and discuss the use of this device for environmental applications through various chemical solvents.

  7. Characterization of zeolite-trench-embedded microcantilevers with CMOS strain gauge for integrated gas sensor applications

    NASA Astrophysics Data System (ADS)

    Inoue, Shu; Denoual, Matthieu; Awala, Hussein; Grand, Julien; Mintova, Sveltana; Tixier-Mita, Agnès; Mita, Yoshio

    2016-04-01

    Custom-synthesized zeolite is coated and fixed into microcantilevers with microtrenches of 1 to 5 µm width. Zeolite is a porous material that absorbs chemical substances; thus, it is expected to work as a sensitive chemical-sensing head. The total mass increases with gas absorption, and the cantilever resonance frequency decreases accordingly. In this paper, a thick zeolite cantilever sensor array system for high sensitivity and selectivity is proposed. The system is composed of an array of microcantilevers with silicon deep trenches. The cantilevers are integrated with CMOS-made polysilicon strain gauges for frequency response electrical measurement. The post-process fabrication of such an integrated array out of a foundry-made CMOS chip is successful. On the cantilevers, three types of custom zeolite (FAU-X, LTL, and MFI) are integrated by dip and heating methods. The preliminary measurement has shown a clear shift of resonance frequency by the chemical absorbance of ethanol gas.

  8. Fabrication and Characterization of a Micro Methanol Sensor Using the CMOS-MEMS Technique

    PubMed Central

    Fong, Chien-Fu; Dai, Ching-Liang; Wu, Chyan-Chyi

    2015-01-01

    A methanol microsensor integrated with a micro heater manufactured using the complementary metal oxide semiconductor (CMOS)-microelectromechanical system (MEMS) technique was presented. The sensor has a capability of detecting low concentration methanol gas. Structure of the sensor is composed of interdigitated electrodes, a sensitive film and a heater. The heater located under the interdigitated electrodes is utilized to provide a working temperature to the sensitive film. The sensitive film prepared by the sol-gel method is tin dioxide doped cadmium sulfide, which is deposited on the interdigitated electrodes. To obtain the suspended structure and deposit the sensitive film, the sensor needs a post-CMOS process to etch the sacrificial silicon dioxide layer and silicon substrate. The methanol senor is a resistive type. A readout circuit converts the resistance variation of the sensor into the output voltage. The experimental results show that the methanol sensor has a sensitivity of 0.18 V/ppm. PMID:26512671

  9. 2.4 GHz CMOS Power Amplifier with Mode-Locking Structure to Enhance Gain

    PubMed Central

    2014-01-01

    We propose a mode-locking method optimized for the cascode structure of an RF CMOS power amplifier. To maximize the advantage of the typical mode-locking method in the cascode structure, the input of the cross-coupled transistor is modified from that of a typical mode-locking structure. To prove the feasibility of the proposed structure, we designed a 2.4 GHz CMOS power amplifier with a 0.18 μm RFCMOS process for polar transmitter applications. The measured power added efficiency is 34.9%, while the saturated output power is 23.32 dBm. The designed chip size is 1.4 × 0.6 mm2. PMID:25045755

  10. A Review of the CMOS Buried Double Junction (BDJ) Photodetector and its Applications

    PubMed Central

    Feruglio, Sylvain; Lu, Guo-Neng; Garda, Patrick; Vasilescu, Gabriel

    2008-01-01

    A CMOS Buried Double Junction PN (BDJ) photodetector consists of two vertically-stacked photodiodes. It can be operated as a photodiode with improved performance and wavelength-sensitive response. This paper presents a review of this device and its applications. The CMOS implementation and operating principle are firstly described. This includes the description of several key aspects directly related to the device performances, such as surface reflection, photon absorption and electron-hole pair generation, photocurrent and dark current generation, etc. SPICE modelling of the detector is then presented. Next, design and process considerations are proposed in order to improve the BDJ performance. Finally, several BDJ-detector-based image sensors provide a survey of their applications. PMID:27873887

  11. Radiation hardness studies of AMS HV-CMOS 350 nm prototype chip HVStripV1

    NASA Astrophysics Data System (ADS)

    Kanisauskas, K.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hiti, B.; Hoeferkamp, M.; Hommels, L. B. A.; Huffman, B. T.; John, J.; Kenney, C.; Kramberger, J.; Liang, Z.; Mandic, I.; Maneuski, D.; Martinez-Mckinney, F.; MacMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Peric, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Staniztki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2017-02-01

    CMOS active pixel sensors are being investigated for their potential use in the ATLAS inner tracker upgrade at the HL-LHC. The new inner tracker will have to handle a significant increase in luminosity while maintaining a sufficient signal-to-noise ratio and pulse shaping times. This paper focuses on the prototype chip "HVStripV1" (manufactured in the AMS HV-CMOS 350nm process) characterization before and after irradiation up to fluence levels expected for the strip region in the HL-LHC environment. The results indicate an increase of depletion region after irradiation for the same bias voltage by a factor of ≈2.4 and ≈2.8 for two active pixels on the test chip. There was also a notable increase in noise levels from 85 e‑ to 386 e‑ and from 75 e‑ to 277 e‑ for the corresponding pixels.

  12. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  13. A CMOS detection chip for amperometric sensors with chopper stabilized incremental ΔΣ ADC

    NASA Astrophysics Data System (ADS)

    Min, Chen; Yuntao, Liu; Jingbo, Xiao; Jie, Chen

    2016-06-01

    This paper presents a low noise complimentary metal-oxide-semiconductor (CMOS) detection chip for amperometric electrochemical sensors. In order to effectively remove the input offset of the cascaded integrators and the low frequency noise in the modulator, a novel offset cancellation chopping scheme was proposed in the Incremental ΔΣ analog to digital converter (IADC). A novel low power potentiostat was employed in this chip to provide the biasing voltage for the sensor while mirroring the sensor current out for detection. The chip communicates with FPGA through standard built in I2C interface and SPI bus. Fabricated in 0.18-μm CMOS process, this chip detects current signal with high accuracy and high linearity. A prototype microsystem was produced to verify the detection chip performance with current input as well as micro-sensors. Project supported by the State Key Development Program for Basic Research of China (No. 2015CB352100).

  14. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  15. A monolithically integrated torsional CMOS-MEMS relay

    NASA Astrophysics Data System (ADS)

    Riverola, M.; Sobreviela, G.; Torres, F.; Uranga, A.; Barniol, N.

    2016-11-01

    We report experimental demonstrations of a torsional microelectromechanical (MEM) relay fabricated using the CMOS-MEMS approach (or intra-CMOS) which exploits the full foundry inherent characteristics enabling drastic reduction of the fabrication costs and batch production. In particular, the relay is monolithically integrated in the back end of line of a commercial standard CMOS technology (AMS 0.35 μm) and released by means of a simple one-step mask-less wet etching. The fabricated torsional relay exhibits an extremely steep switching behaviour symmetrical about both contact sides with an on-state contact resistance in the k Ω -range throughout the on-off cycling test.

  16. All-digital pulse-expansion-based CMOS digital-to-time converter

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μ m Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm2. Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  17. A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback

    NASA Astrophysics Data System (ADS)

    Huang, Zhangcai; Jiang, Minglu; Inoue, Yasuaki

    Analog multipliers are one of the most important building blocks in analog signal processing circuits. The performance with high linearity and wide input range is usually required for analog four-quadrant multipliers in most applications. Therefore, a highly linear and wide input range four-quadrant CMOS analog multiplier using active feedback is proposed in this paper. Firstly, a novel configuration of four-quadrant multiplier cell is presented. Its input dynamic range and linearity are improved significantly by adding two resistors compared with the conventional structure. Then based on the proposed multiplier cell configuration, a four-quadrant CMOS analog multiplier with active feedback technique is implemented by two operational amplifiers. Because of both the proposed multiplier cell and active feedback technique, the proposed multiplier achieves a much wider input range with higher linearity than conventional structures. The proposed multiplier was fabricated by a 0.6µm CMOS process. Experimental results show that the input range of the proposed multiplier can be up to 5.6Vpp with 0.159% linearity error on VX and 4.8Vpp with 0.51% linearity error on VY for ±2.5V power supply voltages, respectively.

  18. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.

    PubMed

    Hussain, Aftab M; Hussain, Muhammad M

    2016-06-01

    Flexible and stretchable electronics can dramatically enhance the application of electronics for the emerging Internet of Everything applications where people, processes, data and devices will be integrated and connected, to augment quality of life. Using naturally flexible and stretchable polymeric substrates in combination with emerging organic and molecular materials, nanowires, nanoribbons, nanotubes, and 2D atomic crystal structured materials, significant progress has been made in the general area of such electronics. However, high volume manufacturing, reliability and performance per cost remain elusive goals for wide commercialization of these electronics. On the other hand, highly sophisticated but extremely reliable, batch-fabrication-capable and mature complementary metal oxide semiconductor (CMOS)-based technology has facilitated tremendous growth of today's digital world using thin-film-based electronics; in particular, bulk monocrystalline silicon (100) which is used in most of the electronics existing today. However, one fundamental challenge is that state-of-the-art CMOS electronics are physically rigid and brittle. Therefore, in this work, how CMOS-technology-enabled flexible and stretchable electronics can be developed is discussed, with particular focus on bulk monocrystalline silicon (100). A comprehensive information base to realistically devise an integration strategy by rational design of materials, devices and processes for Internet of Everything electronics is offered.

  19. Design of an ultra low power CMOS pixel sensor for a future neutron personal dosimeter

    SciTech Connect

    Zhang, Y.; Hu-Guo, C.; Husson, D.; Hu, Y.

    2011-07-01

    Despite a continuously increasing demand, neutron electronic personal dosimeters (EPDs) are still far from being completely established because their development is a very difficult task. A low-noise, ultra low power consumption CMOS pixel sensor for a future neutron personal dosimeter has been implemented in a 0.35 {mu}m CMOS technology. The prototype is composed of a pixel array for detection of charged particles, and the readout electronics is integrated on the same substrate for signal processing. The excess electrons generated by an impinging particle are collected by the pixel array. The charge collection time and the efficiency are the crucial points of a CMOS detector. The 3-D device simulations using the commercially available Synopsys-SENTAURUS package address the detailed charge collection process. Within a time of 1.9 {mu}s, about 59% electrons created by the impact particle are collected in a cluster of 4 x 4 pixels with the pixel pitch of 80 {mu}m. A charge sensitive preamplifier (CSA) and a shaper are employed in the frond-end readout. The tests with electrical signals indicate that our prototype with a total active area of 2.56 x 2.56 mm{sup 2} performs an equivalent noise charge (ENC) of less than 400 e - and 314 {mu}W power consumption, leading to a promising prototype. (authors)

  20. CMOS-compatible fabrication, micromachining, and bonding strategies for silicon photonics

    NASA Astrophysics Data System (ADS)

    Heck, John; Jones, Richard; Paniccia, Mario J.

    2011-02-01

    The adoption of optical technologies by high-volume consumer markets is severely limited by the cost and complexity of manufacturing complete optical transceiver systems. This is in large part because "boutique" semiconductor fabrication processes are required for III-V lasers, modulators, and photodetectors; furthermore, precision bonding and painstaking assembly are needed to integrate or assemble such dissimilar devices and materials together. On the other hand, 200mm and 300mm silicon process technology has been bringing ever-increasing computing power to the masses by relentless cost reduction for several decades. Intel's silicon photonics program aims to marry this CMOS infrastructure and recent developments in MEMS manufacturing with the burgeoning field of microphotonics to make low cost, high-speed optical links ubiquitous. In this paper, we will provide an overview of several aspects of silicon photonics technology development in a CMOS fabrication line. First, we will describe fabrication strategies from the MEMS industry for micromachining silicon to create passive optical devices such as mirrors, waveguides, and facets, as well as alignment features. Second, we will discuss some of the challenges of fabricating hybrid III-V lasers on silicon, including such aspects as hybrid integration of InP-based materials with silicon using various bonding methods, etching of InP films, and contact formation using CMOS-compatible metals.

  1. CMOS micromachined probes by die-level fabrication for extracellular neural recording

    NASA Astrophysics Data System (ADS)

    Ho, Meng-Han; Chen, Hsin; Tseng, Fouriers; Yeh, Shih-Rung; S-C Lu, Michael

    2007-02-01

    In this paper, we present the design, fabrication and characterization of CMOS micromachined probes for extracellular neural recording. A convenient fabrication process is proposed for making integrated recording probes at the die level, providing a low-cost solution for academic research as compared to the more expensive wafer-level approach adopted in prior work. The devices are fabricated in a standard 0.35 µm CMOS process, followed by post-CMOS micromachining steps to form the probes. The on-chip circuit, used for recording action potential signals of neural activities, provides a stable dc bias when operating in electrolyte. The subthreshold transistor at the circuit input provides a tunable resistance value between 10 MΩ up to GΩ. The circuit consumes a total power of 790 µW and has an output noise of 19.3 µV Hz-1/2 at 100 Hz. The recorded action potential from the stimulated ventral nerve cord of a crayfish is about 0.6 mV with a pulse width of about 1.2 ms.

  2. All-digital pulse-expansion-based CMOS digital-to-time converter.

    PubMed

    Chen, Chun-Chi; Chu, Che-Hsun

    2017-02-01

    This paper presents a new all-digital CMOS digital-to-time converter (DTC) based on pulse expansion. Pulse expansion is achieved using an all-digital pulse-mixing scheme that can effectively improve the timing resolution and enable the DTC to be concise. Without requiring the Vernier principle or a costly digital-to-analog converter, the DTC comprises a pulse generator for generating a pulse, a pulse-expanding circuit (PEC) for programming timing generation, and a time subtractor for removing the time width of the pulse. The PEC comprises only a delay chain composed of proposed pulse-expanding units and a multiplexer. For accuracy enhancement, a pulse neutralization technique is presented to eliminate undesirable pulse variation. A 4-bit converter was fabricated in a 0.35-μm Taiwan Semiconductor Manufacturing Company CMOS process and had a small area of nearly 0.045 mm(2). Six chips were tested, all of which exhibited an improved resolution (approximately 16 ps) and low integral nonlinearity (less than ±0.4 least significant bit). The power consumption was 0.2 mW when the sample rate was 1M samples/s and the voltage supply was 3.3 V. The proposed DTC not only has favorable cost and power but also achieves an acceptable resolution without requiring an advanced CMOS process. This study is the first to use pulse expansion in digital-to-time conversion.

  3. Design and Experimental Evaluation of a 3rd Generation Addressable CMOS Piezoresistive Stress Sensing Test Chip

    SciTech Connect

    Sweet, J.N.; Peterson, D.W.; Hsia, A.H.

    1999-04-13

    Piezoresistive stress sensing chips have been used extensively for measurement of assembly related die surface stresses. Although many experiments can be performed with resistive structures which are directly bonded, for extensive stress mapping it is necessary to have a large number of sensor cells which can be addressed using CMOS logic circuitry. Our previous test chip, the ATC04, has 100 cells, each approximately 0.012 in. on a side, on a chip with a side dimension of 0.45 in. When a cell resistor is addressed, it is connected to a four terminal measurement bus through CMOS transmission gates. In theory, the gate resistances do not affect the measurement. In practice, there may be subtle effects which appear when very high accuracy is required. At high temperatures, gate leakage can increase to a point at which the resistor measurement becomes inaccurate. For ATC04 this occurred at or above 50 C. Here, we report on the first measurements obtained with a new prototype test chip, the ATC06. This prototype was fabricated in a 0.5 micron feature size silicided CMOS process using the MOSIS prototyping facility. The cell size was approximately 0.004 in. on a side. In order to achieve piezoresistive behavior for the implanted resistors it was necessary to employ a non-standard silicide ''blocking'' process. The stress sensitivity of both implanted and polysilicon blocked resistors is discussed. Using a new design strategy for the CMOS logic, it was possible to achieve a design in which only 5 signals had to be routed to a cell for addressing vs. 9 for ATC04. With our new design, the resistor under test is more effectively electrically isolated from other resistors on the chip, thereby improving high temperature performance. We present data showing operation up to 140 C.

  4. Latchup in CMOS devices from heavy ions

    NASA Technical Reports Server (NTRS)

    Soliman, K.; Nichols, D. K.

    1983-01-01

    It is noted that complementary metal oxide semiconductor (CMOS) microcircuits are inherently latchup prone. The four-layer n-p-n-p structures formed from the parasitic pnp and npn transistors make up a silicon controlled rectifier. If properly biased, this rectifier may be triggered 'ON' by electrical transients, ionizing radiation, or a single heavy ion. This latchup phenomenon might lead to a loss of functionality or device burnout. Results are presented from tests on 19 different device types from six manufacturers which investigate their latchup sensitivity with argon and krypton beams. The parasitic npnp paths are identified in general, and a qualitative rationale is given for latchup susceptibility, along with a latchup cross section for each type of device. Also presented is the correlation between bit-flip sensitivity and latchup susceptibility.

  5. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  6. CMOS digital pixel sensors: technology and applications

    NASA Astrophysics Data System (ADS)

    Skorka, Orit; Joseph, Dileepan

    2014-04-01

    CMOS active pixel sensor technology, which is widely used these days for digital imaging, is based on analog pixels. Transition to digital pixel sensors can boost signal-to-noise ratios and enhance image quality, but can increase pixel area to dimensions that are impractical for the high-volume market of consumer electronic devices. There are two main approaches to digital pixel design. The first uses digitization methods that largely rely on photodetector properties and so are unique to imaging. The second is based on adaptation of a classical analog-to-digital converter (ADC) for in-pixel data conversion. Imaging systems for medical, industrial, and security applications are emerging lower-volume markets that can benefit from these in-pixel ADCs. With these applications, larger pixels are typically acceptable, and imaging may be done in invisible spectral bands.

  7. A low-cost CMOS neurological sensor array

    NASA Astrophysics Data System (ADS)

    Newman, Paul J.; Lisner, Peter; Yeow, Y.; Choy, Peng; Lavidis, Nick A.

    2005-02-01

    Current methods used to study neural communication have not been able to achieve both good spatial and temporal resolution of recordings. There are two ways to record synaptic potentials from nerve endings: recordings using single or dual intracellular or extra cellular metal electrodes give good temporal resolution but poor spatial resolution, and recording activity with fluorescent dyes gives good spatial resolution but poor temporal resolution. Such medical research activity in the area of neurological signal detection has thus identified a requirement for the design of a CMOS circuit that contains an array of independent sensors. As both spatial and temporal distribution of acquired data is required in this application, the circuit must be capable of continuous measurement of synaptic potentials from an array of points on a tissue sample, with a 10 μm separation between sensor points. The major requirement for the circuit is that it is capable of sensing synaptic potentials of the order of several mV, with a resolution of 0.05 mV. For data recording purposes, the circuit must amplify these synaptic potentials and digitise them together with their locations in the sensor array. Finally, the circuit must be biologically inert, to avoid specimen deterioration. This paper presents the design of a prototype single-chip circuit, which provides a 6 x 3 array of independent synaptic potential sensors. The signal from each of the sensors is amplified and time-multiplexed into an on-chip A/D converter. The circuit provides an 8-bit synaptic potential value, together with an 8-bit field containing array location and trigger signals suitable for external data acquisition instrumentation. Our test circuit is implemented in a low-cost 0.5 um, 5 V CMOS process. The fabricated die is mounted in a standard 40 pin DIP ceramic package, with no lid to allow direct contact of the die surface with the tissue sample. The only post-processing step required for these packages is to

  8. X-ray tomography using a CMOS area detector

    NASA Astrophysics Data System (ADS)

    Brunetti, A.; Cesareo, R.

    2007-05-01

    A flat panel based on CMOS technology represents a valid alternative to other kinds of flat panels and to ccd detectors for X-ray imaging. Although the spatial resolution of the ccd sensors is better than that of a CMOS sensor, the last has a larger sensitive-area and it can work at room temperature reaching a dynamic performance comparable to that of a cooled ccd sensor. Other kinds of flat panels, such as TFT screen are much more expensive and they have lower spatial resolution and higher noise than the CMOS detector. In this paper, an application of the CMOS sensor to X-ray tomography is described. Preliminary results are reported and discussed.

  9. CMOS Active Pixel Sensor Technology and Reliability Characterization Methodology

    NASA Technical Reports Server (NTRS)

    Chen, Yuan; Guertin, Steven M.; Pain, Bedabrata; Kayaii, Sammy

    2006-01-01

    This paper describes the technology, design features and reliability characterization methodology of a CMOS Active Pixel Sensor. Both overall chip reliability and pixel reliability are projected for the imagers.

  10. Tests of commercial colour CMOS cameras for astronomical applications

    NASA Astrophysics Data System (ADS)

    Pokhvala, S. M.; Reshetnyk, V. M.; Zhilyaev, B. E.

    2013-12-01

    We present some results of testing commercial colour CMOS cameras for astronomical applications. Colour CMOS sensors allow to perform photometry in three filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR colour system realized in colour CMOS sensors is close to the astronomical Johnson BVR system. The basic camera characteristics: read noise (e^{-}/pix), thermal noise (e^{-}/pix/sec) and electronic gain (e^{-}/ADU) for the commercial digital camera Canon 5D MarkIII are presented. We give the same characteristics for the scientific high performance cooled CCD camera system ALTA E47. Comparing results for tests of Canon 5D MarkIII and CCD ALTA E47 show that present-day commercial colour CMOS cameras can seriously compete with the scientific CCD cameras in deep astronomical imaging.

  11. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review.

    PubMed

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J

    2016-12-31

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  12. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    PubMed Central

    Li, Haitao; Liu, Xiaowen; Li, Lin; Mu, Xiaoyi; Genov, Roman; Mason, Andrew J.

    2016-01-01

    Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design. PMID:28042860

  13. Large monolithic particle pixel-detector in high-voltage CMOS technology

    NASA Astrophysics Data System (ADS)

    Perić, I.; Takacs, C.

    2010-12-01

    A large monolithic particle pixel-detector implemented as system on a chip in a high-voltage 0.35 μm CMOS technology will be presented. The detector uses high-voltage n-well/p-substrate diodes as pixel-sensors. The diodes can be reversely biased with more than 60 V. In this way, depleted zones of about 10 μm thickness are formed, where the signal charges can be collected by drift. Due to fast charge collection in the strong electric-field zones, a higher radiation tolerance of the sensor is expected than in the case of the standard MAPS detectors. Simple pixel-readout electronics are implemented inside the n-wells. The readout is based on a source follower with one select- and two reset-transistors. Due to embedding of the pixel-readout electronics inside the collecting electrodes (n-wells) there are no insensitive zones within the pixel matrix. The detector chip contains a 128×128 matrix consisting of pixels of 21×21 μm2 -size. The diode voltages of one selected pixel-row are received at the bottom of the matrix by 128 eight-bit single-slope ADCs. All ADCs operate in parallel. The ADC codes are read out using eight LVDS 500 MBit/s output links. The readout electronics are designed to allow the readout of the whole pixel matrix in less than 50 μs. The total DC power consumption of the chip is 50 mW. All analog parts of the chip are implemented using radiation-hard layout techniques. Experimental results will be presented.

  14. Effect of body biasing on single-event induced charge collection in deep N-well technology

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Hu, Jian-Guo; Qin, Jun-Rui; Tan, Hong-Zhou

    2015-07-01

    As the device size decreases, the soft error induced by space ions is becoming a great concern for the reliability of integrated circuits (ICs). At present, the body biasing technique is widely used in highly scaled technologies. In the paper, using the three-dimensional technology computer-aided design (TCAD) simulation, we analyze the effect of the body biasing on the single-event charge collection in deep N-well technology. Our simulation results show that the body biasing mainly affects the behavior of the source, and the effect of body biasing on the charge collection for the nMOSFET and pMOSFET is quite different. For the nMOSFET, the RBB will increase the charge collection, while the FBB will reduce the charge collection. For the pMOSFET, the effect of RBB on the SET pulse width is small, while the FBB has an adverse effect. Moreover, the differenceof the effect of body biasing on the charge collection is compared in deep N-well and twin well.

  15. CMOS-Memristor Hybrid Nanoelectronics for AES Encryption

    DTIC Science & Technology

    2013-03-01

    URL: https://www.cvimellesgriot.com/ Products /Ultraviolet-325-nm-Medium-Frame-Unpolarized-Heli um- Cadmium -Laser-Systems.aspx 2. URL: http...the existing industry -standard CMOS integrated circuit manufacturing base. Our in-house facility development focused on establishing a very high...leveraging the well-proven vast functionality of the existing industry -standard CMOS integrated circuit manufacturing base. Maintaining compatibility

  16. CMOS front end electronics for the ATLAS muon detector

    SciTech Connect

    Huth, J.; Oliver, J.; Hazen, E.; Shank, J.

    1997-12-31

    An all-CMOS design for an integrated ASD (Amplifier-Shaper-Discriminator) chip for readout of the ATLAS Monitored Drift Tubes (MDTs) is presented. Eight channels of charge-sensitive preamp, two-stage pole/zero shaper, Wilkinson ADC and discriminator with programmable hysteresis are integrated on a single IC. Key elements have been prototyped in 1.2 and 0.5 micron CMOS operating at 5V and 3.3V respectively.

  17. CMOS monolithic pixel sensors research and development at LBNL

    NASA Astrophysics Data System (ADS)

    Contarato, D.; Bussat, J.-M.; Denes, P.; Greiner, L.; Kim, T.; Stezelberger, T.; Wieman, H.; Battaglia, M.; Hooberman, B.; Tompkins, L.

    2007-12-01

    This paper summarizes the recent progress in the design and characterization of CMOS pixel sensors at LBNL. Results of lab tests, beam tests and radiation hardness tests carried out at LBNL on a test structure with pixels of various sizes are reported. The first results of the characterization of back-thinned CMOS pixel sensors are also reported, and future plans and activities are discussed.

  18. Characterization of the embedded micromechanical device approach to the monolithic integration of MEMS with CMOS

    SciTech Connect

    Smith, J.H.; Montague, S.; Sniegowski, J.J.; Murray, J.R.

    1996-10-01

    Recently, a great deal of interest has developed in manufacturing processes that allow the monolithic integration of MicroElectroMechanical Systems (MEMS) with driving, controlling, and signal processing electronics. This integration promises to improve the performance of micromechanical devices as well as lower the cost of manufacturing, packaging, and instrumenting these devices by combining the micromechanical devices with a electronic devices in the same manufacturing and packaging process. In order to maintain modularity and overcome some of the manufacturing challenges of the CMOS-first approach to integration, we have developed a MEMS-first process. This process places the micromechanical devices in a shallow trench, planarizes the wafer, and seals the micromechanical devices in the trench. Then, a high-temperature anneal is performed after the devices are embedded in the trench prior to microelectronics processing. This anneal stress-relieves the micromechanical polysilicon and ensures that the subsequent thermal processing associated with fabrication of the microelectronic processing does not adversely affect the mechanical properties of the polysilicon structures. These wafers with the completed, planarized micromechanical devices are then used as starting material for conventional CMOS processes. The circuit yield for the process has exceeded 98%. A description of the integration technology, the refinements to the technology, and wafer-scale parametric measurements of device characteristics is presented. Additionally, the performance of integrated sensing devices built using this technology is presented.

  19. A new circuit technique for reduced leakage current in Deep Submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tielert, R.

    2005-05-01

    Modern CMOS processes in the Deep Submicron regime are restricted to supply voltages below 2 volts and further to account for the transistors' field strength limitations and to reduce the power per logic gate. To maintain the high switching performance, the threshold voltage must be scaled according with the supply voltage. However, this leads to an increased subthreshold current of the transistors in standby mode (VGS=0). Another source of leakage is gate current, which becomes significant for gate oxides of 3nm and below. We propose a Self-Biasing Virtual Rails (SBVR) - CMOS technique which acts like an adaptive local supply voltage in case of standby mode. Most important sources of leakage currents are reduced by this technique. Moreover, SBVR-CMOS is capable of conserving stored information in sleep mode, which is vital for memory circuits. Memories are exposed to radiation causing soft errors. This well-known problem becomes even worse in standby mode of typical SRAMs, that have low driving performance to withstand alpha particle hits. In this paper, a 16-transistor SRAM cell is proposed, which combines the advantage of extremely low leakage currents with a very high soft error stability.

  20. Designing and implementing a miniature CMOS imaging system with USB interface

    NASA Astrophysics Data System (ADS)

    Yao, Chenyun; Wang, Liqiang; Yuan, Bo; Xu, Jin

    2012-11-01

    Although CMOS cameras with USB interface are popular, their sizes are not small enough and working lengths are not that long enough when used as industrial endoscope. Here we present a small-sized image acquisition system for high-definition industrial electronic endoscope based on USB2.0 high-speed controller, which is composed of a 1/6 inch CMOS image sensor with resolution of 1 Megapixels. Signals from the CMOS image sensor are put into computer through the USB interface using the slave FIFO mode for processing, storage and display. LVDS technology is used for image data stream transmission between the sensor and USB controller to realize a long working distance, high signal integrity and low noise system. The maximum pixel clock runs at 48MHz to support for 30 fps for QSXGA mode or15 fps for SXGA mode and the data transmission rate can reach 36 megabytes per second. The imaging system is simple in structure, low-power, low-cost and easy to control. Based on multi-thread technology, the software system which realizes the function of automatic exposure, automatic gain, and AVI video recording is also designed.

  1. A combined noise analysis and power supply current based testing of CMOS analog integrated circuits

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashok; Pulendra, Vani K.; Yellampalli, Siva

    2005-05-01

    A technique integrating the noise analysis based testing and the conventional power supply current testing of CMOS analog integrated circuits is presented for bridging type faults due to manufacturing defects. The circuit under test (CUT) is a CMOS amplifier designed for operation at +/- 2.5 V and implemented in 1.5 μm CMOS process. The faults simulating possible manufacturing defects have been introduced using the fault injection transistors. The amplifier circuit is analyzed and simulated in SPICE for its performance with and without fault injections. The faults in the CUT are identified by observing the variation in the equivalent noise voltage at the output of CUT. In power supply current testing, the current (IPS) through the power supply voltage, VDD is measured under the application of an AC input stimulus. The effect of parametric variation is taken into consideration by determining the tolerance limit using the Monte-Carlo analysis. The fault is identified if the power supply current, IPS lies outside the deviation given by Monte-Carlo analysis. Simulation results are in close agreement with the corresponding experimental values.

  2. Implementation of the CMOS MEMS condenser microphone with corrugated metal diaphragm and silicon back-plate.

    PubMed

    Huang, Chien-Hsin; Lee, Chien-Hsing; Hsieh, Tsung-Min; Tsao, Li-Chi; Wu, Shaoyi; Liou, Jhyy-Cheng; Wang, Ming-Yi; Chen, Li-Che; Yip, Ming-Chuen; Fang, Weileun

    2011-01-01

    This study reports a CMOS-MEMS condenser microphone implemented using the standard thin film stacking of 0.35 μm UMC CMOS 3.3/5.0 V logic process, and followed by post-CMOS micromachining steps without introducing any special materials. The corrugated diaphragm for the microphone is designed and implemented using the metal layer to reduce the influence of thin film residual stresses. Moreover, a silicon substrate is employed to increase the stiffness of the back-plate. Measurements show the sensitivity of microphone is -42 ± 3 dBV/Pa at 1 kHz (the reference sound-level is 94 dB) under 6 V pumping voltage, the frequency response is 100 Hz-10 kHz, and the S/N ratio >55 dB. It also has low power consumption of less than 200 μA, and low distortion of less than 1% (referred to 100 dB).

  3. RF Design of a Wideband CMOS Integrated Receiver for Phased Array Applications

    NASA Astrophysics Data System (ADS)

    Jackson, Suzy A.

    2004-06-01

    New silicon CMOS processes developed primarily for the burgeoning wireless networking market offer significant promise as a vehicle for the implementation of highly integrated receivers, especially at the lower end of the frequency range proposed for the Square Kilometre Array (SKA). An RF-CMOS ‘Receiver-on-a-Chip’ is being developed as part of an Australia Telescope program looking at technologies associated with the SKA. The receiver covers the frequency range 500 1700 MHz, with instantaneous IF bandwidth of 500 MHz and, on simulation, yields an input noise temperature of < 50 K at mid-band. The receiver will contain all active circuitry (LNA, bandpass filter, quadrature mixer, anti-aliasing filter, digitiser and serialiser) on one 0.18 μm RF-CMOS integrated circuit. This paper outlines receiver front-end development work undertaken to date, including design and simulation of an LNA using noise cancelling techniques to achieve a wideband input-power-match with little noise penalty.

  4. Optimizing electronic standard cell libraries for variability tolerance through the nano-CMOS grid.

    PubMed

    Walker, James Alfred; Sinnott, Richard; Stewart, Gordon; Hilder, James A; Tyrrell, Andy M

    2010-08-28

    The project Meeting the Design Challenges of nano-CMOS Electronics (http://www.nanocmos.ac.uk) was funded by the Engineering and Physical Sciences Research Council to tackle the challenges facing the electronics industry caused by the decreasing scale of transistor devices, and the inherent variability that this exposes in devices and in the circuits and systems in which they are used. The project has developed a grid-based solution that supports the electronics design process, incorporating usage of large-scale high-performance computing (HPC) resources, data and metadata management and support for fine-grained security to protect commercially sensitive datasets. In this paper, we illustrate how the nano-CMOS (complementary metal oxide semiconductor) grid has been applied to optimize transistor dimensions within a standard cell library. The goal is to extract high-speed and low-power circuits which are more tolerant of the random fluctuations that will be prevalent in future technology nodes. Using statistically enhanced circuit simulation models based on three-dimensional atomistic device simulations, a genetic algorithm is presented that optimizes the device widths within a circuit using a multi-objective fitness function exploiting the nano-CMOS grid. The results show that the impact of threshold voltage variation can be reduced by optimizing transistor widths, and indicate that a similar method could be extended to the optimization of larger circuits.

  5. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS.

    PubMed

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-07-21

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<-9 dB) with excellent transmission efficiency (averagely -1.9 dB) from 110 GHz-325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author's knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology.

  6. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    PubMed

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  7. A compact picosecond pulsed laser source using a fully integrated CMOS driver circuit

    NASA Astrophysics Data System (ADS)

    He, Yuting; Li, Yuhua; Yadid-Pecht, Orly

    2016-03-01

    Picosecond pulsed laser source have applications in areas such as optical communications, biomedical imaging and supercontinuum generation. Direct modulation of a laser diode with ultrashort current pulses offers a compact and efficient approach to generate picosecond laser pulses. A fully integrated complementary metaloxide- semiconductor (CMOS) driver circuit is designed and applied to operate a 4 GHz distributed feedback laser (DFB). The CMOS driver circuit combines sub-circuits including a voltage-controlled ring oscillator, a voltagecontrolled delay line, an exclusive-or (XOR) circuit and a current source circuit. Ultrashort current pulses are generated by the XOR circuit when the delayed square wave is XOR'ed with the original square wave from the on-chip oscillator. Circuit post-layout simulation shows that output current pulses injected into an equivalent circuit load of the laser have a pulse full width at half maximum (FWHM) of 200 ps, a peak current of 80 mA and a repetition rate of 5.8 MHz. This driver circuit is designed in a 0.13 μm CMOS process and taped out on a 0.3 mm2 chip area. This CMOS chip is packaged and interconnected with the laser diode on a printed circuit board (PCB). The optical output waveform from the laser source is captured by a 5 GHz bandwidth photodiode and an 8 GHz bandwidth oscilloscope. Measured results show that the proposed laser source can output light pulses with a pulse FWHM of 151 ps, a peak power of 6.4 mW (55 mA laser peak forward current) and a repetition rate of 5.3 MHz.

  8. On-chip polarizer on image sensor using advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Sasagawa, Kiyotaka; Wakama, Norimitsu; Noda, Toshihiko; Tokuda, Takashi; Kakiuchi, Kiyomi; Ohta, Jun

    2014-03-01

    The structures in advanced complementary metal-oxide-semiconductor (CMOS) integrated circuit technology are in the range of deep-submicron. It allows designing and integrating nano-photonic structures for the visible to near infrared region on a chip. In this work, we designed and fabricated an image sensor with on-pixel metal wire grid polarizers by using a 65-nm standard CMOS technology. It is known that the extinction ratio of a metal wire grid polarizer is increased with decrease in the grid pitch. With the metal wire layers of the 65-nm technology, the grid pitch sufficiently smaller than the wavelengths of visible light can be realized. The extinction ratio of approximately 20 dB has been successfully achieved at a wavelength of 750 nm. In the CMOS technologies, it is usual to include multiple metal layers. This feature is also useful to increase the extinction ratio of polarizers. We designed dual layer polarizers. Each layer partially reflects incident light. Thus, the layers form a cavity and its transmission spectrum depends on the layer position. The extinction ratio of 19.2 dB at 780 nm was achieved with the grid pitch greater than the single layer polarizer. The high extinction ratio is obtained only red to near infrared region because the fine metal layers of deepsubmicron standard CMOS process is usually composed of Cu. Thus, it should be applied for measurement or observation where wide spectrum is not required such as optical rotation measurement of optically active materials or electro-optic imaging of RF/THz wave.

  9. Design and Fabrication of Millimeter Wave Hexagonal Nano-Ferrite Circulator on Silicon CMOS Substrate

    NASA Astrophysics Data System (ADS)

    Oukacha, Hassan

    The rapid advancement of Complementary Metal Oxide Semiconductor (CMOS) technology has formed the backbone of the modern computing revolution enabling the development of computationally intensive electronic devices that are smaller, faster, less expensive, and consume less power. This well-established technology has transformed the mobile computing and communications industries by providing high levels of system integration on a single substrate, high reliability and low manufacturing cost. The driving force behind this computing revolution is the scaling of semiconductor devices to smaller geometries which has resulted in faster switching speeds and the promise of replacing traditional, bulky radio frequency (RF) components with miniaturized devices. Such devices play an important role in our society enabling ubiquitous computing and on-demand data access. This thesis presents the design and development of a magnetic circulator component in a standard 180 nm CMOS process. The design approach involves integration of nanoscale ferrite materials on a CMOS chip to avoid using bulky magnetic materials employed in conventional circulators. This device constitutes the next generation broadband millimeter-wave circulator integrated in CMOS using ferrite materials operating in the 60GHz frequency band. The unlicensed ultra-high frequency spectrum around 60GHz offers many benefits: very high immunity to interference, high security, and frequency re-use. Results of both simulations and measurements are presented in this thesis. The presented results show the benefits of this technique and the potential that it has in incorporating a complete system-on-chip (SoC) that includes low noise amplifier, power amplier, and antenna. This system-on-chip can be used in the same applications where the conventional circulator has been employed, including communication systems, radar systems, navigation and air traffic control, and military equipment. This set of applications of

  10. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor.

    PubMed

    Shokrani, Mohammad Reza; Khoddam, Mojtaba; Hamidon, Mohd Nizar B; Kamsani, Noor Ain; Rokhani, Fakhrul Zaman; Shafie, Suhaidi Bin

    2014-01-01

    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.

  11. Label-free immunodetection with CMOS-compatible semiconducting nanowires.

    PubMed

    Stern, Eric; Klemic, James F; Routenberg, David A; Wyrembak, Pauline N; Turner-Evans, Daniel B; Hamilton, Andrew D; LaVan, David A; Fahmy, Tarek M; Reed, Mark A

    2007-02-01

    Semiconducting nanowires have the potential to function as highly sensitive and selective sensors for the label-free detection of low concentrations of pathogenic microorganisms. Successful solution-phase nanowire sensing has been demonstrated for ions, small molecules, proteins, DNA and viruses; however, 'bottom-up' nanowires (or similarly configured carbon nanotubes) used for these demonstrations require hybrid fabrication schemes, which result in severe integration issues that have hindered widespread application. Alternative 'top-down' fabrication methods of nanowire-like devices produce disappointing performance because of process-induced material and device degradation. Here we report an approach that uses complementary metal oxide semiconductor (CMOS) field effect transistor compatible technology and hence demonstrate the specific label-free detection of below 100 femtomolar concentrations of antibodies as well as real-time monitoring of the cellular immune response. This approach eliminates the need for hybrid methods and enables system-scale integration of these sensors with signal processing and information systems. Additionally, the ability to monitor antibody binding and sense the cellular immune response in real time with readily available technology should facilitate widespread diagnostic applications.

  12. A CMOS ASIC Design for SiPM Arrays

    PubMed Central

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.

    2012-01-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923

  13. A CMOS ASIC Design for SiPM Arrays.

    PubMed

    Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K; Miyaoka, Robert S; Rudell, Jacques C

    2011-12-01

    Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM).

  14. Design of millimeter-wave MEMS-based reconfigurable front-end circuits using the standard CMOS technology

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Chan; Hsieh, Sheng-Chi; Chen, Chien-Hsun; Huang, Chin-Yen; Yao, Chun-Han; Lin, Chun-Chi

    2011-12-01

    This paper describes the designs of three reconfigurable CMOS-MEMS front-end components for V-/W-band applications. The suspended MEMS structure is released through post-CMOS micromachining. To achieve circuit reconfigurability, dual-state and multi-state fishbone-beam-drive actuators are proposed herein. The reconfigurable bandstop is fabricated in a 0.35 µm CMOS process with the chip size of 0.765 × 0.98 mm2, showing that the stop-band frequency can be switched from 60 to 50 GHz with 40 V actuation voltage. The measured isolation is better than 38 dB at 60 GHz and 34 dB at 50 GHz, respectively. The bandpass filter-integrated single-pole single-throw switch, using the 0.18 µm CMOS process, demonstrates that insertion loss and return loss are better than 6.2 and 15 dB from 88 to 100 GHz in the on-state, and isolation is better than 21 dB in the off-state with an actuation voltage of 51 V. The chip size is 0.7 × 1.04 mm2. The third component is a reconfigurable slot antenna fabricated in a 0.18 µm CMOS process with the chip size of 1.2 × 1.2 mm2. By utilizing the multi-state actuators, the frequencies of this antenna can be switched to 43, 47, 50.5, 54, 57.5 GHz with return loss better than 20 dB. Those circuits demonstrate good RF performance and are relatively compact by employing several size miniaturizing techniques, thereby enabling a great potential for the future single-chip transceiver.

  15. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode.

    PubMed

    Escorcia, Ivonne; Grant, James; Gough, John; Cumming, David R S

    2016-07-15

    We demonstrate a low-cost uncooled terahertz (THz) imager fabricated in a standard 180 nm CMOS process. The imager is composed of a broadband THz metamaterial absorber coupled with a diode microbolometer sensor where the pn junction is used as a temperature sensitive device. The metamaterial absorber array is integrated in the top metallic layers of a six metal layer process allowing for complete monolithic integration of the metamaterial absorber and sensor. We demonstrate the capability of the detector for stand-off imaging applications by using it to form transmission and reflection images of a metallic object hidden in a manila envelope.

  16. System-in Package of Integrated Humidity Sensor Using CMOS-MEMS Technology.

    PubMed

    Lee, Sung Pil

    2015-10-01

    Temperature/humidity microchips with micropump were fabricated using a CMOS-MEMS process and combined with ZigBee modules to implement a sensor system in package (SIP) for a ubiquitous sensor network (USN) and/or a wireless communication system. The current of a diode temperature sensor to temperature and a normalized current of FET humidity sensor to relative humidity showed linear characteristics, respectively, and the use of the micropump has enabled a faster response. A wireless reception module using the same protocol as that in transmission systems processed the received data within 10 m and showed temperature and humidity values in the display.

  17. Charge collection studies in irradiated HV-CMOS particle detectors

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  18. A CMOS pressure sensor tag chip for passive wireless applications.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-03-23

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.

  19. Smart CMOS sensor for wideband laser threat detection

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Sonkusale, Sameer

    2015-09-01

    The proliferation of lasers has led to their widespread use in applications ranging from short range standoff chemical detection to long range Lidar sensing and target designation operating across the UV to LWIR spectrum. Recent advances in high energy lasers have renewed the development of laser weapons systems. The ability to measure and assess laser source information is important to both identify a potential threat as well as determine safety and nominal hazard zone (NHZ). Laser detection sensors are required that provide high dynamic range, wide spectral coverage, pulsed and continuous wave detection, and large field of view. OPTRA, Inc. and Tufts have developed a custom ROIC smart pixel imaging sensor architecture and wavelength encoding optics for measurement of source wavelength, pulse length, pulse repetition frequency (PRF), irradiance, and angle of arrival. The smart architecture provides dual linear and logarithmic operating modes to provide 8+ orders of signal dynamic range and nanosecond pulse measurement capability that can be hybridized with the appropriate detector array to provide UV through LWIR laser sensing. Recent advances in sputtering techniques provide the capability for post-processing CMOS dies from the foundry and patterning PbS and PbSe photoconductors directly on the chip to create a single monolithic sensor array architecture for measuring sources operating from 0.26 - 5.0 microns, 1 mW/cm2 - 2 kW/cm2.

  20. High-frequency BiCMOS transconductance integrators

    NASA Astrophysics Data System (ADS)

    Beards, R. Douglas

    1990-10-01

    The capabilities of a fine-line bipolar complementary metal oxide semiconductor (BiCMOS) process in the design of wideband transconductance integrators for precision monolithic continuous time filtering are explored. The design considerations of such an integrator are examined in detail, with an emphasis on tunability and phase compensation as a means for realizing a precision wideband design. The concept of open-loop transconductance filtering is described and possible circuit topologies are investigated. Detailed small-signal and large-signal analysis of one proposed circuit which has both tunable bandwidth and tunable phase compensation is presented. Application of such an integrator to open-loop transconductance filtering in the 10-50 MHz frequency range is studied. Simulation results show specific performance expectations of the proposed circuit. The tunable compensation circuit was seen to restrict the amplitude of signals which the integrator can pass without severe distortion or even instability occurring. A potential solution to this problem is deemed to be unsuitable for high frequency applications. The general design philosophy of applying low-frequency techniques to realize a high frequency circuit was seen to result in several fundamental problems.

  1. Passive radiation detection using optically active CMOS sensors

    NASA Astrophysics Data System (ADS)

    Dosiek, Luke; Schalk, Patrick D.

    2013-05-01

    Recently, there have been a number of small-scale and hobbyist successes in employing commodity CMOS-based camera sensors for radiation detection. For example, several smartphone applications initially developed for use in areas near the Fukushima nuclear disaster are capable of detecting radiation using a cell phone camera, provided opaque tape is placed over the lens. In all current useful implementations, it is required that the sensor not be exposed to visible light. We seek to build a system that does not have this restriction. While building such a system would require sophisticated signal processing, it would nevertheless provide great benefits. In addition to fulfilling their primary function of image capture, cameras would also be able to detect unknown radiation sources even when the danger is considered to be low or non-existent. By experimentally profiling the image artifacts generated by gamma ray and β particle impacts, algorithms are developed to identify the unique features of radiation exposure, while discarding optical interaction and thermal noise effects. Preliminary results focus on achieving this goal in a laboratory setting, without regard to integration time or computational complexity. However, future work will seek to address these additional issues.

  2. A CMOS Pressure Sensor Tag Chip for Passive Wireless Applications

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-01-01

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of −20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation. PMID:25806868

  3. A Radiation Hardened by Design CMOS ASIC for Thermopile Readouts

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; Aslam, S.; DuMonthier, J.

    2012-01-01

    A radiation hardened by design (RHBD) mixed-signal application specific integrated circuit (ASIC) has been designed for a thermopile readout for operation in the harsh Jovian orbital environment. The multi-channel digitizer (MCD) ASIC includes 18 low noise amplifier channels which have tunable gain/filtering coefficients, a 16-bit sigma-delta analog-digital converter (SDADC) and an on-chip controller. The 18 channels, SDADC and controller were designed to operate with immunity to single event latchup (SEL) and to at least 10 Mrad total ionizing dose (TID). The ASIC also contains a radiation tolerant 16-bit 20 MHz Nyquist ADC for general purpose instrumentation digitizer needs. The ASIC is currently undergoing fabrication in a commercial 180 nm CMOS process. Although this ASIC was designed specifically for the harsh radiation environment of the NASA led JEO mission it is suitable for integration into instrumentation payloads 011 the ESA JUICE mission where the radiation hardness requirements are slightly less stringent.

  4. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    NASA Astrophysics Data System (ADS)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz

  5. Post-CMOS compatible high-throughput fabrication of AlN-based piezoelectric microcantilevers

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, A.; Iriarte, G. F.; Hernando-Garcia, J.; Calle, F.

    2015-02-01

    A post-complementary metal oxide semiconductor (CMOS) compatible microfabrication process of piezoelectric cantilevers has been developed. The fabrication process is suitable for standard silicon technology and provides low-cost and high-throughput manufacturing. This work reports design, fabrication and characterization of piezoelectric cantilevers based on aluminum nitride (AlN) thin films synthesized at room temperature. The proposed microcantilever system is a sandwich structure composed of chromium (Cr) electrodes and a sputtered AlN film. The key issue for cantilever fabrication is the growth at room temperature of the AlN layer by reactive sputtering, making possible the innovative compatibility of piezoelectric MEMS devices with CMOS circuits already processed. AlN and Cr have been etched by inductively coupled plasma (ICP) dry etching using a BCl3-Cl2-Ar plasma chemistry. As part of the novelty of the post-CMOS micromachining process presented here, a silicon Si (1 0 0) wafer has been used as substrate as well as the sacrificial layer used to release the microcantilevers. In order to achieve this, the Si surface underneath the structure has been wet etched using an HNA (hydrofluoric acid + nitric acid + acetic acid) based solution. X-ray diffraction (XRD) characterization indicated the high crystalline quality of the AlN film. An atomic force microscope (AFM) has been used to determine the Cr electrode surface roughness. The morphology of the fabricated devices has been studied by scanning electron microscope (SEM). The cantilevers have been piezoelectrically actuated and their out-of-plane vibration modes were detected by vibrometry.

  6. Electron lithography STAR design guidelines. Part 3: The mosaic transistor array applied to custom microprocessors. Part 4: Stores logic arrays, SLAs implemented with clocked CMOS

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.

    1982-01-01

    The Mosaic Transistor Array is an extension of the STAR system developed by NASA which has dedicated field cells designed to be specifically used in semicustom microprocessor applications. The Sandia radiation hard bulk CMOS process is utilized in order to satisfy the requirements of space flights. A design philosophy is developed which utilizes the strengths and recognizes the weaknesses of the Sandia process. A style of circuitry is developed which incorporates the low power and high drive capability of CMOS. In addition the density achieved is better than that for classic CMOS, although not as good as for NMOS. The basic logic functions for a data path are designed with compatible interface to the STAR grid system. In this manner either random logic or PLA type structures can be utilized for the control logic.

  7. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  8. CMOS Cell Sensors for Point-of-Care Diagnostics

    PubMed Central

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies. PMID:23112587

  9. CMOS cell sensors for point-of-care diagnostics.

    PubMed

    Adiguzel, Yekbun; Kulah, Haluk

    2012-01-01

    The burden of health-care related services in a global era with continuously increasing population and inefficient dissipation of the resources requires effective solutions. From this perspective, point-of-care diagnostics is a demanded field in clinics. It is also necessary both for prompt diagnosis and for providing health services evenly throughout the population, including the rural districts. The requirements can only be fulfilled by technologies whose productivity has already been proven, such as complementary metal-oxide-semiconductors (CMOS). CMOS-based products can enable clinical tests in a fast, simple, safe, and reliable manner, with improved sensitivities. Portability due to diminished sensor dimensions and compactness of the test set-ups, along with low sample and power consumption, is another vital feature. CMOS-based sensors for cell studies have the potential to become essential counterparts of point-of-care diagnostics technologies. Hence, this review attempts to inform on the sensors fabricated with CMOS technology for point-of-care diagnostic studies, with a focus on CMOS image sensors and capacitance sensors for cell studies.

  10. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Soli, G. A.; Buehler, M. G.

    1991-01-01

    A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

  11. Low Noise and Highly Linear Wideband CMOS RF Front-End for DVB-H Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Nam, Ilku; Moon, Hyunwon; Woo, Doo Hyung

    In this paper, a wideband CMOS radio frequency (RF) front-end for digital video broadcasting-handheld (DVB-H) receiver is proposed. The RF front-end circuit is composed of a single-ended resistive feedback low noise amplifier (LNA), a single-to-differential amplifier, an I/Q down-conversion mixer with linearized transconductors employing third order intermodulation distortion cancellation, and a divide-by-two circuit with LO buffers. By employing a third order intermodulation (IMD3) cancellation technique and vertical NPN bipolar junction transistor (BJT) switching pair for an I/Q down-conversion mixer, the proposed RF front-end circuit has high linearity and low low-frequency noise performance. It is fabricated in a 0.18µm deep n-well CMOS technology and draws 12mA from a 1.8V supply voltage. It shows a voltage gain of 31dB, a noise figure (NF) lower than 2.6dB, and an IIP3 of -8dBm from 470MHz to 862MHz.

  12. Integrating silicon photonic interconnects with CMOS: Fabrication to architecture

    NASA Astrophysics Data System (ADS)

    Sherwood, Nicholas Ramsey

    While it was for many years the goal of microelectronics to speed up our daily tasks, the focus of today's technological developments is heavily centered on electronic media. Anyone can share their thoughts as text, sound, images or full videos, they can even make phone calls and download full movies on their computers, tablets and phones. The impact of this upsurge in bandwidth is directly on the infrastructure that carries this data. Long distance telecom lines were long ago replaced by optical fibers; now shorter and shorter distance connections have moved to optical transmission to keep up with the bandwidth requirements. Yet microprocessors that make up the switching nodes as well as the endpoints are not only stagnant in terms of processing speed, but also unlikely to continue Moore's transistor-doubling trend for much longer. Silicon photonics stands to make a technical leap in microprocessor technology by allowing monolithic communication speeds between arbitrarily spaced processing elements. The improvement in on-chip communication could reduce power and enable new improvements in this field. This work explores a few aspects involved in making such a leap practical in real life. The first part of the thesis develops process techniques and materials to make silicon photonics truly compatible with CMOS electronics, for two different stack layouts, including a glimpse into multilayerd photonics. Following this is an evaluation of the limitations of integrated devices and a post-fabrication/stabilizing solution using thermal index shifting. In the last parts we explore higher level device design and architecture on the SOI platform.

  13. CMOS reliability issues for emerging cryogenic Lunar electronics applications

    NASA Astrophysics Data System (ADS)

    Chen, Tianbing; Zhu, Chendong; Najafizadeh, Laleh; Jun, Bongim; Ahmed, Adnan; Diestelhorst, Ryan; Espinel, Gustavo; Cressler, John D.

    2006-06-01

    We investigate the reliability issues associated with the application of CMOS devices contained within an advanced SiGe HBT BiCMOS technology to emerging cryogenic space electronics (e.g., down to 43 K, for Lunar missions). Reduced temperature operation improves CMOS device performance (e.g., transconductance, carrier mobility, subthreshold swing, and output current drive), as expected. However, operation at cryogenic temperatures also causes serious device reliability concerns, since it aggravates hot-carrier effects, effectively decreasing the inferred device lifetime significantly, especially at short gate lengths. In the paper, hot-carrier effects are demonstrated to be a stronger function of the device gate length than the temperature, suggesting that significant trade-offs between the gate length and the operational temperature must be made in order to ensure safe and reliable operation over typical projected mission lifetimes in these hostile environments.

  14. Silicon pixel detector prototyping in SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  15. Operation and biasing for single device equivalent to CMOS

    DOEpatents

    Welch, James D.

    2001-01-01

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  16. Applications of the Integrated High-Performance CMOS Image Sensor to Range Finders — from Optical Triangulation to the Automotive Field

    PubMed Central

    Wu, Jih-Huah; Pen, Cheng-Chung; Jiang, Joe-Air

    2008-01-01

    With their significant features, the applications of complementary metal-oxide semiconductor (CMOS) image sensors covers a very extensive range, from industrial automation to traffic applications such as aiming systems, blind guidance, active/passive range finders, etc. In this paper CMOS image sensor-based active and passive range finders are presented. The measurement scheme of the proposed active/passive range finders is based on a simple triangulation method. The designed range finders chiefly consist of a CMOS image sensor and some light sources such as lasers or LEDs. The implementation cost of our range finders is quite low. Image processing software to adjust the exposure time (ET) of the CMOS image sensor to enhance the performance of triangulation-based range finders was also developed. An extensive series of experiments were conducted to evaluate the performance of the designed range finders. From the experimental results, the distance measurement resolutions achieved by the active range finder and the passive range finder can be better than 0.6% and 0.25% within the measurement ranges of 1 to 8 m and 5 to 45 m, respectively. Feasibility tests on applications of the developed CMOS image sensor-based range finders to the automotive field were also conducted. The experimental results demonstrated that our range finders are well-suited for distance measurements in this field. PMID:27879789

  17. Complementary Metal-Oxide-Silicon (CMOS)-Memristor Hybrid Nanoelectronics for Advanced Encryption Standard (AES) Encryption

    DTIC Science & Technology

    2016-04-01

    reliability were developed and integrated with CMOS circuitry to establish an efficient hybrid nanoelectronic computing module for Advanced...node integrated with the memristors without leaving the CMOS foundry setting. 15. SUBJECT TERMS nanoelectronics, CMOS, memristor, crossbar 16...Table of Contents 1. SUMMARY ..................................................................................................................... 1 2

  18. Silicon MCM substrates for integration of III-V photonic devices and CMOS IC`s

    SciTech Connect

    Seigal, P.; Carson, R.; Flores, R.; Rose, B.

    1993-07-01

    The progress made in advanced packaging development at Sandia National Laboratories for integration of III-V photonic devices and CMOS IC`s on Silicon MCM substrates for planar aid stacked applications will be reported. Studies to characterize precision alignment techniques using solder attach materials compatible with both silicon IC`s and III-V devices will be discussed. Examples of the use of back-side alignment and IR through-wafer inspection will be shown along with the extra processing steps that are used. Under bump metallurgy considerations are also addressed.

  19. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors.

    PubMed

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed.

  20. 1T Pixel Using Floating-Body MOSFET for CMOS Image Sensors

    PubMed Central

    Lu, Guo-Neng; Tournier, Arnaud; Roy, François; Deschamps, Benoît

    2009-01-01

    We present a single-transistor pixel for CMOS image sensors (CIS). It is a floating-body MOSFET structure, which is used as photo-sensing device and source-follower transistor, and can be controlled to store and evacuate charges. Our investigation into this 1T pixel structure includes modeling to obtain analytical description of conversion gain. Model validation has been done by comparing theoretical predictions and experimental results. On the other hand, the 1T pixel structure has been implemented in different configurations, including rectangular-gate and ring-gate designs, and variations of oxidation parameters for the fabrication process. The pixel characteristics are presented and discussed. PMID:22389592

  1. Parametric Testing for the RSRE CMOS, Silicon on Sapphire Process

    DTIC Science & Technology

    1990-02-01

    measurement procedure 3.2.5) Deriving sheet resistivity and linewidth loss 3.2.6) Van der Pauw resistor measurement procedure 3.2.7) Step coverage...has received the P channel S/D implant VDP Van der Pauw resistor structure Kelvin S/D Kelvin connections made to the source/drain regions 4 Figure 2...has received the P channel S/D implant VDP Van der Pauw resistor structure Kelvin S/D Kelvin connections made to the source/drain regions 6 3.0

  2. A novel CMOS transducer for giant magnetoresistance sensors

    NASA Astrophysics Data System (ADS)

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μ m CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  3. A novel CMOS transducer for giant magnetoresistance sensors.

    PubMed

    Luong, Van Su; Lu, Chih-Cheng; Yang, Jing-Wen; Jeng, Jen-Tzong

    2017-02-01

    In this work, an ASIC (application specific integrated circuits) transducer circuit for field modulated giant magnetoresistance (GMR) sensors was designed and fabricated using a 0.18-μm CMOS process. The transducer circuits consist of a frequency divider, a digital phase shifter, an instrument amplifier, and an analog mixer. These comprise a mix of analog and digital circuit techniques. The compact chip size of 1.5 mm × 1.5 mm for both analog and digital parts was achieved using the TSMC18 1P6M (1-polysilicon 6-metal) process design kit, and the characteristics of the system were simulated using an HSpice simulator. The output of the transducer circuit is the result of the first harmonic detection, which resolves the modulated field using a phase sensitive detection (PSD) technique and is proportional to the measured magnetic field. When the dual-bridge GMR sensor is driven by the transducer circuit with a current of 10 mA at 10 kHz, the observed sensitivity of the field sensor is 10.2 mV/V/Oe and the nonlinearity error was 3% in the linear range of ±1 Oe. The performance of the system was also verified by rotating the sensor system horizontally in earth's magnetic field and recording the sinusoidal output with respect to the azimuth angle, which exhibits an error of less than ±0.04 Oe. These results prove that the ASIC transducer is suitable for driving the AC field modulated GMR sensors applied to geomagnetic measurement.

  4. Statistical circuit design for yield improvement in CMOS circuits

    NASA Technical Reports Server (NTRS)

    Kamath, H. J.; Purviance, J. E.; Whitaker, S. R.

    1990-01-01

    This paper addresses the statistical design of CMOS integrated circuits for improved parametric yield. The work uses the Monte Carlo technique of circuit simulation to obtain an unbiased estimation of the yield. A simple graphical analysis tool, the yield factor histogram, is presented. The yield factor histograms are generated by a new computer program called SPICENTER. Using the yield factor histograms, the most sensitive circuit parameters are noted, and their nominal values are changed to improve the yield. Two basic CMOS example circuits, one analog and one digital, are chosen and their designs are 'centered' to illustrate the use of the yield factor histograms for statistical circuit design.

  5. A Force-Detection NMR Sensor in CMOS-MEMS

    DTIC Science & Technology

    2003-01-01

    Lauterbur. “Design and Analysis of Microcoils for NMR Microscopy.” Journal of Magnetic Resonance B, Vol. 108, pp. 114-124. 1995. 59 [29] Protasis...A Force-Detection NMR Sensor in CMOS-MEMS by Kevin M. Frederick Bachelor of Science, 2001 Carnegie Mellon University, Pittsburgh...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE A Force-Detection NMR Sensor in CMOS-MEMS 5a. CONTRACT NUMBER 5b

  6. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    PubMed

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)(-0.1) in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  7. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    PubMed Central

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  8. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.

    PubMed

    Seong-Jin Kim; Euisik Yoon

    2012-06-01

    We present a label-free CMOS field-effect transistor sensing array to detect the surface potential change affected by the negative charge in DNA molecules for real-time monitoring and quantification. The proposed CMOS bio sensor includes a new sensing pixel architecture implemented with correlated double sampling for reducing offset fixed pattern noise and 1/f noise of the sensing devices. We incorporated non-surface binding detection which allows real-time continuous monitoring of DNA concentrations without immobilizing them on the sensing surface. Various concentrations of 19-bp oligonucleotides solution can be discriminated using the prototype device fabricated in 1- μm double-poly double-metal standard CMOS process. The detection limit was measured as 1.1 ng/μl with a dynamic range of 40 dB and the transient response time was measured less than 20 seconds.

  9. Materials issues in the integration of magnetic structures on CMOS-MEMS

    NASA Astrophysics Data System (ADS)

    Min, Seungook

    A MEMS-based data storage is being developed at CMU for low power, high access speed and low cost. Multi magnetic heads and their actuators are proposed to be fabricated on top of CMOS and to be released with proper masking. We describe the development of a magnetic head process integrated with a CMOS-MEMS process for actuator fabrication. Process integration depends on an understanding of the structure-process-properties relationship of many different processes. Several materials problems were encountered and solved in the course of the process development. The experiment work and rationale for particular choices is discussed. Low stress (<25 MPa), magnetically soft films of permalloy (Ni 80Fe20) were deposited for a MEMS-based data storage application without significant plasma-induced substrate heating. Optimization of film properties was performed using a designed experiment, response surface methodology. The relationship between the results of the factorial experiment is explained based on Murayama's stripe domain theory. The properties of AMR sensors fabricated on structures released by the CMOS post process are characterized. The AMR sensor on the released MEMS structure functions properly and the MR head shows 0.4% MR change. According to our analysis of the required MR properties and its specification, the characteristics of TMR sensor, high intensity signal and low power consumption, well satisfy the requirement of MEMS-based data storage system. A TMR sensor has been built on our yoke type head. We have investigated the planarized surface with AFM for higher accuracy. The polishing mechanisms for oxide and permalloy are studied based on the materials corrosion theory using Pourbaix diagram. In addition, the uniformity of wafer and a cleaning process as a post CMP process were also studied. For simple fabrication processes, a photoresist layer was used as a side wall insulation which reduces process steps such as oxide or nitride deposition, lift-off and

  10. Complimentary Metal Oxide Semiconductor (CMOS)-Memristor Hybrid Nanoelectronics

    DTIC Science & Technology

    2011-06-01

    N+ N+ M1M1 P+ N- P- P N+ N M1M1 (d) TEOS open (e) SiN open with TEOS as hardmask (f) Oxidation N-Well P-Well P P+ N N+ M1M1 P+ N-Well P-Well P N...N+ M1M1 P+ N- P- P N+ N M1M1 (d) TEOS open (e) SiN open with TEOS as hardmask (f) Oxidation N-Well P-Well P+ P+ N+ N+ M1M1 N-Well P-Well P+ P+ N

  11. First measurement of the in-pixel electron multiplying with a standard imaging CMOS technology: Study of the EMCMOS concept

    NASA Astrophysics Data System (ADS)

    Brugière, Timothée; Mayer, Fréderic; Fereyre, Pierre; Guérin, Cyrille; Dominjon, Agnés; Barbier, Rémi

    2015-07-01

    Scientific low light imaging devices benefit today from designs for pushing the mean noise to the single electron level. When readout noise reduction reaches its limit, signal-to-noise ratio improvement can be driven by an electron multiplication process, driven by impact ionization, before adding the readout noises. This concept already implemented in CCD structures using extra-pixel shift registers can today be integrated inside each pixel in CMOS technology. The EBCMOS group at IPNL is in charge of the characterization of new prototypes developed by E2V using this concept: the electron multiplying CMOS (EMCMOS). The CMOS technology enables electron multiplication inside the photodiode itself, and thus, an overlap of the charge integration and multiplication. A new modeling has been developed to describe the output signal mean and variance after the impact ionization process in such a case. In this paper the feasibility of impact ionization process inside a 8 μm-pitch pixel is demonstrated. The new modeling is also validated by data and a value of 0.32% is obtained for the impact ionization parameter α with an electric field intensity of 24 V / μm.

  12. CMOS analog implementation of a simplified spinal cord neural model

    NASA Astrophysics Data System (ADS)

    Domenech-Asensi, Gines; Ruiz-Merino, Ramon; Hauer, Hans; Diaz-Madrid, Jose A.

    2003-04-01

    This paper presents an analog CMOS implementation of a neural network based on a spinal cord model. The network is comprised by three pairs of cells, Alpha motorneurons, Interneurons and Renshaw cells, which form the basic control motor system for a single limb movement. Behaviour of each neuron is described by a differential equation, which provides it with a dynamic performance. This network is useful to control limb movements based in an antagonist pair of actuators, i.e. muscles for a human limb or electric motors or SMA fibers for machine applications. This antagonist structure has the main advantage that allows independent control of limb position and stiffness, which makes it suitable for applications where inertial load compensation is a critical factor. For the implementation of the neurons we have developed individual analog operators, like multipliers and integrators, which have been then joined to obtain the cell. The whole circuit works in current mode, and exhibits good performance in power disipation and bandwidth. The implementation of the network has been done in a 0.35um process from AMS. The layout size is 870 × 480 μm and the power dissipation is 14 mW, using a reference voltage of 3.3 volts. The applications in which this network canbe used fall in two broad cathegories. Firstly, in the development of human-machine interfaces capable to be used both in industry and in handicaped people and secondly in the development o neural controller for industrial robots, providing them with a compliance performance.

  13. sCMOS detector for imaging VNIR spectrometry

    NASA Astrophysics Data System (ADS)

    Eckardt, Andreas; Reulke, Ralf; Schwarzer, Horst; Venus, Holger; Neumann, Christian

    2013-09-01

    The facility Optical Information Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the scientific results of the institute of leading edge instruments and focal plane designs for EnMAP VIS/NIR spectrograph. EnMAP (Environmental Mapping and Analysis Program) is one of the selected proposals for the national German Space Program. The EnMAP project includes the technological design of the hyper spectral space borne instrument and the algorithms development of the classification. The EnMAP project is a joint response of German Earth observation research institutions, value-added resellers and the German space industry like Kayser-Threde GmbH (KT) and others to the increasing demand on information about the status of our environment. The Geo Forschungs Zentrum (GFZ) Potsdam is the Principal Investigator of EnMAP. DLR OS and KT were driving the technology of new detectors and the FPA design for this project, new manufacturing accuracy and on-chip processing capability in order to keep pace with the ambitious scientific and user requirements. In combination with the engineering research, the current generations of space borne sensor systems are focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high spectral resolution with intelligent synchronization control, fast-readout ADC chains and new focal-plane concepts open the door to new remote-sensing and smart deep space instruments. The paper gives an overview over the detector verification program at DLR on FPA level, new control possibilities for sCMOS detectors in global shutter mode and key parameters like PRNU, DSNU, MTF, SNR, Linearity, Spectral Response, Quantum Efficiency, Flatness and Radiation Tolerance will be discussed in detail.

  14. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  15. Single Event Upset Behavior of CMOS Static RAM Cells

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo; Jeppson, Kjell O.; Buehler, Martin G.

    1993-01-01

    An improved state-space analysis of the CMOS static RAM cell is presented. Introducing theconcept of the dividing line, the critical charge for heavy-ion-induced upset of memory cells can becalculated considering symmetrical as well as asymmetrical capacitive loads. From the criticalcharge, the upset-rate per bit-day for static RAMs can be estimated.

  16. Mechanically Flexible and High-Performance CMOS Logic Circuits

    PubMed Central

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  17. High speed CMOS/SOS standard cell notebook

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The NASA/MSFC high speed CMOS/SOS standard cell family, designed to be compatible with the PR2D (Place, Route in 2-Dimensions) automatic layout program, is described. Standard cell data sheets show the logic diagram, the schematic, the truth table, and propagation delays for each logic cell.

  18. CMOS Active-Pixel Image Sensor With Simple Floating Gates

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Nakamura, Junichi; Kemeny, Sabrina E.

    1996-01-01

    Experimental complementary metal-oxide/semiconductor (CMOS) active-pixel image sensor integrated circuit features simple floating-gate structure, with metal-oxide/semiconductor field-effect transistor (MOSFET) as active circuit element in each pixel. Provides flexibility of readout modes, no kTC noise, and relatively simple structure suitable for high-density arrays. Features desirable for "smart sensor" applications.

  19. Novel Ferroelectric CMOS Circuits as a Nonvolatile Logic

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Horiuchi, T.; Li, Q.-H.; Wang, S.; Yun, K. Y.; Sakai, S.

    2008-03-01

    We propose a novel and promising nonvolatile-logic circuit constructed by p channel type (Pch) and n channel type (Nch) ferroelectric gate field effect transistors (FeFETs), which we named a ferroelectric CMOS (FeCMOS) circuit. The circuit works as both logic and memory. We fabricated a NOT logic FeCMOS device which have Pt metal gates and gate oxides of ferroelectric SrBi2Ta2O9 (SBT) and high-k HfAlO on Si. Key technology was adjusting threshold voltages of the FeFETs as well as preparing those of high quality. We demonstrate basic operations of the NOT-logic response, memory writing, holding and non-destructive reading. The memory writing is done by amplifying the input node voltage to a higher level when the node was logically high and to a lower one when it was logically low just before the writing operation. The data retention was also measured. The retained high and low voltages were almost unchanged for 1.2 days. The idea of this FeCMOS will enhance flexibility of circuit designing by merging logic and memory functions. This work was partially supported by NEDO.

  20. Integrated imaging sensor systems with CMOS active pixel sensor technology

    NASA Technical Reports Server (NTRS)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  1. Holographic voltage profiling on 75 nm gate architecture CMOS devices.

    PubMed

    Thesen, Alexander E; Frost, Bernhard G; Joy, David C

    2003-04-01

    Voltage profiles of the source-drain region of a CMOS transistor with 75nm gate architecture taken from an off-the-shelf Intel PIII processor are presented. The sample preparation using a dual beam system is discussed as well as details of the electron optical setup of the microscope. Special attention is given to the analysis of the reconstructed holograms.

  2. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  3. Simulation toolkit with CMOS detector in the framework of hadrontherapy

    NASA Astrophysics Data System (ADS)

    Rescigno, R.; Finck, Ch.; Juliani, D.; Baudot, J.; Dauvergne, D.; Dedes, G.; Krimmer, J.; Ray, C.; Reithinger, V.; Rousseau, M.; Testa, E.; Winter, M.

    2014-03-01

    Proton imaging can be seen as a powerful technique for on-line monitoring of ion range during carbon ion therapy irradiation. The protons detection technique uses, as three-dimensional tracking system, a set of CMOS sensor planes. A simulation toolkit based on GEANT4 and ROOT is presented including detector response and reconstruction algorithm.

  4. CMOS VLSI Layout and Verification of a SIMD Computer

    NASA Technical Reports Server (NTRS)

    Zheng, Jianqing

    1996-01-01

    A CMOS VLSI layout and verification of a 3 x 3 processor parallel computer has been completed. The layout was done using the MAGIC tool and the verification using HSPICE. Suggestions for expanding the computer into a million processor network are presented. Many problems that might be encountered when implementing a massively parallel computer are discussed.

  5. Detection and compensation of bad pixel for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Xu, Youqing; Yu, Shengsheng; Zhou, Jingli; Fang, Zuyuan

    2000-05-01

    This paper presents a detailed analysis of the occurring reason and features of bad pixels in CMOS image sensor. Detect and compensate algorithms have also bee introduced. Experimental result show that the algorithms are efficiently when they are applied on CH5001 produced by Chrontel Inc.

  6. CMOS Ultra Low Power Radiation Tolerant (CULPRiT) Microelectronics

    NASA Technical Reports Server (NTRS)

    Yeh, Penshu; Maki, Gary

    2007-01-01

    Space Electronics needs Radiation Tolerance or hardness to withstand the harsh space environment: high-energy particles can change the state of the electronics or puncture transistors making them disfunctional. This viewgraph document reviews the use of CMOS Ultra Low Power Radiation Tolerant circuits for NASA's electronic requirements.

  7. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-10-13

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.

  8. CMOS image sensors as an efficient platform for glucose monitoring.

    PubMed

    Devadhasan, Jasmine Pramila; Kim, Sanghyo; Choi, Cheol Soo

    2013-10-07

    Complementary metal oxide semiconductor (CMOS) image sensors have been used previously in the analysis of biological samples. In the present study, a CMOS image sensor was used to monitor the concentration of oxidized mouse plasma glucose (86-322 mg dL(-1)) based on photon count variation. Measurement of the concentration of oxidized glucose was dependent on changes in color intensity; color intensity increased with increasing glucose concentration. The high color density of glucose highly prevented photons from passing through the polydimethylsiloxane (PDMS) chip, which suggests that the photon count was altered by color intensity. Photons were detected by a photodiode in the CMOS image sensor and converted to digital numbers by an analog to digital converter (ADC). Additionally, UV-spectral analysis and time-dependent photon analysis proved the efficiency of the detection system. This simple, effective, and consistent method for glucose measurement shows that CMOS image sensors are efficient devices for monitoring glucose in point-of-care applications.

  9. A mathematical model of the inline CMOS matrix sensor for investigation of particles in hydraulic liquids

    NASA Astrophysics Data System (ADS)

    Kornilin, DV; Kudryavtsev, IA

    2016-10-01

    One of the most effective ways to diagnose the state of hydraulic system is an investigation of the particles in their liquids. The sizes of such particles range from 2 to 200 gm and their concentration and shape reveal important information about the current state of equipment and the necessity of maintenance. In-line automatic particle counters (APC), which are built into hydraulic system, are widely used for determination of particle size and concentration. These counters are based on a single photodiode and a light emitting diode (LED); however, samples of liquid are needed for analysis using microscope or industrial video camera in order to get information about particle shapes. The act of obtaining the sample leads to contamination by other particles from the air or from the sample tube, meaning that the results are usually corrupted. Using the CMOS or CCD matrix sensor without any lens for inline APC is the solution proposed by authors. In this case the matrix sensors are put into the liquid channel of the hydraulic system and illuminated by LED. This system could be stable in arduous conditions like high pressure and the vibration of the hydraulic system; however, the image or signal from that matrix sensor needs to be processed differently in comparison with the signal from microscope or industrial video camera because of relatively short distance between LED and sensor. This paper introduces mathematical model of a sensor with CMOS and LED, which can be built into hydraulic system. It is also provided a computational algorithm and results, which can be useful for calculation of particle sizes and shapes using the signal from the CMOS matrix sensor.

  10. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

    PubMed Central

    Liang, Yuan; Yu, Hao; Wen, Jincai; Apriyana, Anak Agung Alit; Li, Nan; Luo, Yu; Sun, Lingling

    2016-01-01

    An on-chip low-loss and high conversion efficiency plasmonic waveguide converter is demonstrated at sub-THz in CMOS. By introducing a subwavelength periodic corrugated structure onto the transmission line (T-line) implemented by a top-layer metal, surface plasmon polaritons (SPP) are established to propagate signals with strongly localized surface-wave. To match both impedance and momentum of other on-chip components with TEM-wave propagation, a mode converter structure featured by a smooth bridge between the Ground coplanar waveguide (GCPW) with 50 Ω impedance and SPP T-line is proposed. To further reduce area, the converter is ultimately simplified to a gradual increment of groove with smooth gradient. The proposed SPP T-lines with the converter is designed and fabricated in the standard 65 nm CMOS process. Both near-field simulation and measurement results show excellent conversion efficiency from quasi-TEM to SPP modes in a broadband frequency range. The converter achieves wideband impedance matching (<−9 dB) with excellent transmission efficiency (averagely −1.9 dB) from 110 GHz–325 GHz. The demonstrated compact and wideband SPP T-lines with mode converter have shown great potentials to replace existing waveguides as future on-chip THz interconnects. To the best of the author’s knowledge, this is the first time to demonstrate the (sub)-THz surface mode conversion on-chip in CMOS technology. PMID:27444782

  11. LGSD/NGSD: high speed visible CMOS imagers for E-ELT adaptive optics

    NASA Astrophysics Data System (ADS)

    Downing, Mark; Kolb, Johann; Dierickx, Bart; Defernez, Arnaud; Feautrier, Philippe; Fryer, Martin; Gach, Jean-Luc; Jerram, Paul; Jorden, Paul; Meyer, Manfred; Pike, Andrew; Reyes, Javier; Stadler, Eric; Swift, Nick

    2016-08-01

    The success of the next generation of instruments for ELT class telescopes will depend upon improving the image quality by exploiting sophisticated Adaptive Optics (AO) systems. One of the critical components of the AO systems for the European Extremely Large Telescope (E-ELT) has been identified as the Large Visible Laser/Natural Guide Star AO Wavefront Sensing (WFS) detector. The combination of large format, 1600x1600 pixels to finely sample the wavefront and the spot elongation of laser guide stars (LGS), fast frame rate of 700 frames per second (fps), low read noise (< 3e-), and high QE (> 90%) makes the development of this device extremely challenging. Results of design studies concluded that a highly integrated Backside Illuminated CMOS Imager built on High Resistivity silicon as the most suitable technology. Two generations of the CMOS Imager are planned: a) a smaller `pioneering' device of > 800x800 pixels capable of meeting first light needs of the E-ELT. The NGSD, the topic of this paper, is the first iteration of this device; b) the larger full sized device called LGSD. The NGSD has come out of production, it has been thinned to 12μm, backside processed and packaged in a custom 370pin Ceramic PGA (Pin Grid Array). Results of comprehensive tests performed both at e2v and ESO are presented that validate the choice of CMOS Imager as the correct technology for the E-ELT Large Visible WFS Detector. These results along with plans for a second iteration to improve two issues of hot pixels and cross-talk are presented.

  12. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    PubMed

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  13. Hybrid CMOS SiPIN detectors as astronomical imagers

    NASA Astrophysics Data System (ADS)

    Simms, Lance Michael

    Charge Coupled Devices (CCDs) have dominated optical and x-ray astronomy since their inception in 1969. Only recently, through improvements in design and fabrication methods, have imagers that use Complimentary Metal Oxide Semiconductor (CMOS) technology gained ground on CCDs in scientific imaging. We are now in the midst of an era where astronomers might begin to design optical telescope cameras that employ CMOS imagers. The first three chapters of this dissertation are primarily composed of introductory material. In them, we discuss the potential advantages that CMOS imagers offer over CCDs in astronomical applications. We compare the two technologies in terms of the standard metrics used to evaluate and compare scientific imagers: dark current, read noise, linearity, etc. We also discuss novel features of CMOS devices and the benefits they offer to astronomy. In particular, we focus on a specific kind of hybrid CMOS sensor that uses Silicon PIN photodiodes to detect optical light in order to overcome deficiencies of commercial CMOS sensors. The remaining four chapters focus on a specific type of hybrid CMOS Silicon PIN sensor: the Teledyne Hybrid Visible Silicon PIN Imager (HyViSI). In chapters four and five, results from testing HyViSI detectors in the laboratory and at the Kitt Peak 2.1m telescope are presented. We present our laboratory measurements of the standard detector metrics for a number of HyViSI devices, ranging from 1k×1k to 4k×4k format. We also include a description of the SIDECAR readout circuit that was used to control the detectors. We then show how they performed at the telescope in terms of photometry, astrometry, variability measurement, and telescope focusing and guiding. Lastly, in the final two chapters we present results on detector artifacts such as pixel crosstalk, electronic crosstalk, and image persistence. One form of pixel crosstalk that has not been discussed elsewhere in the literature, which we refer to as Interpixel Charge

  14. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  15. Contact CMOS imaging of gaseous oxygen sensor array.

    PubMed

    Daivasagaya, Daisy S; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-10-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3](2+)) encapsulated within sol-gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors.

  16. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm2 and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.

  17. Note: All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters.

    PubMed

    Chen, Chun-Chi; Hwang, Chorng-Sii; Lin, You-Ting; Liu, Keng-Chih

    2015-12-01

    This paper presents an all-digital CMOS pulse-shrinking mechanism suitable for time-to-digital converters (TDCs). A simple MOS capacitor is used as a pulse-shrinking cell to perform time attenuation for time resolving. Compared with a previous pulse-shrinking mechanism, the proposed mechanism provides an appreciably improved temporal resolution with high linearity. Furthermore, the use of a binary-weighted pulse-shrinking unit with scaled MOS capacitors is proposed for achieving a programmable resolution. A TDC involving the proposed mechanism was fabricated using a TSMC (Taiwan Semiconductor Manufacturing Company) 0.18-μm CMOS process, and it has a small area of nearly 0.02 mm(2) and an integral nonlinearity error of ±0.8 LSB for a resolution of 24 ps.

  18. Small-signal characterization and modelling of 55 nm SiGe BiCMOS HBT up to 325 GHz

    NASA Astrophysics Data System (ADS)

    Deng, Marina; Quémerais, Thomas; Bouvot, Simon; Gloria, Daniel; Chevalier, Pascal; Lépilliet, Sylvie; Danneville, François; Dambrine, Gilles

    2017-03-01

    This paper presents a small-signal characterization work on a recently developed 55 nm SiGe BiCMOS technology from STMicroelectronics. The SiGe HBT from a prototype BiCMOS 55 nm process was investigated up to 325 GHz. The full S-parameters from DC to 325 GHz under multiple bias conditions are presented for the first time for a SiGe HBT. A usual and simple approach for the off-wafer calibration associated to an on-wafer de-embedding procedure was used and remained valid up to 325 GHz thanks to a size reduction of the test structures. The extracted 300/325 GHz fT/fMAX couple, reached at 14 mA/μm2 collector density and 1.2 V collector-emitter voltage, was validated up to 325 GHz.

  19. Charge pump-based MOSFET-only 1.5-bit pipelined ADC stage in digital CMOS technology

    NASA Astrophysics Data System (ADS)

    Singh, Anil; Agarwal, Alpana

    2016-10-01

    A simple low-power and low-area metal-oxide-semiconductor field-effect transistor-only fully differential 1.5-bit pipelined analog-to-digital converter stage is proposed and designed in Taiwan Semiconductor Manufacturing Company 0.18 μm-technology using BSIM3v3 parameters with supply voltage of 1.8 V in inexpensive digital complementary metal-oxide semiconductor (CMOS) technology. It is based on charge pump technique to achieve the desired voltage gain of 2, independent of capacitor mismatch and avoiding the need of power hungry operational amplifier-based architecture to reduce the power, Si area and cost. Various capacitances are implemented by metal-oxide semiconductor capacitors, offering compatibility with cheaper digital CMOS process in order to reduce the much required manufacturing cost.

  20. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    DOE PAGES

    Gao, X.; Mamaluy, D.; Cyr, E. C.; ...

    2016-05-10

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less

  1. (Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices

    SciTech Connect

    Gao, X.; Mamaluy, D.; Cyr, E. C.; Marinella, M. J.

    2016-05-10

    As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device is determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.

  2. A Time-Domain CMOS Oscillator-Based Thermostat with Digital Set-Point Programming

    PubMed Central

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-01

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-μm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 μW at a sample rate of 10 samples/s. PMID:23385403

  3. Gathering effect on dark current for CMOS fully integrated-, PIN-photodiodes

    NASA Astrophysics Data System (ADS)

    Teva, Jordi; Jonak-Auer, Ingrid; Schrank, Franz; Kraft, Jochen; Siegert, Joerg; Wachmann, Ewald

    2010-02-01

    PIN photodiodes are semiconductor devices widely used in a huge range of applications, such as photoconductors, charge-coupled devices, and pulse oximeters. The possibility to combine and to integrate the fabrication of the sensor with its signal conditioning circuitry in a CMOS process flow opens the window to device miniaturization enhancing its properties and lowering the production and assembly costs. This paper presents the design and characterization of silicon based PIN photodiodes integrated in a CMOS commercial process. A high-resistivity, low impurity float zone substrate is chosen as the start material for the PIN photodiode array fabrication in order to fabricate devices with a minimum dark current. The photodiodes in the array are isolated by a guard ring consisting of a n+-p+ diffusions. However, the introduction of the guard ring design, necessary for photodiode-to-photodiode isolation, leads to an increase of the photodiodes dark current. In this article, the new parasitic term on the dark current is identified, formulated, modelled and experimental proven and has finally been used for an accurate design of the guard ring.

  4. A CMOS pressure sensor with integrated interface for passive RFID applications

    NASA Astrophysics Data System (ADS)

    Deng, Fangming; He, Yigang; Wu, Xiang; Fu, Zhihui

    2014-12-01

    This paper presents a CMOS pressure sensor with integrated interface for passive RFID sensing applications. The pressure sensor consists of three parts: top electrode, dielectric layer and bottom electrode. The dielectric layer consists of silicon oxide and an air gap. The bottom electrode is made of polysilicon. The gap is formed by sacrificial layer release and the Al vapor process is used to seal the gap and form the top electrode. The sensor interface is based on phase-locked architecture, which allows the use of fully digital blocks. The proposed pressure sensor and interface is fabricated in a 0.18 μm CMOS process. The measurement results show the pressure sensor achieves excellent linearity with a sensitivity of 1.2 fF kPa-1. The sensor interface consumes only 1.1 µW of power at 0.5 V voltage supply, which is at least an order of magnitude better than state-of-the-art designs.

  5. CMOS-MEMS Test-Key for Extracting Wafer-Level Mechanical Properties

    PubMed Central

    Chuang, Wan-Chun; Hu, Yuh-Chung; Chang, Pei-Zen

    2012-01-01

    This paper develops the technologies of mechanical characterization of CMOS-MEMS devices, and presents a robust algorithm for extracting mechanical properties, such as Young’s modulus, and mean stress, through the external electrical circuit behavior of the micro test-key. An approximate analytical solution for the pull-in voltage of bridge-type test-key subjected to electrostatic load and initial stress is derived based on Euler’s beam model and the minimum energy method. Then one can use the aforesaid closed form solution of the pull-in voltage to extract the Young’s modulus and mean stress of the test structures. The test cases include the test-key fabricated by a TSMC 0.18 μm standard CMOS process, and the experimental results refer to Osterberg’s work on the pull-in voltage of single crystal silicone microbridges. The extracted material properties calculated by the present algorithm are valid. Besides, this paper also analyzes the robustness of this algorithm regarding the dimension effects of test-keys. This mechanical properties extracting method is expected to be applicable to the wafer-level testing in micro-device manufacture and compatible with the wafer-level testing in IC industry since the test process is non-destructive. PMID:23235449

  6. A time-domain CMOS oscillator-based thermostat with digital set-point programming.

    PubMed

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-29

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-mm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 µW at a sample rate of 10 samples/s.

  7. Efficient design method for cell allocation in hybrid CMOS/nanodevices using a cultural algorithm with chaotic behavior

    NASA Astrophysics Data System (ADS)

    Pan, Zhong-Liang; Chen, Ling; Zhang, Guang-Zhao

    2016-04-01

    The hybrid CMOS molecular (CMOL) circuit, which combines complementary metal-oxide-semiconductor (CMOS) components with nanoscale wires and switches, can exhibit significantly improved performance. In CMOL circuits, the nanodevices, which are called cells, should be placed appropriately and are connected by nanowires. The cells should be connected such that they follow the shortest path. This paper presents an efficient method of cell allocation in CMOL circuits with the hybrid CMOS/nanodevice structure; the method is based on a cultural algorithm with chaotic behavior. The optimal model of cell allocation is derived, and the coding of an individual representing a cell allocation is described. Then the cultural algorithm with chaotic behavior is designed to solve the optimal model. The cultural algorithm consists of a population space, a belief space, and a protocol that describes how knowledge is exchanged between the population and belief spaces. In this paper, the evolutionary processes of the population space employ a genetic algorithm in which three populations undergo parallel evolution. The evolutionary processes of the belief space use a chaotic ant colony algorithm. Extensive experiments on cell allocation in benchmark circuits showed that a low area usage can be obtained using the proposed method, and the computation time can be reduced greatly compared to that of a conventional genetic algorithm.

  8. Pattern transfer of directed self-assembly patterns for CMOS device applications

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Yu; Miyazoe, Hiroyuki; Engelmann, Sebastian; Liu, Chi-Chun; Gignac, Lynne; Bucchignano, James; Klaus, David; Breslin, Chris; Joseph, Eric; Cheng, Joy; Sanders, Daniel; Guillorn, Michael

    2013-10-01

    A study on the optimization of etch transfer processes using 200-mm-scale production type plasma etch tools for circuit relevant patterning in the sub-30-nm pitch regime using directed self-assembly (DSA) line-space patterning is presented. This work focuses on etch stack selection and process tuning, such as plasma power, chuck temperature, and end point strategy, to improve critical dimension control, pattern fidelity, and process window. Results from DSA patterning of gate structures featuring a high-k dielectric, a metal nitride and poly Si gate electrode, and a SiN capping layer are also presented. These results further establish the viability of DSA pattern generation as a potential method for Complementary metal-oxide-semiconductor (CMOS) integrated circuit patterning beyond the 10-nm node.

  9. CMOS VLSI Active-Pixel Sensor for Tracking

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Sun, Chao; Yang, Guang; Heynssens, Julie

    2004-01-01

    An architecture for a proposed active-pixel sensor (APS) and a design to implement the architecture in a complementary metal oxide semiconductor (CMOS) very-large-scale integrated (VLSI) circuit provide for some advanced features that are expected to be especially desirable for tracking pointlike features of stars. The architecture would also make this APS suitable for robotic- vision and general pointing and tracking applications. CMOS imagers in general are well suited for pointing and tracking because they can be configured for random access to selected pixels and to provide readout from windows of interest within their fields of view. However, until now, the architectures of CMOS imagers have not supported multiwindow operation or low-noise data collection. Moreover, smearing and motion artifacts in collected images have made prior CMOS imagers unsuitable for tracking applications. The proposed CMOS imager (see figure) would include an array of 1,024 by 1,024 pixels containing high-performance photodiode-based APS circuitry. The pixel pitch would be 9 m. The operations of the pixel circuits would be sequenced and otherwise controlled by an on-chip timing and control block, which would enable the collection of image data, during a single frame period, from either the full frame (that is, all 1,024 1,024 pixels) or from within as many as 8 different arbitrarily placed windows as large as 8 by 8 pixels each. A typical prior CMOS APS operates in a row-at-a-time ( grolling-shutter h) readout mode, which gives rise to exposure skew. In contrast, the proposed APS would operate in a sample-first/readlater mode, suppressing rolling-shutter effects. In this mode, the analog readout signals from the pixels corresponding to the windows of the interest (which windows, in the star-tracking application, would presumably contain guide stars) would be sampled rapidly by routing them through a programmable diagonal switch array to an on-chip parallel analog memory array. The

  10. A CMOS Energy Harvesting and Imaging (EHI) Active Pixel Sensor (APS) Imager for Retinal Prosthesis.

    PubMed

    Ay, S U

    2011-12-01

    A CMOS image sensor capable of imaging and energy harvesting on same focal plane is presented for retinal prosthesis. The energy harvesting and imaging (EHI) active pixel sensor (APS) imager was designed, fabricated, and tested in a standard 0.5 μm CMOS process. It has 54 × 50 array of 21 × 21 μm(2) EHI pixels, 10-bit supply boosted (SB) SAR ADC, and charge pump circuits consuming only 14.25 μW from 1.2 V and running at 7.4 frames per second. The supply boosting technique (SBT) is used in an analog signal chain of the EHI imager. Harvested solar energy on focal plane is stored on an off-chip capacitor with the help of a charge pump circuit with better than 70% efficiency. Energy harvesting efficiency of the EHI pixel was measured at different light levels. It was 9.4% while producing 0.41 V open circuit voltage. The EHI imager delivers 3.35 μW of power was delivered to a resistive load at maximum power point operation. The measured pixel array figure of merit (FoM) was 1.32 pW/frame/pixel while imager figure of merit (iFoM) including whole chip power consumption was 696 fJ/pixel/code for the EHI imager.

  11. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    PubMed

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  12. A high speed, low power consumption LVDS interface for CMOS pixel sensors

    NASA Astrophysics Data System (ADS)

    Shi, Zhan; Tang, Zhenan; Tian, Yong; Pham, Hung; Valin, Isabelle; Jaaskelainen, Kimmo

    2015-01-01

    The use of CMOS Pixel Sensors (CPSs) offers a promising approach to the design of vertex detectors in High Energy Physics (HEP) experiments. As the CPS equipping the upgraded Solenoidal Tracker at RHIC (STAR) pixel detector, ULTIMATE perfectly illustrates the potential of CPSs for HEP applications. However, further development of CPSs with respect to readout speed is required to fulfill the readout time requirement of the next generation HEP detectors, such as the upgrade of A Large Ion Collider Experiment (ALICE) Inner Tracking System (ITS), the International Linear Collider (ILC), and the Compressed Baryonic Matter (CBM) vertex detectors. One actual limitation of CPSs is related to the speed of the Low-Voltage Differential Signaling (LVDS) circuitry implementing the interface between the sensor and the Data Acquisition (DAQ) system. To improve the transmission rate while keeping the power consumption at a low level, a source termination technique and a special current comparator were adopted for the LVDS driver and receiver, respectively. Moreover, hardening techniques are used. The circuitry was designed and submitted for fabrication in a 0.18-μm CMOS Image Sensor (CIS) process at the end of 2011. The test results indicated that the LVDS driver and receiver can operate properly at the data rate of 1.2 Gb/s with power consumption of 19.6 mW.

  13. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    NASA Astrophysics Data System (ADS)

    Guang, Yang; Wang, Yao; Jiangwei, Yin; Renliang, Zheng; Wei, Li; Ning, Li; Junyan, Ren

    2009-01-01

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 μm RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm2 and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  14. Using a large area CMOS APS for direct chemiluminescence detection in Western blotting electrophoresis

    NASA Astrophysics Data System (ADS)

    Esposito, Michela; Newcombe, Jane; Anaxagoras, Thalis; Allinson, Nigel M.; Wells, Kevin

    2012-03-01

    Western blotting electrophoretic sequencing is an analytical technique widely used in Functional Proteomics to detect, recognize and quantify specific labelled proteins in biological samples. A commonly used label for western blotting is Enhanced ChemiLuminescence (ECL) reagents based on fluorescent light emission of Luminol at 425nm. Film emulsion is the conventional detection medium, but is characterized by non-linear response and limited dynamic range. Several western blotting digital imaging systems have being developed, mainly based on the use of cooled Charge Coupled Devices (CCDs) and single avalanche diodes that address these issues. Even so these systems present key drawbacks, such as a low frame rate and require operation at low temperature. Direct optical detection using Complementary Metal Oxide Semiconductor (CMOS) Active Pixel Sensors (APS)could represent a suitable digital alternative for this application. In this paper the authors demonstrate the viability of direct chemiluminescent light detection in western blotting electrophoresis using a CMOS APS at room temperature. Furthermore, in recent years, improvements in fabrication techniques have made available reliable processes for very large imagers, which can be now scaled up to wafer size, allowing direct contact imaging of full size western blotting samples. We propose using a novel wafer scale APS (12.8 cm×13.2 cm), with an array architecture using two different pixel geometries that can deliver an inherently low noise and high dynamic range image at the same time representing a dramatic improvement with respect to the current western blotting imaging systems.

  15. Room temperature lasing in GeSn alloys: A path to CMOS-compatible infrared lasers

    NASA Astrophysics Data System (ADS)

    Li, Zairui; Zhao, Yun; Gallagher, James; Menéndez, José; Kouvetakis, John; Agha, Imad; Mathews, Jay

    The semiconductor industry has been pushing silicon photonics development for many years, resulting in the realization of many CMOS-compatible optoelectronic devices. However, one challenge that has not been overcome is the development of Si-based lasers. Recently, GeSn alloys grown on Si have shown much promise in the field of infrared optoelectronics. These alloy films are compatible with CMOS processing, have band gaps in the infrared, and the band structure of GeSn can be tuned via Sn concentration to induce direct band gap emission. In this work, we report on room temperature lasing in optically-pumped waveguides fabricated from GeSn films grown epitaxially on Si(100) substrates. The waveguides were defined using standard UV photolithography and dry-etched in a Cl plasma. The end facets were mirror polished, and Al was deposited on one facet to enhance cavity quality. The waveguides were optically-pumped using a 976nm wavelength solid-state laser, and the corresponding emission was measured. The dependence of the emission power on the pump power shows a clear transition between spontaneous and stimulated emission, thereby demonstrating room temperature lasing.

  16. A reliable ground bounce noise reduction technique for nanoscale CMOS circuits

    NASA Astrophysics Data System (ADS)

    Sharma, Vijay Kumar; Pattanaik, Manisha

    2015-11-01

    Power gating is the most effective method to reduce the standby leakage power by adding header/footer high-VTH sleep transistors between actual and virtual power/ground rails. When a power gating circuit transitions from sleep mode to active mode, a large instantaneous charge current flows through the sleep transistors. Ground bounce noise (GBN) is the high voltage fluctuation on real ground rail during sleep mode to active mode transitions of power gating circuits. GBN disturbs the logic states of internal nodes of circuits. A novel and reliable power gating structure is proposed in this article to reduce the problem of GBN. The proposed structure contains low-VTH transistors in place of high-VTH footer. The proposed power gating structure not only reduces the GBN but also improves other performance metrics. A large mitigation of leakage power in both modes eliminates the need of high-VTH transistors. A comprehensive and comparative evaluation of proposed technique is presented in this article for a chain of 5-CMOS inverters. The simulation results are compared to other well-known GBN reduction circuit techniques at 22 nm predictive technology model (PTM) bulk CMOS model using HSPICE tool. Robustness against process, voltage and temperature (PVT) variations is estimated through Monte-Carlo simulations.

  17. Continuous-Time ΣΔ ADC with Implicit Variable Gain Amplifier for CMOS Image Sensor

    PubMed Central

    Bermak, Amine; Abbes, Amira; Amor Benammar, Mohieddine

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  18. CMOS image sensor noise reduction method for image signal processor in digital cameras and camera phones

    NASA Astrophysics Data System (ADS)

    Yoo, Youngjin; Lee, SeongDeok; Choe, Wonhee; Kim, Chang-Yong

    2007-02-01

    Digital images captured from CMOS image sensors suffer Gaussian noise and impulsive noise. To efficiently reduce the noise in Image Signal Processor (ISP), we analyze noise feature for imaging pipeline of ISP where noise reduction algorithm is performed. The Gaussian noise reduction and impulsive noise reduction method are proposed for proper ISP implementation in Bayer domain. The proposed method takes advantage of the analyzed noise feature to calculate noise reduction filter coefficients. Thus, noise is adaptively reduced according to the scene environment. Since noise is amplified and characteristic of noise varies while the image sensor signal undergoes several image processing steps, it is better to remove noise in earlier stage on imaging pipeline of ISP. Thus, noise reduction is carried out in Bayer domain on imaging pipeline of ISP. The method is tested on imaging pipeline of ISP and images captured from Samsung 2M CMOS image sensor test module. The experimental results show that the proposed method removes noise while effectively preserves edges.

  19. Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter

    NASA Astrophysics Data System (ADS)

    Xinhai, Yu; Changchun, Chai; Liping, Qiao; Yintang, Yang; Yang, Liu; Xiaowen, Xi

    2015-05-01

    We derive analytical models of the excess carrier density distribution and the HPM (high-power microwave) upset susceptibility with dependence of pulse-width, which are validated by the simulated results and experimental data. Mechanism analysis and model derivation verify that the excess carriers dominate the current amplification process of the latch-up. Our results reveal that the excess carrier density distribution in P-substrate behaves as pulse-width dependence. The HPM upset voltage threshold Vp decreases with the incremental pulse-width, while there is an inflection point which is caused because the excess carrier accumulation in the P-substrate will be suppressed over time. For the first time, the physical essence of the HPM pulse-width upset effect is proposed to be the excess carrier accumulation effect. Validation concludes that the Vp model is capable of giving a reliable and accurate prediction to the HPM upset susceptibility of a CMOS inverter, which simultaneously considers technology information, ambient temperature, and layout parameters. From the model, the layout parameter LB has been demonstrated to have a significant impact on the pulse-width upset effect: a CMOS inverter with minor LB is more susceptible to HPM, which enables us to put forward hardening measures for inverters that are immune from the HPM upset. Project supported by the National Natural Science Foundation of China (No. 60776034) and the State Key Development Program for Basic Research of China (No. 2014CB339900).

  20. In vitro and in vivo on-chip biofluorescence imaging using a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Ng, David C.; Matsuo, Masamichi; Tokuda, Takashi; Kagawa, Keiichiro; Nunoshita, Masahiro; Ohta, Jun

    2006-02-01

    We have designed and fabricated a 176×144-pixels (QCIF) CMOS image sensor for on-chip bio-fluorescence imaging of the mouse brain. In our approach, a single CMOS image sensor chip without additional optics is used. This enables imaging at arbitrary depths into the brain; a clear advantage compared to existing optical microscopy methods. Packaging of the chip represents a challenge for in vivo imaging. We developed a novel packaging process whereby an excitation filter is applied onto the sensor. This eliminates the use of a filter cube found in conventional fluorescence microscopes. The fully packaged chip is about 350 μm thick. Using the device, we demonstrated in vitro on-chip fluorescence imaging of a 400 μm thick mouse brain slice detailing the hippocampus. The image obtained compares favorably to the image captured by conventional microscopes in terms of image resolution. In order to study imaging in vivo, we also developed a phantom media. In situ fluorophore measurement shows that detection through the turbid medium of up to 1 mm thickness is possible. We have successfully demonstrated imaging deep into the hippocampal region of the mouse brain where quantitative fluorometric measurements was made. This work is expected to lead to a promising new tool for imaging the brain in vivo.

  1. TOPICAL REVIEW: Reliability aspects of the low-frequency noise behaviour of submicron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Simoen, E.; Claeys, C.

    1999-08-01

    This overview concentrates on reliability aspects of low-frequency (LF) noise in present-day CMOS technologies and transistors. It focuses on how different degradation mechanisms affect the LF noise behaviour and discusses the impact of technological modifications intended to enhance the lifetime of components and circuits. Whenever possible, the physical background will be highlighted, although for a detailed treatment dedicated reviews have to be consulted. The paper consists of two main parts. One covers the degradation mechanisms on a transistor level, including the impact of homogeneous and hot-carrier degradation and the effect of back-end processing steps and, more specifically, plasma damage on the LF noise. In the second part, the noise aspects of the metal interconnect lines related to the occurrence of electromigration are summarized. Because of the downscaling of technologies this aspect gains more and more weight and is, at the same time, a vital part of modern CMOS technology. Throughout the presentation, the possibilities of using noise as a lifetime-predictive tool are discussed and illustrated.

  2. CMOS-Compatible Fabrication for Photonic Crystal-Based Nanofluidic Structure

    NASA Astrophysics Data System (ADS)

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin; Song, Han; Xiong, Hui; Huang, Pengcheng

    2017-02-01

    Photonic crystal (PC)-based devices have been widely used since 1990s, while PC has just stepped into the research area of nanofluidic. In this paper, photonic crystal had been used as a complementary metal oxide semiconductors (CMOS) compatible part to create a nanofluidic structure. A nanofluidic structure prototype had been fabricated with CMOS-compatible techniques. The nanofluidic channels were sealed by direct bonding polydimethylsiloxane (PDMS) and the periodic gratings on photonic crystal structure. The PC was fabricated on a 4-in. Si wafer with Si3N4 as the guided mode layer and SiO2 film as substrate layer. The higher order mode resonance wavelength of PC-based nanofluidic structure had been selected, which can confine the enhanced electrical field located inside the nanochannel area. A design flow chart was used to guide the fabrication process. By optimizing the fabrication device parameters, the periodic grating of PC-based nanofluidic structure had a high-fidelity profile with fill factor at 0.5. The enhanced electric field was optimized and located within the channel area, and it can be used for PC-based nanofluidic applications with high performance.

  3. Advances in CMOS Solid-state Photomultipliers for Scintillation Detector Applications

    PubMed Central

    Christian, James F.; Stapels, Christopher J.; Johnson, Erik B.; McClish, Mickel; Dokhale, Purushotthom; Shah, Kanai S.; Mukhopadhyay, Sharmistha; Chapman, Eric; Augustine, Frank L.

    2014-01-01

    Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries. This work describes the characterization and performance of these devices for scintillation detector applications. This work also describes the terms contributing to device noise in terms of the excess noise of the SSPM, the binomial statistics governing the number of pixels triggered by a scintillation event, and the background, or thermal, count rate. The fluctuations associated with these terms limit the resolution of the signal pulse amplitude. We explore the use of pixel-level signal conditioning, and characterize the performance of a prototype SSPM device that preserves the digital nature of the signal. In addition, we explore designs of position-sensitive SSPM detectors for medical imaging applications, and characterize their performance. PMID:25540471

  4. Novel design techniques for noise-tolerant power-gated CMOS circuits

    NASA Astrophysics Data System (ADS)

    Rastogi, Rumi; Pandey, Sujata

    2017-01-01

    In this paper we have investigated the single phase sleep signal modulation technique, step-wise {V}{gs} technique and the three-phase reactivation technique to evaluate the noise characteristics of multi-threshold CMOS circuits used in communication systems. The stacking technique is also implemented in this paper for the sleep transistor. The stacking approach helps to minimize leakage power. The mode transition noise minimization techniques have been applied to 32-bit dynamic TSPC adder with stacked sleep transistors in a standard 45-nm CMOS process. The reactivation noise, delay and energy consumption of all the three techniques have been evaluated. It has been shown that the three phase modulation technique significantly minimizes the reactivation delay when the peak noise level is maintained the same for all three techniques. The three phase modulation technique shows 67.3% and 35% reduction in delay compared to the single phase and step-wise {V}{gs} modulation techniques respectively. The reactivation energy is also suppressed by 49.3% and 39.14% with respect to the single-phase and stepwise {V}{gs} techniques.

  5. A new curvature compensation technique for CMOS voltage reference using |VGS| and ΔVBE

    NASA Astrophysics Data System (ADS)

    Xuemin, Li; Mao, Ye; Gongyuan, Zhao; Yun, Zhang; Yiqiang, Zhao

    2016-05-01

    A new mixed curvature compensation technique for CMOS voltage reference is presented, which resorts to two sub-references with complementary temperature characteristics. The first sub-reference is the source-gate voltage |VGS|p of a PMOS transistor working in the saturated region. The second sub-reference is the weighted sum of gate-source voltages |VGS|n of NMOS transistors in the subthreshold region and the difference between two base-emitter voltages ΔVBE of bipolar junction transistors (BJTs). The voltage reference implemented utilizing the proposed curvature compensation technique exhibits a low temperature coefficient and occupies a small silicon area. The proposed technique was verified in 0.18 μm standard CMOS process technology. The performance of the circuit has been measured. The measured results show a temperature coefficient as low as 12.7 ppm/°C without trimming, over a temperature range from -40 to 120 °C, and the current consumption is 50 μA at room temperature. The measured power-supply rejection ratio (PSRR) is -31.2 dB @ 100 kHz. The circuit occupies an area of 0.045 mm2. Project supported by the National Natural Science Foundation of China (No. 61376032).

  6. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    NASA Astrophysics Data System (ADS)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; Han, Mikyung; Ji, Rong; Li, Xiaoting; Mei, Yuan; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhou, Wei

    2016-02-01

    We report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a < 15e- analog noise and a 200e- minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.

  7. A low-power column-parallel ADC for high-speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Han, Ye; Li, Quanliang; Shi, Cong; Liu, Liyuan; Wu, Nanjian

    2013-08-01

    This paper presents a 10-bit low-power column-parallel cyclic analog-to-digital converter (ADC) used for high-speed CMOS image sensor (CIS). An opamp sharing technique is used to save power and area. Correlated double sampling (CDS) circuit and programmable gain amplifier (PGA) are integrated in the ADC, which avoids stand-alone circuit blocks. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.03mm2 was implemented in a 0.18μm 1P4M CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 2MS/s. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.62 LSB and 2.1 LSB together with CDS, respectively. The power consumption from 1.8V supply is only 0.36mW.

  8. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Tou, Zhi-Qiang; Huang, Yinxi; Chen, Peng

    2009-09-01

    Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes.Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes. Electronic supplementary information (ESI) available: Process diagram of nanowire fabrication; specificity of nanowire detection; induced differentiation of 3T3-L1 cells. See DOI: 10.1039/b9nr00092e

  9. Using Polynomials to Simplify Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS Image Sensors

    PubMed Central

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-01-01

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient. PMID:26501287

  10. CMOS-Compatible Fabrication for Photonic Crystal-Based Nanofluidic Structure.

    PubMed

    Peng, Wang; Chen, Youping; Ai, Wu; Zhang, Dailin; Song, Han; Xiong, Hui; Huang, Pengcheng

    2017-12-01

    Photonic crystal (PC)-based devices have been widely used since 1990s, while PC has just stepped into the research area of nanofluidic. In this paper, photonic crystal had been used as a complementary metal oxide semiconductors (CMOS) compatible part to create a nanofluidic structure. A nanofluidic structure prototype had been fabricated with CMOS-compatible techniques. The nanofluidic channels were sealed by direct bonding polydimethylsiloxane (PDMS) and the periodic gratings on photonic crystal structure. The PC was fabricated on a 4-in. Si wafer with Si3N4 as the guided mode layer and SiO2 film as substrate layer. The higher order mode resonance wavelength of PC-based nanofluidic structure had been selected, which can confine the enhanced electrical field located inside the nanochannel area. A design flow chart was used to guide the fabrication process. By optimizing the fabrication device parameters, the periodic grating of PC-based nanofluidic structure had a high-fidelity profile with fill factor at 0.5. The enhanced electric field was optimized and located within the channel area, and it can be used for PC-based nanofluidic applications with high performance.

  11. Using polynomials to simplify fixed pattern noise and photometric correction of logarithmic CMOS image sensors.

    PubMed

    Li, Jing; Mahmoodi, Alireza; Joseph, Dileepan

    2015-10-16

    An important class of complementary metal-oxide-semiconductor (CMOS) image sensors are those where pixel responses are monotonic nonlinear functions of light stimuli. This class includes various logarithmic architectures, which are easily capable of wide dynamic range imaging, at video rates, but which are vulnerable to image quality issues. To minimize fixed pattern noise (FPN) and maximize photometric accuracy, pixel responses must be calibrated and corrected due to mismatch and process variation during fabrication. Unlike literature approaches, which employ circuit-based models of varying complexity, this paper introduces a novel approach based on low-degree polynomials. Although each pixel may have a highly nonlinear response, an approximately-linear FPN calibration is possible by exploiting the monotonic nature of imaging. Moreover, FPN correction requires only arithmetic, and an optimal fixed-point implementation is readily derived, subject to a user-specified number of bits per pixel. Using a monotonic spline, involving cubic polynomials, photometric calibration is also possible without a circuit-based model, and fixed-point photometric correction requires only a look-up table. The approach is experimentally validated with a logarithmic CMOS image sensor and is compared to a leading approach from the literature. The novel approach proves effective and efficient.

  12. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell.

    PubMed

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2016-04-01

    We present a 16 × 16 CMOS biosensor array aiming at impedance detection of whole-cell bacteria. Each 14 μm × 16 μm pixel comprises high-sensitive passivated microelectrodes connected to an innovative readout interface based on charge sharing principle for capacitance-to-voltage conversion and subthreshold gain stage to boost the sensitivity. Fabricated in a 0.25 μm CMOS process, the capacitive array was experimentally shown to perform accurate dielectric measurements of the electrolyte up to electrical conductivities of 0.05 S/m, with maximal sensitivity of 55 mV/fF and signal-to-noise ratio (SNR) of 37 dB. As biosensing proof of concept, real-time detection of Staphylococcus epidermidis binding events was experimentally demonstrated and provides detection limit of ca. 7 bacteria per pixel and sensitivity of 2.18 mV per bacterial cell. Models and simulations show good matching with experimental results and provide a comprehensive analysis of the sensor and circuit system. Advantages, challenges and limits of the proposed capacitive biosensor array are finally described with regards to literature. With its small area and low power consumption, the present capacitive array is particularly suitable for portable point-of-care (PoC) diagnosis tools and lab-on-chip (LoC) systems.

  13. Automatic Synthesis of CMOS Algorithmic Analog To-Digital Converter.

    NASA Astrophysics Data System (ADS)

    Jusuf, Gani

    The steady decrease in technological feature size is allowing increasing levels of integration in analog/digital interface functions. These functions consist of analog as well as digital circuits. While the turn around time for an all digital IC chip is very short due to the maturity of digital IC computer-aided design (CAD) tools over the last ten years, most analog circuits have to be designed manually due to the lack of analog IC CAD tools. As a result, analog circuit design becomes the bottleneck in the design of mixed signal processing chips. One common analog function in a mixed signal processing chip is an analog-to-digital conversion (ADC) function. This function recurs frequently but with varying performance requirements. The objective of this research is to study the design methodology of a compilation program capable of synthesizing ADC's with a broad range of sampling rates and resolution, and silicon area and performance comparable with the manual approach. The automatic compilation of the ADC function is a difficult problem mainly because ADC techniques span such a wide spectrum of performance, with radically different implementations being optimum for different ranges of conversion range, resolution, and power dissipation. We will show that a proper choice of the ADC architectures and the incorporation of many analog circuit design techniques will simplify the synthesis procedure tremendously. Moreover, in order to speed up the device sizing, hierarchical optimization procedure and behavioral simulation are implemented into the ADC module generation steps. As a result of this study, a new improved algorithmic ADC without the need of high precision comparators has been developed. This type of ADC lends itself to automatic generation due to its modularity, simplicity, small area consumption, moderate speed, low power dissipation, and single parameter trim capability that can be added at high resolution. Furthermore, a performance-driven CMOS ADC module

  14. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  15. An Ultra-Low Power CMOS Image Sensor with On-Chip Energy Harvesting and Power Management Capability

    PubMed Central

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U.

    2015-01-01

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle. PMID:25756863

  16. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  17. An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability.

    PubMed

    Cevik, Ismail; Huang, Xiwei; Yu, Hao; Yan, Mei; Ay, Suat U

    2015-03-06

    An ultra-low power CMOS image sensor with on-chip energy harvesting and power management capability is introduced in this paper. The photodiode pixel array can not only capture images but also harvest solar energy. As such, the CMOS image sensor chip is able to switch between imaging and harvesting modes towards self-power operation. Moreover, an on-chip maximum power point tracking (MPPT)-based power management system (PMS) is designed for the dual-mode image sensor to further improve the energy efficiency. A new isolated P-well energy harvesting and imaging (EHI) pixel with very high fill factor is introduced. Several ultra-low power design techniques such as reset and select boosting techniques have been utilized to maintain a wide pixel dynamic range. The chip was designed and fabricated in a 1.8 V, 1P6M 0.18 µm CMOS process. Total power consumption of the imager is 6.53 µW for a 96 × 96 pixel array with 1 V supply and 5 fps frame rate. Up to 30 μW of power could be generated by the new EHI pixels. The PMS is capable of providing 3× the power required during imaging mode with 50% efficiency allowing energy autonomous operation with a 72.5% duty cycle.

  18. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  19. A Dynamic Range Enhanced Readout Technique with a Two-Step TDC for High Speed Linear CMOS Image Sensors.

    PubMed

    Gao, Zhiyuan; Yang, Congjie; Xu, Jiangtao; Nie, Kaiming

    2015-11-06

    This paper presents a dynamic range (DR) enhanced readout technique with a two-step time-to-digital converter (TDC) for high speed linear CMOS image sensors. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A column-parallel ADC based on a two-step TDC is utilized to improve the conversion rate. The conversion is divided into coarse phase and fine phase. An error calibration scheme is also proposed to correct quantization errors caused by propagation delay skew within -T(clk)~+T(clk). A linear CMOS image sensor pixel array is designed in the 0.13 μm CMOS process to verify this DR-enhanced high speed readout technique. The post simulation results indicate that the dynamic range of readout circuit is 99.02 dB and the ADC achieves 60.22 dB SNDR and 9.71 bit ENOB at a conversion rate of 2 MS/s after calibration, with 14.04 dB and 2.4 bit improvement, compared with SNDR and ENOB of that without calibration.

  20. An OTA-based CMOS bandpass filter for NMR applications

    NASA Astrophysics Data System (ADS)

    Shesharaman, K. N.; Kittur, Harish M.

    2012-12-01

    One of the very popular medical imaging techniques used in present-day radiology is the magnetic resonance imaging (MRI) which is based on the phenomenon of nuclear magnetic resonance (NMR) in the hydrogen atoms present in the body. There is ever-increasing research in electronic circuit design for biomedical applications using NMR. Earlier magnetic resonance imagers operated at a magnetic field strength of 0.3 T. The present imagers operate at a magnetic field of 1.5 T, the resonance frequency of the nuclei being 64 MHz. This article presents a CMOS bandpass filter (BPF) design for NMR applications. The overall BPF design is realised in 180 nm CMOS technology which occupies an active area of 24.23 × 33.125 µm2 and consumes 0.165 mW of power from a 1.5 V supply.