Sample records for n2 fixing microorganisms

  1. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean.

    PubMed

    Robidart, Julie C; Church, Matthew J; Ryan, John P; Ascani, François; Wilson, Samuel T; Bombar, Deniz; Marin, Roman; Richards, Kelvin J; Karl, David M; Scholin, Christopher A; Zehr, Jonathan P

    2014-06-01

    Nitrogen-fixing microorganisms (diazotrophs) are keystone species that reduce atmospheric dinitrogen (N2) gas to fixed nitrogen (N), thereby accounting for much of N-based new production annually in the oligotrophic North Pacific. However, current approaches to study N2 fixation provide relatively limited spatiotemporal sampling resolution; hence, little is known about the ecological controls on these microorganisms or the scales over which they change. In the present study, we used a drifting robotic gene sensor to obtain high-resolution data on the distributions and abundances of N2-fixing populations over small spatiotemporal scales. The resulting measurements demonstrate that concentrations of N2 fixers can be highly variable, changing in abundance by nearly three orders of magnitude in less than 2 days and 30 km. Concurrent shipboard measurements and long-term time-series sampling uncovered a striking and previously unrecognized correlation between phosphate, which is undergoing long-term change in the region, and N2-fixing cyanobacterial abundances. These results underscore the value of high-resolution sampling and its applications for modeling the effects of global change.

  2. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal.

    PubMed

    Das, Amal Chandra; Debnath, Anjan

    2006-11-01

    A field experiment has been conducted with four systemic herbicides viz., butachlor [N-(butoxymethyl)-2-chloro-2',6'-diethyl-acetanilide], fluchloralin [N-(2-chloroethyl)-(2,6-dinitro-N-propyl-4-trifluoromethyl) aniline], oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopro poxyphenyl)-1,3,4-oxadiazol-2-one] and oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenyl)-4-(trifluoromethyl) benzene] at their recommended field rates (2.0, 1.5, 0.4 and 0.12kga.i.ha(-1), respectively) to investigate their effects on growth and activities of aerobic non-symbiotic N(2)-fixing bacteria and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in the rhizosphere soils as well as yield of the rice crop (Oryza sativa L cv. IR-36). Application of herbicides, in general, highly stimulated the population and activities of the target microorganisms, which resulted in a greater amount of atmospheric nitrogen fixation and phosphate solubilization in the rhizosphere soils of the test crop. The greater microbial activities subsequently augmented the mineralization and availability of nitrogen and phosphorus in the soil solution, which in turn increased the yield of the crop. Among the herbicides, oxyfluorfen was most stimulative followed by fluchloralin and oxadiazon in augmenting the microbial activities in soil. Butachlor also accentuated the mineralization and availability of nitrogen due to higher incitement of non-symbiotic N(2)-fixing bacteria in paddy soil. The grain and straw yields of the crop were also significantly increased due to the application of oxyfluorfen (20.2% and 21%) followed by fluchloralin (13.1% and 15.4%) and butachlor (9.1% and 10.2%), respectively.

  3. Controlling cyanobacterial blooms in hypertrophic Lake Taihu, China: will nitrogen reductions cause replacement of non-N2 fixing by N2 fixing taxa?

    PubMed

    Paerl, Hans W; Xu, Hai; Hall, Nathan S; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L; Dong, Linghan; McCarthy, Mark J; Joyner, Alan R

    2014-01-01

    Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China's third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible.

  4. Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N2 Fixing by N2 Fixing Taxa?

    PubMed Central

    Paerl, Hans W.; Xu, Hai; Hall, Nathan S.; Zhu, Guangwei; Qin, Boqiang; Wu, Yali; Rossignol, Karen L.; Dong, Linghan; McCarthy, Mark J.; Joyner, Alan R.

    2014-01-01

    Excessive anthropogenic nitrogen (N) and phosphorus (P) inputs have caused an alarming increase in harmful cyanobacterial blooms, threatening sustainability of lakes and reservoirs worldwide. Hypertrophic Lake Taihu, China’s third largest freshwater lake, typifies this predicament, with toxic blooms of the non-N2 fixing cyanobacteria Microcystis spp. dominating from spring through fall. Previous studies indicate N and P reductions are needed to reduce bloom magnitude and duration. However, N reductions may encourage replacement of non-N2 fixing with N2 fixing cyanobacteria. This potentially counterproductive scenario was evaluated using replicate, large (1000 L), in-lake mesocosms during summer bloom periods. N+P additions led to maximum phytoplankton production. Phosphorus enrichment, which promoted N limitation, resulted in increases in N2 fixing taxa (Anabaena spp.), but it did not lead to significant replacement of non-N2 fixing with N2 fixing cyanobacteria, and N2 fixation rates remained ecologically insignificant. Furthermore, P enrichment failed to increase phytoplankton production relative to controls, indicating that N was the most limiting nutrient throughout this period. We propose that Microcystis spp. and other non-N2 fixing genera can maintain dominance in this shallow, highly turbid, nutrient-enriched lake by outcompeting N2 fixing taxa for existing sources of N and P stored and cycled in the lake. To bring Taihu and other hypertrophic systems below the bloom threshold, both N and P reductions will be needed until the legacy of high N and P loading and sediment nutrient storage in these systems is depleted. At that point, a more exclusive focus on P reductions may be feasible. PMID:25405474

  5. Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes

    PubMed Central

    Xie, Jian-Bo; Du, Zhenglin; Bai, Lanqing; Tian, Changfu; Zhang, Yunzhi; Xie, Jiu-Yan; Wang, Tianshu; Liu, Xiaomeng; Chen, Xi; Cheng, Qi; Chen, Sanfeng; Li, Jilun

    2014-01-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe–S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation. PMID:24651173

  6. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling.

    PubMed

    Cui, Li; Yang, Kai; Li, Hong-Zhe; Zhang, Han; Su, Jian-Qiang; Paraskevaidi, Maria; Martin, Francis L; Ren, Bin; Zhu, Yong-Guan

    2018-04-17

    Nitrogen (N) fixation is the conversion of inert nitrogen gas (N 2 ) to bioavailable N essential for all forms of life. N 2 -fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15 N 2 stable isotope probing (SIP) was developed to discern N 2 -fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N 2 -fixing bacteria), along with a marked 15 N 2 -induced Cyt c band shift, generated a highly distinguishable biomarker for N 2 fixation. 15 N 2 -induced shift was consistent well with 15 N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N 2 -fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15 N 2 percentage allowed quantification of N 2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.

  7. N abundance of nodules as an indicator of N metabolism in n(2)-fixing plants.

    PubMed

    Shearer, G; Feldman, L; Bryan, B A; Skeeters, J L; Kohl, D H; Amarger, N; Mariotti, F; Mariotti, A

    1982-08-01

    This paper expands upon previous reports of (15)N elevation in nodules (compared to other tissues) of N(2)-fixing plants. N(2)-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in (15)N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N(2)-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in (15)N. Thus, (15)N elevation in nodules of these plants depends on active N(2)-fixation. Results obtained so far on the generality of (15)N enrichment in N(2)-fixing nodules suggest that only the nodules of plants which actively fix N(2) and which transport allantoin or allantoic acid exhibit (15)N enrichment.

  8. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  9. 15N Abundance of Nodules as an Indicator of N Metabolism in N2-Fixing Plants 1

    PubMed Central

    Shearer, Georgia; Feldman, Lori; Bryan, Barbara A.; Skeeters, Jerri L.; Kohl, Daniel H.; Amarger, Nöelle; Mariotti, Françoise; Mariotti, André

    1982-01-01

    This paper expands upon previous reports of 15N elevation in nodules (compared to other tissues) of N2-fixing plants. N2-Fixing nodules of Glycine max (soybeans), Vigna unguiculata (cowpea), Phaseolus vulgaris (common bean), Phaseolus coccineus (scarlet runner bean), Prosopis glandulosa (mesquite), and Olneya tesota (desert ironwood) were enriched in 15N. Nodules of Vicia faba (fava beans), Arachis hypogaea (peanut), Trifolium pratense (red clover), Pisum sativum (pea), Lathyrus sativus (grass pea), Medicago sativa (alfalfa), and Lupinus mutabilis (South American lupine) were not; nor were the nodules of nine species of N2-fixing nonlegumes. The nitrogen of ineffective nodules of soybeans and cowpeas was not enriched in 15N. Thus, 15N elevation in nodules of these plants depends on active N2-fixation. Results obtained so far on the generality of 15N enrichment in N2-fixing nodules suggest that only the nodules of plants which actively fix N2 and which transport allantoin or allantoic acid exhibit 15N enrichment. PMID:16662517

  10. Metabolic versatility of a novel N2 -fixing Alphaproteobacterium isolated from a marine oxygen minimum zone.

    PubMed

    Martínez-Pérez, Clara; Mohr, Wiebke; Schwedt, Anne; Dürschlag, Julia; Callbeck, Cameron M; Schunck, Harald; Dekaezemacker, Julien; Buckner, Caroline R T; Lavik, Gaute; Fuchs, Bernhard M; Kuypers, Marcel M M

    2018-02-01

    The N 2 -fixing (diazotrophic) community in marine ecosystems is dominated by non-cyanobacterial microorganisms. Yet, very little is known about their identity, function and ecological relevance due to a lack of cultured representatives. Here we report a novel heterotrophic diazotroph isolated from the oxygen minimum zone (OMZ) off Peru. The new species belongs to the genus Sagittula (Rhodobacteraceae, Alphaproteobacteria) and its capability to fix N 2 was confirmed in laboratory experiments. Genome sequencing revealed that it is a strict heterotroph with a high versatility in substrate utilization and energy acquisition mechanisms. Pathways for sulfide oxidation and nitrite reduction to nitrous oxide are encoded in the genome and might explain the presence throughout the Peruvian OMZ. The genome further indicates that this novel organism could be in direct interaction with other microbes or particles. NanoSIMS analyses were used to compare the metabolic potential of S. castanea with single-cell activity in situ; however, N 2 fixation by this diazotroph could not be detected at the isolation site. While the biogeochemical impact of S. castanea is yet to be resolved, its abundance and widespread distribution suggests that its potential to contribute to the marine N input could be significant at a larger geographical scale. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Why Fix N2 in High N Supply Regions?

    NASA Astrophysics Data System (ADS)

    Landolfi, A.; Koeve, W.; Oschlies, A.

    2016-02-01

    Growing slowly, marine N2 fixers are expected to be competitive where nitrogen (N) supply falls short relative to that of phosphorus (P) with respect to the cellular N:P ratio (R) of non-fixing phytoplankton. Why do N2 fixers persist in the the oligotrophic North Atlantic where the ratio of nutrients supplied to the surface is elevated in N relative to the average R (16:1)? Combining resource competition theory and a global coupled ecosystem-circulation model we find a novel mechanism that can expand the ecological niche of N2 fixers also to regions where the nutrient supply is high in N relative to R, offering a new perspective on the environmental controls of marine N2-fixers.

  12. Interannual Variations in Global Net Carbon Production in the Absence of Fixed Nitrogen: Implication of New Production Supported by Dinitrogen Fixing Microorganisms

    NASA Astrophysics Data System (ADS)

    Lee, K.; Ko, Y. H.

    2016-12-01

    In the ocean without the measurable levels of nitrate, new production, i.e. the amount of carbon transported from the sunlit upper water to deep water, was estimated by summing the seasonal reduction in the total dissolved inorganic carbon (NCT = CT x 35/S) concentration in the surface mixed layer. Total reduction in the mixed layer NCT inventory in each 4o latitude by 5o longitude was calculated using an annual cycle of NCT, which was deduced from global monthly records of partial pressure of CO2 (based on more than 6.5 million data) and total alkalinity fields using thermodynamic models. The estimation of total NCT reduction for each pixel was then corrected for small changes caused by atmospheric nitrogen deposition and net air-sea CO2 exchange. This novel method yields 0.8 ± 0.3 petagrams of global new production per year (Pg C yr, Pg = 1015 grams), which is likely to be mediated exclusively by dinitrogen (N2) fixing microorganisms. These organisms utilize the inexhaustible pool of dissolved N2 and thereby circumvent nitrate limitation, particularly in the oligotrophic tropical and subtropical ocean.

  13. Impacts of an invasive N2-fixing tree on Hawaiian stream water quality

    Treesearch

    Tracy N. Wiegner; Flint Hughes; Lisa M. Shizuma; David K. Bishaw; Mark E. Manuel

    2013-01-01

    N2-fixing trees can affect stream water quality. This has been documented in temperate streams, but not in tropical ones, even though N2-fixing trees are prevalent in the tropics. We investigated the effects of the introduced, invasive tree, Falcataria moluccanaalbiziaon water...

  14. Ecological consequences of the expansion of N2-fixing plants in cold biomes

    USGS Publications Warehouse

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D.; Reed, Sasha C.; Sigurdsson, Bjarni D.; Körner, Christian

    2014-01-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  15. Elevated CO(2) and nitrogen effects on a dominant N(2)- fixing shrub

    NASA Astrophysics Data System (ADS)

    Wallace, Alison Marie

    The responses of N2-fixing species to global change are likely to be an important component in predicting the existence and direction of feedbacks between carbon and nitrogen cycles, as both are radically changing at an unprecedented pace. Increased carbon storage may be more likely in ecosystems not limited by available nitrogen, such as those with abundant N2-fixing species. If elevated CO2 affects growth and N2-fixation of dominant N2-fixers, then non-fixers in the system may experience indirect effects through changes in competitive interactions and nitrogen availability. The goal of this research was to investigate these effects on the growth, competitive ability, leaf and litter chemistry, and litter decomposition of Lupinus arboreus, a N2-fixing evergreen shrub, and to test the central hypothesis that an increase in growth and competitive ability would occur at low nitrogen and high CO2. In a growth chamber experiment, three CO2 levels, 350, 500, and 650 ppm were crossed with two nitrogen levels. Lupins were grown alone or in competition with an introduced annual grass, Bromus diandrus. Contrary to findings from previous studies of positive growth and competition responses by N2-fixers, Lupinus seedlings demonstrated no significant responses to CO2. Nitrogen was far more important than CO2 in affecting relative competitive ability. Nitrogen, alkaloids, and C:N ratios in fresh foliage did not change with CO2 or nitrogen. Carbon and biomass increased slightly in lupins at 500 ppm only, suggesting an early but limited growth response. Nitrogen did decrease in lupin litter at elevated CO2, but there were no effects on litter decomposition rates in the field. Simulations by the CENTURY surface litter decomposition model predicted the litter decomposition rates of field-grown litter nearly perfectly, and predicted the general direction but underestimated the rate of litter from the greenhouse grown at different CO2 levels. Very low or high nitrogen decreased

  16. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed Central

    Hedin, Lars O.; Leake, Jonathan R.

    2017-01-01

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58–42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35–65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation. PMID:28814651

  17. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  18. N2-fixation, ammonium release and N-transfer to the microbial and classical food web within a plankton community.

    PubMed

    Adam, Birgit; Klawonn, Isabell; Svedén, Jennie B; Bergkvist, Johanna; Nahar, Nurun; Walve, Jakob; Littmann, Sten; Whitehouse, Martin J; Lavik, Gaute; Kuypers, Marcel M M; Ploug, Helle

    2016-02-01

    We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with (15)N2, Aphanizomenon spp. showed a strong (15)N-enrichment implying substantial (15)N2-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of (15)NH4(+) from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4(+) fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nm) as compared with N2-fixation within colonies. No N2-fixation was detected in autotrophic microorganisms <5 μm, which relied on NH4(+) uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N2 as NH4(+). However, NH4(+) did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of ~5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N2 as NH4(+), which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought.

  19. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  20. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    NASA Astrophysics Data System (ADS)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  1. New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehr, J.P.; Mellon, M.T.; Zani, S.

    1998-09-01

    Oligotrophic oceanic waters of the central ocean gyres typically have extremely low dissolved fixed inorganic nitrogen concentrations, but few nitrogen-fixing microorganisms from the oceanic environment have been cultivated. Nitrogenase gene (nifH) sequences amplified directly from oceanic waters showed that the open ocean contains more diverse diazotrophic microbial populations and more diverse habitats for nitrogen fixers than previously observed by classical microbiological techniques. Nitrogenase genes derived from unicellular and filamentous cyanobacteria, as well as from the {alpha} and {gamma} subdivisions of the class Proteobacteria, were found in both the Atlantic and Pacific oceans. nifH sequences that cluster phylogenetically with sequences frommore » sulfate reducers or clostridia were found associated with planktonic crustaceans. Nitrogenase sequence types obtained from invertebrates represented phylotypes distinct from the phylotypes detected in the picoplankton size fraction. The results indicate that there are in the oceanic environment several distinct potentially nitrogen-fixing microbial assemblages that include representatives of diverse phylotypes.« less

  2. Fixed point and anomaly mediation in partial {\\boldsymbol{N}}=2 supersymmetric standard models

    NASA Astrophysics Data System (ADS)

    Yin, Wen

    2018-01-01

    Motivated by the simple toroidal compactification of extra-dimensional SUSY theories, we investigate a partial N = 2 supersymmetric (SUSY) extension of the standard model which has an N = 2 SUSY sector and an N = 1 SUSY sector. We point out that below the scale of the partial breaking of N = 2 to N = 1, the ratio of Yukawa to gauge couplings embedded in the original N = 2 gauge interaction in the N = 2 sector becomes greater due to a fixed point. Since at the partial breaking scale the sfermion masses in the N = 2 sector are suppressed due to the N = 2 non-renormalization theorem, the anomaly mediation effect becomes important. If dominant, the anomaly-induced masses for the sfermions in the N = 2 sector are almost UV-insensitive due to the fixed point. Interestingly, these masses are always positive, i.e. there is no tachyonic slepton problem. From an example model, we show interesting phenomena differing from ordinary MSSM. In particular, the dark matter particle can be a sbino, i.e. the scalar component of the N = 2 vector multiplet of {{U}}{(1)}Y. To obtain the correct dark matter abundance, the mass of the sbino, as well as the MSSM sparticles in the N = 2 sector which have a typical mass pattern of anomaly mediation, is required to be small. Therefore, this scenario can be tested and confirmed in the LHC and may be further confirmed by the measurement of the N = 2 Yukawa couplings in future colliders. This model can explain dark matter, the muon g-2 anomaly, and gauge coupling unification, and relaxes some ordinary problems within the MSSM. It is also compatible with thermal leptogenesis.

  3. Deep-Sea Archaea Fix and Share Nitrogen in Methane-Consuming Microbial Consortia

    NASA Astrophysics Data System (ADS)

    Dekas, Anne E.; Poretsky, Rachel S.; Orphan, Victoria J.

    2009-10-01

    Nitrogen-fixing (diazotrophic) microorganisms regulate productivity in diverse ecosystems; however, the identities of diazotrophs are unknown in many oceanic environments. Using single-cell-resolution nanometer secondary ion mass spectrometry images of 15N incorporation, we showed that deep-sea anaerobic methane-oxidizing archaea fix N2, as well as structurally similar CN-, and share the products with sulfate-reducing bacterial symbionts. These archaeal/bacterial consortia are already recognized as the major sink of methane in benthic ecosystems, and we now identify them as a source of bioavailable nitrogen as well. The archaea maintain their methane oxidation rates while fixing N2 but reduce their growth, probably in compensation for the energetic burden of diazotrophy. This finding extends the demonstrated lower limits of respiratory energy capable of fueling N2 fixation and reveals a link between the global carbon, nitrogen, and sulfur cycles.

  4. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    PubMed

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO(3)(-)-depleted, fully oxygenated (surface) waters. In NO(3)(-)-enriched (>1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  5. Tolerance or avoidance: drought frequency determines the response of an N2 -fixing tree.

    PubMed

    Minucci, Jeffrey M; Miniat, Chelcy Ford; Teskey, Robert O; Wurzburger, Nina

    2017-07-01

    Climate change is increasing drought frequency, which may affect symbiotic N 2 fixation (SNF), a process that facilitates ecosystem recovery from disturbance. Here, we assessed the effect of drought frequency on the ecophysiology and SNF rate of a common N 2 -fixing tree in eastern US forests. We grew Robinia pseudoacacia seedlings under the same mean soil moisture, but with different drought frequency caused by wet-dry cycles of varying periodicity. We found no effect of drought frequency on final biomass or mean SNF rate. However, seedlings responded differently to wet and dry phases depending on drought frequency. Under low-frequency droughts, plants fixed carbon (C) and nitrogen (N) at similar rates during wet and dry phases. Conversely, under high-frequency droughts, plants fixed C and N at low rates during dry phases and at high rates during wet phases. Our findings suggest that R. pseudoacacia growth is resistant to increased drought frequency because it employs two strategies - drought tolerance or drought avoidance, followed by compensation. SNF may play a role in both by supplying N to leaf tissues for acclimation and by facilitating compensatory growth following drought. Our findings point to SNF as a mechanism for plants and ecosystems to cope with drought. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Response of free-living nitrogen-fixing microorganisms to land use change in the Amazon rainforest.

    PubMed

    Mirza, Babur S; Potisap, Chotima; Nüsslein, Klaus; Bohannan, Brendan J M; Rodrigues, Jorge L M

    2014-01-01

    The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth.

  7. Assessment of free-living nitrogen fixing microorganisms for commercial nitrogen fixation. [economic analysis of ammonia production

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Wallace, C. J.

    1978-01-01

    Ammonia production by Klebsiella pneumoniae is not economical with present strains and improving nitrogen fixation to its theoretical limits in this organism is not sufficient to achieve economic viability. Because the value of both the hydrogen produced by this organism and the methane value of the carbon source required greatly exceed the value of the ammonia formed, ammonia (fixed nitrogen) should be considered the by-product. The production of hydrogen by KLEBSIELLA or other anaerobic nitrogen fixers should receive additional study, because the activity of nitrogenase offers a significant improvement in hydrogen production. The production of fixed nitrogen in the form of cell mass by Azotobacter is also uneconomical and the methane value of the carbon substrate exceeds the value of the nitrogen fixed. Parametric studies indicate that as efficiencies approach the theoretical limits the economics may become competitive. The use of nif-derepressed microorganisms, particularly blue-green algae, may have significant potential for in situ fertilization in the environment.

  8. H 2-saturation of high affinity H 2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    DOE PAGES

    Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G.; ...

    2016-03-10

    Soil microbial communities are continuously exposed to H 2 diffusing into the soil from the atmosphere. N 2-fixing nodules represent a peculiar microniche in soil where H 2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv). In this study, we investigated the impact of H 2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H 2 exposure from the atmosphere and N 2-fixing nodules. Biphasic kinetic parameters governing H 2 oxidation activity in soil changed drastically upon elevated H 2 exposure, corresponding to a slight but significant decay ofmore » high affinity H 2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H 2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H 2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H 2 exposure, suggesting that H 2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H 2-rich environments exert a direct influence on soil H 2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities.« less

  9. H2-saturation of high affinity H2-oxidizing bacteria alters the ecological niche of soil microorganisms unevenly among taxonomic groups

    PubMed Central

    Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G.

    2016-01-01

    Soil microbial communities are continuously exposed to H2 diffusing into the soil from the atmosphere. N2-fixing nodules represent a peculiar microniche in soil where H2 can reach concentrations up to 20,000 fold higher than in the global atmosphere (0.530 ppmv). In this study, we investigated the impact of H2 exposure on soil bacterial community structure using dynamic microcosm chambers simulating soil H2 exposure from the atmosphere and N2-fixing nodules. Biphasic kinetic parameters governing H2 oxidation activity in soil changed drastically upon elevated H2 exposure, corresponding to a slight but significant decay of high affinity H2-oxidizing bacteria population, accompanied by an enrichment or activation of microorganisms displaying low-affinity for H2. In contrast to previous studies that unveiled limited response by a few species, the relative abundance of 958 bacterial ribotypes distributed among various taxonomic groups, rather than a few distinct taxa, was influenced by H2 exposure. Furthermore, correlation networks showed important alterations of ribotype covariation in response to H2 exposure, suggesting that H2 affects microbe-microbe interactions in soil. Taken together, our results demonstrate that H2-rich environments exert a direct influence on soil H2-oxidizing bacteria in addition to indirect effects on other members of the bacterial communities. PMID:26989620

  10. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify.

    PubMed

    Dijkhuizen, Laura W; Brouwer, Paul; Bolhuis, Henk; Reichart, Gert-Jan; Koppers, Nils; Huettel, Bruno; Bolger, Anthony M; Li, Fay-Wei; Cheng, Shifeng; Liu, Xin; Wong, Gane Ka-Shu; Pryer, Kathleen; Weber, Andreas; Bräutigam, Andrea; Schluepmann, Henriette

    2018-01-01

    Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N 2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N 2 -fixation. 15 N 2 incorporation was active in ferns with N. azollae but not in ferns without. N 2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N 2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O 2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N 2 O. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates

    PubMed Central

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-01-01

    Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3−-depleted, fully oxygenated (surface) waters. In NO3−-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  12. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    NASA Astrophysics Data System (ADS)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  13. N-nitrosodimethylamine, nitrate and nitrate-reducing microorganisms in human milk.

    PubMed

    Uibu, J; Tauts, O; Levin, A; Shimanovskaya, N; Matto, R

    1996-10-01

    Of 54 milk samples from 54 healthy nursing women analysed for volatile N-nitrosamines, 42 appeared negative. Trace amounts (below the detection limit 0.5 microgram l-1) of N-nitrosodimethylamine were detected in the milk of 10 mothers and two samples contained this compound at 1.1 and 1.2 micrograms 1-1 respectively. Almost all samples investigated contained nitrate (mean 2.9 +/- 2.3 mg1-1 and nitrate reducing microorganisms (mean 4.2 +/- 1.0 log ml-1). The recent finding of N-nitrosodimethylamine in human milk gives evidence of the continuous endogenous formation of N-nitrosamines.

  14. Arylamine n-acetyltransferases in eukaryotic microorganisms

    USDA-ARS?s Scientific Manuscript database

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  15. Tolerance or avoidance: drought frequency determines the response of an N 2 -fixing tree

    Treesearch

    Jeffrey M. Minucci; Chelcy Ford Miniat; Robert O. Teskey; Nina Wurzburger

    2017-01-01

    • Climate change is increasing drought frequency, which may affect symbiotic N2 fixation (SNF), a process that facilitates ecosystem recovery from disturbance. Here, we assessed the effect of drought frequency on the ecophysiology and SNF rate of a common N2-fixing tree in eastern US forests.•We grew Robinia pseudoacacia seedlings under the same mean soil...

  16. Response of Free-Living Nitrogen-Fixing Microorganisms to Land Use Change in the Amazon Rainforest

    PubMed Central

    Mirza, Babur S.; Potisap, Chotima; Nüsslein, Klaus; Bohannan, Brendan J. M.

    2014-01-01

    The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth. PMID:24162570

  17. Acidification Enhances Hybrid N2O Production Associated with Aquatic Ammonia-Oxidizing Microorganisms

    PubMed Central

    Frame, Caitlin H.; Lau, Evan; Nolan, E. Joseph; Goepfert, Tyler J.; Lehmann, Moritz F.

    2017-01-01

    Ammonia-oxidizing microorganisms are an important source of the greenhouse gas nitrous oxide (N2O) in aquatic environments. Identifying the impact of pH on N2O production by ammonia oxidizers is key to understanding how aquatic greenhouse gas fluxes will respond to naturally occurring pH changes, as well as acidification driven by anthropogenic CO2. We assessed N2O production rates and formation mechanisms by communities of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in a lake and a marine environment, using incubation-based nitrogen (N) stable isotope tracer methods with 15N-labeled ammonium (15NH4+) and nitrite (15NO2−), and also measurements of the natural abundance N and O isotopic composition of dissolved N2O. N2O production during incubations of water from the shallow hypolimnion of Lake Lugano (Switzerland) was significantly higher when the pH was reduced from 7.54 (untreated pH) to 7.20 (reduced pH), while ammonia oxidation rates were similar between treatments. In all incubations, added NH4+ was the source of most of the N incorporated into N2O, suggesting that the main N2O production pathway involved hydroxylamine (NH2OH) and/or NO2− produced by ammonia oxidation during the incubation period. A small but significant amount of N derived from exogenous/added 15NO2− was also incorporated into N2O, but only during the reduced-pH incubations. Mass spectra of this N2O revealed that NH4+ and 15NO2− each contributed N equally to N2O by a “hybrid-N2O” mechanism consistent with a reaction between NH2OH and NO2−, or compounds derived from these two molecules. Nitrifier denitrification was not an important source of N2O. Isotopomeric N2O analyses in Lake Lugano were consistent with incubation results, as 15N enrichment of the internal N vs. external N atoms produced site preferences (25.0–34.4‰) consistent with NH2OH-dependent hybrid-N2O production. Hybrid-N2O formation was also observed during incubations of seawater from coastal Namibia

  18. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    PubMed

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  19. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico.

    PubMed

    Estrada, Paulina; Mavingui, Patrick; Cournoyer, Benoit; Fontaine, Fanette; Balandreau, Jacques; Caballero-Mellado, Jesus

    2002-04-01

    In the frame of a survey of potentially endophytic N2-fixing Burkholderia associated with maize in Mexico, its country of origin, the soil of an indigenous maize field near Oaxaca was studied. Under laboratory conditions, plant seedlings of two ancient maize varieties were used as a trap to select endophyte candidates from the soil sample. Among the N2 fixers isolated from inside plant tissues and able to grow on PCAT medium, the most abundant isolates belonged to genus Burkholderia (API 20NE, rrs sequences). Representative isolates obtained from roots and shoots of different plants appeared identical (rrs and nifH RFLP), showing that they were closely related. In addition, their 16S rDNA sequences differed from described Burkholderia species and, phylogenetically, they constituted a separate deep-branching new lineage in genus Burkholderia. This indicated that these isolates probably constituted a new species. An inoculation experiment confirmed that these N2-fixing Burkholderia isolates could densely colonize the plant tissues of maize. More isolates of this group were subsequently obtained from field-grown maize and teosinte plants. It was hypothesized that strains of this species had developed a sort of primitive symbiosis with one of their host plants, teosinte, which persisted during the domestication of teosinte into maize.

  20. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    EPA Science Inventory

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  1. Nutrient and organic matter inputs to Hawaiian anchialine ponds: influences of n-fixing and non-n-fixing trees

    Treesearch

    Kehauwealani K. Nelson-Kaula; Rebecca Ostertag; R. Flint Hughes; Bruce D. Dudley

    2016-01-01

    Invasive nitrogen-fixing plants often increase energy and nutrient inputs to both terrestrial and aquatic ecosystems via litterfall, and these effects may be more pronounced in areas lacking native N2-fixers. We examined organic matter and nutrient inputs to and around anchialine ponds...

  2. [Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria].

    PubMed

    Yang, Ya Dong; Feng, Xiao Min; Hu, Yue Gao; Ren, Chang Zhong; Zeng, Zhao Hai

    2017-03-18

    In this study, real-time PCR and high-throughput sequencing approaches were employed to investigate the abundance and community structure of N 2 -fixing bacteria in a field experiment with three planting patterns (Oat monoculture, O; Soybean-oat intercropping, OSO; Mung bean-oat intercropping, OMO). The results showed that soil chemical properties varied significantly in different soil samples (P<0.05). The abundance of nifH gene varied from 1.75×10 10 to 7.37×10 10 copies·g -1 dry soil in all soil samples. The copy numbers of nifH gene in OSO and OMO were 2.18, 2.64, and 1.92, 2.57 times as much as that in O at jointing and mature stages, with a significant decline from jointing to mature stage for all treatments (P<0.05). Rarefaction curve and cove-rage results proved the nifH gene sequencing results were reliable, and the diversity index showed that the N 2 -fixing bacteria diversity of OSO was much higher than that of O. Azohydromonas, Azotobacter, Bradyrhizobium, Skermanella and other groups that could not be classified are the dominant genera, with significant differences in proportion of these dominant groups observed among all soil samples (P<0.05). Venn and PCA analysis indicated that there were greater differences of nifH gene communities between jointing and mature stages; however, the OSO and OMO had similar communities in both stages. All these results confirmed that legume-oat intercropping significantly increased the abundance and changed the community composition of N 2 -fixing bacteria in oat soils.

  3. Nutrient Limitation of Native and Invasive N2-Fixing Plants in Northwest Prairies

    PubMed Central

    Thorpe, Andrea S.; Perakis, Steven; Catricala, Christina; Kaye, Thomas N.

    2013-01-01

    Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ15N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ15N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ15N averaged −0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ15N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications. PMID

  4. Nutrient limitation of native and invasive N2-fixing plants in northwest prairies

    USGS Publications Warehouse

    Thorpe, Andrea S.; Perakis, Steven S.; Catricala, Christina; Kaye, Thomas N.

    2013-01-01

    Nutrient rich conditions often promote plant invasions, yet additions of non-nitrogen (N) nutrients may provide a novel approach for conserving native symbiotic N-fixing plants in otherwise N-limited ecosystems. Lupinus oreganus is a threatened N-fixing plant endemic to prairies in western Oregon and southwest Washington (USA). We tested the effect of non-N fertilizers on the growth, reproduction, tissue N content, and stable isotope δ15N composition of Lupinus at three sites that differed in soil phosphorus (P) and N availability. We also examined changes in other Fabaceae (primarily Vicia sativa and V. hirsuta) and cover of all plant species. Variation in background soil P and N availability shaped patterns of nutrient limitation across sites. Where soil P and N were low, P additions increased Lupinus tissue N and altered foliar δ15N, suggesting P limitation of N fixation. Where soil P was low but N was high, P addition stimulated growth and reproduction in Lupinus. At a third site, with higher soil P, only micro- and macronutrient fertilization without N and P increased Lupinus growth and tissue N. Lupinus foliar δ15N averaged −0.010‰ across all treatments and varied little with tissue N, suggesting consistent use of fixed N. In contrast, foliar δ15N of Vicia spp. shifted towards 0‰ as tissue N increased, suggesting that conditions fostering N fixation may benefit these exotic species. Fertilization increased cover, N fixation, and tissue N of non-target, exotic Fabaceae, but overall plant community structure shifted at only one site, and only after the dominant Lupinus was excluded from analyses. Our finding that non-N fertilization increased the performance of Lupinus with few community effects suggests a potential strategy to aid populations of threatened legume species. The increase in exotic Fabaceae species that occurred with fertilization further suggests that monitoring and adaptive management should accompany any large scale applications.

  5. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi.

    PubMed

    Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães

    2017-01-01

    The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    NASA Technical Reports Server (NTRS)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  7. Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria.

    PubMed

    Gentili, Francesco; Nilsson, Marie-Charlotte; Zackrisson, Olle; DeLuca, Thomas H; Sellstedt, Anita

    2005-12-01

    Cyanobacteria colonizing the feather moss Pleurozium schreberi were isolated from moss samples collected in northern Sweden and subjected to physiological and molecular characterization. Morphological studies of isolated and moss-associated cyanobacteria were carried out by light microscopy. Molecular tools were used for cyanobacteria identification, and a reconstitution experiment of the association between non-associative mosses and cyanobacteria was conducted. The influence of temperature on N2 fixation in the different cyanobacterial isolates and the influence of light and temperature on N2-fixation rates in the moss were studied using the acetylene reduction assay. Two different cyanobacteria were effectively isolated from P. schreberi: Nostoc sp. and Calothrix sp. A third genus, Stigonema sp. was identified by microscopy, but could not be isolated. The Nostoc sp. was found to fix N2 at lower temperatures than Calothrix sp. Nostoc sp. and Stigonema sp. were the predominant cyanobacteria colonizing the moss. The attempt to reconstitute the association between the moss and cyanobacteria was successful. The two isolated genera of cyanobacteria in feather moss samples collected in northern Sweden differ in their temperature optima, which may have important ecological implications.

  8. The Acetylene-Ethylene Assay for N2 Fixation: Laboratory and Field Evaluation 1

    PubMed Central

    Hardy, R. W. F.; Holsten, R. D.; Jackson, E. K.; Burns, R. C.

    1968-01-01

    The methodology, characteristics and application of the sensitive C2H2-C2H4 assay for N2 fixation by nitrogenase preparations and bacterial cultures in the laboratory and by legumes and free-living bacteria in situ is presented in this comprehensive report. This assay is based on the N2ase-catalyzed reduction of C2H2 to C2H4, gas chromatographic isolation of C2H2 and C2H4, and quantitative measurement with a H2-flame analyzer. As little as 1 μμmole C2H4 can be detected, providing a sensitivity 103-fold greater than is possible with 15N analysis. A simple, rapid and effective procedure utilizing syringe-type assay chambers is described for the analysis of C2H2-reducing activity in the field. Applications to field samples included an evaluation of N2 fixation by commercially grown soybeans based on over 2000 analyses made during the course of the growing season. Assay values reflected the degree of nodulation of soybean plants and indicated a calculated seasonal N2 fixation rate of 30 to 33 kg N2 fixed per acre, in good agreement with literature estimates based on Kjeldahl analyses. The assay was successfully applied to measurements of N2 fixation by other symbionts and by free living soil microorganisms, and was also used to assess the effects of light and temperature on the N2 fixing activity of soybeans. The validity of measuring N2 fixation in terms of C2H2 reduction was established through extensive comparisons of these activities using defined systems, including purified N2ase preparations and pure cultures of N2-fixing bacteria. With this assay it now becomes possible and practicable to conduct comprehensive surveys of N2 fixation, to make detailed comparisons among different N2-fixing symbionts, and to rapidly evaluate the effects of cultural practices and environmental factors on N2 fixation. The knowledge obtained through extensive application of this assay should provide the basis for efforts leading to the maximum agricultural exploitation of the N2

  9. [Domestication study about desulfuration microorganism from oxidation ditch by low concentration SO2].

    PubMed

    Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling

    2010-06-01

    An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.

  10. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-12-01

    To quantify the contribution of autotrophic microorganisms to organic matter (OM) formation in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in northwest Bohemia (Czech Republic). Mofette soils had higher soil organic matter (SOM) concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon (δ13C) isotope ratios to characterize SOM and its sources in two mofettes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in 13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in 13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of autotrophic microorganisms using the Calvin

  11. Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.

    2015-09-01

    To quantify the contribution of autotrophic microorganisms to organic matter formation (OM) in soils, we investigated natural CO2 vents (mofettes) situated in a wetland in NW Bohemia (Czech Republic). Mofette soils had higher SOM concentrations than reference soils due to restricted decomposition under high CO2 levels. We used radiocarbon (Δ14C) and stable carbon isotope ratios (δ13C) to characterize SOM and its sources in two moffetes and compared it with respective reference soils, which were not influenced by geogenic CO2. The geogenic CO2 emitted at these sites is free of radiocarbon and enriched in δ13C compared to atmospheric CO2. Together, these isotopic signals allow us to distinguish C fixed by plants from C fixed by autotrophic microorganisms using their differences in δ13C discrimination. We can then estimate that up to 27 % of soil organic matter in the 0-10 cm layer of these soils was derived from microbially assimilated CO2. Isotope values of bulk SOM were shifted towards more positive δ13C and more negative Δ14C values in mofettes compared to reference soils, suggesting that geogenic CO2 emitted from the soil atmosphere is incorporated into SOM. To distinguish whether geogenic CO2 was fixed by plants or by CO2 assimilating microorganisms, we first used the proportional differences in radiocarbon and δ13C values to indicate the magnitude of discrimination of the stable isotopes in living plants. Deviation from this relationship was taken to indicate the presence of microbial CO2 fixation, as microbial discrimination should differ from that of plants. 13CO2-labelling experiments confirmed high activity of CO2 assimilating microbes in the top 10 cm, where δ13C values of SOM were shifted up to 2 ‰ towards more negative values. Uptake rates of microbial CO2 fixation ranged up to 1.59 ± 0.16 μg gdw-1 d-1. We inferred that the negative δ13C shift was caused by the activity of chemo-lithoautotrophic microorganisms, as indicated from

  12. Isolation of N2 -fixing rhizobacteria from Lolium perenne and evaluating their plant growth promoting traits.

    PubMed

    Castellano-Hinojosa, Antonio; Correa-Galeote, David; Palau, Josep; Bedmar, Eulogio J

    2016-01-01

    Twenty one dinitrogen (N2 )-fixing bacteria were isolated from the rhizosphere of Lolium perenne grown for more than 10 years without N-fertilization. The nearly complete sequence of the 16S rRNA gene of each strain and pairwise alignments among globally aligned sequences of the 16S rRNA genes clustered them into nine different groups. Out of the 21 strains, 11 were members of genus Bacillus, 3 belonged to each one of genera Paenibacillus and Pseudoxanthomonas, and the remaining 2 strains to each one of genera Burkholderia and Staphylococcus, respectively. A representative strain from each group contained the nifH gene and fixed atmospheric N2 as determined by the acetylene-dependent ethylene production assay (acetylene reduction activity, ARA). The nine selected strains were also examined to behave as plant growth promoting bacteria (PGPRs) including their ability to act as a biocontrol agent. The nine representative strains produced indol acetic acid (IAA) and solubilized calcium triphosphate, five of them, strains C2, C3, C12, C15, and C16, had ACC deaminase activity, and strains C2, C3, C4, C12, C16, and C17 produced siderophores. Strains C13, C16, and C17 had the capability to control growth of the pathogen Fusarium oxysporum mycelial growth in vitro. PCA analysis of determined PGPR properties showed that ARA, ACC deaminase activity, and siderophore production were the most valuable as they had the maximal contribution to the total variance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Invasion by a N2-fixing tree alters function and structure in wet lowland forests of Hawaii

    Treesearch

    R. Flint Hughes; Julie S. Denslow

    2005-01-01

    Invasive species pose major threats to the integrity and functioning of ecosystems. When such species alter ecosystem processes, they have the potential to change the environmental context in which other species survive and reproduce and may also facilitate the invasion of additional species. We describe impacts of an invasive N2-fixing tree, ...

  14. NITROGEN EXPORT FROM FORESTED WATERSHEDS IN THE OREGON COAST RANGE: THE ROLE OF N2-FIXING RED ALDER

    EPA Science Inventory

    Variations in plant community composition across the landscape can influence nutrient retention and loss at the watershed scale. A striking example of plant species influence is the role of N2-fixing red alder (Alnus rubra) in the biogeochemistry of Pacific Northwest forests. T...

  15. Duelling 'CyanoHABs': unravelling the environmental drivers controlling dominance and succession among diazotrophic and non-N2 -fixing harmful cyanobacteria.

    PubMed

    Paerl, Hans W; Otten, Timothy G

    2016-02-01

    Eutrophication often manifests itself by increased frequencies and magnitudes of cyanobacterial harmful algal blooms (CyanoHABs) in freshwater systems. It is generally assumed that nitrogen-fixing cyanobacteria will dominate when nitrogen (N) is limiting and non-N2 fixers dominate when N is present in excess. However, this is rarely observed in temperate lakes, where N2 fixers often bloom when N is replete, and non-fixers (e.g. Microcystis) dominate when N concentrations are lowest. This review integrates observations from previous studies with insights into the environmental factors that select for CyanoHAB groups. This information may be used to predict how nutrient reduction strategies targeting N, phosphorus (P) or both N and P may alter cyanobacterial community composition. One underexplored concern is that as N inputs are reduced, CyanoHABs may switch from non-N2 fixing to diazotrophic taxa, with no net improvement in water quality. However, monitoring and experimental observations indicate that in eutrophic systems, minimizing both N and P loading will lead to the most significant reductions in total phytoplankton biomass without this shift occurring, because successional patterns appear to be strongly driven by physical factors, including temperature, irradiance and hydrology. Notably, water temperature is a primary driver of cyanobacterial community succession, with warming favouring non-diazotrophic taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Do foliar endophytic bacteria fix nitrogen?

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  17. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  18. Leaf δ(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.

  19. Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al{sub 2}O{sub 3} in AlGaN/GaN high electron mobility transistors with normally off capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capriotti, M., E-mail: mattia.capriotti@tuwien.ac.at; Alexewicz, A.; Fleury, C.

    2014-03-17

    Using a generalized extraction method, the fixed charge density N{sub int} at the interface between in situ deposited SiN and 5 nm thick AlGaN barrier is evaluated by measurements of threshold voltage V{sub th} of an AlGaN/GaN metal insulator semiconductor high electron mobility transistor as a function of SiN thickness. The thickness of the originally deposited 50 nm thick SiN layer is reduced by dry etching. The extracted N{sub int} is in the order of the AlGaN polarization charge density. The total removal of the in situ SiN cap leads to a complete depletion of the channel region resulting in V{sub th} = +1 V.more » Fabrication of a gate stack with Al{sub 2}O{sub 3} as a second cap layer, deposited on top of the in situ SiN, is not introducing additional fixed charges at the SiN/Al{sub 2}O{sub 3} interface.« less

  20. High-Precision Measurements of 15N15N, 14N15N, and 14N2 in N2 and Potential Applications to Oceanic Nitrogen Cycle Research

    NASA Astrophysics Data System (ADS)

    Li, S.; Yeung, L.; Young, E. D.; Ostrom, N. E.; Haslun, J. A.

    2016-02-01

    The balance of nitrogen fixation and nitrogen loss in the oceans is uncertain. For example, anaerobic ammonia oxidation could account for 50% or more of marine N2 production, although its global importance is still poorly known. Isotopic ratios in fixed nitrogen species (e.g., δ15N and δ18O values of NO2- and NO3-) are widely used to trace preservation and removal of N-bearing compounds and/or isotopic variations of their different sources. However, these approaches in general probe only one side of the nitrogen mass balance—the "fixed" nitrogen reservoir—so they offer few constraints on the ultimate loss of nitrogen from that pool as N2. The rare isotopologue ratio 15N15N/14N2 in N2may provide information about those nitrogen-loss processes directly. We will report the first measurements of Δ30 (the abundance of 15N15N relative to that predicted by chance alone), made on a unique high-resolution mass spectrometer (the Nu Instruments Panorama), and we will discuss the potential utility of Δ30 as an independent tracer of the nitrogen cycle. The parameter Δ30 is insensitive to the bulk 15N/14N isotopic ratio of the reservoir; instead, it reflects isotopic ordering in N2, which is altered when N-N bonds are made or broken. Our preliminary measurements of N2 from denitrifying soils and pure cultures of denitrifiers indicate large kinetic isotopic effects during N-N bond formation that favor 15N15N production during denitrification. We also observed a nonstochastic excess of 15N15N in tropospheric N2 [Δ30 = +19.05 ± 0.12‰ (1σ)]. This excess likely comes from fixed-nitrogen loss processes in the biosphere. Variations in Δ30 of N2 from pure culture experiments (+16.96 to +18.95‰) probably reflect the different isotopic signatures of the enzymes that catalyze denitrification. So, enzyme-specific Δ30 values of dissolved N2 should provide information about the importance of different biochemical pathways of fixed-nitrogen loss (e.g., denitrification vs

  1. Measuring N2 Pressure Using Cyanobacteria Discipline: Geomicrobiology

    NASA Technical Reports Server (NTRS)

    Silverman, Shaelyn N.; Kopf, Sebastian; Gordon, Richard; Bebout, Brad M.; Som, Sanjoy

    2017-01-01

    The evolution of Earth's atmosphere has been governed by biological evolution. Dinitrogen (N2) has been a major constituent of Earth's atmosphere throughout the planet's history, yet only a few constraints exist for the partial pressure of N2 (pN2). In this study we evaluate two new potential proxies for pN2: the physical spacing between heterocysts and the isotopic signature of nitrogen fixation in filamentous cyanobacteria. Heterocyst-forming filamentous cyanobacteria are some of the oldest photosynthetic microorganisms on Earth, and debated fossilized specimens have been found in sedimentary rocks as old as 2 Ga. These organisms overcome nitrogen limitation in their aqueous environment through cellular differentiation along their filaments. The specialized cells that develop, known as heterocysts, fix the nitrogen and laterally distribute it to neighboring cells along the filaments. Because the concentration of the dissolved N2 available to the filaments correlates directly with pN2, any preservable physiological response of the organism to the changed N2 availability constitutes a potential proxy for pN2. In the laboratory, we have examined how pN2 is reflected in the heterocyst spacing pattern and in the isotopic signature of nitrogen fixation by subjecting the representative species Anabaena cylindrica and Anabaena variabilis to different N2 partial pressures during growth at constant temperature and lighting (in media free of combined nitrogen). We show experimentally that the distance between heterocysts and the nitrogen isotope fractionation measured in bulk biomass reflect the pN2 experienced by Anabaena cylindrica. Current work is investigating these responses in Anabaena variabilis. When heterocystous cyanobacteria fossilize, these morphological and isotopic signatures should preserve information about pN2 at that time. Application of this relationship to the rock record may provide a paleoproxy to complement the two existing geobarometers.

  2. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA

    USGS Publications Warehouse

    Yeager, C.M.; Kornosky, J.L.; Morgan, R.E.; Cain, E.C.; Garcia-Pichel, F.; Housman, D.C.; Belnap, J.; Kuske, C.R.

    2007-01-01

    The identity of the numerically dominant N2-fixing bacteria in biological soil crusts of the Colorado Plateau region and two outlying areas was determined using multiple approaches, to link the environmental diversity of nifH gene sequences to cultured bacterial isolates from the regions. Of the nifH sequence-types detected in soil crusts of the Colorado Plateau, 89% (421/473) were most closely related to nifH signature sequences from cyanobacteria of the order Nostocales. N2-fixing cyanobacterial strains were cultured from crusts and their morphotypes, 16S rRNA gene and nifH gene sequences were characterized. The numerically dominant diazotrophs in the Colorado Plateau crusts fell within three clades of heterocystous cyanobacteria. Two clades are well-represented by phylogenetically and morphologically coherent strains, corresponding to the descriptions of Nostoc commune and Scytonema hyalinum, which are widely recognized as important N2-fixing components of soil crusts. A third, previously-overlooked clade was represented by a phylogenetically coherent but morphologically diverse group of strains that encompass the morphogenera Tolypothrix and Spirirestis. Many of the strains in each of these groups contained at least two nifH copies that represent different clusters in the nifH environmental survey. ?? 2007 Federation of European Microbiological Societies.

  3. Differences in Plant Traits among N-fixing Trees in Hawaii Affect Understory Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    August-Schmidt, E.; D'Antonio, C. M.

    2016-12-01

    Nitrogen (N) fixing trees are frequently used to restore soil functions to degraded ecosystems because they can increase soil organic matter and N availability. Although N-fixers are lumped into a single functional group, the quality and quantity of the plant material they produce and the rate at which they accrete and add N to the cycling pool likely vary. This talk will focus on the questions: (1) How does N-cycling differ among N-fixing tree species? And (2) Which plant traits are most important in distinguishing the soil N environment? To address these questions, we investigated planted stands of two Hawaiian native N-fixing trees (Acacia koa and Sophora chrysophylla) and `natural' stands of an invasive N-fixing tree (Morella faya) in burned seasonal submontane woodlands in Hawaii Volcanoes National Park. We measured the relative availability of nitrogen in the soil pool and understory plant community as well as characterizing the rate and amount of N cycling in these stands both in the field and using long term soil incubations in the laboratory. We found that N is cycled very differently under these three N-fixers and that this correlates with differences in their leaf traits. S. chrysophylla had the highest foliar %N and highest specific leaf area, and stands of these trees are associated with faster N-cycling, resulting in greater N availability compared to all other site types. Incubated S. chrysophylla soils mineralized almost twice as much N as any other soil type over the course of the experiment. The comparatively high-N environment under S. chrysophylla suggests that litter quality may be more important than litter quantity in determining nitrogen availability to the understory community.

  4. Metabolic activity of microorganisms in evaporites

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.; Giver, L. J.; White, M. R.; Mancinelli, R. L.

    1994-01-01

    Crystalline salt is generally considered so hostile to most forms of life that it has been used for centuries as a preservative. Here, we present evidence that prokaryotes inhabiting a natural evaporite crust of halite and gypsum are metabolically active while inside the evaporite for at least 10 months. In situ measurements demonstrated that some of these "endoevaporitic" microorganisms (probably the cyanobacterium Synechococcus Nageli) fixed carbon and nitrogen. Denitrification was not observed. Our results quantified the slow microbial activity that can occur in salt crystals. Implications of this study include the possibility that microorganisms found in ancient evaporite deposits may have been part of an evaporite community.

  5. Association of N2-fixing cyanobacteria and plants: towards novel symbioses of agricultural importance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhai, Jeff

    2001-06-25

    Some nitrogen-fixing cyanobacteria are able to form symbioses with a wide variety of plants. Nostoc 2S9B is unusual in its ability to infect the roots of wheat, raising the prospect of a productive association with an important crop plant. The goal of the project was to lay the groundwork for the use of novel associations between Nostoc and crops of agronomic importance, thereby reducing our reliance on nitrogenous fertilizer. Nostoc 2S9B was found to enter roots through mechanical damage of roots and reside primarily in intercellular spaces. The strain could also be incorporated into wheat calli grown in tissue culture.more » In both cases, the rate of nitrogen fixation by the cyanobacterium was higher than that of the same strain grown with no plant present. Artificial nodules induced by the action of hormone 2,4D were readily infected by Nostoc 2S9B, and the cyanobacteria within such nodules fixed nitrogen under fully aerobic conditions. The nitrogen fixed was shown to be incorporated into the growing wheat seedlings. Nostoc thus differs from other bacteria in its ability to fix nitrogen in para-nodules without need for artificially microaerobic conditions. It would be useful to introduce foreign DNA into Nostoc 2S9B in order to make defined mutations to understand the genetic basis of its ability to infect wheat and to create strains that might facilitate the study of the infection process. Transfer of DNA into the cyanobacterium appears to be limited by the presence of four restriction enzymes, with recognition sequences the same as BamHI, BglI, BsaHI, and Tth111I. Genes encoding methyltransferases that protect DNA against these four enzymes have been cloned into helper plasmids to allow transfer of DNA from E. coli to Nostoc 2S9B.« less

  6. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    PubMed

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  7. Nitrogen acquisition by plants and microorganisms in a temperate grassland

    PubMed Central

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-01-01

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term 15N experiments with NH4+, NO3−, and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4+ and NO3−, while plants preferred NO3−. Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0–5 cm soil layer and 33% from the 5–15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands. PMID:26961252

  8. Influence of TiO2 Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms

    PubMed Central

    Comotto, Mattia; Casazza, Alessandro Alberto; Aliakbarian, Bahar; Caratto, Valentina; Ferretti, Maurizio; Perego, Patrizia

    2014-01-01

    The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB −1 for H. pluvialis and A. platensis, respectively. PMID:25610914

  9. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  10. Effects of anionic surfactant on n-hexane removal in biofilters.

    PubMed

    Cheng, Yan; He, Huijun; Yang, Chunping; Yan, Zhou; Zeng, Guangming; Qian, Hui

    2016-05-01

    The biodegradability of three anion surfactants by biofilm microorganisms and the toxicity of the most readily biodegradable surfactant to biofilm microorganisms were examined using batch experiments, and the optimal concentration of SDS for enhanced removal of hexane was investigated using two biotrickling filters (BTFs) for comparison. Results showed that SDS could be biodegraded by microorganisms, and its toxicity to microorganisms within the experimental range was negligible. The best concentration of SDS in biofiltration of n-hexane was 0.1 CMC and the elimination capacity (EC) of 50.4 g m(-3) h(-1) was achieved at a fixed loading rate (LR) of 72 g m(-3) h(-1). When an inlet concentration of n-hexane increased from 600 to 850 mg m(-3), the removal efficiency (RE) decreased from 67% to 41% by BTF2 (with SDS) and from 52% to 42% by BTF1 (without SDS). SDS could enhance hexane removal from 43% (BTF1) to 60% (BTF2) at gas empty-bed residence time (EBRT) of 7.5 s and an inlet concentration of 200 mg m(-3). Copyright © 2016. Published by Elsevier Ltd.

  11. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    NASA Technical Reports Server (NTRS)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  12. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Xu, Xingliang

    2014-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.

  13. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.

    PubMed

    Kuzyakov, Yakov; Xu, Xingliang

    2013-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby

    Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less

  15. Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO 2 Fixing

    DOE PAGES

    Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby; ...

    2016-02-12

    Development of novel polymeric materials capable of efficient CO 2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO 2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO 2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas systemmore » (20% CO 2, 80% N 2) similar to flue gas. CO 2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO 2 binding sites in the PBA functionalized polymer resulting in a two-step CO 2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO 2 capture.« less

  16. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  17. Microorganism billiards in closed plane curves.

    PubMed

    Krieger, Madison S

    2016-12-01

    Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.

  18. The effect of anaerobic fermentation processing of cattle waste for biogas as a renewable energy resources on the number of contaminant microorganism

    NASA Astrophysics Data System (ADS)

    Kurnani, Tb. Benito A.; Hidayati, Yuli Astuti; Marlina, Eulis Tanti; Harlia, Ellin

    2016-02-01

    Beef cattle waste has a positive potential that can be exploited, as well as a negative potential that must be controlled so as not to pollute the environment. Beef cattle waste can be processed into an alternative energy, namely biogas. Anaerobic treatment of livestock waste to produce gas can be a solution in providing optional energy, while the resulted sludge as the fermentation residue can be used as organic fertilizer for crops. However, this sludge may containt patogenic microorganism that will damage human and environmet healt. Therefor, this study was aimed to know the potency of beef cattle waste to produce biogas and the decrease of the microorganism's number by using fixed dome digester. Beef cattle waste was processed into biogas using fixed dome digester with a capacity of 12 m3. Biogas composition was measured using Gas Cromatografi, will microorganism species was identified using Total plate Count Methode. The result of this study shows that the produced biogas contains of 75.77% Mol (CH4), 13.28% Mol (N), and 6.96% Mol (CO2). Furthermor, this study show that the anaerobic fermrntation process is capable of reducing microorganisms that could potentially pollute the environment. The number of Escherichia coli and Samonella sp. were <30 MPN/ml respectively save for environment. This process can reduce 84.70% the amount of molds. The only molds still existed after fermentation was A.fumigatus. The number of protozoa can be reduced in order of 94.73%. Protozoa that can be identified in cattle waste before, and after anaerobic fermentation was merely Eimeria sp.. The process also reduced the yeast of 86.11%. The remaining yeast after fermentation was Candida sp. Finally, about 93.7% of endoparasites was reduced by this process. In this case, every trematode and cestoda were 100% reduced, while the nematode only 75%. Reducing some microorganisms that have the potential to pollute the environment signifies sludge anaerobic fermentation residue is safe to

  19. Hydrogenase in N/sub 2/-fixing cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tel-or, E.; Luijk, L.W.; Packer, L.

    Hydrogenase has been examined in two species of aerobically grown cyanobacteria (blue-green algae), Nostoc muscorum and Anabaena cylindrica, with respect to H/sub 2/ production and consumption. These activities are found both in heterocysts and in vegetative cell preparations, but the characteristics of the enzyme in the two cell types differ. H/sub 2/ production requires an artificial electron mediator such as methylviologen, and it can be driven by artificial electron donors with and without light and by a wide variety of organic substrates for which enzymes exist for NADP and methylviologen reduction. This activity is similar in heterocysts and vegetative cellsmore » of both species and is mainly found in the soluble rather than membrane fraction. H/sub 2/ consumption, however, occurs without added mediators or acceptors at 10-fold higher rates than H/sub 2/ production and 10-fold greater activity in heterocysts. H/sub 2/ consumption activity is membrane bound, has a high affinity for H/sub 2/ (K/sub m/ = 50 ..mu..M), and is augmented by light and low concentrations of oxygen. This activity of hydrogenase is mainly found in heterocysts and is poised unidirectionally toward H/sub 2/ consumption. Since nitrogenase activity is localized in heterocysts, it suggests that H/sub 2/ leaked by nitrogenase during N/sub 2/ fixation can be recycled by hydrogenase.« less

  20. Soil Phosphatase Activity and Plant-available Phosphorus Increase Following Grassland Invasion by N-fixing Tree Legumes

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Kantola, I. B.; Stott, D. E.; Balthrop, S. L.; Tribble, J. E.; Filley, T. R.

    2009-12-01

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. These woodlands are dominated by N-fixing tree legumes which are more productive above- and belowground, and store 2-3X more C and N than remnant grasslands. In tropical savannas and forests, it has been demonstrated that N-fixing plants are able to invest additional N in the acquisition of soil P. Accordingly, we hypothesized that soil acid phosphatase (AP) enzyme activity and concentrations of plant-available soil P (largely HPO4-2 and H2PO4-) would be greater in wooded areas dominated by N-fixing trees than in remnant grasslands where N-fixers are absent. We collected soils (0-7.5 cm) in remnant grasslands and in each of 4 different woodland types (clusters, groves, drainage woodlands, and playas) in a savanna parkland landscape in southern Texas. Plant-available soil P was determined by sorption onto anion exchange resin membranes placed in soil-water mixtures and shaken for 16 hr. P was desorbed from resin membranes using 0.5 N HCl and quantified colorimetrically using the Murphy-Riley technique. AP activity was determined using para-nitrophenyl phosphate as an analogue orthophosphate substrate, and then quantifying the p-nitrophenol (pNP) reaction product. AP activity was 250 µg pNP/g soil/hr in grasslands, and increased linearly with time following woody plant invasion to 1400 µg pNP/g soil/hr in the oldest woody plant assemblages (90 yrs). Plant available P was 3 mg P/kg soil in grasslands, and ranged from 10 to 45 mg P/kg soil in wooded areas. Within each of the wooded landscape types, plant-available P increased linearly with time following woody invasion and was correlated with soil AP activity. Results are consistent with prior studies showing that AP and plant-available P are elevated under canopies of N-fixing plants

  1. Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.

    PubMed

    Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping

    2011-01-01

    We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P < 0.01) in EUp (132.6 mg/(m2 x hr)) and ACp (139.8 mg/(m2 x hr)) than in Tp (94.0 mg/(m2 x hr)) and THp (102.9 mg/(m2 x hr)). Soil CO2 fluxes in UR and CA were significantly higher (P < 0.01) among the four treatments, with values of 105.7, 120.4, 133.6 and 112.2 mg/(m2 x hr) for UR+CA, UR, CA and CK, respectively. Soil CO2 fluxes were positively correlated with soil temperature (P < 0.01), soil moisture (P < 0.01), NO3(-)-N (P < 0.05), and litterfall (P < 0.01), indicating that all these factors might be important controlling variables for soil CO2 fluxes. This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices.

  2. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species.

    PubMed

    Caballero-Mellado, Jesús; Martínez-Aguilar, Lourdes; Paredes-Valdez, Guadalupe; Santos, Paulina Estrada-De los

    2004-07-01

    It was shown recently that the genus Burkholderia is rich in N2-fixing bacteria that are associated with plants. A group of these diazotrophic isolates with identical or very similar 16S rDNA restriction patterns [designated amplified rDNA restriction analysis (ARDRA) genotypes 13, 14 and 15] was selected and a polyphasic taxonomic study was performed, which included new isolates that were recovered from rhizospheres, rhizoplanes or internal tissues of maize, sugarcane and coffee plants. Morphological, physiological and biochemical features, as well as multi-locus enzyme electrophoresis profiles and whole-cell protein patterns, of 20 strains were analysed. In addition, analysis of cellular fatty acid profiles, 16S rDNA sequence analysis and DNA-DNA reassociation experiments were performed with representative strains. The taxonomic data indicated that the strains analysed belong to a novel diazotrophic Burkholderia species, for which the name Burkholderia unamae sp. nov. is proposed. Strain MTl-641T (=ATCC BAA-744T=CIP 107921T), isolated from the rhizosphere of maize, was designated as the type strain. B. unamae was found as an endophyte of plants grown in regions with climates ranging from semi-hot subhumid to hot humid, but not from plants grown in regions with semi-hot or hot dry climates. Moreover, B. unamae was isolated from rhizospheres and plants growing in soils with pH values in the range 4.5-7.1, but not from soils with pH values higher than 7.5.

  3. The earthworm gut: an ideal habitat for ingested N2O-producing microorganisms.

    PubMed

    Horn, Marcus A; Schramm, Andreas; Drake, Harold L

    2003-03-01

    The in vivo production of nitrous oxide (N(2)O) by earthworms is due to their gut microbiota, and it is hypothesized that the microenvironment of the gut activates ingested N(2)O-producing soil bacteria. In situ measurement of N(2)O and O(2) with microsensors demonstrated that the earthworm gut is anoxic and the site of N(2)O production. The gut had a pH of 6.9 and an average water content of approximately 50%. The water content within the gut decreased from the anterior end to the posterior end. In contrast, the concentration of N(2)O increased from the anterior end to the mid-gut region and then decreased along the posterior part of the gut. Compared to the soil in which worms lived and fed, the gut of the earthworm was highly enriched in total carbon, organic carbon, and total nitrogen and had a C/N ratio of 7 (compared to a C/N ratio of 12 in soil). The aqueous phase of gut contents contained up to 80 mM glucose and numerous compounds that were indicative of anaerobic metabolism, including up to 9 mM formate, 8 mM acetate, 3 mM lactate, and 2 mM succinate. Compared to the soil contents, nitrite and ammonium were enriched in the gut up to 10- and 100-fold, respectively. The production of N(2)O by soil was induced when the gut environment was simulated in anoxic microcosms for 24 h (the approximate time for passage of soil through the earthworm). Anoxia, high osmolarity, nitrite, and nitrate were the dominant factors that stimulated the production of N(2)O. Supplemental organic carbon had a very minimal stimulatory effect on the production of N(2)O, and addition of buffer or ammonium had essentially no effect on the initial N(2)O production rates. However, a combination of supplements yielded rates greater than that obtained mathematically for single supplements, suggesting that the maximum rates observed were due to synergistic effects of supplements. Collectively, these results indicate that the special microenvironment of the earthworm gut is ideally suited

  4. Isolation and characterization of N2 -fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake.

    PubMed

    Xu, Jia; Kloepper, Joseph W; Huang, Ping; McInroy, John A; Hu, Chia H

    2018-05-01

    The aims of this study were to isolate and characterize N 2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N 2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. 48 CFR 52.246-2 - Inspection of Supplies-Fixed-Price.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Fixed-Price. 52.246-2 Section 52.246-2 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-2 Inspection of Supplies—Fixed-Price. As prescribed in 46.302, insert the following clause: Inspection of Supplies—Fixed-Price (AUG 1996) (a) Definition. Supplies, as used in this clause, includes but...

  6. Mechanism of lethal action of 2,450-MHz radiation on microorganisms.

    PubMed Central

    Vela, G R; Wu, J F

    1979-01-01

    Various bacteria, actinomycetes, fungi, and bacteriophages were exposed to microwaves of 2,450 +/- 20 MHz in the presence and in the absence of water. It was found that microorganisms were inactivated only when in the presence of water and that dry or lyophilized organisms were not affected even by extended exposures. The data presented here prove that microorganisms are killed by "thermal effect" only and that, most likely, there is no "nonthermal effect"; cell constituents other than water do not absorb sufficient energy to kill microbial cells. PMID:453828

  7. Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas

    PubMed Central

    Philibert, Aurore; Loyce, Chantal; Makowski, David

    2012-01-01

    Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2. In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or absence of the explanatory variable “applied N”, (ii) the function relating N2O emission to applied N (exponential or linear function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear models, and models including one or two random effects outperformed those including fixed effects only. The use of an exponential function rather than a linear function has an important practical consequence: the emission factor is not constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower than 1% when the amount of N applied was below 160 kg N ha−1. Our uncertainty analysis shows that the uncertainty range currently used by the IPCC-Tier 1 method could be reduced. PMID:23226430

  8. Fossilized glycolipids reveal past oceanic N2 fixation by heterocystous cyanobacteria

    PubMed Central

    Bauersachs, Thorsten; Speelman, Eveline N.; Hopmans, Ellen C.; Reichart, Gert-Jan; Schouten, Stefan; Damsté, Jaap S. Sinninghe

    2010-01-01

    N2-fixing cyanobacteria play an essential role in sustaining primary productivity in contemporary oceans and freshwater systems. However, the significance of N2-fixing cyanobacteria in past nitrogen cycling is difficult to establish as their preservation potential is relatively poor and specific biological markers are presently lacking. Heterocystous N2-fixing cyanobacteria synthesize unique long-chain glycolipids in the cell envelope covering the heterocyst cell to protect the oxygen-sensitive nitrogenase enzyme. We found that these heterocyst glycolipids are remarkably well preserved in (ancient) lacustrine and marine sediments, unambiguously indicating the (past) presence of N2-fixing heterocystous cyanobacteria. Analysis of Pleistocene sediments of the eastern Mediterranean Sea showed that heterocystous cyanobacteria, likely as epiphytes in symbiosis with planktonic diatoms, were particularly abundant during deposition of sapropels. Eocene Arctic Ocean sediments deposited at a time of large Azolla blooms contained glycolipids typical for heterocystous cyanobacteria presently living in symbiosis with the freshwater fern Azolla, indicating that this symbiosis already existed in that time. Our study thus suggests that heterocystous cyanobacteria played a major role in adding “new” fixed nitrogen to surface waters in past stratified oceans. PMID:20966349

  9. Diversity and activity of nitrogen fixing archaea and bacteria associated with micro-environments of wetland rice

    NASA Astrophysics Data System (ADS)

    Schmidt, Hannes; Woebken, Dagmar

    2017-04-01

    Wetland rice is one of the world's most important crop plants. The cultivation on waterlogged paddy soils is strongly limited by nitrogen (N), which is typically supplied by industrial fertilizers that are not only costly but also exhibit hazardous effects on the environment. It has been reported that "Biological Nitrogen Fixation" through N2-fixing bacteria and archaea (diazotrophs) can alleviate the N-shortage in rice cultivation, thus carrying out an important ecosystem function. However, our understanding of the diversity and in situ N2 fixation activity of diazotrophs in flooded rice fields is still rudimentary. Moreover, knowledge on the impact of biochemical gradients established by root activity (i.e. exudation, radial oxygen loss) on the functioning of N-fixing microorganisms in paddy soil ecosystems is limited. We aimed at studying underlying processes on biologically relevant scales. Greenhouse studies were performed to identify key factors that control rice-diazotroph association and related N2 fixation activities. Paddy soils of different geographical origin were cultivated with two commercially used genotypes of wetland rice. Samples were separated into bulk soil, rhizosphere soil, rhizoplane, and roots at flowering stage of rice plant development. These samples were subjected to functional assays and various molecular biological techniques in order to analyze the associated diazotroph communities. Based on Illumina amplicon sequencing of nifH genes and transcripts, we show that the diversity and potential activity of diazotroph communities varies according to micro-environments. We will comparatively discuss the influence of (a) the soil microbial "seed bank" and (b) plant genotype in shaping the respective microbiomes and selecting for potentially active diazotrophs. Actual N2 fixation activities of soil-genotype combinations and micro-environments will be shown on the basis of incubation assays using 15N2-containing atmospheres. Areas of potential

  10. Microorganism immobilization

    DOEpatents

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  11. Heron Triangles with Two Fixed Sides

    DTIC Science & Technology

    2006-10-08

    number of divisors of the positive integer n. Theorem 2.3. If a and b are fixed, then H(a, b) ≤ 4τ(ab)2. Proof. We start with the following observation...obtain a more precise result which improves upon [2]. Theorem 2.4. If p and q are two fixed primes, then H(p, q) is  = 0 if both p and q are...conclude the proof of Theorem 2.4, it suffices to show that if p and q are fixed, then at most five of the above eight equations can produce integer

  12. Compost supplementation with nutrients and microorganisms in composting process.

    PubMed

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  13. Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents.

    PubMed

    Gómez-Guzmán, Abril; Jiménez-Magaña, Sergio; Guerra-Rentería, A Suggey; Gómez-Hermosillo, César; Parra-Rodríguez, F Javier; Velázquez, Sergio; Aguilar-Uscanga, Blanca Rosa; Solis-Pacheco, Josue; González-Reynoso, Orfil

    2017-07-01

    In this research removal of NH 3 -N, NO 3 -N and PO 4 -P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO 3 -N, 80.62% of NH 3 -N and 4.30% of PO 4 -P. With Bacillus cereus the results were 8.40% of NO 3 -N, 28.80% of NH 3 -N and 3.80% of PO 4 -P. The removals with Pseudomonas putida were 2.50% of NO 3 -N, 41.80 of NH 3 -N and 4.30% of PO 4 -P. The consortium of Chlorella vulgaris-Bacillus cereus-Pseudomonas putida removed 29.40% of NO 3 -N, 4.2% of NH 3 -N and 8.4% of PO 4 -P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.

  14. Role and functions of beneficial microorganisms in sustainable aquaculture.

    PubMed

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  15. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change

    PubMed Central

    Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian

    2014-01-01

    Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086

  16. Repaglinide in type 2 diabetes: a 24-week, fixed-dose efficacy and safety study.

    PubMed

    Jovanovic, L; Dailey, G; Huang, W C; Strange, P; Goldstein, B J

    2000-01-01

    In this 24-week multicenter, double-blind, randomized, fixed-dose trial, 361 patients having type 2 diabetes received daily preprandial treatment with placebo (n = 75), repaglinide 1 mg (n = 140), or repaglinide 4 mg (n = 146). By a last-observation carried-forward calculation, repaglinide 1 mg or 4 mg treatment decreased mean fasting plasma glucose (FPG) values (by -47 mg/dL or -49 mg/dL) while the placebo group had increased FPG values (by 19 mg/dL). For the repaglinide treatment groups at the end of the study, changes in HbA1c from baseline values ranged from 1.8 to 1.9 percentage points lower than the placebo group. There were no events of severe hypoglycemia. Nearly all hypoglycemic symptom episodes had blood glucose levels above 45 mg/dL. Repaglinide was well tolerated in a preprandial fixed-dose regimen of 1 mg or 4 mg, assigned without adjustment for clinical parameters.

  17. 48 CFR 952.245-2 - Government property (fixed-price contracts).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Government property (fixed....245-2 Government property (fixed-price contracts). Modify FAR 52.245-2 by adding “and the DOE... paragraphs (e)(1) and (e)(2) of the clause. ...

  18. 48 CFR 952.245-2 - Government property (fixed-price contracts).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Government property (fixed....245-2 Government property (fixed-price contracts). Modify FAR 52.245-2 by adding “and the DOE... paragraphs (e)(1) and (e)(2) of the clause. ...

  19. The Fixed Target Experiment for Studies of Baryonic Matter at the Nuclotron (BM@N)

    NASA Astrophysics Data System (ADS)

    Kapishin, M. N.

    2017-12-01

    BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the NICA-Nuclotron accelerator complex. The aim of the BM@N experiment is to study relativistic heavy ion beam interactions with fixed targets. The BM@N setup, results of Monte Carlo simulations, and the BM@N experimental program are presented.

  20. Sulphadimethoxine inhibits Phaseolus vulgaris root growth and development of N-fixing nodules.

    PubMed

    Sartorius, Marilena; Riccio, Anna; Cermola, Michele; Casoria, Paolo; Patriarca, Eduardo J; Taté, Rosarita

    2009-07-01

    Sulphonamides contamination of cultivated lands occurs through the recurrent spreading of animal wastes from intensive farming. The aim of this study was to test the effect(s) of sulphadimethoxine on the beneficial N-fixing Rhizobium etli-Phaseolus vulgaris symbiosis under laboratory conditions. The consequence of increasing concentrations of sulphadimethoxine on the growth ability of free-living R. etli bacteria, as well as on seed germination, seedling development and growth of common bean plants was examined. We have established that sulphadimethoxine inhibited the growth of both symbiotic partners in a dose-dependent manner. Bacterial invasion occurring in developing root nodules was visualized by fluorescence microscopy generating EGFP-marked R. etli bacteria. Our results proved that the development of symbiotic N-fixing root nodules is hampered by sulphadimethoxine thus identifying sulphonamides as toxic compounds for the Rhizobium-legume symbiosis: a low-input sustainable agricultural practice.

  1. The unified database for the fixed target experiment BM@N

    NASA Astrophysics Data System (ADS)

    Gertsenberger, K. V.

    2016-09-01

    The article describes the developed database designed as comprehensive data storage of the fixed target experiment BM@N [1] at Joint Institute for Nuclear Research (JINR) in Dubna. The structure and purposes of the BM@N facility will be briefly presented. The scheme of the unified database and its parameters will be described in detail. The use of the BM@N database implemented on the PostgreSQL database management system (DBMS) allows one to provide user access to the actual information of the experiment. Also the interfaces developed for the access to the database will be presented. One was implemented as the set of C++ classes to access the data without SQL statements, the other-Web-interface being available on the Web page of the BM@N experiment.

  2. 2.3. Global-scale atmospheric dispersion of microorganisms

    USGS Publications Warehouse

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  3. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in <2,500 years, similar to the residence time of oceanic fixed N, Atlantic N2 fixation can stabilize the N-to-P ratio of the global ocean. However, the calculated rate of Atlantic N2 fixation is a small fraction of global ocean estimates for either N2 fixation or fixed N loss. This suggests that, in the modern ocean, an approximate balance between N loss and N2 fixation is achieved within the combined Indian and Pacific basins.

  4. Conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate in conditions modeling formalin-fixed tissue dehydration.

    PubMed

    Rait, Vladimir K; Zhang, Qingrong; Fabris, Daniele; Mason, Jeffrey T; O'Leary, Timothy J

    2006-03-01

    Formalin-fixed, paraffin-embedded specimens typically provide molecular biologists with low yields of extractable nucleic acids that exhibit extensive strand cleavage and covalent modification of nucleic acid bases. This study supports the idea that these deleterious effects are promoted by the first step in formalin-fixed tissue processing--i.e., tissue dehydration with a graded series of alcohols. We analyzed the conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate (dAMP) by reverse-phase ion-pair, high-performance liquid chromatography and found that dehydration does not stabilize N-methylol groups in the modified nucleotide. Furthermore, spontaneous demodification in a dry state or in anhydrous ethanol can be as fast as it is in aqueous solutions if the preparation is contaminated with salts of orthophosphoric acid. In ethanol, orthophosphates also catalyze formation of abundant N6-ethoxymethyl-dAMP, as well as cross-linking and depurination of nucleotides present in the mixture. Identification of the products was performed using ultraviolet absorbance spectroscopy and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Alternatives to the traditional processing of formalin-fixed tissues are discussed.

  5. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed Central

    Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231

  6. Taxonomic identity determines N2 fixation by canopy trees across lowland tropical forests.

    PubMed

    Wurzburger, Nina; Hedin, Lars O

    2016-01-01

    Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome. © 2015 John Wiley & Sons Ltd/CNRS.

  7. Transgenic alfalfa (Medicago sativa) with increased sucrose phosphate synthase activity shows enhanced growth when grown under N2-fixing conditions.

    PubMed

    Gebril, Sayed; Seger, Mark; Villanueva, Fabiola Muro; Ortega, Jose Luis; Bagga, Suman; Sengupta-Gopalan, Champa

    2015-10-01

    Overexpression of SPS in alfalfa is accompanied by early flowering, increased plant growth and an increase in elemental N and protein content when grown under N2-fixing conditions. Sucrose phosphate synthase (SPS; EC 2.3.1.14) is the key enzyme in the synthesis of sucrose in plants. The outcome of overexpression of SPS in different plants using transgenic approaches has been quite varied, but the general consensus is that increased SPS activity is associated with the production of new sinks and increased sink strength. In legumes, the root nodule is a strong C sink and in this study our objective was to see how increasing SPS activity in a legume would affect nodule number and function. Here we have transformed alfalfa (Medicago sativa, cv. Regen SY), with a maize SPS gene driven by the constitutive CaMV35S promoter. Our results showed that overexpression of SPS in alfalfa, is accompanied by an increase in nodule number and mass and an overall increase in nitrogenase activity at the whole plant level. The nodules exhibited an increase in the level of key enzymes contributing to N assimilation including glutamine synthetase and asparagine synthetase. Moreover, the stems of the transformants showed higher level of the transport amino acids, Asx, indicating increased export of N from the nodules. The transformants exhibited a dramatic increase in growth both of the shoots and roots, and earlier flowering time, leading to increased yields. Moreover, the transformants showed an increase in elemental N and protein content. The overall conclusion is that increased SPS activity improves the N status and plant performance, suggesting that the availability of more C in the form of sucrose enhances N acquisition and assimilation in the nodules.

  8. Effects of the pendulum appliance, cervical headgear, and 2 premolar extractions followed by fixed appliances in patients with Class II malocclusion.

    PubMed

    de Almeida-Pedrin, Renata Rodrigues; Henriques, José Fernando Castanha; de Almeida, Renato Rodrigues; de Almeida, Marcio Rodrigues; McNamara, James A

    2009-12-01

    In this retrospective study, we compared the cephalometric effects, the dental-arch changes, and the efficiency of Class II treatment with the pendulum appliance, cervical headgear, or extraction of 2 maxillary premolars, all associated with fixed appliance therapy. The sample of 82 patients with Class II malocclusion was divided into 3 groups: group 1 patients (n = 22; treatment time, 3.8 years) were treated with the pendulum appliance and fixed orthodontic appliances. Group 2 patients (n = 30; treatment time, 3.2 years) were treated with cervical headgear followed by fixed appliances; group 3 patients (n = 30; treatment time, 2.1 years) were treated with 2 maxillary premolar extractions and fixed appliances. The average starting ages of the groups ranged from 13.2 to 13.8 years. Data were obtained from serial cephalometric measurements and dental casts. The dental casts were analyzed with the treatment priority index. The treatment efficiency index was also used. The 3 treatment protocols produced similar cephalometric effects, especially skeletally. Comparisons among the 2 distalizing appliances (pendulum and cervical headgear) and extraction of 2 maxillary premolars for Class II treatment showed changes primarily in the maxillary dentoalveolar component and dental relationships. The facial profile was similar after treatment, except for slightly more retrusion of the upper lip in the extraction patients. The treatment priority index demonstrated that occlusal outcomes also were similar among the groups. The treatment efficiency index had higher values for the extraction group. The effects of treatment with the pendulum appliance or cervical headgear and extraction of 2 maxillary premolars associated with fixed appliances were similar from both occlusal and cephalometric standpoints. Class II treatment with extraction of maxillary teeth was more efficient because of the shorter treatment time. Differences in maxillary incisor retraction should be noted, but

  9. Ecological consequences of the expansion of N₂-fixing plants in cold biomes.

    PubMed

    Hiltbrunner, Erika; Aerts, Rien; Bühlmann, Tobias; Huss-Danell, Kerstin; Magnusson, Borgthor; Myrold, David D; Reed, Sasha C; Sigurdsson, Bjarni D; Körner, Christian

    2014-09-01

    Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem's capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.

  10. Characterization of a bacterium of the genus Azospirillum from cellulolytic nitrogen-fixing mixed cultures.

    PubMed

    Wong, P P; Stenberg, N E; Edgar, L

    1980-03-01

    A bacterium with the taxonomic characteristics of the genus Azospirillum was isolated from celluloytic N2-fixing mixed cultures. Its characteristics fit the descriptions of both Azopirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. It may be a variant strain of A. lipoferum. In mixed cultures with cellulolytic organisms, the bacterium grew and fixed N2 with cellelose as a sole source of energy and carbon. The mixed cultures used cellulose from leaves of wheat (Triticum aestivum L.), corn (Zea mays L.), and big bluestem grass (Andropogon gerardii Vitm). Microaerophilic N2-fixing bacteria of the genus Azospirillum, such as the bacterium we isolated, may be important contributors of fixed N2 in soil with partial anaerobiosis and cellulose decomposition.

  11. Co-occurrence of methanogenesis and N2 fixation in oil sands tailings.

    PubMed

    Collins, C E Victoria; Foght, Julia M; Siddique, Tariq

    2016-09-15

    Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace. Some cultures were further amended with citrate, which is used in oil sands processing, as a relevant carbon source, and/or with PAM. After an initial delay, N-deficient cultures with or without PAM produced methane (CH4) at the same rate as N-containing cultures, indicating a mechanism of overcoming apparent N-deficiency. Acetylene reduction and (15)N2 incorporation in all N-deficient cultures (with or without PAM) suggested active N2 fixation concurrently with methanogenesis but inability to use PAM as a N source. 16S rRNA gene pyrosequencing revealed little difference between archaeal populations regardless of N content. However, bacterial sequences in N-deficient cultures showed enrichment of Hyphomicrobiaceae and Clostridium members that might contain N2-fixing species. The results are important in understanding long-term production of biogenic greenhouse gases in oil sands tailings. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 48 CFR 216.403-2 - Fixed-price incentive (successive targets) contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (successive targets) contracts. 216.403-2 Section 216.403-2 Federal Acquisition Regulations System DEFENSE... CONTRACTS Incentive Contracts 216.403-2 Fixed-price incentive (successive targets) contracts. See PGI 216.403-2 for guidance on the use of fixed-price incentive (successive targets) contracts. [71 FR 39007...

  13. 48 CFR 216.403-2 - Fixed-price incentive (successive targets) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (successive targets) contracts. 216.403-2 Section 216.403-2 Federal Acquisition Regulations System DEFENSE... CONTRACTS Incentive Contracts 216.403-2 Fixed-price incentive (successive targets) contracts. See PGI 216.403-2 for guidance on the use of fixed-price incentive (successive targets) contracts. [71 FR 39007...

  14. $$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs

    DOE PAGES

    Maruyoshi, Kazunobu; Song, Jaewon

    2017-02-14

    Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less

  15. $$ \\mathcal{N}=1 $$ deformations and RG flows of $$ \\mathcal{N}=2 $$ SCFTs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyoshi, Kazunobu; Song, Jaewon

    Here, we study certainmore » $$ \\mathcal{N}=1 $$ preserving deformations of four-dimensional $$ \\mathcal{N}=2 $$ superconformal field theories (SCFTs) with non-abelian flavor symmetry. The deformation is described by adding an $$ \\mathcal{N}=1 $$ chiral multiplet transforming in the adjoint representation of the flavor symmetry with a superpotential coupling, and giving a nilpotent vacuum expectation value to the chiral multiplet which breaks the flavor symmetry. This triggers a renormalization group flow to an infrared SCFT. Remarkably, we find classes of theories flow to enhanced $$ \\mathcal{N}=2 $$ supersymmetric fixed points in the infrared under the deformation. They include generalized Argyres-Douglas theories and rank-one SCFTs with non-abelian flavor symmetries. Most notably, we find renormalization group flows from the deformed conformal SQCDs to the ( A1,An) Argyres-Douglas theories. From these "Lagrangian descriptions," we compute the full superconformal indices of the ( A1,An) theories and find agreements with the previous results. Furthermore, we study the cases, including the TN and R0,N theories of class S and some of rank-one SCFTs, where the deformation gives genuine $$ \\mathcal{N}=1 $$ fixed points.« less

  16. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOEpatents

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  17. Metabolic changes of iron uptake in N(2)-fixing common bean nodules during iron deficiency.

    PubMed

    Slatni, Tarek; Vigani, Gianpiero; Salah, Imen Ben; Kouas, Saber; Dell'Orto, Marta; Gouia, Houda; Zocchi, Graziano; Abdelly, Chedly

    2011-08-01

    Iron is an important nutrient in N(2)-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H(+)-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H(+)-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H(+)-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera.

    PubMed

    Wilson, Samuel T; Aylward, Frank O; Ribalet, Francois; Barone, Benedetto; Casey, John R; Connell, Paige E; Eppley, John M; Ferrón, Sara; Fitzsimmons, Jessica N; Hayes, Christopher T; Romano, Anna E; Turk-Kubo, Kendra A; Vislova, Alice; Armbrust, E Virginia; Caron, David A; Church, Matthew J; Zehr, Jonathan P; Karl, David M; DeLong, Edward F

    2017-07-31

    The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N 2 ) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways. Significant time-lagged correspondence was evident between nifH transcript abundance and maximal N 2 fixation, as well as sepF transcript abundance and cell division, demonstrating the utility of transcriptomics to predict the occurrence and timing of physiological and biogeochemical processes in natural populations. Indirect estimates of carbon fixation by Crocosphaera were equivalent to 11% of net community production, suggesting that under bloom conditions this diazotroph has a considerable impact on the wider carbon cycle. Our cross-scale synthesis of molecular, population and community-wide data underscores the tightly coordinated in situ metabolism of the keystone N 2 -fixing cyanobacterium Crocosphaera, as well as the broader ecosystem-wide implications of its activities.

  19. Fixed-node quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Anderson, James B.

    Quantum Monte Carlo methods cannot at present provide exact solutions of the Schrödinger equation for systems with more than a few electrons. But, quantum Monte Carlo calculations can provide very low energy, highly accurate solutions for many systems ranging up to several hundred electrons. These systems include atoms such as Be and Fe, molecules such as H2O, CH4, and HF, and condensed materials such as solid N2 and solid silicon. The quantum Monte Carlo predictions of their energies and structures may not be `exact', but they are the best available. Most of the Monte Carlo calculations for these systems have been carried out using approximately correct fixed nodal hypersurfaces and they have come to be known as `fixed-node quantum Monte Carlo' calculations. In this paper we review these `fixed node' calculations and the accuracies they yield.

  20. Application of photosynthetic N2-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Packer, L.; Fry, I.; Belkin, S.

    1986-01-01

    Commercially available air lift fermentors were used to simultaneously monitor biomass production, N2-fixation, photosynthesis, respiration, and sensitivity to oxidative damage during growth under various nutritional and light regimes, to establish a data base for the integration of these organisms into a Closed Ecological Life Support System (CELSS) program. Certain cyanobacterial species have the unique ability to reduce atmospheric N2 to organic nitrogen. These organisms combine the ease of cultivation characteristics of prokaryotes with the fully developed photosynthetic apparatus of higher plants. This, along with their ability to adapt to changes in their environment by modulation of certain biochemical pathways, make them attractive candidates for incorporation into the CELSS program.

  1. Prevalence of vaginal microorganisms among pregnant women according to trimester and association with preterm birth

    PubMed Central

    Son, Kyung-A; Kim, Minji; Kim, Yoo Min; Kim, Soo Hyun; Choi, Suk-Joo; Roh, Cheong-Rae; Kim, Jong-Hwa

    2018-01-01

    Objective The aim of this study was to investigate the prevalence of abnormal vaginal microorganisms in pregnant women according to trimester, and to determine whether the presence of abnormal vaginal colonization is associated with higher risk of miscarriage or preterm delivery. Furthermore, we analyzed delivery outcomes according to individual microorganism species. Methods We included pregnant women who underwent vaginal culture during routine prenatal check-up between January 2011 and June 2016. We compared delivery outcomes according to the presence or absence of abnormal vaginal flora grouped by trimester. Results This study included 593 singleton pregnancies. We classified participants into 3 groups, according to the trimester in which vaginal culture was performed; 1st trimester (n=221), 2nd trimester (n=138), and 3rd trimester (n=234). Abnormal vaginal colonization rate significantly decreased with advancing trimester of pregnancy (21.7% for 1st, 21.0% for 2nd, 14.5% for 3rd; P=0.048). Abnormal vaginal colonization detected in the 2nd trimester but not in 1st trimester was associated with a significant increase in preterm delivery before 28 weeks of gestation (6.9% vs. 0%; P=0.006). Among abnormal vaginal flora isolated in the 2nd trimester, the presence of Klebsiella pneumonia was identified as significant microorganism associated with preterm delivery before 28 weeks of gestation (50% vs. 0.7% for K. pneumonia; P=0.029). Conclusion There is an association between abnormal vaginal colonization detected in the 2nd trimester and preterm delivery before 28 weeks. K. pneumonia has been identified as the likely causative microorganisms. PMID:29372148

  2. Efficacy of photocatalytic HEPA filter on microorganism removal.

    PubMed

    Chuaybamroong, P; Chotigawin, R; Supothina, S; Sribenjalux, P; Larpkiattaworn, S; Wu, C-Y

    2010-06-01

    This study assessed the application of photocatalytic oxidation (PCO) to the high efficiency particulate air (HEPA) filter for disinfection of airborne microorganisms. Experiments were conducted at two TiO2 loadings (1870 +/- 169 and 3140 +/- 67 mg/m(2)) on the HEPA filter irradiated with UV-A at the intensity of 0.85 +/- 0.18 or 4.85 +/- 0.09 mW/cm(2) under two relative humidity conditions (45 +/- 5% and 75 +/- 5%). Inactivation and penetration of four microorganisms were tested, including Aspergillus niger, Penicillium citrinum, Staphylococcus epidermidis, and Bacillus subtilis. It was found that microorganisms retained on a photocatalytic filter were inactivated around 60-80% and even 100% for S. epidermidis when the PCO reactions occurred. Lower penetration was also found from the photocatalytic filter for all airborne microorganisms. High humidity decreased photocatalysis efficacy. Increasing TiO2 loading or irradiance intensity did not substantially affect its disinfection capability. The high efficiency particulate air filter is used widely to remove particulates and microorganisms from the air stream. However, the filter may become a source of microbes if those retained microorganisms proliferate and re-entrain back into the filtered air. This study demonstrates that such a problem can be handled effectively by using photocatalytic reactions to inactivate those confined microorganisms. A 60-100% microbe reduction can be achieved for a wide variety of microorganisms to provide better indoor air quality for hospitals, offices, and domestic applications.

  3. Stratified mixing by microorganisms

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory; Young, William; Lauga, Eric

    2013-11-01

    Vertical mixing is of fundamental significance to the general circulation, climate, and life in the ocean. In this work we consider whether organisms swimming at low Reynolds numbers might collectively contribute substantially to vertical mixing. Scaling analysis indicates that the mixing efficiency η, or the ratio between the rate of potential energy conversion and total work done on the fluid, should scale with η ~(a / l) 3 as a / l --> 0 , where a is the size of the organism and l = (νκ /N2)1/4 is an intrinsic length scale of a stratified fluid with kinematic viscosity ν, tracer diffusivity κ, and buoyancy frequency N2. A regularized singularity model demonstrates this scaling, indicating that in this same limit η ~ 1.2 (a / l) 3 for vertical swimming and η ~ 0.14 (a / l ) 3 for horizontal swimming. The model further predicts the absolute maximum mixing efficiency of an ensemble of randomly oriented organisms is around 6% and that the greatest mixing efficiencies in the ocean (in regions of strong salt-stratification) are closer to 0.1%, implying that the total contribution of microorganisms to vertical ocean mixing is negligible.

  4. 48 CFR 16.403-2 - Fixed-price incentive (successive targets) contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (successive targets) contracts. 16.403-2 Section 16.403-2 Federal Acquisition Regulations System FEDERAL... Fixed-price incentive (successive targets) contracts. (a) Description. (1) A fixed-price incentive (successive targets) contract specifies the following elements, all of which are negotiated at the outset: (i...

  5. 48 CFR 16.403-2 - Fixed-price incentive (successive targets) contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (successive targets) contracts. 16.403-2 Section 16.403-2 Federal Acquisition Regulations System FEDERAL... Fixed-price incentive (successive targets) contracts. (a) Description. (1) A fixed-price incentive (successive targets) contract specifies the following elements, all of which are negotiated at the outset: (i...

  6. Hip-hop solutions of the 2N-body problem

    NASA Astrophysics Data System (ADS)

    Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume

    2006-05-01

    Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.

  7. Life on N2O: deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture.

    PubMed

    Conthe, Monica; Wittorf, Lea; Kuenen, J Gijs; Kleerebezem, Robbert; van Loosdrecht, Mark C M; Hallin, Sara

    2018-04-01

    Reduction of the greenhouse gas N 2 O to N 2 is a trait among denitrifying and non-denitrifying microorganisms having an N 2 O reductase, encoded by nosZ. The nosZ phylogeny has two major clades, I and II, and physiological differences among organisms within the clades may affect N 2 O emissions from ecosystems. To increase our understanding of the ecophysiology of N 2 O reducers, we determined the thermodynamic growth efficiency of N 2 O reduction and the selection of N 2 O reducers under N 2 O- or acetate-limiting conditions in a continuous culture enriched from a natural community with N 2 O as electron acceptor and acetate as electron donor. The biomass yields were higher during N 2 O limitation, irrespective of dilution rate and community composition. The former was corroborated in a continuous culture of Pseudomonas stutzeri and was potentially due to cytotoxic effects of surplus N 2 O. Denitrifiers were favored over non-denitrifying N 2 O reducers under all conditions and Proteobacteria harboring clade I nosZ dominated. The abundance of nosZ clade II increased when allowing for lower growth rates, but bacteria with nosZ clade I had a higher affinity for N 2 O, as defined by μ max /K s . Thus, the specific growth rate is likely a key factor determining the composition of communities living on N 2 O respiration under growth-limited conditions.

  8. Climate change effects on beneficial plant-microorganism interactions.

    PubMed

    Compant, Stéphane; van der Heijden, Marcel G A; Sessitsch, Angela

    2010-08-01

    It is well known that beneficial plant-associated microorganisms may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors such as elevated CO(2), drought and warming on beneficial plant-microorganism interactions are increasingly being explored. This now makes it possible to test whether some general patterns occur and whether different groups of plant-associated microorganisms respond differently or in the same way to climate change. Here, we review the results of 135 studies investigating the effects of climate change factors on beneficial microorganisms and their interaction with host plants. The majority of studies showed that elevated CO(2) had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant growth-promoting bacteria and endophytic fungi were more variable. In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2). The effects of increased temperature on beneficial plant-associated microorganisms were more variable, positive and neutral, and negative effects were equally common and varied considerably with the study system and the temperature range investigated. Moreover, numerous studies indicated that plant growth-promoting microorganisms (both bacteria and fungi) positively affected plants subjected to drought stress. Overall, this review shows that plant-associated microorganisms are an important factor influencing the response of plants to climate change.

  9. Micro-Organ Device

    NASA Technical Reports Server (NTRS)

    Sun, Wei (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Holtorf, Heidi L. (Inventor); Leslie, Julia (Inventor); Culbertson, Christopher (Inventor); Gonda, Steve R. (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  10. Micro-organ device

    NASA Technical Reports Server (NTRS)

    von Gustedt-Gonda, legal representative, Iris (Inventor); Holtorf, Heidi L. (Inventor); Gonda, Steve R. (Inventor); Leslie, Julia (Inventor); Chang, Robert C. (Inventor); Sun, Wei (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  11. Symbiotic N2-Fixer Community Composition, but Not Diversity, Shifts in Nodules of a Single Host Legume Across a 2-Million-Year Dune Chronosequence.

    PubMed

    Birnbaum, Christina; Bissett, Andrew; Teste, Francois P; Laliberté, Etienne

    2018-04-16

    Long-term soil age gradients are useful model systems to study how changes in nutrient limitation shape communities of plant root mutualists because they represent strong natural gradients of nutrient availability, particularly of nitrogen (N) and phosphorus (P). Here, we investigated changes in the dinitrogen (N 2 )-fixing bacterial community composition and diversity in nodules of a single host legume (Acacia rostellifera) across the Jurien Bay chronosequence, a retrogressive 2 million-year-old sequence of coastal dunes representing an exceptionally strong natural soil fertility gradient. We collected nodules from plants grown in soils from five chronosequence stages ranging from very young (10s of years; associated with strong N limitation for plant growth) to very old (> 2,000,000 years; associated with strong P limitation), and sequenced the nifH gene in root nodules to determine the composition and diversity of N 2 -fixing bacterial symbionts. A total of 335 unique nifH gene operational taxonomic units (OTUs) were identified. Community composition of N 2 -fixing bacteria within nodules, but not diversity, changed with increasing soil age. These changes were attributed to pedogenesis-driven shifts in edaphic conditions, specifically pH, exchangeable manganese, resin-extractable phosphate, nitrate and nitrification rate. A large number of common N 2 -fixing bacteria genera (e.g. Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) belonging to the Rhizobiaceae family (α-proteobacteria) comprised 70% of all raw sequences and were present in all nodules. However, the oldest soils, which show some of the lowest soil P availability ever recorded, harboured the largest proportion of unclassified OTUs, suggesting a unique set of N 2 -fixing bacteria adapted to extreme P limitation. Our results show that N 2 -fixing bacterial composition varies strongly during long-term ecosystem development, even within the same host, and therefore rhizobia show strong edaphic

  12. Exact partition functions for deformed N=2 theories with N_f=4 flavours

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi

    2016-12-01

    We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.

  13. How to improve fertility of African soils? Leguminous fallows (Cameroon), addition of farmyard manure and mineral fertilizer (Kenya), organic residues management and introduction of N2 fixing species in forest plantations (Congo).

    NASA Astrophysics Data System (ADS)

    Koutika, Lydie-Stella; Mareschal, Louis; Mouanda, Cadeau; Epron, Daniel

    2014-05-01

    Most of African soils are inherently infertile and poor in nutrients mainly nitrogen and phosphorus. Several practices are used to improve soil fertility, increase productivity and ensure their sustainability. Soil fertility in the leguminous fallows was evaluated through particulate organic matter (POM), the more active part of soil organic matter (SOM) in Cameroon. The combination of mineral and organic (manure) fertilizers increased microbial P biomass allowing the release of P along the plant growing period in the Kenyan soils. Organic residues management and introduction of nitrogen fixing species (Acacia) were used to improve soil fertility and sustain forest productivity on the coastal plains of Congo. SOM fractionation was made under Pueraria, Mucuna fallows and natural regrowth mainly Chromolaena and under 3 forest plantation treatments installed in previous savanna: 1) no input, 2) normal input, and 3) double input of organic residues. Microbial P biomass and sequential P fractionation were evaluated in high and low P fixing soils. N, C, available P and pH were determined on soil sampled in acacia (100A), eucalypt (100E) and mixed-species (50A:50E) stands. N and P were determined in aboveground litters and in leaves, bark and wood of trees. The two leguminous fallows increased N content in POM fractions i.e., N >1% for Pueraria and Mucuna against N<1% for natural regrowth in the 0-0.10m depth, probably through N input from N2 fixation from the atmosphere (Cameroon).The addition of mineral fertilizers and farmyard manure increases P biomass (4.8 after 2 weeks to 15.2 after 16 weeks), and then decreased to 9.7 mg P g-1 soil (week 32). It also changes the P Hedley fractions partition in the high P fixing Kenyan soil (0-0.10m). After two rotations (14 years), SOM mineralization was the highest in the double input of organic residues treatment (low coarse POM 5.6 g kg-1 of soil and high organo-mineral fraction (OMF) 115 g kg-1 of soil). The introduction of A

  14. The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.

    PubMed

    Grubert, Anna; Eimer, Martin

    2016-02-01

    Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.

  15. Changes in plants and soil microorganisms in an artificial CO2 leakage experiment

    NASA Astrophysics Data System (ADS)

    Ko, D.; Kim, Y.; Yoo, G.; Chung, H.

    2017-12-01

    Carbon capture and storage (CCS) technology is considered to be a promising technology that can mitigate global climate change by greatly reducing anthropogenic CO2 emissions. Despite the advantage, potential risks of leakage of CO2 from CO2 storage site exists, which may negatively affect organisms in the soil ecosystems. To investigate the short- term impacts of geological CO2 leakage on soil ecosystem, we conducted an artificial CO2 leakage experiment in a greenhouse where plants and soils were exposed to high levels of CO2. Corn was grown in a 1:1 (v/v) mixture of potting and field soil, and 99.99% CO2 gas was injected at a flow rate of 0.1l min-1 for 30 days whereas no gas was injected to control pots. Changes in plant growth, soil characteristics, and bacterial community composition were determined. Mean soil CO2 and O2 concentrations were 31.6% and 15.6%, respectively, in CO2-injected pots, while they were at ambient levels in control pots. The shoot and root length, and chlorophyll contents decreased in CO2-injected pots by 19.4%, 9.7%, and 11.9%, respectively. In addition, the concentration of available N such as NH4+-N and NO3-N was 83.3 to 90.8% higher in CO2-injected pots than in control pots likely due to inhibited plant growth. The results of bacterial 16S rRNA gene pyrosequencing showed that the major phyla in the soils were Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Saccharibacteria_TM7. Among these, the relative abundance of Proteobacteria was lower in CO2-injected than in control pots (28.8% vs. 34.1%) likely due to decreased C availability. On the other hand, the abundance of Saccharibacteria_TM7 was significantly higher in CO2-injected than in control pots (6.0% vs. 1.3%). The changes in soil mineral N and microorganisms in response to injected CO2 was likely due to inhibited plant growth under high soil CO2 conditions, and further studies are needed to determine if belowground CO2 leakage from CO2 storage sites can directly

  16. Influence of an experimental herbicide on soil nitrogen-fixing bacteria and other microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, L.M. Jr.; Hedrick, H.G.

    Influence of an experimental herbicide on two isolates of soil nitrogen-fixing bacteria Rhizobium japonicum 3I1b110 and Azotobacter vinelandii ATCC 12837, was determined using a bioresponse assay, thin-layer chromatographic analysis, and changes in viable cells on the herbicide as the sole source of organic carbon. Seven bacterial and nine fungus isolates were also found by a soil enrichment technique to show utilization of the herbicide. A. vinelandii showed stimulation of growth in the first 4 days of exposure on the herbicide at 1,000 ppM. The herbicide then became toxic or was metabolized into toxic by-products. R. japonicum showed utilization of themore » herbicide by changes in growth rate as influenced by the inoculum concentration, the thoroughness of inoculum washing, and the concentration of herbicide. Using TLC assay techniques, the herbicide was found to be depleted in laboratory experiments by R. japonicum following 10 days of growth, without detectable nonmetabolic by-products. These findings suggested that the addition of the experimental herbicide to soils planted with bean crops could possibly influence the metabolic activity of R. japonicum as a symbiotic nitrogen-fixing bacterium. 5 figures, 1 table.« less

  17. Biogeochemistry and biodiversity interact to govern N2 fixers (Fabaceae) across Amazon tropical forests

    NASA Astrophysics Data System (ADS)

    Batterman, Sarah; Hedin, Lars; Lloyd, Jon; Quesada, Beto

    2015-04-01

    Dinitrogen (N2)-fixing trees in the Fabaceae fulfill a central role in tropical rainforests by supplying nitrogen from the atmosphere, yet whether they will support a forest CO2 sink in the future by alleviating nitrogen limitation may depend on whether and how they are controlled by local environmental conditions. Theory predicts that soil nutrients govern the function of N2 fixers, yet there have been no large-scale field-based tests of this idea. Moreover, recent findings indicate that N2-fixing species behave differently in biogeochemical cycles, suggesting that any environmental control may differ by species, and that the diversity of N2-fixing trees may be critical for ensuring tropical forest function. In this talk, we will use the RAINFOR dataset of 108 (~1.0 ha) lowland tropical rainforest plots from across the Amazon Basin to test whether the abundance and diversity of N2-fixing trees are controlled by soil nutrient availability (i.e., increasing with phosphorus and decreasing with nitrogen), or if fixer abundance and diversity simply follow the dynamics of all tree species. We also test an alternative - but not mutually exclusive - hypothesis that the governing factor for fixers is forest disturbance. Results show a surprising lack of control by local nutrients or disturbance on the abundance or diversity of N2 fixers. The dominant driver of fixer diversity was the total number of tree species, with fixers comprising 10% of all species in a forest plot (R2 = 0.75, linear regression). When considering the dominant taxa of N2 fixers (Inga, Swartzia, Tachigali) alone, environmental factors (nitrogen, phosphorus and disturbance) became important and clearly governed their abundance. These taxa, which contain >60% of N2-fixing trees in the data set, appear to have evolved to specialize in different local environmental conditions. The strong biogeochemistry-by-biodiversity interaction observed here points to a need to consider individual species or taxa of N2

  18. Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition

    NASA Astrophysics Data System (ADS)

    Matys, M.; Stoklas, R.; Blaho, M.; Adamowicz, B.

    2017-06-01

    The key feature for the precise tuning of Vth in GaN-based metal-insulator-semiconductor (MIS) high electron mobility transistors is the control of the positive fixed charge (Qf) at the insulator/III-N interfaces, whose amount is often comparable to the negative surface polarization charge ( Qp o l -). In order to clarify the origin of Qf, we carried out a comprehensive capacitance-voltage (C-V) characterization of SiO2/AlxGa1-xN/GaN and SiN/AlxGa1-xN/GaN structures with Al composition (x) varying from 0.15 to 0.4. For both types of structures, we observed a significant Vth shift in C-V curves towards the positive gate voltage with increasing x. On the contrary, the Schottky gate structures exhibited Vth shift towards the more negative biases. From the numerical simulations of C-V curves using the Poisson's equation supported by the analytical calculations of Vth, we showed that the Vth shift in the examined MIS structures is due to a significant decrease in the positive Qf with rising x. Finally, we examined this result with respect to various hypotheses developed in the literature to explain the origin of the positive Qf at insulator/III-N interfaces.

  19. Distributions and Abundances of Sublineages of the N2-Fixing Cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian Coral Lagoon

    PubMed Central

    Henke, Britt A.; Turk-Kubo, Kendra A.; Bonnet, Sophie; Zehr, Jonathan P.

    2018-01-01

    Nitrogen (N2) fixation is a major source of nitrogen that supports primary production in the vast oligotrophic areas of the world’s oceans. The Western Tropical South Pacific has recently been identified as a hotspot for N2 fixation. In the Noumea lagoon (New Caledonia), high abundances of the unicellular N2-fixing cyanobacteria group A (UCYN-A), coupled with daytime N2 fixation rates associated with the <10 μm size fraction, suggest UCYN-A may be an important diazotroph (N2-fixer) in this region. However, little is known about the seasonal variability and diversity of UCYN-A there. To assess this, surface waters from a 12 km transect from the mouth of the Dumbea River to the Dumbea Pass were sampled monthly between July 2012 and March 2014. UCYN-A abundances for two of the defined sublineages, UCYN-A1 and UCYN-A2, were quantified using qPCR targeting the nifH gene, and the nifH-based diversity of UCYN-A was characterized by identifying oligotypes, alternative taxonomic units defined by nucleotide positions with high variability. UCYN-A abundances were dominated by the UCYN-A1 sublineage, peaked in September and October and could be predicted by a suite of nine environmental parameters. At the sublineage level, UCYN-A1 abundances could be predicted based on lower temperatures (<23°C), nitrate concentrations, precipitation, wind speed, while UCYN-A2 abundances could be predicted based on silica, and chlorophyll a concentrations, wind direction, precipitation, and wind speed. Using UCYN-A nifH oligotyping, similar environmental variables explained the relative abundances of sublineages and their associated oligotypes, with the notable exception of the UCYN-A2 oligotype (oligo43) which had relative abundance patterns distinct from the dominant UCYN-A2 oligotype (oligo3). The results support an emerging pattern that UCYN-A is comprised of a diverse group of strains, with sublineages that may have different ecological niches. By identifying environmental factors

  20. [From persistence to symbiosis of microorganisms].

    PubMed

    Bukharin, O V

    2012-01-01

    Primary results of study of problem of microorganism persistence over the last 2 decades on 7 all-Russian conferences in Orenburg are examined in the article. Milestones of both fundamental research and practically significant studies are designated, the role of persistent potential of microorganisms in infectious pathology is evaluated. The emerging turn of studies from persistence to symbiosis is consonant with the idea of international project "Human microbiom" and allows to use the persistent potential of microorganisms as one of the instruments of resolving issues of infectology.

  1. Effects of beneficial microorganisms on lowland rice development.

    PubMed

    Nascente, Adriano Stephan; de Filippi, Marta Cristina Corsi; Lanna, Anna Cristina; de Sousa, Thatyane Pereira; de Souza, Alan Carlos Alves; da Silva Lobo, Valácia Lemes; da Silva, Gisele Barata

    2017-11-01

    Microorganisms can promote plant growth by increasing phytomass production, nutrient uptake, photosynthesis rates, and grain yield, which can result in higher profits for farmers. However, there is limited information available about the physiological characteristics of lowland rice after treatment with beneficial microorganisms in the tropical region. This study aimed to determine the effects of different beneficial microorganisms and various application forms on phytomass production, gas exchange, and nutrient contents in the lowland rice cultivar 'BRS Catiana' in a tropical region. The experiment was performed under greenhouse conditions utilizing a completely randomized design and a 7 × 3 + 1 factorial scheme with four replications. The treatments consisted of seven microorganisms, including the rhizobacterial isolates BRM 32113, BRM 32111, BRM 32114, BRM 32112, BRM 32109, and BRM 32110 and Trichoderma asperellum pooled isolates UFRA-06, UFRA-09, UFRA-12, and UFRA-52, which were applied using three different methods (microbiolized seed, microbiolized seed + soil drenched with a microorganism suspension at 7 and 15 days after sowing (DAS), and microbiolized seed + plant spraying with a microorganism suspension at 7 and 15 DAS) with a control (water). The use of microorganisms can provide numerous benefits for rice in terms of crop growth and development. The microorganism types and methods of application positively and differentially affected the physiological characteristics evaluated in the experimental lowland rice plants. Notably, the plants treated with the bioagent BRM 32109 on the seeds and on seeds + soil produced plants with the highest dry matter biomass, gas exchange rate, and N, P, Fe, and Mg uptake. Therefore, our findings indicate strong potential for the use of microorganisms in lowland rice cultivation systems in tropical regions. Currently, an additional field experiment is in its second year to validate the beneficial result reported

  2. Ecosystem-level consequences of symbiont partnerships in an N-fixing shrub from interior Alaskan floodplains

    Treesearch

    R.W. Ruess; M.D. Anderson; J.W. McFarland; K. Kielland; K. Olson; D.L. Taylor

    2013-01-01

    In long-lived N-fixing plants, environmental conditions affecting plant growth and N demand vary at multiple temporal and spatial scales, and symbiont assemblages on a given host and patterns of allocation to nodule activities have been shown to vary according to environmental factors, suggesting that hosts may alter partner choice and manipulate symbiont assemblages...

  3. Human recombinant lysosomal enzymes produced in microorganisms.

    PubMed

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. [Increasing incidence of community-acquired pneumonia caused by atypical microorganisms].

    PubMed

    Tazón-Varela, M A; Alonso-Valle, H; Muñoz-Cacho, P; Gallo-Terán, J; Piris-García, X; Pérez-Mier, L A

    2017-09-01

    Knowing the most common microorganisms in our environment can help us to make proper empirical treatment decisions. The aim is to identify those microorganisms causing community-acquired pneumonia. An observational, descriptive and prospective study was conducted, including patients over 14 years with a clinical and radiographic diagnosis of community-acquired pneumonia during a 383 consecutive day period. A record was made of sociodemographic variables, personal history, prognostic severity scales, progress, and pathogenic agents. The aetiological diagnosis was made using blood cultures, detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigens, sputum culture, influenza virus and Streptococcus pyogenes detection. Categorical variables are presented as absolute values and percentages, and continuous variables as their means and standard deviations. Of the 287 patients included in the study (42% women, mean age 66±22 years), 10.45% died and 70% required hospital admission. An aetiological diagnosis was achieved in 43 patients (14.98%), with 16 microorganisms found in 59 positive samples. The most frequently isolated pathogen was Streptococcus pneumonia (24/59, 41%), followed by gram-negative enteric bacilli, Klebsiella pneumonia, Escherichia coli, Serratia marcescens and Enterobacter cloacae isolated in 20% of the samples (12/59), influenza virus (5/59, 9%), methicillin-resistant Staphylococcus aureus (3/59, 5%), Pseudomonas aeruginosa (2/59, 3%), Moraxella catarrhalis (2/59, 3%), Legionella pneumophila (2/59, 3%), and Haemophilus influenza (2/59, 3%). Polymicrobial infections accounted for 14% (8/59). A high percentage of atypical microorganisms causing community-acquired pneumonia were found. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  5. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system.

    PubMed

    Domeignoz-Horta, Luiz A; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Bizouard, Florian; Léonard, Joël; Philippot, Laurent

    2015-01-01

    Agriculture is the main source of terrestrial emissions of N2O, a potent greenhouse gas and the main cause of ozone layer depletion. The reduction of N2O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only biological process known to eliminate this greenhouse gas. Recent studies showed that a previously unknown clade of N2O-reducers was related to the capacity of the soil to act as an N2O sink, opening the way for new strategies to mitigate emissions. Here, we investigated whether the agricultural practices could differently influence the two N2O reducer clades with consequences for denitrification end-products. The abundance of N2O-reducers and producers was quantified by real-time PCR, and the diversity of both nosZ clades was determined by 454 pyrosequencing. Potential N2O production and potential denitrification activity were used to calculate the denitrification gaseous end-product ratio. Overall, the results showed limited differences between management practices but there were significant differences between cropping systems in both the abundance and structure of the nosZII community, as well as in the [rN2O/r(N2O+N2)] ratio. More limited differences were observed in the nosZI community, suggesting that the newly identified nosZII clade is more sensitive than nosZI to environmental changes. Potential denitrification activity and potential N2O production were explained mainly by the soil properties while the diversity of the nosZII clade on its own explained 26% of the denitrification end-product ratio, which highlights the importance of understanding the ecology of this newly identified clade of N2O reducers for mitigation strategies.

  6. Effects of season and nitrogen supply on the partitioning of recently fixed carbon in understory vegetation using a 13CO2 pulse labeling technique

    NASA Astrophysics Data System (ADS)

    Hasselquist, Niles; Metcalfe, Daniel; Högberg, Peter

    2013-04-01

    Vegetation research in boreal forests has traditionally been focused on trees, with little attention given to understory vegetation. However, understory vegetation has been identified as a key driver for the functioning of boreal forests and may play an important role in the amount of carbon (C) that is entering and leaving these forested ecosystems. We conducted a large-scale 13C pulse labeling experiment to better understand how recently fixed C is allocated in the understory vegetation characteristic of boreal forests. We used transparent plastic chambers to pulse label the understory vegetation with enriched 13CO2 in the early (June) and late (August) growing seasons. This study was also replicated across a nitrogen (N) fertilization treatment to better understand the effects of N availability on C allocation patterns. We present data on the amount of 13C label found in different components of the understory vegetation (i.e. leaves, stems, lichens, mosses, rhizomes and fine roots) as well as CO2 efflux. Additionally, we provide estimates of C residence time (MRT) among the different components and examine how MRT of C is affected by seasonality and N availability. Seasonality had a large effect on how recently fixed C is allocated in understory vegetation, whereas N fertilization influenced the MRT of C in the different components of ericaceous vegetation. Moreover, there was a general trend that N additions increased the amount of 13C in CO2 efflux compared to the amount of 13C in biomass, suggesting that N fertilization may lead to an increase in the utilization of recently fixed C, whereas N-limitation promotes the storage of recently fixed C.

  7. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    PubMed

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P < 0.01). Our results indicated that the narG-containing deniteifiers were the main driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil.

  8. Magnesium Fertilizer-Induced Increase of Symbiotic Microorganisms Improves Forage Growth and Quality.

    PubMed

    Chen, Jihui; Li, Yanpeng; Wen, Shilin; Rosanoff, Andrea; Yang, Gaowen; Sun, Xiao

    2017-04-26

    Magnesium (Mg) plays important roles in photosynthesis and protein synthesis; however, latent Mg deficiencies are common phenomena that can influence food quality. Nevertheless, the effects of Mg fertilizer additions on plant carbon (C):nitrogen (N):phosphorus (P) stoichiometry, an important index of food quality, are unclear and the underlying mechanisms unexplored. We conducted a greenhouse experiment using low-Mg in situ soil without and with a gradient of Mg additions to investigate the effect of Mg fertilizer on growth and stoichiometry of maize and soybean and also measure these plants' main symbiotic microorganisms: arbuscular mycorrhizal fungi (AMF) and rhizobium, respectively. Our results showed that Mg addition significantly improved both plant species' growth and also increased N and P concentrations in soybean and maize, respectively, resulting in low C:N ratio and high N:P ratio in soybean and low C:P and N:P ratios in maize. These results presumably stemmed from the increase of nutrients supplied by activation-enhanced plant symbiotic microorganisms, an explanation supported by statistically significant positive correlations between plant stoichiometry and plants' symbiotic microorganisms' increased growth with Mg addition. We conclude that Mg supply can improve plant growth and alter plant stoichiometry via enhanced activity of plant symbiotic microorganisms. Possible mechanisms underlying this positive plant-soil feedback include an enhanced photosynthetic product flow to roots caused by adequate Mg supply.

  9. Analysis of Membrane Lipids of Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  10. Transforaminal Anterior Release for the Treatment of Fixed Sagittal Imbalance and Segmental Kyphosis, Minimum 2-Year Follow-Up Study.

    PubMed

    Sweet, Fred A; Sweet, Andrea

    2015-09-01

    Retrospective review of prospectively accrued patient cohort. To report minimum 2 years' follow-up after a single-surgeon series of 47 consecutive patients in whom fixed sagittal imbalance or segmental kyphosis was treated with a novel unilateral transforaminal annular release. Fixed sagittal imbalance has been treated most recently with pedicle subtraction osteotomy with great success but is associated with significant blood loss and neurologic risk. Forty-seven consecutive patients with fixed sagittal imbalance (n = 29) or segmental kyphosis (n = 18) were treated by a single surgeon with a single-level transforaminal anterior release (TFAR) to effect an opening wedge correction. Sagittal and coronal correction was performed with in situ rod contouring. An interbody cage was captured in the disc space with rod compression. Radiographic and clinical outcome analysis was performed with a minimum 2-year follow-up (range 2-7.8 years). The average increase in lordosis was 36° (range 24°-56°) in the fixed sagittal deformity group. Coronal corrections averaged 34° (range 18°-48°). The average improvement in plumb line was 13.6 cm. There were four pseudarthroses, one at the TFAR. Average blood loss was 578 mL (range 200-1,200). One patient had a transient grade 4/5 anterior tibialis weakness. There were no vascular injuries or permanent neurologic deficits. There were significant improvements in the Oswestry Disability Index (p < .001) and Scoliosis Research Society Questionnaire scores (p = .003). Eighty-four percent of patients reported improvement in pain, self-image, and satisfaction with the procedure. TFAR is a useful procedure for correcting segmental kyphosis and fixed sagittal imbalance with relatively low blood loss and was found to be neurologically safe in this single-surgeon series. Therapeutic study, Level IV (case series, no control group). Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  11. Optimizing N-Fixing cyanobacteria culture to restore arid degraded soils

    NASA Astrophysics Data System (ADS)

    Roncero-Ramos, Beatriz; Román, Raúl; Gómez, Cintia; Chamizo, Sonia; Rodriguez-Caballero, Emilio; Cantón, Yolanda

    2017-04-01

    Cyanobacteria present several metabolic activities and mechanisms of adaptation which enable them to colonize different habitats, in almost all biome and continents, especially under extreme environmental conditions, as on the surface of the most arid soils and under the highest temperatures. In drylands, they are usually found among plants, cohabiting with organisms such as algae, lichens, mosses, bacteria and fungi, and in association with soil surface particles, forming communities known as biocrusts. Because they can survive under water stress and are considered ecosystem engineers, facilitating the establishment of other organisms, they can play a key role in the development of a successful restoration approach to recover the functionality of soils in arid and semiarid regions. In addition cyanobacteria can be cultured "ex-situ" obtaining high quantities of biomass to be used as soil inoculum at large scale. For these reasons, the inoculation of degrades soils with cyanobacteria can be considered an alternative to traditional restoration. This approach is expected to promote: the stabilization of the soil surface and the decrease of water and wind erosion; the increase of soil fertility by fixing N and C; and the succession of more developed organisms as mosses or vascular and annual plants. The objectives were: to evaluate the potential of a soil native cyanobacteria strain to be artificially cultured and the optimization of the process, and to analyze the effects of the inoculation of the biomass on soil under laboratory conditions. Cyanobacteria were isolated from biocrusts sampled on a limestone quarry located at the southeastern edge of the Sierra de Gádor massif (Spain). It was genetically and morphological identified as belonging to the nitrogen-fixing genera Nostoc. Essays were accomplished in bubble columns reactors (0.25 L), using different culture media: BG11+N, BG110, and two media made with fertilizers. Illumination simulated a circadian cycle

  12. Surfactant based enhanced oil recovery mediated by naturally occurring microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-01-01

    Oil recovery experiments using Bacillus licheniformis JF-2 and a sucrose based nutrient were performed using Berea sandstone cores ranging in permeability from 85 to 510 md (0.084 to 0.503 {mu}m{sup 2}). Bacillus licheniformis JF-2, a surfactant producing microorganism isolated from an oilfield environment, is nonpathogenic and will not reduce sulfate. Oil recovery efficiencies (E{sub r}) for four different crude oils ranging from 19.1 to 38.1{degrees}API (0.9396 to 0.8343 g/cm{sup 3}) varied from 2.8 to 42.6% of the waterflood residual oil. Injection of cell-free'' supernatants resulted in E{sub r} values from 7.0 to 16.4%. Microbially-mediated systems reduced interfacial tension (IFT) aboutmore » 20 mN/m for four different crude oils. Following microbial flood experimentation microorganisms were distributed throughout the core (110 md (0.109 {mu}m{sup 2}) Berea sandstone) with a predominance of cells located near the outlet end. 34 refs., 6 figs., 7 tabs.« less

  13. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  14. Inactivation of Microorganisms

    NASA Astrophysics Data System (ADS)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  15. Evaluation of the anti-hyperglycemic effect and safety of microorganism 1-deoxynojirimycin.

    PubMed

    Takasu, Soo; Parida, Isabella Supardi; Onose, Shinji; Ito, Junya; Ikeda, Ryoichi; Yamagishi, Kenji; Higuchi, Oki; Tanaka, Fukuyo; Kimura, Toshiyuki; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2018-01-01

    1-Deoxynojirimycin (DNJ) is a potent α-glucosidase inhibitor and thus beneficial for prevention of diabetes. While we have succeeded in obtaining the culture supernatant extract (CSE) rich in DNJ from microorganism source, information regarding its anti-hyperglycemic effect and safety were still limited. Therefore, this study was aimed to evaluate the anti-hyperglycemic effect and safety of microorganism DNJ. Oral sucrose tolerance test was performed, and the result showed that CSE was able to significantly suppress the blood glucose elevation and suggested DNJ as the main active compound. To determine its safety, the absorption and excretion of microorganism DNJ were evaluated using 15N labeling method. Our findings investigated the recovery rate of 15N from DNJ reached 80% up to 48 hours after oral administration, suggesting its rapid excretion, suggesting the safety of DNJ. This study verified the functional properties and safety of DNJ from microorganisms, suggesting its potential use for functional purpose.

  16. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species.

    PubMed

    Breeuwer, J A; Werren, J H

    1990-08-09

    Microorganisms have been implicated in causing cytoplasmic incompatibility in a variety of insect species, including mosquitoes, fruitflies, beetles and wasps. The effect is typically unidirectional: incompatible crosses produce no progeny or sterile males, whereas the reciprocal crosses produce normal progeny. The parasitic wasp Nasonia vitripennis is one of the few species in which the cytogenetic mechanism of incompatibility is known. In this species the paternal chromosome set forms a tangled mass in a fertilized egg and is eventually lost. Here we report that cytoplasmic microorganisms are associated with complete bidirectional incompatibility between N. vitripennis and a closely related sympatric species, N. giraulti. Microorganisms can be seen in the eggs of both species. Hybrid offspring are normally not produced in crosses between the two species, but do occur after elimination of the microorganisms by antibiotic treatment. A cytogenetic and genetic study shows that bidirectional interspecific incompatibility is due to improper condensation of the paternal chromosomes. Microorganism-mediated reproductive isolation is of interest because it could provide a rapid mode of speciation. The mechanism of incompatibility in Nasonia is also of interest as a potential tool for studying chromosome imprinting and chromosome condensation.

  17. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  18. A Complex Inoculant of N2-Fixing, P- and K-Solubilizing Bacteria from a Purple Soil Improves the Growth of Kiwifruit (Actinidia chinensis) Plantlets

    PubMed Central

    Shen, Hong; He, Xinhua; Liu, Yiqing; Chen, Yi; Tang, Jianming; Guo, Tao

    2016-01-01

    Limited information is available if plant growth promoting bacteria (PGPB) can promote the growth of fruit crops through improvements in soil fertility. This study aimed to evaluate the capacity of PGPB, identified by phenotypic and 16S rRNA sequencing from a vegetable purple soil in Chongqing, China, to increase soil nitrogen (N), phosphorus (P), and potassium (K) availability and growth of kiwifruit (Actinidia chinensis). In doing so, three out of 17 bacterial isolates with a high capacity of N2-fixation (Bacillus amyloliquefaciens, XD-N-3), P-solubilization (B. pumilus, XD-P-1) or K-solubilization (B. circulans, XD-K-2) were mixed as a complex bacterial inoculant. A pot experiment then examined its effects of this complex inoculant on soil microflora, soil N2-fixation, P- and K-solubility and kiwifruit growth under four treatments. These treatments were (1) no-fertilizer and no-bacterial inoculant (Control), (2) no-bacterial inoculant and a full-rate of chemical NPK fertilizer (CF), (3) the complex inoculant (CI), and (4) a half-rate CF and full CI (1/2CF+CI). Results indicated that significantly greater growth of N2-fixing, P- and K-solubilizing bacteria among treatments ranked from greatest to least as under 1/2CF+CI ≈ CI > CF ≈ Control. Though generally without significant treatment differences in soil total N, P, or K, significantly greater soil available N, P, or K among treatments was, respectively, patterned as under 1/2CF+CI ≈ CI > CF ≈ Control, under 1/2CF+CI > CF > CI > Control or under 1/2CF+CI > CF ≈ CI > Control, indicating an improvement of soil fertility by this complex inoculant. In regards to plant growth, significantly greater total plant biomass and total N, P, and K accumulation among treatments were ranked as 1/2CF+CI ≈ CI > CF > Control. Additionally, significantly greater leaf polyphenol oxidase activity ranked as under CF > 1/2CF+CI ≈ Control ≈ CI, while leaf malondialdehyde contents as under Control > CI ≈ CF > 1/2CF

  19. A Complex Inoculant of N2-Fixing, P- and K-Solubilizing Bacteria from a Purple Soil Improves the Growth of Kiwifruit (Actinidia chinensis) Plantlets.

    PubMed

    Shen, Hong; He, Xinhua; Liu, Yiqing; Chen, Yi; Tang, Jianming; Guo, Tao

    2016-01-01

    Limited information is available if plant growth promoting bacteria (PGPB) can promote the growth of fruit crops through improvements in soil fertility. This study aimed to evaluate the capacity of PGPB, identified by phenotypic and 16S rRNA sequencing from a vegetable purple soil in Chongqing, China, to increase soil nitrogen (N), phosphorus (P), and potassium (K) availability and growth of kiwifruit (Actinidia chinensis). In doing so, three out of 17 bacterial isolates with a high capacity of N2-fixation (Bacillus amyloliquefaciens, XD-N-3), P-solubilization (B. pumilus, XD-P-1) or K-solubilization (B. circulans, XD-K-2) were mixed as a complex bacterial inoculant. A pot experiment then examined its effects of this complex inoculant on soil microflora, soil N2-fixation, P- and K-solubility and kiwifruit growth under four treatments. These treatments were (1) no-fertilizer and no-bacterial inoculant (Control), (2) no-bacterial inoculant and a full-rate of chemical NPK fertilizer (CF), (3) the complex inoculant (CI), and (4) a half-rate CF and full CI (1/2CF+CI). Results indicated that significantly greater growth of N2-fixing, P- and K-solubilizing bacteria among treatments ranked from greatest to least as under 1/2CF+CI ≈ CI > CF ≈ Control. Though generally without significant treatment differences in soil total N, P, or K, significantly greater soil available N, P, or K among treatments was, respectively, patterned as under 1/2CF+CI ≈ CI > CF ≈ Control, under 1/2CF+CI > CF > CI > Control or under 1/2CF+CI > CF ≈ CI > Control, indicating an improvement of soil fertility by this complex inoculant. In regards to plant growth, significantly greater total plant biomass and total N, P, and K accumulation among treatments were ranked as 1/2CF+CI ≈ CI > CF > Control. Additionally, significantly greater leaf polyphenol oxidase activity ranked as under CF > 1/2CF+CI ≈ Control ≈ CI, while leaf malondialdehyde contents as under Control > CI ≈ CF > 1/2CF

  20. Microorganisms and Man.

    ERIC Educational Resources Information Center

    Noble, W. C.

    1983-01-01

    Provides information to update Institute of Biology's Studies in Biology No. 111, "Microorganisms and Man," by W. C. Noble and Jay Naidoo (Edward Arnold, 1979). Topics include: (1) food poisoning; (2) airborn infections in man; (3) infection in animals and plants; and (4) biodegradation and biosynthesis. (JN)

  1. Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage.

    PubMed

    Dai, Zhimin; Guo, Xue; Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community.

  2. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  3. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  4. Dinitrogen and Cyanide Fixation by Methane Seep Microorganisms Revealed by FISH- SIMS And Implications for AOM Productivity and Nitrogenase Evolution

    NASA Astrophysics Data System (ADS)

    Dekas, A.; Orphan, V.

    2008-12-01

    The anaerobic oxidation of methane (AOM), mediated by methane oxidizing archaea (ANME) and sulfate reducing bacterial symbionts (SRB), minimizes the flux of methane from marine sediment to the overlying water column. Understanding the factors determining AOM productivity, and particularly the rates of methane catabolism and anabolism, is of interest to both modern and ancient investigations of climate and bulk carbon isotopic change. It has been hypothesized that nitrogen availability in methane seeps is temporally variable, and that the seep biomass may be at least partially nitrogen limited. The recent finding of nif genes, those necessary for the production of nitrogenase, in enrichments of ANME and SRB consortia suggested that the organisms mediating AOM have the potential to fix dinitrogen. In the present study we incubated methane seep sediment with nitrogen-deplete artificial marine media and a headspace of methane (CH4) and either 15N-labeled dinitrogen (15N2), cyanide (C15N-), or ammonia (15NH3) in order to (1) test the ability of these currently unculturable microorganisms to fix nitrogen and other triple bonded substrates, (2) investigate which AOM partner was responsible for the fixation, (3) compare growth rates on different nitrogen sources, and (4) characterize the phylogeny of these methane seep-associated nitrogenases. Fluorescence in situ hybridization coupled to nano-scale Secondary Ion Mass Spectroscopy imaging (FISH-SIMS) revealed incorporation of 15N into ANME and SRB biomass of up to 0.06 15N fractional abundance in the 15N2 incubation, and up to 0.02 in the C15N- incubation, after 6 and 4 months, respectively. This represents a nearly ten-fold enrichment of 15N compared to the measured natural 15N fractional abundance (0.0036). The NanoSIMS ion images of ANME/SRB aggregates from 15N2 incubations show evidence for 15N enrichment in both partners with the highest incorporation of 15N within the methanotrophic ANME cells. Cyanide incubations

  5. NO versus N2O emissions from an NH4 +-amended Bermuda grass pasture

    NASA Astrophysics Data System (ADS)

    Hutchinson, G. L.; Brams, E. A.

    1992-06-01

    We used an enclosure technique to monitor soil NO and N2O emissions during early summer regrowth of Bermuda grass (Cynodon dactylon) on sandy loam in a humid, subtropical region of southern Texas. The evolution of both gases was substantially higher from plots harvested at the beginning of the experiment and fertilized 5 days later with 52 kg N ha-1 as (NH4)2SO4 than from plots not harvested or fertilized. Emission of NO, but not N2O, was stimulated by clipping and removing the grass, probably because eliminating the shading provided by the dense grass canopy changed these plots from cooler to warmer than unharvested plots, thereby stimulating the activity of soil microorganisms responsible for NO production. Neither gas flux was significantly affected by application of N until the next rainfall dissolved and moved the surface-applied fertilizer into the soil. Immediately thereafter, emissions of NO and N2O increased dramatically to peaks of 160 and 12 g N ha-1 d-1, respectively, and then declined at rates that closely paralleled the nitrification rate of added NH4+, indicating that the gases resulted from the activity of nitrifying microorganisms, rather than denitrifiers. Nitric oxide emissions during the 9-week measurement period averaged 7.2 times greater than N2O emissions and accounted for 3.2% of the added N. The data indicate that humid, subtropical grasslands, which not only have large geographical extent but also have been subject to intense anthropogenic disturbance, contribute significantly to the global atmospheric NOx budget.

  6. NO versus N2O emissions from an NH4(+)-amended Bermuda grass pasture

    NASA Technical Reports Server (NTRS)

    Hutchinson, G. L.; Brams, E. A.

    1992-01-01

    An enclosure technique is used to monitor soil NO and N2O emissions during early summer regrowth of Bermuda grass (Cynodon dactylon) on sandy loam in a humid, subtropical region of southern Texas. The evolution of both gases was substantially higher from plots harvested at the beginning of the experiment and fertilized five days later with 52 kg N/ha as (NH4)2SO4 than from plots not harvested or fertilized. Emission of NO, but not N2O, was stimulated by clipping and removing the grass, probably because eliminating the shading provided by the dense grass canopy changed these plots from cooler to warmer than unharvested plots, thereby stimulating the activity of soil microorganisms responsible for NO production. Neither gas flux was significantly affected by application of N until the next rainfall dissolved and moved the surface-applied fertilizer into the soil. Immediately thereafter, emissions of NO and N2O increased dramatically to peaks of 160 and 12 g N/ha/d, respectively, and then declined at rates that closely parallel the nitrification rate of added NH4(+), indicating that the gases resulted from the activity of nitrifying microorganisms, rather than denitrifiers. Nitric oxide emissions during the nine-week measurement period averaged 7.2 times greater than N2O emissions and accounted for 3.2 percent of the added N. The data indicate that humid, subtropical grasslands, which not only have large geographical extent but also have been subject to intense anthropogenic disturbance, contribute significantly to the global atmospheric NO(x) budget.

  7. Microorganisms within Human Follicular Fluid: Effects on IVF

    PubMed Central

    Pelzer, Elise S.; Allan, John A.; Waterhouse, Mary A.; Ross, Tara; Beagley, Kenneth W.; Knox, Christine L.

    2013-01-01

    Our previous study reported microorganisms in human follicular fluid. The objective of this study was to test human follicular fluid for the presence of microorganisms and to correlate these findings with the in vitro fertilization (IVF) outcomes. In this study, 263 paired follicular fluids and vaginal swabs were collected from women undergoing IVF cycles, with various causes for infertility, and were cultured to detect microorganisms. The cause of infertility and the IVF outcomes for each woman were correlated with the microorganisms detected within follicular fluid collected at the time of trans-vaginal oocyte retrieval. Microorganisms isolated from follicular fluids were classified as: (1) ‘colonizers’ if microorganisms were detected within the follicular fluid, but not within the vaginal swab (at the time of oocyte retrieval); or (2) ‘contaminants’ if microorganisms detected in the vagina at the time of oocyte retrieval were also detected within the follicular fluid. The presence of Lactobacillus spp. in ovarian follicular fluids was associated with embryo maturation and transfer. This study revealed microorganisms in follicular fluid itself and that the presence of particular microorganisms has an adverse affect on IVF outcomes as seen by an overall decrease in embryo transfer rates and pregnancy rates in both fertile and infertile women, and live birth rates in women with idiopathic infertility. Follicular fluid microorganisms are a potential cause of adverse pregnancy outcomes in IVF in both infertile women and in fertile women with infertile male partners. PMID:23554970

  8. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  9. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; ...

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO 2 conditions and identify factors that may influence survival of cells to CO 2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO 2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure tomore » acidic water, biomass can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO 2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO 2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  10. Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi

    PubMed Central

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa. PMID:24505405

  11. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi.

    PubMed

    Hoppe, Björn; Kahl, Tiemo; Karasch, Peter; Wubet, Tesfaye; Bauhus, Jürgen; Buscot, François; Krüger, Dirk

    2014-01-01

    Nitrogen availability in dead wood is highly restricted and associations with N-fixing bacteria are thought to enable wood-decaying fungi to meet their nitrogen requirements for vegetative and generative growth. We assessed the diversity of nifH (dinitrogenase reductase) genes in dead wood of the common temperate tree species Fagus sylvatica and Picea abies from differently managed forest plots in Germany using molecular tools. By incorporating these genes into a large compilation of published nifH sequences and subsequent phylogenetic analyses of deduced proteins we verified the presence of diverse pools corresponding to functional nifH, almost all of which are new to science. The distribution of nifH genes strongly correlated with tree species and decay class, but not with forest management, while higher fungal fructification was correlated with decreasing nitrogen content of the dead wood and positively correlated with nifH diversity, especially during the intermediate stage of wood decay. Network analyses based on non-random species co-occurrence patterns revealed interactions among fungi and N-fixing bacteria in the dead wood and strongly indicate the occurrence of at least commensal relationships between these taxa.

  12. Traps and Interface Fixed Charge Effects on a Solution-Processed n-Type Polymeric-Based Organic Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalboussi, A.; Lmimouni, K.

    2017-02-01

    Organic field-effect transistors based on poly{[ N, N0- bis(2-octyldodecyl)- naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)}, [P(NDI2OD-T2)n], were fabricated and characterized. The effect of octadecyltrichlorosilane (OTS) a self-assembled monolayer (SAM) grafted on to a SiO2 gate dielectric was investigated. A significant improvement of the charge mobility ( μ), up to 0.22 cm2/V s, was reached thanks to the OTS treatment. Modifying some technological parameters relating to fabrication, such as solvents, was also studied. We have analyzed the electrical properties of these thin-film transistors by using a two-dimensional drift-diffusion simulator, Integrated System Engineering-Technology Computer Aided Design (ISE-TCAD®). We studied the fixed surface charges at the organic semiconductor/oxide interface and the bulk traps effect. The dependence of the threshold voltage on the density and energy level of the trap states has also been considered. We finally found a good agreement between the output and transfer characteristics for experimental and simulated data.

  13. 48 CFR 52.249-2 - Termination for Convenience of the Government (Fixed-Price).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Convenience of the Government (Fixed-Price). 52.249-2 Section 52.249-2 Federal Acquisition Regulations System... Text of Provisions and Clauses 52.249-2 Termination for Convenience of the Government (Fixed-Price). As prescribed in 49.502(b)(1)(i), insert the following clause: Termination for Convenience of the Government...

  14. Screening of biosurfactants from cloud microorganisms

    NASA Astrophysics Data System (ADS)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  15. Beneficial microorganisms [Chapter 14

    Treesearch

    Kim M. Wilkinson

    2009-01-01

    The web of life depends on microorganisms, a vast network of small and unseen allies that permeate the soil, water, and air of our planet. For people who work with plants, the greatest interest in microorganisms is in the complex communities that are part of the soil. Beneficial microorganisms are naturally occurring bacteria, fungi, and other microbes that play a...

  16. Effect of the quartic gradient terms on the critical exponents of the Wilson-Fisher fixed point in O(N) models

    NASA Astrophysics Data System (ADS)

    Péli, Zoltán; Nagy, Sándor; Sailer, Kornel

    2018-02-01

    The effect of the O(partial4) terms of the gradient expansion on the anomalous dimension η and the correlation length's critical exponent ν of the Wilson-Fisher fixed point has been determined for the Euclidean 3-dimensional O( N) models with N≥ 2 . Wetterich's effective average action renormalization group method is used with field-independent derivative couplings and Litim's optimized regulator. It is shown that the critical theory is well approximated by the effective average action preserving O( N) symmetry with an accuracy of O(η).

  17. Application of photosynthetic N(2)-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Fry, Ian V.; Hrabeta, Jana; Dsouza, Joe; Packer, Lester

    1987-01-01

    The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the closed ecological life support system program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) was addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1 to 35 percent (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.

  18. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  19. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  20. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  1. The Synthesis of L-Alanyl and β-Alanyl Derivatives of 2-Aminoacridone and Their Application in the Detection of Clinically-Important Microorganisms.

    PubMed

    Cellier, Marie; James, Arthur L; Orenga, Sylvain; Perry, John D; Turnbull, Graeme; Stanforth, Stephen P

    2016-01-01

    In clinical microbiology the speed with which pathogenic microorganisms may be detected has a direct impact on patient health. One important strategy used in the laboratory is the growth of cultures in the presence of an enzymatic substrate which, once transformed by the appropriate microbial enzyme, generates a detectable colour or fluorescence output. Such substrates have previously been prepared by our group and others and are available as commercial diagnostic kits, however they all suffer from some degree of diffusion when used in a solid growth medium. This diffusion complicates the detection and differentiation of species in polymicrobial cultures and so we sought to improve on our previous work. In this work we have prepared and evaluated a series of novel fluorogenic enzyme substrates based on N-substituted-2-aminoacridones. All of the prepared substrates were found to be suitable for the detection and differentiation of certain microorganisms, however those based on the 2-amino-10-benzylacridone core in particular showed no apparent diffusion when incorporated into solid growth media. On transformation these substrates generated brightly fluorescent colonies that are clearly contrasted with the background medium due to the difference in emission wavelength (λem 445-450 nm for the substrate, λem 550 nm for the product). Here we have shown that our L-alanyl aminopeptidase substrate, 2-(N-L-alanylamino)-10-benzylacridone, is particularly suited to the detection of Gram-negative bacteria, and our β-alanyl aminopeptidase substrate, 2-(N- β-alanylamino)-10-benzylacridone, to the detection of Pseudomonas aeruginosa and Serratia marcescens when grown on solid media incorporating these substrates. The resulting fluorophore shows no apparent diffusion from the colonies of interest, and the enhanced sensitivity offered by fluorescent emission may allow for the detection of these organisms as microcolonies using automated fluorescence microscopy.

  2. An Analytical Assessment of NASA's N+1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called 'N+1' aircraft - designated in NASA vernacular as such since they will follow the current, in-service, 'N' airplanes - are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are analytically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  3. An Analytical Assessment of NASA's N(+)1 Subsonic Fixed Wing Project Noise Goal

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Envia, Edmane; Burley, Casey L.

    2010-01-01

    The Subsonic Fixed Wing Project of NASA s Fundamental Aeronautics Program has adopted a noise reduction goal for new, subsonic, single-aisle, civil aircraft expected to replace current 737 and A320 airplanes. These so-called "N+1" aircraft--designated in NASA vernacular as such since they will follow the current, in-service, "N" airplanes--are hoped to achieve certification noise goal levels of 32 cumulative EPNdB under current Stage 4 noise regulations. A notional, N+1, single-aisle, twinjet transport with ultrahigh bypass ratio turbofan engines is analyzed in this study using NASA software and methods. Several advanced noise-reduction technologies are empirically applied to the propulsion system and airframe. Certification noise levels are predicted and compared with the NASA goal.

  4. Diet effects on urine composition of cattle and N2O emissions.

    PubMed

    Dijkstra, J; Oenema, O; van Groenigen, J W; Spek, J W; van Vuuren, A M; Bannink, A

    2013-06-01

    Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of

  5. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed

    Yaremko, M L; Kelemen, P R; Kutza, C; Barker, D; Westbrook, C A

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible.

  6. Biofuel production by recombinant microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  7. N2O production by nitrifier denitrification in the Benguela Upwelling System

    NASA Astrophysics Data System (ADS)

    Frame, C. H.; Hou, L.; Lehmann, M. F.

    2014-12-01

    The Benguela upwelling system off the coast of southwestern Africa is an important zone of marine N2O production whose upwelling rates vary seasonally. Here we present N2O stable isotopic and isotopomeric data collected during a period of high upwelling (September 2013) and low upwelling (January 2014). During both periods, 15N-nitrite and 15N-ammonium tracer inucbation experiments were used to investigate N2O production by ammonia oxidizing microorganisms in the top 150m of the water column. N2O production from 15N-ammonium was not measurable during these incubations. However, we detected N2O production from 15N-nitrite, suggesting that nitrifier denitrification is a source of shallow N2O in this region. Furthermore, decreasing the pH of the incubation water enhanced the amount of N2O produced, suggesting that upwelling of CO2-rich/low-pH deep water may enhance N2O production in this region. Finally, we present our incubation data in the larger context of the N2O and nitrite isotopic and concentration profiles, with an eye toward comparing incubation-based N2O production rates with profile-based estimates.

  8. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth

    NASA Astrophysics Data System (ADS)

    van den Elzen, Eva; Kox, Martine A. R.; Harpenslager, Sarah F.; Hensgens, Geert; Fritz, Christian; Jetten, Mike S. M.; Ettwig, Katharina F.; Lamers, Leon P. M.

    2017-03-01

    In pristine Sphagnum-dominated peatlands, (di)nitrogen (N2) fixing (diazotrophic) microbial communities associated with Sphagnum mosses contribute substantially to the total nitrogen input, increasing carbon sequestration. The rates of symbiotic nitrogen fixation reported for Sphagnum peatlands, are, however, highly variable, and experimental work on regulating factors that can mechanistically explain this variation is largely lacking. For two common fen species (Sphagnum palustre and S. squarrosum) from a high nitrogen deposition area (25 kg N ha-1 yr-1), we found that diazotrophic activity (as measured by 15 - 15N2 labeling) was still present at a rate of 40 nmol N gDW-1 h-1. This was surprising, given that nitrogen fixation is a costly process. We tested the effects of phosphorus availability and buffering capacity by bicarbonate-rich water, mimicking a field situation in fens with stronger groundwater or surface water influence, as potential regulators of nitrogen fixation rates and Sphagnum performance. We expected that the addition of phosphorus, being a limiting nutrient, would stimulate both diazotrophic activity and Sphagnum growth. We indeed found that nitrogen fixation rates were doubled. Plant performance, in contrast, did not increase. Raised bicarbonate levels also enhanced nitrogen fixation, but had a strong negative impact on Sphagnum performance. These results explain the higher nitrogen fixation rates reported for minerotrophic and more nutrient-rich peatlands. In addition, nitrogen fixation was found to strongly depend on light, with rates 10 times higher in light conditions suggesting high reliance on phototrophic organisms for carbon. The contrasting effects of phosphorus and bicarbonate on Sphagnum spp. and their diazotrophic communities reveal strong differences in the optimal niche for both partners with respect to conditions and resources. This suggests a trade-off for the symbiosis of nitrogen fixing microorganisms with their Sphagnum

  9. Mechanisms of nickel toxicity in microorganisms

    PubMed Central

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  10. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Jennifer L.; Zhang, Xiaolin

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  11. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    NASA Astrophysics Data System (ADS)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  12. Methylamine as a nitrogen source for microorganisms from a coastal marine environment.

    PubMed

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Pratscher, Jennifer; Jehmlich, Nico; von Bergen, Martin; Richnow, Hans H; Chen, Yin; Murrell, J Colin

    2017-06-01

    Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.

    PubMed

    Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E

    2014-01-01

    Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.

  14. Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Kahle, Vladislav; Moravcová, Dana; Slais, Karel

    2009-08-15

    A chromophoric nonionogenic surfactant poly(ethylene glycol) 3-(2-hydroxy-5-n-octylphenylazo)-benzoate, HOPAB, has been prepared and used as a buffer additive for a dynamic modification of proteins and/or microorganisms including Escherichia coli , Staphylococcus epidermidis (biofilm-positive and biofilm-negative), and the strains of yeast cells Candida albicans and Candida parapsilosis (biofilm-positive and biofilm-negative) during a capillary electrophoresis and a capillary isoelectric focusing (CIEF) with UV detection at 326 nm. Values of isoelectric points of labeled proteins and microorganisms have been calculated using UV-detectable pI markers and have been found comparable with pI of the native compounds. Minimum detectable amount has been assessed lower than picograms of proteins and lower than a hundred cells injected into a separation capillary. The introduced labeling method facilitates CIEF separation of microorganisms from the clinical sample of the infected urine at their clinically important levels in the pH gradient pH range of 2-5 and their subsequent cultivation. At the same time, it has enabled the determination of albumin in human urine as a major clinical marker of urinary tract infections and kidney diseases.

  15. A limit for large R-charge correlators in N = 2 theories

    NASA Astrophysics Data System (ADS)

    Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2018-05-01

    Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.

  16. Improved Method for Determination of Respiring Individual Microorganisms in Natural Waters

    PubMed Central

    Tabor, Paul S.; Neihof, Rex A.

    1982-01-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both ≤0.2 μm in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity. PMID:16346025

  17. Improved method for determination of respiring individual microorganisms in natural waters.

    PubMed

    Tabor, P S; Neihof, R A

    1982-06-01

    A method is reported that combines the microscopic determinations of specific, individual, respiring microorganisms by the detection of electron transport system activity and the total number of organisms of an estuarine population by epifluorescence microscopy. An active cellular electron transport system specifically reduces 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, which is recognized as opaque intracellular deposits in microorganisms stained with acridine orange. In a comparison of previously described sample preparation techniques, a loss of >70% of the counts of INT-reducing microorganisms was shown to be due to the dissolution of INT-formazan deposits by immersion oil (used in microscopy). In addition, significantly fewer fluorescing microorganisms and INT-formazan deposits, both 2 mum in size, were found for sample preparations that included a Nuclepore filter. Visual clarity was enhanced, and significantly greater direct counts and counts of INT-reducing microorganisms were recognized by transferring microorganisms from a filter to a gelatin film on a cover glass, followed by coating the sample with additional gelatin to produce a transparent matrix. With this method, the number of INT-reducing microorganisms determined for a Chesapeake Bay water sample was 2-to 10-fold greater than the number of respiring organisms reported previously for marine or freshwater samples. INT-reducing microorganisms constituted 61% of the total direct counts determined for a Chesapeake Bay water sample. This is the highest percentage of metabolically active microorganisms of any aquatic population reported using a method which determines both total counts and specific activity.

  18. Detecting the presence of microorganisms

    NASA Technical Reports Server (NTRS)

    Wilkins, Judd R. (Inventor); Stoner, Glenn E. (Inventor)

    1977-01-01

    The presence of microorganisms in a sample is determined by culturing microorganisms in a growth medium which is in contact with a measuring electrode and a reference electrode and detecting a change in potential between the electrodes caused by the presence of the microorganisms in the medium with a high impedance potentiometer.

  19. Fossil Microorganisms in Archaean

    NASA Technical Reports Server (NTRS)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  20. Metatranscriptomics of N2-fixing cyanobacteria in the Amazon River plume

    PubMed Central

    Hilton, Jason A; Satinsky, Brandon M; Doherty, Mary; Zielinski, Brian; Zehr, Jonathan P

    2015-01-01

    Biological N2 fixation is an important nitrogen source for surface ocean microbial communities. However, nearly all information on the diversity and gene expression of organisms responsible for oceanic N2 fixation in the environment has come from targeted approaches that assay only a small number of genes and organisms. Using genomes of diazotrophic cyanobacteria to extract reads from extensive meta-genomic and -transcriptomic libraries, we examined diazotroph diversity and gene expression from the Amazon River plume, an area characterized by salinity and nutrient gradients. Diazotroph genome and transcript sequences were most abundant in the transitional waters compared with lower salinity or oceanic water masses. We were able to distinguish two genetically divergent phylotypes within the Hemiaulus-associated Richelia sequences, which were the most abundant diazotroph sequences in the data set. Photosystem (PS)-II transcripts in Richelia populations were much less abundant than those in Trichodesmium, and transcripts from several Richelia PS-II genes were absent, indicating a prominent role for cyclic electron transport in Richelia. In addition, there were several abundant regulatory transcripts, including one that targets a gene involved in PS-I cyclic electron transport in Richelia. High sequence coverage of the Richelia transcripts, as well as those from Trichodesmium populations, allowed us to identify expressed regions of the genomes that had been overlooked by genome annotations. High-coverage genomic and transcription analysis enabled the characterization of distinct phylotypes within diazotrophic populations, revealed a distinction in a core process between dominant populations and provided evidence for a prominent role for noncoding RNAs in microbial communities. PMID:25514535

  1. Flow Simulation of N2B Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Kim, Hyoungjin; Liou, Meng-Sing

    2012-01-01

    The N2B hybrid wing body aircraft was conceptually designed to meet environmental and performance goals for the N+2 generation transport set by the subsonic fixed wing project. In this study, flow fields around the N2B configuration is simulated using a Reynolds-averaged Navier-Stokes flow solver using unstructured meshes. Boundary conditions at engine fan face and nozzle exhaust planes are provided by response surfaces of the NPSS thermodynamic engine cycle model. The present flow simulations reveal challenging design issues arising from boundary layer ingestion offset inlet and nacelle-airframe interference. The N2B configuration can be a good test bed for application of multidisciplinary design optimization technology.

  2. Average size of random polygons with fixed knot topology.

    PubMed

    Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo

    2003-07-01

    We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.

  3. Global climate change will increase the abundance of symbiotic nitrogen-fixing trees in much of North America.

    PubMed

    Liao, Wenying; Menge, Duncan N L; Lichstein, Jeremy W; Ángeles-Pérez, Gregorio

    2017-11-01

    Symbiotic nitrogen (N)-fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N-fixation enzyme activity and physiology, comparatively little is known about how climate influences N-fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N-fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N-fixing trees? We found that rhizobial N-fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump-shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5-10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate-envelope approach to project how N-fixing tree relative abundance might change in the future. The climate-envelope projection showed that rhizobial N-fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N-fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N-fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N-fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models. © 2017 John Wiley & Sons Ltd.

  4. Multicritical points of the O(N) scalar theory in 2 < d < 4 for large N

    NASA Astrophysics Data System (ADS)

    Katsis, A.; Tetradis, N.

    2018-05-01

    We solve analytically the renormalization-group equation for the potential of the O (N)-symmetric scalar theory in the large-N limit and in dimensions 2 < d < 4, in order to look for nonperturbative fixed points that were found numerically in a recent study. We find new real solutions with singularities in the higher derivatives of the potential at its minimum, and complex solutions with branch cuts along the negative real axis.

  5. Highly eccentric hip-hop solutions of the 2 N-body problem

    NASA Astrophysics Data System (ADS)

    Barrabés, Esther; Cors, Josep M.; Pinyol, Conxita; Soler, Jaume

    2010-02-01

    We show the existence of families of hip-hop solutions in the equal-mass 2 N-body problem which are close to highly eccentric planar elliptic homographic motions of 2 N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ɛ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ɛ≠0, the topological transversality persists and Brouwer’s fixed point theorem shows the existence of this kind of solutions in the full system.

  6. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  7. Infrared fixed point of SU(2) gauge theory with six flavors

    NASA Astrophysics Data System (ADS)

    Leino, Viljami; Rummukainen, Kari; Suorsa, Joni; Tuominen, Kimmo; Tähtinen, Sara

    2018-06-01

    We compute the running of the coupling in SU(2) gauge theory with six fermions in the fundamental representation of the gauge group. We find strong evidence that this theory has an infrared stable fixed point at strong coupling and measure also the anomalous dimension of the fermion mass operator at the fixed point. This theory therefore likely lies close to the boundary of the conformal window and will display novel infrared dynamics if coupled with the electroweak sector of the Standard Model.

  8. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater

    PubMed Central

    Rivadeneyra, Almudena; Gonzalez-Martinez, Alejandro; Gonzalez-Lopez, Jesus; Martin-Ramos, Daniel; Martinez-Toledo, Maria Victoria; Rivadeneyra, Maria Angustias

    2014-01-01

    The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA), the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences). The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM), and energy dispersive X-ray microanalysis (EDX). All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O), bobierrite [Mg3(PO4)2·8H2O] and baricite [(MgFe)3(PO4)2·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors. PMID:24699031

  9. Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor.

    PubMed

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin

    2018-07-01

    The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN

    DOEpatents

    Harteck, P.; Dondes, S.

    1959-08-01

    A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.

  11. The metabolism and biotechnological application of betaine in microorganism.

    PubMed

    Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xian, Mo; Song, Yimin; Liu, Junhong

    2016-05-01

    Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.

  12. Can evolutionary constraints explain the rarity of nitrogen-fixing trees in high-latitude forests?

    PubMed

    Menge, Duncan N L; Crews, Timothy E

    2016-09-01

    Contents 1195 I. 1195 II. 1196 III. 1196 IV. 1200 1200 References 1200 SUMMARY: The rarity of symbiotic nitrogen (N)-fixing trees in temperate and boreal ('high-latitude') forests is curious. One explanation - the evolutionary constraints hypothesis - posits that high-latitude N-fixing trees are rare because few have evolved. Here, we consider traits necessary for high-latitude N-fixing trees. We then use recent developments in trait evolution to estimate that > 2000 and > 500 species could have evolved from low-latitude N-fixing trees and high-latitude N-fixing herbs, respectively. Evolution of N-fixing from nonfixing trees is an unlikely source of diversity. Dispersal limitation seems unlikely to limit high-latitude N-fixer diversity. The greater number of N-fixing species predicted to evolve than currently inhabit high-latitude forests suggests a greater role for ecological than evolutionary constraints. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense

    PubMed Central

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J.; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  14. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    PubMed

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  15. Multicellular microorganisms: laboratory versus nature.

    PubMed

    Palková, Zdena

    2004-05-01

    Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.

  16. Predatory Microorganisms Would Help Reclaim Water

    NASA Technical Reports Server (NTRS)

    Benjaminson, Morris A.; Lehrer, Stanley

    1995-01-01

    Wastewater-reclamation systems of proposed type use predatory, nonpathogenic microorganisms to consume pathogenic microorganisms. Unlike some other wastewater-reclamation systems, these systems do not require use of toxic chemicals, intense heat, or ionizing radiation (conductivity rays or ultraviolet) to destroy microorganisms.

  17. Consequences of switching from a fixed 2 : 1 ratio of amoxicillin/clavulanate (CLSI) to a fixed concentration of clavulanate (EUCAST) for susceptibility testing of Escherichia coli.

    PubMed

    Leverstein-van Hall, Maurine A; Waar, Karola; Muilwijk, Jan; Cohen Stuart, James

    2013-11-01

    The CLSI recommends a fixed 2 : 1 ratio of co-amoxiclav for broth microdilution susceptibility testing of Enterobacteriaceae, while EUCAST recommends a fixed 2 mg/L clavulanate concentration. The aims of this study were: (i) to determine the influence of a switch from CLSI to EUCAST methodology on Escherichia coli susceptibility rates; (ii) to compare susceptibility results obtained using EUCAST-compliant microdilution with those from disc diffusion and the Etest; and (iii) to evaluate the clinical outcome of patients with E. coli sepsis treated with co-amoxiclav in relation to the susceptibility results obtained using either method. Resistance rates were determined in three laboratories that switched from CLSI to EUCAST cards with the Phoenix system (Becton Dickinson) as well as in 17 laboratories that continued to use CLSI cards with the VITEK 2 system (bioMérieux). In one laboratory, isolates were simultaneously tested by both the Phoenix system and either disc diffusion (n = 471) or the Etest (n = 113). Medical and laboratory records were reviewed for E. coli sepsis patients treated with co-amoxiclav monotherapy. Only laboratories that switched methodology showed an increase in resistance rates - from 19% in 2010 to 31% in 2011 (P < 0.0001). All isolates that tested susceptible by microdilution were also susceptible by disc diffusion or the Etest, but of 326 isolates that tested resistant by microdilution, 43% and 59% tested susceptible by disc diffusion and the Etest, respectively. Among the 89 patients included there was a better correlation between clinical response and measured MICs using the Phoenix system than the Etest. EUCAST methodology resulted in higher co-amoxiclav E. coli resistance rates than CLSI methodology, but correlated better with clinical outcome. EUCAST-compliant microdilution and disc diffusion provided discrepant results.

  18. Fixed-angle plate osteosynthesis of the patella - an alternative to tension wiring?

    PubMed

    Wild, M; Eichler, C; Thelen, S; Jungbluth, P; Windolf, J; Hakimi, M

    2010-05-01

    The goal of this study is carry out a biomechanical evaluation of the stability of a bilateral, polyaxial, fixed-angle 2.7 mm plate system specifically designed for use on the patella. The results of this approach are then compared to the two currently most commonly used surgical techniques for patella fractures: modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring. A transient biomechanical analysis determining material failure points of all osteosyntheses were conducted on 21 identical left polyurethane foam patellae, which were osteotomized horizontally. Evaluated were load (N), displacement (mm) and run-time (s) as well as elastic modulus (MPa), tensile strength (MPa) and strain at failure (%). With a maximum load capacity of 2396 (SD 492) N, the fixed-angle plate proved to be significantly stronger than the cannulated lag screws with anterior tension wiring (1015 (SD 246) N) and the modified anterior tension wiring (625 (SD 84.9) N). The fixed-angle plate displayed significantly greater stiffness and lower fracture gap dehiscence than the other osteosyntheses. Additionally, osteosynthesis deformation was found to be lower for the fixed-angle plate. A bilateral fixed-angle plate was the most rigid and stable osteosynthesis for horizontal patella fractures with the least amount of fracture gap dehiscence. Further biomechanical trials performed under cycling loading with fresh cadaver specimen should be done to figure out if a fixed-angle plate may be an alternative in the surgical treatment of patella fractures. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Read-across of ready biodegradability based on the substrate specificity of N-alkyl polypropylene polyamine-degrading microorganisms.

    PubMed

    Geerts, R; van Ginkel, C G; Plugge, C M

    2017-04-01

    The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.

  20. 78 FR 42451 - Animal Feeds Contaminated With Salmonella Microorganisms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 500 [Docket No. FDA-2013-N-0253] Animal Feeds Contaminated With Salmonella Microorganisms AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; removal. SUMMARY: The Food and Drug Administration (FDA or Agency) is...

  1. POx/Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge

    NASA Astrophysics Data System (ADS)

    Black, Lachlan E.; Kessels, W. M. M. Erwin

    2018-05-01

    Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.

  2. Effects of Fixed and Removable Space Maintainers on Plaque Accumulation, Periodontal Health, Candidal and Enterococcus Faecalis Carriage.

    PubMed

    Arikan, Volkan; Kizilci, Esra; Ozalp, Nurhan; Ozcelik, Berrin

    2015-01-01

    To evaluate the effects of space maintainers on plaque accumulation, periodontal health and oral microflora. The study participants comprised 38 patients aged 4-10 years requiring either fixed or removable space maintainers. Plaque index, gingival index, bleeding on probing index, candidal colonization and Enterococcus faecalis were recorded just before the application of space maintainers (T0) and during treatment at the 1st (T1), 3rd (T2) and 6th (T3) month. The gingival and bleeding on probing index scores increased significantly (gingival index from 0.20 ± 0254 to 0.54 ± 0417 and bleeding on probing index from 7.18 ± 9.946 to 18.07 ± 14.074) in the regions with fixed space maintainers at T3 (p < 0.01). The mean Candida counts also increased (for removable appliances from 1.90 ± 3.638 to 1.98 ± 3.318, p < 0.05, and for fixed appliances from 4.25 ± 4.587 to 4.52 ± 4.431, p < 0.001). The salivary E. faecalis counts at T3 also increased significantly with the use of fixed and removable appliances (for removable appliances from 5.93 ± 2.65 to 85.53 ± 34.1 and for fixed appliances from 4.95 ± 2.94 to 123.59 ± 29.51, p < 0.001). A positive correlation was found between the plaque (r = 0.67), gingival (r = 0.76) and bleeding on probing index scores (r = 0.76) and the candidal colonization for the fixed space maintainers (p < 0.01, p < 0.001). In this study, both fixed and removable space maintainers led to an increase in the number of microorganisms in the oral cavity as well as to increases in the periodontal index scores. Patients should be informed that space maintainers may serve as a source of infection and that special attention must be given to their oral hygiene. © 2015 S. Karger AG, Basel.

  3. An R2 statistic for fixed effects in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver

    2008-12-20

    Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.

  4. N = 1 Deformations and RG flows of N = 2 SCFTs, part II: non-principal deformations

    DOE PAGES

    Agarwal, Prarit; Maruyoshi, Kazunobu; Song, Jaewon

    2016-12-20

    We continue to investigate the N = 1 deformations of four-dimensional N = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E 6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N = 2 at the end point of the RG flow. Most notably, we find that the SU(N)more » and Sp(N) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A 1,D 2 N-1) and (A 1,D 2 N) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A 1,D N) class of AD theories. Moreover, we find an infrared duality between N = 1 theories where the fixed point is described by an N = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra.« less

  5. N = 1 Deformations and RG flows of N = 2 SCFTs, part II: non-principal deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Prarit; Maruyoshi, Kazunobu; Song, Jaewon

    We continue to investigate the N = 1 deformations of four-dimensional N = 2 superconformal field theories (SCFTs) labeled by a nilpotent element of the flavor symmetry [1]. This triggers a renormalization group (RG) flow to an N = 1 SCFT. We systematically analyze all possible deformations of this type for certain classes of N = 2 SCFTs: conformal SQCDs, generalized Argyres-Douglas theories and the E 6 SCFT. We find a number of examples where the amount of supersymmetry gets enhanced to N = 2 at the end point of the RG flow. Most notably, we find that the SU(N)more » and Sp(N) conformal SQCDs can be deformed to flow to the Argyres-Douglas (AD) theories of type (A 1,D 2 N-1) and (A 1,D 2 N) respectively. This RG flow therefore allows us to compute the full superconformal index of the (A 1,D N) class of AD theories. Moreover, we find an infrared duality between N = 1 theories where the fixed point is described by an N = 2 AD theory. We observe that the classes of examples that exhibit supersymmetry enhancement saturate certain bounds for the central charges implied by the associated two-dimensional chiral algebra.« less

  6. Biology Students’ Initial Mental Model about Microorganism

    NASA Astrophysics Data System (ADS)

    Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.

    2017-02-01

    The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.

  7. Transport of magnetohydrodynamic nanomaterial in a stratified medium considering gyrotactic microorganisms

    NASA Astrophysics Data System (ADS)

    Waqas, M.; Hayat, T.; Shehzad, S. A.; Alsaedi, A.

    2018-01-01

    Impact of gyrotactic microorganisms on two-dimensional (2D) stratified flow of an Oldroyd-B nanomaterial is highlighted. Applied magnetic field along with mixed convection is considered in the formulation. Theory of microorganisms is utilized just to stabilize the suspended nanoparticles through bioconvection induced by combined effects of buoyancy forces and magnetic field. Convergent series solutions for the obtained nonlinear differential systems are derived. Impacts of different emerging parameters on velocity, temperature, concentration, motile microorganisms density, density number of motile microorganisms and local Nusselt and Sherwood numbers are graphically addressed. It is observed that thermal, concentration and motile density stratification parameters result in reduction of temperature, concentration and motile microorganisms density distributions respectively.

  8. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  9. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  10. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  11. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  12. 40 CFR 725.85 - Microorganism identity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  13. Screening of pectinase-producing microorganisms with polygalacturonase activity.

    PubMed

    Zeni, Jamile; Cence, Karine; Grando, Camila Elis; Tiggermann, Lídia; Colet, Rosicler; Lerin, Lindomar A; Cansian, Rogério L; Toniazzo, Geciane; de Oliveira, Débora; Valduga, Eunice

    2011-02-01

    The aim of this work was to perform the screening of microorganisms, previously isolated from samples of agro-industrial waste and belonging to the culture collection of our laboratory, able to produce polygalacturonases (PG). A total of 107 microorganisms, 92 newly isolated and 15 pre-identified, were selected as potential producers of enzymes with PG activity. From these microorganisms, 20 strains were able to synthesize PG with activities above 3 U mL(-1). After the kinetic study, the enzyme activity was increased up to 13 times and the microorganism identified as Aspergillus niger ATCC 9642 and the newly isolated W23, W43, and D2 (Penicillium sp.) after 24 h of fermentation led to PG activities of 30, 41, 43, and 45 U mL(-1), respectively. The RAPD analysis demonstrated that the selected strains differs genetically, indicating that no duplication of strains among them in the experiments for polygalacturonases production was verified.

  14. Production of volatile metabolites by grape-associated microorganisms.

    PubMed

    Verginer, Markus; Leitner, Erich; Berg, Gabriele

    2010-07-28

    Plant-associated microorganisms fulfill important functions for their hosts. Whereas promotion of plant growth and health is well-studied, little is known about the impact of microorganisms on plant or fruit flavor. To analyze the production of volatiles of grape-associated microorganisms, samples of grapes of the red cultivar 'Blaufraenkisch' were taken during harvest time from four different vineyards in Burgenland (Austria). The production of volatiles was analyzed for the total culturable microbial communities (bacteria, yeasts, fungi) found on and in the grapes as well as for single isolates. The microbial communities produced clearly distinct aroma profiles for each vineyard and phylogenetic group. Furthermore, half of the grape-associated microorganisms produced a broad spectrum of volatile organic compounds. Exemplary, the spectrum was analyzed more in detail for three single isolates of Paenibacillus sp., Sporobolomyces roseus , and Aureobasidium pullulans . Well-known and typical flavor components of red wine were detected as being produced by microbes, for example, 2-methylbutanoic acid, 3-methyl-1-butanol, and ethyl octanoate.

  15. Mechanism of H2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS.

    PubMed

    Mehta-Kolte, Misha G; Loutey, Dana; Wang, Ouwei; Youngblut, Matthew D; Hubbard, Christopher G; Wetmore, Kelly M; Conrad, Mark E; Coates, John D

    2017-02-21

    The genetic and biochemical basis of perchlorate-dependent H 2 S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H 2 S, producing elemental sulfur (S o ). Although the process involving PSOX is thermodynamically favorable ( ΔG °' = -206 kJ ⋅ mol -1 H 2 S), the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H 2 S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq), transcriptome sequencing (RNA-seq), and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR]) showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB) in the absence of other electron transfer proteins. The results of these studies support a model in which H 2 S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H 2 S to S o The biogenically formed reactive intermediates (ClO 2 - and O 2 ) subsequently react with additional H 2 S, producing polysulfide and S o as end products. IMPORTANCE Inorganic sulfur

  16. Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants

    NASA Astrophysics Data System (ADS)

    Renard, Pascal; Canet, Isabelle; Sancelme, Martine; Wirgot, Nolwenn; Deguillaume, Laurent; Delort, Anne-Marie

    2016-09-01

    A total of 480 microorganisms collected from 39 clouds sampled at the Puy de Dôme station (alt. 1465 m; 45°46'19'' N, 2°57'52'' E; Massif Central, France) were isolated and identified. This unique collection was screened for biosurfactant (surfactants of microbial origin) production by measuring the surface tension (σ) of the crude extracts, comprising the supernatants of the pure cultures, using the pendant drop technique. The results showed that 41 % of the tested strains were active producers (σ < 55 mN m-1), with 7 % being extremely active (σ < 30 mN m-1). The most efficient biosurfactant producers (σ < 45 mN m-1) belong to a few bacterial genera (Pseudomonas and Xanthomonas) from the Υ-Proteobacteria class (78 %) and a yeast genus (Udeniomyces) from the Basidiomycota phylum (11 %). Some Bacillus strains from the Firmicutes phylum were also active but represented a small fraction of the collected population. Strains from the Actinobacteria phylum in the collection examined in the present study showed moderate biosurfactant production (45<σ < 55 mN m-1). Pseudomonas (Υ-Proteobacteria), the most frequently detected genus in clouds, with some species issued from the phyllosphere, was the dominant group for the production of biosurfactants. We observed some correlations between the chemical composition of cloud water and the presence of biosurfactant-producing microorganisms, suggesting the "biogeography" of this production. Moreover, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.

  17. Textiles for protection against microorganism

    NASA Astrophysics Data System (ADS)

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  18. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms

    NASA Astrophysics Data System (ADS)

    Zhu, Rencheng; Li, Shunyi; Bao, Xiaofeng; Dumont, Éric

    2017-02-01

    The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6-2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour.

  19. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms

    PubMed Central

    Zhu, Rencheng; Li, Shunyi; Bao, Xiaofeng; Dumont, Éric

    2017-01-01

    The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6–2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour. PMID:28198800

  20. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    PubMed

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. The radiocarbon signature of microorganisms in the mesopelagic ocean.

    PubMed

    Hansman, Roberta L; Griffin, Sheila; Watson, Jordan T; Druffel, Ellen R M; Ingalls, Anitra E; Pearson, Ann; Aluwihare, Lihini I

    2009-04-21

    Several lines of evidence indicate that microorganisms in the meso- and bathypelagic ocean are metabolically active and respiring carbon. In addition, growing evidence suggests that archaea are fixing inorganic carbon in this environment. However, direct quantification of the contribution from deep ocean carbon sources to community production in the dark ocean remains a challenge. In this study, carbon flow through the microbial community at 2 depths in the mesopelagic zone of the North Pacific Subtropical Gyre was examined by exploiting the unique radiocarbon signatures (Delta(14)C) of the 3 major carbon sources in this environment. The radiocarbon content of nucleic acids, a biomarker for viable cells, isolated from size-fractionated particles (0.2-0.5 microm and >0.5 microm) showed the direct incorporation of carbon delivered by rapidly sinking particles. Most significantly, at the 2 mesopelagic depths examined (670 m and 915 m), carbon derived from in situ autotrophic fixation supported a significant fraction of the free-living microbial community (0.2-0.5 microm size fraction), but the contribution of chemoautotrophy varied markedly between the 2 depths. Results further showed that utilization of the ocean's largest reduced carbon reservoir, (14)C-depleted, dissolved organic carbon, was negligible in this environment. This isotopic portrait of carbon assimilation by the in situ, free-living microbial community, integrated over >50,000 L of seawater, implies that recent, photosynthetic carbon is not always the major carbon source supporting microbial community production in the mesopelagic realm.

  2. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments

    PubMed Central

    Yergeau, Etienne; Bokhorst, Stef; Kang, Sanghoon; Zhou, Jizhong; Greer, Charles W; Aerts, Rien; Kowalchuk, George A

    2012-01-01

    Because of severe abiotic limitations, Antarctic soils represent simplified systems, where microorganisms are the principal drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report highly consistent responses in microbial communities across disparate sub-Antarctic and Antarctic environments in response to 3 years of experimental field warming (+0.5 to 2 °C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio, which could result in an increase in soil respiration. Furthermore, shifts toward generalist bacterial communities following warming weakened the linkage between the bacterial taxonomic and functional richness. GeoChip microarray analyses also revealed significant warming effects on functional communities, specifically in the N-cycling microorganisms. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures. PMID:21938020

  3. MALDI-TOF MS Versus VITEK®2: Comparison of Systems for the Identification of Microorganisms Responsible for Bacteremia.

    PubMed

    Febbraro, Filomena; Rodio, Donatella Maria; Puggioni, Gianluca; Antonelli, Guido; Pietropaolo, Valeria; Trancassini, Maria

    2016-12-01

    We evaluated the reliability and accuracy of the combined use of MALDI-TOF MS and classical ID VITEK 2 to identify monomicrobial infection in blood culture bottles. In total, 70 consecutive positive blood cultures were included in this study. Positive blood culture bottles were subjected to Gram staining and subcultured on solid media. Isolates grown from such culture media were used for classical ID using VITEK 2 system. In parallel, an aliquot was subjected to a lysing-centrifugation method and used for the identification with the MALDI-TOF system. Results evidenced the correct genus and species identification of 91.4 % of microorganisms responsible for bacteremia with an agreement to the species and the genus level. If compared with the standard method VITEK 2 , our simple and cost-effective sample preparation method would be very useful for rapid identification of microorganisms using blood culture bottles. In fact, the direct method showed rapid and reliable results, especially for the gram-negative group.

  4. The effective hyper-Kähler potential in the N = 2 supersymmetric QCD

    NASA Astrophysics Data System (ADS)

    Ketov, Sergei V.

    1997-02-01

    The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.

  5. Phylogenetic constraints do not explain the rarity of nitrogen-fixing trees in late-successional temperate forests.

    PubMed

    Menge, Duncan N L; DeNoyer, Jeanne L; Lichstein, Jeremy W

    2010-08-06

    Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The 'phylogenetic constraints hypothesis' states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the 'selective constraints hypothesis' states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the 'potentially N-fixing clade' (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon.

  6. Phylogenetic Constraints Do Not Explain the Rarity of Nitrogen-Fixing Trees in Late-Successional Temperate Forests

    PubMed Central

    Menge, Duncan N. L.; DeNoyer, Jeanne L.; Lichstein, Jeremy W.

    2010-01-01

    Background Symbiotic nitrogen (N)-fixing trees are rare in late-successional temperate forests, even though these forests are often N limited. Two hypotheses could explain this paradox. The ‘phylogenetic constraints hypothesis’ states that no late-successional tree taxa in temperate forests belong to clades that are predisposed to N fixation. Conversely, the ‘selective constraints hypothesis’ states that such taxa are present, but N-fixing symbioses would lower their fitness. Here we test the phylogenetic constraints hypothesis. Methodology/Principal Findings Using U.S. forest inventory data, we derived successional indices related to shade tolerance and stand age for N-fixing trees, non-fixing trees in the ‘potentially N-fixing clade’ (smallest angiosperm clade that includes all N fixers), and non-fixing trees outside this clade. We then used phylogenetically independent contrasts (PICs) to test for associations between these successional indices and N fixation. Four results stand out from our analysis of U.S. trees. First, N fixers are less shade-tolerant than non-fixers both inside and outside of the potentially N-fixing clade. Second, N fixers tend to occur in younger stands in a given geographical region than non-fixers both inside and outside of the potentially N-fixing clade. Third, the potentially N-fixing clade contains numerous late-successional non-fixers. Fourth, although the N fixation trait is evolutionarily conserved, the successional traits are relatively labile. Conclusions/Significance These results suggest that selective constraints, not phylogenetic constraints, explain the rarity of late-successional N-fixing trees in temperate forests. Because N-fixing trees could overcome N limitation to net primary production if they were abundant, this study helps to understand the maintenance of N limitation in temperate forests, and therefore the capacity of this biome to sequester carbon. PMID:20700466

  7. Scanning Electron Microscope Observations of Marine Microorganisms on Surfaces Coated with Antifouling Paints.

    DTIC Science & Technology

    1981-06-01

    sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING

  8. 50 CFR 660.372 - Fixed gear sablefish fishery management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fixed gear sablefish fishery management... West Coast Groundfish Fisheries § 660.372 Fixed gear sablefish fishery management. This section applies to the primary season for the fixed gear limited entry sablefish fishery north of 36° N. lat., except...

  9. Using natural biomass microorganisms for drinking water denitrification.

    PubMed

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. On Determining if Tree-based Networks Contain Fixed Trees.

    PubMed

    Anaya, Maria; Anipchenko-Ulaj, Olga; Ashfaq, Aisha; Chiu, Joyce; Kaiser, Mahedi; Ohsawa, Max Shoji; Owen, Megan; Pavlechko, Ella; St John, Katherine; Suleria, Shivam; Thompson, Keith; Yap, Corrine

    2016-05-01

    We address an open question of Francis and Steel about phylogenetic networks and trees. They give a polynomial time algorithm to decide if a phylogenetic network, N, is tree-based and pose the problem: given a fixed tree T and network N, is N based on T? We show that it is [Formula: see text]-hard to decide, by reduction from 3-Dimensional Matching (3DM) and further that the problem is fixed-parameter tractable.

  11. Activation of inoculum microorganism from dairy cattle feces

    NASA Astrophysics Data System (ADS)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  12. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian [East Lansing, MI; Kleff, Susanne [East Lansing, MI; Guettler, Michael V [Holt, MI

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  13. Recombinant microorganisms for increased production of organic acids

    DOEpatents

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  14. Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility.

    PubMed

    Islas-García, Alejandro; Vega-Loyo, Libia; Aguilar-López, Ricardo; Xoconostle-Cázares, Beatriz; Rodríguez-Vázquez, Refugio

    2015-01-01

    The concentrations of hydrocarbons and organochlorine pesticides (OCPs), nutrients and tolerant microorganisms in an agricultural soil from a locality in Tepeaca, Puebla, Mexico, were determined to define its feasibility for bioremediation. The OCPs detected were heptachlor, aldrin, trans-chlordane, endosulfán I, endosulfán II, 1,1,1-bis-(4-chlorophenyl)-2,2-trichloroethane (4,4'-DDT), 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) and endrin aldehyde, with values of 0.69-30.81 ng g(-1). The concentration of hydrocarbons in the soil of Middle Hydrocarbons Fraction (MHF), C10 to C28, was 4608-27,748 mg kg(-1) and 1117-19,610 mg kg(-1) for Heavy Hydrocarbons Fraction (HHF), C28 to C35, due to an oil spill from the rupture of a pipeline. The soil was deficient in nitrogen (0.03-0.07%) and phosphorus (0 ppm), and therefore it was advisable to fertilize to bio-stimulate the native microorganisms of soil. In the soil samples, hydrocarbonoclast fungi 3.72 × 10(2) to 44.6 × 10(2) CFU g(-1) d.s. and hydrocarbonoclast bacteria (0.17 × 10(5) to 8.60 × 10(5) CFU g(-1) d.s.) were detected, with a tolerance of 30,000 mg kg(-1) of diesel. Moreover, pesticideclast fungi (5.13 × 10(2) to 42.2 × 10(2) CFU g(-1) d.s.) and pesticideclast bacteria (0.15 × 10(5) to 9.68 × 10(5) CFU g(-1) d.s.) were determined with tolerance to 20 mg kg(-1) of OCPs. Fungi and bacteria tolerant to both pollutants were also quantified. Therefore, native microorganisms had potential to be stimulated to degrade hydrocarbons and pesticides or both pollutants. The concentration of pollutants and the microbial activity analyzed indicated that bioremediation of the soil contaminated with hydrocarbons and pesticides using bio-stimulation of native microorganisms was feasible.

  15. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  16. Associations of traffic safety attitudes and ticket fixing behaviours with the crash history of Pakistani drivers.

    PubMed

    Durrani, Mohsin; Waseem, Hunniya; Bhatti, Junaid A; Razzak, Junaid A; Naseer, Rizwan

    2012-01-01

    The study assessed whether traffic safety attitudes and ticket fixing behaviours were associated with the crash history. A total of 4018 male drivers from Lahore city participated in this cross sectional study. Most were aged 18-30 years (58.7%, n = 2362), 71.9% (n = 2887) received a traffic ticket, 66.5% (n = 2672) reported previous traffic ticket fixing and 71.3% (n = 2865) considered crashes as being the will of God. Crash history was reported by 95.4% (n = 3821) of drivers, and 58.2% of them reported being involved in a road traffic crash. The likelihood of reporting a previous crash was higher in those who had received a traffic sign violation ticket [adjusted odds ratio (aOR) = 1.40; 95% confidence interval (95%CI) = 1.15-1.72], were involved in traffic ticket fixing (aOR = 1.28; 95%CI = 1.07-1.53), and considered crashes as will of God (aOR = 1.86; 95% CI = 1.57-2.22). These results suggested the need for improving traffic enforcement monitoring and safety education in Pakistan.

  17. Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils.

    PubMed

    Liang, Liyin L; Grantz, David A; Jenerette, G Darrel

    2016-03-01

    Climate and land-use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2 ) and nitrous oxide (N2 O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2 ) and six (N2 O) orders of magnitude. Maximal CO2 and N2 O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2 O fluxes and altered their temperature sensitivities (Q10 ) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2 O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2 O flux, while significantly depressing the Q10 for CO2 , and having no effect on the Q10 for N2 O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions. © 2015 John Wiley & Sons Ltd.

  18. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds

    USGS Publications Warehouse

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe; Küsel, Kirsten

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricellaand Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds.

  19. Large Fractions of CO2-Fixing Microorganisms in Pristine Limestone Aquifers Appear To Be Involved in the Oxidation of Reduced Sulfur and Nitrogen Compounds

    PubMed Central

    Herrmann, Martina; Rusznyák, Anna; Akob, Denise M.; Schulze, Isabel; Opitz, Sebastian; Totsche, Kai Uwe

    2015-01-01

    The traditional view of the dependency of subsurface environments on surface-derived allochthonous carbon inputs is challenged by increasing evidence for the role of lithoautotrophy in aquifer carbon flow. We linked information on autotrophy (Calvin-Benson-Bassham cycle) with that from total microbial community analysis in groundwater at two superimposed—upper and lower—limestone groundwater reservoirs (aquifers). Quantitative PCR revealed that up to 17% of the microbial population had the genetic potential to fix CO2 via the Calvin cycle, with abundances of cbbM and cbbL genes, encoding RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) forms I and II, ranging from 1.14 × 103 to 6 × 106 genes liter−1 over a 2-year period. The structure of the active microbial communities based on 16S rRNA transcripts differed between the two aquifers, with a larger fraction of heterotrophic, facultative anaerobic, soil-related groups in the oxygen-deficient upper aquifer. Most identified CO2-assimilating phylogenetic groups appeared to be involved in the oxidation of sulfur or nitrogen compounds and harbored both RubisCO forms I and II, allowing efficient CO2 fixation in environments with strong oxygen and CO2 fluctuations. The genera Sulfuricella and Nitrosomonas were represented by read fractions of up to 78 and 33%, respectively, within the cbbM and cbbL transcript pool and accounted for 5.6 and 3.8% of 16S rRNA sequence reads, respectively, in the lower aquifer. Our results indicate that a large fraction of bacteria in pristine limestone aquifers has the genetic potential for autotrophic CO2 fixation, with energy most likely provided by the oxidation of reduced sulfur and nitrogen compounds. PMID:25616797

  20. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane.

    PubMed

    Loiret, F G; Ortega, E; Kleiner, D; Ortega-Rodés, P; Rodés, R; Dong, Z

    2004-01-01

    To isolate and identify endophytic nitrogen-fixing bacteria in sugarcane growing in Cuba without chemical fertilizers. Two N2-fixing isolates, 9C and T2, were obtained from surface-sterilized stems and roots, respectively, of sugarcane variety ML3-18. Both isolates showed acetylene reduction and H2 production in nitrogen-free media. Nitrogenase activity measured by H2 production was about 15 times higher for isolate 9C than for T2 or for Gluconoacetobacter diazotrophicus (PAL-5 standard strain, ATCC 49037). The nifH gene segment was amplified from both isolates using specific primers. Classification of both T2 and 9C was made on the basis of morphological, biochemical, PCR tests and 16S rDNA sequence analysis. Isolate 9C was identified as a Pantoea species from its 16S rDNA, but showed considerable differences in physiological properties from previously reported species of this genus. For example, 9C can be cultured over a wide range of temperature, pH and salt concentration, and showed high H2 production (up to 67.7 nmol H2 h(-1) 10(10) cell(-1)). Isolate T2 was a strain of Gluconacetobacter diazotrophicus. A new N2-fixing endophyte, i.e. Pantoea, able to produce H2 and to grow in a wide range of conditions, was isolated from sugarcane stem tissue and characterized. The strain with these attributes may well be valuable for agriculture. Copyright 2004 The Society for Applied Microbiology

  1. Economy of Photosynthate Use in Nitrogen-fixing Legume Nodules: Observations on Two Contrasting Symbioses.

    PubMed

    Layzell, D B; Rainbird, R M; Atkins, C A; Pate, J S

    1979-11-01

    The economy of C use by root nodules was examined in two symbioses, Vigna unguiculata (L.) Walp. (cv. Caloona):Rhizobium CB756 and Lupinus albus L. (cv. Ultra):Rhizobium WU425 over a 2-week period in early vegetative growth. Plants were grown in minus N water culture with cuvettes attached to the nodulated zone of their primary roots for collection of evolved CO(2) and H(2). Increments in total plant N and in C and N of nodules, and C:N weight ratios of xylem and phloem exudates were studied by periodic sampling from the plant populations. Itemized budgets were constructed for the partitioning and utilization of C in the two species. For each milligram N fixed and assimilated by the cowpea association, 1.54 +/- 0.26 (standard error) milligrams C as CO(2) and negligible H(2) were evolved and 3.11 milligrams of translocated C utilized by the nodules. Comparable values for nodules of the lupin association were 3.64 +/- 0.28 milligrams C as CO(2), 0.22 +/- 0.05 milligrams H(2), and 6.58 milligrams C. More efficient use of C by cowpea nodules was due to a lesser requirement of C for synthesis of exported N compounds, a smaller allocation of C to nodule dry matter, and a lower evolution of CO(2). The activity of phosphoenolpyruvate carboxylase in nodule extracts and the rate of (14)CO(2) fixation by detached nodules were greater for the cowpea symbiosis (0.56 +/- 0.06 and 0.22 milligrams C as CO(2) fixed per gram fresh weight per hour, respectively) than for the lupin 0.06 +/- 0.02 and 0.01 milligrams C as CO(2) fixed per gram fresh weight per hour. The significance of the data was discussed in relation to current information on theoretical costs of nitrogenase functioning and associated nodule processes.

  2. Synergistic interface behavior of strontium adsorption using mixed microorganisms.

    PubMed

    Hu, Wenyuan; Dong, Faqin; Yang, Guangmin; Peng, Xin; Huang, Xiaojun; Liu, Mingxue; Zhang, Jing

    2017-08-10

    The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L -1 to B. subtilis 0.05 g L -1 , and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.

  3. Bioplastics from microorganisms.

    PubMed

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  4. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production.

    PubMed

    Blum, Jan-Michael; Su, Qingxian; Ma, Yunjie; Valverde-Pérez, Borja; Domingo-Félez, Carlos; Jensen, Marlene Mark; Smets, Barth F

    2018-05-01

    Nitrous oxide (N 2 O) is emitted during microbiological nitrogen (N) conversion processes, when N 2 O production exceeds N 2 O consumption. The magnitude of N 2 O production vs. consumption varies with pH and controlling net N 2 O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N 2 O production with pH. Ammonia oxidizing bacteria are of highest relevance for N 2 O production, while heterotrophic denitrifiers are relevant for N 2 O consumption at pH > 7.5. Net N 2 O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N 2 O production at acidic pH is dominated by N 2 O production, whereas N 2 O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N 2 O production. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. [Prevalence of associated microorganisms in genital discharge, Argentina].

    PubMed

    Di Bartolomeo, Susana; Rodriguez Fermepin, Marcelo; Sauka, Diego H; Alberto de Torres, Ramón

    2002-10-01

    There was a significant increase in the number of women demanding gynecological care in public hospital of the Great Buenos Aires, Argentina, between 1997 and 1998. It was necessary to update the prevalence of associated microorganisms in order to review the laboratory support and adjust prevention and control guidelines. Samples from vaginal and endocervical discharge, from total cases: 84 adolescents (15 to 19 years) and 784 adults (20-60 years) attended in 1997-1998, were studied. Neisseria gonorrhoeae, Streptococcus agalactiae, Trichomonas vaginalis, Candida spp, and bacterial vaginosis, were diagnosed applying direct detection methods and specific culture isolation. Chlamydia trachomatis (antigen detection), Ureaplasma urealyticum and Mycoplasma hominis (culture) were also studied in part of the population. Patient care increased steadily from 1997 and there was an increase of 2.1 times from the first semester to the last one in 1998. Bacterial vaginosis was the most prevalent disease in the adult group, with 23.8%; followed by Candida spp 17.8%; S. agalactiae 5.6%; T.vaginalis 2.4%. In 50.3% of total adult cases neither bacterial vaginosis or presence of any sought microorganisms, was detected. In the adolescents group the most frequent detection was Candida spp with a 29.7%; bacterial vaginosis in 17.8%; followed by S. agalactiae 3.6%, T.vaginalis 2.4%. Also in this group on an important number of cases, 46.4%, none bacterial vaginosis or the presence of the sought microorganism were found. In some of the adult group, C. trachomatis (7/400) 1.76%, U. urealyticum (209/340) 61.4% and M. hominis (45/272) 16.5% were detected. Bacterial vaginosis and Candida spp prevalence is important in both groups. The absence of N. gonorrhoeae and lower prevalence of T. vaginalis and C. trachomatis is remarkable. A high prevalence of U. urealyticum and M. hominis were also detected, but the actual pathogenic role in adult women is still under discussion. The significant

  6. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    PubMed

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-09-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops.

  7. A BRST gauge-fixing procedure for Yang Mills theory on sphere

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Deguchi, Shinichi

    2006-01-01

    A gauge-fixing procedure for the Yang-Mills theory on an n-dimensional sphere (or a hypersphere) is discussed in a systematic manner. We claim that Adler's gauge-fixing condition used in massless Euclidean QED on a hypersphere is not conventional because of the presence of an extra free index, and hence is unfavorable for the gauge-fixing procedure based on the BRST invariance principle (or simply BRST gauge-fixing procedure). Choosing a suitable gauge condition, which is proved to be equivalent to a generalization of Adler's condition, we apply the BRST gauge-fixing procedure to the Yang-Mills theory on a hypersphere to obtain consistent results. Field equations for the Yang-Mills field and associated fields are derived in manifestly O (n + 1) covariant or invariant forms. In the large radius limit, these equations reproduce the corresponding field equations defined on the n-dimensional flat space.

  8. 47 CFR 2.813 - Transmitters operated in the Instructional Television Fixed Service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Transmitters operated in the Instructional Television Fixed Service. 2.813 Section 2.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency...

  9. 47 CFR 2.813 - Transmitters operated in the Instructional Television Fixed Service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Transmitters operated in the Instructional Television Fixed Service. 2.813 Section 2.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency...

  10. EFFECTS OF 2,4-DICHLOROPHENOL, A METABOLITE OF A GENETICALLY ENGINEERED BACTERIUM, AND 2,4-DICHLOROPHENOXYACETATE ON SOME MICROORGANISM-MEDIATED ECOLOGICAL PROCESSES IN SOIL

    EPA Science Inventory

    A genetically engineered microorganism, Pseudomonas putida PPO301 (pRO103), and the plasmidless parent strain, PPO301, were added at approximately 10 7 CFU/g of soil amended with 500 ppm of 2,4-dichlorophenoxyacete (2,4-D)(500 ug/g). he degradation of 2,4-D and the accumulation o...

  11. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    PubMed Central

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  12. Application of flow cytometry to wine microorganisms.

    PubMed

    Longin, Cédric; Petitgonnet, Clément; Guilloux-Benatier, Michèle; Rousseaux, Sandrine; Alexandre, Hervé

    2017-04-01

    Flow cytometry (FCM) is a powerful technique allowing detection and enumeration of microbial populations in food and during food process. Thanks to the fluorescent dyes used and specific probes, FCM provides information about cell physiological state and allows enumeration of a microorganism in a mixed culture. Thus, this technique is increasingly used to quantify pathogen, spoilage microorganisms and microorganisms of interest. Since one decade, FCM applications to the wine field increase greatly to determine population and physiological state of microorganisms performing alcoholic and malolactic fermentations. Wine spoilage microorganisms were also studied. In this review we briefly describe FCM principles. Next, a deep revision concerning enumeration of wine microorganisms by FCM is presented including the fluorescent dyes used and techniques allowing a yeast and bacteria species specific enumeration. Then, the last chapter is dedicated to fluorescent dyes which are used to date in fluorescent microscopy but applicable in FCM. This chapter also describes other interesting "future" techniques which could be applied to study the wine microorganisms. Thus, this review seeks to highlight the main advantages of the flow cytometry applied to wine microbiology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Indigenous microorganisms production and the effect on composting process

    NASA Astrophysics Data System (ADS)

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.

  14. Side Effects in Time Discounting Procedures: Fixed Alternatives Become the Reference Point

    PubMed Central

    2016-01-01

    Typical research on intertemporal choice utilizes a two-alternative forced choice (2AFC) paradigm requiring participants to choose between a smaller sooner and larger later payoff. In the adjusting-amount procedure (AAP) one of the alternatives is fixed and the other is adjusted according to particular choices made by the participant. Such a method makes the alternatives unequal in status and is speculated to make the fixed alternative a reference point for choices, thereby affecting the decision made. The current study shows that fixing different alternatives in the AAP influences discount rates in intertemporal choices. Specifically, individuals’ (N = 283) choices were affected to just the same extent by merely fixing an alternative as when choices were preceded by scenarios explicitly imposing reference points. PMID:27768759

  15. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    PubMed

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  16. Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view.

    PubMed

    Levitan, Orly; Kranz, Sven A; Spungin, Dina; Prásil, Ondrej; Rost, Björn; Berman-Frank, Ilana

    2010-09-01

    The marine diazotrophic cyanobacterium Trichodesmium responds to elevated atmospheric CO(2) partial pressure (pCO(2)) with higher N(2) fixation and growth rates. To unveil the underlying mechanisms, we examined the combined influence of pCO(2) (150 and 900 microatm) and light (50 and 200 micromol photons m(-2) s(-1)) on Trichodesmium IMS101. We expand on a complementary study that demonstrated that while elevated pCO(2) enhanced N(2) fixation and growth, oxygen evolution and carbon fixation increased mainly as a response to high light. Here, we investigated changes in the photosynthetic fluorescence parameters of photosystem II, in ratios of the photosynthetic units (photosystem I:photosystem II), and in the pool sizes of key proteins involved in the fixation of carbon and nitrogen as well as their subsequent assimilation. We show that the combined elevation in pCO(2) and light controlled the operation of the CO(2)-concentrating mechanism and enhanced protein activity without increasing their pool size. Moreover, elevated pCO(2) and high light decreased the amounts of several key proteins (NifH, PsbA, and PsaC), while amounts of AtpB and RbcL did not significantly change. Reduced investment in protein biosynthesis, without notably changing photosynthetic fluxes, could free up energy that can be reallocated to increase N(2) fixation and growth at elevated pCO(2) and light. We suggest that changes in the redox state of the photosynthetic electron transport chain and posttranslational regulation of key proteins mediate the high flexibility in resources and energy allocation in Trichodesmium. This strategy should enable Trichodesmium to flourish in future surface oceans characterized by elevated pCO(2), higher temperatures, and high light.

  17. Polyesters from microorganisms.

    PubMed

    Kim, Y B; Lenz, R W

    2001-01-01

    Bacterial polyesters have been found to have useful properties for applications as thermoplastics, elastomers, and adhesives and are biodegradable and biocompatible. Poly(3-hydroxyalkanoates) (PHAs) and poly(beta-malate) are the most representative polyesters synthesized by microorganisms. PHAs containing a wide variety of repeating units can be produced by bacteria, including those containing many types of pendant functional groups which can be synthesized by microorganisms that are grown on unnatural organic substrates. Poly(beta-malate) is of interest primarily for medical applications, especially for drug delivery systems. In this chapter, the bacterial production and properties of poly(3-hydroxyalkanoates) and poly(beta-malate) are described with emphasis on the former.

  18. The Importance of CO2 Utilizing Chemolithoautotrophic Microorganisms for Carbon Sequestration and Isotope Signatures of SOM in Tropical Rainforest Soils

    NASA Astrophysics Data System (ADS)

    Nowak, M. E.; Behrendt, T.; Quesada, B.; Yanez Serrano, A. M.; Trumbore, S.

    2015-12-01

    Soil organic matter (SOM) is a major compartment of the tropical carbon cycle with up to 26 % of global carbon stocks stored in tropical soils. Understanding factors and processes driving SOM dynamics under changing climate conditions is crucial for predicting the role of tropical forest ecosystems to act as a carbon sink or source. Soil microorganisms are major drivers of the belowground carbon cycle by releasing CO2 by soil respiration but also by stabilizing and storing SOM, as indicated by recent research. Our investigations focus on chemolithoautotrophic microorganisms, a group that relies on CO2 as their carbon source. Chemolithoautotrophic microorganisms have been shown to be highly abundant in soils, whereas their role in SOM sequestration is still poorly understood. In tropical soils, the activity of chemolithoautotropic microbes might be important for generating and stabilizing carbon, especially in the deeper soil, which is rich in CO2 and reduced energy sources like Fe2+. They further might impact carbon isotope signatures (13C and 14C) of SOM, because of enzymatic fractionation during carboxylation and the use of carbon, which has a distinct isotopic composition than other carbon sources at the same depth. In order to study the activity of chemolithoautotropic microbes and their importance for SOM, we conducted isotope and isotope-labelling studies, gas measurements as well as molecular analyses at soils from the Atto site from 0 to 1 meter depth. These soils are classified as Ferralsols and Alisols and represent the most abundant soil types in the Amazon. With this we will be able to gain knowledge about the function and identity of an important group of microorganisms and their contribution to crucial biogeochemical cycles in the world`s most important ecosystem.

  19. Inducible repair of alkylated DNA in microorganisms.

    PubMed

    Mielecki, Damian; Wrzesiński, Michał; Grzesiuk, Elżbieta

    2015-01-01

    Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. CO2 detection using polyethylenimine/starch functionalized AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Chang, C. Y.; Kang, B. S.; Wang, H. T.; Ren, F.; Wang, Y. L.; Pearton, S. J.; Dennis, D. M.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2008-06-01

    AlGaN /GaN high electron mobility transistors (HEMTs) functionalized with polyethylenimine/starch were used for detecting CO2 with a wide dynamic range of 0.9%-50% balanced with nitrogen at temperatures from 46to220°C. Higher detection sensitivity to CO2 gas was achieved at higher testing temperatures. At a fixed source-drain bias voltage of 0.5V, drain-source current of the functionalized HEMTs showed a sublinear correlation upon exposure to different CO2 concentrations at low temperature. The superlinear relationship was at high temperature. The sensor exhibited a reversible behavior and a repeatable current change of 32 and 47μA with the introduction of 28.57% and 37.5% CO2 at 108°C, respectively.

  1. Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roslev, P.; Madsen, P.L.; Thyme, J.B.

    The metabolism of phthalic acid (PA) and di-(2-ethylhexyl) (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [{sup 14}C]PA and [{sup 14}C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [{sup 14}C]DEHP to {sup 14}CO{sub 2} increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2.more » The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of {sup 14}C-labelled phospholipid ester-linked fatty acids ({sup 14}C-PLFAs).« less

  2. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system.

    PubMed

    Nygren, Pekka; Leblanc, Humberto A

    2015-02-01

    Natural abundance of (15)N (δ (15)N) was determined in bulk soil, rhizospheric soil and vegetation in an organically managed cacao (Theobroma cacao L.) plantation with Inga edulis Mart. legume trees (inga) as the principal shade for studying the nitrogen (N) cycle in the system. Cacao without contact with legumes in an adjacent plantation was used as the reference for N2 fixation and direct N transfer calculations. Bulk and rhizospheric soils contained 72 and 20%, respectively, of whole- system N. No vegetation effect on δ (15)N in rhizospheric soil was detected, probably due to the high native soil N pool. Fine roots of the cacaos associated with inga contained ∼35% of N fixed from the atmosphere (Nf) out of the total N. Leaves of all species had significantly higher δ (15)N than fine roots. Twenty percent of system Nf was found in cacao suggesting direct N transfer from inga via a common mycelial network of mycorrhizal fungi or recycling of N-rich root exudates of inga. Inga had accumulated 98 kg [Nf] ha(-1) during the 14-year history of the plantation. The conservative estimate of current N2 fixation rate was 41 kg [Nf] ha(-1) year(-1) based on inga biomass only and 50 kg [Nf] ha(-1) year(-1) based on inga and associated trees. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests.

    PubMed

    Taylor, Benton N; Chazdon, Robin L; Bachelot, Benedicte; Menge, Duncan N L

    2017-08-15

    More than half of the world's tropical forests are currently recovering from human land use, and this regenerating biomass now represents the largest carbon (C)-capturing potential on Earth. How quickly these forests regenerate is now a central concern for both conservation and global climate-modeling efforts. Symbiotic nitrogen-fixing trees are thought to provide much of the nitrogen (N) required to fuel tropical secondary regrowth and therefore to drive the rate of forest regeneration, yet we have a poor understanding of how these N fixers influence the trees around them. Do they promote forest growth, as expected if the new N they fix facilitates neighboring trees? Or do they suppress growth, as expected if competitive inhibition of their neighbors is strong? Using 17 consecutive years of data from tropical rainforest plots in Costa Rica that range from 10 y since abandonment to old-growth forest, we assessed how N fixers influenced the growth of forest stands and the demographic rates of neighboring trees. Surprisingly, we found no evidence that N fixers facilitate biomass regeneration in these forests. At the hectare scale, plots with more N-fixing trees grew slower. At the individual scale, N fixers inhibited their neighbors even more strongly than did nonfixing trees. These results provide strong evidence that N-fixing trees do not always serve the facilitative role to neighboring trees during tropical forest regeneration that is expected given their N inputs into these systems.

  4. Feldspars as a source of nutrients for microorganisms

    USGS Publications Warehouse

    Rogers, J.R.; Bennett, P.C.; Choi, W.J.

    1998-01-01

    Phosphorus and nitrogen are essential macronutrients necessary for the survival of virtually all living organisms. In groundwater systems, these nutrients can be quite scarce and can represent limiting elements for growth of subsurface microorganisms. In this study we examined silicate sources of these elements by characterizing the colonization and weathering of feldspars in situ using field microcosms. We found that in carbon-rich anoxic groundwaters where P and N are scarce, feldspars that contain inclusions of P-minerals such as apatite are preferentially colonized over similar feldspars without P. A microcline from S. Dakota, which contains 0.24% P2O5 but ,1 mmol/ g NH , was heavily colonized 1 4 and deeply weathered. A similar microcline from Ontario, which has no detectable P or NH , was barren of attached organisms and completely unweathered after one year. An- 1 4 orthoclase (0.28% P2O5, ;1 mmol/g NH ) was very heavily colonized and weathered, 1 4 whereas plagioclase specimens (,0.01% P, ,1 mmmol/g NH ) were uncolonized and 1 4 unweathered. In addition, the observed weathering rates are faster than expected based on laboratory rates. We propose that this system is particularly sensitive to the availability of P, and the native subsurface microorganisms have developed biochemical strategies to aggressively scavenge P (or some other essential nutrient such as Fe31 ) from resistant feldspars. The result of this interaction is that only minerals containing P will be signifi- cantly colonized, and these feldspars will be preferentially destroyed, as the subsurface microbial community scavenges a limiting nutrient.

  5. Let microorganisms do the talking, let us talk more about microorganisms.

    PubMed

    Nai, Corrado; Magrini, Boris; Offe, Julia

    2016-01-01

    Microorganisms are of uttermost importance, yet in the eyes of the general public they are often associated with dirt and diseases. At the same time, microbiologists have access to and comprehensive knowledge of just a tiny minority of the microbial diversity existing in nature. In this commentary, we present these issues of public misconception and scientific limitations and their possible consequences, and propose ways to overcome them. A particular interest is directed toward the secondary metabolism of filamentous fungi as well as novel outreach activities, including so-called "science slams" and interactions between the arts and the sciences, to raise awareness about the relevance of microorganisms.

  6. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    PubMed Central

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276

  7. Defensive properties of pyrrolizidine alkaloids against microorganisms.

    PubMed

    Joosten, Lotte; van Veen, Johannes A

    2011-03-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies.

  8. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria.

    PubMed

    Omairi-Nasser, Amin; Haselkorn, Robert; Austin, Jotham

    2014-07-01

    Cyanobacteria, formerly called blue-green algae, are abundant bacteria that carry out green plant photosynthesis, fixing CO2 and generating O2. Many species can also fix N2 when reduced nitrogen sources are scarce. Many studies imply the existence of intracellular communicating channels in filamentous cyanobacteria, in particular, the nitrogen-fixing species. In a species such as Anabaena, growth in nitrogen-depleted medium, in which ∼10% of the cells differentiate into anaerobic factories for nitrogen fixation (heterocysts), requires the transport of amino acids from heterocysts to vegetative cells, and reciprocally, the transport of sugar from vegetative cells to heterocysts. Convincing physical evidence for such channels has been slim. Using improved preservation of structure by high-pressure rapid freezing of samples for electron microscopy, coupled with high-resolution 3D tomography, it has been possible to visualize and measure the dimensions of channels that breach the peptidoglycan between vegetative cells and between heterocysts and vegetative cells. The channels appear to be straight tubes, 21 nm long and 14 nm in diameter for the latter and 12 nm long and 12 nm in diameter for the former.-Omairi-Nasser, A., Haselkorn, R., Austin, J. II. Visualization of channels connecting cells in filamentous nitrogen-fixing cyanobacteria. © FASEB.

  9. Outcome, transport times, and costs of patients evacuated by helicopter versus fixed-wing aircraft.

    PubMed Central

    Thomas, F.; Wisham, J.; Clemmer, T. P.; Orme, J. F.; Larsen, K. G.

    1990-01-01

    We determined the differences in transport times and costs for patients transported by fixed-wing aircraft versus helicopter at ranges of 101 to 150 radial miles, where fixed-wing and helicopter in-hospital transports commonly overlap. Statistical analysis failed to show a significant difference between the trauma-care patients transported by helicopter (n = 109) and those transported by fixed-wing (n = 86) for age, injury severity score, hospital length of stay, hospital mortality, or discharge disability score. The times in returning patients to the receiving hospital by helicopter (n = 104) versus fixed-wing (n = 509) did not differ significantly. Helicopter transport costs per mile ($24), however, were 400% higher than those of fixed-wing aircraft with its associated ground ambulance transport costs ($6). Thus, helicopter transport is economically unjustified for interhospital transports exceeding 100 radial miles when an efficient fixed-wing service exists. PMID:2389575

  10. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?

    PubMed Central

    Sirová, Dagmara; Šantrůček, Jiří; Adamec, Lubomír; Bárta, Jiří; Borovec, Jakub; Pech, Jiří; Owens, Sarah M.; Šantrůčková, Hana; Schäufele, Rudi; Štorchová, Helena; Vrba, Jaroslav

    2014-01-01

    Background and Aims Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant–microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. Methods 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following 15N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. Key Results Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 μmol N g–1 d. mass d–1. Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. Conclusions It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0–4·3 mg L–1) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant–microbe system can supply nitrogen in the order of

  11. Pre-load on oral implants after screw tightening fixed full prostheses: an in vivo study.

    PubMed

    Duyck, J; Van Oosterwyck, H; Vander Sloten, J; De Cooman, M; Puers, R; Naert, I

    2001-03-01

    The fit of implant supported fixed prostheses is said to be of clinical concern because of the rigid fixation of an oral implant in its surrounding bone. The influence of the torque sequence of the set screws during fixation of implant supported fixed full prostheses on the final pre-load was investigated in vitro. No significant effect of the torque sequence of the set screws on the final pre-load was observed. The main objective of this study was to quantify and qualify the pre-load in vivo on implants supporting a fixed full prosthesis. This was performed when the prostheses were supported by all five or six implants and was repeated when the prostheses were supported by only four and three implants. A total of 13 patients with a fixed full implant supported prosthesis were selected. The existing abutments were changed for strain gauged abutments. After tightening the set screws with a torque of 10 N cm, the pre-load conditions were registered. The average (SEM) axial forces and bending moments in case of five or six, four and three supporting implants were 323 N (43 N), 346 N (59 N), 307 N (60 N) 21 N cm (3 N cm) and 21 N cm (2 N cm), 23 N cm (5 N cm), respectively. In addition, the pre-load was registered after fixation of a machined gold cylinder, as delivered by the manufacturer, on each of the supporting implants, representing the 'optimal fit' situation. The corresponding average (SEM) axial forces and bending moments in case of five or six, four and three supporting implants were 426 N (36 N), 405 N (40 N), 413 N (46 N) and 8 N cm (1 N cm), 8 N cm (1 N cm), 8 N cm (1 N cm), respectively. The induced axial forces after tightening the prostheses were significantly lower then after tightening the gold cylinder in case of five or six supporting implants (P < 0.02). The induced bending moments after tightening the prostheses were statistically significantly higher (P < 0.0001) then after tightening the gold cylinder in all test conditions (five or six, four or

  12. Upflow fixed bed bioelectrochemical reactor for wastewater treatment applications.

    PubMed

    González-Gutiérrez, Linda; Frontana, Carlos; Martínez, Eduardo

    2015-01-01

    A cylindrical Upflow Fixed Bed Reactor (UFB-BER) with granular activated carbon, steel mesh electrodes and anaerobic microorganisms, was constructed for analyzing how hydrodynamic parameters affect the reactions involved during wastewater treatment processes for azo dye degradation. Dye removal percentage was not compromised by decreasing HRTm (99-90% upon changing HRTm from 4 to 1h in single pass mode). Using the residence time distribution method for hydrodynamic characterization, it was found that a higher dispersion in the reactor occurs for HRTm=1h, than for HRTm=4h. A kinetic analysis suggests that this dispersion effect could be associated to a higher specific reaction rate dependent on the azo dye concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The fate of nitrogen fixed by diazotrophs in the ocean

    NASA Astrophysics Data System (ADS)

    Mulholland, M. R.

    2007-01-01

    While we now know that N2 fixation is a significant source of new nitrogen (N) in the marine environment, little is known about the fate of this N (and associated C), despite the importance of diazotrophs to global carbon and nutrient cycles. Specifically, does N fixed during N2 fixation fuel autotrophic or heterotrophic growth and thus facilitate carbon (C) export from the euphotic zone, or does it contribute primarily to bacterial productivity and respiration in the euphotic zone? For Trichodesmium, the diazotroph we know the most about, the transfer of recently fixed N2 (and C) appears to be primarily through dissolved pools. The release of N varies among and within populations and as a result of the changing physiological state of cells and populations. The net result of trophic transfers appears to depend on the co-occurring organisms and the complexity of the colonizing community. In order to understand the impact of diazotrophy on carbon flow and export in marine systems, we need a better understanding of the trophic flow of elements in Trichodesmium-dominated communities and other diazotrophic communities under various defined physiological states. Nitrogen and carbon fixation rates themselves vary by orders of magnitude within and among studies of Trichodesmium, highlighting the difficulty in extrapolating global rates of N2 fixation from direct measurements. Because the stoichiometry of N2 and C fixation does not appear to be in balance with that of particles, and the relationship between C and N2 fixation rates is also variable, it is equally difficult to derive global rates of one from the other. This paper seeks to synthesize what is known about the fate of diazotrophic production in the environment. A better understanding of the physiology and physiological ecology of Trichodesmium and other marine diazotrophs is necessary to quantify and predict the effects of increased or decreased diazotrophy in the context of the carbon cycle and global change.

  14. Classifying Microorganisms.

    ERIC Educational Resources Information Center

    Baker, William P.; Leyva, Kathryn J.; Lang, Michael; Goodmanis, Ben

    2002-01-01

    Focuses on an activity in which students sample air at school and generate ideas about how to classify the microorganisms they observe. The results are used to compare air quality among schools via the Internet. Supports the development of scientific inquiry and technology skills. (DDR)

  15. Experimental assessment of diazotroph responses to elevated seawater pCO2 in the North Pacific Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Böttjer, Daniela; Karl, David M.; Letelier, Ricardo M.; Viviani, Donn A.; Church, Matthew J.

    2014-06-01

    We examined short-term (24-72 h) responses of naturally occurring marine N2 fixing microorganisms (termed diazotrophs) to abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater during nine incubation experiments conducted between May 2010 and September 2012 at Station ALOHA (A Long-term Oligotrophic Habitat Assessment) (22°45'N, 158°W) in the North Pacific Subtropical Gyre (NPSG). Rates of N2 fixation, nitrogenase (nifH) gene abundances and transcripts of six major groups of cyanobacterial diazotrophs (including both unicellular and filamentous phylotypes), and rates of primary productivity (as measured by 14C-bicarbonate assimilation into plankton biomass) were determined under contemporary (~390 ppm) and elevated pCO2 conditions (~1100 ppm). Quantitative polymerase chain reaction (QPCR) amplification of planktonic nifH genes revealed that unicellular cyanobacteria phylotypes dominated gene abundances during these experiments. In the majority of experiments (seven out of nine), elevated pCO2 did not significantly influence rates of dinitrogen (N2) fixation or primary productivity (two-way analysis of variance (ANOVA), P > 0.05). During two experiments, rates of N2 fixation and primary productivity were significantly lower (by 79 to 82% and 52 to 72%, respectively) in the elevated pCO2 treatments relative to the ambient controls (two-way ANOVA, P < 0.05). QPCR amplification of nifH genes and gene transcripts revealed that diazotroph abundances and nifH gene expression were largely unchanged by the perturbation of the seawater pCO2. Our results suggest that naturally occurring N2 fixing plankton assemblages in the NPSG are relatively resilient to large, short-term increases in pCO2.

  16. Extracellular electron transfer mechanisms between microorganisms and minerals.

    PubMed

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K

    2016-10-01

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  17. [A comparison between 2 different methods for calculating the percentage of anaerobic microorganisms in the subgingival microbial flora].

    PubMed

    Petti, S; Renzini, G

    1994-03-01

    The percentage of anaerobic micro-organisms in the subgingival microflora represents a simple microbiological index which not only refers to the state but also the risks of periodontal health. The present study aimed to compare two different methods of calculating this index. The study was performed in 45 subjects with moderate gingivitis provoked by the previous application of dental fixtures anchored to both arches. A sample of subgingival microflora was collected from each patient at the level of the vestibular gingival sulcus of the first upper right molar. This was then vortexed, diluted and inoculated in three series of plates. It was chosen to use Walker's culture medium. The total bacterial count was evaluated by incubating the first series of plates in anaerobiosis; the anaerobic bacterial was calculated by subtracting from the total the of facultative aerobic-anaerobic micro-organisms, which in turn was obtained using two methods: the first (method AE) consisted of incubating another series of plates in aerobiosis; the second (method M) involved incubating the last series of plates in anaerobiosis, and adding metronidazole to the culture medium in a solution of 2.5 mg/l. The plates were then kept at 37 degrees C for seven days. The mean percentage of anaerobic microorganisms, given by the percentage ratio between anaerobic and total, relating to the 45 cases studied, was as follows: using method AE: 57.8 +/- 26.3%, and using method M: 40.2 +/- 27.2%. Both figures come close to that proposed and calculated using a much more sophisticated method by Slots, namely 41.5 +/- 19.2% in the event of gingivitis.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria.

    PubMed Central

    Jimenez-Salgado, T; Fuentes-Ramirez, L E; Tapia-Hernandez, A; Mascarua-Esparza, M A; Martinez-Romero, E; Caballero-Mellado, J

    1997-01-01

    Acetobacter diazotrophicus was isolated from coffee plant tissues and from rhizosphere soils. Isolation frequencies ranged from 15 to 40% and were dependent on soil pH. Attempts to isolate this bacterial species from coffee fruit, from inside vesicular-arbuscular mycorrhizal fungi spores, or from mealybugs (Planococcus citri) associated with coffee plants were not successful. Other acid-producing diazotrophic bacteria were recovered with frequencies of 20% from the coffee rhizosphere. These N2-fixing isolates had some features in common with the genus Acetobacter but should not be assigned to the species Acetobacter diazotrophicus because they differed from A. diazotrophicus in morphological and biochemical traits and were largely divergent in electrophoretic mobility patterns of metabolic enzymes at coefficients of genetic distance as high as 0.950. In addition, these N2-fixing acetobacteria differed in the small-subunit rRNA restriction fragment length polymorphism patterns obtained with EcoRI, and they exhibited very low DNA-DNA homology levels, ranging from 11 to 15% with the A. diazotrophicus reference strain PAI 5T. Thus, some of the diazotrophic acetobacteria recovered from the rhizosphere of coffee plants may be regarded as N2-fixing species of the genus Acetobacter other than A. diazotrophicus. Endophytic diazotrophic bacteria may be more prevalent than previously thought, and perhaps there are many more potentially beneficial N2-fixing bacteria which can be isolated from other agronomically important crops. PMID:9293018

  19. Comparison of methods for the identification of microorganisms isolated from blood cultures.

    PubMed

    Monteiro, Aydir Cecília Marinho; Fortaleza, Carlos Magno Castelo Branco; Ferreira, Adriano Martison; Cavalcante, Ricardo de Souza; Mondelli, Alessandro Lia; Bagagli, Eduardo; da Cunha, Maria de Lourdes Ribeiro de Souza

    2016-08-05

    Bloodstream infections are responsible for thousands of deaths each year. The rapid identification of the microorganisms causing these infections permits correct therapeutic management that will improve the prognosis of the patient. In an attempt to reduce the time spent on this step, microorganism identification devices have been developed, including the VITEK(®) 2 system, which is currently used in routine clinical microbiology laboratories. This study evaluated the accuracy of the VITEK(®) 2 system in the identification of 400 microorganisms isolated from blood cultures and compared the results to those obtained with conventional phenotypic and genotypic methods. In parallel to the phenotypic identification methods, the DNA of these microorganisms was extracted directly from the blood culture bottles for genotypic identification by the polymerase chain reaction (PCR) and DNA sequencing. The automated VITEK(®) 2 system correctly identified 94.7 % (379/400) of the isolates. The YST and GN cards resulted in 100 % correct identifications of yeasts (15/15) and Gram-negative bacilli (165/165), respectively. The GP card correctly identified 92.6 % (199/215) of Gram-positive cocci, while the ANC card was unable to correctly identify any Gram-positive bacilli (0/5). The performance of the VITEK(®) 2 system was considered acceptable and statistical analysis showed that the system is a suitable option for routine clinical microbiology laboratories to identify different microorganisms.

  20. The antihistamine diphenhydramine is demethylated by anaerobic wastewater microorganisms.

    PubMed

    Wolfson, Sarah J; Porter, Abigail W; Villani, Thomas S; Simon, James E; Young, Lily Y

    2018-07-01

    While emerging pharmaceutical contaminants are monitored in wastewater treatment and the environment, there is little information concerning their microbial metabolites. The transformation of diphenhydramine by microorganisms in anaerobic digester sludge was investigated using anaerobic cultures amended with 1 mM diphenhydramine as the sole carbon source. Complete transformation of the parent compound to a persistent metabolite occurred within 191 days. Using GC/MS analysis, the metabolite was identified as N-desmethyl diphenhydramine. Loss of the parent compound diphenhydramine followed a first order rate constant of 0.013 day -1 . There was no observed decrease in metabolite concentration even after a further 12 months of incubation, suggesting that the metabolite resists further degradation during wastewater treatment. Bacterial community diversity in the diphenhydramine transforming assay cultures showed enrichment in Comamonadaceae, Symbiobacteriaceae, Anaerolineaceae, and Prevotellaceae relative to unamended background controls. An anaerobic toxicity assay demonstrated that diphenhydramine has an inhibitory effect on both fermentative bacteria and methanogenic archaea in the wastewater community. In contrast, the metabolite N-desmethyl diphenhydramine partially suppressed methanogens but did not impact the fermenting community. To our knowledge, this is the first report of diphenhydramine metabolism by a bacterial community. The limited transformation of diphenhydramine by wastewater microorganisms indicates that N-desmethyl diphenhydramine will enter the environment along with unmetabolized diphenhydramine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The role of viable airborne microorganisms deposition in the southeastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rahav, E.; Paytan, A.; Herut, B.

    2016-02-01

    Rahav Eyal1*, Paytan Adina2, Herut Barak1[1] Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel [2] Institute of Marine Science, University of California, Santa Cruz, CA, USA 95064. * Presenting author A high diversity of bacteria, fungi and virus are carried by atmospheric dust and deposit into the ocean. The oligotrophic southeastern Mediterranean Sea (SEMS) is known to receive relatively high amounts of atmospheric dust, thereby potentially be impacted by transport of air-borne microorganisms of diverse biogeographic origin. In this study, we characterized the genetic fingerprinting of microorganisms attached to dust in representative samples collected between 2006-2012 during storm events in the SEMS. Statistical analysis showed that dust of common origin was clustered together based on its genetic signature. Thus, microorganisms picked up in diverse geographical areas can interact differently with ambient populations. Further, microcosm dust addition experiments with surface SEMS filtered (0.2 µm) and killed (autoclaved) seawater showed that airborne microorganisms originated in dust collected in the SEMS significantly enhanced system's bacterial productivity, introduced new species and altered the abundance and activity of ambient surface microbial populations. Our results demonstrate that dust-borne microorganisms may play a significant role in the SEMS ecology.

  2. Cell morphology and flagellation of nitrogen-fixing spirilla.

    PubMed

    Hegazi, N A; Vlassak, K

    1979-01-01

    Twenty isolates of N2-fixing spirilla were isolated from the rhizosphere of maize and sugar cane grown in Egyptian and Belgian soils. Electron microscopy distinguished two morphological groups. The first includes short and thick curved rods with an unipolar flagellum while cells of the second group are much longer with the typical appearance of spiral cells and most probably possess a bipolar tuft of flagella.

  3. Comparison of Different Irrigants in the Removal of Endotoxins and Cultivable Microorganisms from Infected Root Canals

    PubMed Central

    Valera, Marcia Carneiro; Cardoso, Flávia Goulart da Rosa; Chung, Adriana; Xavier, Ana Cláudia Carvalho; Figueiredo, Mariana Diehl; Martinho, Frederico Canato; Palo, Renato Miotto

    2015-01-01

    This study was conducted to compare the effectiveness of different irrigants used to remove endotoxins and cultivable microorganisms during endodontic therapy. Forty root canals were contaminated and divided into groups according to the irrigant: 2% NaOCl + surfactant, 2% CHX, 2.5% NaOCl, and pyrogen-free saline solution (control). Samples were collected after root canal contamination (S1), after instrumentation (S2), and 7 days after instrumentation (S3). Microorganisms and endotoxins were recovered from 100% of the contaminated root canals (S1). At S2, 2% NaOCl + surfactant, 2% CHX, and 2.5% NaOCl were able to completely eliminate cultivable microorganisms. At S3, both 2% CHX and 2.5% NaOCl were effective in preventing C. albicans and E. coli regrowth, but E. faecalis was still detected. No microorganism species was recovered from root canals instrumented with 2% NaOCl + surfactant. At S2, a higher percentage value of endotoxin reduction was found for 2% NaOCl + surfactant (99.3%) compared to 2% CHX (98.9%) and 2.5% NaOCl (97.18%) (p < 0.05). Moreover, at S3, 2% NaOCl + surfactant (100%) was the most effective irrigant against endotoxins. All irrigants tested were effective in reducing microorganisms and endotoxins from root canals. Moreover, 2% NaOCl + surfactant was the most effective irrigant against endotoxins and regrowth of microorganisms. PMID:26346574

  4. Variable Nitrogen Fixation in Wild Populus

    PubMed Central

    Doty, Sharon L.; Sher, Andrew W.; Fleck, Neil D.; Khorasani, Mahsa; Bumgarner, Roger E.; Khan, Zareen; Ko, Andrew W. K.; Kim, Soo-Hyung; DeLuca, Thomas H.

    2016-01-01

    The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N) is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees. PMID:27196608

  5. Study of commercial effective microorganism on composting and dynamics of plant essential metal micronutrients.

    PubMed

    Daur, Ihsanullah

    2016-09-01

    The present study addresses the problem of organic farmers' that needs local organic resources with their enhanced quality to effectively fertilize their agriculture crops. In accordance with the objective of the experiment that is about enhancing quality of compost, a blend of organic resources, comprising cow manure (CM), poultry manure (PM) and kitchen waste (KW) (2:1:1 ratio by volume) was composted with effective microorganisms (EM.1) (CompostEM.1) and without (Compostplain). During composting, temperature, pH, carbon, nitrogen, C/N ratio, total and diethylene triamine pentaacetic acid (DTPA)-extractable essential metal micronutrient (Fe3+, Cu2+, Zn2+, and Mn2+) contents of both the composts were recorded following the standard procedures. Low temperature range (24−24), low pH (6.7−7.2) and higher N-content (1.15−1.40) were recorded for CompostEM.1 as compared to Compostplain. Carbon degradation was also faster in CompostEM.1 than in Compostplain. Consequently, C/N ratio stabilization took 6 weeks in CompostEM.1 as compared to 18 weeks in Compostplain, leading to rapid completion of composting. Total concentration of micronutrients increased while their DTPA-extractable content decreased during the composting. Total micronutrient concentration was augmented more in Compostplain samples than in CompostEM.1. However, decrease in DTPA-extractable content was similar in both the composts. Increase in micronutrient content was attributed to decrease in organic matter weight, whereas decrease in metal micronutrients was attributed to the formation of organic matter-metal complexes during decomposition. Findings of the study indicated that effective micro-organisms enhanced composting process, however, further studies are required to evaluate its quality, especially effect on plant and soil.

  6. Selection of nitrogen-fixing deficient Burkholderia vietnamiensis strains by cystic fibrosis patients: involvement of nif gene deletions and auxotrophic mutations.

    PubMed

    Menard, Aymeric; Monnez, Claire; Estrada de Los Santos, Paulina; Segonds, Christine; Caballero-Mellado, Jesus; Lipuma, John J; Chabanon, Gerard; Cournoyer, Benoit

    2007-05-01

    Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

  7. Extracellular electron transfer mechanisms between microorganisms and minerals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels andmore » nanomaterials.« less

  8. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists

    NASA Astrophysics Data System (ADS)

    Tsuji, Motonori

    2017-06-01

    HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

  9. H2, fixed architecture, control design for large scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1990-01-01

    The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.

  10. Biomineralization of strontianite(SrCO3) by aerobic microorganisms enriched from rhodoliths

    NASA Astrophysics Data System (ADS)

    Kang, S.; Roh, Y.

    2012-12-01

    The transport and fate of trace metals and radionuclides in natural environments are controlled by physical, chemical, and microbiological processes. Especially, microbially induced precipitation of carbonates has drawn much attention in recent decades because of its numerous implications such as atmospheric CO2 fixation through mineral carbonation and solid phase capture of inorganic contaminants. The objectives of this study were to investigate the potential for microbially induced precipitation of strontianite (SrCO3) using microorganisms enriched from rhodoliths and to identify mineralogical characteristics of the precipitates of strontianite. Carbonate forming microorganisms were enriched from rhodoliths, which were sampled at Seogwang-ri coast in the western part of Wu Island, Jeju-do, Korea. Microorganisms enriched from rhodoliths were aerobically cultured at 25Ć in D-1 media containing 30 mM Sr-acetate, and the microorganisms were analyzed by 16S rRNA gene DGGE analysis to confirm microbial diversity. Mineralogical characteristics of the carbonate minerals precipitated by the enriched microorganisms were determined by XRD, TEM-EDS, and SEM-EDS analyses. A 16S rRNA sequence analysis showed the enriched microorganisms contained carbonate forming microorganisms such as Proteus mirailis. The enriched microorganisms precipitated carbonate minerals using D-1 media containing 30 mM Sr-acetate and mineralogy of the precipitate was strontianite (SrCO3). SEM/TEM-EDS analyses showed that the strontianite formed by the microorganisms had a spherical shape and consisted of mainly Sr, O and C. TEM-EDS analyses showed that the strontianite formed by the microorganisms had a rhombohedron shape and consisted of mainly Sr, O and C. These results indicate that the microorganisms induce precipitation of strontianite (SrCO3) on the cell walls and EPS via the accumulation of Sr ions on the cells. Therefore, microbial precipitation of carbonate minerals may play one of important

  11. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  12. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions?

    PubMed Central

    Cayuela, Maria Luz; Sánchez-Monedero, Miguel Angel; Roig, Asunción; Hanley, Kelly; Enders, Akio; Lehmann, Johannes

    2013-01-01

    Agricultural soils represent the main source of anthropogenic N2O emissions. Recently, interactions of black carbon with the nitrogen cycle have been recognized and the use of biochar is being investigated as a means to reduce N2O emissions. However, the mechanisms of reduction remain unclear. Here we demonstrate the significant impact of biochar on denitrification, with a consistent decrease in N2O emissions by 10–90% in 14 different agricultural soils. Using the 15N gas-flux method we observed a consistent reduction of the N2O/(N2 + N2O) ratio, which demonstrates that biochar facilitates the last step of denitrification. Biochar acid buffer capacity was identified as an important aspect for mitigation that was not primarily caused by a pH shift in soil. We propose the function of biochar as an “electron shuttle” that facilitates the transfer of electrons to soil denitrifying microorganisms, which together with its liming effect would promote the reduction of N2O to N2. PMID:23615819

  13. Linking Stoichiometric Homeostasis of Microorganisms with Soil Phosphorus Dynamics in Wetlands Subjected to Microcosm Warming

    PubMed Central

    Wang, Hang; Li, HongYi; Zhang, ZhiJian; Muehlbauer, Jeffrey D.; He, Qiang; Xu, XinHua; Yue, ChunLei; Jiang, DaQian

    2014-01-01

    Soil biogeochemical processes and the ecological stability of wetland ecosystems under global warming scenarios have gained increasing attention worldwide. Changes in the capacity of microorganisms to maintain stoichiometric homeostasis, or relatively stable internal concentrations of elements, may serve as an indicator of alterations to soil biogeochemical processes and their associated ecological feedbacks. In this study, an outdoor computerized microcosm was set up to simulate a warmed (+5°C) climate scenario, using novel, minute-scale temperature manipulation technology. The principle of stoichiometric homeostasis was adopted to illustrate phosphorus (P) biogeochemical cycling coupled with carbon (C) dynamics within the soil-microorganism complex. We hypothesized that enhancing the flux of P from soil to water under warming scenarios is tightly coupled with a decrease in homeostatic regulation ability in wetland ecosystems. Results indicate that experimental warming impaired the ability of stoichiometric homeostasis (H) to regulate biogeochemical processes, enhancing the ecological role of wetland soil as an ecological source for both P and C. The potential P flux from soil to water ranged from 0.11 to 34.51 mg m−2 d−1 in the control and 0.07 to 61.26 mg m−2 d−1 in the warmed treatment. The synergistic function of C-P acquisition is an important mechanism underlying C∶P stoichiometric balance for soil microorganisms under warming. For both treatment groups, strongly significant (p<0.001) relationships fitting a negative allometric power model with a fractional exponent were found between n-HC∶P (the specialized homeostatic regulation ability as a ratio of soil highly labile organic carbon to dissolved reactive phosphorus in porewater) and potential P flux. Although many factors may affect soil P dynamics, the n-HC∶P term fundamentally reflects the stoichiometric balance or interactions between the energy landscape (i.e., C) and flow of resources

  14. [Survival of probiotic microorganisms in the conditions in vitro imitating the process of human digestion].

    PubMed

    Darmov, I V; Chicherin, I Iu; Pogorel'skiĭ, I P; Lundovskikh, I A

    2011-01-01

    Assessment of survival bifidobacteria and lactobacteria under the conditions in vitro, simulating digestion in human stomach and intestine, and study of survival probiotic and indigenous microorganisms in co-cultivation on solid nutrient medium. Probiotic microorganisms from commercial preparations Bifidobacterin and Lactobacterin, clinical isolates lactobacillus (Lactobacillus acidophilus No 1, L. brevis No 2) were used in experiments. Survival study of probiotic microorganisms was performed on a model in vitro, simulating the process of digestion in the human body. Assessment of the relationship of probiotic microorganisms and indigenous microorganisms was carried out in co-cultivation in vitro on solid nutrient medium. A significant reduction in the number of viable probiotic microorganisms during their incubation in model media was set as well as suppression of probiotic microorganisms growth by cultures of a clinical strains of lactobacillus, corresponding to biocompatibility by type "host against probiotic". While choosing probiotics in the treatment of dysbacterioses the character of relationship between probiotic microorganisms and indigenous microorganisms of a patient is recommended to be preliminarily tested. Also microorganisms of own microflora should be stimulated using modern prebiotics.

  15. Allocating Sample Sizes to Reduce Budget for Fixed-Effect 2×2 Heterogeneous Analysis of Variance

    ERIC Educational Resources Information Center

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2016-01-01

    This article discusses the sample size requirements for the interaction, row, and column effects, respectively, by forming a linear contrast for a 2×2 factorial design for fixed-effects heterogeneous analysis of variance. The proposed method uses the Welch t test and its corresponding degrees of freedom to calculate the final sample size in a…

  16. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida.

    PubMed

    Sylvia, D M; Will, M E

    1988-02-01

    Beach replenishment is a widely used method of controlling coastal erosion. To reduce erosional losses from wind, beach grasses are often planted on the replenishment sands. However, there is little information on the microbial populations in this material that may affect plant establishment and growth. The objectives of this research were to document changes in the populations of vesicular-arbuscular mycorrhizal (VAM) fungi and other soil microorganisms in replenishment materials and to determine whether roots of transplanted beach grasses become colonized by beneficial microbes. The study was conducted over a 2-year period on a replenishment project in northeastern Florida. Three sampling locations were established at 1-km intervals along the beach. Each location consisted of three plots: an established dune, replenishment sand planted with Uniola paniculata and Panicum sp., and replenishment sand left unplanted. Fungal and bacterial populations increased rapidly in the rhizosphere of beach grasses in the planted plots. However, no bacteria were recovered that could fix significant amounts of N(2). The VAM fungi established slowly on the transplanted grasses. Even after two growing seasons, levels of root colonization and sporulation were significantly below those found in the established dune. There was a shift in the dominant VAM fungi found in the planted zone with respect to those in the established dunes. The most abundant species recovered from the established dunes were Glomus deserticola, followed by Acaulospora scrobiculata and Scutellospora weresubiae. The VAM fungi that colonized the planted zone most rapidly were Glomus globiferum, followed by G. deserticola and Glomus aggregatum.

  17. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    PubMed

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  18. A Mathematical Model for Fixed-Price-Incentive-Firm Contracts

    DTIC Science & Technology

    1992-12-17

    McGraw- Hill Book Company, New York, NY. 1985. 83 13. Schermerhorn , John R . & Hunt, James G. & Osborn, Richard N., Managing Organizational Býehavior, 2nd...Advisor David R . W 1 le, , Chairman, Department of Administr ivE Sciences iii ABSTRACT This research focuses on a mathematical model for Fixed- Price...intercept or sTC+Tn+C,,- and f(TC-30) is the function f(x) evaluated at TC-30. Govt Cost v Actual Cost Govt Cost = CPCP . .... " s r do c n c

  19. Synthesis of biogenic silicon/silica (Si/SiO2) nanocomposites from rice husks and wheat bran through various microorganisms

    NASA Astrophysics Data System (ADS)

    Kaur, Taranjot; Pal Singh, Gurwinder; Kaur, Gurneet; Kaur, Sukhvir; Gill, Prabhjot Kaur

    2016-08-01

    Biosilification is an economically viable, energy saving and green approach for the commercial scale synthesis of oxide nanomaterials. The room temperature synthesis of oxide nanocomposites from cost effective agro-based waste is a particular example of biosilification. In this study, synthesis of Si/SiO2 nanocomposites from inexpensive agro-based waste material i.e. rice husks (RH) and wheat bran (WB) has been carried out by means of various eukaryotic microorganisms, i.e. Actinomycete, Fusarium oxysporum, Aspergillus niger, Trichoderma sp. and Penicillium sp., under ambient conditions. The XRD diffrectrograms represents that the synthesized nanomaterials exhibits silicon, amorphous silica and other crystal arrays such as cristobalite, trydimite and quartz, depending upon the type microorganism and time period used for extraction. All of the aforesaid microorganism bio transformed the naturally occurring amorphous silica to crystalline structures within the period of 24 h. However, the Actinomycete and Trichoderma sp. took 48 h in case of rice husks for biotransformation of naturally occurring plant silica to crystalline nanocomposite. While in case of wheat bran, Actinomycete and Trichoderma sp. took 24 h for biotransformation. The extracted nanocomposites exhibits band edge in the range 230-250 nm and blue emission. The procedure described in study can be used for commercial level production of Si/SiO2 nanocomposites from agro based waste materials.

  20. Preoperative Patellofemoral Chondromalacia is Not a Contraindication for Fixed-Bearing Medial Unicompartmental Knee Arthroplasty.

    PubMed

    Adams, Alexander J; Kazarian, Gregory S; Lonner, Jess H

    2017-06-01

    Patellofemoral chondromalacia (PFCM) has historically been considered a contraindication for unicompartmental knee arthroplasty (UKA), but there is limited data assessing PFCM's impact on the results of fixed-bearing UKA. Our objective was to assess the impact of medial patellar and/or medial trochlear PFCM on overall and patellofemoral-specific 2-year outcomes after fixed-bearing medial UKA. Intraoperative notes defined the presence and location of PFCM during fixed bearing medial UKA. Outcome measures included the New Knee Society Score (NKSS), Kneeling Ability Score (KAS) and Forgotten Joint Score (FJS-12). Thirty-one knees with PFCM (PFCM group), and 52 knees without PFCM (N-PFCM group) were included for analysis. Mann-Whitney U tests assessed the statistical significance of observed differences, and a Bonferroni correction was applied, adjusting threshold for significance to P = .005. At minimum follow-up of 2 years, no statistical differences were detected between the N-PFCM and PFCM groups in the postoperative NKSS (159 vs 157, P = .731), preoperative to postoperative NKSS change (P = .447), FJS-12 (70.5 vs 67.6, P = .471), or KAS (71% vs 65%, P = .217). Patients with isolated patellar chondromalacia (n = 13) demonstrated trends toward worse outcomes according to NKSS (147, P = .198), FJS-12 (58, P = .094), and KAS (46%, P = .018), but were statistically insignificant. No failures occurred in either group. Functional outcomes of fixed-bearing medial UKA are not adversely impacted by the presence of PFCM involving the medial patellar facet and/or medial or central trochlea. Further follow-up is needed to determine longer-term implications of fixed-bearing medial UKA in patients with PFCM. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  2. Cyanobacterial Lactate Oxidases Serve as Essential Partners in N2 Fixation and Evolved into Photorespiratory Glycolate Oxidases in Plants[w

    PubMed Central

    Hackenberg, Claudia; Kern, Ramona; Hüge, Jan; Stal, Lucas J.; Tsuji, Yoshinori; Kopka, Joachim; Shiraiwa, Yoshihiro; Bauwe, Hermann; Hagemann, Martin

    2011-01-01

    Glycolate oxidase (GOX) is an essential enzyme involved in photorespiratory metabolism in plants. In cyanobacteria and green algae, the corresponding reaction is catalyzed by glycolate dehydrogenases (GlcD). The genomes of N2-fixing cyanobacteria, such as Nostoc PCC 7120 and green algae, appear to harbor genes for both GlcD and GOX proteins. The GOX-like proteins from Nostoc (No-LOX) and from Chlamydomonas reinhardtii showed high l-lactate oxidase (LOX) and low GOX activities, whereas glycolate was the preferred substrate of the phylogenetically related At-GOX2 from Arabidopsis thaliana. Changing the active site of No-LOX to that of At-GOX2 by site-specific mutagenesis reversed the LOX/GOX activity ratio of No-LOX. Despite its low GOX activity, No-LOX overexpression decreased the accumulation of toxic glycolate in a cyanobacterial photorespiratory mutant and restored its ability to grow in air. A LOX-deficient Nostoc mutant grew normally in nitrate-containing medium but died under N2-fixing conditions. Cultivation under low oxygen rescued this lethal phenotype, indicating that N2 fixation was more sensitive to O2 in the Δlox Nostoc mutant than in the wild type. We propose that LOX primarily serves as an O2-scavenging enzyme to protect nitrogenase in extant N2-fixing cyanobacteria, whereas in plants it has evolved into GOX, responsible for glycolate oxidation during photorespiration. PMID:21828292

  3. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  4. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    PubMed

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  5. The ecology of micro-organisms in a closed environment

    NASA Technical Reports Server (NTRS)

    Fox, L.

    1971-01-01

    Microorganisms under closed environmental ecological conditions with reference to astronauts infectious diseases, discussing bacteria growth in Biosatellite 2 and earth based closed chamber experiments

  6. Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon.

    PubMed

    Robert, C; Del'Homme, C; Bernalier-Donadille, A

    2001-12-18

    Interspecies H2 transfer between two newly isolated fibrolytic strains (18P13 and 18P16) and H2-utilizing methanogen or acetogen from the human colon was investigated during in vitro cellulose degradation. Both H2-consuming microorganisms utilized efficiently H2 produced from cellulose fermentation by the fibrolytic species. H2 utilization by Methanobrevibacter smithii did not change the metabolism and the cellulolytic activity of strain 18P16 whereas it induced a metabolic shift in strain 18P13. However, this metabolic shift was not associated with enhancement of cellulose degradation. In contrast, an increase in cellulose breakdown was observed when strain 18P13 was cultivated with Ruminococcus hydrogenotrophicus. This stimulating effect could be attributed to both the autotrophic and the heterotrophic metabolism of the acetogen in the coculture.

  7. Smaller Fleas: Viruses of Microorganisms

    PubMed Central

    Hyman, Paul; Abedon, Stephen T.

    2012-01-01

    Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category—bacterial, archaeal, fungal, and protist—with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms. PMID:24278736

  8. Microorganisms and psoriasis.

    PubMed Central

    Rosenberg, E. W.; Noah, P. W.; Skinner, R. B.

    1994-01-01

    It has been suggested previously that psoriasis is best explained as a distinctive inflammatory response to a variety of microbial stimuli, all acting primarily through activation of the alternative complement pathway. For the past several years we have conducted a "Problem Psoriasis Clinic" based on that premise. Patients are questioned, examined, and subjected to microbiologic laboratory investigations in an attempt to identify possibly relevant microorganisms, and then are treated with antibiotics. This article lists the most commonly found microorganisms in psoriasis patients and describes the usual treatment for each. Results obtained with this approach compare favorably with those achieved with more usual anti-psoriasis treatments. We recommend that a microbiologic investigation and a trial of antimicrobial treatment should precede any plan to treat psoriasis patients with anything more than the simplest topical agents. PMID:8040907

  9. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community

    PubMed Central

    Harter, Johannes; Krause, Hans-Martin; Schuettler, Stefanie; Ruser, Reiner; Fromme, Markus; Scholten, Thomas; Kappler, Andreas; Behrens, Sebastian

    2014-01-01

    Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil. PMID:24067258

  10. Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-12-01

    In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. What Is the True Nitrogenase Reaction? A Guided Approach

    ERIC Educational Resources Information Center

    Ipata, Piero L.; Pesi, Rossana

    2015-01-01

    Only diazotrophic bacteria, called "Rizhobia," living as symbionts in the root nodules of leguminous plants and certain free-living prokaryotic cells can fix atmospheric N[subscript 2]. In these microorganisms, nitrogen fixation is carried out by the nitrogenase protein complex. However, the reduction of nitrogen to ammonia has an…

  12. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis

    PubMed Central

    Clúa, Joaquín; Roda, Carla

    2018-01-01

    The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems. PMID:29495432

  13. Regulator dependence of fixed points in quantum Einstein gravity with R 2 truncation

    NASA Astrophysics Data System (ADS)

    Nagy, S.; Fazekas, B.; Peli, Z.; Sailer, K.; Steib, I.

    2018-03-01

    We performed a functional renormalization group analysis for the quantum Einstein gravity including a quadratic term in the curvature. The ultraviolet non-gaussian fixed point and its critical exponent for the correlation length are identified for different forms of regulators in case of dimension 3. We searched for that optimized regulator where the physical quantities show the least regulator parameter dependence. It is shown that the Litim regulator satisfies this condition. The infrared fixed point has also been investigated, it is found that the exponent is insensitive to the third coupling introduced by the R 2 term.

  14. Effectiveness of chitosan against wine-related microorganisms.

    PubMed

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  15. The microorganisms used for working in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Konovalova, E. Yu.; Stom, D. I.; Zhdanova, G. O.; Yuriev, D. A.; Li, Youming; Barbora, Lepakshi; Goswami, Pranab

    2018-04-01

    Investigated the use as biological object in microbial fuel cells (MFC) of various microorganisms performing the transport of electrons in the processing of various substrates. Most MFC, uses complex substrates. Such MFC filled with associations of microorganisms. The article deals with certain types of microorganisms for use in the MFC, shows the characteristics of molecular electron transfer mechanisms microorganisms into the environment.

  16. Physical Biology of the Materials-Microorganism Interface.

    PubMed

    Sakimoto, Kelsey K; Kornienko, Nikolay; Cestellos-Blanco, Stefano; Lim, Jongwoo; Liu, Chong; Yang, Peidong

    2018-02-14

    Future solar-to-chemical production will rely upon a deep understanding of the material-microorganism interface. Hybrid technologies, which combine inorganic semiconductor light harvesters with biological catalysis to transform light, air, and water into chemicals, already demonstrate a wide product scope and energy efficiencies surpassing that of natural photosynthesis. But optimization to economic competitiveness and fundamental curiosity beg for answers to two basic questions: (1) how do materials transfer energy and charge to microorganisms, and (2) how do we design for bio- and chemocompatibility between these seemingly unnatural partners? This Perspective highlights the state-of-the-art and outlines future research paths to inform the cadre of spectroscopists, electrochemists, bioinorganic chemists, material scientists, and biologists who will ultimately solve these mysteries.

  17. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  18. Functional microorganisms for functional food quality.

    PubMed

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  19. A simple quantitative diagnostic alternative for MGMT DNA-methylation testing on RCL2 fixed paraffin embedded tumors using restriction coupled qPCR.

    PubMed

    Pulverer, Walter; Hofner, Manuela; Preusser, Matthias; Dirnberger, Elisabeth; Hainfellner, Johannes A; Weinhaeusel, Andreas

    2014-01-01

    MGMT promoter methylation is associated with favorable prognosis and chemosensitivity in glioblastoma multiforme (GBM), especially in elderly patients. We aimed to develop a simple methylation-sensitive restriction enzyme (MSRE)-based quantitative PCR (qPCR) assay, allowing the quantification of MGMT promoter methylation. DNA was extracted from non-neoplastic brain (n = 24) and GBM samples (n = 20) upon 3 different sample conservation conditions (-80 °C, formalin-fixed and paraffin-embedded (FFPE); RCL2-fixed). We evaluated the suitability of each fixation method with respect to the MSRE-coupled qPCR methylation analyses. Methylation data were validated by MALDITOF. qPCR was used for evaluation of alternative tissue conservation procedures. DNA from FFPE tissue failed reliable testing; DNA from both RCL2-fixed and fresh frozen tissues performed equally well and was further used for validation of the quantitative MGMT methylation assay (limit of detection (LOD): 19.58 pg), using individual's undigested sample DNA for calibration. MGMT methylation analysis in non-neoplastic brain identified a background methylation of 0.10 ± 11% which we used for defining a cut-off of 0.32% for patient stratification. Of GBM patients 9 were MGMT methylationpositive (range: 0.56 - 91.95%), and 11 tested negative. MALDI-TOF measurements resulted in a concordant classification of 94% of GBM samples in comparison to qPCR. The presented methodology allows quantitative MGMT promoter methylation analyses. An amount of 200 ng DNA is sufficient for triplicate analyses including control reactions and individual calibration curves, thus excluding any DNA qualityderived bias. The combination of RCL2-fixation and quantitative methylation analyses improves pathological routine examination when histological and molecular analyses on limited amounts of tumor samples are necessary for patient stratification.

  20. A regularity result for fixed points, with applications to linear response

    NASA Astrophysics Data System (ADS)

    Sedro, Julien

    2018-04-01

    In this paper, we show a series of abstract results on fixed point regularity with respect to a parameter. They are based on a Taylor development taking into account a loss of regularity phenomenon, typically occurring for composition operators acting on spaces of functions with finite regularity. We generalize this approach to higher order differentiability, through the notion of an n-graded family. We then give applications to the fixed point of a nonlinear map, and to linear response in the context of (uniformly) expanding dynamics (theorem 3 and corollary 2), in the spirit of Gouëzel-Liverani.

  1. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.

  2. Kinetics of nif Gene Expression in a Nitrogen-Fixing Bacterium

    PubMed Central

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos

    2014-01-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs. PMID:24244007

  3. Kinetics of Nif gene expression in a nitrogen-fixing bacterium.

    PubMed

    Poza-Carrión, César; Jiménez-Vicente, Emilio; Navarro-Rodríguez, Mónica; Echavarri-Erasun, Carlos; Rubio, Luis M

    2014-02-01

    Nitrogen fixation is a tightly regulated trait. Switching from N2 fixation-repressing conditions to the N2-fixing state is carefully controlled in diazotrophic bacteria mainly because of the high energy demand that it imposes. By using quantitative real-time PCR and quantitative immunoblotting, we show here how nitrogen fixation (nif) gene expression develops in Azotobacter vinelandii upon derepression. Transient expression of the transcriptional activator-encoding gene, nifA, was followed by subsequent, longer-duration waves of expression of the nitrogenase biosynthetic and structural genes. Importantly, expression timing, expression levels, and NifA dependence varied greatly among the nif operons. Moreover, the exact concentrations of Nif proteins and their changes over time were determined for the first time. Nif protein concentrations were exquisitely balanced, with FeMo cofactor biosynthetic proteins accumulating at levels 50- to 100-fold lower than those of the structural proteins. Mutants lacking nitrogenase structural genes or impaired in FeMo cofactor biosynthesis showed overenhanced responses to derepression that were proportional to the degree of nitrogenase activity impairment, consistent with the existence of at least two negative-feedback regulatory mechanisms. The first such mechanism responded to the levels of fixed nitrogen, whereas the second mechanism appeared to respond to the levels of the mature NifDK component. Altogether, these findings provide a framework to engineer N2 fixation in nondiazotrophs.

  4. Structure and stability of small Li2 +(X2Σ+ g )-Xen (n = 1-6) clusters

    NASA Astrophysics Data System (ADS)

    Saidi, Sameh; Ghanmi, Chedli; Berriche, Hamid

    2014-04-01

    We have studied the structure and stability of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters for special symmetry groups. The potential energy surfaces of these clusters, are described using an accurate ab initio approach based on non-empirical pseudopotential, parameterized l-dependent polarization potential and analytic potential forms for the Li+Xe and Xe-Xe interactions. The pseudopotential technique has reduced the number of active electrons of Li2 +(X2Σ+ g )-Xe n ( n = 1-6) clusters to only one electron, the Li valence electron. The core-core interactions for Li+Xe are included using accurate CCSD(T) potential fitted using the analytical form of Tang and Toennies. For the Xe-Xe potential interactions we have used the analytical form of Lennard Jones (LJ6 - 12). The potential energy surfaces of the Li2 +(X2Σ+ g )Xe n ( n = 1-6) clusters are performed for a fixed distance of the Li2 +(X2Σ+ g ) alkali dimer, its equilibrium distance. They are used to extract information on the stability of the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters. For each n, the stability of the different isomers is examined by comparing their potential energy surfaces. Moreover, we have determined the quantum energies ( D 0), the zero-point-energies (ZPE) and the ZPE%. To our best knowledge, there are neither experimental nor theoretical works realized for the Li2 +(X2Σ+ g Xe n ( n = 1-6) clusters, our results are presented for the first time.

  5. Infrared spectra and anharmonic coupling of proton-bound nitrogen dimers N2-H+-N2, N2-D+-N2, and 15N2-H+-15N2 in solid para-hydrogen.

    PubMed

    Liao, Hsin-Yi; Tsuge, Masashi; Tan, Jake A; Kuo, Jer-Lai; Lee, Yuan-Pern

    2017-08-09

    The proton-bound nitrogen dimer, N 2 -H + -N 2 , and its isotopologues were investigated by means of vibrational spectroscopy. These species were produced upon electron bombardment of mixtures of N 2 (or 15 N 2 ) and para-hydrogen (p-H 2 ) or normal-D 2 (n-D 2 ) during deposition at 3.2 K. Reduced-dimension anharmonic vibrational Schrödinger equations were constructed to account for the strong anharmonic effects in these protonated species. The fundamental lines of proton motions in N 2 -H + -N 2 were observed at 715.0 (NH + N antisymmetric stretch, ν 4 ), 1129.6 (NH + N bend, ν 6 ), and 2352.7 (antisymmetric NN/NN stretch, ν 3 ) cm -1 , in agreement with values of 763, 1144, and 2423 cm -1 predicted with anharmonic calculations using the discrete-variable representation (DVR) method at the CCSD/aug-cc-pVDZ level. The lines at 1030.2 and 1395.5 cm -1 were assigned to combination bands involving nν 2 + ν 4 (n = 1 and 2) according to theoretical calculations; ν 2 is the N 2 N 2 stretching mode. For 15 N 2 -H + - 15 N 2 in solid p-H 2 , the corresponding major lines were observed at 710.0 (ν 4 ), 1016.7 (ν 2 + ν 4 ), 1124.3 (ν 6 ), 1384.8 (2ν 2 + ν 4 ), and 2274.9 (ν 3 ) cm -1 . For N 2 -D + -N 2 in solid n-D 2 , the corresponding major lines were observed at 494.0 (ν 4 ), 840.7 (ν 2 + ν 4 ), 825.5 (ν 6 ), and 2356.2 (ν 3 ) cm -1 . In addition, two lines at 762.0 (weak) and 808.3 cm -1 were tentatively assigned to be some modes of N 2 -H + -N 2 perturbed or activated by a third N 2 near the proton.

  6. RAPID IDENTIFICATION OF MICROORGANISMS BY CONTINUOUS PARTICLE ELECTROPHORESIS.

    DTIC Science & Technology

    MICROORGANISMS, IDENTIFICATION), (*ELECTROPHORESIS, MICROORGANISMS), MOBILITY, PH FACTOR, OPTICAL SCANNING, ESCHERICHIA COLI, SHIGELLA FLEXNERI, BACILLUS CEREUS, SERRATIA MARCESCENS , BACILLUS SUBTILIS

  7. N2 Fixation by Unicellular Bacterioplankton from the Atlantic and Pacific Oceans: Phylogeny and In Situ Rates

    PubMed Central

    Falcón, Luisa I.; Carpenter, Edward J.; Cipriano, Frank; Bergman, Birgitta; Capone, Douglas G.

    2004-01-01

    N2-fixing proteobacteria (α and γ) and unicellular cyanobacteria are common in both the tropical North Atlantic and Pacific oceans. In near-surface waters proteobacterial nifH transcripts were present during both night and day while unicellular cyanobacterial nifH transcripts were present during the nighttime only, suggesting separation of N2 fixation and photosynthesis by unicellular cyanobacteria. Phylogenetic relationships among unicellular cyanobacteria from both oceans were determined after sequencing of a conserved region of 16S ribosomal DNA (rDNA) of cyanobacteria, and results showed that they clustered together, regardless of the ocean of origin. However, sequencing of nifH transcripts of unicellular cyanobacteria from both oceans showed that they clustered separately. This suggests that unicellular cyanobacteria from the tropical North Atlantic and subtropical North Pacific share a common ancestry (16S rDNA) and that potential unicellular N2 fixers have diverged (nifH). N2 fixation rates for unicellular bacterioplankton (including small cyanobacteria) from both oceans were determined in situ according to the acetylene reduction and 15N2 protocols. The results showed that rates of fixation by bacterioplankton can be almost as high as those of fixation by the colonial N2-fixing marine cyanobacteria Trichodesmium spp. in the tropical North Atlantic but that rates are much lower in the subtropical North Pacific. PMID:14766553

  8. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N2 -fixing community depending on depth and agricultural use of soil.

    PubMed

    Calderoli, Priscila A; Collavino, Mónica M; Behrends Kraemer, Filipe; Morrás, Héctor J M; Aguilar, O Mario

    2017-10-01

    In this survey, a total of 80 787 reads and 28 171 unique NifH protein sequences were retrieved from soil RNA. This dataset extends our knowledge about the structure and diversity of the functional diazotrophic communities in agricultural soils from Argentinean Pampas. Operational taxonomic unit (OTU)-based analyses showed that nifH phylotypes related to Geobacter and Anaeromyxobacter (44.8%), Rhizobiales (29%), Cyanobacteria (16.7%), and Verrucomicrobiales (8%) are key microbial components of N 2 fixation in soils associated with no-till management and soil depth. In addition, quantification of nifH gene copies related to Geobacter and Cyanobacteria revealed that these groups are abundant in soils under maize-soybean rotation and soybean monoculture, respectively. The correlation of physicochemical soil parameters with the diazotrophic diversity and composition showed that soil stability and organic carbon might contribute to the functional signatures of particular nifH phylotypes in fields under no-till management. Because crop production relies on soil-borne microorganism's activities, such as free N 2 fixation, the information provided by our study on the diazotrophic population dynamics, associated with the edaphic properties and land-use practices, represents a major contribution to gain insight into soil biology, in which functionally active components are identified. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Microorganisms detected by enzyme-catalyzed reaction

    NASA Technical Reports Server (NTRS)

    Vango, S. P.; Weetall, H. H.; Weliky, N.

    1966-01-01

    Enzymes detect the presence of microorganisms in soils. The enzyme lysozymi is used to release the enzyme catalase from the microorganisms in a soil sample. The catalase catalyzes the decomposition of added hydrogen peroxide to produce oxygen which is detected manometrically. The partial pressure of the oxygen serves as an index of the samples bacteria content.

  10. Phytotoxicity attenuation in Vigna radiata under heavy metal stress at the presence of biochar and N fixing bacteria.

    PubMed

    Seneviratne, Mihiri; Weerasundara, Lakshika; Ok, Yong Sik; Rinklebe, Jörg; Vithanage, Meththika

    2017-01-15

    This study assesses the effect of N-fixing bacteria and biochar synergism on plant growth and development of Vigna mungo under heavy metal stress (HM). Heavy metal stress is a worldwide problem, which causes critical effects on plant life due to oxidative stress. Application of biochar is a recent biological remediation technique, which often leads to an immobilization of heavy metals in soil. . Synergism of bacteria and biochar is a novel aspect to enhance plant growth under heavy metal stress. Woody biochar a byproduct of a dendro power industry was added as 1, 2.5 and 5% amounts combination with Bradyrhizobium japonicum, where mung seedlings were planted in serpentine soil rich in Ni, Mn, Cr and Co. Pot experiments were conducted for 12 weeks. The plant height, heavy metal uptake by plants, soil bioavailable heavy metal contents, soil N and P and microbial biomass carbon (MBC) were measured. The plant growth was enhanced with biochar amendment but a retardation was observed with high biochar application (5%). The soil N and P increased with the increase of biochar addition percentage while soil MBC showed reductions at 5% biochar amendment. Both soil bioavailable fractions of HM and up take of HMs by plants were gradually reduced with increase in biochar content. Based on the results, 2.5% biochar synergism with bacteria was the best for plant growth and soil nutrition status. Despite the synergism, available N was negatively correlated with the decrease of bioavailable metal percentage in soil whereas it was conversely for P. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plants and microorganisms as drivers of mineral weathering

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Chorover, J.; Maier, R.; Hunt, E.; Zaharescu, D. G.

    2011-12-01

    Plants and microorganisms play important role in mineral weathering and soil formation modifying their environment to make it more hospitable for life. This presentation summarizes several collaborative studies that focused on understanding how interactions between plants and microorganisms, where plants provide the energy through photosynthesis, drive mineral weathering and result in soil formation. Plants influence weathering through multiple mechanisms that have been previously established, such as increase in CO2 concentration in the soil through root respiration and degradation of plant residues and exudates by heterotrophic microorganisms, release of organic acids that promote mineral dissolution, removal of weathering products from soil solution through uptake, and water redistribution. Weathering processes result in nutrient release that satisfies immediate needs of the plants and microorganisms, as well as precipitation of secondary phases, that provide surfaces for retention of nutrients and organic carbon accumulation. What makes understanding contribution of plants and microorganisms, such as bacteria and fungi, to mineral weathering challenging is the fact that they closely interact, enhancing and amplifying each other's contribution. In order to address multiple processes that contribute to and result from biological weathering a combination of chemical, biological, mineralogical, and computational techniques and methodologies is needed. This complex array of methodologies includes bulk techniques, such as determination of total dissolved organic and inorganic carbon and nitrogen, ion chromatography and high performance liquid chromatography to characterize amount and composition of exuded organic acids, inductively coupled plasma mass spectrometry to determine concentrations of lithogenic elements in solution, X-ray diffraction to characterize changes in mineral composition of the material, DNA extraction to characterize community structure, as well

  12. Effect of fertilizer application on NO and N2O fluxes from agricultural fields

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Yamulki, Sirwan; Goulding, K. W. T.; Webster, C. P.

    1995-12-01

    Losses of fertilizer as NO and N2O were studied at Broadbalk field, Rothamsted Experimental Station in England, on which subplots have been subject to differing constant levels of fertilizer application for many years. Fluxes of NO and N2O were measured using open- and closed-chamber techniques, respectively. Fluxes from unfertilized soil ranged from 0.3 to 4.8 ng N m-2 s-1 for NO and 0.23 to 3.0 ng N m-2 s-1 for N2O. The corresponding fluxes from the plot with the highest fertilizer application (92 kg N ha-1 yr-1 as NH4NO3) ranged from 0.5 to 64 ng N m-2 s-1 for NO and 0.4 to 240 ng N m-2 s-1 for N2O. Application of increasing amounts of fertilizer substantially enhanced emission rates of both NO and N2O. However, the amount of increase was controlled by competition between the crop and the microorganisms for the available soil nutrients, and loss of N2O to the atmosphere increased sharply at superoptimal levels of fertilizer application. The fertilizer-derived NO and N2O emissions represented approximately 90% of the total emission of these gases during the 25-day sampling period after fertilizer application. The results suggest that while increasing the amount of fertilizer increases both NO and N2O fluxes simultaneously, the NO/N2O emission ratio decreases. Results from laboratory experiments showed that the magnitude of the fertilizer loss as N2O was strongly affected by the form of the applied fertilizer.

  13. Association of N 2-fixing Cyanobacteria and Plants: Towards Novel Symbioses of Agricultural Importance. Final report, 1 April 1996 to 31 May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantar, Miroslav

    1999-03-01

    The goal of this project is to characterize an association that takes place between the roots of wheat and the nitrogen-fixing cyanobacterium Nostoc 2S9. By understanding how the association takes place and the extent to which it permits the growth of the plant without exogenous nitrogenous fertilizer, it may prove possible to increase the benefits of the association and to extend them to other plants of agrinomic importance.

  14. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.

    PubMed

    Chen, Bor-Yann; Chen, Chun-Yen; Guo, Wan-Qian; Chang, Hao-Wei; Chen, Wen-Ming; Lee, Duu-Jong; Huang, Chieh-Chen; Ren, Nan-Qi; Chang, Jo-Shu

    2014-05-01

    A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  16. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    NASA Technical Reports Server (NTRS)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  17. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    PubMed Central

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  19. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    PubMed

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  20. Intake of sweet foods and counts of cariogenic microorganisms in obese and normal-weight women.

    PubMed

    Barkeling, B; Andersson, I; Lindroos, A K; Birkhed, D; Rössner, S

    2001-10-01

    To study the intake of sweet foods in obese and normal-weight women, while also taking menstrual cycle effects on eating behaviour into consideration. An objective test of the intake of sugar-containing foods was introduced by measuring salivary counts of mutans streptococci and lactobacilli. A cross-sectional comparison of the intake of sweet foods in obese and normal-weight women. The obese women were also studied longitudinally after 10 weeks in a weight reduction programme. Obese (n=72, body mass index (BMI) 42.0+/-5.2 kg/m2) and normal-weight women (n=67, BMI 22.2+/-1.6 kg/m2) participated. Mutans streptococci in saliva were higher in obese than in normal-weight women (P<0.0001), although the reported habitual daily intake of sweet foods did not differ. Of the menstruating women, 80% of the obese subjects and 62% of the normal-weight ones (P<0.05) reported periods during the menstrual cycle with an 'extra large' intake of sweet foods; these intakes were higher in obese than in normal-weight women (P<0.01). The obese women reduced their intake of sweet foods after 10 weeks of weight reduction, although these changes were not pronounced enough to significantly affect the counts of cariogenic microorganisms. In contrast to most previous cross-sectional studies, this study shows that obese women have a higher intake of sweet foods, especially pre-menstrually. This was indicated by higher salivary counts of cariogenic microorganisms. Karolinska Institute Research Funds.

  1. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  2. Heterotrophic N2-fixation contributes to nitrogen economy of a common wetland sedge, Schoenoplectus californicus.

    PubMed

    Rejmánková, Eliška; Sirová, Dagmara; Castle, Stephanie T; Bárta, Jiří; Carpenter, Heather

    2018-01-01

    A survey of the ecological variability within 52 populations of Schoenoplectus californicus (C.A. Mey.) Soják across its distributional range revealed that it is commonly found in nitrogen (N) limited areas, but rarely in phosphorus limited soils. We explored the hypothesis that S. californicus supplements its nitrogen demand by bacterial N2-fixation processes associated with its roots and rhizomes. We estimated N2-fixation of diazotrophs associated with plant rhizomes and roots from several locations throughout the species' range and conducted an experiment growing plants in zero, low, and high N additions. Nitrogenase activity in rhizomes and roots was measured using the acetylene reduction assay. The presence of diazotrophs was verified by the detection of the nifH gene. Nitrogenase activity was restricted to rhizomes and roots and it was two orders of magnitude higher in the latter plant organs (81 and 2032 nmol C2H4 g DW-1 d-1, respectively). Correspondingly, 40x more nifH gene copies were found on roots compared to rhizomes. The proportion of the nifH gene copies in total bacterial DNA was positively correlated with the nitrogenase activity. In the experiment, the contribution of fixed N to the plant N content ranged from 13.8% to 32.5% among clones from different locations. These are relatively high values for a non-cultivated plant and justify future research on the link between N-fixing bacteria and S. californicus production.

  3. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Birmele, Michele; Morford, Megan; Khodadad, Christina; Spencer, Lashelle; Richards, Jeffrey; Strayer, Richard; Caro, Janicce; Hummerick, Mary; Wheeler, Ray

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms.

  4. Continuing fascination of exploration in natural substances from microorganisms.

    PubMed

    Takahashi, Yoko

    2017-01-01

    In the search for novel organic compounds, I think it is of paramount importance not to overlook the pursuit of microorganism diversity and the abilities those microorganisms hold as a resource. In commemoration of Professor Satoshi Ōmura's Nobel Prize in Physiology or Medicine, I will briefly describe the microorganism that produces avermectin and then discuss how innovating isolation methods and pioneering isolation sources have opened the door to numerous new microorganism resources. Furthermore, as exploratory research of substances views the world from many different angles-from biological activity to a compound's physiochemical properties-it is possible to discover a novel compound from a well-known microorganism. Based on this, I will discuss the future prospects of exploratory research.

  5. Polar Marine Microorganisms and Climate Change.

    PubMed

    Verde, C; Giordano, D; Bellas, C M; di Prisco, G; Anesio, A M

    2016-01-01

    The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors. © 2016 Elsevier Ltd All rights reserved.

  6. Secondary metabolites from marine-derived microorganisms.

    PubMed

    Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2014-01-01

    In the search for novel and bioactive molecules for drug discovery, marine-derived natural resources, especially marine microorganisms are becoming an important and interesting research area. This study covers the literature published after 2008 on secondary metabolites of marine-derived microorganisms. The emphasis was on new compounds with the relevant biological activities, strain information, and country of origin. New compounds without biological activity were not included.

  7. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Yeager, C.M.; Kornosky, J.L.; Housman, D.C.; Grote, E.E.; Belnap, J.; Kuske, C.R.

    2004-01-01

    The objective of this study was to characterize the community structure and activity of N2-fixing microorganisms in mature and poorly developed biological soil crusts from both the Colorado Plateau and Chihuahuan Desert. Nitrogenase activity was approximately 10 and 2.5 times higher in mature crusts than in poorly developed crusts at the Colorado Plateau site and Chihuahuan Desert site, respectively. Analysis of nifH sequences by clone sequencing and the terminal restriction fragment length polymorphism technique indicated that the crust diazotrophic community was 80 to 90% heterocystous cyanobacteria most closely related to Nostoc spp. and that the composition of N2-fixing species did not vary significantly between the poorly developed and mature crusts at either site. In contrast, the abundance of nifH sequences was approximately 7.5 times greater (per microgram of total DNA) in mature crusts than in poorly developed crusts at a given site as measured by quantitative PCR. 16S rRNA gene clone sequencing and microscopic analysis of the cyanobacterial community within both crust types demonstrated a transition from a Microcoleus vaginatus-dominated, poorly developed crust to mature crusts harboring a greater percentage of Nostoc and Scytonema spp. We hypothesize that ecological factors, such as soil instability and water stress, may constrain the growth of N2-fixing microorganisms at our study sites and that the transition to a mature, nitrogen-producing crust initially requires bioengineering of the surface microenvironment by Microcoleus vaginatus.

  8. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling.

    PubMed

    López-Mondéjar, Ruben; Brabcová, Vendula; Štursová, Martina; Davidová, Anna; Jansa, Jan; Cajthaml, Tomaš; Baldrian, Petr

    2018-06-01

    Forest soils represent important terrestrial carbon (C) pools where C is primarily fixed in the plant-derived biomass but it flows further through the biomass of fungi and bacteria before it is lost from the ecosystem as CO 2 or immobilized in recalcitrant organic matter. Microorganisms are the main drivers of C flow in forests and play critical roles in the C balance through the decomposition of dead biomass of different origins. Here, we track the path of C that enters forest soil by following respiration, microbial biomass production, and C accumulation by individual microbial taxa in soil microcosms upon the addition of 13 C-labeled biomass of plant, fungal, and bacterial origin. We demonstrate that both fungi and bacteria are involved in the assimilation and mineralization of C from the major complex sources existing in soil. Decomposer fungi are, however, better suited to utilize plant biomass compounds, whereas the ability to utilize fungal and bacterial biomass is more frequent among bacteria. Due to the ability of microorganisms to recycle microbial biomass, we suggest that the decomposer food web in forest soil displays a network structure with loops between and within individual pools. These results question the present paradigms describing food webs as hierarchical structures with unidirectional flow of C and assumptions about the dominance of fungi in the decomposition of complex organic matter.

  9. CONTRAST BETWEEN OSMIUM-FIXED AND PERMANGANATE-FIXED TOAD SPINAL GANGLIA

    PubMed Central

    Rosenbluth, Jack

    1963-01-01

    Chains of vesicles are prominent near the plasma membranes of both the neurons and satellite cells of osmium-fixed toad spinal ganglia. In permanganate-fixed specimens, however, such vesicles are absent, and in their place are continuous invaginations of the plasma membranes of these cells. The discrepancy suggests that the serried vesicles seen in osmium-fixed preparations arise through disintegration of plasma membrane invaginations, and do not represent active pinocytosis, as has been suggested previously. A second difference between ganglia fixed by these two methods is that rows of small, disconnected cytoplasmic globules occur in the sheaths of permanganate-fixed ganglia, but not in osmium-fixed samples. It is suggested that these globules arise from the breakdown of thin sheets of satellite cell cytoplasm which occur as continuous lamellae in osmium-fixed specimens. Possible mechanisms of these membrane reorganizations, and the relevance of these findings to other tissues, are discussed. PMID:13990905

  10. The activity of nitrifying microorganisms in a high-altitude Andean wetland.

    PubMed

    Molina, Verónica; Dorador, Cristina; Fernández, Camila; Bristow, Laura; Eissler, Yoanna; Hengst, Martha; Hernandez, Klaudia; Olsen, Lasse Mork; Harrod, Chris; Marchant, Francisca; Anguita, Cristobal; Cornejo, Marcela

    2018-06-01

    High-altitude wetland holds freshwater springs, evaporitic ponds and lagoon with variable salinity and nutrients, potentially influencing the ecology of nitrifying communities. In this study, nitrifying microorganisms in Salar de Huasco (Chile) were surveyed to determine bacterial and archaeal contribution to ammonium (AO), nitrite oxidation (NO), ammonium uptake (AU) during wet and dry seasons. The activity signals from these groups were assessed by specific amoA-qPCR transcription, 15N tracer studies and addition of group specific inhibitor experiments for nitrifying microorganisms (N1-guanyl-1, 7-diaminoheptane [GC7]-archaeal specific and allylthiourea [ATU]-bacterial specific). Nitrifying communities, i.e. Nitrosopumilus, Nitrosospira, Nitrosomonas, Kuenenia and Nitrospira, were more frequent (∼0.25% of 16S rRNA sequences) at low salinity sites. Bacterial amoA-qPCR transcripts also increased at low salinity and along in situ ammonium increase observed between wet/dry seasons. Nutrient changes through time and 15N tracer experiments results showed that AO and NO were detected and peaked mainly at low salinity-high ammonium sites (<37 000 μS cm-1 and >0.3 μM), whereas AU was predominant at evaporitic sites. Our results indicate that salinity and ammonium affect the nitrifying communities that are potentially more active at low-salinity sites but persistent at saltier evaporitic areas of the wetland when ammonium is available.

  11. Microorganisms meet solid minerals: interactions and biotechnological applications.

    PubMed

    Ng, Daphne H P; Kumar, Amit; Cao, Bin

    2016-08-01

    In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.

  12. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.

    PubMed

    Uysal, Hakan; Kurtoglu, Cem; Gurbuz, Riza; Tutuncu, Naki

    2005-03-01

    The Cresco-Ti System uses a laser-welded process that provides an efficient technique to achieve passive fit frameworks. However, mechanical behavior of the laser-welded joint under biomechanical stress factors has not been demonstrated. This study describes the effect of Cresco-Ti laser-welding conditions on the material properties of the welded specimen and analyzes stresses on the weld joint through 3-dimensional finite element models (3-D FEM) of implant-supported fixed dentures with cantilever extensions and fixed partial denture designs. Twenty Grade III (ASTM B348) commercially pure titanium specimens were machine-milled to the dimensions described in the EN10002-1 tensile test standard and divided into test (n = 10) and control (n = 10) groups. The test specimens were sectioned and laser-welded. All specimens were subjected to tensile testing to determine yield strength (YS), ultimate tensile strength (UTS), and percent elongation (PE). The Knoop micro-indentation test was performed to determine the hardness of all specimens. On welded specimens, the hardness test was performed at the welded surface. Data were analyzed with the Mann-Whitney U test and Student's t test (alpha=.05). Fracture surfaces were examined by scanning electron microscopy to characterize the mode of fracture and identify defects due to welding. Three-dimensional FEMs were created that simulated a fixed denture with cantilever extensions supported by 5 implants (M1) and a fixed partial denture supported by 2 implants (M2), 1 of which was angled 30 degrees mesio-axially. An oblique load of 400 N with 15 degrees lingual-axial inclinations was applied to both models at various locations. Test specimens fractured between the weld and the parent material. No porosities were observed on the fractured surfaces. Mean values for YS, UTS, PE, and Knoop hardness were 428 +/- 88 MPa, 574 +/- 113 MPa, 11.2 +/- 0.4%, 270 +/- 17 KHN, respectively, for the control group and 642 +/- 2 MPa, 772 +/- 72

  13. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  14. Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro

    PubMed Central

    Nayak, Nabakishore; Rath, Shakti

    2014-01-01

    Effects of chemical fertilizers (urea, super phosphate and potash) on toxicities of two carbamate insecticides, carbaryl and carbofuran, individually to the N2-fixing cyanobacterium, Cylindrospermum sp. were studied in vitro at partially lethal levels (below highest permissive concentrations) of each insecticide. The average number of vegetative cells between two polar heterocysts was 16.3 in control cultures, while the mean value of filament length increased in the presence of chemical fertilizers, individually. Urea at the 10 ppm level was growth stimulatory and at the 50 ppm level it was growth inhibitory in control cultures, while at 100 ppm it was antagonistic, i.e. toxicity-enhancing along with carbaryl, individually to the cyanobacterium, antagonism was recorded. Urea at 50 ppm had toxicity reducing effect with carbaryl or carbofuran. At 100 and 250 ppm carbofuran levels, 50 ppm urea only had a progressive growth enhancing effect, which was marked well at 250 ppm carbofuran level, a situation of synergism. Super phosphate at the 10 ppm level only was growth promoting in control cultures, but it was antagonistic at its higher levels (50 and 100 ppm) along with both insecticides, individually. Potash (100, 200, 300 and 400 ppm) reduced toxicity due to carbaryl 20 and carbofuran 250 ppm levels, but potash was antagonistic at the other insecticide levels. The data clearly showed that the chemical fertilizers used were antagonistic with both the insecticides during toxicity to Cylindrospermum sp. PMID:26038669

  15. Fluid Flow and Heat Transfer Analysis of a Nanofluid Containing Motile Gyrotactic Micro-Organisms Passing a Nonlinear Stretching Vertical Sheet in the Presence of a Non-Uniform Magnetic Field; Numerical Approach

    PubMed Central

    M. Mehryan, S. A.; Moradi Kashkooli, Farshad; Soltani, M.; Raahemifar, Kaamran

    2016-01-01

    The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic field is studied numerically. The governing partial differential equations including continuity, momentums, energy, concentration of the nanoparticles, and density of motile micro-organisms are converted into a system of the ordinary differential equations via a set of similarity transformations. New set of equations are discretized using the finite difference method and have been linearized by employing the Newton’s linearization technique. The tri-diagonal system of algebraic equations from discretization is solved using the well-known Thomas algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concentration and density of motile micro-organisms as well as the local skin friction coefficient Cfx, the local Nusselt number Nux, the local Sherwood number Shx and the local density number of the motile microorganism Nnx are expressed graphically and described in detail. This investigation shows the density number of the motile micro-organisms enhances with rise of M, Gr/Re2, Pe and Ω but it decreases with augment of Rb and n. Also, Sherwood number augments with an increase of M and Gr/Re2, while decreases with n, Rb, Nb and Nr. To show the validity of the current results, a comparison between the present results and the existing literature has been carried out. PMID:27322536

  16. ERP evidence for implicit L2 word stress knowledge in listeners of a fixed-stress language.

    PubMed

    Kóbor, Andrea; Honbolygó, Ferenc; Becker, Angelika B C; Schild, Ulrike; Csépe, Valéria; Friedrich, Claudia K

    2018-06-01

    Languages with contrastive stress, such as English or German, distinguish some words only via the stress status of their syllables, such as "CONtent" and "conTENT" (capitals indicate a stressed syllable). Listeners with a fixed-stress native language, such as Hungarian, have difficulties in explicitly discriminating variation of the stress position in a second language (L2). However, Event-Related Potentials (ERPs) indicate that Hungarian listeners implicitly notice variation from their native fixed-stress pattern. Here we used ERPs to investigate Hungarian listeners' implicit L2 processing. In a cross-modal word fragment priming experiment, we presented spoken stressed and unstressed German word onsets (primes) followed by printed versions of initially stressed and initially unstressed German words (targets). ERPs reflected stress priming exerted by both prime types. This indicates that Hungarian listeners implicitly linked German words with the stress status of the primes. Thus, the formerly described explicit stress discrimination difficulty associated with a fixed-stress native language does not generalize to implicit aspects of L2 word stress processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    PubMed

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  18. Evaluation of Different Dose-Response Models for High Hydrostatic Pressure Inactivation of Microorganisms

    PubMed Central

    2017-01-01

    Modeling of microbial inactivation by high hydrostatic pressure (HHP) requires a plot of the log microbial count or survival ratio versus time data under a constant pressure and temperature. However, at low pressure and temperature values, very long holding times are needed to obtain measurable inactivation. Since the time has a significant effect on the cost of HHP processing it may be reasonable to fix the time at an appropriate value and quantify the inactivation with respect to pressure. Such a plot is called dose-response curve and it may be more beneficial than the traditional inactivation modeling since short holding times with different pressure values can be selected and used for the modeling of HHP inactivation. For this purpose, 49 dose-response curves (with at least 4 log10 reduction and ≥5 data points including the atmospheric pressure value (P = 0.1 MPa), and with holding time ≤10 min) for HHP inactivation of microorganisms obtained from published studies were fitted with four different models, namely the Discrete model, Shoulder model, Fermi equation, and Weibull model, and the pressure value needed for 5 log10 (P5) inactivation was calculated for all the models above. The Shoulder model and Fermi equation produced exactly the same parameter and P5 values, while the Discrete model produced similar or sometimes the exact same parameter values as the Fermi equation. The Weibull model produced the worst fit (had the lowest adjusted determination coefficient (R2adj) and highest mean square error (MSE) values), while the Fermi equation had the best fit (the highest R2adj and lowest MSE values). Parameters of the models and also P5 values of each model can be useful for the further experimental design of HHP processing and also for the comparison of the pressure resistance of different microorganisms. Further experiments can be done to verify the P5 values at given conditions. The procedure given in this study can also be extended for enzyme

  19. Performance and mechanism of standard nano-TiO2(P-25) in photocatalytic disinfection of foodborne microorganisms - salmonella typhimurium and listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    In this paper, effects of disinfection by nano-TiO2 were studied on the two typical foodborne microorganisms, Gram-negative bacterium Salmonella typhimurium and Gram-positive bacterium-Listeria monocytogenes, in meat products. The performance of nano-TiO2 against the foodborne pathogens was evaluate...

  20. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  1. [Rapid identification of microorganisms by mass spectrometry in a blood culture system. Comparison of two procedures].

    PubMed

    Cattani, María E; Posse, Tamara; Hermes, Ricardo L; Kaufman, Sara C

    2015-01-01

    Rapid identification of microorganisms is critical in hospitalized infected patients. Blood culture is currently the gold standard for detecting and identifying microorganisms causing bacteremia or sepsis. The introduction of mass spectrometry by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) in microbiology laboratories, especially in microorganisms growing in blood culture bottles, provides rapid identification. This study evaluates the performance of the Maldi Sepsityper Biotyper procedure (hereinafter, MS) compared to that of an in-home method (hereinafter, HF). Eight hundred and forty (840) positive blood culture bottles were processed using the HF procedure, 542 of which were also processed using MS. The organisms were identified in 670 (79.76%) and 391 (72.14%) bottles respectively (p = 0,0013). This study demonstrates the effectiveness of both procedures for identifying microorganisms directly from positive blood culture bottles. However, the HF procedure proved to be more effective than MS, especially in the presence of Gram positive organisms. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation.

    PubMed

    Hoven, Corey V; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  3. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    NASA Astrophysics Data System (ADS)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  4. Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen.

    PubMed

    Zhang, Hai-Yang; Yu, Qiang; Lü, Xiao-Tao; Trumbore, Susan E; Yang, Jun-Jie; Han, Xing-Guo

    2016-04-01

    Shrub encroachment induced by global change and human disturbance strongly affects ecosystem structure and function. In this study, we explore the degree to which invading leguminous shrubs affected neighboring grasses, including via the transfer of fixed nitrogen (N). We measured N concentrations and natural abundance (15)N of shoot tissues from three dominant grasses from different plant functional groups across seven distances along a local transect (up to 500 cm) to the leguminous shrub, Caragana microphylla. C. microphylla did transfer fixed N to neighboring grasses, but the amount and distance of N transferred were strongly species-specific. Shoot N concentrations decreased significantly with distance from C. microphylla, for a rhizomatous grass, Leymus chinensis, and a bunchgrass, Achnatherum sibiricum. However, N concentrations of another bunchgrass, Stipa grandis, were higher only directly underneath the shrub canopy. Shoot δ(15)N values of L. chinensis were enriched up to 500 cm from the shrub, but for S. grandis were enriched only below the shrub canopy. In contrast, δ(15)N of A. sibiricum did not change along the 500-cm transect. Our results indicated the rhizomatous grass transferred fixed N over long distances while bunchgrasses did not. The presence of C. microphylla increased the shoot biomass of L. chinensis but decreased that of S. grandis and A. sibiricum. These findings highlight the potential role of nutrient-acquisition strategies of neighboring grasses in moderating the interspecific variation of fixed N transfer from the leguminous shrub. Overall, leguminous shrubs have either positive or negative effects on the neighboring grasses and dramatically affect plant community composition and structure.

  5. In situ identification and X-ray imaging of microorganisms distribution on the Tatahouine meteorite

    NASA Astrophysics Data System (ADS)

    Lemelle, L.; Salomé, M.; Fialin, M.; Simionovici, A.; Gillet, Ph.

    2004-10-01

    Microorganisms were searched for among the complex microstructures observed on the surface of a fragment of the Tatahouine meteorite inherited from the Tunisian soil in which they were buried. In this view, the chemical compositions, particularly the nitrogen, phosphorus, and sulphur compositions, including the sulphur speciation, were investigated using scanning electron microscopy (SEM), electron probe microanalysis (EPMA) mapping, and scanning X-ray microscopy (SXM). A few 2-μm-thick filaments, partly covered by patches of calcite ensuring they were not deposited by a laboratory contamination, were observed by SEM. The EPMA maps show that the portions free of calcite of the filaments have low but constant contents of nitrogen, sulphur, and phosphorus. The SXM maps were recorded at 2473.5, 2478, and 2482.2 eV, which are respectively characteristic for amino acid linked sulphur, sulphite (SO32-), and sulphate (SO42-). The portions of the filaments detected by EPMA are also those that are enriched in amino acid linked sulphur. The calculated (N/S) elemental ratio is consistent with the one of the dehydrated Escherichia coli matter, contrary to the much lower (P/S) elemental ratio. In living cells, the bulk N and S elements are mainly located in large polymers by covalent bonds, whereas a significant amount of P belongs to small and reactive molecules. We thus can propose that the observed microstructures are dehydrated microorganisms, in which most of the elements that were composing the polymers were retained, whereas the small electrolytes and molecules were removed.

  6. Performance determinants of fixed gear cycling during criteriums.

    PubMed

    Babault, Nicolas; Poisson, Maxime; Cimadoro, Guiseppe; Cometti, Carole; Païzis, Christos

    2018-06-17

    Nowadays, fixed gear competitions on outdoor circuits such as criteriums are regularly organized worldwide. To date, no study has investigated this alternative form of cycling. The purpose of the present study was to examine fixed gear performance indexes and to characterize physiological determinants of fixed gear cyclists. This study was carried out in two parts. Part 1 (n = 36) examined correlations between performance indexes obtained during a real fixed gear criterium (time trial, fastest laps, averaged lap time during races, fatigue indexes) and during a sprint track time trial. Part 2 (n = 9) examined correlations between the recorded performance indexes and some aerobic and anaerobic performance outputs (VO 2max , maximal aerobic power, knee extensor and knee flexor maximal voluntary torque, vertical jump height and performance during a modified Wingate test). Results from Part 1 indicated significant correlations between fixed gear final performance (i.e. average lap time during the finals) and single lap time (time trial, fastest lap during races and sprint track time trial). In addition, results from Part 2 revealed significant correlations between fixed gear performance and aerobic indicators (VO 2max and maximal aerobic power). However, no significant relationship was obtained between fixed gear cycling and anaerobic qualities such as strength. Similarly to traditional cycling disciplines, we concluded that fixed gear cycling is mainly limited by aerobic capacity, particularly criteriums final performance. However, specific skills including technical competency should be considered.

  7. Rapid identification of microorganisms from positive blood cultures by testing early growth on solid media using matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Gonzalez, Mark D; Weber, Carol J; Burnham, Carey-Ann D

    2016-06-01

    We performed a retrospective analysis of a simple modification to MALDI-TOF MS for microorganism identification to accurately improve the turnaround time (TAT) for identification of Enterobacteriaceae recovered in blood cultures. Relative to standard MALDI-TOF MS procedures, we reduced TAT from 28.3 (n=90) to 21.2h (n=107). Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    PubMed

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.

  9. Lead Speciation in Microorganisms.

    PubMed

    Stewart, Theodora J

    2017-04-10

    The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.

  10. Fixed 50:50 mixture of nitrous oxide and oxygen to reduce lumbar-puncture-induced pain: a randomized controlled trial.

    PubMed

    Moisset, X; Sia, M A; Pereira, B; Taithe, F; Dumont, E; Bernard, L; Clavelou, P

    2017-01-01

    Lumbar puncture (LP) has been frequently performed for more than a century. This procedure is still stressful and often painful. The aim of the study was to evaluate the efficacy of a fixed 50% nitrous oxide-oxygen mixture compared to placebo to reduce immediate procedural pain and anxiety during LP. A randomized controlled trial was conducted involving adults who needed a cerebrospinal fluid analysis. Patients were randomly assigned to inhale either a fixed 50% nitrous oxide-oxygen mixture (50% N 2 O-O 2 ) or medical air (22% O 2 -78% N 2 ). Cutaneous application of a eutectic mixture of local anaesthetics was systematically done and all LPs were performed with pencil point 25G needles (20G introducer needle). The primary end-point was the maximal pain level felt by the patient during the procedure, the maximal anxiety level being a secondary outcome, both measured using a numerical rating scale (0-10). A total of 66 consecutive patients were randomized. The analysis was intention to treat. The maximal pain was 4.9 ± 2.7 for the 33 patients receiving air and 2.7 ± 2.7 for the 33 receiving 50% N 2 O-O 2 (P = 0.002). Similarly, the maximal LP-induced anxiety was 4.5 ± 3.1 vs. 2.6 ± 2.6 (P = 0.009), respectively. The number needed to treat to avoid one patient undergoing significant pain (pain score ≥ 4/10) was 2.75. Body mass index >25 kg/m 2 was significantly associated with higher pain intensity (P = 0.03). No serious adverse events were attributable to 50% N 2 O-O 2 inhalation. Inhalation of a fixed 50% N 2 O-O 2 mixture is efficient to reduce LP-induced pain and anxiety. © 2016 EAN.

  11. Exact results for the O( N ) model with quenched disorder

    NASA Astrophysics Data System (ADS)

    Delfino, Gesualdo; Lamsen, Noel

    2018-04-01

    We use scale invariant scattering theory to exactly determine the lines of renormalization group fixed points for O( N )-symmetric models with quenched disorder in two dimensions. Random fixed points are characterized by two disorder parameters: a modulus that vanishes when approaching the pure case, and a phase angle. The critical lines fall into three classes depending on the values of the disorder modulus. Besides the class corresponding to the pure case, a second class has maximal value of the disorder modulus and includes Nishimori-like multicritical points as well as zero temperature fixed points. The third class contains critical lines that interpolate, as N varies, between the first two classes. For positive N , it contains a single line of infrared fixed points spanning the values of N from √{2}-1 to 1. The symmetry sector of the energy density operator is superuniversal (i.e. N -independent) along this line. For N = 2 a line of fixed points exists only in the pure case, but accounts also for the Berezinskii-Kosterlitz-Thouless phase observed in presence of disorder.

  12. 41 CFR 109-45.304-2 - Negotiated sales and negotiated sales at fixed prices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Negotiated sales and negotiated sales at fixed prices. 109-45.304-2 Section 109-45.304-2 Public Contracts and Property Management... REGULATIONS UTILIZATION AND DISPOSAL 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.3-Sale of...

  13. Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters.

    PubMed

    Chen, Jun; Ying, Guang-Guo; Liu, You-Sheng; Wei, Xiao-Dong; Liu, Shuang-Shuang; He, Liang-Ying; Yang, Yong-Qiang; Chen, Fan-Rong

    2017-07-03

    This study aims to investigate nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands (CWs) with different design parameters. Twelve mesocosm-scale CWs with four substrates and three hydraulic loading rates were set up in the outdoor. The result showed the CWs with zeolite as substrate and HLR of 20 cm/d were selected as the best choice for the TN and NH 3 -N removal. It was found that the single-stage mesocosm-scale CWs were incapable to achieve high removals of TN and NH 3 -N due to inefficient nitrification process in the systems. This was demonstrated by the lower abundance of the nitrification genes (AOA and AOB) than the denitrification genes (nirK and nirS), and the less diverse nitrification microorganisms than the denitrification microorganisms in the CWs. The results also show that microorganism community structure including nitrogen-cycle microorganisms in the constructed wetland systems was affected by the design parameters especially the substrate type. These findings show that nitrification is a limiting factor for the nitrogen removal by CWs.

  14. Respiration-to-DNA ratio reflects physiological state of microorganisms in root-free and rhizosphere soil

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, E.; Blagodatsky, S.; Kuzyakov, Y.

    2009-04-01

    The double-stranded DNA (dsDNA) content in soil can serve as a measure of microbial biomass under near steady-state conditions and quantitatively reflect the exponential microbial growth initiated by substrate addition. The yield of respired CO2 per microbial biomass unit (expressed as DNA content) could be a valuable physiological indicator reflecting state of soil microbial community. Therefore, investigations combining both analyses of DNA content and respiration of soil microorganisms under steady-state and during periods of rapid growth are needed. We studied the relationship between CO2 evolution and microbial dsDNA content in native and glucose-amended samples of root-free and rhizosphere soil under Beta vulgaris (Cambisol, loamy sand from the field experiment of the Institute of Agroecology FAL, Braunschweig, Germany). Quantity of dsDNA was determined by direct DNA isolation from soil with mechanic and enzymatic disruption of microbial cell walls with following spectrofluorimetric detection with PicoGreen (Blagodatskaya et al., 2003). Microbial biomass and the kinetic parameters of microbial growth were estimated by dynamics of the CO2 emission from soil amended with glucose and nutrients (Blagodatsky et al., 2000). The CO2 production rate was measured hourly at 22оС using an automated infrared-gas analyzer system. The overall increase in microbial biomass, DNA content, maximal specific growth rate and therefore, in the fraction of microorganisms with r-strategy were observed in rhizosphere as compared to bulk soil. The rhizosphere effect for microbial respiration, biomass and specific growth rate was more pronounced for plots with half-rate of N fertilizer compared to full N addition. The DNA content was significantly lower in bulk compared to rhizosphere soil both before and during microbial growth initiated by glucose amendment. Addition of glucose to the soil strongly increased the amount of CO2 respired per DNA unit. Without substrate addition the

  15. Democratic superstring field theory: gauge fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, Michael

    2011-03-01

    We show that a partial gauge fixing of the NS sector of the democratic-picture superstring field theory leads to the non-polynomial theory. Moreover, by partially gauge fixing the Ramond sector we obtain a non-polynomial fully RNS theory at pictures 0 and 1/2 . Within the democratic theory and in the partially gauge fixed theory the equations of motion of both sectors are derived from an action. We also discuss a representation of the non-polynomial theory analogous to a manifestly two-dimensional representation of WZW theory and the action of bosonic pure-gauge solutions. We further demonstrate that one can consistently gauge fix the NS sector of the democratic theory at picture number -1. The resulting theory is new. It is a {mathbb{Z}_2} dual of the modified cubic theory. We construct analytical solutions of this theory and show that they possess the desired properties.

  16. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms

    PubMed Central

    2010-01-01

    Background The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. Results In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30°C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20°C for several months. Conclusions ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a

  17. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms.

    PubMed

    Zanaroli, Giulio; Di Toro, Sara; Todaro, Daniela; Varese, Giovanna C; Bertolotto, Antonio; Fava, Fabio

    2010-02-16

    The bioremediation of soils impacted by diesel fuels is very often limited by the lack of indigenous microflora with the required broad substrate specificity. In such cases, the soil inoculation with cultures with the desired catabolic capabilities (bioaugmentation) is an essential option. The use of consortia of microorganisms obtained from rich sources of microbes (e.g., sludges, composts, manure) via enrichment (i.e., serial growth transfers) on the polluting hydrocarbons would provide bioremediation enhancements more robust and reproducible than those achieved with specialized pure cultures or tailored combinations (co-cultures) of them, together with none or minor risks of soil loading with unrelated or pathogenic allocthonous microorganisms. In this work, two microbial consortia, i.e., ENZ-G1 and ENZ-G2, were enriched from ENZYVEBA (a complex commercial source of microorganisms) on Diesel (G1) and HiQ Diesel (G2), respectively, and characterized in terms of microbial composition and hydrocarbon biodegradation capability and specificity. ENZ-G1 and ENZ-G2 exhibited a comparable and remarkable biodegradation capability and specificity towards n-C10 to n-C24 linear paraffins by removing about 90% of 1 g l-1 of diesel fuel applied after 10 days of aerobic shaken flask batch culture incubation at 30 degrees C. Cultivation dependent and independent approaches evidenced that both consortia consist of bacteria belonging to the genera Chryseobacterium, Acinetobacter, Psudomonas, Stenotrophomonas, Alcaligenes and Gordonia along with the fungus Trametes gibbosa. However, only the fungus was found to grow and remarkably biodegrade G1 and G2 hydrocarbons under the same conditions. The biodegradation activity and specificity and the microbial composition of ENZ-G1 and ENZ-G2 did not significantly change after cryopreservation and storage at -20 degrees C for several months. ENZ-G1 and ENZ-G2 are very similar highly enriched consortia of bacteria and a fungus capable of

  18. Biodiesel production by various oleaginous microorganisms from organic wastes.

    PubMed

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    PubMed

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  20. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.

    PubMed

    Powell, C L; Nogaro, G; Agrawal, A

    2011-06-01

    The degradation potential of trichloroethene by the aerobic methane- and ammonia-oxidizing microorganisms naturally associated with wetland plant (Carex comosa) roots was examined in this study. In bench-scale microcosm experiments with washed (soil free) Carex comosa roots, the activity of root-associated methane- and ammonia-oxidizing microorganisms, which were naturally present on the root surface and/or embedded within the roots, was investigated. Significant methane and ammonia oxidation were observed reproducibly in batch reactors with washed roots incubated in growth media, where methane oxidation developed faster (2 weeks) compared to ammonia oxidation (4 weeks) in live microcosms. After enrichment, the methane oxidizers demonstrated their ability to degrade 150 μg l(-1) TCE effectively at 1.9 mg l(-1) of aqueous CH(4). In contrast, ammonia oxidizers showed a rapid and complete inhibition of ammonia oxidation with 150 μg l(-1) TCE at 20 mg l(-1) of NH(4)(+)-N, which may be attributed to greater sensitivity of ammonia oxidizers to TCE or its degradation product. No such inhibitory effect of TCE degradation was detected on methane oxidation at the above experimental conditions. The results presented here suggest that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments.

  1. Biomachining: metal etching via microorganisms.

    PubMed

    Díaz-Tena, Estíbaliz; Barona, Astrid; Gallastegui, Gorka; Rodríguez, Adrián; López de Lacalle, L Norberto; Elías, Ana

    2017-05-01

    The use of microorganisms to remove metal from a workpiece is known as biological machining or biomachining, and it has gained in both importance and scientific relevance over the past decade. Conversely to mechanical methods, the use of readily available microorganisms is low-energy consuming, and no thermal damage is caused during biomachining. The performance of this sustainable process is assessed by the material removal rate, and certain parameters have to be controlled for manufacturing the machined part with the desired surface finish. Although the variety of microorganisms is scarce, cell concentration or density plays an important role in the process. There is a need to control the temperature to maintain microorganism activity at its optimum, and a suitable shaking rate provides an efficient contact between the workpiece and the biological medium. The system's tolerance to the sharp changes in pH is quite limited, and in many cases, an acid medium has to be maintained for effective performance. This process is highly dependent on the type of metal being removed. Consequently, the operating parameters need to be determined on a case-by-case basis. The biomachining time is another variable with a direct impact on the removal rate. This biological technique can be used for machining simple and complex shapes, such as series of linear, circular, and square micropatterns on different metal surfaces. The optimal biomachining process should be fast enough to ensure high production, a smooth and homogenous surface finish and, in sum, a high-quality piece. As a result of the high global demand for micro-components, biomachining provides an effective and sustainable alternative. However, its industrial-scale implementation is still pending.

  2. Window type: 2x3 fixed multipaned steel window flanked by 1x3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Window type: 2x3 fixed multipaned steel window flanked by 1x3 multipaned steel casements. Concrete sill and spandrel also illustrated. Building 43, facing east - Harbor Hills Housing Project, 26607 Western Avenue, Lomita, Los Angeles County, CA

  3. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.

    PubMed

    Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico

    2016-01-01

    The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.

  4. Transfer rates of enteric microorganisms in recycled water during machine clothes washing.

    PubMed

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-03-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water.

  5. The structure, stability, and infrared spectrum of B 2N, B 2N +, B 2N -, BO, B 2O and B 2N 2.

    NASA Astrophysics Data System (ADS)

    Martin, J. M. L.; François, J. P.; Gijbels, R.

    1992-05-01

    The structure, infrared spectrum, and heat of formation of B 2N, B 2N -, BO, and B 2O have been studied ab initio. B 2N is very stable; B 2O even more so. B 2N, B 2N -, B 2O, and probably B 2N + have symmetric linear ground-state structures; for B 2O, an asymmetric linear structure lies about 12 kcal/mol above the ground state. B 2N +, B 2N - and B 2O have intense asymmetric stretching frequencies, predicted near 870, 1590 and 1400 cm -1, respectively. Our predicted harmonic frequencies and isotopic shifts for B 2O confirm the recent experimental identification by Andrews and Burkholder. Absorptions at 1889.5 and 1998.5 cm -1 in noble-gas trapped boron nitride vapor belong the BNB and BNBN ( 3Π), respectively; a tentative assignment of 882.5 cm -1 to BNB + is proposed. Total atomization energies Σ De (Σ D0) are computed (accuracy ±2 kcal/mol) as: BO 193.1 (190.4), B 2O 292.5 (288.7), B 2N 225.0 (250.3) kcal/mol. The ionization potential and electron affinity of B 2N are predicted to be 8.62±0.1 and 3.34±0.1 eV. The MP4-level additivity approximations involved in G1 theory results in errors on the order of 1 kcal/mol in the Σ De values.

  6. Application of thermotolerant microorganisms for biofertilizer preparation.

    PubMed

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  7. Five Years of BEACO2N: First Results and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Shusterman, A.; Cohen, R. C.

    2017-12-01

    The BErkeley Atmospheric CO2 Observation Network (BEACO2N) is an ongoing greenhouse gas and air quality monitoring campaign based in the San Francisco Bay Area of Northern California. BEACO2N is a distributed network instrument consisting of low- to moderate-cost commercial sensors for CO2 and other pollutants installed on top of schools, museums, and other outreach-minded institutions. The reduced cost of each individual sensor "node" enables the deployment of a larger volume of total nodes, resulting in a web of approximately 50 sites with an average node-to-node distance of 2 km. Operating in some variation of this configuration since 2012, BEACO2N offers greater spatio-temporal coverage than any other fixed CO2 monitoring network to date. This high-resolution information allows us to faithfully represent the true heterogeneity of urban emission processes and distinguish between specific sources that are often regulated independently, but typically treated en masse by sparser, conventional surface monitors. However, maintaining and appropriately interpreting a network of BEACO2N's size presents a number of unique data quality and data coverage challenges. Here we describe the quantitative capabilities of the BEACO2N platform, first results from initial attempts at constraining greenhouse gas emission estimates, as well as other lessons learned over the first five years of operation.

  8. Method for making 2-electron response reduced density matrices approximately N-representable

    NASA Astrophysics Data System (ADS)

    Lanssens, Caitlin; Ayers, Paul W.; Van Neck, Dimitri; De Baerdemacker, Stijn; Gunst, Klaas; Bultinck, Patrick

    2018-02-01

    In methods like geminal-based approaches or coupled cluster that are solved using the projected Schrödinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not N-representable. That is, the response 2-RDM does not correspond to an actual physical N-electron wave function. We present a new algorithm for making these non-N-representable 2-RDMs approximately N-representable, i.e., it has the right symmetry and normalization and it fulfills the P-, Q-, and G-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties which is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between this initial response 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, Q-matrix, and G-matrix are positive semidefinite, i.e., their eigenvalues are non-negative. Our method is suitable for fixing non-N-representable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.

  9. Engineering biofuel tolerance in non-native producing microorganisms.

    PubMed

    Jin, Hu; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2014-01-01

    Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Adhesives for fixed orthodontic bands.

    PubMed

    Millett, Declan T; Glenny, Anne-Marie; Mattick, Rye Cr; Hickman, Joy; Mandall, Nicky A

    2016-10-25

    Orthodontic treatment involves using fixed or removable appliances (dental braces) to correct the positions of teeth. It has been shown that the quality of treatment result obtained with fixed appliances is much better than with removable appliances. Fixed appliances are, therefore, favoured by most orthodontists for treatment. The success of a fixed orthodontic appliance depends on the metal attachments (brackets and bands) being attached securely to the teeth so that they do not become loose during treatment. Brackets are usually attached to the front and side teeth, whereas bands (metal rings that go round the teeth) are more commonly used on the back teeth (molars). A number of adhesives are available to attach bands to teeth and it is important to understand which group of adhesives bond most reliably, as well as reducing or preventing dental decay during the treatment period. To evaluate the effectiveness of the adhesives used to attach bands to teeth during fixed appliance treatment, in terms of:(1) how often the bands come off during treatment; and(2) whether they protect the banded teeth against decay during fixed appliance treatment. The following electronic databases were searched: Cochrane Oral Health's Trials Register (searched 2 June 2016), Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5) in the Cochrane Library (searched 2 June 2016), MEDLINE Ovid (1946 to 2 June 2016) and EMBASE Ovid (1980 to 2 June 2016). We searched ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. Randomised and controlled clinical trials (RCTs and CCTs) (including split-mouth studies) of adhesives used to attach orthodontic bands to molar teeth were selected. Patients with full arch fixed orthodontic appliance(s) who had bands attached to molars were included. All review authors

  11. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    NASA Astrophysics Data System (ADS)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  12. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?

    PubMed

    Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D

    2008-04-01

    N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.

  13. 50 CFR 660.231 - Limited entry fixed gear sablefish primary fishery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... sablefish primary fishery. This section applies to the sablefish primary season for the limited entry fixed... the sablefish primary season north of 36° N. lat. is governed by routine management measures imposed... sablefish primary season for the limited entry fixed gear fishery, unless at least one limited entry permit...

  14. Removal of microorganisms by deep well injection

    NASA Astrophysics Data System (ADS)

    Schijven, Jack F.; Medema, Gertjan; Vogelaar, Ad J.; Hassanizadeh, S. Majid

    2000-08-01

    The removal of bacteriophages MS2 and PRD1, spores of Clostridium bifermentans (R5) and Escherichia coli (WR1) by deep well injection into a sandy aquifer, was studied at a pilot field site in the southeast of the Netherlands. Injection water was seeded with the microorganisms for 5 days. Breakthrough was monitored for 93 days at 4 monitoring wells with their screens at a depth of about 310 m below surface. Within the first 8 m of soil passage, concentrations of MS2 and PRD1 were reduced by 6 log 10, that of R5 spores by 5 log 10 and that of WR1 by 7.5 log 10. Breakthrough of MS2 and R5 could also be followed at greater distances from the injection well. Concentrations of MS2 were reduced only by about 2 log 10 in the following 30 m, and reduction of concentrations of R5 was negligible. Apparently, attachment was greater during the first 8 m of aquifer passage. At the point of injection, the inactivation rate coefficient of free MS2 was found to be 0.081 day -1, that of free PRD1 0.060 day -1, and that of E. coli strain WR1 0.063 day -1. In injection water that had passed 8 m of soil, inactivation of MS2 phages was found to be less than in water from the injection well: 0.039 day -1. Probably, the higher inactivation rate of MS2 in water from the injection well may be ascribed to the activity of aerobic bacteria. Inactivation of the R5 spores was not significant. From geochemical mass balances, it could be deduced that within the first 8 m distance from the injection well, ferric oxyhydroxides precipitated as a consequence of pyrite oxidation, but not at larger distances. Ferric oxyhydroxides provide positively charged patches onto which fast attachment of the negatively charged microorganisms may take place. The non-linear logarithmic reduction of concentrations with distance may therefore be ascribed to preferable attachment of microorganisms to patches of ferric oxyhydroxides that are present within 8 m distance from the injection point, but not thereafter

  15. Rhizospheric fungi and their link with the nitrogen-fixing Frankia harbored in host plant Hippophae rhamnoides L.

    PubMed

    Zhou, Xue; Tian, Lei; Zhang, Jianfeng; Ma, Lina; Li, Xiujun; Tian, Chunjie

    2017-12-01

    Sea buckthorn (Hippophae rhamnoides L.) is a pioneer plant used for land reclamation and an appropriate material for studying the interactions of symbiotic microorganisms because of its nitrogen-fixing root nodules and mycorrhiza. We used high-throughput sequencing to reveal the diversities and community structures of rhizospheric fungi and their link with nitrogen-fixing Frankia harbored in sea buckthorn collected along an altitude gradient from the Qinghai Tibet Plateau to interior areas. We found that the fungal diversities and compositions varied between different sites. Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla. The distribution of sea buckthorn rhizospheric fungi was driven by both environmental factors and the geographic distance. Among all examined soil characteristics, altitude, AP, and pH were found to have significant (p < 0.05) effect on the rhizospheric fungal community. The rhizospheric fungal communities became more distinct as the distance increased. Moreover, co-inertia analysis identified significant co-structures between Frankia and AMF communities in the rhizosphere of sea buckthorn. We conclude that at the large scale, there are certain linkages between nitrogen-fixing bacteria and the AMF expressed in the distributional pattern. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular genetics of biosurfactant synthesis in microorganisms.

    PubMed

    Satpute, Surekha K; Bhuyan, Smita S; Pardesi, Karishma R; Mujumdar, Shilpa S; Dhakephalkar, Prashant K; Shete, Ashvini M; Chopade, Balu A

    2010-01-01

    Biosurfactant (BS)/bioemulsifier (BE) produced by varied microorganisms exemplify immense structural/functional diversity and consequently signify the involvement of particular molecular machinery in their biosynthesis. The present chapter aims to compile information on molecular genetics of BS/BE production in microorganisms. Polymer synthesis in Acinetobacter species is controlled by an intricate operon system and its further excretion being controlled by enzymes. Quorum sensing system (QSS) plays a fundamental role in rhamnolipid and surfactin synthesis. Depending upon the cell density, signal molecules (autoinducers) of regulatory pathways accomplish the biosynthesis of BS. The regulation of serrawettin production by Serratia is believed to be through non ribosomal peptide synthetases (NRPSs) and N-acylhomoserine lactones (AHLs) encoded by QSS located on mobile transposon. This regulation is under positive as well as negative control of QSS operon products. In case of yeast and fungi, glycolipid precursor production is catalyzed by genes that encode enzyme cytochrome P450 monooxygenase. BS/BE production is dictated by genes present on the chromosomes. This chapter also gives a glimpse of recent biotechnological developments which helped to realize molecular genetics of BS/BE production in microorganisms. Hyper-producing recombinants as well as mutant strains have been constructed successfully to improve the yield and quality of BS/BE. Thus promising biotechnological advances have expanded the applicability of BS/BE in therapeutics, cosmetics, agriculture, food, beverages and bioremediation etc. In brief, our knowledge on genetics of BS/BE production in prokaryotes is extensive as compared to yeast and fungi. Meticulous and concerted study will lead to an understanding of the molecular phenomena in unexplored microbes. In addition to this, recent promising advances will facilitate in broadening applications of BS/BE to diverse fields. Over the decades, valuable

  17. Increase in Dry Weight and Total Nitrogen Content in Zea mays and Setaria italica Associated with Nitrogen-fixing Azospirillum spp. 1

    PubMed Central

    Cohen, Efraim; Okon, Yaacov; Kigel, Jaime; Nur, Israel; Henis, Yigal

    1980-01-01

    The association between nitrogen-fixing bacteria from the genus Azospirillum and the grasses Zea mays and Setaria italica was investigated in sterilized Leonard-jar assemblies. Nitrogen-fixing bacteria isolated from Cynodon dactylon roots in Israel and Azospirillum brasilense (Sp-7, Sp-80, and Cd) were examined. C2H2 reduction activity was detected in systems containing 0.0 to 0.08 but not in those containing 0.16 gram per liter NH4NO3. The organisms tested significantly increased plant dry weight (50-100%), total N content of leaves (50-100%) and C2H4 production (300-1000 nanomoles C2H4 per plant per hour). Highest C2H2 reduction activities were obtained above 30 C and with high light intensities. Significant increases in S. italica dry weight (DW) and nitrogen (N) content were observed in sand (DW = 80%, N = 150%), sandy loam soil (DW = 80%, N = 75%) and loess (DW = 37%, N = 25%). The results obtained in this work clearly demonstrate the potential benefit of inoculating grasses with Azospirillum. PMID:16661514

  18. Biodegradation of BOD and ammonia-free using bacterial consortium in aerated fixed film bioreactor (AF2B)

    NASA Astrophysics Data System (ADS)

    Prayitno, Rulianah, Sri; Saroso, Hadi; Meilany, Diah

    2017-06-01

    BOD and Ammonia-free (NH3-N) are pollutants of hospital wastewater which often exceed the quality standards. It is because biological processes in wastewater treatment plant (WWTP) have not been effective in degrading BOD and NH3-N. Therefore, a study on factors that influence the biodegradation of BOD and NH3-N by choosing the type of bacteria to improve the mechanisms of biodegradation processes is required. Bacterial consortium is a collection of several types of bacteria obtained from isolation process, which is known to be more effective than a single bacterial in degrading pollutants. On the other hand, AF2B is a type of reactor in wastewater treatment system. The AF2B contains a filter media that has a large surface area so that the biodegradation process of pollutants by microorganism can be improved. The objective of this research is to determine the effect of volume of starter and air supplies on decreasing BOD and NH3-N in hospital wastewater using bacterial consortium in the AF2B on batch process. The research was conducted in three stages: the making of the growth curve of the bacterial consortium, bacterial consortium acclimatization, and hospital wastewater treatment in the AF2B with batch process. The variables used are the volume of starter (65%, 75%, and 85% in volume) and air supplies (2.5, 5, and 7.5 L/min). Meanwhile, the materials used are hospital wastewater, bacterial consortium (Pseudomonas diminuta, Pseudomonas capica, Bacillius sp, and Nitrobacter sp), blower, and AF2B. AF2B is a plastic basin containing a filter media with a wasp-nest shape used as a medium for growing the bacterial consortium. In the process of making the growth curve, a solid form of bacterial consortium was dissolved in sterilized water, then grown in a nutrient broth (NB). Then, shaking and sampling were done at any time to determine the path growth of bacterial consortium. In the acclimatization process, bacterial isolates were grown using hospital wastewater as a

  19. 48 CFR 46.302 - Fixed-price supply contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Fixed-price supply... CONTRACT MANAGEMENT QUALITY ASSURANCE Contract Clauses 46.302 Fixed-price supply contracts. The contracting officer shall insert the clause at 52.246-2, Inspection of Supplies—Fixed-Price, in solicitations and...

  20. Fixed-dose combination therapy for the prevention of cardiovascular disease

    PubMed Central

    de Cates, Angharad N; Farr, Matthew RB; Wright, Nicola; Jarvis, Morag C; Rees, Karen; Ebrahim, Shah; Huffman, Mark D

    2014-01-01

    pressure, total and low density lipoprotein (LDL) cholesterol concentrations, discontinuation rates, quality of life, and costs. We calculated risk ratios (RR) for dichotomous data and weighted mean differences (MD) for continuous data with 95% confidence intervals (CI) using fixed-effect models when heterogeneity was low (I2 < 50%) and random-effects models when heterogeneity was high (I2 > 50%). Main results We found nine randomised controlled trials with a total of 7047 participants. Seven of the nine trials evaluated the effects of fixed-dose combination therapy on primary CVD prevention, and the trial length ranged from six weeks to 15 months. We found a moderate to high risk of bias in the domains of selection, performance, detection, attrition, and other types of bias in five of the nine trials. Compared with the comparator groups, the effects of the fixed-dose combination treatment on mortality (1.2% versus 1.0%, RR 1.26, 95% CI 0.67 to 2.38, N = 3465) and cardiovascular events (4.0% versus 2.9%, RR 1.38, 95% CI 0.91 to 2.10, N = 2479) were uncertain (low quality evidence). The low event rates for these outcomes, limited availability of data as only two out of nine trials reported on these outcomes, and a high risk of bias in at least one domain suggest that these results should not be viewed with confidence. Adverse events were common in both the intervention (30%) and comparator (24%) groups, with participants randomised to fixed-dose combination therapy being 20% (95% CI 9% to 30%) more likely to report an adverse event. Notably, no serious adverse events were reported. Compared with placebo, the rate of discontinuation among participants randomised to fixed-dose combination was higher (14% versus 11%, RR 1.26 95% CI 1.02 to 1.55). The weighted mean differences in systolic and diastolic blood pressure between the intervention and control arms were -7.05 mmHg (95% CI -10.18 to -3.87) and -3.65 mmHg (95% CI -5.44 to -1.85), respectively. The weighted mean

  1. [The effect of selected antibiotics on microorganisms contaminating boar ejaculate].

    PubMed

    Mazurová, J; Vinter, P

    1991-04-01

    The occurrence of microorganisms, including their total counts in boar native ejaculates, was investigated in two stages; the objective of this investigation also was to determine contamination after the sperms were treated with diluents containing the antibiotics ampicillin, gentamycin, apramycin, cefoxitin, or antibiotic combinations penicillin + streptomycin, ampicillin + cefoxitin, gentamycin + cefoxitin and ampicillin + gentamycin. The representation of bacterial species and total counts of microbes in 1 ml diluted sperm stored at a temperature of about 18 degrees C were determined in 24, 48 and 72 h after dilution. The microorganisms were cultivated from all native ejaculates. Proteus sp. (63.3%) and Pseudomonas aeruginosa (51.5% of the total number of examined samples) were the most frequent species. The number of contaminated diluted ejaculates ranged from 12.5 to 95.8% in 24 h after dilution, from 12.5 to 98.5% in 48 h and from 16.8 to 95.8% of the total number of examined ejaculates in 72 h. The occurrence of microorganisms correlated mostly with the efficiency spectrum of the antibiotics or their combinations. The average counts of microorganisms in 1 ml of native ejaculate made 2,363,000 in stage I and 1,472,108 in stage II. The highest average counts in 1 ml of diluted sperm were found in ejaculates containing cefoxitin and apramycin. Gentamycin was the most effective antibiotic used as a sole component (average counts of microorganisms CPM in 1 ml were 416 in 24 h, 955 in 48 h and 2260 in 72 h after dilution); ampicillin and gentamycin were the most efficient combination (14--20--21). This combination exerted very good effects also on Proteus sp. and Pseudomonas aeruginosa.

  2. Apparatus and process for determining the susceptibility of microorganisms to antibiotics

    NASA Technical Reports Server (NTRS)

    Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)

    1976-01-01

    A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.

  3. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOEpatents

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  4. Donation return time at fixed and mobile donation sites

    PubMed Central

    Carey, Patricia M.; High, Patrick M.; Schlumpf, Karen S.; Johnson, Bryce R.; Mast, Alan E.; Rios, Jorge A.; Simon, Toby L.; Wilkinson, Susan L.

    2013-01-01

    BACKGROUND This study investigated the effect of blood donation environment, fixed or mobile with differing sponsor types, on donation return time. STUDY DESIGN AND METHODS Data from 2006 through 2009 at six US blood centers participating in the Retrovirus Epidemiology Donor Study-II (REDS-II) were used for analysis. Descriptive statistics stratified by whole blood (WB), plateletpheresis (PP), and double red blood cell (R2) donations were obtained for fixed and mobile locations, including median number of donations and median interdonation interval. A survival analysis estimated median return time at fixed and mobile sites, while controlling for censored return times, demographics, blood center, and mandatory recovery times. RESULTS Two-thirds (67.9%) of WB donations were made at mobile sites, 97.4% of PP donations were made at fixed sites, and R2 donations were equally distributed between fixed and mobile locations. For donations at fixed sites only or alternating between fixed and mobile sites, the highest median numbers of donations were nine and eight, respectively, and the shortest model-adjusted median return times (controlling for mandatory eligibility times of 56 and 112 days) were 36 and 30 days for WB and R2 donations, respectively. For PP donations, the shortest model-adjusted median return time was 23 days at a fixed location and the longest was 693 days at community locations. CONCLUSION WB, PP, and R2 donors with the shortest time between donations were associated with fixed locations and those alternating between fixed and mobile locations, even after controlling for differing mandatory recovery times for the different blood donation procedures. PMID:21745215

  5. Rotary Apparatus Concentrates And Separates Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1992-01-01

    Apparatus concentrates and separates swimming micro-organisms of different species into concentric rings in fluid. Fluid containing high concentration of desired species removed by use of small scoop placed into fluid at radius of one of rings formed by that species. Micro-organisms concentrated into concentric rings by combined dynamic effects of upward and horizontal components of swimming, rotation of dish, gravitation, and viscosity.

  6. Impact of wearing fixed orthodontic appliances on quality of life among adolescents: Case-control study.

    PubMed

    Costa, Andréa A; Serra-Negra, Júnia M; Bendo, Cristiane B; Pordeus, Isabela A; Paiva, Saul M

    2016-01-01

    To investigate the impact of wearing a fixed orthodontic appliance on oral health-related quality of life (OHRQoL) among adolescents. A case-control study (1 ∶ 2) was carried out with a population-based randomized sample of 327 adolescents aged 11 to 14 years enrolled at public and private schools in the City of Brumadinho, southeast of Brazil. The case group (n  =  109) was made up of adolescents with a high negative impact on OHRQoL, and the control group (n  =  218) was made up of adolescents with a low negative impact. The outcome variable was the impact on OHRQoL measured by the Brazilian version of the Child Perceptions Questionnaire (CPQ 11-14) - Impact Short Form (ISF:16). The main independent variable was wearing fixed orthodontic appliances. Malocclusion and the type of school were identified as possible confounding variables. Bivariate and multiple conditional logistic regressions were employed in the statistical analysis. A multiple conditional logistic regression model demonstrated that adolescents wearing fixed orthodontic appliances had a 4.88-fold greater chance of presenting high negative impact on OHRQoL (95% CI: 2.93-8.13; P < .001) than those who did not wear fixed orthodontic appliances. A bivariate conditional logistic regression demonstrated that malocclusion was significantly associated with OHRQoL (P  =  .017), whereas no statistically significant association was found between the type of school and OHRQoL (P  =  .108). Adolescents who wore fixed orthodontic appliances had a greater chance of reporting a negative impact on OHRQoL than those who did not wear such appliances.

  7. Atmospheric Sampling of Microorganisms with UAS

    NASA Astrophysics Data System (ADS)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  8. Multiorganismal insects: diversity and function of resident microorganisms.

    PubMed

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  9. [Ants as carriers of microorganisms in hospital environments].

    PubMed

    Pereira, Rogério Dos Santos; Ueno, Mariko

    2008-01-01

    Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.

  10. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers

    PubMed Central

    Malusá, E.; Sas-Paszt, L.; Ciesielska, J.

    2012-01-01

    The increasing need for environmentaly friendly agricultural practices is driving the use of fertilizers based on beneficial microorganisms. The latter belong to a wide array of genera, classes, and phyla, ranging from bacteria to yeasts and fungi, which can support plant nutrition with different mechanisms. Moreover, studies on the interactions between plant, soil, and the different microorganisms are shedding light on their interrelationships thus providing new possible ways to exploit them for agricultural purposes. However, even though the inoculation of plants with these microorganisms is a well-known practice, the formulation of inocula with a reliable and consistent effect under field conditions is still a bottleneck for their wider use. The choice of the technology for inocula production and of the carrier for the formulation is key to their successful application. This paper focuses on how inoculation issues can be approached to improve the performance of beneficial microorganisms used as a tool for enhancing plant growth and yield. PMID:22547984

  11. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  12. N2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species

    USGS Publications Warehouse

    Bazylinski, D.A.; Dean, A.J.; Schuler, D.; Phillips, E.J.P.; Lovley, D.R.

    2000-01-01

    Cells of Geobacter metallireducens, Magnetospirillum strain AMB-1, Magnetospirillum magnetotacticum and Magnetospirillum gryphiswaldense showed N2-dependent growth, the first anaerobically with Fe(lll) as the electron acceptor, and the latter three species micro-aerobically in semi-solid oxygen gradient cultures. Cells of the Magnetospirillum species grown with N2 under microaerobic conditions were magnetotactic and therefore produced magnetosomes. Cells of Geobacter metallireducens reduced acetylene to ethylene (11.5 ?? 5.9nmol C2H4 produced min-1 mg-1 cell protein) while growing with Fe(lll) as the electron acceptor in anaerobic growth medium lacking a fixed nitrogen source. Cells of the Magnetospirillum species, grown in a semi-solid oxygen gradient medium, also reduced acetylene at comparable rates. Uncut chromosomal and fragments from endonuclease-digested chromosomal DNA from these species, as well as Geobacter sulphurreducens organisms, hybridized with a nifHDK probe from Rhodospirillum rubrum, indicating the presence of these nitrogenase structural genes in these organisms. The evidence presented here shows that members of the metal-metabolizing genera, Geobacter and Magnetospirillum, fix atmospheric dinitrogen.

  13. Comparison of acridine orange and Gram stains for detection of microorganisms in cerebrospinal fluid and other clinical specimens.

    PubMed Central

    Lauer, B A; Reller, L B; Mirrett, S

    1981-01-01

    Acridine orange, a fluorochrome strain, is potentially superior to the Gram stain in the direct microscopic examination of clinical specimens because it gives striking differential staining between bacteria and background cells and debris. Its value in clinical laboratories was evaluated by testing 209 cerebrospinal fluids and 288 other body fluids, tissues, and exudates by both techniques. Smears were made in duplicate, fixed with methanol, stained, and examined without knowledge of the result of the companion smear or culture. Overall, acridine orange was slightly more sensitive than the Gram stain (acridine orange, 59.9%; Gram stain, 55.8%) and equally specific in detecting microorganisms. One smear was falsely positive by the Gram stain; none was falsely positive by the acridine orange stain. We conclude that acridine orange staining is a sensitive method for screening clinical specimens and reviewing selected specimens that are purulent, but negative by the Gram stain. Bloody fluids, thick exudates, and other normally difficult-to-read specimens were easily and quickly examined. We recommend, however, that positive smears be reexamined with the Gram stain to confirm the result and determine the Gram reaction of the microorganisms. PMID:6168652

  14. Soil biochar amendment shapes the composition of N2O-reducing microbial communities.

    PubMed

    Harter, Johannes; Weigold, Pascal; El-Hadidi, Mohamed; Huson, Daniel H; Kappler, Andreas; Behrens, Sebastian

    2016-08-15

    Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    PubMed

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  16. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms.

    PubMed

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).

  17. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms

    PubMed Central

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs). PMID:22919697

  18. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments

    PubMed Central

    Li, Xi; Zhang, Miaomiao; Liu, Feng; Li, Yong; He, Yang; Zhang, Shunan; Wu, Jinshui

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different waters were treated by M. elatinoides in microcosms for one month. The five waters included tap water (Control), swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two synthetic wastewaters: 200 mg NH4 +-N L−1 (200 NH4 +-N) and 400 mg NH4 +-N L−1 (400 NH4 +-N). The most dramatic changes were in NH4 +-N and total N (TN) concentrations, with average removal rates of 84% and 90%, respectively, in the treatments containing swine wastewater. On days 7, 14, and 28, the dissolved oxygen (DO) increased by 81.8%, 210.4% and 136.5%, respectively, compared with on day 0, in the swine wastewater. The results also showed that the bacterial amoA (AOB) copy numbers in the sediments of the treatments were significantly higher than those of archaeal amoA (AOA) copy numbers (p = 0.015). In addition, the high DO concentrations in swine wastewater responded well to the high abundance of AOB. The AOA and AOB community distributions were positively related with NO3 -N and were negatively related with DO in swine wastewater treatments. In summary, our experimental results suggested that the M. elatinoides purification system could improve the activity of ammonia-oxidizing microorganisms and consequently might contribute to the significant N removal from the swine wastewater. PMID:26444015

  19. The Significance of Myriophyllum elatinoides for Swine Wastewater Treatment: Abundance and Community Structure of Ammonia-Oxidizing Microorganisms in Sediments.

    PubMed

    Li, Xi; Zhang, Miaomiao; Liu, Feng; Li, Yong; He, Yang; Zhang, Shunan; Wu, Jinshui

    2015-01-01

    Myriophyllum elatinoides was reported to effectively treat wastewater by removing nitrogen (N) and phosphorus (P). However, little is known about the abundance and community structure of ammonia-oxidizing microorganisms associated with M. elatinoides purification systems. The objective of this research was to characterize the abundance and community structure of ammonia-oxidizing microorganisms in swine wastewater and determine the main nitrogen removal pathways. In this study, five different waters were treated by M. elatinoides in microcosms for one month. The five waters included tap water (Control), swine wastewater (SW), 50% diluted swine wastewater (50% SW), and two synthetic wastewaters: 200 mg NH4+-N L(-1) (200 NH4+-N) and 400 mg NH4+-N L(-1) (400 NH4+-N). The most dramatic changes were in NH4+-N and total N (TN) concentrations, with average removal rates of 84% and 90%, respectively, in the treatments containing swine wastewater. On days 7, 14, and 28, the dissolved oxygen (DO) increased by 81.8%, 210.4% and 136.5%, respectively, compared with on day 0, in the swine wastewater. The results also showed that the bacterial amoA (AOB) copy numbers in the sediments of the treatments were significantly higher than those of archaeal amoA (AOA) copy numbers (p = 0.015). In addition, the high DO concentrations in swine wastewater responded well to the high abundance of AOB. The AOA and AOB community distributions were positively related with NO3-N and were negatively related with DO in swine wastewater treatments. In summary, our experimental results suggested that the M. elatinoides purification system could improve the activity of ammonia-oxidizing microorganisms and consequently might contribute to the significant N removal from the swine wastewater.

  20. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    PubMed

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  1. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    PubMed

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  2. Ecological occurrence of Gluconacetobacter diazotrophicus and nitrogen-fixing Acetobacteraceae members: their possible role in plant growth promotion.

    PubMed

    Saravanan, V S; Madhaiyan, M; Osborne, Jabez; Thangaraju, M; Sa, T M

    2008-01-01

    Gluconacetobacter diazotrophicus has a long-standing history of bacterial-plant interrelationship as a symbiotic endophyte capable of fixing atmospheric nitrogen. In low nitrogen fertilized sugarcane fields it plays a significant role and its occurrence was realised in most of the sugarcane growing countries. In this mini review, the association of G. diazotrophicus with sugarcane, other crop plants and with various hosts is discussed. The factors affecting survival in the rhizosphere and the putative soil mode of transmission are emphasized. In addition, other N(2)-fixing Acetobacteraceae members, including Gluconacetobacter azotocaptans, Gluconacetobacter johannae and Swaminathania salitolerans, occurring in coffee, corn and rice plants are also covered. Lastly, the plant-growth-promoting traits identified in this group of bacteria, including N(2) fixation, phytohormone synthesis, P and Zn solubilization and biocontrol, are analysed.

  3. 48 CFR 52.243-1 - Changes-Fixed-Price.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Changes-Fixed-Price. 52....243-1 Changes—Fixed-Price. As prescribed in 43.205(e), insert the following clause: Changes—Fixed-Price (AUG 1987) (a) The Contracting Officer may at any time, by written order, and without notice to...

  4. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOEpatents

    Buelter, Thomas [Denver, CO; Meinhold, Peter [Denver, CO; Feldman, Reid M. Renny [San Francisco, CA; Hawkins, Andrew C [Parker, CO; Urano, Jun [Irvine, CA; Bastian, Sabine [Pasadena, CA; Arnold, Frances [La Canada, CA

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  5. Molecular glycopathology by capillary electrophoresis: Analysis of the N-glycome of formalin-fixed paraffin-embedded mouse tissue samples.

    PubMed

    Donczo, Boglarka; Szarka, Mate; Tovari, Jozsef; Ostoros, Gyorgyi; Csanky, Eszter; Guttman, Andras

    2017-06-01

    Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Precise Point Positioning with Partial Ambiguity Fixing.

    PubMed

    Li, Pan; Zhang, Xiaohong

    2015-06-10

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate.

  7. Precise Point Positioning with Partial Ambiguity Fixing

    PubMed Central

    Li, Pan; Zhang, Xiaohong

    2015-01-01

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate. PMID:26067196

  8. COMPLETE REDUCTION OF TELLURITE TO PURE TELLURIUM METAL BY MICROORGANISMS

    PubMed Central

    Tucker, Fayne L.; Walper, John F.; Appleman, Milo Don; Donohue, Jerry

    1962-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John F. Walper, Milo Don Appleman, and Jerry Donohue. Complete reduction of tellurite to pure tellurium metal by microorganisms. J. Bacteriol. 83:1313–1314. 1962—The black precipitate produced in the presence of potassium tellurite by growing cells of Streptococcus faecalis N83 and Corynebacterium diphtheriae was shown, by X-ray diffraction analysis, to consist of metallic tellurium. The metal was not complexed, to any significant degree, with any organic material. PMID:13922991

  9. Genetic diversity of thermoduric spoilage microorganisms of milk from Brazilian dairy farms.

    PubMed

    Ribeiro Júnior, J C; Tamanini, R; de Oliveira, A L M; Alfieri, A A; Beloti, V

    2018-05-16

    When correctly pasteurized, packaged, and stored, milk with low total bacterial counts (TBC) has a longer shelf life. Therefore, microorganisms that resist heat treatments are especially important in the deterioration of pasteurized milk and in its shelf life. The aim of this work was to quantify the thermoduric microorganisms after the pasteurization of refrigerated raw milk samples with low TBC and to identify the diversity of these isolates with proteolytic or lipolytic potential by RFLP analysis. Twenty samples of raw milk were collected in bulk milk tanks shortly after milking in different Brazilian dairy farms and pasteurized. The mean thermoduric count was 3.2 (±4.7) × 10 2 cfu/mL (2.1% of the TBC). Of the 310 colonies obtained, 44.2% showed milk spoilage potential, 32.6% were proteolytic and lipolytic simultaneously, 31% were exclusively proteolytic, and 48 (36.4%) were only lipolytic. Regarding the diversity, 8 genera were observed (Bacillus, Brachybacterium, Enterococcus, Streptococcus, Micrococcus, Kocuria, Paenibacillus, and Macrococcus); there was a predominance of endospore-forming bacteria (50%), and Bacillus licheniformis was the most common (34.1%) species. Considering the RFLP types, it was observed that the possible clonal populations make up the microbiota of different milk samples, but the same milk samples contain microorganisms of a single species with different RFLP types. Thus, even in milk with a high microbiological quality, it is necessary to control the potential milk-deteriorating thermoduric microorganisms to avoid the risk of compromising the shelf life and technological potential of pasteurized milk. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions

    NASA Astrophysics Data System (ADS)

    Lugato, Emanuele; Leip, Adrian; Jones, Arwyn

    2018-03-01

    International initiatives such as the `4 per 1000' are promoting enhanced carbon (C) sequestration in agricultural soils as a way to mitigate greenhouse gas emissions1. However, changes in soil organic C turnover feed back into the nitrogen (N) cycle2, meaning that variation in soil nitrous oxide (N2O) emissions may offset or enhance C sequestration actions3. Here we use a biogeochemistry model on approximately 8,000 soil sampling locations in the European Union4 to quantify the net CO2 equivalent (CO2e) fluxes associated with representative C-mitigating agricultural practices. Practices based on integrated crop residue retention and lower soil disturbance are found to not increase N2O emissions as long as C accumulation continues (until around 2040), thereafter leading to a moderate C sequestration offset mostly below 47% by 2100. The introduction of N-fixing cover crops allowed higher C accumulation over the initial 20 years, but this gain was progressively offset by higher N2O emissions over time. By 2060, around half of the sites became a net source of greenhouse gases. We conclude that significant CO2 mitigation can be achieved in the initial 20-30 years of any C management scheme, but after that N inputs should be controlled through appropriate management.

  11. Antimicrobial activity of jasmine oil against oral microorganisms

    NASA Astrophysics Data System (ADS)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  12. Periodontal Microorganisms and Cardiovascular Risk Markers in Youth With Type 1 Diabetes and Without Diabetes.

    PubMed

    Merchant, Anwar T; Nahhas, Georges J; Wadwa, R Paul; Zhang, Jiajia; Tang, Yifan; Johnson, Lonnie R; Maahs, David M; Bishop, Franziska; Teles, Ricardo; Morrato, Elaine H

    2016-04-01

    A subset of periodontal microorganisms has been associated with cardiovascular disease (CVD), which is the leading complication of type 1 diabetes (t1DM). The authors therefore evaluated the association between periodontal microorganism groups and early markers of CVD in youth with t1DM. A cross-sectional analysis was conducted among youth aged 12 to 19 years at enrollment; 105 had t1DM for ≥5 years and were seeking care at the Barbara Davis Center, University of Colorado, from 2009 to 2011, and 71 did not have diabetes. Subgingival plaque samples were assessed for counts of 41 periodontal microorganisms using DNA-DNA hybridization. Microorganisms were classified using cluster analysis into four groups named red-orange, orange-green, blue/other, and yellow/other, modified from Socransky's color scheme for periodontal microorganisms. Subsamples (54 with t1DM and 48 without diabetes) also received a periodontal examination at the University of Colorado School of Dental Medicine. Participants were ≈15 years old on average, and 74% were white. Mean periodontal probing depth was 2 mm (SE 0.02), and 17% had bleeding on probing. In multivariable analyses, glycated hemoglobin (HbA1c) was inversely associated with the yellow/other cluster (microorganisms that are not associated with periodontal disease) among youth with t1DM. Blood pressure, triglycerides, low-density lipoprotein, high-density lipoprotein, and total cholesterol were not associated with microorganism clusters in this group. HbA1c was not associated with periodontal microorganism clusters among youth without diabetes. Among youth with t1DM who had good oral health, periodontal microorganisms were not associated with CVD risk factors.

  13. The plastic-associated microorganisms of the North Pacific Gyre.

    PubMed

    Carson, Henry S; Nerheim, Magnus S; Carroll, Katherine A; Eriksen, Marcus

    2013-10-15

    Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm(-2)) and pennate diatoms (1097 ± 154 mm(-2)) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  15. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2008-01-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate

  16. Comparison of Adjustable and Fixed Oral Appliances for the Treatment of Obstructive Sleep Apnea

    PubMed Central

    Lettieri, Christopher J.; Paolino, Nathalie; Eliasson, Arn H.; Shah, Anita A.; Holley, Aaron B.

    2011-01-01

    Study Objectives: To compare the efficacy of adjustable and fixed oral appliances for the treatment of OSA. Methods: Retrospective review of consecutive patients with OSA treated with either adjustable or fixed oral appliances. Polysomnography was conducted before and during therapy. Effective treatment was defined as an apnea-hypopnea index (AHI) < 5 events/h or < 10 events/h with resolution of sleepiness (Epworth < 10). We compared efficacy rates between fixed and adjustable appliances and sought to identify factors associated with greater success. Results: We included 805 patients, 602 (74.8%) treated with an adjustable and 203 (25.2%) a fixed oral appliances. Among the cohort, 86.4% were men; mean age was 41.3 ± 9.2 years. Mean AHI was 30.7 ± 25.6, with 34.1% having mild (AHI 5-14.9), 29.2% moderate (AHI 15-29.9), and 36.8% severe (AHI ≥ 30) OSA. Successful therapy was significantly more common with adjustable appliances. Obstructive events were reduced to < 5/h in 56.8% with adjustable compared to 47.0% with fixed appliances (p = 0.02). Similarly, a reduction of events to < 10 with resolution of sleepiness occurred in 66.4% with adjustable appliances versus 44.9% with fixed appliances (p < 0.001). For both devices, success was more common in younger patients, with lower BMI and less severe disease. Conclusions: Adjustable devices produced greater reductions in obstructive events and were more likely to provide successful therapy, especially in moderate-severe OSA. Fixed appliances were effective in mild disease, but were less successful in those with higher AHIs. Given these findings, the baseline AHI should be considered when selecting the type of oral appliance. Citation: Lettieri CJ; Paolino N; Eliasson AH; Shah AA; Holley AB. Comparison of adjustable and fixed oral appliances for the treatment of obstructive sleep apnea. J Clin Sleep Med 2011;7(5):439-445. PMID:22003337

  17. Infrared spectra of seeded hydrogen clusters: (para-H2)N-N2O and (ortho-H2)N-N2O, N = 2-13.

    PubMed

    Tang, Jian; McKellar, A R W

    2005-09-15

    High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.

  18. Comparison of long-term safety of fixed-dose combinations azilsartan medoxomil/chlorthalidone vs olmesartan medoxomil/hydrochlorothiazide.

    PubMed

    Neutel, Joel M; Cushman, William C; Lloyd, Eric; Barger, Bruce; Handley, Alison

    2017-09-01

    This 52-week, randomized, open-label study evaluated long-term safety/tolerability of fixed-dose combination azilsartan medoxomil/chlorthalidone (AZL-M/CLD) vs fixed-dose combination olmesartan medoxomil/hydrochlorothiazide (OLM/HCTZ) in patients with essential hypertension (stage 2; clinic systolic blood pressure 160-190 mm Hg). Initial AZL-M/CLD 40/12.5 mg/d (n=418) or OLM/HCTZ 20/12.5 mg/d (n=419) could be uptitrated during weeks 4 to 52 (AZL-M/CLD to 80/25 mg; OLM/HCTZ to 40/25 mg [United States] or 20/25 mg [Europe]) to meet blood pressure targets. Treatment-emergent adverse events/serious adverse events occurred in 78.5%/5.7% of patients taking AZL-M/CLD vs 76.4%/6.2% taking OLM/HCTZ. The most frequent adverse events were dizziness (16.3% vs 12.6%), blood creatinine increase (21.5% vs 8.6%), headache (7.4% vs 11.0%), and nasopharyngitis (12.2% vs 11.5%). Hypokalemia was uncommon (1.0% vs 0.7%). Greater blood pressure reductions with AZL-M/CLD by week 2 were maintained throughout the study, despite less uptitration (32.3% vs 48.9% with OLM/HCTZ). Fixed-dose combination AZL-M/CLD showed an encouraging benefit-risk profile when used per standard clinical practice in a titrate-to-target strategy. ©2017 Wiley Periodicals, Inc.

  19. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  20. Microorganism Utilization for Synthetic Milk Production

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina Louise; Spencer, LaShelle E.; Richards, Jeffrey T.; Strayer, Richard F.; Caro, Janicce; Hummerick, Mary; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products.

  1. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice.

    PubMed

    Crudele, Julie M; Finn, Jonathan D; Siner, Joshua I; Martin, Nicholas B; Niemeyer, Glenn P; Zhou, Shangzhen; Mingozzi, Federico; Lothrop, Clinton D; Arruda, Valder R

    2015-03-05

    Emerging successful clinical data on gene therapy using adeno-associated viral (AAV) vector for hemophilia B (HB) showed that the risk of cellular immune response to vector capsid is clearly dose dependent. To decrease the vector dose, we explored AAV-8 (1-3 × 10(12) vg/kg) encoding a hyperfunctional factor IX (FIX-Padua, arginine 338 to leucine) in FIX inhibitor-prone HB dogs. Two naïve HB dogs showed sustained expression of FIX-Padua with an 8- to 12-fold increased specific activity reaching 25% to 40% activity without antibody formation to FIX. A third dog with preexisting FIX inhibitors exhibited a transient anamnestic response (5 Bethesda units) at 2 weeks after vector delivery following by spontaneous eradication of the antibody to FIX by day 70. In this dog, sustained FIX expression reached ∼200% and 30% of activity and antigen levels, respectively. Immune tolerance was confirmed in all dogs after challenges with plasma-derived FIX concentrate. Shortening of the clotting times and lack of bleeding episodes support the phenotypic correction of the severe phenotype, with no clinical or laboratory evidence of risk of thrombosis. Provocative studies in mice showed that FIX-Padua exhibits similar immunogenicity and thrombogenicity compared with FIX wild type. Collectively, these data support the potential translation of gene-based strategies using FIX-Padua for HB. © 2015 by The American Society of Hematology.

  2. Mobile Versus Fixed Facility: Latinas' Attitudes and Preferences for Obtaining a Mammogram.

    PubMed

    Scheel, John R; Tillack, Allison A; Mercer, Lauren; Coronado, Gloria D; Beresford, Shirley A A; Molina, Yamile; Thompson, Beti

    2018-01-01

    Mobile mammographic services have been proposed as a way to reduce Latinas' disproportionate late-stage presentation compared with white women by increasing their access to mammography. The aims of this study were to assess why Latinas may not use mobile mammographic services and to explore their preferences after using these services. Using a mixed-methods approach, a secondary analysis was conducted of baseline survey data (n = 538) from a randomized controlled trial to improve screening mammography rates among Latinas in Washington. Descriptive statistics and bivariate regression were used to characterize mammography location preferences and to test for associations with sociodemographic indices, health care access, and perceived breast cancer risk and beliefs. On the basis of these findings, a qualitative study (n = 18) was used to explore changes in perceptions after using mobile mammographic services. More Latinas preferred obtaining a mammogram at a fixed facility (52.3% [n = 276]) compared with having no preference (46.3% [n = 249]) and preferring mobile mammographic services (1.7% [n = 9]). Concerns about privacy and comfort (15.6% [n = 84]) and about general quality (10.6% [n = 57]) were common reasons for preferring a fixed facility. Those with no history of mammography preferred a fixed facility (P < .05). In the qualitative study, Latinas expressed similar initial concerns but became positive toward the mobile mammographic services after obtaining a mammogram. Although most Latinas preferred obtaining a mammogram at a fixed facility, positive experiences with mobile mammography services changed their attitudes toward them. These findings highlight the need to include community education when using mobile mammographic service to increase screening mammography rates in underserved communities. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Evaluating the efficiency of humic acid to remove micro-organisms from denture base material.

    PubMed

    Meriç, Gökçe; Güvenir, Meryem; Süer, Kaya

    2016-09-01

    To evaluate the efficiency of humic acid substances on removing micro-organisms from denture base materials. Old denture wearer needs effective, easy-use and safe denture-cleaning material. Square-shaped, heat-polymerised acrylic resin specimens (n = 550) were prepared and divided into five groups (n = 110 for each) corresponding to the microbial contamination (Candida albicans, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Pseudomonas aeruginosa). Contaminated specimens were randomly assigned to the application of five different denture-cleaning agents as follows (n = 20 for each): Kloroben, Corsodyl, Steradent, Corega, experimental solution with humic acid. Ten specimens were assessed as an experimental control carried out simultaneously for the treatment groups for each micro-organism. It was divided into two groups: negative control and positive control (n = 5 for each). All acrylic specimens were incubated 37°C for 24 h (for bacterial strains) and 37°C for 48 h (for yeast strains). After incubation period, all brain-heart infusion broths (BHI) which contain disinfectant acrylic specimens were cultured on 5% sheep blood agar (for bacteria) and Sabouraud dextrose agar (SDA) for yeast using loop. The numbers of colony-forming units per millilitre (CFU/ml) were calculated. The results were analysed by Mann-Whitney U-test and Kruskal-Wallis tests (p = 0.05). Corsodyl and Kloroben completely eliminated the adherence of all investigated micro-organisms (100%) and showed the highest removal activity compared with other cleaning agents (p < 0.05). There was no statistically significant difference between Corsodyl and Kloroben (p ≥ 0.05), and there was no statistically significant difference between Corega, Steradent and experimental solution (p ≥ 0.05). Humic acid could be used as an alternative 'natural' solution for denture-cleaning agent. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley

  4. An Alternative Approach to "Identification of Unknowns": Designing a Protocol to Verify the Identities of Nitrogen Fixing Bacteria.

    PubMed

    Martinez-Vaz, Betsy M; Denny, Roxanne; Young, Nevin D; Sadowsky, Michael J

    2015-12-01

    Microbiology courses often include a laboratory activity on the identification of unknown microbes. This activity consists of providing students with microbial cultures and running biochemical assays to identify the organisms. This approach lacks molecular techniques such as sequencing of genes encoding 16S rRNA, which is currently the method of choice for identification of unknown bacteria. A laboratory activity was developed to teach students how to identify microorganisms using 16S rRNA polymerase chain reaction (PCR) and validate microbial identities using biochemical techniques. We hypothesized that designing an experimental protocol to confirm the identity of a bacterium would improve students' knowledge of microbial identification techniques and the physiological characteristics of bacterial species. Nitrogen-fixing bacteria were isolated from the root nodules of Medicago truncatula and prepared for 16S rRNA PCR analysis. Once DNA sequencing revealed the identity of the organisms, the students designed experimental protocols to verify the identity of rhizobia. An assessment was conducted by analyzing pre- and posttest scores and by grading students' verification protocols and presentations. Posttest scores were higher than pretest scores at or below p = 0.001. Normalized learning gains (G) showed an improvement of students' knowledge of microbial identification methods (LO4, G = 0.46), biochemical properties of nitrogen-fixing bacteria (LO3, G = 0.45), and the events leading to the establishment of nitrogen-fixing symbioses (LO1&2, G = 0.51, G = 0.37). An evaluation of verification protocols also showed significant improvement with a p value of less than 0.001.

  5. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment

    PubMed Central

    Li, Xuan; Kappler, Ulrike; Jiang, Guangming; Bond, Philip L.

    2017-01-01

    Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching. PMID:28473816

  6. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment.

    PubMed

    Li, Xuan; Kappler, Ulrike; Jiang, Guangming; Bond, Philip L

    2017-01-01

    Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11-10 (pristine concrete) to pH 2-4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H 2 S levels in the sewer gas phase, although CO 2 , organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.

  7. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007

    EPA Science Inventory

    Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in ...

  8. MICROORGANISMS DIE-OFF RATES IN URBAN STORMWATER RUNOFF 2007

    EPA Science Inventory

    Stormwater best management practices (BMPs) are often considered effective tools to mitigate the effects of stormwater pollutants before they are discharged to receiving waters. However, BMP performance for microorganisms removal is not well documented. Microorganisms die-off in...

  9. Microbial genome-enabled insights into plant-microorganism interactions.

    PubMed

    Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul

    2014-12-01

    Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

  10. Workshop on Spaceflight Alterations in Host-Microorganism Interactions

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark

    2010-01-01

    On June 11, 2009, a workshop that included internal and external experts was convened to determine the risk of changes in microorganisms that could alter host-microorganism interactions during a mission. The evidence is based in part on multiple flight experiments which indicate altered virulence in Salmonella typhimurium when cultured in flight. The workshop participants were tasked to determine if adequate information was available to initiate changes in NASA's current approach to infectious disease risk assessment and medical operations. The consensus of the participants is that the current evidence was not adequate to provide direction for operational changes; however, the evidence is compelling and clearly indicates that changes to microorganisms were occurring during spaceflight and further research is required.

  11. Failure Rates of Orthodontic Fixed Lingual Retainers bonded with Two Flowable Light-cured Adhesives: A Comparative Prospective Clinical Trial.

    PubMed

    Talic, Nabeel F

    2016-08-01

    This comparative prospective randomized clinical trial examined the in vivo failure rates of fixed mandibular and maxillary lingual retainers bonded with two light-cured flowable composites over 6 months. Consecutive patients were divided into two groups on a 1:1 basis. Two hundred fixed lingual retainers were included, and their failures were followed for 6 months. One group (n = 50) received retainers bonded with a nano-hybrid composite based on nano-optimized technology (Tetric-N-Flow, Ivoclar Vivadent). Another group (n = 50) received retainers bonded with a low viscosity (LV) composite (Transbond Supreme LV, 3M Unitek). There was no significant difference between the overall failure rates of mandibular retainers bonded with Transbond (8%) and those bonded with Tetric-N-Flow (18%). However, the odds ratio for failure using Tetric-N-flow was 2.52-fold greater than that of Transbond. The failure rate of maxillary retainers bonded with Transbond was higher (14%), but not significantly different, than that of maxillary retainers bonded with Tetric-N-flow (10%). There was no significant difference in the estimated mean survival times of the maxillary and mandibular retainers bonded with the two composites. Both types of composites tested in the current study can be used to bond fixed maxillary and mandibular lingual retainers, with low failure rates.

  12. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.

    PubMed Central

    Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico

    2016-01-01

    ABSTRACT The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe2+ ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis. PMID:26645909

  13. Competition between roots and microorganisms for phosphorus: A novel 33P labeling approach

    NASA Astrophysics Data System (ADS)

    Zilla, Thomas; Kuzyakov, Yakov; Zavišiæ, Aljoša; Polle, Andrea

    2015-04-01

    While organic N mineralization exhibits clear seasonal uptake dynamics, knowledge about seasonal variation in microbial P uptake and mineralization is scarce. We hypothesize that the dynamics of P uptake and mineralization by microorganisms in temperate forest soils exhibit a seasonality anti-cyclic to plant P uptake. Therefore, the ratio of microbial P to labile P increases by the transition from acquiring ecosystems (in spring) to recycling ones (in fall). To investigate this, intact soil-plant mesocosms containing Ah horizon with 1 year old F. sylvatica were removed from the P-rich field site Bad Brueckenau and the P-depleted field site Luess in Germany. During incubation under controlled conditions, seasonal pulse labeling by 33P-orthophosphate was performed at 5 time points over the course of one year. 33P recovery in microbial compounds of organic and mineral soil horizons was determined 7 and 30 days after the labeling. This procedure will account for temporal changes in P allocation and also considers the rather slow P transport from the mycorrhiza into the plants and other microorganisms. For the first time we analyzed the 33P incorporation into total PLFA and consequently provide a new technique for the analysis of P uptake by microorganisms, which has clear advantages compared to P quantification after chloroform fumigation. Polar lipids are hereby extracted with a Frostegård-modified Bligh-and-Dyer buffer, i.e. a single phase mixture of chloroform, methanol and citrate buffer (0.8:1:2, v:v:v). Phospholipids (PLFA) are isolated and purified by solid phase extraction via a silica gel column chromatography. Subsequently, PLFA are hydrolyzed and the resulting fatty acids derivatized by methylation. The fatty acid methyl esters were extracted with n-hexane and measured by GC/MS to investigate the composition of the microbial community. The remaining extract, containing head groups, phosphate units and glycerol backbones, was used to determine 33P activity

  14. Acetolactate metabolism and the presence of a dehydroxy acid dehydratase in micro-organisms

    PubMed Central

    Wixom, R. L.

    1965-01-01

    1. The growth characteristics of nine micro-organisms on complex broth and defined media, usually with a single nitrogen source (other than vitamins), were examined as a necessary step before growth of cells for enzyme assays. Six of these bacteria gave a positive colour test with a creatine–potassium hydroxide reagent, indicating the presence of acetoin, which other investigators have shown is formed via the intermediate, α-acetolactate. 2. Cell-free extracts of exponential-phase cells of Bacillus subtilis, Staphylococcus aureus, Proteus morganii, Acetobacter rancens (two strains), A. kuetzingianus, A. acetosus, Acetomonas (Acetobacter) melanogenus and Acetomonas (Acetobacter) suboxydans (A.T.C.C. no. 621) were found to contain the enzyme, dihydroxy acid dehydratase (2,3-dihydroxy acid hydro-lyase). 3. The specific activity of the dehydratase from organisms grown on valine- and isoleucine-deficient media was greater than those grown on a complex broth or media containing complete amino acid mixtures. The omission of valine plus isoleucine from a medium containing 19 amino acids caused an increase in the dehydratase specific activity of Staphylococcus aureus and Proteus morganii. 4. The rate of keto acid formation from αβ-dihydroxyisovalerate by extracts of six of the above-named organisms was faster than, but somewhat proportional to, the similar rate from αβ-dihydroxy-β-methyl-n-valerate as substrate. 5. These findings may be related to acetolactate synthesis, acetoin formation and valine–isoleucine biosynthesis in the above-mentioned micro-organisms. PMID:14348203

  15. Investigation to identify paint coatings resistive to microorganism growth

    NASA Technical Reports Server (NTRS)

    Cooper, C. W.; Kemp, H. T.

    1971-01-01

    All selected coatings contain nutrients that support microbial growth and survival. Incorporation of microbiocidal agents into coatings more susceptible to attack is recommended for improved inhibition of microorganism growth and for increased protection against deterioration of coatings by microorganisms.

  16. Quantifying the contribution of single microbial cells to nitrogen assimilation in aquatic environments

    NASA Astrophysics Data System (ADS)

    Musat, N.; Kuypers, M. M. M.

    2009-04-01

    Nitrogen is a primary productivity-limiting nutrient in the ocean. The nitrogen limitation of productivity may be overcome by organisms capable of converting dissolved N2 into fixed nitrogen available to the ecosystem. In many oceanic regions, growth of phytoplankton is nitrogen limited because fixation of N2 cannot make up for the removal of fixed inorganic nitrogen (NH4+, NO2-, NO3-) by anaerobic microbial processes. The amount of available fixed nitrogen in the ocean can be changed by the biological processes of heterotrophic denitrification, anaerobic ammonium oxidation and nitrogen fixation. For a complete understanding of nitrogen cycling in the ocean a link between the microbial and biogeochemical processes at the single cell level and their role in global biogeochemical cycles is essential. Here we report a recently developed method, Halogen In Situ Hybridization-Secondary Ion Mass Spectroscopy (HISH-SIMS) and its potential application to study the nitrogen-cycle processes in the ocean. The method allows simultaneous phylogenetic identification and quantitation of metabolic activities of single microbial cells in the environment. It uses horseradish-peroxidase-labeled oligonucleotide probes and fluorine-containing tyramides for the identification of microorganisms in combination with stable-isotope-labeling experiments for analyzing the metabolic function of single microbial cells. HISH-SIMS was successfully used to study nitrogen assimilation and nitrogen fixation by anaerobic phototrophs in a meromictic alpine lake. The HISH-SIMS method enables studies of the ecophysiology of individual, phylogenetically identified microorganisms involved in the N-cycle and allows us to track the flow of nitrogen within microbial communities.

  17. Therapeutic effect of Linum usitatissimum (flaxseed/linseed) fixed oil on acute and chronic arthritic models in albino rats.

    PubMed

    Kaithwas, Gaurav; Majumdar, Dipak K

    2010-06-01

    The present study was undertaken to assess the activity/anti-inflammatory potential of Linum usitatissimum fixed oil against castor oil-induced diarrhoea, turpentine oil-induced joint oedema, formaldehyde and Complete Freund's Adjuvant (CFA)-induced arthritis in Wistar albino rats. The oil intraperitoneally, significantly inhibited the castor oil-induced diarrhoea and turpentine oil-induced exudative joint oedema in a dose-dependent manner. Significant inhibitory effect of L. usitatissimum fixed oil was observed in formaldehyde-induced proliferative global oedematous arthritis when given intraperitoneally, with significant checking of the serum glutamic oxaloacetic acid transaminase and serum glutamic pyruvic acid transaminase. Further, L. usitatissimum fixed oil showed a significant dose-dependent protective effect against CFA-induced arthritis as well. Secondary lesions produced by CFA due to a delayed hypersensitivity reaction were also reduced in a significant manner. Anti-inflammatory activity of L. usitatissimum fixed oil can be attributed to the presence of alpha linolenic acid (57.38%, an omega-3 fatty acid, 18:3, n-3) having dual inhibitory effect on arachidonate metabolism resulting in suppressed production of proinflammatory n-6 eicosanoids (PGE(2), LTB(4)) and diminished vascular permeability. These observations suggest possible therapeutic potential of L. usitatissimum fixed oil in inflammatory disorders like rheumatoid arthritis.

  18. Bio-ISRU Concepts using microorganisms to release O2 and H2 on Moon and Mars

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus; Kempf, Juergen

    Since space exploration missions begun, numerous spacecrafts were sent to space for examina-tion of other planets. One limiting factor of the endurance of such missions is the unlasting energy supply to run devices and motors of the space crafts as well as for locally habitats. The high weight and volume of fuels makes embedding of local resources necessary to allow ex-tension to long term missions. Nature demonstrates how to survive in extreme environments. Some more adapted microorganisms like Chlamydomonas reinhardii even release elementary hydrogen from water under special nutrition which might be used to run fuel cells and provide electric energy. The same organism release oxygen by photosysthesis under standard nutrition, the counterpart of hydrogen to operate fuel cells. Planets of interest are covered by potential toxic soil called "Regolith". Lunar regolith is known to be extremely aggressive and inhibit cells grows not only due to its sharp edges. First studies on lunar soil simulant tolerance of Chl.reinhardii have shown promising results. The single cells surround the substrate without any negative influence. A 3-dimensional tissue like matrix was build by the proliferating now adhering micro algae cells and the substrate. The photosynthesis rate was not negatively in-fluenced by the soil. This enables Chl.reinhardii to become a first settler organism of the lunar surface. Maybe a first step of terraforming to allow the growth of higher organisms. Lunar soil regolith consists of several components. Especially in minerals bound oxygen plays an out-standing role for industrial use. Some microorganisms of the proteobacteria type are reducing ferroxides to gain oxygen under anaerobic conditions while they produce electric energy simul-taneously. For a faster electron transfer the Shewanella bacteria built filamentous nanowire-like structures to connect one cell to the other. A bioreactor hosting specific microorganism might be run to provide oxygen to the

  19. Effects of Eriophorum vaginatum on N_{2}O emissions at a restored peatland

    NASA Astrophysics Data System (ADS)

    Brummell, Martin; Lazcano, Cristina; Strack, Maria

    2016-04-01

    Restoration of peatlands extracted for horticultural peat production includes both deliberate and accidental introduction of a wide range of plant species, including vascular plants and bryophytes. The roots of vascular plants provide a channel for the movement of greenhouse gases (GHG) including N2O in many soil ecosystems, and may stimulate production of N2O or have other effects via the release of root exudates that are then taken up by soil microorganisms such as heterotrophic denitrifiers. Here we carried out a field study in order to evaluate the effects of Eriophorum vaginatum, an abundant sedge at the harvested peatland at Seba Beach, Alberta, Canada, (53° 27'17.2"N 114° 52'52.0"W) where restoration efforts began in late 2012, and is the dominant ground cover in some areas. We hypothesized that E. vaginatum would increase net N2O production from peat compared to areas of bare peat or moss. We measured net GHG exchange for CO2, CH4, and N2O over one growing season (May-September 2015) using static chambers within this peatland to compare between plots containing E. vaginatum and plots lacking vascular plants. Plots were located along a transect of increasing water table, in order to discriminate between the effects of E. vaginatum and the prevailing hydrological conditions on N2O fluxes. Net fluxes of N2O from the peat to the atmosphere were observed throughout the experimental area, as well as fluxes in the opposite direction, in which the peat removed N2O from the atmosphere inside the chamber. Non-zero fluxes were highly variable in both occurrence and magnitude, though a small number of plots accounted for the majority of measured fluxes. Neither aboveground biomass of E. vaginatum nor its presence in a plot was correlated with either frequency or direction of N2O flux measurements. Other factors, such as water table fluctuations and temperature may be stronger drivers of these microbially-mediated processes than vegetation at this stage of the

  20. Seeking fixed points in multiple coupling scalar theories in the ɛ expansion

    NASA Astrophysics Data System (ADS)

    Osborn, Hugh; Stergiou, Andreas

    2018-05-01

    Fixed points for scalar theories in 4 - ɛ, 6 - ɛ and 3 - ɛ dimensions are discussed. It is shown how a large range of known fixed points for the four dimensional case can be obtained by using a general framework with two couplings. The original maximal symmetry, O( N), is broken to various subgroups, both discrete and continuous. A similar discussion is applied to the six dimensional case. Perturbative applications of the a-theorem are used to help classify potential fixed points. At lowest order in the ɛ-expansion it is shown that at fixed points there is a lower bound for a which is saturated at bifurcation points.

  1. Synthesis, characterization and antimicrobial activity of novel platinum(IV) and palladium(II) complexes with meso-1,2-diphenyl-ethylenediamine-N,N‧-di-3-propanoic acid - Crystal structure of H2-1,2-dpheddp·2HCl·H2O

    NASA Astrophysics Data System (ADS)

    Radić, Gordana P.; Glođović, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Garcia-Granda, Santiago; Roces, Laura; Menéndez-Taboada, Laura; Radojević, Ivana D.; Stefanović, Olgica D.; Čomić, Ljiljana R.; Trifunović, Srećko R.

    2012-12-01

    In the reaction of meso-1,2-diphenyl-ethylenediamine (1,2-dphen) with neutralized 3-chlor-propanoic acid, the new linear tetradentate edda-like ligand (edda = ethylenediamine-N,N'-diacetic ion) meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoic acid dihydrochloride monohydrate (H2-1,2-dpheddp·2HCl·H2O) was prepared. The corresponding platinum(IV) complex, s-cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-platinum(IV) ([PtCl2(1,2-dpheddp)]) was synthesized by heating potassium-hexachloridoplatinate(IV) and H2-1,2-dpheddp·2HCl·H2O on steam bath for 12 h with neutralization by means of lithium-hydroxide. The palladium(II) complex, cis-dichlorido-(meso-1,2-diphenyl-ethylenediamine-N,N'-di-3-propanoate)-palladium(II) ([PdCl2(1,2-dpheddp)]) was obtained in the similar way using potassium-tetrachloridopalladate(II), H2-1,2-dpheddp·2HCl·H2O and lithium-hydroxide. The compounds were characterized by elemental analysis and infrared spectroscopy. The spectroscopically predicted structure of the synthesized tetradentate ligand was confirmed by X-ray analysis of the H2-1,2-dpheddp·2HCl·H2O. Antimicrobial activity of the ligand and corresponding palladium(II) and platinum(IV) complexes is investigated against 25 species of microorganisms. Testing is preformed by microdilution method and minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) have been determined. The difference between antimicrobial activity of the ligand and corresponding platinum(IV) and palladium(II) complex is noticed and, in general, palladium(II) complex was the most active.

  2. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens

    NASA Astrophysics Data System (ADS)

    Akiyama, Hiroko; Hoshino, Yuko Takada; Itakura, Manabu; Shimomura, Yumi; Wang, Yong; Yamamoto, Akinori; Tago, Kanako; Nakajima, Yasuhiro; Minamisawa, Kiwamu; Hayatsu, Masahito

    2016-09-01

    Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens. Here, we show that N2O emission can be reduced at the field scale by inoculation with a mixed culture of indigenous nosZ+ strains of B. diazoefficiens USDA110 group isolated from Japanese agricultural fields. Our results also suggested that nodule nitrogen is the main source of N2O production during nodule decomposition. Isolating nosZ+ strains from local soybean fields would be more applicable and feasible for many soybean-producing countries than generating mutants.

  3. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens

    PubMed Central

    Akiyama, Hiroko; Hoshino, Yuko Takada; Itakura, Manabu; Shimomura, Yumi; Wang, Yong; Yamamoto, Akinori; Tago, Kanako; Nakajima, Yasuhiro; Minamisawa, Kiwamu; Hayatsu, Masahito

    2016-01-01

    Agricultural soil is the largest source of nitrous oxide (N2O), a greenhouse gas. Soybean is an important leguminous crop worldwide. Soybean hosts symbiotic nitrogen-fixing soil bacteria (rhizobia) in root nodules. In soybean ecosystems, N2O emissions often increase during decomposition of the root nodules. Our previous study showed that N2O reductase can be used to mitigate N2O emission from soybean fields during nodule decomposition by inoculation with nosZ++ strains [mutants with increased N2O reductase (N2OR) activity] of Bradyrhizobium diazoefficiens. Here, we show that N2O emission can be reduced at the field scale by inoculation with a mixed culture of indigenous nosZ+ strains of B. diazoefficiens USDA110 group isolated from Japanese agricultural fields. Our results also suggested that nodule nitrogen is the main source of N2O production during nodule decomposition. Isolating nosZ+ strains from local soybean fields would be more applicable and feasible for many soybean-producing countries than generating mutants. PMID:27633524

  4. A spectrophotometric screening method for avermectin oxidizing microorganisms.

    PubMed

    Wang, Yuan-Shan; Hu, Qi-Wei; Zheng, Xing-Chang; Zhang, Jian-Fen; Zheng, Yu-Guo

    2017-04-01

    A spectrophotometric screening method for avermectin oxidizing microbes by determination of 4″-oxo-avermectin was established based on the reaction between 4″-oxo-avermectin and 2,4-dinitrophenylhydrazine. Combined with a gradient HPLC assay, microorganisms capable of regioselectively oxidizing avermectin to 4″-oxo-avermectin were successfully obtained by this method. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High-Throughput Sequencing and Copy Number Variation Detection Using Formalin Fixed Embedded Tissue in Metastatic Gastric Cancer

    PubMed Central

    Hong, Min Eui; Do, In-Gu; Kang, So Young; Ha, Sang Yun; Kim, Seung Tae; Park, Se Hoon; Kang, Won Ki; Choi, Min-Gew; Lee, Jun Ho; Sohn, Tae Sung; Bae, Jae Moon; Kim, Sung; Kim, Duk-Hwan; Kim, Kyoung-Mee

    2014-01-01

    In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%), APC (10.1%), PIK3CA (5.6%), KRAS (4.5%), SMO (3.4%), STK11 (3.4%), CDKN2A (3.4%) and SMAD4 (3.4%). Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%), 4 (4.5%), 2 (2.2%), 1 (1.1%) and 1 (1.1%) cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes. PMID:25372287

  6. Microorganism Utilization for Synthetic Milk

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  7. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  8. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  9. Three-Dimensional Viscous Flow Analysis for Moving Bodies Past Fixed Structures

    DTIC Science & Technology

    1988-05-13

    BELLEVUE, WA 98n)05 Research Triangle Park, UC 27709-2211 6Sý. NAME Of FUNDING I PONSORING O Ib. C’FFICE SYMBOL 9 . PROCUREMENT INSTRUMENT IPENTIFICATION...34 otheor sditico Grs IMa ý; pl S- Three- Dimvensio:.iýal Viscrous Flow Analysis for Moving Bodies Past Fixed Structures Fina.11Report, Kelton M. Peery and...Recommendations 40 List of Figures 1 Finite-Volume Mesh ......... ......................... 8 2 Finite-Volume Cell ....... ............................ 9 3

  10. Intralaryngeal thyroarytaenoid lateralisation using the Fast-Fix 360 system: a canine cadaveric study.

    PubMed

    Stegen, Ludo; Kitshoff, Adriaan M; Van Goethem, Bart; Vandekerckhove, Peter; de Rooster, Hilde

    2015-01-01

    Laryngeal paralysis is a condition in which failure of arytaenoid abduction results in a reduced rima glottidis cross-sectional area. The most commonly performed surgical techniques rely on unilateral abduction of the arytaenoid, requiring a lateral or ventral surgical approach to the larynx. The aim of the study was to investigate a novel minimally invasive intralaryngeal thyroarytaenoid lateralisation technique, using the Fast-Fix 360 meniscal repair system. Larynges were harvested from large breed canine cadavers. With the aid of Kirschner wires placed between the centre of the vocal process and the centre of an imaginary line between the cranial thyroid fissure and the cricothyroid articulation, the mean insertion angle was calculated. The Fast-Fix 360 delivery needle inserted intralaryngeally (n=10), according to a simplified insertion angle (70°), resulted in thyroid penetration (>2.5 mm from margin) in all patients. The Fast-Fix was applied unilaterally at 70° with the first toggle fired on the lateral aspect of the thyroid cartilage and inside the laryngeal cavity on retraction. The suture was tightened. Preprocedural (61.06±9.21 mm2) and postprocedural (138.37±26.12 mm2) rima glottidis cross-sectional area was significantly different (P<0.0001). The mean percentage increase in rima glottidis cross-sectional area was 125.96 per cent (±16.54 per cent). Intralaryngeal thyroarytaenoid laterlisation using the Fast-Fix 360 meniscal repair system ex vivo increased the rima glottidis cross-sectional area significantly.

  11. Microorganisms in inorganic chemical analysis.

    PubMed

    Godlewska-Zyłkiewicz, Beata

    2006-01-01

    There are innumerable strains of microbes (bacteria, yeast and fungi) that degrade or transform chemicals and compounds into simpler, safer or less toxic substances. These bioprocesses have been used for centuries in the treatment of municipal wastes, in wine, cheese and bread making, and in bioleaching and metal recovery processes. Recent literature shows that microorganisms can be also used as effective sorbents for solid phase extraction procedures. This review reveals that fundamental nonanalytical studies on the parameters and conditions of biosorption processes and on metal-biomass interactions often result in efficient analytical procedures and biotechnological applications. Some selected examples illustrate the latest developments in the biosorption of metals by microbial biomass, which have opened the door to the application of microorganisms to analyte preconcentration, matrix separation and speciation analysis.

  12. Prevalence of bovine milk pathogens in Azorean pastures: mobile versus fixed milking machines.

    PubMed

    Azevedo, C; Pacheco, D; Soares, L; Moitoso, M; Maldonado, J; Guix, R; Simões, J

    2016-01-01

    The aims of the present study were (1) to evaluate the influence of using mobile (n=47) or fixed (n=45) milking machines in Azorean herds on the apparent prevalence of several milk pathogens in bulk tank milk (BTM) and (2) to determine whether separated subclinical mastitic cows can serve, in real time, as predictors of milk pathogen prevalence for the remaining animals at the herd level. The use of a mobile or fixed milking machine influenced (P≤0.05) the prevalence of Staphylococcus aureus (72.3 per cent; n=34 v 51.1 per cent; n=23, respectively) and Klebsiella species (46.8 per cent; n=22 v 26.7 per cent; n=12, respectively). S aureus (95 per cent CI OR 1.1 to 6.0) and Klebsiella species (95 per cent CI OR 1.0 to 5.8) were 2.5 times more likely to increase in the BTM of herds using mobile milking machines. The prevalence of coagulase-negative staphylococci (100 per cent; n=92), Escherichia coli (75.0 per cent), Corynebacterium bovis (57.6 per cent), Enterococcus species (55.4 per cent), Streptococcus dysgalactiae (51.1 per cent), Streptococcus uberis (41.3 per cent), Actinomyces pyogenes or Peptostreptococcus indolicus (41.3 per cent) and Streptococcus agalactiae (32.6 per cent) in BTM remained similar among the herds. κ coefficients were always <0.70, indicating intra-herd disagreement of the prevalence of milk pathogens between BTM and separated milking cows. Milking hygiene should be improved in pastures, focusing specifically on herds that use a mobile milking machine. The segregated cows at milking time are not good predictors of milk pathogens in BTM.

  13. Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions

    NASA Astrophysics Data System (ADS)

    Hussain, N.

    2008-02-01

    The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.

  14. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    PubMed

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  15. Gingival enlargement in different age groups during fixed Orthodontic treatment

    PubMed Central

    Eid, Hossam A; Assiri, Hassan Ahmed M; Kandyala, Reena; Togoo, Rafi A; Turakhia, Viral S

    2014-01-01

    Background: During fixed orthodontic therapy, adolescents tend to have higher chances of gingivitis and gingival enlargement (GE) compared to adults. A cross sectional study was undertaken to evaluate the above hypothesis, by assessing GE in patients of different age groups receiving fixed orthodontic therapy. Materials & Methods: Patients undergoing orthodontic treatment were selected by simple random sampling from the King Khalid University College of Dentistry out patient’s clinic of preventive dental sciences division to form the study group. Participant’s were divided into three age groups and GE was graded as 0, 1 and 2 as per the classification of the American Academy of Periodontology. Data were analyzed by using IBM SPSS version 16.0 (Statistical Package for Social Services, Chicago, IL, USA) and descriptive statistics were obtained. Differences in proportions were compared using the Chi-square test and the significance level was set at p ≤ 0.05. Results: 62.3% (n=33) were males and 37.7% (n=20) were females. Group 1 had 21 patients (39.7%); Group 2 had 24 patients (45.3%) and Group 3 had 8 patients (15.1%).The highest frequency (48%) of GE was observed among the Group 1 age group (10-19 years). Differences in frequency of GE according to age groups were found to be statistically significant (p=0.046).Differences in GE according to the frequency of practicing oral hygiene measures were statistically significant (p<0.001). Conclusion: Highest frequency of GE was observed among the adolescents. The patients who practiced oral hygiene measures more than three times daily did not have any GE. On the other hand, those who brushed and flossed only once daily had the highest percentage of grade 2 GE. How to cite the article: Eid HA, Assiri HA, Kandyala R, Togoo RA, Turakhia VS. Gingival enlargement in different age groups during fixed Orthodontic treatment. J Int Oral Health 2014;6(1):1-4. PMID:24653595

  16. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes.

    PubMed

    Banik, Avishek; Mukhopadhaya, Subhra Kanti; Dangar, Tushar Kanti

    2016-03-01

    The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ. Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36-155.83 nmole C2H4 mg(-1) dry bacteria h(-1) and among them nitrogenase activity of 11 potent isolates was complemented by nifH-sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95-100 % sequence homology with type strains) belonging to five classes-alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44-7.4 µg ml(-1)), ammonia (0.18-6 mmol ml(-1)), nitrite (0.01-3.4 mol ml(-1)), and siderophore (from 0.16-0.57 μmol ml(-1)) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the

  17. Activation energy of negative fixed charges in thermal ALD Al{sub 2}O{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühnhold-Pospischil, S.; Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg; Freiburg Materials Research Center FMF, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg

    2016-08-08

    A study of the thermally activated negative fixed charges Q{sub tot} and the interface trap densities D{sub it} at the interface between Si and thermal atomic-layer-deposited amorphous Al{sub 2}O{sub 3} layers is presented. The thermal activation of Q{sub tot} and D{sub it} was conducted at annealing temperatures between 220 °C and 500 °C for durations between 3 s and 38 h. The temperature-induced differences in Q{sub tot} and D{sub it} were measured using the characterization method called corona oxide characterization of semiconductors. Their time dependency were fitted using stretched exponential functions, yielding activation energies of E{sub A} = (2.2 ± 0.2) eV and E{submore » A} = (2.3 ± 0.7) eV for Q{sub tot} and D{sub it}, respectively. For annealing temperatures from 350 °C to 500 °C, the changes in Q{sub tot} and D{sub it} were similar for both p- and n-type doped Si samples. In contrast, at 220 °C the charging process was enhanced for p-type samples. Based on the observations described in this contribution, a charging model leading to Q{sub tot} based on an electron hopping process between the silicon and Al{sub 2}O{sub 3} through defects is proposed.« less

  18. Functional Properties of Microorganisms in Fermented Foods

    PubMed Central

    Tamang, Jyoti P.; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  19. Healing at the Interface Between Autologous Block Bone Grafts and Recipient Sites Using n-Butyl-2-Cyanoacrylate Adhesive as Fixation: Histomorphometric Study in Rabbits.

    PubMed

    De Santis, Enzo; Silva, Erick Ricardo; Martins, Evandro Neto Carneiro; Favero, Riccardo; Botticelli, Daniele; Xavier, Samuel Porfirio

    2017-12-01

    The aim of the present split-mouth (split-plot) study was to describe the sequential healing in the interface between autologous bone grafts and recipient parent bone, fixed using an n-butyl-2-cyanoacrylate adhesive with or without an additional titanium fixation screw. Bone grafts were collected from the calvaria and fixed to the lateral aspect of the mandible in 24 rabbits. The cortical layers of the recipient sites were perforated, and the grafts were randomly fixed using an n-butyl-2-cyanocrylate adhesive, either alone or in conjunction with a 1.5 mm × 6.0 mm titanium fixation screw. The animals were sacrificed after 3, 7, 20, and 40 days, and histomorphometric evaluations of the interface between graft and parent bone were performed. Only 2 of 6 grafts in each group were partially incorporated to the parent bone after 40 days of healing. The remaining grafts were separated from the parent bone by adhesive and connective tissue. It was concluded that the use of n-butyl-2-cyanoacrylate as fixation of an autologous bone graft to the lateral aspect of the mandible was able to maintain the fixation over time but did not incorporate the graft to the recipient sites. Use of fixation screws did not improve the healing.

  20. 47 CFR 25.277 - Temporary fixed earth station operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Temporary fixed earth station operations. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.277 Temporary fixed earth station operations. (a) When an earth station in the Fixed-Satellite Service is to remain at a single location for fewer...