Sample records for n2 oxygen o2

  1. Effects of N2O narcosis on the contraction and repayment of an oxygen debt

    NASA Technical Reports Server (NTRS)

    Schatte, C. L.; Hall, P.; Fitch, J. W.; Loader, J. E.

    1974-01-01

    The oxygen deficit, oxygen debt, and the difference between them were measured in five male and three female subjects during and after exercise while breathing either air or a normoxic mixture containing 33% N2O and nitrogen. With the exception of a higher respiratory quotient at rest in N2O, there were no statistically significant differences for oxygen consumption, carbon dioxide production, expired gas volume, heart rate or blood lactate while breathing N2O during rest, exercise, or recovery. An appreciably, but not statistically, greater mean oxygen deficit was found in N2O along with a significantly greater mean oxygen debt; deficit-debt difference was unaffected by N2O. It was speculated that N2O narcosis did not affect the ability to utilize oxygen but that the response to the greater oxygen need of exercise may have been slowed with perhaps a concomitant greater depletion of stored high energy compounds.

  2. Nitrous oxide production in the eastern tropical South Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Ji, Qixing; Altabet, Mark; Arevalo-Martinez, Damian; Bange, Hermann; Ma, Xiao; Marandino, Christa; Sun, Mingshuang; Grundle, Damian

    2017-04-01

    Nitrous oxide (N2O) is an important climate active trace gas that contributes to both atmospheric warming and ozone destruction, and the ocean is an important source of N2O to the atmosphere. Dissolved oxygen concentrations play an important role in regulating N2O production in the ocean, such that under low oxygen conditions major shifts in the predominant production pathways (i.e. nitrification vs. denitrification) can occur and the magnitude of production may increase substantially. To this end, major oceanic oxygen minimum zones (OMZs) are responsible for a disproportionately high amount of marine N2O production. During the October 2015 ASTRA-OMZ cruise to the eastern tropical South Pacific (ETSP), one of the three major oceanic OMZs, we measured a suite of N2O parameters which included N2O concentrations, N2O production, and natural abundance N2O isotope (i.e. del 15N and del 18O) and isotopomer (i.e. 15N site-preference) signatures. Based on the results from these measurements, our presentation will demonstrate how N2O production and the different production pathways change along the oxygen concentration gradients from the oxygenated surface waters through the oxygen minimum layer. Our data could better constrain the importance of the ETSP-OMZ as source of marine N2O. Results from this work will provide insights into how N2O cycling responds to ocean deoxygenation as a result of climate change.

  3. Evaluating the Impact of Changes in Oceanic Dissolved Oxygen on Marine Nitrous Oxide

    NASA Astrophysics Data System (ADS)

    Suntharalingam, Parvadha; Buitenhuis, Erik; Schmidtko, Sunke; Andrews, Oliver; LeQuere, Corinne

    2013-04-01

    Emissions of the greenhouse gas nitrous-oxide (N2O) from oceanic oxygen minimum zones (OMZs) in the Equatorial Pacific and Northwest Indian Ocean are believed to provide a significant portion of the global oceanic flux to the atmosphere. Mechanisms of marine N2O production and consumption in these regions display significant sensitivity to ambient oxygen, with high yields at low oxygen levels (O2 < 50 micromol/L), and N2O depletion via denitrification in anoxic zones. These OMZ regions display large gradients in sub-surface N2O, and high rates of N2O turnover that far exceed those observed in the open ocean. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate, could lead to significant changes in N2O emissions from these zones. In this analysis we employ a global ocean biogeochemistry model (NEMO-PlankTOM), which includes representation of the marine N2O cycle, to explore the impact of changes in dissolved oxygen on the ocean-atmosphere N2O flux. We focus on the period 1960-2000, and evaluate the impact of estimated changes in ocean oxygen from two alternative sources : (a) the observationally-based upper-ocean oxygen distributions and trends of Stramma et al. [2012]; (b) simulated oxygen distributions and temporal variations from a set of CMIP5 Earth System models. We will inter-compare the oceanic N2O estimates derived from these alternative scenarios of ocean de-oxygenation. We will also discuss the implications of our results for the ability to reliably predict changes in N2O emissions under potential expansion of oceanic OMZs, particularly in view of the recently noted discrepancies between observed and modeled trends in oceanic oxygen by Stramma et al. [2012].

  4. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  5. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  6. Fungal oxygen exchange between denitrification intermediates and water.

    PubMed

    Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Anette; Wrage-Mönnig, Nicole; Well, Reinhard

    2014-02-28

    Fungi can contribute greatly to N2O production from denitrification. Therefore, it is important to quantify the isotopic signature of fungal N2O. The isotopic composition of N2O can be used to identify and analyze the processes of N2O production and N2O reduction. In contrast to bacteria, information about the oxygen exchange between denitrification intermediates and water during fungal denitrification is lacking, impeding the explanatory power of stable isotope methods. Six fungal species were anaerobically incubated with the electron acceptors nitrate or nitrite and (18)O-labeled water to determine the oxygen exchange between denitrification intermediates and water. After seven days of incubation, gas samples were analyzed for N2O isotopologues by isotope ratio mass spectrometry. All the fungal species produced N2O. N2O production was greater when nitrite was the sole electron acceptor (129 to 6558 nmol N2O g dw(-1)  h(-1)) than when nitrate was the electron acceptor (6 to 47 nmol N2O g dw(-1)  h(-1)). Oxygen exchange was complete with nitrate as electron acceptor in one of five fungi and with nitrite in two of six fungi. Oxygen exchange of the other fungi varied (41 to 89% with nitrite and 11 to 61% with nitrate). This is the first report on oxygen exchange with water during fungal denitrification. The exchange appears to be within the range previously reported for bacterial denitrification. This adds to the difficulty of differentiating N2O producing processes based on the origin of N2O-O. However, the large oxygen exchange repeatedly observed for bacteria and now also fungi could lead to less variability in the δ(18)O values of N2O from soils, which could facilitate the assessment of the extent of N2O reduction. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Nitrous oxide as a function of oxygen and archaeal gene abundance in the North Pacific

    NASA Astrophysics Data System (ADS)

    Trimmer, Mark; Chronopoulou, Panagiota-Myrsini; Maanoja, Susanna T.; Upstill-Goddard, Robert C.; Kitidis, Vassilis; Purdy, Kevin J.

    2016-12-01

    Oceanic oxygen minimum zones are strong sources of the potent greenhouse gas N2O but its microbial source is unclear. We characterized an exponential response in N2O production to decreasing oxygen between 1 and 30 μmol O2 l-1 within and below the oxycline using 15NO2-, a relationship that held along a 550 km offshore transect in the North Pacific. Differences in the overall magnitude of N2O production were accounted for by archaeal functional gene abundance. A one-dimensional (1D) model, parameterized with our experimentally derived exponential terms, accurately reproduces N2O profiles in the top 350 m of water column and, together with a strong 45N2O signature indicated neither canonical nor nitrifier-denitrification production while statistical modelling supported production by archaea, possibly via hybrid N2O formation. Further, with just archaeal N2O production, we could balance high-resolution estimates of sea-to-air N2O exchange. Hence, a significant source of N2O, previously described as leakage from bacterial ammonium oxidation, is better described by low-oxygen archaeal production at the oxygen minimum zone's margins.

  8. Nitrous Oxide Production in the Eastern Tropical South Pacific Upwelling Zone

    NASA Astrophysics Data System (ADS)

    Ji, Q.; Babbin, A. R.; Ward, B. B.

    2014-12-01

    The Eastern Tropical South Pacific upwelling zone, where low to undetectable oxygen concentrations exist in the water column, is a region of intense nitrous oxide (N2O) production in the ocean. N2O production is generally attributed to nitrification and denitrification in oxic and anoxic waters, respectively, with overlap under suboxic conditions. Seawater samples from different depths and in situ oxygen concentrations were incubated with 15N tracer labeled substrates (NH4+, NO2- and NO3-) to measure potential N2O production rates. These rates were used to determine contributions of nitrification and denitrification to total N2O production. N2O reached maximum concentrations at the base of oxycline just above the oxygen deficient zone (ODZ) and nitrification was the major production pathway. The N2O yield from nitrification, i.e., the ratio of N2O to NO2- production from NH4+, increased from ~0.04% to ~1% as oxygen concentration decreased from 100% to ~1% saturation. This relationship is consistent with culture studies showing increased N2O yield from nitrification at low oxygen; and thus with high N2O production rate from nitrification in the oxycline. N2O production from NO3- was detected at the base of oxycline. Highest N2O production rates (up to 10 nM d-1) were detected at the top of the ODZ, with denitrification as the major pathway. At the secondary nitrite maximum within the core of the ODZ, rates of N2O production from denitrification were relatively high despite low N2O concentration, suggesting N2O reduction to N2 must be co-occurring. This implies rapid N2O turnover by denitrification within the ODZ and a close coupling between production and consumption. These results indicate that oxygen concentrations greatly influence both the magnitude of N2O production and the relative contributions of nitrification and denitrification. Because most N2O production occurred in the oxycline and in the uppermost layer of the ODZ, anticipated spatial expansion of these zones could increase the extent of N2O production and the marine N2O efflux to the atmosphere.

  9. Heptamolybdate: a highly active sulfide oxygenation catalyst.

    PubMed

    Porter, Ashlin G; Hu, Hanfeng; Liu, Xuemei; Raghavan, Adharsh; Adhikari, Sarju; Hall, Derrick R; Thompson, Dylan J; Liu, Bin; Xia, Yu; Ren, Tong

    2018-05-29

    The sulfide oxygenation activities of both heptamolybdate ([Mo7O24]6-, [1]6-) and its peroxo adduct [Mo7O22(O2)2]6- ([2]6-) were examined in this contribution. [Mo7O22(O2)2]6- was prepared in a yield of 65% from (NH4)6[Mo7O24] (1a) upon treatment of 10 equiv. of H2O2 and structurally identified through single crystal X-ray diffraction study. (nBu4N)6[Mo7O22(O2)2] (2b) is an efficient catalyst for the sequential oxygenation of methyl phenyl sulfide (MPS) by H2O2 to the corresponding sulfoxide and subsequently sulfone with a 100% utility of H2O2. Surprisingly, (nBu4N)6[Mo7O24] (1b) is a significantly faster catalyst than 2b for MPS oxygenation under identical conditions. The pseudo-first order kcat constants from initial rate kinetics are 54 M-1 s-1 and 19 M-1 s-1 for 1b and 2b, respectively. Electrospray ionization mass spectrometry (ESI-MS) investigation of 1b under the catalytic reaction conditions revealed that [Mo2O11]2- is likely the main active species in sulfide oxygenation by H2O2.

  10. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.

    2015-12-01

    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.

  11. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    PubMed

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  12. Influence of Cr doping on the stability and structure of small cobalt oxide clusters.

    PubMed

    Tung, Nguyen Thanh; Tam, Nguyen Minh; Nguyen, Minh Tho; Lievens, Peter; Janssens, Ewald

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, ConO+m and Con-1CrO+m (n = 2, 3; m = 2-6 and n = 4; m = 3-8), has been investigated using photodissociation mass spectrometry. Oxygen-rich ConO+m clusters (m ≥ n + 1 for n = 2, 4 and m ≥ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atom alters the dissociation behavior. All investigated Con-1 CrO+m clusters, except CoCrO+2 and CoCrO+3, prefer to decay by eliminating a neutral oxygen molecule. Co2O+2, Co4O+3, Co4O+4, and CoCrO+2 are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.

  13. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    NASA Astrophysics Data System (ADS)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  14. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    PubMed

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Computational insights into crystal plane dependence of thermal activity of anion (C and N)-substituted titania.

    PubMed

    V, Sai Phani Kumar; Arya, Rahul; Deshpande, Parag A

    2017-11-29

    Geometry optimizations of anion (C and N) doped anatase TiO 2 were carried out by using DFT+U calculations. Various anion vacancy sites were examined to study the synergistic effects of anion doping accompanied with anion vacancy formation on lattice oxygen activation. Two non-identical crystal planes (0 0 1) and (1 0 0) were chosen for C and N substitutions. Energetically favoured N-vacancy pairs were identified on TiO 2 surfaces. Substitution of N along with anion vacancies at various sites was energetically more favoured than that of C-doping in bulk TiO 2 while the energies were comparable for surface substitutions. Bond length distributions due to the formation of differential bonds were determined. Net oxygen activation and accompanying reversible oxygen exchange capacities were compared for TiO 2-2x C x and TiO 2-3x N 2x . Substitution of C in the surface exposed (1 0 0) plane of TiO 2 resulted in 47.6% and 23.8% of bond elongation and compression, respectively, resulting in 23.8% of net oxygen activation which was higher when compared to N substitution in the (1 0 0) plane of TiO 2 resulting in a net oxygen activation of 17%.

  16. Nitrous oxide fluxes and soil oxygen dynamics of soil treated with cow urine

    USDA-ARS?s Scientific Manuscript database

    Ruminant urine deposition onto pastures creates hot-spots where emissions of nitrous oxide (N2O) are produced by aerobic and anaerobic microbial pathways. However, limited measurements of in situ soil oxygen (O2)-N2O relationships hinder the prediction of N2O emissions from urine-affected soil. This...

  17. Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1x1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Li, Zhenjun; Kay, Bruce D.

    2014-05-08

    We find that NO dosed on rutile TiO2(110)-1×1 at substrate temperatures as low as 50 K readily reacts to produce N2O which desorbs promptly from the surface leaving an oxygen adatom behind. The desorption rate of N2O reaches a maximum value after 1 – 2 sec at an NO flux of 1.2 ×1014 NO/cm2∙sec and then decreases rapidly as the initially clean, reduced TiO2(110) surface with ~5% oxygen vacancies (VO’s) becomes covered with oxygen adatoms and unreacted NO. The maximum desorption rate is also found to increase as the substrate temperature is raised up to about 100 K. Interestingly, themore » N2O desorption during the low-temperature (LT) NO dose is strongly suppressed when molecular oxygen is predosed, whereas it persists on the surface with VO’s passivated by surface hydroxyls. Our results show that the surface charge, not the VO sites, plays a dominant role in the LT N2O desorption induced by a facile NO reduction at such low temperatures.« less

  18. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: hydration of the CO2- and O2- ions.

    PubMed

    Balaj, O Petru; Siu, Chi-Kit; Balteanu, Iulia; Beyer, Martin K; Bondybey, Vladimir E

    2004-10-04

    The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.

  19. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  20. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    PubMed Central

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-01-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR. PMID:28367960

  1. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    PubMed

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N 2 O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N 2 O model, which incorporated two N 2 O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH 2 OH) oxidation). The two-pathway model was used to describe N 2 O production from a granule-based partial nitritation (PN) reactor and provide insights into the N 2 O distribution inside granules. The model was evaluated by comparing simulation results with N 2 O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N 2 O dynamics and provided useful information about the shift of N 2 O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N 2 O production. The results further revealed a linear relationship between N 2 O production and ammonia oxidation rate (AOR) (R 2  = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N 2 O production by causing a change in AOR.

  2. A matrix-isolation-infrared spectroscopic study of the reactions of nitric oxide with oxygen and ozone

    NASA Technical Reports Server (NTRS)

    Bhatia, S. C.; Hall, J. H., Jr.

    1980-01-01

    An investigation of the oxidation of NO to NO2 by trapping the products of the gas-phase reactions with excess oxygen and ozone identified the transient species by their infrared spectra. The primary products of the NO + NO2 reactions were NO2, N2O3(A), N2O3(B), N2O4, and peroxy nitrate (OONO). The primary products of the NO + O3 reactions were NO2 and peroxy NO3 with the higher nitric oxides in low concentrations compared with the NO + O2 reactions. Isotopic oxygen and ozone were used to identify the infrared absorption frequency of the peroxy nitrate.

  3. Ocean N2O Emissions : Recent Global Estimates and Anthropogenically Influenced Changes

    NASA Astrophysics Data System (ADS)

    Suntharalingam, P.; Buithenuis, E.; Andrews, O.; Le Quere, C.

    2016-12-01

    Oceanic N2O is produced by microbial activity during organic matter cycling in the subsurface ocean; its production mechanisms display sensitivity to ambient oxygen level. In the oxic ocean, N2O is produced as a byproduct during the oxidation of ammonia to nitrate, mediated by ammonia oxidizing bacteria and archea. N2O is also produced and consumed in sub-oxic and anoxic waters through the action of marine denitrifiers during the multi-step reduction of nitrate to gaseous nitrogen. The oceanic N2O distribution therefore displays significant heterogeneity with background levels of 10-20 nmol/l in the well-oxygenated ocean basins, high concentrations (> 40 nmol/l) in hypoxic waters, and N2O depletion in the core of ocean oxygen minimum zones (OMZs). Oceanic N2O emissions are estimated to account for up to a third of the pre-industrial N2O fluxes to the atmosphere, however the natural cycle of ocean N2O has been perturbed in recent decades by inputs of anthropogenically derived nutrient, and by the impacts of climate change. Anthropogenic nitrogen inputs (e.g., NOx and NHy from fossil fuel combustion and agricultural fertilizer) enter the ocean via atmospheric deposition and riverine fluxes, influencing oceanic N2O production via their impact on the marine organic matter cycle. In addition, climate variations associated with surface ocean warming affect oceanic circulation and nutrient transport pathways, influencing marine productivity and the ventilation of oxygen minimum zones. Recent studies have suggested that possible expansion of oceanic OMZs in a warming climate could lead to significant changes in N2O production and fluxes from these regions. We will summarise the current state of knowledge on the ocean N2O budget and net flux to the atmosphere. Recently reported estimates have been based on (i) empirical relationships derived from ocean tracer data (e.g., involving excess N2O and Apparent Oxygen Utilization (AOU) correlations), (ii) ocean biogeochemical models, and (iii) air-sea flux calculations which combine surface ocean N2O measurements with gas-exchange relationships. We will also present results from ongoing ocean biogeochemistry model analyses evaluating the separate influences of climate variation and anthropogenic nutrient inputs on ocean N2O emissions for recent decades.

  4. Raman study of HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-02-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2Ca n-1 Cu nO 2 n+2+ δ ( n=1,2,3,4 and 5) high- Tc superconductor family using different laser frequencies. Local laser annealing measurements were carried out to investigate the variation of the Raman spectra with the excess oxygen content, δ. A systematic evolution of the spectra, which display mainly peaks near 590, 570, 540 and 470 cm -1, with increasing number of CuO 2 layers has been observed; its origin has been shown to lie in the variation of the interstitial oxygen content. In addition to confirming that the 590 cm -1 mode represents vibration of apical oxygens in the absence of neighboring excess oxygen, the 570 cm -1 mode, which may be composed of some finer structures, has been assigned to the vibration of the apical oxygen modified by the presence of the neighboring excess oxygens. The 540 and 470 cm -1 modes may represent the direct vibration of excess oxygens. The implication of possible different distribution sites of excess oxygens is discussed. All other observed lower-frequency modes are also assigned.

  5. Influence of Cr doping on the stability and structure of small cobalt oxide clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Nguyen Thanh; Lievens, Peter; Janssens, Ewald, E-mail: ewald.janssens@fys.kuleuven.be

    2014-07-28

    The stability of mass-selected pure cobalt oxide and chromium doped cobalt oxide cluster cations, Co{sub n}O{sub m}{sup +} and Co{sub n−1}CrO{sub m}{sup +} (n = 2, 3; m = 2–6 and n = 4; m = 3–8), has been investigated using photodissociation mass spectrometry. Oxygen-rich Co{sub n}O{sub m}{sup +} clusters (m ⩾ n + 1 for n = 2, 4 and m ⩾ n + 2 for n = 3) prefer to photodissociate via the loss of an oxygen molecule, whereas oxygen poorer clusters favor the evaporation of oxygen atoms. Substituting a single Co atom by a single Cr atommore » alters the dissociation behavior. All investigated Co{sub n−1}CrO{sub m}{sup +} clusters, except CoCrO{sub 2}{sup +} and CoCrO{sub 3}{sup +}, prefer to decay by eliminating a neutral oxygen molecule. Co{sub 2}O{sub 2}{sup +}, Co{sub 4}O{sub 3}{sup +}, Co{sub 4}O{sub 4}{sup +}, and CoCrO{sub 2}{sup +} are found to be relatively difficult to dissociate and appear as fragmentation product of several larger clusters, suggesting that they are particularly stable. The geometric structures of pure and Cr doped cobalt oxide species are studied using density functional theory calculations. Dissociation energies for different evaporation channels are calculated and compared with the experimental observations. The influence of the dopant atom on the structure and the stability of the clusters is discussed.« less

  6. Nitrogen Oxygen Recharge System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  7. Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; Casciotti, K.L.

    2004-01-01

    The bacterial denitrification method for isotopic analysis of nitrate using N2O generated from Pseudomonas aureofaciens may overestimate δ15N values by as much as 1–2‰ for samples containing atmospheric nitrate because of mass-independent 17O variations in such samples. By analyzing such samples for δ15N and δ18O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct δ15N values because oxygen in N2O generated by P. chlororaphis is primarily derived from H2O. The difference between the apparent δ15N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent 17O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different δ18O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N2O derived from the nitrate and from water with each denitrifier. This information can be used to improve δ15N values of nitrates having excess 17O. The same analyses also yield estimates of the magnitude of 17O excess in the nitrate (expressed as Δ17O) that may be useful in some environmental studies. The 1-σ uncertainties of δ15N, δ18O and Δ17O measurements are ±0.2, ±0.3 and ±5‰, respectively.

  8. Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.

    2015-09-01

    This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.

  9. Spontaneous resolution of binary copper(II) complexes with racemic dipeptides: crystal structures of glycyl-L-alpha-amino-n-butyrato copper(II) monohydrate, glycyl-D-valinato copper(II) hemihydrate, and glycyl-L-valinato copper(II) hemihydrate.

    PubMed

    Inomata, Yoshie; Yamaguchi, Takeshi; Tomita, Airi; Yamada, Dai; Howell, F Scott

    2005-08-01

    Copper(II) complexes with glycyl-DL-alpha-amino-n-butyric acid (H2gly-DL-but), glycyl-DL-valine (H2gly-DL-val), glycyl-DL-norleucine (H2gly-DL-norleu), glycyl-DL-threonine (H2gly-DL-thr), glycyl-DL-serine (H2gly-DL-ser), glycyl-DL-phenylalanine (H2gly-DL-phe), and glycyl-L-valine (H2gly-L-val), have been prepared and characterized by IR, powder diffuse reflection, CD and ORD spectra, and magnetic susceptibility measurements, and by single-crystal X-ray diffraction. The crystal structures of the copper complex with H2gly-DL-but, the copper complex with H2gly-DL-val, and [Cu(gly-L-val)]n.0.5nH2O have been determined by a single-crystal X-ray diffraction method. As for the structure of the copper complex with H2gly-DL-but, the configuration around the asymmetric carbon atom is similar to that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-DL-but is [Cu(gly-L-but)]n.nH2O. On the contrary, as for the structure of the copper complex with H2gly-DL-val, the configuration around the asymmetric carbon atom is different from that of [Cu(gly-L-val)]n.0.5nH2O. Therefore it is concluded that the copper complex with H2gly-dl-val is [Cu(gly-D-val)]n.0.5nH2O. So during the crystallization of the copper(II) complexes with H2gly-DL-but and H2gly-DL-val, spontaneous resolution has been observed; the four complexes have separated as [Cu(gly-D-but)]n.nH2O, [Cu(gly-L-but)]n.nH2O, [Cu(gly-D-val)]n.0.5nH2O, and [Cu(gly-L-val)]n.0.5nH2O, respectively. [Cu(gly-L-but)]n.nH2O is orthorhombic with the space group P2(1)2(1)2(1). [Cu(gly-D-val)]n.0.5nH2O and [Cu(gly-L-val)]n.0.5nH2O are monoclinic with the space group C2. In these complexes, the copper atom is in a square-pyramidal geometry, ligated by a peptide nitrogen atom, an amino nitrogen atom, a carboxyl oxygen atom, and a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. So these complexes consist of a two-dimensional polymer chain bridged by a carboxyl oxygen atom and a peptide oxygen atom from neighboring molecules. The axial oxygen atom is located above the basal plane and the side chain of an amino acid is located below it. These polymer chains consist of only one or the other type of optical isomers; no racemic dipeptides are found. Therefore, spontaneous resolution has been observed in the crystallization of copper(II) complexes with H2gly-DL-but and H2gly-DL-val. The crystal structure of [Cu(gly-D-val)]n.0.5nH2O agrees almost completely with that of [Cu(gly-L-val)]n.0.5nH2O, except for the configuration around the asymmetric carbon atom.

  10. The effect of oxygen content during an initial sustained inflation on heart rate in asphyxiated near-term lambs.

    PubMed

    Sobotka, K S; Ong, T; Polglase, G R; Crossley, K J; Moss, T J M; Hooper, S B

    2015-07-01

    At birth, an initial sustained inflation (SI) uniformly aerates the lungs, increases arterial oxygenation and rapidly improves circulatory recovery in asphyxiated newborns. We hypothesised that lung aeration, in the absence of an increase in arterial oxygenation, can increase heart rate (HR) in asphyxiated near-term lambs. Lambs were delivered and instrumented at 139±2 days of gestation. Asphyxia was induced by umbilical cord clamping and then delaying the onset of ventilation until mean carotid arterial pressures (CAPs) had decreased <20 mm Hg. Lambs then received a single 30-s SI using nitrogen (N2; n=6), 5% oxygen (O2; n=6), 21% O2 (n=6) or 100% O2 (n=6) followed by ventilation in air for 30 min. HR, CAP and pulmonary blood flow (PBF) were continuously recorded. HR and PBF increased more quickly in lambs resuscitated with 100% and 21% O2 than with 5% O2 or N2. HR and PBF recovery in the 5% O2 group was delayed relative to all other oxygen SI groups. HR in 5%, 21% and 100% O2 groups reached 100 bpm before the SI was complete. HR and PBF in the N2 group did not increase until 10 s after the SI was completed and ventilation was initiated with air. CAP tended to increase quicker in all O2 groups than in N2 group. Oxygen content during an SI is important for circulatory recovery in asphyxiated lambs. This increase in HR is likely driven by the increase in PBF and venous return to the heart. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Jensen, Marlene M.; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M. M.

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3 − reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2 − and NO3 − reduction to NO2 − as the main NH4 + and NO2 − sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3 − reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3 − reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. PMID:22216239

  12. Electrical and optical properties of nitrogen doped SnO{sub 2} thin films deposited on flexible substrates by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Feng, E-mail: fangfeng@seu.edu.cn; Zhang, Yeyu; Wu, Xiaoqin

    2015-08-15

    Graphical abstract: The best SnO{sub 2}:N TCO film: about 80% transmittance and 9.1 × 10{sup −4} Ω cm. - Highlights: • Nitrogen-doped tin oxide film was deposited on PET by RF-magnetron sputtering. • Effects of oxygen partial pressure on the properties of thin films were investigated. • For SnO{sub 2}:N film, visible light transmittance was 80% and electrical resistivity was 9.1 × 10{sup −4} Ω cm. - Abstract: Nitrogen-doped tin oxide (SnO{sub 2}:N) thin films were deposited on flexible polyethylene terephthalate (PET) substrates at room temperature by RF-magnetron sputtering. Effects of oxygen partial pressure (0–4%) on electrical and optical propertiesmore » of thin films were investigated. Experimental results showed that SnO{sub 2}:N films were amorphous state, and O/Sn ratios of SnO{sub 2}:N films were deviated from the standard stoichiometry 2:1. Optical band gap of SnO{sub 2}:N films increased from approximately 3.10 eV to 3.42 eV as oxygen partial pressure increased from 0% to 4%. For SnO{sub 2}:N thin films deposited on PET, transmittance was about 80% in the visible light region. The best transparent conductive oxide (TCO) deposited on flexible PET substrates was SnO{sub 2}:N thin films preparing at 2% oxygen partial pressure, the transmittance was about 80% and electrical conductivity was about 9.1 × 10{sup −4} Ω cm.« less

  13. Origin of Active Oxygen in a Ternary CuO x /Co 3O 4–CeO 2 Catalyst for CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhigang; Wu, Zili; Peng, Xihong

    2014-11-14

    In this paper, we have studied CO oxidation over a ternary CuO x/Co 3O 4-CeO 2 catalyst and employed the techniques of N 2 adsorption/desporption, XRD, TPR, TEM, in situ DRIFTS and QMS (Quadrupole mass spectrometer) to explore the origin of active oxygen. DRIFTS-QMS results with labeled 18O2 indicate that the origin of active oxygens in CuO x/Co 3O 4-CeO 2 obeys a model, called as queue mechanism. Namely gas-phase molecular oxygens are dissociated to atomic oxygens and then incorporate in oxygen vacancies located at the interface of Co 3O 4-CeO 2 to form active crystalline oxygens, and these activemore » oxygens diffuse to the CO-Cu + sites thanks to the oxygen vacancy concentration magnitude and react with the activated CO to form CO 2. This process, obeying a queue rule, provides active oxygens to form CO 2 from gas-phase O 2 via oxygen vacancies and crystalline oxygen at the interface of Co 3O 4-CeO 2.« less

  14. Nanocrystalline CeO2-δ coated β-MnO2 nanorods with enhanced oxygen transfer property

    NASA Astrophysics Data System (ADS)

    Huang, Xiubing; Zhao, Guixia; Chang, Yueqi; Wang, Ge; Irvine, John T. S.

    2018-05-01

    In this research, β-MnO2 nanorods were synthesized by a hydrothermal method, followed by a facile precipitation method to obtain nanocrystalline CeO2-δ coated β-MnO2 nanorods. The as-prepared samples were characterized by XRD, HRTEM, FESEM, XPS and in-situ high-temperature XRD. The HRTEM results show that well dispersed CeO2-δ nanocrystals sized about 5 nm were coated on the surface of β-MnO2 nanorods. The oxygen storage and transfer property of as-synthesized materials were evaluated using TGA under various atmospheres (air, pure N2, and 5%H2/95%Ar). The TGA results indicate that CeO2-δ modification could favour the reduction of Mn4+ to Mn3+ and/or Mn2+ at lower temperature as compared with pure β-MnO2 nanorods and the physically mixed CeO2-δ-β-MnO2 under low oxygen partial pressure conditions (i.e., pure N2, 5%H2/95%Ar). Specifically, CeO2-δ@β-MnO2 sample can exhibit 7.5 wt% weight loss between 100 and 400 °C under flowing N2 and 11.4 wt% weight loss between 100 and 350 °C under flowing 5%H2/95%Ar. During the reduction process under pure N2 or 5%H2/95%Ar condition, the oxygen ions in β-MnO2 nanorods are expected to be released to the surroundings in the form of O2 or H2O with the coated CeO2-δ nanocrystals acting as mediator as inferred from the synergistic effect between the well-interacted CeO2-δ nanocrystals and β-MnO2 nanorods.

  15. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method

    USGS Publications Warehouse

    Casciotti, K.L.; Sigman, D.M.; Hastings, M. Galanter; Böhlke, J.K.; Hilkert, A.

    2002-01-01

    We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate.1Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N2O analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N2O product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consistent within a given batch of analyses. The analysis of appropriate isotopic reference materials can thus be used to correct the measured 18O/16O ratios of samples for both effects. This is the first method tested for 18O/16O analysis of nitrate in seawater. Benefits of this method, relative to published freshwater methods, include higher sensitivity (tested down to 10 nmol and 1 μM NO3-), lack of interference by other solutes, and ease of sample preparation.

  16. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    NASA Astrophysics Data System (ADS)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  17. Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction.

    PubMed

    Ning, Rui; Tian, Jingqi; Asiri, Abdullah M; Qusti, Abdullah H; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-10-29

    In this Letter, for the first time, we demonstrated the preparation of a highly efficient electrocatalyst, spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide (CuCo2O4/N-rGO), for an oxygen reduction reaction (ORR) under alkaline media. The hybrid exhibits higher ORR catalytic activity than CuCo2O4 or N-rGO alone, the physical mixture of CuCo2O4 nanoparticles and N-rGO, and Co3O4/N-rGO. Moreover, such a hybrid affords superior durability to the commercial Pt/C catalyst.

  18. Influence of oxygen availability on the activities of ammonia-oxidizing archaea.

    PubMed

    Qin, Wei; Meinhardt, Kelley A; Moffett, James W; Devol, Allan H; Virginia Armbrust, E; Ingalls, Anitra E; Stahl, David A

    2017-06-01

    Recent studies point to the importance of oxygen (O 2 ) in controlling the distribution and activity of marine ammonia-oxidizing archaea (AOA), one of the most abundant prokaryotes in the ocean. The AOA are associated with regions of low O 2 tension in oceanic oxygen minimum zones (OMZs), and O 2 availability is suggested to influence their production of the ozone-depleting greenhouse gas nitrous oxide (N 2 O). We show that marine AOA available in pure culture sustain high ammonia oxidation activity at low μM O 2 concentrations, characteristic of suboxic regions of OMZs (<10 µM O 2 ), and that atmospheric concentrations of O 2 may inhibit the growth of some environmental populations. We quantify the increasing N 2 O production by marine AOA with decreasing O 2 tensions, consistent with the plausibility of an AOA contribution to the accumulation of N 2 O at the oxic-anoxic redox boundaries of OMZs. Variable sensitivity to peroxide also suggests that endogenous or exogenous reactive oxygen species are of importance in determining the environmental distribution of some populations. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Electrocatalytic performances of g-C3N4-LaNiO3 composite as bi-functional catalysts for lithium-oxygen batteries

    PubMed Central

    Wu, Yixin; Wang, Taohuan; Zhang, Yidie; Xin, Sen; He, Xiaojun; Zhang, Dawei; Shui, Jianglan

    2016-01-01

    A low cost and non-precious metal composite material g-C3N4-LaNiO3 (CNL) was synthesized as a bifunctional electrocatalyst for the air electrode of lithium-oxygen (Li-O2) batteries. The composition strategy changed the electron structure of LaNiO3 and g-C3N4, ensures high Ni3+/Ni2+ ratio and more absorbed hydroxyl on the surface of CNL that can promote the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The composite catalyst presents higher activities than the individual components g-C3N4 and LaNiO3 for both ORR and OER. In non-aqueous Li-O2 batteries, CNL shows higher capacity, lower overpotentials and better cycling stability than XC-72 carbon and LaNiO3 catalysts. Our results suggest that CNL composite is a promising cathode catalyst for Li-O2 batteries. PMID:27074882

  20. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham

    2004-03-01

    Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.

  1. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Guo, Yanru; Xiao, Limin; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2018-05-01

    An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 ternary nanocomposite was fabricated using nanotubular titanic acid as precursors via a simple photo-deposition of Pd nanoparticles and calcination process. The prepared nanocomposites were investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy, respectively. For g-C3N4/TiO2 binary nanocomposites, at the optimal content of g-C3N4 (2%), the apparent photocatalytic activity of 2%g-C3N4/TiO2 was 9 times higher than that of pure TiO2 under visible-light illumination. After deposition of Pd (1 wt%) at the contact interface between g-C3N4 and TiO2, the 2%g-C3N4/Pd/TiO2 ternary nanocomposites demonstrated the highest visible-light-driven photocatalytic activity for the degradation of gaseous propylene, which was 16- and 2-fold higher activities than pure TiO2 and 2%g-C3N4/TiO2, respectively. The mechanism for the enhanced photocatalytic performance of the g-C3N4/Pd/TiO2 photo-catalyst is proposed to be based on the efficient separation of photo-generated electron-hole pairs through Z-scheme system, in which uniform dispersity of Pd nanoparticles at contact interface between g-C3N4 and TiO2 and oxygen vacancies promote charge separation.

  2. Year-round N2O production by benthic NOx reduction in a monomictic south-alpine lake

    NASA Astrophysics Data System (ADS)

    Freymond, C. V.; Wenk, C. B.; Frame, C. H.; Lehmann, M. F.

    2013-12-01

    Nitrous oxide (N2O) is a potent greenhouse gas, generated through microbial nitrogen (N) turnover processes, such as nitrification, nitrifier denitrification, and denitrification. Previous studies quantifying natural sources have mainly focused on soils and the ocean, but the potential role of terrestrial water bodies in the global N2O budget has been widely neglected. Furthermore, the biogeochemical controls on the production rates and the microbial pathways that produce benthic N2O in lakes are essentially unknown. In this study, benthic N2O fluxes and the contributions of the microbial pathways that produce N2O were assessed using 15N label flow-through sediment incubations in the eutrophic, monomictic south basin of Lake Lugano in Switzerland. The sediments were a significant source of N2O throughout the year, with production rates ranging between 140 and 2605 nmol N2O h-1 m-2, and the highest observed rates coinciding with periods of water column stratification and stably anoxic conditions in the overlying bottom water. Nitrate (NO3-) reduction via denitrification was found to be the major N2O production pathway in the sediments under both oxygen-depleted and oxygen-replete conditions in the overlying water, while ammonium oxidation did not contribute significantly to the benthic N2O flux. A marked portion (up to 15%) of the total NO3- consumed by denitrification was reduced only to N2O, without complete denitrification to N2. These fluxes were highest when the bottom water had stabilized to a low-oxygen state, in contrast with the notion that stable anoxia is particularly conducive to complete denitrification without accumulation of N2O. This study provides evidence that lake sediments are a significant source of N2O to the overlying water and may produce large N2O fluxes to the atmosphere during seasonal mixing events.

  3. The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Milz, M.; Buehler, S.; Orphal, J.; Stiller, G.

    2012-05-01

    The effect of collision-induced absorption by molecular oxygen (O2) and nitrogen (N2) on the outgoing longwave radiation (OLR) of the Earth's atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O2 by 0.11 Wm-2 and due to N2 by 0.17 Wm-2. Together this amounts to 15% of the OLR-reduction caused by CH4 at present atmospheric concentrations. Over Antarctica the combined effect of O2 and N2 increases on average to about 38% of CH4 with single values reaching up to 80%. This is explained by less interference of H2O spectral bands on the absorption features of O2 and N2 for dry atmospheric conditions.

  4. Association between Brain and Kidney Near-Infrared Spectroscopy and Early Postresuscitation Mortality in Asphyxiated Newborn Piglets.

    PubMed

    Solevåg, Anne Lee; Schmölzer, Georg M; Nakstad, Britt; Saugstad, Ola Didrik; Cheung, Po-Yin

    2017-01-01

    Early outcome predictors after delivery room cardiopulmonary resuscitation (CPR) of asphyxiated newborns are needed. To investigate if cerebral (rScO2) and renal (rSrO2) tissue oxygen saturation 30 min after return of spontaneous circulation (ROSC) are different between surviving versus nonsurviving piglets with asphyxia-induced cardiac arrest and CPR. Further, to investigate the relationship of rScO2 and rSrO2 to cardiac output (CO), blood pressure (BP), and biochemical variables 30 min and 4 h after ROSC. Anesthetized, mechanically ventilated piglets (1-3 days, 1.7-2.4 kg) were used. rScO2, rSrO2, SpO2, right common carotid artery flow, and arterial BP were measured continuously. CO was measured with echocardiography. The piglets were asphyxiated until cardiac arrest and resuscitated. Piglets that survived 4 h after ROSC (n = 12) were compared with piglets that died before planned euthanasia at 4 h (n = 13). Left ventricular, and kidney and brain tissue lactate were analyzed. Correlations between variables were assessed. Thirty minutes after ROSC, median rSrO2 (43% [n = 10] vs. 25% [n = 2], p = 0.003) but not rScO2 (46% [41-55] [n = 10] vs. 40% [22-45] [n = 5], p = 0.08) was higher in survivors than in nonsurvivors. Arterial lactate was negatively correlated and pH positively correlated with rScO2 and rSrO2. Left ventricular, but not kidney or brain lactate was negatively correlated with rScO2 and rSrO2. There was no correlation between CO or BP and rScO2 or rSrO2. Despite satisfactory CO and BP vital organ oxygenation can be poor. Tissue oxygen saturation, pH, and lactate, as measures of anaerobic metabolism, may reflect vital organ oxygenation and outcome. © 2017 S. Karger AG, Basel.

  5. Nondestructive and continuous monitoring of oxygen levels in modified atmosphere packaged ready-to-eat mixed salad products using optical oxygen sensors, and its effects on sensory and microbiological counts during storage.

    PubMed

    Hempel, A; O'Sullivan, M G; Papkovsky, D B; Kerry, J P

    2013-07-01

    The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready-to-eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2 , 5% CO2 , 90% N2 (MAPC-commercial control), 21% O2 , 5% CO2 , 74% N2 (MAP 1), 45% O2 , 5% CO2 , 50% N2 (MAP 2), and 60% O2 , 5% CO2 , 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf-life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf-life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf-life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products. © 2013 Institute of Food Technologists®

  6. Nitrous Oxide Cycling in the Eastern Tropical South Pacific as Inferred from Isotopic and Isotopomeric Data.

    NASA Astrophysics Data System (ADS)

    Vedamati, J.; Chang, B. X.; Peters, B. D.; Forbes, M. S.; Mordy, C.; Warner, M. J.; Devol, A.; Ward, B. B.; Casciotti, K. L.

    2014-12-01

    Marine sources of nitrous oxide (N2O), an important greenhouse gas, account for up to 25% of global emissions, out of which 25-75% originates from oxygen minimum zones (OMZs). The Eastern Tropical South Pacific (ETSP) OMZ is characterized by low to undetectable oxygen concentrations within the water column and is known to be a region of intense N2O cycling. However, the balance of processes regulating N2O production and emissions is still uncertain. The isotopic composition of dissolved N2O is a tracer of its production, transport, and consumption processes in the ocean. Here we use concentration, isotopic and isotopomeric measurements of dissolved N2O collected during cruise NBP1305 to the ETSP in 2013 to examine the processes affecting the distribution of N2O throughout the water column. Dissolved N2O concentrations ranged between 42-65 nmol/L at the edges of the oxycline while ranging between 6 -20 nmol/L at the core of the OMZ. The nitrogen and oxygen isotopic composition of dissolved N2O (reported as δ15N vs air N2 and δ18O vs VSMOW in units of ‰, respectively) displayed maxima coincident with the OMZ core. δ15N of N2O ranged between 14 - 22‰, δ18O of N2O ranged between 68 - 100‰ while site preference of N2O ranged between 39 - 60‰ at the OMZ core. Based on the T-S plot and N2O concentration profiles, there appears to be a strong correlation between N2O and water mass features within the OMZ. Thus, the differences in δ15N and δ18O of N2O along the north- south transect within the OMZ core may be related to differences in N2O production-consumption mechanisms along with N2O transport. Within the OMZ, the δ18O: δ15N relationship is also much lower than the 2.5:1 ratio expected for N2O consumption via denitrification, leading us to believe that both production and consumption processes are likely to be at play.

  7. Oxygen concentrators performance with nitrous oxide at 50:50 volume.

    PubMed

    Moll, Jorge Ronaldo; Vieira, Joaquim Edson; Gozzani, Judymara Lauzi; Mathias, Lígia Andrade Silva Telles

    2014-01-01

    Few investigations have addressed the safety of oxygen from concentrators for use in anesthesia in association with nitrous oxide. This study evaluated the percent of oxygen from a concentrator in association with nitrous oxide in a semi-closed rebreathing circuit. Adult patients undergoing low risk surgery were randomly allocated into two groups, receiving a fresh gas flow of oxygen from concentrators (O293) or of oxygen from concentrators and nitrous oxide (O293N2O). The fraction of inspired oxygen and the percentage of oxygen from fresh gas flow were measured every 10 min. The ratio of FiO2/oxygen concentration delivered was compared at various time intervals and between the groups. Thirty patients were studied in each group. There was no difference in oxygen from concentrators over time for both groups, but there was a significant improvement in the FiO2 (p<0.001) for O293 group while a significant decline (p<0.001) for O293N2O. The FiO2/oxygen ratio varied in both groups, reaching a plateau in the O293 group. Pulse oximetry did not fall below 98.5% in either group. The FiO2 in the mixture of O293 and nitrous oxide fell during the observation period although oxygen saturation was higher than 98.5% throughout the study. Concentrators can be considered a stable source of oxygen for use during short anesthetic procedures, either pure or in association with nitrous oxide at 50:50 volume. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  8. Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin

    2012-03-15

    Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to the near surface region of n-TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The transfer process is triggered by the oxidative decomposition of PTFE. Black-Right-Pointing-Pointer Fluorine incorporation is mediated by the formation of oxygen vacancies. Black-Right-Pointing-Pointer The sequential mechanisms are verified by XPS, EDXS, HRTEM, TG and DRS.« less

  9. The Use of Molecular Oxygen in Pharmaceutical Manufacturing: Is Flow the Way to Go?

    PubMed

    Hone, Christopher A; Roberge, Dominique M; Kappe, C Oliver

    2017-01-10

    Molecular oxygen is arguably the greenest reagent available to the organic chemist. Most commonly, a diluted form of oxygen gas, consisting of less than 10 % O 2 in N 2 ("synthetic air"), is used in pharmaceutical and fine chemical batch manufacturing to effectively address safety concerns when handling molecular oxygen. Concentrations of O 2 in N 2 below 10 % are generally required to prevent the risk of combustions in the presence of flammable organic solvents ("limiting oxygen concentration"). Nonetheless, the use of pure oxygen is more efficient than using O 2 diluted with N 2 and can often provide enhanced reaction rates, resulting in significant improvements in product quality and process efficiency. This Concept takes into account recent studies to make the argument that, for liquid-phase aerobic oxidations, pure oxygen can indeed be handled safely on large scale by employing continuous-flow reactors, while also providing highly convincing synthetic and manufacturing benefits. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A facile photoassisted route to synthesis N, F-codoped oxygen-deficient TiO2 with enhanced photocatalytic performance under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Xiaolan; Han, Ying; Song, Xuezhi; Tan, Zhenquan

    2018-03-01

    Herein, we report a facile and economical photoassisted strategy for synthesizing the highly active N, F-codoped oxygen-deficient TiO2 with coexposed {001} and {101} facets. NH4TiOF3 mesocrystals were used to act as the resource of dopants and the intermediate to fabricate TiO2 with highly active {001} facets. Comprehensive analysis based on X-ray photoelectron spectroscopy, transmission electron microscopy and electron spin resonances manifested that F, N and oxygen vacancies were simultaneously introduced to TiO2 through the photoassisted process. The test of phenol and Rhodamine B (RhB) degradation under visible light demonstrates that the as-prepared N, F codoped oxygen-deficient TiO2 exhibits higher photocatalytic activity than its references. The increased photocatalytic performances results from the synergetic effect of the induced Vo's and N, F codoping in TiO2 with co-exposed {001} and {101} facets, favoring the visible light utilization as well as the separation of photogenerated carriers. This strategy is expected to provide a new insight into the design of high performance photocatalysts.

  11. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    NASA Astrophysics Data System (ADS)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between Denitrification Intermediates and Water. Rapid Commun. Mass Spec. 2014, 28, 377. [3] K. L. Casciotti, J. K. Böhlke, M. R. McIlvin, S. J. Mroczkowski, J. E. Hannon. Oxygen Isotopes in Nitrite: Analysis, Calibration, and Equilibration. Anal. Chem. 2007, 79, 2427. [4] E. Aerssens, J. M. Tiedje, B. A. Averill. Isotope Labeling Studies on the Mechanisms of N-bond Formation in Denitrification J. Biol. Chem. 1986, 261, 9652. [5] D. M. Snider, J. J. Venkiteswaran, S. L. Schiff, J. Spoelstra. Deciphering the oxygen isotope composition of nitrous oxide produced by nitrification. Glob. Change Biol. 2012, 18, 356.

  12. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions.

    PubMed

    Qu, Zhi; Bakken, Lars R; Molstad, Lars; Frostegård, Åsa; Bergaust, Linda L

    2016-09-01

    Oxygen is known to repress denitrification at the transcriptional and metabolic levels. It has been a common notion that nitrous oxide reductase (N2 OR) is the most sensitive enzyme among the four N-oxide reductases involved in denitrification, potentially leading to increased N2 O production under suboxic or fluctuating oxygen conditions. We present detailed gas kinetics and transcription patterns from batch culture experiments with Paracoccus denitrificans, allowing in vivo estimation of e(-) -flow to O2 and N2 O under various O2 regimes. Transcription of nosZ took place concomitantly with that of narG under suboxic conditions, whereas transcription of nirS and norB was inhibited until O2 levels approached 0 μM in the liquid. Catalytically functional N2 OR was synthesized and active in aerobically raised cells transferred to vials with 7 vol% O2 in headspace, but N2 O reduction rates were 10 times higher when anaerobic pre-cultures were subjected to the same conditions. Upon oxygen exposure, there was an incomplete and transient inactivation of N2 OR that could be ascribed to its lower ability to compete for electrons compared with terminal oxidases. The demonstrated reduction of N2 O at high O2 partial pressure and low N2 O concentrations by a bacterium not known as a typical aerobic denitrifier may provide one clue to the understanding of why some soils appear to act as sinks rather than sources for atmospheric N2 O. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Formation of reactive oxygen by N2O decomposition over binuclear cationic sites of Fe-ferrierite zeolite: Periodic DFT + U study

    NASA Astrophysics Data System (ADS)

    Avdeev, Vasilii I.; Bedilo, Alexander F.

    2018-03-01

    The electronic nature of sites over Fe-ferrierite zeolite stabilizing active α-oxygen is analyzed by the periodic DFT + U approach. It is shown that two antiferromagnetically coupled Fe2+ cations with bridging OH-bonds form a stable bi-nuclear site of the [Fe2+<2OH>Fe2+] doped FER complex. Frontier orbitals of this complex populated by two electrons with minority spins are localized in the bandgap. As a result, [Fe2+<2OH>Fe2+] unit acquires the properties of a binuclear Lewis acid dipolarophile for 1,3-dipole N2O. First reaction step of N2O decomposition follows the Huisgen‧s concept of the 1,3-dipolar cycloaddition concept followed by the formation of reactive oxygen species Fesbnd O.

  14. Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1

    NASA Astrophysics Data System (ADS)

    Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed

    2016-01-01

    In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.

  15. Temperature-programmed desorption study of NO reactions on rutile TiO 2(110)-1×1

    DOE PAGES

    Kim, Boseong; Dohnalek, Zdenek; Szanyi, Janos; ...

    2016-02-24

    In this study, systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO 2(110)-1 × 1 surface reveal several distinct reaction channels in a temperature range of 50–500 K. NO readily reacts on TiO 2(110) to form N 2O, which desorbs between 50 and 200 K (LT N 2O channels), which leaves the TiO 2 surface populated with adsorbed oxygen atoms (O a) as a by-product of N 2O formation. In addition, we observe simultaneous desorption peaks of NO and N 2O at 270 K (HT1 N 2O) and 400 K (HT2 N 2O), respectively, both ofmore » which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO 2(110) surface above 500 K or higher, while the surface may be populated with Oa's and oxidized products such as NO 2 and NO 3. The adsorbate-free TiO 2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N 2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  16. Nitrous oxide/oxygen inhalation provides effective analgesia during the administration of tumescent local anaesthesia for endovenous laser ablation.

    PubMed

    Meier, Thomas Oleg; Jacomella, Vincenzo; Clemens, Robert Karl Josef; Amann-Vesti, Beatrice

    2015-11-01

    Tumescent anaesthesia (TA) is an important but sometimes very painful step during endovenous thermal ablation of incompetent veins. The aim of this study was to examine whether the use of fixed 50% nitrous oxide/oxygen mixture (N2O/O2), also called equimolar mixture of oxygen and nitrous oxide, reduces pain during the application of TA. Patients undergoing endovenous laser ablation (EVLA) of incompetent saphenous veins were included. Thirty consecutive patients inhaled N2O/O2 during the application of TA. Thirty consecutive patients received TA alone (controls). Patients were asked to complete a questionnaire immediately after the intervention to assess satisfaction with the intervention and pain-levels during the different steps of the intervention (0=not at all, 10=very much). Adverse events during the treatment were monitored. 30 patients (14 men, mean age of 44 years) were included in the N2O/O2 group and 30 patients (9 men, mean age 48 years) were included in the control group. In the N2O/O2 group a significantly lower pain score was noted (mean 2.45 points, range 0-6) compared to the controls (mean 4.3 points, range 1-9, p<0.001). Overall, 64.5% of the patients were perfectly satisfied with the N2O/O2-Inhalation. Only 4 patients receiving N2O/O2 complained of adverse effects such as unpleasant loss of control (2 patients), headache (1 patient) and dizziness (1 patient). N2O/O2 is a safe and effective method to reduce pain during the application of tumescent anaesthesia for EVLA.

  17. Comparison of adenosine, isoflurane, and desflurane on myocardial tissue oxygen pressure during coronary artery constriction in dogs.

    PubMed

    Hoffman, William E; Albrecht, Ronald F; Jonjev, Zivojin S

    2003-08-01

    To compare adenosine-, isoflurane-, or desflurane-induced hypotension with and without left anterior descending (LAD) coronary artery constriction for the effects on myocardial tissue oxygen pressure (PmO(2)) in dogs. Prospective, randomized, nonblinded. University teaching hospital. Male nonpurpose-bred dogs (n = 18). Dogs were anesthetized with 1.5% isoflurane (n = 12) or 8% desflurane (n = 6). A flow probe and balloon occluder were placed on the LAD artery. A probe that measured myocardial oxygen pressure was inserted into the middle myocardium in the LAD region. Myocardial oxygen consumption (MVO(2)) was calculated as LAD flow x arterial minus coronary sinus oxygen content. Measures were made during hypotension produced by adenosine infusion, 2.8% isoflurane, or 14% desflurane with and without LAD constriction to decrease blood flow 30%. Without LAD artery constriction, adenosine infusion increased LAD flow 90% and MVO(2) 70%, 2.8% isoflurane produced no change in MVO(2), and 14% desflurane decreased MVO(2) 25%, but no treatment changed PmO(2). LAD artery constriction decreased PmO(2) 50% by itself. Adenosine infusion during LAD constriction decreased tissue oxygen pressure an additional 60%, 2.8% isoflurane produced no change, and 14% desflurane increased PmO(2) 100%. There was an inverse relationship between the effect of adenosine, 2.8% isoflurane, and 14% desflurane on MVO(2) and PmO(2) during ischemia. This is consistent with reports that increasing oxygen demand worsens myocardial ischemia.

  18. Spectroscopic Observation and Analysis of H II Regions in M33 with MMT: Temperatures and Oxygen Abundances

    NASA Astrophysics Data System (ADS)

    Lin, Zesen; Hu, Ning; Kong, Xu; Gao, Yulong; Zou, Hu; Wang, Enci; Cheng, Fuzhen; Fang, Guanwen; Lin, Lin; Wang, Jing

    2017-06-01

    The spectra of 413 star-forming (or H II) regions in M33 (NGC 598) were observed using the multifiber spectrograph of Hectospec at the 6.5 m Multiple Mirror Telescope. Using this homogeneous spectra sample, we measured the intensities of emission lines and some physical parameters, such as electron temperatures, electron densities, and metallicities. Oxygen abundances were derived via the direct method (when available) and two empirical strong-line methods, namely, O3N2 and N2. At the high-metallicity end, oxygen abundances derived from the O3N2 calibration were higher than those derived from the N2 index, indicating an inconsistency between O3N2 and N2 calibrations. We present a detailed analysis of the spatial distribution of gas-phase oxygen abundances in M33 and confirm the existence of the axisymmetric global metallicity distribution that is widely assumed in the literature. Local variations were also observed and subsequently associated with spiral structures to provide evidence of radial migration driven by arms. Our O/H gradient fitted out to 1.1 R 25 resulted in slopes of -0.17 ± 0.03, -0.19 ± 0.01, and -0.16 ± 0.17 dex {R}25-1, utilizing abundances from O3N2, N2 diagnostics, and a direct method, respectively.

  19. Temperature-programmed desorption study of NO reactions on rutile TiO2(110)-1×1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Boseong; Dohnálek, Zdenek; Szanyi, János

    2016-10-01

    Systematic temperature-programmed desorption (TPD) studies of NO adsorption and reactions on rutile TiO2(110)-1×1 surface reveal several distinct reaction channels in a temperature range of 50 – 500 K. NO readily reacts on TiO2(110) to form N2O which desorbs between 50 and 200 K (LT N2O channels), which leaves the TiO2 surface populated with adsorbed oxygen atoms (Oa) as a byproduct of N2O formation. In addition, we observe simultaneous desorption peaks of NO and N2O at 270 K (HT1 N2O) and 400 K (HT2 N2O), respectively, both of which are attributed to reaction-limited processes. No N-derived reaction product desorbs from TiO2(110)more » surface above 500 K or higher, while the surface may be populated with Oa’s and oxidized products such as NO2 and NO3. The adsorbate-free TiO2 surface with oxygen vacancies can be regenerated by prolonged annealing at 850 K or higher. Detailed analysis of the three N2O desorption yields reveals that the surface species for the HT channels are likely to be various forms of NO dimers.« less

  20. Ion bombardment and adsorption studies on ilmenite (FeTiO3) by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Schulze, P. D.

    1983-01-01

    The effects of 5 KeV argon and oxygen ion bombardment on FeTiO3 (ilmenite) at low temperatures have been studied using X-ray photoelectron spectroscopy (XPS). Also, using this same technique, the adsorption of O2, NO, N2O, and CO at 300 K and the adsorption of O2 and D2O at 150K have been studied. Argon and oxygen ion bombardment of ilmenite have confirmed earlier studies on metal oxides that argon ions generally reduce the anion species while oxygen ions generally oxidize the anion species. The two iron states involved were Fe sup +2 and Fe sup O. The reduction of Ti sup +4 was not verified although a significant shift in the Ti(2p1,3) binding energies toward the metallic state was observed after oxygen ion bombardment at low temperatures. At temperatures above 150K, O2 adsorbs dissociatively on ilmenite while D2O adsorbs molecularly below 170K. Above 300 K No, N2O, and CO do not appear to adsorb dissociatively. Low temperature adsorption of D2O was found to be inhibited by predosing the ilmenite with O2.

  1. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-09-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.

  2. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins.

    PubMed

    Smagghe, Benoit J; Hoy, Julie A; Percifield, Ryan; Kundu, Suman; Hargrove, Mark S; Sarath, Gautam; Hilbert, Jean-Louis; Watts, Richard A; Dennis, Elizabeth S; Peacock, W James; Dewilde, Sylvia; Moens, Luc; Blouin, George C; Olson, John S; Appleby, Cyril A

    2009-12-01

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.

  3. Internal Variations in Empirical Oxygen Abundances for Giant H II Regions in the Galaxy NGC 2403

    NASA Astrophysics Data System (ADS)

    Mao, Ye-Wei; Lin, Lin; Kong, Xu

    2018-02-01

    This paper presents a spectroscopic investigation of 11 {{H}} {{II}} regions in the nearby galaxy NGC 2403. The {{H}} {{II}} regions are observed with a long-slit spectrograph mounted on the 2.16 m telescope at XingLong station of National Astronomical Observatories of China. For each of the {{H}} {{II}} regions, spectra are extracted at different nebular radii along the slit-coverage. Oxygen abundances are empirically estimated from the strong-line indices R23, N2O2, O3N2, and N2 for each spectrophotometric unit, with both observation- and model-based calibrations adopted into the derivation. Radial profiles of these diversely estimated abundances are drawn for each nebula. In the results, the oxygen abundances separately estimated with the prescriptions on the basis of observations and models, albeit from the same spectral index, systematically deviate from each other; at the same time, the spectral indices R23 and N2O2 are distributed with flat profiles, whereas N2 and O3N2 exhibit apparent gradients with the nebular radius. Because our study naturally samples various ionization levels, which inherently decline at larger radii within individual {{H}} {{II}} regions, the radial distributions indicate not only the robustness of R23 and N2O2 against ionization variations but also the sensitivity of N2 and O3N2 to the ionization parameter. The results in this paper provide observational corroboration of the theoretical prediction about the deviation in the empirical abundance diagnostics. Our future work is planned to investigate metal-poor {{H}} {{II}} regions with measurable T e, in an attempt to recalibrate the strong-line indices and consequently disclose the cause of the discrepancies between the empirical oxygen abundances.

  4. Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation

    NASA Astrophysics Data System (ADS)

    Yao, Guisheng; Li, Yong; Jiang, Peng; Jin, Xiuming; Long, Menglong; Qin, Haixia; Kumar, R. Vasant

    2017-04-01

    Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.

  5. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...

    2015-09-21

    Ruddlesden-Popper structured oxides, general form A n+1B nO 3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2), and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO 2 of 10 -1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, andmore » were found to have increased total oxygen vacancy concentration in the order La 0.3Sr 2.7CoFeO 7-δ > LaSr 3Co 1.5Fe 1.5O 10-δ > LaSrCo 0.5Fe 0.5O 4-δ, following the trend predicted for charge compensation upon increasing Sr 2+/La 3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  6. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific

    PubMed Central

    Sun, Xin; Jayakumar, Amal; Ward, Bess B.

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N2O concentration but not O2. Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N2O consumption even in the oxygenated surface water. PMID:28702012

  7. Community Composition of Nitrous Oxide Consuming Bacteria in the Oxygen Minimum Zone of the Eastern Tropical South Pacific.

    PubMed

    Sun, Xin; Jayakumar, Amal; Ward, Bess B

    2017-01-01

    The ozone-depleting and greenhouse gas, nitrous oxide (N 2 O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N 2 O consumption is the last step in canonical denitrification, and is also the least O 2 tolerant step. Community composition of total and active N 2 O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase ( nosZ ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. In addition to nosZ genes related to those of known marine denitrifiers, atypical nosZ genes, related to those of soil bacteria that do not possess a complete denitrification pathway, were also detected, especially in surface waters. The community composition of the total nosZ assemblage was significantly different from the active assemblage. The community composition of the total nosZ assemblage was significantly different between coastal and off-shore stations. The low oxygen assemblages from both stations were similar to each other, while the higher oxygen assemblages were more variable. Community composition of the active nosZ assemblage was also significantly different between stations, and varied with N 2 O concentration but not O 2 . Notably, nosZ assemblages were not only present but also active in oxygenated seawater: the abundance of total and active nosZ bacteria from oxygenated surface water (indicated by nosZ gene copy number) was similar to or even larger than in anoxic waters, implying the potential for N 2 O consumption even in the oxygenated surface water.

  8. The series Bi2Sr2Ca(n-1) Cu(n)O(2n+4) (1 less than or equal to n less than or equal to 5): Phase stability and superconducting properties

    NASA Technical Reports Server (NTRS)

    Deguire, Mark R.; Bansal, Narottam P.; Farrell, David E.; Finan, Valerie; Kim, Cheol J.; Hills, Bethanie J.; Allen, Christopher J.

    1989-01-01

    Phase relations at 850 and 870 C, melting transitions in air, oxygen, and helium were studied for Bi(2.1)Sr(1.9) CuO6 and for the Bi2Sr2Ca(n-1) Cu(n)O(2n+4) for n = 1, 2, 3, 4, 5, and infinity (CaCuO2). Up to 870 C, the n = 2 composition resides in the compatibility tetrahedron bounded by Bi(2+x)(Sr,Ca)(3-y) Cu2O8, (Sr,Ca)14 Cu24O41, Ca2CuO3, and a Bi-Sr-Ca-O phase. The n is greater than or equal to 3 compositions reside in the compatibility tetrahedron Bi(2+x)(Sr,Ca)(3-y) Cu2O8 - (Sr,Ca)14 Cu24O41 - Ca2CuO3 - CuO up to 850 C. However, Bi(2+x)Sr(4-y) Cu3O10 forms for n is greater than or equal to 3 after extended heating at 870 C. Bi(2+x)Sr(2-y) CuO6 and Bi(2+x)(Sr,Ca)(3-y) Cu2O8 melt in air at 914 C and 895 C respectively. During melting, all of the compositions studied lose 1 to 2 percent by weight of oxygen from the reduction of copper. Bi(2+x)Sr(2-y) CuO6, Bi(2+n)(Sr,Ca)(3-y) Cu2O8, and Bi(2+x)(Sr,Ca)(4-y) Cu3O10 exhibit crystallographic alignment in a magnetic field, with the c-axes orienting parallel to the field.

  9. Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean.

    PubMed

    Raes, Eric J; Bodrossy, Levente; Van de Kamp, Jodie; Holmes, Bronwyn; Hardman-Mountford, Nick; Thompson, Peter A; McInnes, Allison S; Waite, Anya M

    2016-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180-250 O2 μmol.kg(-1)) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.

  10. Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction.

    PubMed

    Shui, Jiang-Lan; Karan, Naba K; Balasubramanian, Mahalingam; Li, Shu-You; Liu, Di-Jia

    2012-10-10

    Atomically dispersed Fe/N/C composite was synthesized and its role in controlling the oxygen evolution reaction during Li-O(2) battery charging was studied by use of a tetra(ethylene glycol) dimethyl ether-based electrolyte. Li-O(2) cells using Fe/N/C as the cathode catalyst showed lower overpotentials than α-MnO(2)/carbon catalyst and carbon-only material. Gases evolved during the charge step contained only oxygen for Fe/N/C cathode catalyst, whereas CO(2) was also detected in the case of α-MnO(2)/C or carbon-only material; this CO(2) was presumably generated from electrolyte decomposition. Our results reiterate the catalytic effect in reducing overpotentials, which not only enhances battery efficiency but also improves its lifespan by reducing or eliminating electrolyte decomposition. The structure of the Fe/N/C catalyst was characterized by transmission electron microscopy, scanning transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, and X-ray absorption spectroscopy. Iron was found to be uniformly distributed within the carbon matrix, and on average, Fe was coordinated by 3.3 ± 0.6 and 2.2 ± 0.3 low Z elements (C/N/O) at bond distances of ~1.92 and ~2.09 Å, respectively.

  11. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Assonov, Sergey S.

    2010-01-01

    Measurements of δ(13C) determined on CO2 with an isotope-ratio mass spectrometer (IRMS) must be corrected for the amount of 17O in the CO2. For data consistency, this must be done using identical methods by different laboratories. This report aims at unifying data treatment for CO2 IRMS by proposing (i) a unified set of numerical values, and (ii) a unified correction algorithm, based on a simple, linear approximation formula. Because the oxygen of natural CO2 is derived mostly from the global water pool, it is recommended that a value of 0.528 be employed for the factor λ, which relates differences in 17O and 18O abundances. With the currently accepted N(13C)/N(12C) of 0.011 180(28) in VPDB (Vienna Peedee belemnite) reevaluation of data yields a value of 0.000 393(1) for the oxygen isotope ratio N(17O)/N(16O) of the evolved CO2. The ratio of these quantities, a ratio of isotope ratios, is essential for the 17O abundance correction: [N(17O)/N(16O)]/[N(13C)/N(12C)] = 0.035 16(8). The equation [δ(13C) ≈ 45δVPDB-CO2 + 2 17R/13R (45δVPDB-CO2 – λ46δVPDB-CO2)] closely approximates δ(13C) values with less than 0.010 ‰ deviation for normal oxygen-bearing materials and no more than 0.026 ‰ in extreme cases. Other materials containing oxygen of non-mass-dependent isotope composition require a more specific data treatment. A similar linear approximation is also suggested for δ(18O). The linear approximations are easy to implement in a data spreadsheet, and also help in generating a simplified uncertainty budget.

  12. Skin oxygen tension is improved by immersion in oxygen-enriched water.

    PubMed

    Reading, S A; Yeomans, M; Levesque, C

    2013-12-01

    The perceived health and physiologic functioning of skin depends on adequate oxygen availability. Economical and easily used therapeutic approaches to increase skin oxygenation could improve the subjective appearance of the skin as well as support the management of some cutaneous conditions related to chronic hypoxic ischaemia (e.g. ulcerative wounds). We have tested the hypothesis that the O2 partial pressure of skin (PskO2 ) increases during immersion in water enriched with high levels of dissolved oxygen. A commercially available device was used to produce water containing 45 to 65 mg L(-1) of dissolved O2 . Young adults (YA; n = 7), older adults (OA; n = 13) and older adults with diabetes (OAD; n = 11) completed different experiments that required them to immerse their feet in tap water (<2 mg L(-1) of O2 ; control) or O2 -enriched water (O2 -H2 O; experimental) for 30 min. Transcutaneous oximetry was used to measure PskO2 for 20 min pre- and post-immersion. Pre-immersion mean (standard deviation) PskO2 on the plantar surface of the big toe was 75 (10), 67 (10) and 65 (10) mmHg in YA, OA and OAD, respectively. Post-immersion PskO2 was 244 (25), 193 (28) and 205 (28) mmHg for the same groups. We also show that post-immersion PskO2 varies by location and with advancing age. Water is an effective vehicle for transporting dissolved O2 across the skin surface and could be used as a basis for development of economical therapeutic approaches that improve skin oxygen tension to support skin health and function. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Nitrous Oxide Production and Fluxes from Coastal Sediments under Varying Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Ziebis, W.; Wankel, S. D.; de Beer, D.; Dentinger, J.; Buchwald, C.; Charoenpong, C.

    2014-12-01

    Although coastal zones represent important contributors to the increasing levels of atmospheric nitrous oxide (N2O), it is still unclear which role benthic processes play and whether marine sediments represent sinks or sources for N2O, since interactions among closely associated microbial groups lead to a high degree of variability. In addition, coastal areas are extremely dynamic regions, often exposed to increased nutrient loading and conditions of depleted oxygen. We investigated benthic N2O fluxes and how environmental conditions affect N2O production in different sediments at 2 different geographical locations (German Wadden Sea, a California coastal lagoon). At each location, a total of 32 sediment cores were taken in areas that differed in sediment type, organic content and pore-water nutrient concentrations, as well as in bioturbation activity. Parallel cores were incubated under in-situ conditions, low oxygen and increased nitrate levels for 10 days. Zones of N2O production and consumption were identified in intact cores by N2O microprofiles at the beginning and end of the experiments. In a collaborative effort to determine the dominant sources of N2O, samples were taken throughout the course of the experiments for the determination of the isotopic composition of N2O (as well as nitrate, nitrite and ammonium). Our results indicate that both, nitrate addition and low oxygen conditions in the overlying water, caused an increase of subsurface N2O production in most sediments, with a high variability between different sediment types. N2O production in the sediments was accompanied by N2O consumption, reducing the fluxes to the water column. In general, organic rich sediments showed the strongest response to environmental changes with increased production and efflux of N2O into the overlying water. Bioturbation activity added to the complexity of N2O dynamics by an increase in nitrification-denitrification processes, as well as enhanced pore-water transport. The results will be used in a metabolic modeling approach that will allow numerical simulation and prediction of sedimentary N2O dynamics.

  14. Comparison of effects of ProSeal LMA™ laryngeal mask airway cuff inflation with air, oxygen, air:oxygen mixture and oxygen:nitrous oxide mixture in adults: A randomised, double-blind study.

    PubMed

    Sharma, Mona; Sinha, Renu; Trikha, Anjan; Ramachandran, Rashmi; Chandralekha, C

    2016-08-01

    Laryngeal mask airway (LMA) cuff pressure increases when the air is used for the cuff inflation during oxygen: nitrous oxide (O2:N2O) anaesthesia, which may lead to various problems. We compared the effects of different gases for ProSeal LMA™ (PLMA) cuff inflation in adult patients for various parameters. A total of 120 patients were randomly allocated to four groups, according to composition of gases used to inflate the PLMA cuff to achieve 40 cmH2 O cuff pressure, air (Group A), 50% O2 :air (Group OA), 50% O2:N2O (Group ON) and 100% O2 (Group O). Cuff pressure, cuff volume and ventilator parameters were monitored intraoperatively. Pharyngolaryngeal parameters were assessed at 1, 2 and 24 h postoperatively. Statistical analysis was performed using ANOVA, Fisher's exact test and step-wise logistic regression. Cuff pressure significantly increased at 10, 15 and 30 min in Group A, OA and O from initial pressure. Cuff pressure decreased at 5 min in Group ON (36.6 ± 3.5 cmH2 O) (P = 0.42). PLMA cuff volume increased in Group A, OA, O, but decreased in Group ON (6.16 ± 2.8 ml [P < 0.001], 4.7 ± 3.8 ml [P < 0.001], 1.4 ± 3.19 ml [P = 0.023] and - 1.7 ± 4.9 ml [P = 0.064], respectively), from basal levels. Ventilatory parameters were comparable in all four groups. There was no significant association between sore throat and cuff pressure, with odds ratio 1.002. Cuff inflation with 50% O2:N2O mixture provided more stable cuff pressure in comparison to air, O2 :air, 100% O2 during O2:N2O anaesthesia. Ventilatory parameters did not change with variation in PLMA cuff pressure. Post-operative sore throat had no correlation with cuff pressure.

  15. Electrical and structural properties of TiO2-δ thin film with oxygen vacancies prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Suzuki, Naoya; Tsuchiya, Takashi; Shimazu, Yuichi; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    Anatase TiO2-δ thin film was prepared by RF magnetron sputtering using oxygen radical and Ti-metal target. Degrees of the TiO2-δ crystal orientation in the thin film depends of the oxygen gas pressure (P\\text{O2}) in the radical gun. The (004)- and (112)-oriented TiO2-δ thin films crystallized without postannealing have the mixed valence Ti4+/Ti3+ state. The electrical conductivities, which corresponds to n-type oxide semiconductor, is higher in the case of (004)-oriented TiO2-δ thin film containing with high concentration of oxygen vacancy. The donor band of TiO2-δ thin film is observed at ˜1.0 eV from the Fermi level (E F). The density-of-state at E F is higher in (004)-oriented TiO2-δ thin film. The above results indicate that the oxygen vacancies can control by changing the P\\text{O2} of the oxygen radical.

  16. Effects of post-deposition annealing on sputtered SiO2/4H-SiC metal-oxide-semiconductor

    NASA Astrophysics Data System (ADS)

    Lee, Suhyeong; Kim, Young Seok; Kang, Hong Jeon; Kim, Hyunwoo; Ha, Min-Woo; Kim, Hyeong Joon

    2018-01-01

    Reactive sputtering followed by N2, NH3, O2, and NO post-deposition annealing (PDA) of SiO2 on 4H-SiC was investigated in this study. The results of ellipsometry, an etching test, and X-ray photoemission spectroscopy showed that N2 and NH3 PDA nitrified the SiO2. Devices using N2 and NH3 PDA exhibited a high gate leakage current and low breakdown field due to oxygen vacancies and incomplete oxynitride. SiO2/4H-SiC MOS capacitors were also fabricated and their electrical characteristics measured. The average breakdown fields of the devices using N2, NH3, O2, and NO PDA were 0.12, 0.17, 4.71 and 2.63 MV/cm, respectively. The shifts in the flat-band voltage after O2 and NO PDA were 0.95 and -2.56 V, respectively, compared with the theoretical value. The extracted effective oxide charge was -4.11 × 1011 cm-2 for O2 PDA and 1.11 × 1012 cm-2 for NO PDA. NO PDA for 2 h at 1200 °C shifted the capacitance-voltage curve in the negative direction. The oxygen containing PDA showed better electrical properties than non-oxygen PDA. The sputtering method described can be applied to 4H-SiC MOS fabrication.

  17. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.

    PubMed

    Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G

    2013-12-01

    Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.

  18. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection.

    PubMed

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate-malate or N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)-ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate-malate as substrate. As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate-malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD-ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process.

  19. α-MnO2 nanorods supported on porous graphitic carbon nitride as efficient electrocatalysts for lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Hang, Yang; Zhang, Chaofeng; Luo, Xiaoman; Xie, Yingshen; Xin, Sen; Li, Yutao; Zhang, Dawei; Goodenough, John B.

    2018-07-01

    Synthesis of α-MnO2 nanorods grown on porous graphitic carbon nitride (g-C3N4) sheets via a facile hydrothermal treatment gives a porous composite exhibiting higher activity for an air cathode than the individual component of α-MnO2 or porous g-C3N4 for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The porous g-C3N4/α-MnO2 composite also exhibits better performance in a Li-air battery than pure α-MnO2 or XC-72 carbon catalysts, which includes superior discharge capacity, low voltage gap and high cycle stability. The α-MnO2 nanorods catalyze the OER and the porous g-C3N4 sheets catalyze the ORR.

  20. Analysis of High Frequency Site-Specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    McClellan, M. J.; Harris, E. J.; Olszewski, W.; Ono, S.; Prinn, R. G.

    2014-12-01

    Atmospheric nitrous oxide (N2O) significantly impacts Earth's climate due to its dual role as an inert potent greenhouse gas in the troposphere and as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. However, there remain significant uncertainties in the global budget of this gas. The marked spatial divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on climate. Source and sink processes of N2O lead to varying concentrations of N2O isotopologues (14N14N16O, 14N15N16O, 15N14N16O, and 14N14N18O being measured) due to preferential isotopic production and elimination in different environments. Estimation of source and sink fluxes can be improved by combining isotopically resolved N2O observations with simulations using a chemical transport model with reanalysis meteorology and treatments of isotopic signatures of specific surface sources and stratospheric intrusions. We present the first few months of site-specific nitrogen and oxygen isotopic composition data from the Stheno-TILDAS instrument (Harris et al, 2013) at Mace Head, Ireland and compare these to results from MOZART-4 (Model for Ozone and Related Chemical Tracers, version 4) chemical transport model runs including N2O isotopic fractionation processes and reanalysis meterological fields (NCEP/NCAR, MERRA, and GEOS-5). This study forms the basis for future inverse modeling experiments that will improve the accuracy of isotopically differentiated N2O emission and loss estimates. Ref: Harris, E., D. Nelson, W. Olszewski, M. Zahniser, K. Potter, B. McManus, A. Whitehill, R. Prinn, and S. Ono, Development of a spectroscopic technique for continuous online monitoring of oxygen and site-specific nitrogen isotopic composition of atmospheric nitrous oxide, Analytical Chemistry, 2013; DOI: 10.1021/ac403606u.

  1. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    PubMed

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-05-04

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cerebral ischemia and reperfusion increases the heterogeneity of local oxygen supply/consumption balance.

    PubMed

    Weiss, Harvey R; Grayson, Jeremy; Liu, Xia; Barsoum, Sylviana; Shah, Harsh; Chi, Oak Z

    2013-09-01

    After cerebral vessel blockage, local blood flow and O2 consumption becomes lower and oxygen extraction increases. With reperfusion, blood flow is partially restored. We examined the effects of ischemia-reperfusion on the heterogeneity of local venous oxygen saturation in rats in order to determine the pattern of microregional O2 supply/consumption balance in reperfusion. The middle cerebral artery was blocked for 1 hour using the internal carotid approach in 1 group (n=9) and was then reperfused for 2 hours in another group (n=9) of isoflurane-anesthetized rats. Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small vessel arterial and venous oxygen saturations were determined microspectrophotometrically. After 1 hour of ischemia, local cerebral blood flow (92±10 versus 50±10 mL/min per 100 g) and O2 consumption (4.5±0.6 versus 2.7±0.5 mL O2/min per 100 g) decreased compared with the contralateral cortex. Oxygen extraction increased (4.7±0.2 versus 5.4±0.3 mL O2/100 mL) and the variation in small vein (20-60 μm) O2 saturation as determined by its coefficient of variation (=100×SD/mean) increased (5.5 versus 10.5). With 2 hours of reperfusion, the blood flow decrement was reduced and O2 consumption returned to the value in the contralateral cortex. Oxygen extraction remained elevated in the ischemic-reperfused area and the coefficient of variation of small vein O2 saturation increased further (17.3). These data indicated continued reduction of O2 supply/consumption balance with reperfusion. They also demonstrated many small regions of low oxygenation within the reperfused cortical region.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sonny Xiao-zhe

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO 2 plasma or by N + implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn i, a native shallow donor. In NO 2-grown ZnO films, the n-type conductivity is attributed to (N 2) O, a shallow double donor. In NO 2-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N 2O and N 2. Upon annealing, N 2O decomposes intomore » N 2 and O 2. In furnace-annealed samples N 2 redistributes diffusively and forms gaseous N 2 bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N + implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N 2) O and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.« less

  4. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    PubMed Central

    Stewart, Frank J.; Thamdrup, Bo; De Brabandere, Loreto; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward F.

    2014-01-01

    ABSTRACT A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N2 and N2O production by denitrification was achieved at 205 and 297 nM O2, respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O2. This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O2 inhibition kinetics but strongly stimulated N2O production by denitrification. These results identify new O2 thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses. PMID:25352619

  5. Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed that denitrification N gas formation accounted for 21%, dissimilatory nitrate reduction to ammonium for 8%, and microbial immobilization for 73% of nitrate consumption. Overall, our study shows that changes in climate exert feedback on denitrification N gas formation and N gas product ratios via changes in microbial activity at the level of single denitrification steps. The close relationships found between denitrification N gas formation, N gas product ratios and denitrification gene expression suggests a large potential of molecular methods to predict denitrification dynamics in soil.

  6. Vertical segregation among pathways mediating nitrogen loss (N2 and N2O production) across the oxygen gradient in a coastal upwelling ecosystem

    NASA Astrophysics Data System (ADS)

    Galán, Alexander; Thamdrup, Bo; Saldías, Gonzalo S.; Farías, Laura

    2017-10-01

    The upwelling system off central Chile (36.5° S) is seasonally subjected to oxygen (O2)-deficient waters, with a strong vertical gradient in O2 (from oxic to anoxic conditions) that spans a few metres (30-50 m interval) over the shelf. This condition inhibits and/or stimulates processes involved in nitrogen (N) removal (e.g. anammox, denitrification, and nitrification). During austral spring (September 2013) and summer (January 2014), the main pathways involved in N loss and its speciation, in the form of N2 and/or N2O, were studied using 15N-tracer incubations, inhibitor assays, and the natural abundance of nitrate isotopes along with hydrographic information. Incubations were developed using water retrieved from the oxycline (25 m depth) and bottom waters (85 m depth) over the continental shelf off Concepción, Chile. Results of 15N-labelled incubations revealed higher N removal activity during the austral summer, with denitrification as the dominant N2-producing pathway, which occurred together with anammox at all times. Interestingly, in both spring and summer maximum potential N removal rates were observed in the oxycline, where a greater availability of oxygen was observed (maximum O2 fluctuation between 270 and 40 µmol L-1) relative to the hypoxic bottom waters ( < 20 µmol O2 L-1). Different pathways were responsible for N2O produced in the oxycline and bottom waters, with ammonium oxidation and dissimilatory nitrite reduction, respectively, as the main source processes. Ammonium produced by dissimilatory nitrite reduction to ammonium (DNiRA) could sustain both anammox and nitrification rates, including the ammonium utilized for N2O production. The temporal and vertical variability of δ15N-NO3- confirms that multiple N-cycling processes are modulating the isotopic nitrate composition over the shelf off central Chile during spring and summer. N removal processes in this coastal system appear to be related to the availability and distribution of oxygen and particles, which are a source of organic matter and the fuel for the production of other electron donors (i.e. ammonium) and acceptors (i.e. nitrate and nitrite) after its remineralization. These results highlight the links between several pathways involved in N loss. They also establish that different mechanisms supported by alternative N substrates are responsible for substantial accumulation of N2O, which are frequently observed as hotspots in the oxycline and bottom waters. Considering the extreme variation in oxygen observed in several coastal upwelling systems, these findings could help to understand the ecological and biogeochemical implications due to global warming where intensification and/or expansion of the oceanic OMZs is projected.

  7. A Search for O2 in CO-Depleted Molecular Cloud Cores With Herschel

    NASA Technical Reports Server (NTRS)

    Wirstroem, Eva S.; Charnley, Steven B.; Cordiner, Martin; Ceccarelli, Cecilia

    2016-01-01

    The general lack of molecular oxygen in molecular clouds is an outstanding problem in astrochemistry. Extensive searches with the Submillimeter Astronomical Satellite, Odin, and Herschel have only produced two detections; upper limits to the O2 abundance in the remaining sources observed are about 1000 times lower than predicted by chemical models. Previous atomic oxygen observations and inferences from observations of other molecules indicated that high abundances of O atoms might be present in dense cores exhibiting large amounts of CO depletion. Theoretical arguments concerning the oxygen gas-grain interaction in cold dense cores suggested that, if O atoms could survive in the gas after most of the rest of the heavy molecular material has frozen out onto dust, then O2 could be formed efficiently in the gas. Using Herschel HIFI, we searched a small sample of four depletion cores-L1544, L694-2, L429, and Oph D-for emission in the low excitation O2 N(sub J)?=?3(sub 3)-1(sub 2) line at 487.249 GHz. Molecular oxygen was not detected and we derive upper limits to its abundance in the range of N(O2)/N (H2) approx. = (0.6-1.6) x10(exp -7). We discuss the absence of O2 in the light of recent laboratory and observational studies.

  8. Highly efficient low-temperature plasma-assisted modification of TiO2 nanosheets with exposed {001} facets for enhanced visible-light photocatalytic activity.

    PubMed

    Li, Beibei; Zhao, Zongbin; Zhou, Quan; Meng, Bo; Meng, Xiangtong; Qiu, Jieshan

    2014-11-03

    Anatase TiO2 nanosheets with exposed {001} facets have been controllably modified under non-thermal dielectric barrier discharge (DBD) plasma with various working gas, including Ar, H2 , and NH3 . The obtained TiO2 nanosheets possess a unique crystalline core/amorphous shell structure (TiO2 @TiO2-x ), which exhibit the improved visible and near-infrared light absorption. The types of dopants (oxygen vacancy/surface Ti(3+) /substituted N) in oxygen-deficient TiO2 can be tuned by controlling the working gases during plasma discharge. Both surface Ti(3+) and substituted N were doped into the lattice of TiO2 through NH3 plasma discharge, whereas the oxygen vacancy or Ti(3+) (along with the oxygen vacancy) was obtained after Ar or H2 plasma treatment. The TiO2 @TiO2-x from NH3 plasma with a green color shows the highest photocatalytic activity under visible-light irradiation compared with the products from Ar plasma or H2 plasma due to the synergistic effect of reduction and simultaneous nitridation in the NH3 plasma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-inspired oxygen concentration further impairs opioid-induced respiratory depression.

    PubMed

    Niesters, M; Mahajan, R P; Aarts, L; Dahan, A

    2013-05-01

    Hyperoxaemia depresses the output of peripheral and central chemoreceptors. Patients treated with opioids often receive supplemental oxygen to avert possible decreases in oxygen saturation (Sp(O2)).We examined the effect of a single dose of remifentanil in healthy volunteers inhaling room air vs air enriched with 50% oxygen. Twenty healthy volunteers received i.v. 50 mg remifentanil (infused over 60 s) at anormoxic (N) or hyperoxic (FI(O2) 0.5, H) background on separate occasions. Minute ventilation (Vi), respiratory rate (RR), end-tidal PC(O2), and Sp(O2) were collected on a breath to-breath basis. The occurrence of apnoea was recorded. During normoxia, remifentanil decreased Vi from 7.4 (1.3) [mean (SD)] to 2.2 (1.2) litre min 21 (P,0.01), and during hyperoxia from 7.9 (1.0) to 1.2 (1.2) litre min 21 (P,0.01; H vs N: P,0.001). RR decreased from 13.1 (2.9) to 6.1 (2.8) bpm during N (P,0.01) and from 13.2 (3.0) to 3.6 (4.0) bpm during H (P,0.01; H vs N: P,0.01). During normoxia, Sp(O2) decreased from 98.4 (1.5) to 88.6 (6.7)% (P,0.01), while during hyperoxia, Sp(O2) changed from 99.7 (0.7) to 98.7 (1.0)% (P,0.001). Apnoea developed in two subjects during normoxia and 10 during hyperoxia. Respiratory depression from remifentanil is more pronounced in hyperoxia than normoxia as determined from minute ventilation, end-tidal PC(O2), and RR. During hyperoxia, respiratory depression may be masked when measuring Sp(O2) as pulse oximetry remains in normal values during the first minutes of respiratory depression.

  10. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  11. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.

    2018-05-01

    The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.

  12. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge.

    PubMed

    Peng, Lai; Ni, Bing-Jie; Ye, Liu; Yuan, Zhiguo

    2015-04-15

    Both nitrite [Formula: see text] and dissolved oxygen (DO) play important roles in nitrous oxide (N2O) production by ammonia oxidizing bacteria (AOB). However, few studies focused on the combined effect of them on N2O production by AOB as well as the corresponding mechanisms. In this study, N2O production by an enriched nitrifying sludge, consisting of both AOB and nitrite-oxidizing bacteria (NOB), was investigated under various [Formula: see text] and DO concentrations. At each investigated DO level, both the biomass specific N2O production rate and the N2O emission factor (the ratio between N2O nitrogen emitted and the ammonium nitrogen converted) increased as [Formula: see text] concentration increased from 3 mg N/L to 50 mg N/L. However, at each investigated [Formula: see text] level, the maximum biomass specific N2O production rate occurred at DO of 0.85 mg O2/L, while the N2O emission factor decreased as DO increased from 0.35 to 3.5 mg O2/L. The analysis of the process data using a mathematical N2O model incorporating both the AOB denitrification and hydroxylamine (NH2OH) oxidation pathways indicated that the contribution of AOB denitrification pathway increased as [Formula: see text] concentration increased, but decreased as DO concentration increased, accompanied by a corresponding change in the contribution of NH2OH oxidation pathway to N2O production. The AOB denitrification pathway was predominant in most cases, with the NH2OH oxidation pathway making a comparable contribution only at high DO level (e.g. 3.5 mg O2/L). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Magnetic properties of nitrogen-doped ZrO2: Theoretical evidence of absence of room temperature ferromagnetism

    PubMed Central

    Albanese, Elisa; Leccese, Mirko; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2016-01-01

    N-dopants in bulk monoclinic ZrO2 and their magnetic interactions have been investigated by DFT calculations, using the B3LYP hybrid functional. The electronic and magnetic properties of the paramagnetic N species, substitutionals and interstitials, are discussed. Their thermodynamic stability has been estimated as a function of the oxygen partial pressure. At 300 K, N prefers interstitial sites at any range of oxygen pressure, while at higher temperatures (700–1000 K), oxygen poor-conditions facilitate substitutional dopants. We have considered the interaction of two N defects in various positions in order to investigate the possible occurrence of ferromagnetic ordering. A very small magnetic coupling constant has been calculated for several 2N-ZrO2 configurations, thus demonstrating that magnetic ordering can be achieved only at very low temperatures, well below liquid nitrogen. Furthermore, when N atoms replace O at different sites, resulting in slightly different positions of the corresponding N 2p levels, a direct charge transfer can occur between the two dopants with consequent quenching of the magnetic moment. Another mechanism that contributes to the quenching of the N magnetic moments is the interplay with oxygen vacancies. These effects contribute to reduce the concentration of magnetic impurities, thus limiting the possibility to establish magnetic ordering. PMID:27527493

  14. Field study of nitrous oxide production with in situ aeration in a closed landfill site.

    PubMed

    Nag, Mitali; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Xiaoli, Chai

    2016-03-01

    Nitrous oxide (N(2)O) has gained considerable attention as a contributor to global warming and depilation of stratospheric ozone layer. Landfill is one of the high emitters of greenhouse gas such as methane and N(2)O during the biodegradation of solid waste. Landfill aeration has been attracted increasing attention worldwide for fast, controlled and sustainable conversion of landfills into a biological stabilized condition, however landfill aeration impel N(2)O emission with ammonia removal. N(2)O originates from the biodegradation, or the combustion of nitrogen-containing solid waste during the microbial process of nitrification and denitrification. During these two processes, formation of N(2)O as a by-product from nitrification, or as an intermediate product of denitrification. In this study, air was injected into a closed landfill site and investigated the major N(2)O production factors and correlations established between them. The in-situ aeration experiment was carried out by three sets of gas collection pipes along with temperature probes were installed at three different distances of one, two and three meter away from the aeration point; named points A-C, respectively. Each set of pipes consisted of three different pipes at three different depths of 0.0, 0.75 and 1.5 m from the bottom of the cover soil. Landfill gases composition was monitored weekly and gas samples were collected for analysis of nitrous oxide concentrations. It was evaluated that temperatures within the range of 30-40°C with high oxygen content led to higher generation of nitrous oxide with high aeration rate. Lower O(2) content can infuse N(2)O production during nitrification and high O(2) inhibit denitrification which would affect N(2)O production. The findings provide insights concerning the production potentials of N(2)O in an aerated landfill that may help to minimize with appropriate control of the operational parameters and biological reactions of N turnover. Investigation of nitrous oxide production potential during in situ aeration in an old landfill site revealed that increased temperatures and oxygen content inside the landfill site are potential factors for nitrous oxide production. Temperatures within the range of optimum nitrification process (30-40°C) induce nitrous oxide formation with high oxygen concentration as a by-product of nitrogen turnover. Decrease of oxygen content during nitrification leads increase of nitrous oxide production, while temperatures above 40°C with moderate and/or low oxygen content inhibit nitrous oxide generation.

  15. Paired N and O isotopic analysis of nitrate and nitrite in the Arabian Sea oxygen deficient zone

    NASA Astrophysics Data System (ADS)

    Martin, T. S.; Casciotti, K. L.

    2017-03-01

    The Arabian Sea is home to one of the three main oceanic oxygen deficient zones (ODZs). We present paired nitrogen (N) and oxygen (O) isotope measurements of nitrate (NO3-) and nitrite (NO2-) from the central Arabian Sea in order to understand the effects of N biogeochemistry on the distribution of these species in the low oxygen waters. Within the ODZ, NO2- accumulated in a secondary NO2- maximum (SNM), though the shape and magnitude of the SNM, along with the isotopic composition of NO3- and NO2-, were highly dependent on the location within the ODZ. We also explored water mass mixing within the Arabian Sea as an explanatory factor in the distribution of NO2- in the SNM. The intrusion of Persian Gulf Water at depth may influence the shape of the NO2- peak by introducing small amounts of dissolved oxygen (O2), favoring NO2- oxidation. There was also evidence that vertical mixing may play a role in shaping the top of the SNM peak. Finally, we present evidence for NO2- oxidation and NO2- reduction co-occurring within the ODZ, as has been previously suggested in the Arabian Sea, as well as in other ODZs. The decoupling of the N and O isotopes of NO3-, deviating from the expected 1:1 ratio for dissimilatory NO3- reduction, indicates that NO2- oxidation has a significant influence on the isotopic composition of NO3-. Additionally, the N isotopes of NO2- were generally fit well by Rayleigh curves for NO2- oxidation. However, the removal of dissolved inorganic nitrogen (DIN) within the domain reflects the importance of NO2- reduction to N2.

  16. Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans.

    PubMed

    Ibaraki, Masanobu; Shinohara, Yuki; Nakamura, Kazuhiro; Miura, Shuichi; Kinoshita, Fumiko; Kinoshita, Toshibumi

    2010-07-01

    Regional cerebral blood flow (CBF) and oxygen metabolism can be measured by positron emission tomography (PET) with (15)O-labeled compounds. Hemoglobin (Hb) concentration of blood, a primary determinant of arterial oxygen content (C(a)O(2)), influences cerebral circulation. We investigated interindividual variations of CBF, cerebral blood volume (CBV), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO(2)) in relation to Hb concentration in healthy human volunteers (n=17) and in patients with unilateral steno-occlusive disease (n=44). For the patients, data obtained only from the contralateral hemisphere (normal side) were analyzed. The CBF and OEF were inversely correlated with Hb concentration, but CMRO(2) was independent of Hb concentration. Oxygen delivery defined as a product of C(a)O(2) and CBF (C(a)O(2) CBF) increased with a rise of Hb concentration. The analysis with a simple oxygen model showed that oxygen diffusion parameter (L) was constant over the range of Hb concentration, indicating that a homeostatic mechanism controlling CBF is necessary to maintain CMRO(2). The current findings provide important knowledge to understand the control mechanism of cerebral circulation and to interpret the (15)O PET data in clinical practice.

  17. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction.

    PubMed

    Wang, Jing; Huang, Zhengqing; Liu, Wei; Chang, Chunran; Tang, Haolin; Li, Zhijun; Chen, Wenxing; Jia, Chunjiang; Yao, Tao; Wei, Shiqiang; Wu, Yuen; Li, Yadong

    2017-12-06

    We develop a host-guest strategy to construct an electrocatalyst with Fe-Co dual sites embedded on N-doped porous carbon and demonstrate its activity for oxygen reduction reaction in acidic electrolyte. Our catalyst exhibits superior oxygen reduction reaction performance, with comparable onset potential (E onset , 1.06 vs 1.03 V) and half-wave potential (E 1/2 , 0.863 vs 0.858 V) than commercial Pt/C. The fuel cell test reveals (Fe,Co)/N-C outperforms most reported Pt-free catalysts in H 2 /O 2 and H 2 /air. In addition, this cathode catalyst with dual metal sites is stable in a long-term operation with 50 000 cycles for electrode measurement and 100 h for H 2 /air single cell operation. Density functional theory calculations reveal the dual sites is favored for activation of O-O, crucial for four-electron oxygen reduction.

  18. Effect of Rapid Thermal Annealing on the Electrical Characteristics of ZnO Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Remashan, Kariyadan; Hwang, Dae-Kue; Park, Seong-Ju; Jang, Jae-Hyung

    2008-04-01

    Thin-film transistors (TFTs) with a bottom-gate configuration were fabricated with an RF magnetron sputtered undoped zinc oxide (ZnO) channel layer and plasma-enhanced chemical vapor deposition (PECVD) grown silicon nitride as a gate dielectric. Postfabrication rapid thermal annealing (RTA) and subsequent nitrous oxide (N2O) plasma treatment were employed to improve the performance of ZnO TFTs in terms of on-current and on/off current ratio. The RTA treatment increases the on-current of the TFT significantly, but it also increases its off-current. The off-current of 2×10-8 A and on/off current ratio of 3×103 obtained after the RTA treatment were improved to 10-10 A and 105, respectively, by the subsequent N2O plasma treatment. The better device performance can be attributed to the reduction of oxygen vacancies at the top region of the channel due to oxygen incorporation from the N2O plasma. X-ray photoelectron spectroscopy (XPS) analysis of the TFT samples showed that the RTA-treated ZnO surface has more oxygen vacancies than as-deposited samples, which results in the increased drain current. The XPS study also showed that the subsequent N2O plasma treatment reduces oxygen vacancies only at the surface of ZnO so that the better off-current and on/off current ratio can be obtained.

  19. High-Resolution Electron Energy Loss Studies of Oxygen, Hydrogen, Nitrogen, Nitric Oxide, and Nitrous Oxide Adsorption on Germanium Surfaces.

    NASA Astrophysics Data System (ADS)

    Entringer, Anthony G.

    The first high resolution electron energy loss spectroscopy (HREELS) studies of the oxidation and nitridation of germanium surfaces are reported. Both single crystal Ge(111) and disordered surfaces were studied. Surfaces were exposed to H, O_2, NO, N _2O, and N, after cleaning in ultra-high vacuum. The Ge surfaces were found to be non-reactive to molecular hydrogen (H_2) at room temperature. Exposure to atomic hydrogen (H) resulted hydrogen adsorption as demonstrated by the presence of Ge-H vibrational modes. The HREEL spectrum of the native oxide of Ge characteristic of nu -GeO_2 was obtained by heating the oxide to 200^circC. Three peaks were observed at 33, 62, and 106 meV for molecular oxygen (O_2) adsorbed on clean Ge(111) at room temperature. These peaks are indicative of dissociative bonding and a dominant Ge-O-Ge bridge structure. Subsequent hydrogen exposure resulted in a shift of the Ge-H stretch from its isolated value of 247 meV to 267 meV, indicative of a dominant +3 oxidation state. A high density of dangling bonds and defects and deeper oxygen penetration at the amorphous Ge surface result in a dilute bridge structure with a predominant +1 oxidation state for similar exposures. Molecules of N_2O decompose at the surfaces to desorbed N_2 molecules and chemisorbed oxygen atoms. In contrast, both oxygen and nitrogen are detected at the surfaces following exposure to NO molecules. Both NO and N_2O appear to dissociate and bond at the top surface layer. Molecular nitrogen (N_2) does not react with the Ge surfaces, however, a precursor Ge nitride is observed at room temperature following exposure to nitrogen atoms and ions. Removal of oxygen by heating of the NO-exposed surface to 550^circC enabled the identification of the Ge-N vibrational modes. These modes show a structure similar to that of germanium nitride. This spectrum is also identical to that of the N-exposed surface heated to 550^circC. Surface phonon modes of the narrow-gap semiconducting compounds Mg _2Sn, Mg_2Ge and Mg _2Si were detected at 29, 32, and 40 meV, respectively. The native oxide of all three show a dominant Mg-O mode at 80 meV. Probable Sn-O, Ge-O, and Si-O modes are also identified. Complete removal of the oxide layer was accomplished only on the Mg_2 Si surface but resulted in no noticeable change in the energy of the surface phonon. Results are compared to the known bulk optical properties of these compounds.

  20. Zinc Tantalum Oxynitride (ZnTaO2N) Photoanode Modified with Cobalt Phosphate Layers for the Photoelectrochemical Oxidation of Alkali Water

    PubMed Central

    T. Weller, Mark

    2018-01-01

    Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO2N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO2N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO2N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV−Vis) diffuse reflectance spectroscopy, and electrochemical techniques. The presence of the CoPi layer significantly improved the PEC performance of water oxidation in an alkaline sulphate solution. The photocurrent-voltage behavior of the CoPi-modified ZnTaO2N anodes was improved, with the influence being more prominent at lower oxidation potentials. A stable photocurrent density of about 2.3 mA·cm−2 at 1.23 V vs. RHE was attained upon visible light illumination. Relative to the ZnTaO2N photoanodes, an almost three-fold photocurrent increase was achieved at the CoPi/ZnTaO2N photoelectrode. Perovskite-based oxynitrides are modified using an oxygen-evolution co-catalyst of CoPi, and provide a new dimension for enhancing the photoactivity of oxygen evolution in solar-assisted water-splitting reactions. PMID:29346306

  1. Absorption of solar radiation by O2 - Implications for O3 and lifetimes of N2O, CFCl3, and CF2Cl2

    NASA Technical Reports Server (NTRS)

    Minschwaner, K.; Salawitch, R. J.; Mcelroy, M. B.

    1993-01-01

    An accurate line-by-line model is used to evaluate effects of absorption in the Schumann-Runge bands of O2 on transmission of UV radiation. The model is used to evaluate rates of photolysis for N2O, CFCl3, and CF2Cl2, and to infer global loss rates and instantaneous lifetimes appropriate for 1980. A parameterized version of the line-by-line model enabling rapid evaluation of transmission in the Schumann-Runge region is described. Photochemical calculations employing the parameterization and constrained by data from the Atmospheric Trace Molecule Spectroscopy experiment are used to examine the budget of odd oxygen. Consistent with previous studies, it is shown that photochemical loss of odd oxygen exceeds production by photolysis of O2 for altitudes above 40 km. The imbalance between production and loss is shown to be consistent with a source of odd oxygen proportional to the product of the mixing ratio and photolysis rate of ozone, which suggests that processes involving vibrationally excited O2 may play an important role in production of odd oxygen.

  2. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.

    PubMed

    Zhang, Zizhong; Long, Jinlin; Xie, Xiuqiang; Lin, Huan; Zhou, Yangen; Yuan, Rusheng; Dai, Wenxin; Ding, Zhengxin; Wang, Xuxu; Fu, Xianzhi

    2012-04-23

    The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dissolved oxygen as a factor influencing nitrogen removal rates in a one-stage system with partial nitritation and Anammox process.

    PubMed

    Cema, G; Płaza, E; Trela, J; Surmacz-Górska, J

    2011-01-01

    A biofilm system with Kaldnes biofilm carrier was used in these studies to cultivate bacteria responsible for both partial nitritation and Anammox processes. Due to co-existence of oxygen and oxygen-free zones within the biofilm depth, both processes can occur in a single reactor. Oxygen that inhibits the Anammox process is consumed in the outer layer of the biofilm and in this way Anammox bacteria are protected from oxygen. The impact of oxygen concentration on nitrogen removal rates was investigated in the pilot plant (2.1 m3), supplied with reject water from the Himmerfjärden Waste Water Treatment Plant. The results of batch tests showed that the highest nitrogen removal rates were obtained for a dissolved oxygen (DO) concentration around 3 g O2 m(-3) At a DO concentration of 4 g O2 m(-3), an increase of nitrite and nitrate nitrogen concentrations in the batch reactor were observed. The average nitrogen removal rate in the pilot plant during a whole operating period oscillated around 1.3 g N m(-2)d(-1) (0.3 +/- 0.1 kg N m(-3)d(-1)) at the average dissolved oxygen concentration of 2.3 g O2 m(-3). The maximum value of a nitrogen removal rate amounted to 1.9 g N m(-2)d(-1) (0.47 kg N m(-3)d(-1)) and was observed for a DO concentration equal to 2.5 g O2 m(-3). It was observed that increase of biofilm thickness during the operational period, had no influence on nitrogen removal rates in the pilot plant.

  4. The Oxidation of AlN in Dry and Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei

    1998-01-01

    The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.

  5. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor.

    PubMed

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-04-29

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5-1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

  6. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; ...

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form A n-1A 2'BnO 3n+1, A n-1A 2'BnX 3n+1; LaSrCo 0.5Fe 0.5O 4-δ (n = 1), La 0.3Sr 2.7CoFeO 7-δ (n = 2) and LaSr 3Co 1.5Fe 1.5O 10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less

  7. Ammonia reactions with the stored oxygen in a commercial lean NO x trap catalyst

    DOE PAGES

    Bartova, Sarka; Mracek, David; Koci, Petr; ...

    2014-10-12

    Ammonia is an important intermediate of the NO x reduction in a NO x storage and reduction catalyst (aka lean NO x trap). NH 3 formed under rich conditions in the reduced front part of the catalyst is transported by convection downstream to the unregenerated (still oxidized) zone of the catalyst, where it further reacts with the stored oxygen and NO x. In this paper, the kinetics and selectivity of NH 3 reactions with the stored oxygen are studied in detail with a commercial Ba-based NO x storage catalyst containing platinum group metals (PGM), Ba and Ce oxides. Furthermore, steady-statemore » NH 3 decomposition, NH 3 oxidation by O 2 and NO, and N 2O decomposition are examined in light-off experiments. Periodic lean/rich cycling is measured first with O 2 and NH 3, and then with NO x + O 2 and NH 3 to discriminate between the NH 3 reactions with the stored oxygen and the stored NO x. The reaction of NH 3 with the stored O 2 is highly selective towards N 2, however a certain amount of NO x and N 2O is also formed. The formed NO x by-product is efficiently adsorbed on the NO x storage sites such that the NO x is not detected at the reactor outlet except at high temperatures. The stored NO x reacts with NH 3 feed in the next rich phase, contributing to the N 2O formation. Water inhibits the reactions of NH 3 with the stored oxygen. On the contrary, the presence of CO 2 increases the NH 3 consumption. Furthermore, CO 2 is able to provide additional oxygen for NH 3 oxidation, forming –CO in analogy to the reverse water gas shift reaction.« less

  8. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability

    PubMed Central

    Zhu, Xia; Burger, Martin; Doane, Timothy A.; Horwath, William R.

    2013-01-01

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by 15N-18O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils. PMID:23576736

  9. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability.

    PubMed

    Zhu, Xia; Burger, Martin; Doane, Timothy A; Horwath, William R

    2013-04-16

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by (15)N-(18)O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils.

  10. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [18 O]-labeling oxygen and nLC-MS/MS.

    PubMed

    Marques, Emerson Finco; Medeiros, Marisa H G; Di Mascio, Paolo

    2017-11-01

    Singlet molecular oxygen ( 1 O 2 ) is generated in biological systems and reacts with different biomolecules. Proteins are a major target for 1 O 2 , and His, Tyr, Met, Cys, and Trp are oxidized at physiological pH. In the present study, the modification of lysozyme protein by 1 O 2 was investigated using mass spectrometry approaches. The experimental findings showed methionine, histidine, and tryptophan oxidation. The experiments were achieved using [ 18 O]-labeled 1 O 2 released from thermolabile endoperoxides in association with nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry. The structural characterization by nLC-MS/MS of the amino acids in the tryptic peptides of the proteins showed addition of [ 18 O]-labeling atoms in different amino acids. Copyright © 2017 John Wiley & Sons, Ltd.

  11. [Oxygen diffusion through the venule walls in the rat cerebral cortex during breathing with pure oxygen].

    PubMed

    Vovenko, E P; Sokolova, I B; Loshchagin, O V

    2002-03-01

    Using oxygen microelectrodes, distribution of oxygen tension (pO2) has been studied in venules of the rat brain cortex at normobaric hyperoxia (spontaneous breathing with pure oxygen). It has been shown that inhalation of oxygen results in sharp increase of pO2 in majority of the venules under study. The pO2 distribution along the length of venous microvessels of 7-280 microns in diameter is best approximated by equation: pO2 = 76.44 e-0.0008D, n = 407. The pO2 distribution was characterised by extremely high pO2 values (180-240 mm Hg) in some minute venules. Heterogeneity of pO2 distribution in venous microvessels at hyperoxia was shown to be significantly increased. Profiles of pO2 between neighbouring arterioles and venules were for the first time measured. The data clearly evidenced that O2 diffusional shunting took place between cortical arterioles and venules, provided they were distanced from each other for not over 80-100 microns. Distribution of pO2 in venules has been shown to be dependent on the blood flow in the brain cortical microvessels.

  12. Nitrous oxide fluxes in estuarine environments: response to global change.

    PubMed

    Murray, Rachel H; Erler, Dirk V; Eyre, Bradley D

    2015-09-01

    Nitrous oxide is a powerful, long-lived greenhouse gas, but we know little about the role of estuarine areas in the global N2 O budget. This review summarizes 56 studies of N2 O fluxes and associated biogeochemical controlling factors in estuarine open waters, salt marshes, mangroves, and intertidal sediments. The majority of in situ N2 O production occurs as a result of sediment denitrification, although the water column contributes N2 O through nitrification in suspended particles. The most important factors controlling N2 O fluxes seem to be dissolved inorganic nitrogen (DIN) and oxygen availability, which in turn are affected by tidal cycles, groundwater inputs, and macrophyte density. The heterogeneity of coastal environments leads to a high variability in observations, but on average estuarine open water, intertidal and vegetated environments are sites of a small positive N2 O flux to the atmosphere (range 0.15-0.91; median 0.31; Tg N2 O-N yr(-1) ). Global changes in macrophyte distribution and anthropogenic nitrogen loading are expected to increase N2 O emissions from estuaries. We estimate that a doubling of current median NO3 (-) concentrations would increase the global estuary water-air N2 O flux by about 0.45 Tg N2 O-N yr(-1) or about 190%. A loss of 50% of mangrove habitat, being converted to unvegetated intertidal area, would result in a net decrease in N2 O emissions of 0.002 Tg N2 O-N yr(-1) . In contrast, conversion of 50% of salt marsh to unvegetated area would result in a net increase of 0.001 Tg N2 O-N yr(-1) . Decreased oxygen concentrations may inhibit production of N2 O by nitrification; however, sediment denitrification and the associated ratio of N2 O:N2 is expected to increase. © 2015 John Wiley & Sons Ltd.

  13. Equimolar mixture of nitroux oxyde and oxygen during post-operative physiotherapy in patients with cerebral palsy: A randomized, double-blind, placebo-controlled study.

    PubMed

    Delafontaine, A; Presedo, A; Mohamed, D; Lopes, D; Wood, C; Alberti, C

    2017-11-01

    The administration of an equimolar mixture of nitrous oxide and oxygen (N2O) is recommended during painful procedures. However, the evaluation of its use during physiotherapy after surgery has not been reported, although pain may hamper physiotherapy efficiency. This study investigated whether the use of N2O improves the efficacy of post-operative physiotherapy after multilevel surgery in patients with cerebral palsy. It was a randomized 1:1, double-blind, placebo-controlled study. All patients had post-operative physiotherapy starting the day after surgery. Patients received either N2O or placebo gas during the rehabilitation sessions. All patients had post-operative pain management protocol, including pain medication as needed for acute pain. The primary objective was to reach angles of knee flexion of 110° combined with hip extension of 10°, with the patient lying prone, within six or less physiotherapy sessions. Secondary evaluation criteria were the number of sessions required to reach the targeted angles, the session-related pain intensity and the analgesics consumption for managing post-operative pain. Sixty-four patients were enrolled. Targeted angles were achieved more often in the N2O group (23 of 32, 72%, vs. Placebo: 13/ of 32, 41%; p = 0.01). The administration of N2O during post-operative physiotherapy can help to achieve more quickly an improved range of motion, and, although not significant in our study, to alleviate the need for pain medication. Further studies evaluating the administration of N2O in various settings are warranted. During this randomized placebo-controlled double-blind study, children receiving nitrous oxide and oxygen (N2O) achieved more often the targeted range of motion during physiotherapy sessions after multilevel surgery. Compared to placebo, nitrous oxide and oxygen (N2O) enabled a better management of acute pain related to physiotherapy procedures. © 2017 European Pain Federation - EFIC®.

  14. Spectroscopic and kinetic studies of photochemical reaction of magnesium tetraphenylporphyrin with oxygen.

    PubMed

    Zhang, Jianbin; Zhang, Pengyan; Zhang, Zhengfu; Wei, Xionghui

    2009-05-07

    Magnesium tetraphenylporphyrin (MgTPP) was synthesized from meso-tetraphenylporphyrin (H(2)TPP) in N,N-dimethylformamide (DMF). The photochemical properties of MgTPP in the presence of oxygen were investigated in dichloromethane (CH(2)Cl(2)) by conventional fluorescence, UV-vis, (1)H NMR, MALDI-TOF-MS, FTIR, and XPS spectroscopic techniques. Spectral analyses showed that under irradiation, MgTPP molecules reacted with O(2) molecules, and a stable 1:1 adduct was produced. During the photochemical reaction process, one oxygen molecule was bound to the pyrrolenine nitrogens in the MgTPP molecule, and the characteristic N-O bonds were identified using the FTIR and XPS techniques. The kinetics of the photochemical reaction of MgTPP with O(2) has been studied in an oxygen-saturated solution. Under irradiation conditions, the experimental rate follows a pseudo-first-order reaction for MgTPP, having a half-life from 40 to 130 min under various irradiation intensities. The kinetic rate constant of photochemical reaction of MgTPP with O(2) showed a linear dependence.

  15. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation.

    PubMed

    Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S

    2012-01-21

    A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the crystal structure of 8 was also determined. A comparison of the structures of planar Ni(II) complexes containing cis-dithiolate ligands, strongly suggests that the differences in reactivity are determined in part by the degree of flexibility that is allowed by the NN' chelate ring.

  16. Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion.

    PubMed

    Takakura, Hisashi; Ojino, Minoru; Jue, Thomas; Yamada, Tatsuya; Furuichi, Yasuro; Hashimoto, Takeshi; Iwase, Satoshi; Masuda, Kazumi

    2017-01-01

    Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O 2 ) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O 2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O 2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆P mb O 2 ) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O 2 gas: 95.0%O 2 , 71.3%O 2 , and 47.5%O 2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (S mb O 2 ), and the P mb O 2 was then calculated based on the S mb O 2 and the O 2 dissociation curve of the Mb. The S mb O 2 and P mb O 2 at rest decreased with the decrease in O 2 supply, and the muscle contraction caused a further decrease in S mb O 2 and P mb O 2 under all O 2 conditions. The net increase in mV˙O 2 from the muscle contraction (∆mV˙O 2 ) gradually decreased as the ∆P mb O 2 decreased during muscle contraction. The results of this study suggest that ΔP mb O 2 is a key determinant of the ΔmV˙O 2 . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Effect of interfacial SiO2- y layer and defect in HfO2- x film on flat-band voltage of HfO2- x /SiO2- y stacks for backside-illuminated CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Na, Heedo; Lee, Jimin; Jeong, Juyoung; Kim, Taeho; Sohn, Hyunchul

    2018-03-01

    In this study, the effect of oxygen gas fraction during deposition of a hafnium oxide (HfO2- x ) film and the influence of the quality of the SiO2- y interlayer on the nature of flat-band voltage ( V fb) in TiN/HfO/SiO2- y /p-Si structures were investigated. X-ray photoemission spectroscopy analysis showed that the non-lattice oxygen peak, indicating an existing oxygen vacancy, increased as the oxygen gas fraction decreased during sputtering. From C- V and J- E analyses, the V fb behavior was significantly affected by the characteristics of the SiO2- y interlayer and the non-lattice oxygen fraction in the HfO2- x films. The HfO2- x /native SiO2- y stack presented a V fb of - 1.01 V for HfO2- x films with an oxygen gas fraction of 5% during sputtering. Additionally, the V fb of the HfO2- x /native SiO2- y stack could be controlled from - 1.01 to - 0.56 V by changing the deposition conditions of the HfO2- x film with the native SiO2- y interlayer. The findings of this study can be useful to fabricate charge-accumulating layers for backside-illuminated image sensor devices.

  18. A sterilization system using ultraviolet photochemical reactions based on nitrous oxide and oxygen gases.

    PubMed

    Ohnishi, Yasutaka; Matsumoto, Hiroyuki; Iwamori, Satoru

    2016-03-01

    Active oxygen species (AOS) generated under ultraviolet (UV) lamps can be applied for various industrial processes owing to extremely strong oxidative abilities. We have already reported on an application of the AOS for a sterilization process of microorganisms. Here, a sterilization method using active oxygen generated under ultraviolet (UV) lamps introducing nitrous oxide (N2O) and oxygen gases into a vacuum chamber was investigated. Nitrogen dioxide (NO2) gas was readily produced from N2O by UV photochemical reactions under the low-pressure mercury lamp and then used to sterilize medical devices. We compared the ability of the N2O gas to sterilize Geobacillus stearothermophilus spores with those of conventional methods. Successful sterilization of spores on various biological indicators was achieved within 60 min, not only in sterilization bags but also in a lumen device. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. N-type Cu2O doped activated carbon as catalyst for improving power generation of air cathode microbial fuel cells.

    PubMed

    Zhang, Xi; Li, Kexun; Yan, Pengyu; Liu, Ziqi; Pu, Liangtao

    2015-01-01

    A novel n-type Cu2O doped activated carbon (AC) air cathode (Cu/AC) was developed as an alternative to Pt electrode for oxygen reduction in microbial fuel cells (MFCs). The maximum power density of MFCs using this novel air cathode was as high as 1390±76mWm(-2), almost 59% higher than the bare AC air cathode. Specifically, the resistance including total resistance and charge transfer resistance significantly decreased comparing to the control. Tafel curve also showed the faster electro-transfer kinetics of Cu/AC with exchange current density of 1.03×10(-3)Acm(-2), which was 69% higher than the control. Ribbon-like Cu2O was deposited on the surface of AC with the mesopore surface area increasing. Cubic Cu2O crystals exclusively expose (111) planes with the interplanar crystal spacing of 2.48Å, which was the dominate active sites for oxygen reduction reaction (ORR). N-type Cu2O with oxygen vacancies played crucial roles in electrochemical catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite

    PubMed Central

    Bernuy-Lopez, Carlos; Høydalsvik, Kristin; Einarsrud, Mari-Ann; Grande, Tor

    2016-01-01

    The effect of the A-site cation ordering on the chemical stability, oxygen stoichiometry and electrical conductivity in layered LaBaCo2O5+δ double perovskite was studied as a function of temperature and partial pressure of oxygen. Tetragonal A-site cation ordered layered LaBaCo2O5+δ double perovskite was obtained by annealing cubic A-site cation disordered La0.5Ba0.5CoO3-δ perovskite at 1100 °C in N2. High temperature X-ray diffraction between room temperature (RT) and 800 °C revealed that LaBaCo2O5+δ remains tetragonal during heating in oxidizing atmosphere, but goes through two phase transitions in N2 and between 450 °C and 675 °C from tetragonal P4/mmm to orthorhombic Pmmm and back to P4/mmm due to oxygen vacancy ordering followed by disordering of the oxygen vacancies. An anisotropic chemical and thermal expansion of LaBaCo2O5+δ was demonstrated. La0.5Ba0.5CoO3-δ remained cubic at the studied temperature irrespective of partial pressure of oxygen. LaBaCo2O5+δ is metastable with respect to La0.5Ba0.5CoO3-δ at oxidizing conditions inferred from the thermal evolution of the oxygen deficiency and oxidation state of Co in the two materials. The oxidation state of Co is higher in La0.5Ba0.5CoO3-δ resulting in a higher electrical conductivity relative to LaBaCo2O5+δ. The conductivity in both materials was reduced with decreasing partial pressure of oxygen pointing to a p-type semiconducting behavior. PMID:28773279

  2. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea.

    PubMed

    Stieglmeier, Michaela; Mooshammer, Maria; Kitzler, Barbara; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Richter, Andreas; Schleper, Christa

    2014-05-01

    Soil emissions are largely responsible for the increase of the potent greenhouse gas nitrous oxide (N2O) in the atmosphere and are generally attributed to the activity of nitrifying and denitrifying bacteria. However, the contribution of the recently discovered ammonia-oxidizing archaea (AOA) to N2O production from soil is unclear as is the mechanism by which they produce it. Here we investigate the potential of Nitrososphaera viennensis, the first pure culture of AOA from soil, to produce N2O and compare its activity with that of a marine AOA and an ammonia-oxidizing bacterium (AOB) from soil. N. viennensis produced N2O at a maximum yield of 0.09% N2O per molecule of nitrite under oxic growth conditions. N2O production rates of 4.6±0.6 amol N2O cell(-1) h(-1) and nitrification rates of 2.6±0.5 fmol NO2(-) cell(-1) h(-1) were in the same range as those of the AOB Nitrosospira multiformis and the marine AOA Nitrosopumilus maritimus grown under comparable conditions. In contrast to AOB, however, N2O production of the two archaeal strains did not increase when the oxygen concentration was reduced, suggesting that they are not capable of denitrification. In (15)N-labeling experiments we provide evidence that both ammonium and nitrite contribute equally via hybrid N2O formation to the N2O produced by N. viennensis under all conditions tested. Our results suggest that archaea may contribute to N2O production in terrestrial ecosystems, however, they are not capable of nitrifier-denitrification and thus do not produce increasing amounts of the greenhouse gas when oxygen becomes limiting.

  3. Theoretical prediction of a self-forming gallium oxide layer at an n-type GaN/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Chokawa, Kenta; Narita, Tetsuo; Kikuta, Daigo; Kachi, Tetsu; Shiozaki, Koji; Shiraishi, Kenji

    2018-03-01

    We examine the energy band diagram at the n-type GaN (n-GaN)/SiO2 interface and show that electron transfer from n-GaN to SiO2 leads to the formation of negatively charged oxygen vacancies in the SiO2, resulting in the self-formation of an n-GaN/Ga2O3/SiO2 structure. On the other hand, it is difficult to automatically form Ga2O3 at a p-type GaN (p-GaN)/SiO2 interface. This electron-transfer-induced self-formation of Ga2O3 causes an interface dipole, which leads to band bending, resulting in an increase in the conduction band offset between GaN and SiO2. Accordingly, by using this self-forming phenomenon, GaN MOSFETs with lower leakage current can be realized.

  4. Electrical properties of GaN-based metal-insulator-semiconductor structures with Al2O3 deposited by atomic layer deposition using water and ozone as the oxygen precursors

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Freedsman, Joseph J.; Iwata, Yasuhiro; Egawa, Takashi

    2014-04-01

    Al2O3 deposited by atomic layer deposition (ALD) was used as an insulator in metal-insulator-semiconductor (MIS) structures for GaN-based MIS-devices. As the oxygen precursors for the ALD process, water (H2O), ozone (O3), and both H2O and O3 were used. The chemical characteristics of the ALD-Al2O3 surfaces were investigated by x-ray photoelectron spectroscopy. After fabrication of MIS-diodes and MIS-high-electron-mobility transistors (MIS-HEMTs) with the ALD-Al2O3, their electrical properties were evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The threshold voltage of the C-V curves for MIS-diodes indicated that the fixed charge in the Al2O3 layer is decreased when using both H2O and O3 as the oxygen precursors. Furthermore, MIS-HEMTs with the H2O + O3-based Al2O3 showed good dc I-V characteristics without post-deposition annealing of the ALD-Al2O3, and the drain leakage current in the off-state region was suppressed by seven orders of magnitude.

  5. Inactivation of bacteria using dc corona discharge: role of ions and humidity.

    PubMed

    Dobrynin, Danil; Friedman, Gary; Fridman, Alexander; Starikovskiy, Andrey

    2011-10-01

    Here we present the results of an experimental study of the effect of ions produced in a dc corona discharge on inactivation of bacteria on the surface of agarose gel. Both positive and negative corona discharges in various gases at different humidities were studied. The measurements in air, O(2), N(2), Ar and He mixtures show that there is no inactivation in pure N(2), pure O(2) and an N(2)-H(2)O mixture. The best results were achieved in the case of direct treatment, when discharge was ignited in oxygen and water-containing mixtures. We show that neither UV radiation, ozone or H(2)O(2) nor other neutral active species alone produced by corona have an effect on bacteria viability. It is shown that the main role of charged particles may be related to the faster transport of active peroxide species-cluster ions OH(-)(H(2)O)(n) and H(3)O(+)(H(2)O)(n). The efficiency of these radicals is much higher than that of the oxygen radicals and ions (including [Formula: see text] and O(3)) and that of nitrogen and argon ions.

  6. Physics and chemistry of the influence of excited molecules on combustion enhancement

    PubMed Central

    Starik, A. M.; Loukhovitski, B. I.; Sharipov, A. S.; Titova, N. S

    2015-01-01

    The paper addresses detailed analysis of kinetic processes in the H2−O2, CO−O2 and CH4−O2-reactive systems upon the presence of singlet oxygen molecules O2(a1Δg) and and the influence of the activation of oxygen molecules in electric discharge on the acceleration of ignition in the H2−O2 and CH4−O2 mixtures. The possibility of the intensification of CO oxidation due to excitation of O2 and N2 molecule vibrations and generation of singlet oxygen molecules is also considered. It is shown that the effect of accelerating the ignition strongly depends on the reduced electric field and, as a consequence, on the composition of discharge plasma as well as on the features of chain mechanism development in oxy-fuel systems. It is revealed that the most effective approach for the intensification of CO oxidation both in the moist air and in the products of hydrocarbon combustion in air is the generation of O2(a1Δg) molecules by electric discharge. Computations showed that the presence of 1% O2(a1Δg) in the total oxygen allowed one to convert CO to CO2 even at the temperature T=850–900 K in the time of 10−2 s. The excitation of O2 and N2 molecule vibrations is less effective for such a conversion. PMID:26170425

  7. Re-induced Raman active modes in HgBa2Can-1CunO2n+2+δ compounds

    NASA Astrophysics Data System (ADS)

    Poulakis, N.; Lampakis, D.; Liarokapis, E.; Yoshikawa, Akira; Shimoyama, Jun-Ich; Kishio, Kohji; Peacock, G. B.; Hodges, J. P.; Gameson, I.; Edwards, P. P.; Panagopoulos, C.

    1999-08-01

    A comparative Raman study of Re-free and Re-doped HgBa2Can-1CunO2n+2+δ with n=1,3,4,5 is presented in an attempt to further clarify the structural and phononic modifications brought about by Re substitution. A number of extra high-frequency phonon peaks show up in the spectra of the Re-doped samples and are attributed to the oxygen modes of a strongly bound, almost decoupled ReO6 octahedron. As regards the apex oxygen in the Hg site, a clear transfer of spectral weight from the 590 to the 570 cm-1 apex phonon band is observed upon Re substitution. Such a change may well be accounted for assuming increased excess oxygen content for the Re-doped samples. Another interesting result is the enhancement upon Re doping of a narrow peak probably attributed to c-axis vibrations of Ba whose frequency shows a distinctive change with the number n of the CuO2 layers, providing an easy way to identify the various phases in a sample.

  8. Assessing the Impact of Organic Carbon on Nitrous Oxide Fluxes in Soils

    NASA Astrophysics Data System (ADS)

    Akrami, N.; Horwath, W. R.

    2016-12-01

    Fertilized agriculture is a significant source of the most potent green house gas (GHG), Nitrous Oxide (N2O), emissions. N2O's contribution to climate change through radioactive forcing is 265 times higher than that of Carbon dioxide (CO2). While literature has been mainly focused on N2O production, it is critical to point out that N2O emissions are the result of both production and consumption processes. There is not sufficient research in the literature focusing on the N2O consumption pathways and mechanisms as well as quantification of the rate of N2O consumption in soils. This work is an effort to address one of the most important environmental controlling factors for the soil to be assumed as a possible N2O sink and presumably account for N2O budget imbalances. In this study we introduce soil organic carbon (SOC) as a key criterion controlling N2O consumption processes mainly through affecting soil redox potential. We also quantify N2O consumption rates in both aerobic and anaerobic conditions under different carbon content scenarios. A batch incubation study is conducted on soils (0-15) cm collected from rice agricultural lands in Sacramento-San Joaquin delta consisting of 1%, 5%, 11% and 23% carbon. N2O consumption and production rates for all incubations (including 4 replicates) are measured under different treatments and the impact of Oxygen and Carbon content on N2O fluxes is evaluated. Results show higher N2O production and consumption rates in the soils with higher SOC content and lower Oxygen content. This study reveals that peat lands with high organic carbon content can be managed to be hotspots for Nitrous Oxide (N2O) consumption and might have the capacity to act as N2O sinks.

  9. Deep ultraviolet photodetectors based on p-Si/ i-SiC/ n-Ga2O3 heterojunction by inserting thin SiC barrier layer

    NASA Astrophysics Data System (ADS)

    An, Yuehua; Zhi, Yusong; Wu, Zhenping; Cui, Wei; Zhao, Xiaolong; Guo, Daoyou; Li, Peigang; Tang, Weihua

    2016-12-01

    Deep ultraviolet photodetectors based on p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterojunctions were fabricated by laser molecular beam epitaxial (L-MBE), respectively. In compare with p-Si/ n-Ga2O3 heterostructure-based photodetector, the dark current of p-Si/ i-SiC/ n-Ga2O3-based photodetector decreased by three orders of magnitude, and the rectifying behavior was tuned from reverse to forward. In order to improve the quality of the photodetector, we reduced the oxygen vacancies of p-Si/ i-SiC/ n-Ga2O3 heterostructures by changing the oxygen pressure during annealing. As a result, the rectification ratio ( I F/ I R) of the fabricated photodetectors was 36 at 4.5 V and the photosensitivity was 5.4 × 105% under the 254 nm light illumination at -4.5 V. The energy band structure of p-Si/ n-Ga2O3 and p-Si/ i-SiC/ n-Ga2O3 heterostructures was schematic drawn to explain the physic mechanism of enhancement of the performance of p-Si/ i-SiC/ n-Ga2O3 heterostructure-based deep UV photodetector by introduction of SiC layer.

  10. 4-Nitro-aniline-picric acid (2/1).

    PubMed

    Li, Yan-Jun

    2009-09-30

    In the title adduct, C(6)H(3)N(3)O(7)·0.5C(6)H(6)N(2)O(2), the complete 4-nitro-aniline mol-ecule is generated by a crystallographic twofold axis with two C atoms and two N atoms lying on the axis. The mol-ecular components are linked into two dimensional corrugated layers running parallel to the (001) plane by a combination of inter-molecular N-H⋯O and C-H⋯O hydrogen bonds. The phenolic oxygen and two sets of nitro oxygen atoms in the picric acid were found to be disordered with occupancies of 0.81 (2):0.19 (2) and 0.55 (3):0.45 (3) and 0.77 (4):0.23 (4), respectively.

  11. An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

    DTIC Science & Technology

    2007-06-12

    Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering GaN powder decomposition - I 2GaN(s) = 2Ga(s) + N2(g) Ga2O3 (s)+Ga = 3GaO(g) GaO(g...Ga(g) = Ga2O(g) Ga(l) = Ga(g) 2GaN(s) = 2Ga(s) + N2(g) Ga(l) = Ga(g) Heterogeneous chemistry GaN(s) Ga2O3 , Ga(l)GaN(s), Ga(l)Condensed phases N2, Ga(g...400ppm; • The commercial GaN powder is converted from Ga2O3 . The powder purity is less than 91% with more than 3% oxygen concentration. • The very

  12. Electrical characteristics and interface properties of ALD-HfO2/AlGaN/GaN MIS-HEMTs fabricated with post-deposition annealing

    NASA Astrophysics Data System (ADS)

    Kubo, Toshiharu; Egawa, Takashi

    2017-12-01

    HfO2/AlGaN/GaN metal-insulator-semiconductor (MIS)-type high electron mobility transistors (HEMTs) on Si substrates were fabricated by atomic layer deposition of HfO2 layers and post-deposition annealing (PDA). The current-voltage characteristics of the MIS-HEMTs with as-deposited HfO2 layers showed a low gate leakage current (I g) despite the relatively low band gap of HfO2, and a dynamic threshold voltage shift (ΔV th) was observed. After PDA above 500 °C, ΔV th was reduced from 2.9 to 0.7 V with an increase in I g from 2.2 × 10-7 to 4.8 × 10-2 mA mm-1. Effects of the PDA on the HfO2 layer and the HfO2/AlGaN interface were investigated by x-ray photoelectron spectroscopy (XPS) using synchrotron radiation. XPS data showed that oxygen vacancies exist in the as-deposited HfO2 layers and they disappeared with an increase in the PDA temperature. These results indicate that the deep electron traps that cause ΔV th are related to the oxygen vacancies in the HfO2 layers.

  13. Potential Alternatives for Advanced Energy Material Processing in High Performance Li-ion Batteries (LIBs) via Atmospheric Pressure Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei

    2015-09-01

    A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.

  14. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor

    PubMed Central

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-01-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5–1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L. PMID:27125491

  15. Absorption cross sections of some atmospheric molecules for resonantly scattered O I 1304-A radiation

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1976-01-01

    Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.

  16. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  17. Carbon and nitrogen speciation in nitrogen-rich C-O-H-N fluids at 5.5-7.8 GPa

    NASA Astrophysics Data System (ADS)

    Sokol, Alexander G.; Palyanov, Yury N.; Tomilenko, Anatoly A.; Bul'bak, Taras A.; Palyanova, Galina A.

    2017-02-01

    Carbon and nitrogen speciation has been studied in high-pressure experiments in the C-O-H-N and C-O-H-N-Fe3C systems at 5.5 to 7.8 GPa and 1100 to 1500 °C using a split-sphere multi-anvil apparatus. Oxygen fugacity in the samples was either buffered by the Mo-MoO2 (MMO) and Fe-FeO (IW) equilibria using a double-capsule technique or left unbuffered. fO2 varied from 2 log units below to +4 log units above the iron-wüstite oxygen buffer (IW) depending on water contents in the charges and buffering. Ultra-reduced fluids contained NH3 as the dominant species, but its concentration was slightly lower, while CH4 was higher at higher temperatures. As oxygen fugacity and temperature increased to fO2 0.7 log units above IW and T ≥ 1400 °C, N2 became the predominant nitrogen species; the dominance among carbon species changed from CH4 and C2-C5 alkanes to oxygenated hydrocarbons and higher alkanes. It has been found out for the first time that the N2-rich fluid lacks methane at fO2 4 log units above IW but may bear a few percent of C2H6, C3H8, and C15-C18 alkanes and within one percent of alcohols, aldehydes, ketones, carboxylic acids, and furans. Thus, the NH3 enrichment of fluids and the nitrogen storage capacity of silicates at depths ∼200 km are expected to be the greatest in cold (1100-1200 °C) and reduced continental lithospheric mantle. In a hotter lithosphere of ∼1400 °C, the concentrations of NH3 and N2 in fluids are similar, and the nitrogen storage capacity of silicates should be relatively low. The stability of some higher alkanes and oxygenated hydrocarbons in nitrogen-rich fluids near the enstatite-magnesite-olivine-diamond/graphite (EMOG/D) equilibrium suggest that these carbon species, together with N2, can survive at the redox barrier, where silicate or silicate-carbonate melts capture them and entrain to shallow mantle.

  18. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  19. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert

    2015-02-03

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.

  20. [Selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalysts].

    PubMed

    Sun, Hong; Quan, Xie; Zhang, Yao-bin; Zhao, Ya-zhi

    2008-06-01

    Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst was prepared by sol-gel and impregnation. Furthermore, selective catalytic reduction of NOx over Pd/CeZr/TiO2/Al2O3 wire-mesh honeycomb catalyst with propylene under lean burn condition was studied. The effects of the concentration of tetra-n-butyl titanate and dipcoat cycles on TiO2 washcoat were studied by SEM, and the effects of Pd concentration, O2 concentration and gas velocity on catalytic activity were investigated. The experimental results showed that the TiO2 washcoat on wire-mesh support is even and crack-free when the support is impregnated in 20.0% tetra- n-butyl titanate sol for 2 cycles. The NOx conversion decreases with Pd concentration increase. When Pd concentration is 0.23%, NOx conversion is highest. NOx conversion increases with oxygen concentration increase in the range of 1.5%-6.0%. However, when oxygen concentration is higher than 6.0%, NOx conversion decreases with increasing oxygen concentration. The NOx conversion decreases with gas velocity increase and its effect is severer at high temperature than low temperature.

  1. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.

    PubMed

    Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2012-01-01

    This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion.

  2. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    PubMed

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  3. Time-dependent one-dimensional simulation of atmospheric dielectric barrier discharge in N2/O2/H2O using COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Sohbatzadeh, F.; Soltani, H.

    2018-04-01

    The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.

  4. Generating Singlet Oxygen Bubbles: A New Mechanism for Gas-Liquid Oxidations in Water

    PubMed Central

    Bartusik, Dorota; Aebisher, David; Ghafari, BiBi

    2012-01-01

    Laser-coupled microphotoreactors were developed to bubble singlet oxygen [1O2 (1Δg)] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiber-optic receptacles loaded with 150-μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O2 gas to the reactor chambers. In the presence of O2, singlet oxygen was generated by illuminating the sensitizer particles with 669-nm light from an optical fiber coupled to the top of the reactor. The generated 1O2 was transported through the membrane by the O2 stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (either 9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, and N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that 1O2 transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow, it arose only from 1O2-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves 1O2 mass transfer and solvation, where smaller bubbles provide better penetration of 1O2 into the flowing stream due to higher surface-to-volume contact between the probe molecules and 1O2. PMID:22260325

  5. Study on the intrinsic defects in ZnO by combing first-principle and thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Ma, Changmin; Liu, Tingyu; Chang, Qiuxiang

    2015-11-01

    In this paper, the intrinsic point defects in ZnO crystal have been studied by the approach that integrates first-principles, thermodynamic calculations and the contributions of vibrational entropy. With temperature increasing and oxygen partial pressure decreasing, the formation energies of oxygen vacancy (VO), zinc interstitial (Zni) and zinc anti-site (ZnO) are decreasing, while it increases for zinc vacancy (VZn), oxygen interstitial (Oi) and oxygen anti-site (OZn). They are more sensitive to temperature than oxygen partial pressure. There are two interesting phenomena. First, VO or VZn have the lowest formation energies for whole Fermi level at special environment condition (such as at T = 300K, about PO2 = 10-10atm or T = 1500K, about PO2 = 104atm) and intrinsic p-type doping of ZnO is possible by VZn at these special conditions. Second, VO as donors have lowest formation energy for all Fermi level at high temperature and low oxygen partial pressure (T = 1500K, PO2 = 10-10atm). According to our analysis, the VO could produce n-type doping in ZnO at these special conditions and change p-type ZnO to n-type ZnO at condition from low temperature and high oxygen partial pressure to high temperature and low oxygen partial pressure.

  6. Kinetics of NH3 -oxidation, NO-turnover, N2 O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers.

    PubMed

    Hink, Linda; Lycus, Pawel; Gubry-Rangin, Cécile; Frostegård, Åsa; Nicol, Graeme W; Prosser, James I; Bakken, Lars R

    2017-12-01

    Ammonia oxidising bacteria (AOB) are thought to emit more nitrous oxide (N 2 O) than ammonia oxidising archaea (AOA), due to their higher N 2 O yield under oxic conditions and denitrification in response to oxygen (O 2 ) limitation. We determined the kinetics of growth and turnover of nitric oxide (NO) and N 2 O at low cell densities of Nitrosomonas europaea (AOB) and Nitrosopumilus maritimus (AOA) during gradual depletion of TAN (NH 3  + NH4+) and O 2 . Half-saturation constants for O 2 and TAN were similar to those determined by others, except for the half-saturation constant for ammonium in N. maritimus (0.2 mM), which is orders of magnitudes higher than previously reported. For both strains, cell-specific rates of NO turnover and N 2 O production reached maxima near O 2 half-saturation constant concentration (2-10 μM O 2 ) and decreased to zero in response to complete O 2 -depletion. Modelling of the electron flow in N. europaea demonstrated low electron flow to denitrification (≤1.2% of the total electron flow), even at sub-micromolar O 2 concentrations. The results corroborate current understanding of the role of NO in the metabolism of AOA and suggest that denitrification is inconsequential for the energy metabolism of AOB, but possibly important as a route for dissipation of electrons at high ammonium concentration. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Nitrous Oxide Production in Co- Versus Counter-Diffusion Nitrifying Biofilms

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2016-06-01

    For the application of biofilm processes, a better understanding of nitrous oxide (N2O) formation within the biofilm is essential for design and operation of biofilm reactors with minimized N2O emissions. In this work, a previously established N2O model incorporating both ammonia oxidizing bacteria (AOB) denitrification and hydroxylamine (NH2OH) oxidation pathways is applied in two structurally different biofilm systems to assess the effects of co- and counter-diffusion on N2O production. It is demonstrated that the diffusion of NH2OH and oxygen within both types of biofilms would form an anoxic layer with the presence of NH2OH and nitrite ( ), which would result in a high N2O production via AOB denitrification pathway. As a result, AOB denitrification pathway is dominant over NH2OH oxidation pathway within the co- and counter-diffusion biofilms. In comparison, the co-diffusion biofilm may generate substantially higher N2O than the counter-diffusion biofilm due to the higher accumulation of NH2OH in co-diffusion biofilm, especially under the condition of high-strength ammonium influent (500 mg N/L), thick biofilm depth (300 μm) and moderate oxygen loading (~1-~4 m3/d). The effect of co- and counter-diffusion on N2O production from the AOB biofilm is minimal when treating low-strength nitrogenous wastewater.

  8. Nitrous Oxide Production in Co- Versus Counter-Diffusion Nitrifying Biofilms

    PubMed Central

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2016-01-01

    For the application of biofilm processes, a better understanding of nitrous oxide (N2O) formation within the biofilm is essential for design and operation of biofilm reactors with minimized N2O emissions. In this work, a previously established N2O model incorporating both ammonia oxidizing bacteria (AOB) denitrification and hydroxylamine (NH2OH) oxidation pathways is applied in two structurally different biofilm systems to assess the effects of co- and counter-diffusion on N2O production. It is demonstrated that the diffusion of NH2OH and oxygen within both types of biofilms would form an anoxic layer with the presence of NH2OH and nitrite ( ), which would result in a high N2O production via AOB denitrification pathway. As a result, AOB denitrification pathway is dominant over NH2OH oxidation pathway within the co- and counter-diffusion biofilms. In comparison, the co-diffusion biofilm may generate substantially higher N2O than the counter-diffusion biofilm due to the higher accumulation of NH2OH in co-diffusion biofilm, especially under the condition of high-strength ammonium influent (500 mg N/L), thick biofilm depth (300 μm) and moderate oxygen loading (~1–~4 m3/d). The effect of co- and counter-diffusion on N2O production from the AOB biofilm is minimal when treating low-strength nitrogenous wastewater. PMID:27353382

  9. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  10. O2(a1Δ) vibrational kinetics in oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Torbin, A. P.; Pershin, A. A.; Heaven, M. C.; Azyazov, V. N.; Mebel, A. M.

    2018-04-01

    Kinetics of vibrationally-excited singlet oxygen O2(a1Δ,ν) in gas mixture O3/N2/CO2 was studied using a pulse laser technique. Molecules O2(a1Δ,ν) were produced by laser photolysis of ozone at 266 nm. The O3 molecules number density was followed using time-resolved absorption spectroscopy. It was found that an upper bound for the rate constant of chemical reaction O2(a1Δ,ν)+ O3 is about 10-15 cm3/s. The rate constants of O2(a1Δ,ν= 1, 2 and 3) quenching by CO2 are presented.

  11. Retardation mechanism of ultrathin Al2O3 interlayer on Y2O3 passivated gallium nitride surface.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2014-05-28

    A systematic investigation was carried out by incorporating an ultrathin aluminum oxide (Al2O3) as an interlayer between yttrium oxide (Y2O3) passivation layer and GaN substrate. The sandwiched samples were then subjected to postdeposition annealing in oxygen ambient from 400 to 800 °C. The Al2O3 interlayer was discovered to play a significant role in slowing down inward diffusion of oxygen through the Y2O3 passivation layer as well as in impeding outward diffusion of Ga(3+) and N(3-) from the decomposed GaN surface. These beneficial effects have suppressed subsequent formation of interfacial layer. A mechanism in association with the function of Al2O3 as an interlayer was suggested and discussed. The mechanism was explicitly described on the basis of the obtained results from X-ray diffraction, X-ray photoelectron spectroscopy, energy-filtered transmission electron microscopy (TEM), high resolution TEM, and electron energy loss spectroscopy line scan. A correlation between the proposed mechanism and metal-oxide-semiconductor characteristics of Y2O3/Al2O3/GaN structure has been proposed.

  12. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    PubMed

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  13. Clinical experience with TENS and TENS combined with nitrous oxide-oxygen. Report of 371 patients.

    PubMed Central

    Quarnstrom, F. C.; Milgrom, P.

    1989-01-01

    Transcutaneous electrical nerve stimulation (TENS) alone or TENS combined with nitrous oxide-oxygen (N2O) was administered for restorative dentistry without local anesthesia to 371 adult patients. A total of 55% of TENS alone and 84% of TENS/N2O visits were rated successful. A total of 53% of TENS alone and 82% of TENS/N2O patients reported slight or no pain. In multivariable analyses, pain reports were related to the anesthesia technique and patient fear and unrelated to sex, race, age, tooth, or depth of preparation. PMID:2604059

  14. Root-Zone-Specific Oxygen Tolerance of Azospirillum spp. and Diazotrophic Rods Closely Associated with Kallar Grass.

    PubMed

    Hurek, T; Reinhold, B; Fendrik, I; Niemann, E G

    1987-01-01

    The effect of oxygen on N(2)-dependent growth of two Azospirillum strains and two diazotrophic rods closely associated with roots of Kallar grass (Leptochloa fusca) was studied. To enable precise comparison, bacteria were grown in dissolved-oxygen-controlled batch and continuous cultures. Steady states were obtained from about 1 to 30 muM O(2), some of them being carbon limited. All strains needed a minimum amount of oxygen for N(2)-dependent growth. Nitrogen contents between 10 and 13% of cell dry weight were observed. The response of steady-state cultures to increasing O(2) concentrations suggested that carbon limitation shifted to internal nitrogen limitation when N(2) fixation became so low that the bacteria could no longer meet their requirements for fixed nitrogen. For Azospirillum lipoferum Rp5, increase of the dilution rate resulted in decreased N(2) fixation in steady-state cultures with internal nitrogen limitation. Oxygen tolerance was found to be strain specific in A. lipoferum with strain Sp59b as a reference organism. Oxygen tolerance of strains from Kallar grass was found to be root zone specific. A. halopraeferens Au 4 and A. lipoferum Rp5, predominating on the rhizoplane of Kallar grass, and strains H6a2 and BH72, predominating in the endorhizosphere, differed in their oxygen tolerance profiles. Strains H6a2 and BH72 still grew and fixed nitrogen in steady-state cultures at O(2) concentrations exceeding those which absolutely inhibited nitrogen fixation of both Azospirillum strains. It is proposed that root-zone-specific oxygen tolerance reflects an adaptation of the isolates to the microenvironments provided by the host plant.

  15. Effect of oxygen concentration and metal electrode on the resistive switching in MIM capacitors with transition metal oxides

    NASA Astrophysics Data System (ADS)

    Spassov, D.; Paskaleva, A.; Fröhlich, K.; Ivanov, Tz

    2017-01-01

    The influence of the oxygen content in the dielectric layer and the effect of the bottom electrode on the resistive switching in Au/Pt/TaOx/TiN and Au/Pt/TaOx/Ta structures have been studied. The sputtered TaOx layers have been prepared by using oxygen concentrations of 10 or 7% O 2 in the Ar+O2 working ambient as well as by a gradual variation of the O2 content in the deposition process from 5 to 10%. Two deposition regimes for TiN electrodes have been investigated: reactive sputtering of Ti target in Ar+N2 ambient, and sputtering of TiN target in pure Ar. Bipolar resistive switching behavior is observed in all examined structures. It is demonstrated that the resistive switching effect is affected by the oxygen content in the working ambient as well as by the type and the deposition conditions of the bottom electrodes. Most stable effect, with ON/OFF ratio above 100 is obtained in TaOx deposited with variable O2 content in the ambient. The obtained switching voltage between the high resistive and low resistive state (SET) is about -1.5 V and the reverse changeover (RESET) is ∼2 V. A well pronounced resistive switching is achieved with reactively sputtered TiN while for the other bottom electrodes the effect is negligible.

  16. The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R2*

    PubMed Central

    Faraco, Carlos C; Strother, Megan K; Siero, Jeroen CW; Arteaga, Daniel F; Scott, Allison O; Jordan, Lori C; Donahue, Manus J

    2015-01-01

    Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2*, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3 T; TE/TR=35/2,000 ms; spatial resolution=3 × 3 × 3.5 mm3) in healthy volunteers (n=12; age=29±4.1 years) breathing (i) room air (RA), (ii) normocapnic–hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic–normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic–hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood–water R2*, and tissue–water R2*. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA=0.011±0.007; HC-NO/RA=0.014±0.004; HC-HO/HO=0.020±0.008; and HC-HO/RA=0.035±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R2* are altered during hyperoxia. PMID:26174329

  17. Single-coal-particle combustion in O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejarano, Paula A.; Levendis, Yiannis A.

    A fundamental investigation has been conducted on the combustion of single particles of a bituminous coal (45-53, 75-90, and 150-180 {mu}m), of a lignite coal (45-53 and 75-90 {mu}m), and of spherical and monodisperse synthetic chars (43 {mu}m) at increasing O{sub 2} mole fractions in either N{sub 2} or CO{sub 2} balance gases. The synthetic particles were used to facilitate the observation of combustion phenomena with minimum distractions from particle-to-particle variabilities. The laboratory setup consisted of a drop-tube furnace operated at temperatures of 1400 and 1600 K. A calibrated three-color pyrometer, interfaced with the furnace, recorded luminous particle temperature-time profiles.more » Experimental results revealed that coal particles burned at higher mean temperatures and shorter combustion times in O{sub 2}/N{sub 2} than in O{sub 2}/CO{sub 2} environments at analogous oxygen mole fractions. In the case of the bituminous coal used herein and for the experimental combustion conditions tested, measured volatile and char temperatures as in air (21% O{sub 2}) were attained with an oxygen content in the CO{sub 2} mixtures in the neighborhood of 30%. Bituminous coal volatile and char burnout times comparable to those in air (21% O{sub 2}) were attained with oxygen content in the CO{sub 2} mixtures in the range of 30-35%. In the case of the lignite coal burned, the corresponding differences in oxygen mole fractions, which result in similar particle temperatures and burnout times in the two different gas mixtures, were less pronounced. (author)« less

  18. Synergetic effect of Ti 3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO 2/g-C 3N 4 heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2/oxygen-doped graphitic carbon nitride (Ti 3+-TiO 2/O-g-C 3N 4) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2O 2. In this way, exfoliated O-g-C 3N 4 and Ti 3+-TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+-TiO 2 nanoparticles and exfoliated O-g-C 3N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test,more » and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+-TiO 2 to O-g-C 3N 4. The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1, which is 3.87 and 4.56 times higher than those of pristine Ti 3+-TiO 2 and pure g-C 3N 4, respectively. Here, the remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+-TiO 2 and O-g-C 3N 4.« less

  19. Synergetic Effect of Ti3+ and Oxygen Doping on Enhancing Photoelectrochemical and Photocatalytic Properties of TiO2/g-C3N4 Heterojunctions.

    PubMed

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao; Huang, Baibiao; Gao, Shanmin; Lu, Jun

    2017-04-05

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2 /oxygen-doped graphitic carbon nitride (Ti 3+ -TiO 2 /O-g-C 3 N 4 ) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3 N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2 O 2 . In this way, exfoliated O-g-C 3 N 4 and Ti 3+ -TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+ -TiO 2 nanoparticles and exfoliated O-g-C 3 N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test, and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+ -TiO 2 to O-g-C 3 N 4 . The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1 , which is 3.87 and 4.56 times higher than those of pristine Ti 3+ -TiO 2 and pure g-C 3 N 4 , respectively. The remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+ -TiO 2 and O-g-C 3 N 4 .

  20. Synergetic effect of Ti 3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO 2/g-C 3N 4 heterojunctions

    DOE PAGES

    Li, Kai; Huang, Zhenyu; Zeng, Xiaoqiao; ...

    2017-03-07

    To improve the utilization of visible light and reduce photogenerated electron/hole recombination, Ti 3+ self-doped TiO 2/oxygen-doped graphitic carbon nitride (Ti 3+-TiO 2/O-g-C 3N 4) heterojunctions were prepared via hydrothermal treatment of a mixture of g-C 3N 4 and titanium oxohydride sol obtained from the reaction of TiH 2 with H 2O 2. In this way, exfoliated O-g-C 3N 4 and Ti 3+-TiO 2 nanoparticles were obtained. Simultaneously, strong bonding was formed between Ti 3+-TiO 2 nanoparticles and exfoliated O-g-C 3N 4 during the hydrothermal process. Charge transfer and recombination processes were characterized by transient photocurrent responses, electrochemical impedance test,more » and photoluminescence spectroscopy. The photocatalytic performances were investigated through rhodamine B degradation test under an irradiation source based on 30 W cold visible-light-emitting diode. The highest visible-light photoelectrochemical and photocatalytic activities were observed from the heterojunction with 1:2 mass ratio of Ti 3+-TiO 2 to O-g-C 3N 4. The photodegradation reaction rate constant based on this heterojuction is 0.0356 min -1, which is 3.87 and 4.56 times higher than those of pristine Ti 3+-TiO 2 and pure g-C 3N 4, respectively. Here, the remarkably high photoelectrochemical and photocatalytic performances of the heterojunctions are mainly attributed to the synergetic effect of efficient photogenerated electron-hole separation, decreased electron transfer resistance from interfacial chemical hydroxy residue bonds, and oxidizing groups originating from Ti 3+-TiO 2 and O-g-C 3N 4.« less

  1. Accuracy of Pulse Oximeters in Detecting Hypoxemia in Patients with Chronic Thromboembolic Pulmonary Hypertension

    PubMed Central

    Kohyama, Tomoki; Moriyama, Kiyoshi; Kanai, Riichiro; Kotani, Mariko; Uzawa, Kohji; Satoh, Toru; Yorozu, Tomoko

    2015-01-01

    Purpose Pulse oximetry is routinely used to continuously and non-invasively monitor arterial oxygen saturation (SaO2). When oxygen saturation by pulse oximeter (SpO2) overestimates SaO2, hypoxemia may be overlooked. We compared the SpO2 - SaO2 differences among three pulse oximeters in patients with chronic thromboembolic pulmonary hypertension (CTEPH) who spent their daily lives in a poor oxygen state. Material and Method This prospective observational study recruited 32 patients with CTEPH undergoing elective cardiac catheterization. As we collected arterial blood samples in the catheter laboratory, SpO2 values were simultaneously recorded. Three pulse oximeters were used on each patient, and SpO2 values were compared with oximetry readings using a blood gas analyzer. To determine the optimal SpO2 value by which to detect hypoxemia (SaO2≦90%), we generated receiver operating characteristic (ROC) curves for each pulse oximeter. Result The root mean square of each pulse oximeter was 1.79 (OLV-3100), 1.64 (N-BS), and 2.50 (Masimo Radical). The mean bias (SpO2 - SaO2) for the 90%–95% saturation range was significantly higher for Masimo Radical (0.19 +/- 1.78% [OLV-3100], 0.18 +/- 1.63% [N-BS], and 1.61 +/- 1.91% [Masimo Radical]; p<0.0001). The optimal SpO2 value to detect hypoxemia (SaO2≦90%) was 89% for OLV-3100, 90% for N-BS, and 92% for Masimo Radical. Conclusion We found that the biases and precision with which to detect hypoxemia differed among the three pulse oximeters. To avoid hypoxemia, the optimal SpO2 should be determined for each pulse oximeter. PMID:25978517

  2. Accuracy of pulse oximeters in detecting hypoxemia in patients with chronic thromboembolic pulmonary hypertension.

    PubMed

    Kohyama, Tomoki; Moriyama, Kiyoshi; Kanai, Riichiro; Kotani, Mariko; Uzawa, Kohji; Satoh, Toru; Yorozu, Tomoko

    2015-01-01

    Pulse oximetry is routinely used to continuously and non-invasively monitor arterial oxygen saturation (SaO2). When oxygen saturation by pulse oximeter (SpO2) overestimates SaO2, hypoxemia may be overlooked. We compared the SpO2 - SaO2 differences among three pulse oximeters in patients with chronic thromboembolic pulmonary hypertension (CTEPH) who spent their daily lives in a poor oxygen state. This prospective observational study recruited 32 patients with CTEPH undergoing elective cardiac catheterization. As we collected arterial blood samples in the catheter laboratory, SpO2 values were simultaneously recorded. Three pulse oximeters were used on each patient, and SpO2 values were compared with oximetry readings using a blood gas analyzer. To determine the optimal SpO2 value by which to detect hypoxemia (SaO2≦90%), we generated receiver operating characteristic (ROC) curves for each pulse oximeter. The root mean square of each pulse oximeter was 1.79 (OLV-3100), 1.64 (N-BS), and 2.50 (Masimo Radical). The mean bias (SpO2 - SaO2) for the 90%-95% saturation range was significantly higher for Masimo Radical (0.19 +/- 1.78% [OLV-3100], 0.18 +/- 1.63% [N-BS], and 1.61 +/- 1.91% [Masimo Radical]; p<0.0001). The optimal SpO2 value to detect hypoxemia (SaO2≦90%) was 89% for OLV-3100, 90% for N-BS, and 92% for Masimo Radical. We found that the biases and precision with which to detect hypoxemia differed among the three pulse oximeters. To avoid hypoxemia, the optimal SpO2 should be determined for each pulse oximeter.

  3. Measurement and Modeling of Site-specific Nitrogen and Oxygen Isotopic Composition of Atmospheric Nitrous Oxide at Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    McClellan, M. J.; Saikawa, E.; Prinn, R. G.; Ono, S.

    2015-12-01

    Global mixing ratios of atmospheric nitrous oxide (N2O), a potent greenhouse gas, have increased nearly linearly from the beginning of the modern industrial period to today, with the current global average in excess of 325 ppb. This increase can be largely attributed to anthropogenic activity above the level of N2O emissions from natural biotic sources. The effect of N2O on Earth's climate is twofold: in the troposphere, N2O is radiatively active and chemically inert, while it serves as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. The marked altitudinal divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on Earth's climate. However, the understanding of the total impact of N2O is incomplete, as there remain significant uncertainties in the global budget of this gas. Due to unique isotopic substitutions (15N and 18O) made by different N2O sources and stratospheric chemical reactions, the measurement of N2O isotopic ratios in ambient air can help identify the distribution and magnitude of distinct source types. We present the first year of site-specific nitrogen and oxygen isotopic composition data from the MIT Stheno-tunable infrared direct absorption spectroscopy (TILDAS) instrument at Mace Head, Ireland. Aided by the Stheno preconcentration system, Stheno-TILDAS can achieve measurement precisions of 0.10‰ or greater for all isotopic ratios (δ15N and δ18O) in ambient N2O. We further compare these data to the results from Model for Ozone and Related Tracers version 4 (MOZART-4) simulations, including N2O isotopic fractionation processes and MERRA/GEOS-5 reanalysis meteorological fields. These results will form the basis of future Bayesian inverse modeling simulations that will constrain global N2O source, circulation, and sink dynamics better.

  4. Structure and Abundance of Nitrous Oxide Complexes in Earth's Atmosphere.

    PubMed

    Salmon, Steven R; de Lange, Katrina M; Lane, Joseph R

    2016-04-07

    We have investigated the lowest energy structures and binding energies of a series of atmospherically relevant nitrous oxide (N2O) complexes using explicitly correlated coupled cluster theory. Specifically, we have considered complexes with nitrogen (N2-N2O), oxygen (O2-N2O), argon (Ar-N2O), and water (H2O-N2O). We have calculated rotational constants and harmonic vibrational frequencies for the complexes and the constituent monomers. Statistical mechanics was used to determine the thermodynamic parameters for complex formation as a function of temperature and pressure. These results, in combination with relevant atmospheric data, were used to estimate the abundance of N2O complexes in Earth's atmosphere as a function of altitude. We find that the abundance of N2O complexes in Earth's atmosphere is small but non-negligible, and we suggest that N2O complexes may contribute to absorption of terrestrial radiation and be relevant for understanding the atmospheric fate of N2O.

  5. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch.

    PubMed

    Kwak, Hyoung S; Uhm, Han S; Hong, Yong C; Choi, Eun H

    2015-12-17

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10(-3), nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10(-7), nO2/nN = 5.39 × 10(-5), where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch.

  6. Does Each Atom Count in the Reactivity of Vanadia Nanoclusters?

    PubMed

    Zhang, Mei-Qi; Zhao, Yan-Xia; Liu, Qing-Yu; Li, Xiao-Na; He, Sheng-Gui

    2017-01-11

    Vanadium oxide cluster anions (V 2 O 5 ) n V x O y - (n = 1-31; x = 0, 1; and x + y ≤ 5) with different oxygen deficiencies (Δ = 2y-1-5x = 0, ± 1, and ±2) have been prepared by laser ablation and reacted to abstract hydrogen atoms from alkane molecules (n-butane) in a fast flow reactor. When the cluster size n is less than 25, the Δ = 1 series [(V 2 O 5 ) n O - clusters] that can contain atomic oxygen radical anions (O •- ) generally have much higher reactivity than the other four cluster series (Δ = -2, -1, 0, and 2), indicating that each atom counts in the hydrogen-atom abstraction (HAA) reactivity. Unexpectedly, all of the five cluster series have similar HAA reactivity when the cluster size is greater than 25. The critical dimension of vanadia particles separating the cluster behavior (each atom counts) from the bulk behavior (each atom contributes a little part) is thus about 1.6 nm (∼V 50 O 125 ). The strong electron-phonon coupling of the vanadia particles has been proposed to create the O •- radicals (V 5+ = O 2- + heat → V 4+ -O •- ) for the n > 25 clusters with Δ = -2, -1, 0, and 2. Such a mechanism is supported by a comparative study with the scandium system [(Sc 2 O 3 ) n Sc x O y - (n = 1-29; x = 0, 1; and x + y ≤ 4)] for which the Δ = 1 series [(Sc 2 O 3 ) n O - clusters] always have much higher HAA reactivity than the other cluster series.

  7. Tidal and spatial variability of nitrous oxide (N2O) in Sado estuary (Portugal)

    NASA Astrophysics Data System (ADS)

    Gonçalves, Célia; Brogueira, Maria José; Nogueira, Marta

    2015-12-01

    The estimate of the nitrous oxide (N2O) fluxes is fundamental to assess its impact on global warming. The tidal and spatial variability of N2O and the air-sea fluxes in the Sado estuary in July/August 2007 are examined. Measurements of N2O and other relevant environmental parameters (temperature, salinity, dissolved oxygen and dissolved inorganic nitrogen - nitrate plus nitrite and ammonium) were recorded during two diurnal tidal cycles performed in the Bay and Marateca region and along the estuary during ebb, at spring tide. N2O presented tidal and spatial variability and varied spatially from 5.0 nmol L-1 in Marateca region to 12.5 nmol L-1 in Sado river input. Although the Sado river may constitute a considerable N2O source to the estuary, the respective chemical signal discharge was rapidly lost in the main body of the estuary due to the low river flow during the sampling period. N2O varied with tide similarly between 5.2 nmol L-1 (Marateca) and 10.0 nmol L-1 (Sado Bay), with the maximum value reached two hours after flooding period. The influence of N2O enriched upwelled seawater (˜10.0 nmol L-1) was well visible in the estuary mouth and apparently represented an important contribution of N2O in the main body of Sado estuary. Despite the high water column oxygen saturation in most of Sado estuary, nitrification did not seem a relevant process for N2O production, probably as the concentration of the substrate, NH4+, was not adequate for this process to occur. Most of the estuary functioned as a N2O source, and only Marateca zone has acted as N2O sink. The N2O emission from Sado estuary was estimated to be 3.7 Mg N-N2O yr-1 (FC96) (4.4 Mg N-N2O yr-1, FRC01). These results have implications for future sampling and scaling strategies for estimating greenhouse gases (GHGs) fluxes in tidal ecosystems.

  8. Insights into Acetone Photochemistry on Rutile TiO2(110). 1. Off-Normal CH3 Ejection from Acetone Diolate.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Henderson, Michael A.; Kimmel, Gregory A.

    2015-06-04

    Thermal- and photon-stimulated reactions of acetone co-adsorbed with oxygen on rutile TiO2(110) surface are studied with infrared reflection-adsorption spectroscopy (IRAS) combined with temperature programmed desorption and angle-resolved photon stimulated desorption. IRAS results show that n2-acetone diolate ((CH3)2COO) is produced via thermally-activated reactions between the chemisorbed oxygen with co-adsorbed acetone. Formation of acetone diolate is also consistent with 18O / 16O isotopic exchange experiments. During UV irradiation at 30 K, CH3 radicals are ejected from the acetone diolate with a distribution that is peaked at .-. +- 66 degrees from the surface normal along the azimuth (i.e. perpendicular to the rowsmore » of bridging oxygen and Ti5c ions). This distribution is also consistent with the orientation of the C–CH3 bonds in the n2-acetone diolate on TiO2(110). The acetone diolate peaks disappear from the IRAS spectra after UV irradiation and new peaks are observed and associated with n2-acetate. The data presented here demonstrate direct signatures of the proposed earlier 2-step mechanism for acetone photooxidation on TiO2(110)« less

  9. Automated system measuring triple oxygen and nitrogen isotope ratios in nitrate using the bacterial method and N2 O decomposition by microwave discharge.

    PubMed

    Hattori, Shohei; Savarino, Joel; Kamezaki, Kazuki; Ishino, Sakiko; Dyckmans, Jens; Fujinawa, Tamaki; Caillon, Nicolas; Barbero, Albane; Mukotaka, Arata; Toyoda, Sakae; Well, Reinhard; Yoshida, Naohiro

    2016-12-30

    Triple oxygen and nitrogen isotope ratios in nitrate are powerful tools for assessing atmospheric nitrate formation pathways and their contribution to ecosystems. N 2 O decomposition using microwave-induced plasma (MIP) has been used only for measurements of oxygen isotopes to date, but it is also possible to measure nitrogen isotopes during the same analytical run. The main improvements to a previous system are (i) an automated distribution system of nitrate to the bacterial medium, (ii) N 2 O separation by gas chromatography before N 2 O decomposition using the MIP, (iii) use of a corundum tube for microwave discharge, and (iv) development of an automated system for isotopic measurements. Three nitrate standards with sample sizes of 60, 80, 100, and 120 nmol were measured to investigate the sample size dependence of the isotope measurements. The δ 17 O, δ 18 O, and Δ 17 O values increased with increasing sample size, although the δ 15 N value showed no significant size dependency. Different calibration slopes and intercepts were obtained with different sample amounts. The slopes and intercepts for the regression lines in different sample amounts were dependent on sample size, indicating that the extent of oxygen exchange is also dependent on sample size. The sample-size-dependent slopes and intercepts were fitted using natural log (ln) regression curves, and the slopes and intercepts can be estimated to apply to any sample size corrections. When using 100 nmol samples, the standard deviations of residuals from the regression lines for this system were 0.5‰, 0.3‰, and 0.1‰, respectively, for the δ 18 O, Δ 17 O, and δ 15 N values, results that are not inferior to those from other systems using gold tube or gold wire. An automated system was developed to measure triple oxygen and nitrogen isotopes in nitrate using N 2 O decomposition by MIP. This system enables us to measure both triple oxygen and nitrogen isotopes in nitrate with comparable precision and sample throughput (23 min per sample on average), and minimal manual treatment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Interaction of root nodule size and oxygen pressure on the rate of nitrogen fixation by cowpea and peanut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, D.; Weaver, R.W.

    1987-04-01

    Size and anatomical features of nodules influence the rate of O/sub 2/ diffusion into nodules. Availability of oxygen can be a limiting factor in nitrogen fixation. Larger nodules have thicker cortices and low surface to volume ratio leading to lower rates of gaseous diffusion. Increased oxygen pressure in the environment alters the rate of nitrogen fixation but the rate of change may depend on the nodule size. This was investigated by measuring /sup 15/N/sub 2/ incorporation into nodules. Root nodules from 38 day old cowpea and peanut plants were collected and sorted into size groups having diameters of >3 mm,more » 2-3 mm, and just below 2 mm. Samples of each size group were enclosed in tubes and exposed to various combination of oxygen (8-28%) and /sup 15/N/sub 2/. With higher O/sub 2/ pressure all nodules showed increased N/sub 2/ fixation but the largest nodules showed the maximum increase. Specific activity of larger nodules was higher for N/sub 2/ fixation. For the sizes of nodules examined the largest nodules did not reflect any of the disadvantages of the large size but the benefits of higher rates of O/sub 2/ entry was evident.« less

  11. Oxygen saturation increases over the course of the night in mountaineers at high altitude (3050-6354 m).

    PubMed

    Tannheimer, Markus; van der Spek, Rianne; Brenner, Florian; Lechner, Raimund; Steinacker, Jürgen M; Treff, Gunnar

    2017-09-01

    Blood oxygen saturation (SpO 2 ) is frequently measured to determine acclimatization status in high-altitude travellers. However, little is known about nocturnal time course of SpO 2 (SpO 2N ), but alterations in SpO 2N might be practically relevant as well. To this end, we describe the time-course of SpO 2N in mountaineers at high altitude. SpO 2N was continuously measured in ten male mountaineers during a three-week expedition in Peru (3,050-6,354m). Average SpO 2N of the first (SpO 2N1 ) and second half (SpO 2N2 ) of an individual's sleep duration was calculated from 2h intervals of uninterrupted sleep. Heart rate oscillations and sleep dairies were used to exclude periods of wakefulness. SpO 2 was also measured at rest in the morning. SpO 2N significantly increased from SpO 2N1 to SpO 2N2 . The magnitude of this increase (ΔSpO 2 ) was reduced with time spent at altitude. On night 1 (3,050m) SpO 2 increased from 83.4% (N1) to 86.3% (N2). At the same location on night 21, SpO 2 increased from 88.3% to 90.1%, which is a relative change of 4.7% and 2.0%, respectively. This pattern of increase in SpO 2N was perturbed when individual acclimatization was poor or altitude was extreme (5630m). SpO 2N was significantly lower than SpO 2 at rest in the morning. This study is the first to demonstrate an increase of SpO 2 during the night in mountaineers at high altitude (3,050-6,354m) with high consistency between and within subjects. The magnitude of ΔSpO 2N decreased as acclimatization improved, suggesting that these changes in ΔSpO 2 between nights might be a valuable indicator of individual acclimatization. In addition, the failure of any increase in SpO 2N during the night might indicate insufficient acclimatization. Even though underlying mechanisms for the nocturnal increase remain unclear, the timing of SpO 2N measurement is obviously of utmost importance for its interpretation. Finally our study illustrates the detailed effects of ventilatory acclimatization over several weeks. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  12. Sputtering characteristics, crystal structures, and transparent conductive properties of TiOxNy films deposited on α-Al2O3(0 0 0 1) and glass substrates

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2012-12-01

    Adding N2 gas during reactive sputtering of a Ti target prevented the target surface from being severely poisoned by oxygen atoms and sustained a high deposition rate for titanium oxynitride films under metal-mode-like sputtering conditions. With progress in the degree of oxidization, films deposited onto a glass substrate varied from TiO1-xNx having a face-centered cubic (fcc) structure to TiO2-xNx having an anatase structure. Titanium oxynitride films deposited on an Al2O3(0 0 0 1) substrate were epitaxial with major orientations toward the (1 1 1) and (2 0 0) directions for fcc-TiO1-xNx and (1 1 2) for anatase-TiO2-xNx. Intermediately oxidized films between TiO1-xNx and TiO2-xNx were amorphous on the glass substrate but crystallized into a Magneli phase, TinO(N)2n-1, on the Al2O3(0 0 0 1) substrate. Partially substituting oxygen in TiO2 with nitrogen as well as continuously irradiating the growing film surface with a Xe plasma stream preferentially formed anatase rather than rutile. However, the occupation of anion sites with enough oxygen rather than nitrogen was the required condition for anatase crystals to form. The transparent conductive properties of epitaxial TiO2-xNx films on Al2O3(0 0 0 1) were superior to those of microcrystalline films on the glass substrate. Since resistivity and optical transmittance of TiOxNy films vary continuously with changing N2 flow rate, their transparent conductive properties can be controlled more easily than TiOx. Nb5+ ions could be doped as donors in TiO2-xNx anatase crystals.

  13. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia.

    PubMed

    Van Thienen, Ruud; Hespel, Peter

    2016-02-01

    High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude. Copyright © 2016 the American Physiological Society.

  14. Methane and Nitrous Oxide Emissions Reduced Following Conversion of Rice Paddies to Inland Crab-Fish Aquaculture in Southeast China.

    PubMed

    Liu, Shuwei; Hu, Zhiqiang; Wu, Shuang; Li, Shuqing; Li, Zhaofu; Zou, Jianwen

    2016-01-19

    Aquaculture is an important source of atmospheric methane (CH4) and nitrous oxide (N2O), while few direct flux measurements are available for their regional and global source strength estimates. A parallel field experiment was performed to measure annual CH4 and N2O fluxes from rice paddies and rice paddy-converted inland crab-fish aquaculture wetlands in southeast China. Besides N2O fluxes dependent on water/sediment mineral N and CH4 fluxes related to water chemical oxygen demand, both CH4 and N2O fluxes from aquaculture were related to water/sediment temperature, sediment dissolved organic carbon, and water dissolved oxygen concentration. Annual CH4 and N2O fluxes from inland aquaculture averaged 0.37 mg m(-2) h(-1) and 48.1 μg m(-2) h(-1), yielding 32.57 kg ha(-1) and 2.69 kg N2O-N ha(-1), respectively. The conversion of rice paddies to aquaculture significantly reduced CH4 and N2O emissions by 48% and 56%, respectively. The emission factor for N2O was estimated to be 0.66% of total N input in the feed or 1.64 g N2O-N kg(-1) aquaculture production in aquaculture. The conversion of rice paddies to inland aquaculture would benefit for reconciling greenhouse gas mitigation and agricultural income increase as far as global warming potentials and net ecosystem economic profits are of concomitant concern. Some agricultural practices such as better aeration and feeding, and fallow season dredging would help to lower CH4 and N2O emissions from inland aquaculture. More field measurements from inland aquaculture are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.

  15. Positive and negative effects of oxygen in thermal annealing of p-type GaN

    NASA Astrophysics Data System (ADS)

    Wu, L. L.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Le, L. C.; Li, L.; Liu, Z. S.; Zhang, S. M.; Zhu, J. J.; Wang, H.; Zhang, B. S.; Yang, H.

    2012-08-01

    The effect of oxygen on ambient gas on activating p-GaN by rapid thermal annealing was investigated. When the ratio of N2 to O2 is 4:1, the sample activated after annealing at 750 °C exhibits the best electrical properties with respect to resistivity. It is confirmed that the concentration of hydrogen which passivates Mg acceptors in GaN decreases more efficiently when oxygen is introduced into N2 ambient gas. Although oxygen-involved annealing at higher temperature may further reduce the concentration of hydrogen, the resistivity of p-GaN may increase due to the negative effect caused by too much incorporation of oxygen-related donors.

  16. Controlling the nitric and nitrous oxide production of an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Douat, Claire; Hubner, Simon; Engeln, Richard; Benedikt, Jan

    2016-09-01

    Atmospheric pressure plasma jets are non-thermal plasmas and have the ability to create reactive species. These features make it a very attractive tool for biomedical applications. In this work, we studied NO and N2O production, which are two species having biomedical properties. NO plays a role in the vascularization and in ulcer treatment, while N2O is used as anesthetic and analgesic gas. In this study, the plasma source is similar to the COST Reference Microplasma Jet (µ-APPJ). Helium is used as feed gas with small admixtures of molecular nitrogen and oxygen of below 1%. The absolute densities of NO and N2O were measured in the effluent of an atmospheric pressure RF plasma jet by means of ex-situ quantum-cascade laser absorption spectroscopy via a multi-pass cell in Herriot configuration. We will show that the species' production is dependent on several parameters such as power, flow and oxygen and nitrogen admixture. The NO and N2O densities are strongly dependent on the N2-O2 ratio. Changing this ratio allows for choosing between a NO-rich or a N2O-rich regime.

  17. Study of low resistivity and high work function ITO films prepared by oxygen flow rates and N2O plasma treatment for amorphous/crystalline silicon heterojunction solar cells.

    PubMed

    Hussain, Shahzada Qamar; Oh, Woong-Kyo; Kim, Sunbo; Ahn, Shihyun; Le, Anh Huy Tuan; Park, Hyeongsik; Lee, Youngseok; Dao, Vinh Ai; Velumani, S; Yi, Junsin

    2014-12-01

    Pulsed DC magnetron sputtered indium tin oxide (ITO) films deposited on glass substrates with lowest resistivity of 2.62 x 10(-4) Ω x cm and high transmittance of about 89% in the visible wavelength region. We report the enhancement of ITO work function (Φ(ITO)) by the variation of oxygen (O2) flow rate and N2O surface plasma treatment. The Φ(ITO) increased from 4.43 to 4.56 eV with the increase in O2 flow rate from 0 to 4 sccm while surface treatment of N2O plasma further enhanced the ITO work function to 4.65 eV. The crystallinity of the ITO films improved with increasing O2 flow rate, as revealed by XRD analysis. The ITO work function was increased by the interfacial dipole resulting from the surface rich in O- ions and by the dipole moment formed at the ITO surface during N2O plasma treatment. The ITO films with high work functions can be used to modify the front barrier height in heterojunction with intrinsic thin layer (HIT) solar cells.

  18. Fixed 50:50 mixture of nitrous oxide and oxygen to reduce lumbar-puncture-induced pain: a randomized controlled trial.

    PubMed

    Moisset, X; Sia, M A; Pereira, B; Taithe, F; Dumont, E; Bernard, L; Clavelou, P

    2017-01-01

    Lumbar puncture (LP) has been frequently performed for more than a century. This procedure is still stressful and often painful. The aim of the study was to evaluate the efficacy of a fixed 50% nitrous oxide-oxygen mixture compared to placebo to reduce immediate procedural pain and anxiety during LP. A randomized controlled trial was conducted involving adults who needed a cerebrospinal fluid analysis. Patients were randomly assigned to inhale either a fixed 50% nitrous oxide-oxygen mixture (50% N 2 O-O 2 ) or medical air (22% O 2 -78% N 2 ). Cutaneous application of a eutectic mixture of local anaesthetics was systematically done and all LPs were performed with pencil point 25G needles (20G introducer needle). The primary end-point was the maximal pain level felt by the patient during the procedure, the maximal anxiety level being a secondary outcome, both measured using a numerical rating scale (0-10). A total of 66 consecutive patients were randomized. The analysis was intention to treat. The maximal pain was 4.9 ± 2.7 for the 33 patients receiving air and 2.7 ± 2.7 for the 33 receiving 50% N 2 O-O 2 (P = 0.002). Similarly, the maximal LP-induced anxiety was 4.5 ± 3.1 vs. 2.6 ± 2.6 (P = 0.009), respectively. The number needed to treat to avoid one patient undergoing significant pain (pain score ≥ 4/10) was 2.75. Body mass index >25 kg/m 2 was significantly associated with higher pain intensity (P = 0.03). No serious adverse events were attributable to 50% N 2 O-O 2 inhalation. Inhalation of a fixed 50% N 2 O-O 2 mixture is efficient to reduce LP-induced pain and anxiety. © 2016 EAN.

  19. A randomized controlled trial of nitrous oxide for intrauterine device insertion in nulliparous women.

    PubMed

    Singh, Rameet H; Thaxton, Lauren; Carr, Shannon; Leeman, Lawrence; Schneider, Emily; Espey, Eve

    2016-11-01

    To evaluate the effectiveness of inhaled nitrous oxide for pain management among nulliparous women undergoing intrauterine device (IUD) insertion. A double-blind, randomized controlled trial was conducted among nulliparous women aged 13-45years who underwent IUD insertion at a US center between October 1, 2013, and August 31, 2014. Using a computer-generated randomization sequence, participants were randomly assigned to inhale either oxygen (O 2 ) or a mixture of 50% nitrous oxide and 50% oxygen (N 2 O/O 2 ) through a nasal mask for 2minutes before insertion. Only the person administering the inhalation agent was aware of group assignment. The primary outcome was maximum pain assessed 2minutes after insertion via a 100-mm visual analog scale. Analyses were by intention to treat. Forty women were assigned to each group. Mean maximum pain score at the time of insertion was 54.3±24.8mm for the N 2 O/O 2 group and 55.3±20.9mm for the O 2 group (P=0.86). Adverse effects were reported for 6 (15%) women in the N 2 O/O 2 group and 7 (18%) in the O 2 group (P=0.32). N 2 O/O 2 did not reduce the pain of IUD insertion among nulliparous women. ClinicalTrials.gov: NCT02391714. Published by Elsevier Ireland Ltd.

  20. In vivo photoacoustic imaging of chorioretinal oxygen gradients

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Wang, Junxin; Kim, Yeji; Jhunjhunwala, Anamik; Chao, Daniel L.; Jokerst, Jesse V.

    2018-03-01

    Chorioretinal imaging has a crucial role for the patients with chorioretinal vascular diseases, such as neovascular age-related macular degeneration. Imaging oxygen gradients in the eye could better diagnose and treat ocular diseases. Here, we describe the use of photoacoustic ocular imaging (PAOI) in measuring chorioretinal oxygen saturation (CR - sO2) gradients in New Zealand white rabbits (n = 5) with ocular ischemia. We observed good correlation (R2 = 0.98) between pulse oximetry and PAOI as a function of different oxygen percentages in inhaled air. We then used an established ocular ischemia model in which intraocular pressure is elevated to constrict ocular blood flow, and notice a positive correlation (R2 = 0.92) between the injected volume of phosphate buffered saline (PBS) and intraocular pressure (IOP) as well as a negative correlation (R2 = 0.98) between CR - sO2 and injected volume of PBS. The CR - sO2 was measured before (baseline), during (ischemia), and after the infusion (600-μL PBS). The ischemia-reperfusion model did not affect the measurement of the sO2 using a pulse oximeter on the animal's paw, but the chorioretinal PAOI signal showed a nearly sixfold decrease in CR - sO2 (n = 5, p = 0.00001). We also observe a sixfold decrease in CR - sO2 after significant elevation of IOP during ischemia, with an increase close to baseline during reperfusion. These data suggest that PAOI can detect changes in chorioretinal oxygenation and may be useful for application to imaging oxygen gradients in ocular disease.

  1. Effects of Ginkgo biloba extract on cerebral oxygen and glucose metabolism in elderly patients with pre-existing cerebral ischemia.

    PubMed

    Xu, Lili; Hu, Zhiyong; Shen, Jianjun; McQuillan, Patrick M

    2015-04-01

    Cerebral injury caused by hypoperfusion during the perioperative period is one of the main causes of disability and death in patients after major surgery. No effective protective or preventative strategies have been identified. This study was designed to evaluate the effects of Ginkgo biloba extract on cerebral oxygen and glucose metabolism in elderly patients with known, pre-existing cerebral ischemia. Sixty ASA (American Society of Anesthesiologists) II-III patients, diagnosed with vertebral artery ischemia by transcranial Doppler ultrasonography (TCD), and scheduled for elective total hip replacement surgery, were enrolled in the study. They were randomly allocated to receive either 1mg/kg Ginkgo biloba extract (G group n=30) or normal saline (D group n=30) after induction of anesthesia. Blood samples were collected from radial artery and jugular venous bulb catheters for blood gas analysis and determination of glucose and lactate concentrations preoperatively, before surgical incision, at the end of surgery, and on post-op day 1. Arterial O2 content (CaO2), jugular venous O2 content (CjvO2), arteriovenous O2 content difference (Da-jvO2), cerebral oxygen extraction rate (CEO2), and arteriovenous glucose and lactate content differences (Da-jvGlu and Da-jvLac) were calculated. There were no significant differences in CaO2 or Da-jvGlu during surgery between groups (p>0.05). However, the Ginkgo group had higher CjvO2, internal jugular venous oxygen saturation (SjvO2) and lower CEO2, Da-jvO2 and Da-jvLac at the end of surgery (T2) and on post-op day 1 (T3) than those in the control group (p<0.05). Ginkgo biloba extract can improve cerebral oxygen supply, decrease cerebral oxygen extraction rate and consumption, and help maintain the balance between cerebral oxygen supply and consumption. It has no effect, however, on cerebral glucose metabolism in elderly patients with known, pre-existing cerebral ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Electron holography on HfO2/HfO2-x bilayer structures with multilevel resistive switching properties

    NASA Astrophysics Data System (ADS)

    Niu, G.; Schubert, M. A.; Sharath, S. U.; Zaumseil, P.; Vogel, S.; Wenger, C.; Hildebrandt, E.; Bhupathi, S.; Perez, E.; Alff, L.; Lehmann, M.; Schroeder, T.; Niermann, T.

    2017-05-01

    Unveiling the physical nature of the oxygen-deficient conductive filaments (CFs) that are responsible for the resistive switching of the HfO2-based resistive random access memory (RRAM) devices represents a challenging task due to the oxygen vacancy related defect nature and nanometer size of the CFs. As a first important step to this goal, we demonstrate in this work direct visualization and a study of physico-chemical properties of oxygen-deficient amorphous HfO2-x by carrying out transmission electron microscopy electron holography as well as energy dispersive x-ray spectroscopy on HfO2/HfO2-x bilayer heterostructures, which are realized by reactive molecular beam epitaxy. Furthermore, compared to single layer devices, Pt/HfO2/HfO2-x /TiN bilayer devices show enhanced resistive switching characteristics with multilevel behavior, indicating their potential as electronic synapses in future neuromorphic computing applications.

  3. Time Course of Recovery Following Nitrous Oxide/Oxygen Administration1

    PubMed Central

    Herwig, Larry D.; Milam, Stephen B.; Jones, Daniel L.

    1984-01-01

    The time course of recovery following a brief exposure to 50% N2O in O2 was assessed using a standard psychomotor test, a subjective ranking of experimental pain, and somatosensory evoked potential recordings. Results of this study suggest that recovery from a brief N2O exposure may be prolonged and conventional methods of assessing recovery from CNS active drugs like N2O may be inadequate. PMID:6591845

  4. Influence of oxygen annealing on the dielectric properties of SrBi2(V0.1Nb0.9)2O9 ceramics

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Forbess, M.; Seraji, S.; Limmer, S.; Chou, T.; Cao, G. Z.

    2001-09-01

    The influences of O2 and N2 annealing on the dielectric properties of SrBi2(V0.1Nb0.9)2O9 (SBVN) ferroelectrics were studied. Ceramic samples were prepared by reaction sintering a powder mixture of constituent oxides at 950 °C for 2 h in air. Some samples were also subsequently annealed at 800 °C for 3 h in O2 or N2. With O2 annealing, the Curie point of the SBVN ferroelectrics changed from ~433 to ~438 °C and the peak dielectric constant increased from ~760 to ~1010 (at 100 kHz). However, no change in the Curie point was found with N2 annealing. Furthermore, O2 annealing was found to reduce significantly both the dielectric constant and loss tangent of the SBVN ferroelectrics at frequencies below 1000 Hz. XRD results revealed a small reduction in the lattice constants with O2 annealing, but no appreciable change with N2 annealing. In addition, no detectable change in the microstructure of the SBVN samples was found with annealing. These results imply that some V4+ ions, which are compensated by the formation of oxygen vacancies, existed in the SBVN ferroelectrics prior to O2 annealing. V4+ ions were oxidized to V5+ with O2 annealing, which resulted in improved dielectric properties.

  5. Progressively heterogeneous mismatch of regional oxygen delivery to consumption during graded coronary stenosis in pig left ventricle.

    PubMed

    Alders, David J C; Groeneveld, A B Johan; Binsl, Thomas W; van Beek, Johannes H G M

    2015-11-15

    In normal hearts, myocardial perfusion is fairly well matched to regional metabolic demand, although both are distributed heterogeneously. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. In the present study, we investigated whether metabolism-perfusion correlation diminishes during coronary stenosis, indicating increasing mismatch of regional oxygen supply to demand. Thirty anesthetized male pigs were studied: controls without coronary stenosis (n = 11); group I, left anterior descending (LAD) coronary stenosis leading to coronary perfusion pressure reduction to 70 mmHg (n = 6); group II, stenosis with perfusion pressure of about 35 mmHg (n = 6); and group III, stenosis with perfusion pressure of 45 mmHg combined with adenosine infusion (n = 7). [2-(13)C]- and [1,2-(13)C]acetate infusion was used to calculate regional O2 consumption from glutamate NMR spectra measured for multiple tissue samples of about 100 mg dry mass in the LAD region. Blood flow was measured with microspheres in the same regions. In control hearts without stenosis, regional oxygen extraction did not correlate with basal blood flow. Average myocardial O2 delivery and consumption decreased during coronary stenosis, but vasodilation with adenosine counteracted this. Regional oxygen extraction was on average decreased during stenosis, suggesting adaptation of metabolism to lower oxygen supply after half an hour of ischemia. Whereas regional O2 delivery correlated with O2 consumption in controls, this relation was progressively lost with graded coronary hypotension but partially reestablished by adenosine infusion. Therefore, coronary stenosis leads to heterogeneous metabolic stress indicated by decreasing regional O2 supply to demand matching in myocardium during partial coronary obstruction. Copyright © 2015 the American Physiological Society.

  6. Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature

    PubMed Central

    Fernández-Barquín, Ana; Casado-Coterillo, Clara; Valencia, Susana; Irabien, Angel

    2016-01-01

    In this work, mixed matrix membranes (MMMs) composed of small-pore zeolites with various topologies (CHA (Si/Al = 5), LTA (Si/Al = 1 and 5), and Rho (Si/Al = 5)) as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne) (PTMSP) as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298–333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van’t Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson’s upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K. PMID:27196937

  7. Tunability of p- and n-channel TiOx thin film transistors.

    PubMed

    Peng, Wu-Chang; Chen, Yao-Ching; He, Ju-Liang; Ou, Sin-Liang; Horng, Ray-Hua; Wuu, Dong-Sing

    2018-06-18

    To acquire device-quality TiO x films usually needs high-temperature growth or additional post-thermal treatment. However, both processes make it very difficult to form the p-type TiO x even under oxygen-poor growth condition. With the aid of high energy generated by high power impulse magnetron sputtering (HIPIMS), a highly stable p-type TiO x film with good quality can be achieved. In this research, by varying the oxygen flow rate, p-type γ-TiO and n-type TiO 2 films were both prepared by HIPIMS. Furthermore, p- and n-type thin film transistors employing γ-TiO and TiO 2 as channel layers possess the field-effect carrier mobilities of 0.2 and 0.7 cm 2 /Vs, while their on/off current ratios are 1.7 × 10 4 and 2.5 × 10 5 , respectively. The first presented p-type γ-TiO TFT is a major breakthrough for fabricating the TiO x -based p-n combinational devices. Additionally, our work also confirms HIPIMS offers the possibility of growing both p- and n-type conductive oxides, significantly expanding the practical usage of this technique.

  8. Electron energy spectrum and magnetic interactions in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.

    1991-01-01

    The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T(sub N1) and T(sub N2). The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T(sub N2) reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T(sub N1) and T(sub N2) which depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg Hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J(sub ij) parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.

  9. Electron energy spectrum and magnetic interactions in high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Turshevski, S. A.; Liechtenstein, A. I.; Antropov, V. P.; Gubanov, V. A.

    1990-01-01

    The character of magnetic interactions in La-Sr-Cu-O and Y-Ba-Cu-O systems is of primary importance for analysis of high-T(sub c) superconductivity in these compounds. Neutron diffraction experiments showed the antiferromagnetic ground state for nonsuperconducting La2CuO4 and YBa2Cu3O6 with the strongest antiferromagnetic superexchange being in the ab plane. The nonsuperconducting '1-2-3' system has two Neel temperatures T sub N1 and T sub N2. The first one corresponds to the ordering of Cu atoms in the CuO2 planes; T sub N2 reflects the antiferromagnetic ordering of magnetic moments in CuO chains relatively to the moments in the planes T sub N1 and T sub N2 depend strongly on the oxygen content. Researchers describe magnetic interactions in high-T superconductors based on the Linear Muffin-Tin Orbitals (LMTO) band structure calculations. Exchange interaction parameters can be defined from the effective Heisenberg hamiltonian. When the magnetic moments are not too large, as copper magnetic moments in superconducting oxides, J sub ij parameters can be defined through the non-local magnetic susceptibility of spin restricted solution for the crystal. The results of nonlocal magnetic susceptibility calculations and the values of exchange interaction parameters for La CuO and YBa2Cu3O7 systems are given in tabular form. Strong anisotropy of exchange interactions in the ab plane and along the c axis in La2CuO4 is obviously seen. The value of Neel temperature found agrees well with the experimental data available. In the planes of '1-2-3' system there are quite strong antiferromagnetic Cu-O and O-O interaction which appear due to holes in oxygen subbands. These results are in line with the magnetic model of oxygen holes pairing in high-T(sub c) superconductors.

  10. Turbulent piloted partially-premixed flames with varying levels of O2/N2: stability limits and PDF calculations

    NASA Astrophysics Data System (ADS)

    Juddoo, Mrinal; Masri, Assaad R.; Pope, Stephen B.

    2011-12-01

    This paper reports measured stability limits and PDF calculations of piloted, turbulent flames of compressed natural gas (CNG) partially-premixed with either pure oxygen, or with varying levels of O2/N2. Stability limits are presented for flames of CNG fuel premixed with up to 20% oxygen as well as CNG-O2-N2 fuel where the O2 content is varied from 8 to 22% by volume. Calculations are presented for (i) Sydney flame B [Masri et al. 1988] which uses pure CNG as well as flames B15 to B25 where the CNG is partially-premixed with 15-25% oxygen by volume, respectively and (ii) Sandia methane-air (1:3 by volume) flame E [Barlow et al. 2005] as well as new flames E15 and E25 that are partially-premixed with 'reconstituted air' where the O2 content in nitrogen is 15 and 25% by volume, respectively. The calculations solve a transported PDF of composition using a particle-based Monte Carlo method and employ the EMST mixing model as well as detailed chemical kinetics. The addition of oxygen to the fuel increases stability, shortens the flames, broadens the reaction zone, and shifts the stoichiometric mixture fraction towards the inner side of the jet. It is found that for pure CNG flames where the reaction zone is narrow (∼0.1 in mixture fraction space), the PDF calculations fail to reproduce the correct level of local extinction on approach to blow-off. A broadening in the reaction zone up to about 0.25 in mixture fraction space is needed for the PDF/EMST approach to be able to capture these finite-rate chemistry effects. It is also found that for the same level of partial premixing, increasing the O2/N2 ratio increases the maximum levels of CO and NO but shifts the peak to richer mixture fractions. Over the range of oxygenation investigated here, stability limits have shown to improve almost linearly with increasing oxygen levels in the fuel and with increasing the contribution of release rate from the pilot.

  11. Non-invasive cerebral oxygenation reflects mixed venous oxygen saturation during the varying haemodynamic conditions in patients undergoing transapical transcatheter aortic valve implantation.

    PubMed

    Paarmann, Hauke; Heringlake, Matthias; Heinze, Hermann; Hanke, Thorsten; Sier, Holger; Karsten, Jan; Schön, Julika

    2012-03-01

    Transapical transcatheter aortic valve implantation (TA-TAVI) is increasingly used to treat aortic valve stenosis in high-risk patients. Mixed venous oxygen saturation (SvO(2)) is still the 'gold standard' for the determination of the systemic oxygen delivery to consumption ratio in cardiac surgery patients. Recent data suggest that regional cerebral oxygen saturation (rScO(2)) determined by near-infrared spectroscopy is closely related to SvO(2). The present study compares rScO(2) and SvO(2) in patients undergoing TA-TAVI. n = 20 cardiac surgery patients scheduled for TA-TAVI were enrolled in this prospective observational study. SvO(2) and rScO(2) were determined at predefined time points during the procedure. Correlation and Bland-Altman analysis of the complete data set showed a correlation coefficient of r(2 )= 0.7 between rScO(2) and SvO(2) (P < 0.0001), a mean difference (bias) of 5.8 with limits of agreement (1.96 SD) of -6.8 to 18.3% and a percentage error of 17.5%. At all predefined time points correlation was moderate (r(2 )= 0.50) to close (r = 0.84), and the percentage error was <24%. RScO(2) determined by near-infrared spectroscopy is correlated to SvO(2) during varying haemodynamic conditions in patients undergoing TA-TAVI. This suggests that rScO(2) is reflective not only of the cerebral, but also of the systemic oxygen balance.

  12. Laboratory experiments on interstellar ice analogs: The sticking and desorption of small physisorbed molecules

    NASA Technical Reports Server (NTRS)

    Fuchs, G. W.; Acharyya, K.; Bisschop, S. E.; Oberg, K. I.; vanBroekhuizen, F. A.; Fraser, H. J.; Schlemmer, S.; vanDishoeck, E. F.; Linnartz, H.

    2006-01-01

    Molecular oxygen and nitrogen are difficult to observe since they are infrared inactive and radio quiet. The low O2 abundances found so far combined with general considerations of dense cloud conditions suggest molecular oxygen is frozen out at low temperatures (< 20 K) in the shielded inner regions of cloud cores. In solid form O2 and N2 can only be observed as adjuncts within other ice constituents, like CO. In this work we focus on fundamental properties of N2 and O2 in CO ice-gas systems, e.g. desorption characteristics and sticking probabilities at low temperatures for different ice morphologies.

  13. Oxygen Isotopes and Origin of Opal in an Antarctic Ureilite

    NASA Astrophysics Data System (ADS)

    Downes, H.; Beard, A. D.; Franchi, I. A.; Greenwood, R. C.

    2016-08-01

    Fragments of opal (SiO2.nH2O) in several internal chips of a single Antarctic polymict ureilite meteorite Elephant Moraine (EET) 83309 have been studied by NanoSIMS to determine their oxygen isotope compositions and hence constrain their origin.

  14. Macrofauna regulate heterotrophic bacterial carbon and nitrogen incorporation in low-oxygen sediments

    PubMed Central

    Hunter, William R; Veuger, Bart; Witte, Ursula

    2012-01-01

    Oxygen minimum zones (OMZs) currently impinge upon >1 million km2 of sea floor and are predicted to expand with climate change. We investigated how changes in oxygen availability, macrofaunal biomass and retention of labile organic matter (OM) regulate heterotrophic bacterial C and N incorporation in the sediments of the OMZ-impacted Indian continental margin (540–1100 m; [O2]=0.35–15 μmol l−1). In situ pulse-chase experiments traced 13C:15N-labelled phytodetritus into bulk sediment OM and hydrolysable amino acids, including the bacterial biomarker 𝒟-alanine. Where oxygen availability was lowest ([O2]=0.35 μmol l−1), metazoan macrofauna were absent and bacteria assimilated 30–90% of the labelled phytodetritus within the sediment. At higher oxygen levels ([O2]=2–15 μmol l−1) the macrofaunal presence and lower phytodetritus retention with the sediment occur concomitantly, and bacterial phytodetrital incorporation was reduced and retarded. Bacterial C and N incorporation exhibited a significant negative relationship with macrofaunal biomass across the OMZ. We hypothesise that fauna–bacterial interactions significantly influence OM recycling in low-oxygen sediments and need to be considered when assessing the consequences of global change on biogeochemical cycles. PMID:22592818

  15. Impact of AlO x layer on resistive switching characteristics and device-to-device uniformity of bilayered HfO x -based resistive random access memory devices

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung

    2018-06-01

    An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.

  16. Effect of ambient oxygen on the photoluminescence of sol-gel-derived nanocrystalline ZrO2:Eu,Nb

    NASA Astrophysics Data System (ADS)

    Puust, Laurits; Kiisk, Valter; Eltermann, Marko; Mändar, Hugo; Saar, Rando; Lange, Sven; Sildos, Ilmo; Dolgov, Leonid; Matisen, Leonard; Jaaniso, Raivo

    2017-06-01

    The development of inorganic nanophosphors is an active research field due to many applications, including optical gas sensing materials. We found a systematic dependence of the photoluminescence (PL) of europium (Eu3+) impurity ions in zirconia (ZrO2) nanocrystals on the ambient oxygen concentration in a O2/N2 mixture at normal pressure. Europium-doped ZrO2 powders were synthesized via a sol-gel route. Heat-treatment at 1200 °C resulted in a well-developed monoclinic phase (XRD crystallite size of ~50 nm) and an intense PL of Eu3+ ions residing in the dominant phase (Eu3+ was excited directly at 395 or 464 nm). Co-doping with niobium resulted in a narrowing of the PL emission lines. Only Nb5+ was detected by XPS and is believed to charge-compensate Eu3+ activators throughout the material leading to a more regular crystal lattice. At room temperature, the exposure to oxygen suppressed the Eu3+ fluorescence, whereas, at elevated temperatures (300 °C), the effect was reversed. At 300 °C and under a focused continuous laser beam, a substantial PL response (>50%) was achieved when switching 100% of N2 for 100% of O2. PL decay kinetics clearly showed that at 300 °C fluorescence quenching centers were induced within the material by oxygen desorption. The relatively fast (<5 min) and sub-linear PL response to the changes of oxygen concentration shows that ZrO2:Eu,Nb is a promising PL-based oxygen sensing material over a wide-range of oxygen pressures.

  17. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    2017-11-01

    SnO2/ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO2/ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO2/ZnO might be associated with the homotypic heterojunction effects formed in n-SnO2/n-ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO2/ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO2 model was adopted to approximate the SnO2/ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O2c , planar O3c and pre adsorbed oxygen vacancy on the lattice surface. The -CH3 and -OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H2O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work.

  18. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators.

    PubMed

    Ye, Liu; Ni, Bing-Jie; Law, Yingyu; Byers, Craig; Yuan, Zhiguo

    2014-01-01

    The quantification of nitrous oxide (N2O) emissions from open-surface wastewater treatment systems with surface aerators is difficult as emissions from the surface aerator zone cannot be easily captured by floating hoods. In this study, we propose and demonstrate a novel methodology to estimate N2O emissions from such systems through determination of the N2O transfer coefficient (kLa) induced by surface aerators based on oxygen balance for the entire system. The methodology is demonstrated through its application to a full-scale open oxidation ditch wastewater treatment plant with surface aerators. The estimated kLa profile based on a month-long measurement campaign for oxygen balance, intensive monitoring of dissolved N2O profiles along the oxidation ditch over a period of four days, together with mathematical modelling, enabled to determine the N2O emission factor from this treatment plant (0.52 ± 0.16%). Majority of the N2O emission was found to occur in the surface aerator zone, which would be missed if the gas hood method was applied alone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of ammonium and oxygen on methane and nitrous oxide fluxes across sediment-water interface in a eutrophic lake.

    PubMed

    Liikanen, Anu; Martikainen, Pertti J

    2003-09-01

    Eutrophication has decreased the O(2) content and increased the NH(4)(+) availability in freshwaters. These changes may affect carbon and nitrogen transformation processes and the production of CH(4) and N(2)O, which are important greenhouse gases. We studied release of CH(4) and N(2)O from a eutrophic lake sediment under varying O(2) and NH(4)(+) conditions. Intact sediment cores were incubated in a laboratory microcosm with a continuous anoxic or oxic water flows containing 0, 50, 500, 5,000, or 15000 microM NH(4)(+). With the anoxic flow, the sediment released CH(4), up to 7.9 mmol m(-2)d(-1). With the oxic flow, the CH(4) emissions were small indicating limited CH(4) production and/or effective CH(4) oxidation. Addition of NH(4)(+) did not affect sediment CH(4) release, evidence that the CH(4) oxidizing bacteria were not disturbed by the extra NH(4)(+). The release of N(2)O from the sediment was highest, up to 7.6 micromol m(-2)d(-1), with the oxic flow without NH(4)(+) addition. Oxygen was the key factor regulating the production of NO(3)(-), which enabled denitrification and production of N(2)O. However, the highest NH(4)(+) addition increased nitrification and associated O(2) consumption causing a decrease in sediment O(2) content and in accumulation of NO(3)(-) and N(2)O, which were effectively reduced to N(2) in denitrification. In summary, sediment CH(4) and N(2)O dynamics are regulated more by the availability of O(2) than extra NH(4)(+). Anoxia in eutrophic lakes favouring the CH(4) production, is the major contributor to the atmospheric consequences of water eutrophication.

  20. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  1. The Nitrogen Cycle Before the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Ward, L. M.; Hemp, J.; Fischer, W. W.

    2016-12-01

    The nitrogen cycle on Earth today is driven by a complex network of microbially-mediated transformations. Atmospheric N2 is fixed into biologically available forms that can either be incorporated into biomass or utilized for bioenergetic redox reactions. The cycle is kept in balance by the return of fixed nitrogen to the atmospheric N2 pool by anammox and denitrification. The early evolution and history of the nitrogen cycle is not well resolved, particularly before the evolution of oxygenic photosynthesis and rise of atmospheric oxygen ca. 2.3 Gya. Ammonia oxidation is a biochemically difficult reaction requiring activation of ammonia using O2 or oxidized nitrogen species that are produced using O2. Before the rise of oxygen, when O2 was largely unavailable, nitrification could not proceed, trapping fixed nitrogen in reduced forms such as ammonia and biomass. Without production of nitrite and nitrate, anammox and denitrification could not occur, preventing return of fixed nitrogen to the N2 pool and leaving the nitrogen cycle unclosed. While it has been hypothesized that ammonia oxidation could be driven anaerobically by processes such as phototrophy or iron reduction, these metabolisms have not been recovered in extant microorganisms, and would require complex unknown biochemical mechanisms. Furthermore, phylogenetic data for the key organisms and biochemical pathways involved in denitrification and anammox suggest that these metabolisms postdate the rise of oxygen. This is particularly clear for steps utilizing enzymes in the Heme-Copper Oxidoreductase superfamily, which appear to have originally evolved for O2 reduction at non-negligible substrate concentrations. Together, this suggests that the Archean nitrogen cycle was not closed, and that nitrogen fixed to reduced forms—either through biological nitrogen fixation or abiotic processes—was not easily returned to the atmospheric N2 pool. In principle, this could have stripped the atmosphere of N2 over timescales of hundreds of Myr, which is consistent with recent paleopressure estimates that suggest < 0.5 bar by late Archean time. The modern, N2-rich atmosphere and (largely) closed biological nitrogen cycle may therefore not have evolved until Proterozoic time, after the rise of oxygen.

  2. Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow

    NASA Technical Reports Server (NTRS)

    Singh, Jagdish P.; Yueh, Fang-Yu; Kalluru, Rajamohan R.; Harrison, Louie

    2012-01-01

    An integrated fiber-optic Raman sensor has been designed for real-time, nonintrusive detection of liquid nitrogen in liquid oxygen (LOX) at high pressures and high flow rates in order to monitor the quality of LOX used during rocket engine ground testing. The integrated sensor employs a high-power (3-W) Melles Griot diode-pumped, solid-state (DPSS), frequency-doubled Nd:YAG 532- nm laser; a modified Raman probe that has built-in Raman signal filter optics; two high-resolution spectrometers; and photomultiplier tubes (PMTs) with selected bandpass filters to collect both N2 and O2 Raman signals. The PMT detection units are interfaced with National Instruments Lab- VIEW for fast data acquisition. Studies of sensor performance with different detection systems (i.e., spectrometer and PMT) were carried out. The concentration ratio of N2 and O2 can be inferred by comparing the intensities of the N2 and O2 Raman signals. The final system was fabricated to measure N2 and O2 gas mixtures as well as mixtures of liquid N2 and LOX

  3. Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls

    NASA Astrophysics Data System (ADS)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Warner, Mark J.; Devol, Allan H.; Ward, Bess B.

    2016-03-01

    Nitrification, the oxidation of ammonium (NH4+) to nitrite (NO2-) and to nitrate (NO3-), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2- oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2- oxidation rates were primarily controlled by NH4+ and NO2- availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2- oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situNH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.

  4. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.

    PubMed

    V, Lakshmi Prasanna; Vijayaraghavan, Rajagopalan

    2017-08-01

    Pure and doped ZnO (cation and anion doping) compositions have been designed in order to manipulate oxygen vacancy and antibacterial activity of ZnO. In this connection, we have synthesized and characterized micron sized ZnO, N doped micron sized ZnO, nano ZnO, nano Na and La doped ZnO. The intrinsic vacancies in pure ZnO and the vacancies created by N and Na doping in ZnO have been confirmed by X-ray Photoelectron Spectroscopy(XPS) and Photoluminiscence Spectroscopy(PL). Reactive oxygen species (ROS) such as hydroxyl radicals, superoxide radicals and H 2 O 2 responsible for antibacterial activity have been estimated by PL, UV-Vis spectroscopy and KMnO 4 titrations respectively. It was found that nano Na doped ZnO releases highest amount of ROS followed by nano ZnO, micron N doped ZnO while micron ZnO releases the least amount of ROS. The concentration of vacancies follows the same sequence. This illustrates directly the correlation between ROS and oxygen vacancy in well designed pure and doped ZnO. For the first time, material design in terms of cation doping and anion doping to tune oxygen vacancies has been carried out. Interaction energy (E g ), between the bacteria and nanoparticles has been calculated based on Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory and is correlated with antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oxygen and nitrogen isotope effects duing nitrification and denitrification occuring in Midwesern soils

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Wilkens, B.; Sanchez, A. V.; Yount, J.

    2017-12-01

    The processes of nitrification and denitrification are key steps in the biogeochemical cycling of N and are a main control on ecosystem productivity. These processes are ephemeral and often difficult to assess across wide spatial and temporal scales. Natural abundance stable isotopes are a way of potentially assessing these two processes across multiple scales. We have conducted incubation experiments to assess the N and O isotope effects occurring during denitrification in soils typical of the Midwestern United States. Nitrification was examined by incubating soils amended with ammonium (with a known δ15N) mixed with H2O and O2 that had different δ18O values and then measured the δ15N and δ18O of the product nitrate. The fraction of nitrate oxygen arising from H2O and O2 was determined along with the N and O kinetic isotope effect (KIE). For denitrification, nitrate with a known δ15N, δ17O, and δ18O, was incubated in anaerobic soils from 12-48 hours. The residual nitrate was analyzed for isotope change and the KIE for O and N as well as exchange with H2O was determined. These data can be useful for interpreting nitrate isotopes in agricultural fields as a way off assessing nitrification and denitrification is agricultural ecosystems such as the IML-CZO.

  6. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  7. X-ray investigation of molten crystal hydrates H2SO4(nH2O) and HNO3(nH2O)

    NASA Technical Reports Server (NTRS)

    Romanova, A. V.; Skryshevskiy, A. F.

    1979-01-01

    Integral analysis of the intensity of the electron density distribution curve in molten crystal hydrates provided by X-ray analysis, permits the following conclusions on the structure of the complex SO and NO ions, and the short-range order in the structure of the solution. The SO4 ion in the solution has a tetrahedral structure with an S to O distance equal to 1.5 A. For the NO3 in the solution, a planar triangular shape is probable, with an N to O distance equal to 1.2 A. Preferential distances between each of the oxygens of the SO ion and the nearest molecules of water proved near to the corresponding distances in solid crystal hydrates. For an (H2SO4)(H2O) solution, the average number of water molecules surrounding each oxygen atom of the SO4 (--) ion was on the order of 1.3 molecules. Hence the preferential distances between the water molecules and the oxygen atoms of the SO ion, and the preference of their mutual position, correspond to the fixed position of these same elements of the structure in the solid crystal hydrate.

  8. 4-Nitro­aniline–picric acid (2/1)

    PubMed Central

    Li, Yan-jun

    2009-01-01

    In the title adduct, C6H3N3O7·0.5C6H6N2O2, the complete 4-nitro­aniline mol­ecule is generated by a crystallographic twofold axis with two C atoms and two N atoms lying on the axis. The mol­ecular components are linked into two dimensional corrugated layers running parallel to the (001) plane by a combination of inter­molecular N—H⋯O and C—H⋯O hydrogen bonds. The phenolic oxygen and two sets of nitro oxygen atoms in the picric acid were found to be disordered with occupancies of 0.81 (2):0.19 (2) and 0.55 (3):0.45 (3) and 0.77 (4):0.23 (4), respectively. PMID:21578004

  9. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium-oxygen batteries.

    PubMed

    Cao, Ruiguo; Walter, Eric D; Xu, Wu; Nasybulin, Eduard N; Bhattacharya, Priyanka; Bowden, Mark E; Engelhard, Mark H; Zhang, Ji-Guang

    2014-09-01

    A fundamental understanding of the mechanisms of both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) in nonaqueous lithium-oxygen (Li-O2) batteries is essential for the further development of these batteries. In this work, we systematically investigate the mechanisms of the ORR/OER reactions in nonaqueous Li-O2 batteries by using electron paramagnetic resonance (EPR) spectroscopy, using 5,5-dimethyl-pyrroline N-oxide as a spin trap. The study provides direct verification of the formation of the superoxide radical anion (O2(˙-)) as an intermediate in the ORR during the discharge process, while no O2(˙-) was detected in the OER during the charge process. These findings provide insight into, and an understanding of, the fundamental reaction mechanisms involving oxygen and guide the further development of this field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Disintegration of Carbon Dioxide Molecules in a Microwave Plasma Torch

    PubMed Central

    Kwak, Hyoung S.; Uhm, Han S.; Hong, Yong C.; Choi, Eun H.

    2015-01-01

    A pure carbon dioxide torch is generated by making use of 2.45 GHz microwave. Carbon dioxide gas becomes the working gas and produces a stable carbon dioxide torch. The torch volume is almost linearly proportional to the microwave power. Temperature of the torch flame is measured by making use of optical spectroscopy and thermocouple. Two distinctive regions are exhibited, a bright, whitish region of high-temperature zone and a bluish, dimmer region of relatively low-temperature zone. Study of carbon dioxide disintegration and gas temperature effects on the molecular fraction characteristics in the carbon dioxide plasma of a microwave plasma torch under atmospheric pressure is carried out. An analytical investigation of carbon dioxide disintegration indicates that substantial fraction of carbon dioxide molecules disintegrate and form other compounds in the torch. For example, the normalized particle densities at center of plasma are given by nCO2/nN = 6.12 × 10−3, nCO/nN = 0.13, nC/nN = 0.24, nO/nN = 0.61, nC2/nN = 8.32 × 10−7, nO2/nN = 5.39 × 10−5, where nCO2, nCO, nC, nO, nC2, and nO2 are carbon dioxide, carbon monoxide, carbon and oxygen atom, carbon and oxygen molecule densities, respectively. nN is the neutral particle density. Emission profiles of the oxygen and carbon atom radicals and the carbon monoxide molecules confirm the theoretical predictions of carbon dioxide disintegration in the torch. PMID:26674957

  11. Plasma treatment effect on charge carrier concentrations and surface traps in a-InGaZnO thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-Sung; Xing Piao, Ming; Jang, Ho-Kyun

    2014-03-21

    Various plasma treatment effects such as oxygen (O{sub 2}), nitrogen (N{sub 2}), and argon (Ar) on amorphous indium gallium zinc oxide thin-film transistors (a-IGZO TFTs) are investigated. To study oxygen stoichiometry in a-IGZO TFTs with respect to various plasma environments, X-ray photoelectron spectroscopy was employed. The results showed that oxygen vacancies were reduced by O{sub 2} and N{sub 2} plasmas while they were increased after Ar plasma treatment. Additionally, the effects of plasma treatment on trap distribution in bulk and surface channels were explored by means of low-frequency noise analysis. Details of the mechanisms used for generating and restoring trapsmore » on the surface and bulk channel are presented.« less

  12. Role of point defects and HfO2/TiN interface stoichiometry on effective work function modulation in ultra-scaled complementary metal-oxide-semiconductor devices

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Sathiyanarayanan, Rajesh; Kwon, Unoh; Narayanan, Vijay; Murali, K. V. R. M.

    2013-07-01

    We investigate the physical properties of a portion of the gate stack of an ultra-scaled complementary metal-oxide-semiconductor (CMOS) device. The effects of point defects, such as oxygen vacancy, oxygen, and aluminum interstitials at the HfO2/TiN interface, on the effective work function of TiN are explored using density functional theory. We compute the diffusion barriers of such point defects in the bulk TiN and across the HfO2/TiN interface. Diffusion of these point defects across the HfO2/TiN interface occurs during the device integration process. This results in variation of the effective work function and hence in the threshold voltage variation in the devices. Further, we simulate the effects of varying the HfO2/TiN interface stoichiometry on the effective work function modulation in these extremely-scaled CMOS devices. Our results show that the interface rich in nitrogen gives higher effective work function, whereas the interface rich in titanium gives lower effective work function, compared to a stoichiometric HfO2/TiN interface. This theoretical prediction is confirmed by the experiment, demonstrating over 700 meV modulation in the effective work function.

  13. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant.

    PubMed

    Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti

    2017-01-03

    A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic iron(II) hydroperoxides are proposed to generate in situ in the reaction pathways. The difference in reactivity of the complexes toward external substrates could be attributed to the geometry of the O 2 -derived iron-oxygen oxidant. DFT calculations suggest that, among all possible geometries and spin states, high-spin side-on iron(II) hydroperoxides are energetically favorable for the complexes of 6-Me 3 -TPA, 6-Me 2 -iso-BPMEN, BPMEN, and 6-Me 2 -BPMEN ligands, while high spin end-on iron(II) hydroperoxides are favorable for the complexes of TPA, iso-BPMEN, and TBimA ligands.

  14. Dose Dependent Effects of Reactive Oxygen and Nitrogen Species on the Function of Neuronal Nitric Oxide Synthase

    PubMed Central

    Sun, Jian; Druhan, Lawrence J.; Zweier, Jay L.

    2014-01-01

    Reactive nitrogen species (RNS) and oxygen species (ROS) have been reported to modulate the function of nitric oxide synthase (NOS); however, the precise dosedependent effects of specific RNS and ROS on NOS function are unknown. Questions remain unanswered regarding whether pathophysiological levels of RNS and ROS alter NOS function, and if this alteration is reversible. We measured the effects of peroxynitrite (ONOO-), superoxide (O2.-), hydroxyl radical (.OH), and H2O2 on nNOS activity. The results showed that NO production was inhibited in a dose-dependent manner by all four oxidants, but only O2.- and ONOO- were inhibitory at pathophysiological concentrations (≤ 50 μM). Subsequent addition of tetrahydrobiopterin (BH4) fully restored activity after O2.- exposure, while BH4 partially rescued the activity decrease induced by the other three oxidants. Furthermore, treatment with either ONOO- or O2.- stimulated nNOS uncoupling with decreased NO and enhanced O2.- generation. Thus, nNOS is reversibly uncoupled by O2.- (≤ 50 μM), but irreversibly uncoupled and inactivated by ONOO-. Additionally, we observed that the mechanism by which oxidative stress alters nNOS activity involves not only BH4 oxidation, but also nNOS monomerization as well as possible degradation of the heme. PMID:18201545

  15. Simultaneous retrieval of the solar EUV flux and neutral thermospheric O, O2, N2, and temperature from twilight airglow

    NASA Technical Reports Server (NTRS)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.

    1994-01-01

    We present a method to retrieve neutral thermospheric composition and the solar EUV flux from ground-based twilight optical measurements of the O(+) ((exp 2)P) 7320 A and O((exp 1)D) 6300 A airglow emissions. The parameters retrieved are the neutral temperature, the O, O2, N2 density profiles, and a scaling factor for the solar EUV flux spectrum. The temperature, solar EUV flux scaling factor, and atomic oxygen density are first retrieved from the 7320-A emission, which are then used with the 6300-A emission to retrieve the O2 and N2 densities. The retrieval techniques have been verified by computer simulations. We have shown that the retrieval technique is able to statistically retrieve values, between 200 and 400 km, within an average error of 3.1 + or - 0.6% for thermospheric temperature, 3.3 + or - 2.0% for atomic oxygen, 2.3 + or - 1.3% for molecular oxygen, and 2.4 + or - 1.3% for molecular nitrogen. The solar EUV flux scaling factor was found to have a retrieval error of 5.1 + or - 2.3%. All the above errors have a confidence level of 95%. The purpose of this paper is to prove the viability and usefulness of the retrieval technique by demonstrating the ability to retrieve known quantities under a realistic simulation of the measurement process, excluding systematic effects.

  16. Dynamic changes in oxygenation of intracranial tumor and contralateral brain during tumor growth and carbogen breathing: A multisite EPR oximetry with implantable resonators

    PubMed Central

    Hou, Huagang; Dong, Ruhong; Li, Hongbin; Williams, Benjamin; Lariviere, Jean P.; Hekmatyar, S.K.; Kauppinen, Risto A.; Khan, Nadeem; Swartz, Harold

    2013-01-01

    Introduction Several techniques currently exist for measuring tissue oxygen; however technical difficulties have limited their usefulness and general application. We report a recently developed electron paramagnetic resonance (EPR) oximetry approach with multiple probe implantable resonators (IRs) that allow repeated measurements of oxygen in tissue at depths of greater than 10 mm. Methods The EPR signal to noise (S/N) ratio of two probe IRs was compared with that of LiPc deposits. The feasibility of intracranial tissue pO2 measurements by EPR oximetry using IRs was tested in normal rats and rats bearing intracerebral F98 tumors. The dynamic changes in the tissue pO2 were assessed during repeated hyperoxia with carbogen breathing. Results A 6–10 times increase in the S/N ratio was observed with IRs as compared to LiPc deposits. The mean brain pO2 of normal rats was stable and increased significantly during carbogen inhalation in experiments repeated for 3 months. The pO2 of F98 glioma declined gradually, while the pO2 of contralateral brain essentially remained the same. Although a significant increase in the glioma pO2 was observed during carbogen inhalation, this effect declined in experiments repeated over days. Conclusion EPR oximetry with IRs provides a significant increase in S/N ratio. The ability to repeatedly assess orthotopic glioma pO2 is likely to play a vital role in understanding the dynamics of tissue pO2 during tumor growth and therapies designed to modulate tumor hypoxia. This information could then be used to optimize chemoradiation by scheduling treatments at times of increased glioma oxygenation. PMID:22033225

  17. Forming-free performance of a-SiN x :H-based resistive switching memory obtained by oxygen plasma treatment.

    PubMed

    Zhang, Xinxin; Ma, Zhongyuan; Zhang, Hui; Liu, Jian; Yang, Huafeng; Sun, Yang; Tan, Dinwen; Li, Wei; Xu, Ling; Chen, Kuiji; Feng, Duan

    2018-06-15

    An a-SiN x -based resistive random access memory (RRAM) device with a forming-free characteristic has significant potentials for the industrialization of the next-generation memories. We demonstrate that a forming-free a-SiN x O y RRAM device can be achieved by an oxygen plasma treatment of ultra-thin a-SiN x :H films. Electron spin resonance spectroscopy reveals that Si dangling bonds with a high density (10 19 cm -3 ) are distributed in the initial state, which exist in the forms of Si 2 N≡Si·, SiO 2 ≡Si·, O 3 ≡Si·, and N 3 ≡Si·. X-ray photoelectron spectroscopy and temperature-dependent current analyses reveal that the silicon dangling bonds induced by the oxygen plasma treatment and external electric field contribute to the low resistance state (LRS). For the high resistance state (HRS), the rupture of the silicon dangling bond pathway is attributed to the partial passivation of Si dangling bonds by H + and O 2- . Both LRS and HRS transmissions obey the hopping conduction model. The proposed oxygen plasma treatment, introduced to generate a high density of Si dangling bonds in the SiN x O y :H films, provides a new approach to forming-free RRAM devices.

  18. Forming-free performance of a-SiN x :H-based resistive switching memory obtained by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxin; Ma, Zhongyuan; Zhang, Hui; Liu, Jian; Yang, Huafeng; Sun, Yang; Tan, Dinwen; Li, Wei; Xu, Ling; Chen, Kuiji; Feng, Duan

    2018-06-01

    An a-SiN x -based resistive random access memory (RRAM) device with a forming-free characteristic has significant potentials for the industrialization of the next-generation memories. We demonstrate that a forming-free a-SiN x O y RRAM device can be achieved by an oxygen plasma treatment of ultra-thin a-SiN x :H films. Electron spin resonance spectroscopy reveals that Si dangling bonds with a high density (1019 cm‑3) are distributed in the initial state, which exist in the forms of Si2N≡Si·, SiO2≡Si·, O3≡Si·, and N3≡Si·. X-ray photoelectron spectroscopy and temperature-dependent current analyses reveal that the silicon dangling bonds induced by the oxygen plasma treatment and external electric field contribute to the low resistance state (LRS). For the high resistance state (HRS), the rupture of the silicon dangling bond pathway is attributed to the partial passivation of Si dangling bonds by H+ and O2‑. Both LRS and HRS transmissions obey the hopping conduction model. The proposed oxygen plasma treatment, introduced to generate a high density of Si dangling bonds in the SiN x O y :H films, provides a new approach to forming-free RRAM devices.

  19. Accuracy of a third (Dolphin Voyager) versus first generation pulse oximeter (Nellcor N-180) in predicting arterial oxygen saturation and pulse rate in the anesthetized dog.

    PubMed

    Burns, Patrick M; Driessen, Bernd; Boston, Ray; Gunther, Robert A

    2006-09-01

    To compare the accuracy of a 3rd (Dolphin Voyager) versus 1st generation pulse oximeter (Nellcor N-180). Prospective laboratory investigation. Eight adult dogs. In anesthetized dogs, arterial oxygen saturation (SpO(2)) was recorded simultaneously with each pulse oximeter. The oxygen fraction in inspired gas (FiO(2)) was successively reduced from 1.00 to 0.09, with re-saturation (FiO(2) 0.40) after each breathe-down step. After each 3-minute FiO(2) plateau, SpO(2) and pulse rate (PR) were compared with the fractional arterial saturation (SaO(2)) and PR determined by co-oximetry and invasive blood pressure monitoring, respectively. Data analysis included Bland-Altman (B-A) plots, Lin's concordance correlation factor (rho(c)), and linear regression models. Over a SaO(2) range of 33-99%, the overall bias (mean SpO(2) - SaO(2)), precision (SD of bias), and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were 4.3%, 4.4%, and 6.1%, and 3.2%, 3.0%, and 4.3%, respectively. Bias increased at SaO(2) < 90%, more so with the Dolphin Voyager (from 1.6% to 8.6%) than Nellcor N-180 (from 3.2% to 4.5%). The SpO(2) readings correlated significantly with SaO(2) for both the Dolphin Voyager (rho(c) = 0.94) and Nellcor N-180 (rho(c) = 0.97) (p < 0.001). Regarding PR, bias, precision, and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were -0.5, 4.6, and 4.6 and 1.38, 4.3, and 4.5 beats minute(-1), respectively. Significant correlation existed between pulse oximeter and directly measured PR (Dolphin Voyager: rho(c) = 0.98; Nellcor N-180: rho(c) = 0.99) (p < 0.001). In anesthetized dogs with adequate hemodynamic function, both instruments record SaO(2) relatively accurately over a wide range of normal saturation values. However, there is an increasing overestimation at SaO(2) < 90%, particularly with the Dolphin Voyager, indicating that 3rd generation pulse oximeters may not perform better than older instruments. The 5.4-fold increase in bias with the Dolphin Voyager at SaO(2) < 90% stresses the importance of a 93-94% SpO(2) threshold to ensure an arterial saturation of >or=90%. In contrast, PR monitoring with both devices is very reliable.

  20. Niche Partitioning of the N Cycling Microbial Community of an Offshore Oxygen Deficient Zone.

    PubMed

    Fuchsman, Clara A; Devol, Allan H; Saunders, Jaclyn K; McKay, Cedar; Rocap, Gabrielle

    2017-01-01

    Microbial communities in marine oxygen deficient zones (ODZs) are responsible for up to half of marine N loss through conversion of nutrients to N 2 O and N 2 . This N loss is accomplished by a consortium of diverse microbes, many of which remain uncultured. Here, we characterize genes for all steps in the anoxic N cycle in metagenomes from the water column and >30 μm particles from the Eastern Tropical North Pacific (ETNP) ODZ. We use an approach that allows for both phylogenetic identification and semi-quantitative assessment of gene abundances from individual organisms, and place these results in context of chemical measurements and rate data from the same location. Denitrification genes were enriched in >30 μm particles, even in the oxycline, while anammox bacteria were not abundant on particles. Many steps in denitrification were encoded by multiple phylotypes with different distributions. Notably three N 2 O reductases ( nosZ ), each with no cultured relative, inhabited distinct niches; one was free-living, one dominant on particles and one had a C terminal extension found in autotrophic S-oxidizing bacteria. At some depths >30% of the community possessed nitrite reductase nirK . A nirK OTU linked to SAR11 explained much of this abundance. The only bacterial gene found for NO reduction to N 2 O in the ODZ was a form of qnorB related to the previously postulated "nitric oxide dismutase," hypothesized to produce N 2 directly while oxidizing methane. However, similar qnorB-like genes are also found in the published genomes of many bacteria that do not oxidize methane, and here the qnorB-like genes did not correlate with the presence of methane oxidation genes. Correlations with N 2 O concentrations indicate that these qnorB-like genes likely facilitate NO reduction to N 2 O in the ODZ. In the oxycline, qnorB-like genes were not detected in the water column, and estimated N 2 O production rates from ammonia oxidation were insufficient to support the observed oxycline N 2 O maximum. However, both qnorB-like and nosZ genes were present within particles in the oxycline, suggesting a particulate source of N 2 O and N 2 . Together, our analyses provide a holistic view of the diverse players in the low oxygen nitrogen cycle.

  1. Insight into nitrous oxide production processes in the western North Pacific based on a marine ecosystem isotopomer model

    NASA Astrophysics Data System (ADS)

    Yoshikawa, C.; Sasai, Y.; Wakita, M.; Honda, M. C.; Fujiki, T.; Harada, N.; Makabe, A.; Matsushima, S.; Toyoda, S.; Yoshida, N.; Ogawa, N. O.; Suga, H.; Ohkouchi, N.

    2016-02-01

    Based on the observed inverse relationship between the dissolved oxygen and N2O concentrations in the ocean, previous models have indirectly predicted marine N2O emissions from the apparent oxygen utilization (AOU), In this study, a marine ecosystem model that incorporates nitrous oxide (N2O) production processes (i.e., ammonium oxidation during nitrification and nitrite reduction during nitrifier denitrification) was newly developed to estimate the sea-air N2O flux and to quantify N2O production processes. Site preference of 15N (SP) in N2O isotopomers (14N15N16O and 15N14N16O) and the average nitrogen isotope ratio (δ15N) were added to the model because they are useful tracers to distinguish between ammonium oxidation and nitrite reduction. This model was applied to two contrasting time series sites, a subarctic station (K2) and a subtropical station (S1) in the western North Pacific. The model was validated with observed nitrogen concentration and nitrogen isotopomer datasets, and successfully simulated the higher N2O concentrations, higher δ15N values, and higher site preference values for N2O at K2 compared with S1. The annual mean N2O emissions were estimated to be 34 mg N m-2 yr-1 at K2 and 2 mg N m-2 yr-1 at S1. Using this model, we conducted three case studies: 1) estimating the ratio of in-situ biological N2O production to nitrate (NO3-) production during nitrification, 2) estimating the ratio of N2O production by ammonium oxidation to that by nitrite reduction, and 3) estimating the ratio of AOA ammonium oxidation to AOB ammonium oxidation. The results of case studies estimated the ratios of in situ biological N2O production to nitrate production during nitrification to be 0.22% at K2 and 0.06% at S1. It is also suggested that N2O was mainly produced via ammonium oxidation at K2 but was produced via both ammonium oxidation and nitrite reduction at S1. It is also revealed that 80% of the ammonium oxidation at K2 was caused by archaea in the subsurface water. The results of isotope tracer incubation experiments using an archaeal activity inhibitor supported this hypothesis.

  2. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... section 2.4 of appendix D of this part. If a daily coal consumption value is not available, substitute the...

  3. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... procedures in section 2.4 of appendix D of this part. If a daily coal consumption value is not available...

  4. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... section 2.4 of appendix D of this part. If a daily coal consumption value is not available, substitute the...

  5. 40 CFR Appendix F to Part 75 - Conversion Procedures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant concentration during unit operation, ppm. 3.3.4%O2, %CO2 = Oxygen or carbon dioxide volume during....6.1H, C, S, N, and O are content by weight of hydrogen, carbon, sulfur, nitrogen, and oxygen... section 2.4 of appendix D of this part. If a daily coal consumption value is not available, substitute the...

  6. Modelling lung and tissue diffusion using a membrane oxygenator circuit.

    PubMed

    Dunningham, H; Borland, C; Bottrill, F; Gordon, D; Vuylsteke, A

    2007-07-01

    A simple model lung has been designed using a membrane oxygenator circuit comprising two membrane oxygenators primed with one to two litres of equine blood, giving reproducible results over several hours. Normoxia and normocapnia were achieved consistently over the duration of the test with a blood flow of 2.5 l/min, oxygenator ventilation gas flow of 5 l/min air with 0.3 l/min O2 and deoxygenator ventilation gas flow of 5 l/min 5% CO2 in N2 with 0.2 l/min CO2. The measured PaO2 was 81.3 (SD 3.35 mmHg), PvO2 38.3 (SD 1.38 mmHg), PvCO2 60.6 (SD 1.13 mmHg) and PaCO2 36.1 (SD 0.69mmHg). MO2 and MCO2 were 116 ml/min and 169 ml/min, respectively. An increasing linear relationship was observed for FiO2 and the corresponding PaO2 and, similarly, with FiCO2 and PvCO2, providing reference ranges for this model.

  7. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    NASA Astrophysics Data System (ADS)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  8. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection

    PubMed Central

    Zoll, Joffrey; Bouitbir, Jamal; Sirvent, Pascal; Klein, Alexis; Charton, Antoine; Jimenez, Liliana; Péronnet, François R; Geny, Bernard; Richard, Ruddy

    2015-01-01

    Background It has been suggested that oxygen (O2) diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates), which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients. Materials and methods Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1) at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg), with glutamate–malate or N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)–ascorbate (with antimycin A) as substrates; and 2) at increasing adenosine diphosphate (ADP) concentration with glutamate–malate as substrate. Results As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was significantly lower with both electron donors in water enriched in O2 by electrolysis. This was not associated with any increase in the sensitivity of mitochondria to ADP; no significant difference was observed for the Km ADP between the two waters. Conclusion In this experiment, a higher affinity of the mitochondria for O2 was observed in water enriched in O2 by electrolysis than by injection. This observation is consistent with the hypothesis that O2 diffusion can be facilitated in water enriched in O2 by the electrolytic process. PMID:26203225

  9. Surface Nitrification: A Major Uncertainty in Marine N2O Emissions

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren M.; Oschlies, Andreas

    2014-01-01

    The ocean is responsible for up to a third of total global nitrous oxide (N2O) emissions, but uncertainties in emission rates of this potent greenhouse gas are high (approaching 100%). Here we use a marine biogeochemical model to assess six major uncertainties in estimates of N2O production, thereby providing guidance in how future studies may most effectively reduce uncertainties in current and future marine N2O emissions. Potential surface N2O production from nitrification causes the largest uncertainty in N2O emissions (estimated up to approximately 1.6 Tg N/yr (sup -1) or 48% of modeled values), followed by the unknown oxygen concentration at which N2O production switches to N2O consumption (0.8 Tg N/yr (sup -1)or 24% of modeled values). Other uncertainties are minor, cumulatively changing regional emissions by less than 15%. If production of N2O by surface nitrification could be ruled out in future studies, uncertainties in marine N2O emissions would be halved.

  10. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    NASA Astrophysics Data System (ADS)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  11. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, M., E-mail: kamada@cc.saga-u.ac.jp; Hideshima, T.; Azuma, J.

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimesmore » of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.« less

  12. Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries.

    PubMed

    Shinde, Sambhaji S; Lee, Chi Ho; Yu, Jin-Young; Kim, Dong-Hyung; Lee, Sang Uck; Lee, Jung-Ho

    2018-01-23

    The future of electrochemical energy storage spotlights on the designed formation of highly efficient and robust bifunctional oxygen electrocatalysts that facilitate advanced rechargeable metal-air batteries. We introduce a scalable facile strategy for the construction of a hierarchical three-dimensional sulfur-modulated holey C 2 N aerogels (S-C 2 NA) as bifunctional catalysts for Zn-air and Li-O 2 batteries. The S-C 2 NA exhibited ultrahigh surface area (∼1943 m 2 g -1 ) and superb electrocatalytic activities with lowest reversible oxygen electrode index ∼0.65 V, outperforms the highly active bifunctional and commercial (Pt/C and RuO 2 ) catalysts. Density functional theory and experimental results reveal that the favorable electronic structure and atomic coordination of holey C-N skeleton enable the reversible oxygen reactions. The resulting Zn-air batteries with liquid electrolytes and the solid-state batteries with S-C 2 NA air cathodes exhibit superb energy densities (958 and 862 Wh kg -1 ), low charge-discharge polarizations, excellent reversibility, and ultralong cycling lives (750 and 460 h) than the commercial Pt/C+RuO 2 catalysts, respectively. Notably, Li-O 2 batteries with S-C 2 NA demonstrated an outstanding specific capacity of ∼648.7 mA h g -1 and reversible charge-discharge potentials over 200 cycles, illustrating great potential for commercial next-generation rechargeable power sources of flexible electronics.

  13. Kinetics and mechanisms of the oxidation of iodide and bromide in aqueous solutions by a trans-dioxoruthenium(VI) complex.

    PubMed

    Lam, William W Y; Man, Wai-Lun; Wang, Yi-Ning; Lau, Tai-Chu

    2008-08-04

    The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.

  14. Projections of oceanic N2O emissions in the 21st century using the IPSL Earth system model

    NASA Astrophysics Data System (ADS)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2015-07-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known about how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. Assuming nitrification as the dominant N2O formation pathway, we implemented two different parameterizations of N2O production which differ primarily under low-oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high-CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12 % in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 TgN yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the oxygen minimum zones (OMZs), i.e., in the eastern tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production, associated primarily with denitrification. While there are many uncertainties in the relative contribution and changes in the N2O production pathways, the increasing storage seems unequivocal and determines largely the decrease in N2O emissions in the future. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assessment for a potential balance between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next-generation Earth system models.

  15. Mesoporous Ga-TiO₂: Role of Oxygen Vacancies for the Photocatalytic Degradation Under Visible Light.

    PubMed

    Myilsamy, M; Mahalakshmi, M; Subha, N; Murugesan, V

    2018-02-01

    Gallium doped mesoporous TiO2 with different weight percentages were synthesized by sol-gel method using Pluronic P123 as the structure directing template. The physico-chemical properties of all the synthesized catalysts were determined by XRD, TEM, SEM-EDAX, N2 adsorption-desorption studies, XPS, UV-vis DRS, FT-IR and photoluminescence spectroscopy. 1.0 wt% Ga-TiO2 exhibited the highest photocatalytic efficiency among all the synthesized materials under visible light due to the high surface area, reduced band gap and suppressed electron-hole recombination. Ga3+ ions substitutions for Ti4+ ions in TiO2 lattice created oxygen vacancies in TiO2 lattice, which created a defect energy level below the conduction band of TiO2 and hence the band gap was reduced. The oxygen vacancy defects was playing significant role to improve the adsorption of oxygen molecules, hydroxide ions and cationic rhodamine B (RhB) on TiO2 surface in an aqueous medium. The lifetime of the charge carriers was also enhanced by trapping the photogenerated electrons in oxygen vacancies and transferring them to the adsorbed O2 to produce superoxide anion radicals (O-. 2 ). The photo-induced holes at valence band reduced the adsorbed OH- ions and produced a large number of .OH radicals, which subsequently degraded the RhB. Hence oxygen vacancies created by gallium doping on TiO2 enhanced the photocatalytic efficiency for the degradation of RhB under visible light.

  16. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria.

    PubMed

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R

    2012-08-01

    Antimicrobial photodynamic therapy (APDT) employs a non-toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ((1) O(2), produced via Type II mechanism) and hydroxyl radical (HO(.), produced via Type I mechanism). This study examined the relative contributions of (1) O(2) and HO(.) to APDT killing of Gram-positive and Gram-negative bacteria. Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO(.) and (1) O(2) produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI-ce6). Dimethylthiourea is a HO(.) scavenger, while sodium azide (NaN(3)) is a quencher of (1) O(2). Both APDT and killing by Fenton reaction (chemical generation of HO(.)) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Conjugate PEI-ce6 mainly produced (1) O(2) (quenched by NaN(3)), while BB6 produced HO(.) in addition to (1) O(2) when NaN(3) potentiated probe activation. NaN(3) also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN(3) potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN(3) dose-dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN(3) almost failed to inhibit killing of Gram-positive bacteria. Azidyl radicals may be formed from NaN(3) and HO(.). It may be that Gram-negative bacteria are more susceptible to HO(.) while Gram-positive bacteria are more susceptible to (1) O(2). The differences in NaN(3) inhibition may reflect differences in the extent of PS binding to bacteria (microenvironment) or differences in penetration of NaN(3) into cell walls of bacteria. Copyright © 2012 Wiley Periodicals, Inc.

  17. Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on Gram-negative and Gram-positive bacteria

    PubMed Central

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R.

    2012-01-01

    Background and Objectives Antimicrobial photodynamic therapy (APDT) employs a nontoxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen (1O2, produced via Type II mechanism) and hydroxyl radical (HO•, produced via Type I mechanism). This study examined the relative contributions of 1O2 and HO• to APDT killing of Gram-positive and Gram-negative bacteria. Study Design/Materials and Methods Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO• and 1O2 produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI–ce6). Dimethylthiourea is a HO• scavenger, while sodium azide (NaN3) is a quencher of 1O2. Both APDT and killing by Fenton reaction (chemical generation of HO•) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enteroccoccus fecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa. Results Conjugate PEI-ce6 mainly produced 1O2 (quenched by NaN3), while BB6 produced HO• in addition to 1O2 when NaN3 potentiated probe activation. NaN3 also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN3 potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN3 dose dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN3 almost failed to inhibit killing of Gram-positive bacteria. Conclusion Azidyl radicals may be formed from NaN3 and HO•. It may be that Gram-negative bacteria are more susceptible to HO• while Gram-positive bacteria are more susceptible to 1O2. The differences in NaN3 inhibition may reflect differences in the extent of PS binding to bacteria (microenvironment) or differences in penetration of NaN3 into cell walls of bacteria. PMID:22760848

  18. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions.

    PubMed

    Wunderlin, Pascal; Mohn, Joachim; Joss, Adriano; Emmenegger, Lukas; Siegrist, Hansruedi

    2012-03-15

    Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N2O production were investigated in a laboratory batch-scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions. Under aerobic conditions, the addition of nitrite resulted in strongly nitrite-dependent N2O production, mainly by nitrifier denitrification of ammonia-oxidizing bacteria (AOB). Furthermore, N2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO2/l); the contribution of nitrifier denitrification by AOB increased at higher nitrite and lower ammonia concentrations towards the end of the experiment. Under anoxic conditions, nitrate reducing experiments confirmed that N2O emission is low under optimal growth conditions for heterotrophic denitrifiers (e.g. no oxygen input and no limitation of readily biodegradable organic carbon). However, N2O and nitric oxide (NO) production rates increased significantly in the presence of nitrite or low dissolved oxygen concentrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. GaN as an interfacial passivation layer: tuning band offset and removing fermi level pinning for III-V MOS devices.

    PubMed

    Zhang, Zhaofu; Cao, Ruyue; Wang, Changhong; Li, Hao-Bo; Dong, Hong; Wang, Wei-Hua; Lu, Feng; Cheng, Yahui; Xie, Xinjian; Liu, Hui; Cho, Kyeongjae; Wallace, Robert; Wang, Weichao

    2015-03-11

    The use of an interfacial passivation layer is one important strategy for achieving a high quality interface between high-k and III-V materials integrated into high-mobility metal-oxide-semiconductor field-effect transistor (MOSFET) devices. Here, we propose gallium nitride (GaN) as the interfacial layer between III-V materials and hafnium oxide (HfO2). Utilizing first-principles calculations, we explore the structural and electronic properties of the GaN/HfO2 interface with respect to the interfacial oxygen contents. In the O-rich condition, an O8 interface (eight oxygen atoms at the interface, corresponding to 100% oxygen concentration) displays the most stability. By reducing the interfacial O concentration from 100 to 25%, we find that the interface formation energy increases; when sublayer oxygen vacancies exist, the interface becomes even less stable compared with O8. The band offset is also observed to be highly dependent on the interfacial oxygen concentration. Further analysis of the electronic structure shows that no interface states are present at the O8 interface. These findings indicate that the O8 interface serves as a promising candidate for high quality III-V MOS devices. Moreover, interfacial states are present when such interfacial oxygen is partially removed. The interface states, leading to Fermi level pinning, originate from unsaturated interfacial Ga atoms.

  20. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  1. Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process

    NASA Astrophysics Data System (ADS)

    Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas

    2014-01-01

    Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.

  2. P53 Suppression of Homologous Recombination and Tumorigenesis

    DTIC Science & Technology

    2013-07-01

    cell cycle [22] and is known to have an important role in responding to oxygen concentration, particularly hypoxia (,1% O2) [23] or hyperoxia (95% O2...appropriate oxygen tension for in vitro culture? Mol Hum Reprod 12: 653. 2. Csete M (2005) Oxygen in the cultivation of stem cells . Ann N Y Acad Sci 1049: 1...culture that were derived from somatic mesenchymal cells that display a reasonable level of clonality. Yet, given the highly proliferative nature

  3. Centennial changes in North Pacific anoxia linked to tropical trade winds

    USGS Publications Warehouse

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-01-01

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ15N) from multiple sediment cores. Increasing δ15N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ15N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean’s largest anoxic zone will contract despite a global O2 decline.

  4. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  5. Inhaled Epoprostenol Through Noninvasive Routes of Ventilator Support Systems.

    PubMed

    Ammar, Mahmoud A; Sasidhar, Madhu; Lam, Simon W

    2018-06-01

    The administration of inhaled epoprostenol (iEPO) through noninvasive routes of ventilator support systems has never been previously evaluated. Describe the use of iEPO when administered through noninvasive routes of ventilator support systems. Critically ill patients admitted to the intensive care unit who received iEPO through noninvasive routes were analyzed. Improvements in respiratory status and hemodynamic parameters were evaluated. Safety end points assessed included hypotension, rebound hypoxemia, significant bleeding, and thrombocytopenia. A total of 36 patients received iEPO through noninvasive routes: high-flow oxygen therapy through nasal cannula, n = 29 (81%) and noninvasive positive-pressure ventilation, n = 7 (19%). Sixteen patients had improvement in their respiratory status: mean decrease in fraction of inspired oxygen (FiO 2 ), 20% ± 13%; mean increase in partial pressure of arterial oxygen to FiO 2 (PaO 2 /FiO 2 ) ratio, 60 ± 50 mm Hg; and mean decrease in HFNC oxygen flow rate, 6 ± 3 liters per minute (LPM). Eight patients had declines in their respiratory status (mean increase in FiO 2 , 30% ± 20%; mean decrease in PaO 2 /FiO 2 ratio, 38 ± 20 mm Hg; and mean increase in HFNC oxygen flow rate, 15 ± 10 LPM), and 12 patients had no change in their respiratory status. Conclusion and Relevance: This represents the first evaluation of the administration of iEPO through noninvasive routes of ventilator support systems and demonstrates that in critically ill patients, iEPO could be administered through a noninvasive route. Further evaluation is needed to determine the extent of benefit with this route of administration.

  6. Impact of oxygen plasma postoxidation process on Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Lechaux, Y.; Fadjie-Djomkam, A. B.; Bollaert, S.; Wichmann, N.

    2016-09-01

    Capacitance-voltage (C-V) measurements and x-ray photoelectron spectroscopy (XPS) analysis were performed in order to investigate the effect of a oxygen (O2) plasma after oxide deposition on the Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor structure passivated with ammonia NH4OH solution. From C-V measurements, an improvement of charge control is observed using the O2 plasma postoxidation process on In0.53Ga0.47As, while the minimum of interface trap density remains at a good value lower than 1 × 1012 cm-2 eV-1. From XPS measurements, we found that NH4OH passivation removes drastically the Ga and As native oxides on the In0.53Ga0.47As surface and the O2 plasma postoxidation process enables the reduction of interface re-oxidation after post deposition annealing (PDA) of the oxide. The advanced hypothesis is the formation of interfacial barrier between Al2O3 and In0.53Ga0.47As which prevents the diffusion of oxygen species into the semiconductor surface during PDA.

  7. Combined experimental and theoretical approach to understand the reactivity of a mononuclear Cu(II)-hydroperoxo complex in oxygenation reactions.

    PubMed

    Kamachi, Takashi; Lee, Yong-Min; Nishimi, Tomonori; Cho, Jaeheung; Yoshizawa, Kazunari; Nam, Wonwoo

    2008-12-18

    A copper(II) complex bearing a pentadentate ligand, [Cu(II)(N4Py)(CF(3)SO(3))(2)] (1) (N4Py = N,N-bis(2-pyridylmethyl)bis(2-pyridyl)methylamine), was synthesized and characterized with various spectroscopic techniques and X-ray crystallography. A mononuclear Cu(II)-hydroperoxo complex, [Cu(II)(N4Py)(OOH)](+) (2), was then generated in the reaction of 1 and H(2)O(2) in the presence of base, and the reactivity of the intermediate was investigated in the oxidation of various substrates at -40 degrees C. In the reactivity studies, 2 showed a low oxidizing power such that 2 reacted only with triethylphosphine but not with other substrates such as thioanisole, benzyl alcohol, 1,4-cyclohexadiene, cyclohexene, and cyclohexane. In theoretical work, we have conducted density functional theory (DFT) calculations on the epoxidation of ethylene by 2 and a [Cu(III)(N4Py)(O)](+) intermediate (3) at the B3LYP level. The activation barrier is calculated to be 39.7 and 26.3 kcal/mol for distal and proximal oxygen attacks by 2, respectively. This result indicates that the direct ethylene epoxidation by 2 is not a plausible pathway, as we have observed in the experimental work. In contrast, the ethylene epoxidation by 3 is a downhill and low-barrier process. We also found that 2 cannot be a precursor to 3, since the homolytic cleavage of the O-O bond of 2 is very endothermic (i.e., 42 kcal/mol). On the basis of the experimental and theoretical results, we conclude that a mononuclear Cu(II)-hydroperoxo species bearing a pentadentate N5 ligand is a sluggish oxidant in oxygenation reactions.

  8. Island morphology statistics and growth mechanism for oxidation of the Al(111) surface with thermal O2 and NO

    NASA Astrophysics Data System (ADS)

    Sexton, J. Z.; Kummel, A. C.

    2004-10-01

    Scanning tunneling microscopy (STM) was employed to study the mechanism for the oxidation of Al(111) with thermal O2 and NO in the 20%-40% monolayer coverage regime. Experiments show that the islands formed upon exposure to thermal O2 and NO have dramatically different shapes, which are ultimately dictated by the dynamics of the gas surface interaction. The circumference-to-area ratio and other island morphology statistics are used to quantify the average difference in the two island types. Ultrahigh-vacuum STM was employed to make the following observations: (1) Oxygen islands on the Al(111) surface, formed upon exposure to thermal oxygen, are elongated and noncompact. (2) Mixed O/N islands on the Al(111) surface, formed upon exposure to thermal nitric oxide (NO), are round and compact. (3) STM movies acquired during thermal O2 exposure indicate that a complex mechanism involving chemisorption initiated rearrangement of preexisting oxygen islands leads to the asymmetric and elongated island shapes. The overall mechanism for the oxidation of the Al(111) surface can be summarized in three regimes. Low coverage is dominated by widely isolated small oxygen features (<3 O atoms) where normal dissociative chemisorption and oxygen abstraction mechanisms are present. At 20%-40% monolayer coverage, additional oxygen chemisorption induces rearrangement of preexisting islands to form free-energy minimum island shapes. At greater than ˜40% monolayer coverage, the apparent surface oxygen coverage asymptotes corresponding to the conversion of the 2D islands to 3D Al2O3 surface crystallites. The rearrangement of oxygen islands on the surface to form the observed islands indicates that there is a short-range oxygen-oxygen attractive potential and a long-range oxygen-oxygen repulsive potential.

  9. A toy model for estimating N2O emissions from natural soils

    NASA Technical Reports Server (NTRS)

    Fung, Inez

    1992-01-01

    A model of N2O emissions from natural soils, whose ultimate objective is to evaluate what contribution natural ecosystems make to the global N2O budget and how the contribution would change with global change, is presented. Topics covered include carbon and nitrogen available in the soil, delivery of nitrifiable N, soil water and oxygen status, soil water budget model, effects of drainage, nitrification and denitrification potentials, soil fertility, N2O production, and a model evaluation. A major implication of the toy model is that the tropics account for more than 80 percent of global emission.

  10. Bis(μ-oxo) dicopper(III) species of the simplest peralkylated diamine: enhanced reactivity toward exogenous substrates.

    PubMed

    Kang, Peng; Bobyr, Elena; Dustman, John; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Stack, T Daniel P

    2010-12-06

    N,N,N',N'-tetramethylethylenediamine (TMED), the simplest and most extensively used peralkylated diamine ligand, is conspicuously absent from those known to form a bis(μ-oxo)dicopper(III) (O) species, [(TMED)(2)Cu(III)(2)(μ(2)-O)(2)](2+), upon oxygenation of its Cu(I) complex. Presented here is the characterization of this O species and its reactivity toward exogenous substrates. Its formation is complicated both by the instability of the [(TMED)Cu(I)](1+) precursor and by competitive formation of a presumed mixed-valent trinuclear [(TMED)(3)Cu(III)Cu(II)(2)(μ(3)-O)(2)](3+) (T) species. Under most reaction conditions, the T species dominates, yet, the O species can be formed preferentially (>80%) upon oxygenation of acetone solutions, if the copper concentration is low (<2 mM) and [(TMED)Cu(I)](1+) is prepared immediately before use. The experimental data of this simplest O species provide a benchmark by which to evaluate density functional theory (DFT) computational methods for geometry optimization and spectroscopic predictions. The enhanced thermal stability of [(TMED)(2)Cu(III)(2)(μ(2)-O)(2)](2+) and its limited steric demands compared to other O species allows more efficient oxidation of exogenous substrates, including benzyl alcohol to benzaldehyde (80% yield), highlighting the importance of ligand structure to not only enhance the oxidant stability but also maintain accessibility to the nascent metal/O(2) oxidant.

  11. Oceanic N2O emissions in the 21st century

    NASA Astrophysics Data System (ADS)

    Martinez-Rey, J.; Bopp, L.; Gehlen, M.; Tagliabue, A.; Gruber, N.

    2014-12-01

    The ocean is a substantial source of nitrous oxide (N2O) to the atmosphere, but little is known on how this flux might change in the future. Here, we investigate the potential evolution of marine N2O emissions in the 21st century in response to anthropogenic climate change using the global ocean biogeochemical model NEMO-PISCES. We implemented two different parameterizations of N2O production, which differ primarily at low oxygen (O2) conditions. When forced with output from a climate model simulation run under the business-as-usual high CO2 concentration scenario (RCP8.5), our simulations suggest a decrease of 4 to 12% in N2O emissions from 2005 to 2100, i.e., a reduction from 4.03/3.71 to 3.54/3.56 Tg N yr-1 depending on the parameterization. The emissions decrease strongly in the western basins of the Pacific and Atlantic oceans, while they tend to increase above the Oxygen Minimum Zones (OMZs), i.e., in the Eastern Tropical Pacific and in the northern Indian Ocean. The reduction in N2O emissions is caused on the one hand by weakened nitrification as a consequence of reduced primary and export production, and on the other hand by stronger vertical stratification, which reduces the transport of N2O from the ocean interior to the ocean surface. The higher emissions over the OMZ are linked to an expansion of these zones under global warming, which leads to increased N2O production associated primarily with denitrification. From the perspective of a global climate system, the averaged feedback strength associated with the projected decrease in oceanic N2O emissions amounts to around -0.009 W m-2 K-1, which is comparable to the potential increase from terrestrial N2O sources. However, the assesment for a compensation between the terrestrial and marine feedbacks calls for an improved representation of N2O production terms in fully coupled next generation of Earth System Models.

  12. Oxygen vacancies: The origin of n -type conductivity in ZnO

    NASA Astrophysics Data System (ADS)

    Liu, Lishu; Mei, Zengxia; Tang, Aihua; Azarov, Alexander; Kuznetsov, Andrej; Xue, Qi-Kun; Du, Xiaolong

    2016-06-01

    Oxygen vacancy (VO) is a common native point defect that plays crucial roles in determining the physical and chemical properties of metal oxides such as ZnO. However, fundamental understanding of VO is still very sparse. Specifically, whether VO is mainly responsible for the n -type conductivity in ZnO has been still unsettled in the past 50 years. Here, we report on a study of oxygen self-diffusion by conceiving and growing oxygen-isotope ZnO heterostructures with delicately controlled chemical potential and Fermi level. The diffusion process is found to be predominantly mediated by VO. We further demonstrate that, in contrast to the general belief of their neutral attribute, the oxygen vacancies in ZnO are actually +2 charged and thus responsible for the unintentional n -type conductivity as well as the nonstoichiometry of ZnO. The methodology can be extended to study oxygen-related point defects and their energetics in other technologically important oxide materials.

  13. Nitrous oxide measurements in the eastern tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Pierotti, D.; Rasmussen, R. A.

    1980-01-01

    The paper considers nitrous oxide measurements in the eastern tropical Pacific Ocean. The concentration of N2O in the marine air showed a direct relationship to the N2O in the surface sea water, with the highest N2O mixing ratios over highly supersaturated regions; water samples were also collected down to depths of 300 m at seven hydrocast stations. The stations showed two distribution patterns for N2O concentration vs depth for the region between the surface and 300 m; two stations in the oxygen deficient region off the coast of Peru showed considerable N2O super-saturation at all depths, and results indicate that the role of N2O in the nitrogen cycle of the ocean may be more complex than previously suggested.

  14. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries.

    PubMed

    Wu, Naiteng; Du, Wuzhou; Gao, Xu; Zhao, Liang; Liu, Guilong; Liu, Xianming; Wu, Hao; He, Yan-Bing

    2018-06-21

    The practical application of tin dioxide (SnO2) in lithium-ion batteries has been greatly hindered by its large volumetric expansion and low conductivity. Thus, a rational design of the size, geometry and the pore structure of SnO2-based nanomaterials is still a dire demand. To this end, herein we report an effective approach for engineering hollow-structured SnO2 nanospheres with adequate surface oxygen vacancies simultaneously wrapped by a nitrogen-doped graphene network (SnO2-x/N-rGO) through an electrostatic adsorption-induced self-assembly together with a thermal reduction process. The close electrostatic attraction achieved a tight and uniform combination of positively charged SnO2 nanospheres with negatively charged graphene oxide (GO), which can alleviate the aggregation and volume expansion of the entrapped SnO2 nanospheres. Subsequent thermal treatment not only ensures a significant reduction of the GO sheets accompanying nitrogen-doping, but also induces the generation of oxygen vacancies on the surface of the SnO2 hollow nanospheres, together building up a long-range and bicontinuous transfer channel for rapid electron and ion transport. Because of these structural merits, the as-built SnO2-x/N-rGO composite used as the anode material exhibits excellent robust cycling stability (∼912 mA h g-1 after 500 cycles at 0.5 A g-1 and 652 mA h g-1 after 200 cycles at 1 A g-1) and superior rate capability (309 mA h g-1 at 10 A g-1). This facile fabrication strategy may pave the way for the construction of high performance SnO2-based anode materials for potential application in advanced lithium-ion batteries.

  15. Net Community and Gross Photosynthetic Production Rates in the Eastern Tropical South Pacific, as Determined from O2/AR Ratios and Triple Oxygen Isotopic Composition of Dissolved O2

    NASA Astrophysics Data System (ADS)

    Prokopenko, M. G.; Yeung, L. Y.; Berelson, W.; Fleming, J.; Rollins, N.; Young, E. D.; Haskell, W. Z.; Hammond, D. E.; Capone, D. G.

    2010-12-01

    This study assesses the rates of ocean carbon production and its fate with respect to recycling or export in the Eastern Tropical South Pacific (ETSP). ETSP has been previously identified as a region where N2 fixation and denitrification may be spatially coupled; this is also a region of localized CO2 outgassing. Using an Equilibrated Inlet Mass Spectrometer (EIMS) system, we obtained continuous measurements of the biological O2 supersaturation in the mixed layer along the ship track encompassing a region bounded by 10-20° S and 80-100° W in January - March, 2010. Vertical profiles were also taken at selected stations and analyzed for dissolved O2/Ar ratios on EIMS and triple oxygen isotope composition (17O excess) on a multi-collector IRMS (Isotope Ratio Mass Spectrometer) at UCLA. Gas exchange rates were estimated using two approaches: the Rn-222 deficit method and the wind parameterization method, which utilized wind speeds extracted from ASCAT satellite database. Oxygen Net Community Production (O-NCP) rates calculated based on biological O2 supersaturation ranged from slightly negative to ~ 0.3 - 15 mmol/m2d, with higher rates along the northern part of the transect. Oxygen Gross Community Production (O-GPP) rates calculated from 17O excess were between 50 ± 20 and 200 ± 40 mmol/m2d, with higher rates observed along the northern cruise transect as well. Notably, the NCP/GPP ratios along the northern transect were higher by the factor of 2 to 3 than their southern counterparts. The O2/Ar-based NCP rates were comparable to POC flux measured with floating traps deployed at the southern stations, but exceeded by a factor of 5-10 the trap POC fluxes obtained at the northern stations. A one-dimensional box model has been constructed to quantify the magnitude of oxygen primary production below the mixed layer. The results of this work will be integrated with measurements of 15-N2 uptake that are in progress, to constrain the potential contribution of N2 fixation to the total primary productivity within the ETSP.

  16. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    NASA Astrophysics Data System (ADS)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation <0.1 <0.5 10 0.6 Normal operation, high NH4+ <0.1 <0.5 100 6.1 High aeration 0.5 to 1.5 up to 50 10 and 50 4.9 NO2- addition (oxic) <0.1 <0.5 to 4 10 5.8 NO2- addition (anoxic) 0 <0.5 to 4 10 3.2 NH2OH addition <0.1 <0.5 10 2.5 Results showed that under normal operating conditions, the N2O isotopic site preference (SP = d15Nα - d15Nβ) was much higher than expected - up to 41‰ - strongly suggesting an unknown N2O production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall, process control via online N2O monitoring was confirmed to be an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. ReferencesWaechter H. et al. (2008) Optics Express, 16: 9239-9244. Wunderlin, P et al. (2013) Environmental Science & Technology 47: 1339-1348.

  17. The reduction of nitric oxide by ammonia over polycrystalline platinum model catalysts in the presence of oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katona, T.; Guczi, L.; Somorjai, G.A.

    1992-06-01

    The reaction system of nitric oxide, ammonia, and oxygen was studied using batch-mode measurements in partial pressure ranges of 65-1000 Pa (0.5-7.6 Torr) on polycrystalline Pt foils over the temperature range 423-598 K. Under these conditions the oxidation of nitric oxide was not detectable. The ammonia oxidation reaction, using dioxygen, occurred in the temperature range 423-493 K, producing nitrogen and water as the only products. The activation energy of the nitrogen formation was found to be 86 kJ/mol. Above this temperature range, flow-mode measurements showed the formation of both nitrous oxide and nitric oxide. The reaction rate between ammonia andmore » oxygen was greatly decreased (about a factor of 10) by nitric oxide, while the reaction rate between nitric oxide and ammonia was accelerated (about 10-fold) due to the presence of oxygen. Nitric oxide reduction by ammonia in the presence of oxygen occurred in the temperature range 423-598 K. The products of the reaction were nitrogen, oxygen nitrous oxide, and water. The Arrhenius plot of the reaction showed a break near 523 K. Below this temperature the activation energy of the reaction was 13 kJ/mol, and in the higher-temperature range it was 62 kJ/mol. At 473 K, the N[sub 2]/N[sub 2]O ratio was about 0.6 and O[sub 2] formation was also monitored. At 573 K, the N[sub 2]N[sub 2]O ratio was approximately 2 and oxygen was consumed in the course of the reaction as well.« less

  18. Exploring the Atmosphere of Neoproterozoic Earth: The Effect of O2 on Haze Formation and Composition

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Ugelow, Melissa S.; Jellinek, A. Mark; Pierrehumbert, Raymond T.; Tolbert, Margaret A.

    2018-05-01

    Previous studies of haze formation in the atmosphere of the early Earth have focused on N2/CO2/CH4 atmospheres. Here, we experimentally investigate the effect of O2 on the formation and composition of aerosols to improve our understanding of haze formation on the Neoproterozoic Earth. We obtained in situ size, particle density, and composition measurements of aerosol particles produced from N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (115–400 nm) for a range of initial CO2/CH4/O2 mixing ratios (O2 ranging from 2 ppm to 0.2%). At the lowest O2 concentration (2 ppm), the addition increased particle production for all but one gas mixture. At higher oxygen concentrations (20 ppm and greater), particles are still produced, but the addition of O2 decreases the production rate. Both the particle size and number density decrease with increasing O2, indicating that O2 affects particle nucleation and growth. The particle density increases with increasing O2. The addition of CO2 and O2 not only increases the amount of oxygen in the aerosol, but it also increases the degree of nitrogen incorporation. In particular, the addition of O2 results in the formation of nitrate-bearing molecules. The fact that the presence of oxygen-bearing molecules increases the efficiency of nitrogen fixation has implications for the role of haze as a source of molecules required for the origin and evolution of life. The composition changes also likely affect the absorption and scattering behavior of these particles but optical property measurements are required to fully understand the implications for the effect on the planetary radiative energy balance and climate.

  19. Theoretical study of the interaction of N/sub 2/ with water molecules. (H/sub 2/O)/sub n/:N/sub 2/, n = 1--8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtiss, L.A.; Eisgruber, C.L.

    1984-03-01

    Ab initio molecular orbital calculations including correlation energy have been carried out on the interaction of a single H/sub 2/O molecule with N/sub 2/. The potential energy surface for H/sub 2/O:N/sub 2/ is found to have a minimum corresponding to a HOH xxx N/sub 2/ structure with a weak (<2 kcal mol/sup -1/) hydrogen bond. A second, less stable, configuration corresponding to a H/sub 2/O xxx N/sub 2/ structure with N/sub 2/ bonded side on to the oxygen of H/sub 2/O was found to be either a minimum or a saddle point in the potential energy surface depending on themore » level of calculation. The minimal STO-3G basis set was used to investigate the interaction of up to eight H/sub 2/O molecules with N/sub 2/. Two types of clusters, one containing only HOH xxx N/sub 2/ interactions and the other containing both HOH xxxN/sub 2/ and H/sub 2/O xxx N/sub 2/ interactions, were investigated for (N/sub 2/:(H/sub 2/O)/sub n/, n = 2--8).« less

  20. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition

    NASA Astrophysics Data System (ADS)

    Huang, Yanwei; Zhang, Qun; Xi, Junhua; Ji, Zhenguo

    2012-07-01

    Transparent p-type Li0.25Ni0.75O conductive thin films were prepared on conventional glass substrates by pulsed plasma deposition. The effects of substrate temperature and oxygen pressure on structural, electrical and optical properties of the films were investigated. The electrical resistivity decreases initially and increases subsequently as the substrate temperature increases. As the oxygen pressure increases, the electrical resistivity decreases monotonically. The possible physical mechanism was discussed. And a hetero p-n junction of p-Li0.25Ni0.75O/n-SnO2:W was fabricated by depositing n-SnO2:W on top of the p-Li0.25Ni0.75O, which exhibits typical rectifying current-voltage characteristics.

  1. Effect of reduction of oxygen concentration in modified atmosphere packaging on bovine M. longissimus lumborum and M. gluteus medius quality traits.

    PubMed

    Łopacka, Joanna; Półtorak, Andrzej; Wierzbicka, Agnieszka

    2017-02-01

    This paper reports the impact of modified atmosphere gas compositions with different concentrations of CO 2 /O 2 /N 2 on physicochemical traits of beef steaks from M. longissimus lumborum and M. gluteus medius. Samples were stored at +2°C for 12days. The gas compositions were as follows: (i) 50% O 2 /20% CO 2 /30% N 2 (MAP1), (ii) 65% O 2 /20% CO 2 /15% N 2 (MAP2) and (iii) 80% O 2 /20% CO 2 (MAP3). Packaging atmosphere did not affect CIEL*a*b* colour coordinates, which were affected by storage time and by muscle type. Lipid oxidation in M. longissimus lumborum was affected by packaging treatment; however packaging treatment×storage time interaction affected lipid oxidation significantly. Results showed that reduction of oxygen from the commercially used 80% to 50% does not negatively impact colour properties and state of myoglobin, but significantly lowers oxidative deterioration of M. longissimus lumborum at the end of storage. Copyright © 2016. Published by Elsevier Ltd.

  2. Quantification of N2O and NO emissions from a small-scale pond-ditch circulation system for rural polluted water treatment.

    PubMed

    Ma, Lin; Tong, Weijun; Chen, Hongguang; Sun, Jian; Wu, Zhenbin; He, Feng

    2018-04-01

    The pond-ditch circulation system (PDCS) is an efficient and economical solution for the restoration of degraded rural water environments. However, little is known about nitrous oxide (N 2 O) and nitric oxide (NO) emissions in the microbial removal process of nitrogen in PDCSs, and their contribution to nitrogen removal. The aim of this study was to quantify N 2 O and NO emissions from the PDCS, evaluate their capacities, and elucidate the key environmental factors controlling them. The results showed that N 2 O and NO fluxes were in the ranges 1.1-2055.1μgNm -2 h -1 and 0.1-6.8μgNm -2 h -1 for the PDCS, respectively. Meanwhile, the N 2 O and NO fluxes from the two ponds in the PDCS were significantly higher than those in the static system. Moreover, the amount of N 2 O and NO emissions in the PDCS accounted for 0.17-4.32% of the total nitrogen (TN) removal. According to the partial least squares (PLS) approach and Pearson's correlation coefficients, nitrate nitrogen in water (W-NO 3 - -N), dissolved oxygen in water (W-DO), dissolved oxygen in sediment (DO), pH in water (W-pH), pH in sediment (pH), total kjeldahl nitrogen (TKN), and soil organic carbon (SOC) significantly affected the N 2 O flux (p<0.05), whereas W-NO 3 - -N, DO, and nitrite nitrogen in sediment (NO 2 - -N) significantly affected the NO emission (p<0.05). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time".

    PubMed

    Catling, David C; Glein, Christopher R; Zahnle, Kevin J; McKay, Christopher P

    2005-06-01

    Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.

  4. Hyperbaric nitrogen prolongs breath-holding time in humans.

    PubMed

    Morooka, H; Wakasugi, Y; Shimamoto, H; Shibata, O; Sumikawa, K

    2000-09-01

    Either an increase in PaCO(2) or a decrease in PaO(2), can affect respiratory stimulation through respiratory centers, thus influencing breath-holding time (BHT). This study was designed to determine whether and how hyperbaric air could influence BHT in comparison with hyperbaric oxygen in humans. We studied 36 healthy volunteers in a multiplace hyperbaric chamber. BHT, pulse oximeter, and transcutaneous carbon dioxide tension were measured at 1 and 2.8 atmosphere absolute (ATA) in two groups. Group A (n = 20) breathed air. Group O (n = 16) breathed oxygen with a face mask (5 L/min). BHTs were 108 +/- 28 s at 1.0 ATA and 230 +/- 71 s at 2.8 ATA in Group A, and 137 +/- 48 s at 1.0 ATA and 180 +/- 52 s at 2.8 ATA in Group O. Transcutaneous carbon dioxide tension in Group A (59 +/- 2 mm Hg) was higher than that in Group O (54 +/- 2 mm Hg) at the end of maximal breath-holding at 2.8 ATA. The prolongation of BHT in hyperbaric air is significantly greater than that in hyperbaric oxygen. Breath-holding time is significantly prolonged in hyperbaric air than it is in hyperbaric oxygen. The mechanism involves the anesthetic effect of nitrogen suppressing the suffocating feeling during breath-holding.

  5. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    NASA Astrophysics Data System (ADS)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  6. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection.

    PubMed

    Kolpen, Mette; Kühl, Michael; Bjarnsholt, Thomas; Moser, Claus; Hansen, Christine Rønne; Liengaard, Lars; Kharazmi, Arsalan; Pressler, Tanja; Høiby, Niels; Jensen, Peter Østrup

    2014-01-01

    Chronic lung infection by Pseudomonas aeruginosa is the major severe complication in cystic fibrosis (CF) patients, where P. aeruginosa persists and grows in biofilms in the endobronchial mucus under hypoxic conditions. Numerous polymorphonuclear leukocytes (PMNs) surround the biofilms and create local anoxia by consuming the majority of O2 for production of reactive oxygen species (ROS). We hypothesized that P. aeruginosa acquires energy for growth in anaerobic endobronchial mucus by denitrification, which can be demonstrated by production of nitrous oxide (N2O), an intermediate in the denitrification pathway. We measured N2O and O2 with electrochemical microsensors in 8 freshly expectorated sputum samples from 7 CF patients with chronic P. aeruginosa infection. The concentrations of NO3(-) and NO2(-) in sputum were estimated by the Griess reagent. We found a maximum median concentration of 41.8 µM N2O (range 1.4-157.9 µM N2O). The concentration of N2O in the sputum was higher below the oxygenated layers. In 4 samples the N2O concentration increased during the initial 6 h of measurements before decreasing for approximately 6 h. Concomitantly, the concentration of NO3(-) decreased in sputum during 24 hours of incubation. We demonstrate for the first time production of N2O in clinical material from infected human airways indicating pathogenic metabolism based on denitrification. Therefore, P. aeruginosa may acquire energy for growth by denitrification in anoxic endobronchial mucus in CF patients. Such ability for anaerobic growth may be a hitherto ignored key aspect of chronic P. aeruginosa infections that can inform new strategies for treatment and prevention.

  7. Epitaxy of Zn{sub 2}TiO{sub 4} (1 1 1) thin films on GaN (0 0 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Chu-Yun; Wu, Jhih-Cheng; Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw

    2013-03-15

    Highlights: ► High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by sputtering. ► Oxygen atmosphere and post heat-treatment annealing effectively enhanced epitaxy. ► The epitaxial Zn{sub 2}TiO{sub 4} modifies the dielectric properties of ceramic oxide. - Abstract: High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by rf-sputtering. Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn{sub 2}TiO{sub 4} films. Lattice image at the Zn{sub 2}TiO{sub 4} (1 1 1)/GaN (0 0 1) interface was obtained by high-resolutionmore » transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: (111){sub Zn{sub 2TiO{sub 4}}}||(001){sub GaN}, (202{sup ¯}){sub Zn{sub 2TiO{sub 4}}}||(110){sub GaN},and[21{sup ¯}1{sup ¯}]{sub Zn{sub 2TiO{sub 4}}}||[01{sup ¯}10]{sub GaN}. Finally, the relative permittivity, interfacial trap density and the flat-band voltage of the Zn{sub 2}TiO{sub 4} based capacitor were ∼18.9, 8.38 × 10{sup 11} eV{sup −1} cm{sup −2}, and 1.1 V, respectively, indicating the potential applications of the Zn{sub 2}TiO{sub 4} thin film to the GaN-based metal-oxide-semiconductor capacitor.« less

  8. Synthesis, structure, and properties of nickel complexes with nitrilotris(methylenephosphonic acid) [Ni(H{sub 2}O)3N(CH2PO{sub 3}H){sub 3}] and Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@yandex.ru; Zakirova, R. M.

    2016-03-15

    Nitrilotris(methylenephosphonato)triaquanickel and tetrasodium nitrilotris(methylenephosphonato) aquanickelate undecahydrate were synthesized and characterized. The crystal of [Ni(H{sub 2}O){sub 3}N(CH{sub 2}PO{sub 3}H){sub 3}] is composed of linear coordination polymers and belongs to sp. gr. P2{sub 1}/c, Z = 4, a = 9.17120(10) Å, b = 16.05700(10) Å, c = 9.70890(10) Å, β = 115.830(2)°. The Ni atom is in an octahedral coordination formed by two oxygen atoms of one phosphonate ligand, one oxygen atom of another ligand molecule, and three water molecules in a meridional configuration. The crystal of Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O has an island dimeric chelate structuremore » and belongs to sp. gr. C2/c, Z = 8, a = 18.7152(2) Å, b = 12.05510(10) Å, c = 21.1266(2) Å, β = 104.4960(10)°. The Ni atom has a slightly distorted octahedral coordination involving one nitrogen atom and closes three five-membered N–C–P–O–Ni rings sharing the Ni–N bond.« less

  9. The peculiar ring galaxy HRG 54103 revisited

    NASA Astrophysics Data System (ADS)

    Freitas-Lemes, P.; Krabbe, A. C.; Faúndez-Abans, M.; da Rocha-Poppe, P.; Rodrigues, I.; de Oliveira-Abans, M.; Fernandes-Martin, V. A.

    2017-07-01

    We present an observational study of the galaxy HRG 54103, a peculiar galaxy with an asymmetric disc ring. The main goal of this work is to study the stellar population and oxygen abundances for the inner bulge region. The kinematics derived from long-slit spectroscopy suggest that the line of nodes of the gaseous component of HRG 54103 is nearly along the galaxy ring minor axis. The gaseous disc seems to be kinematically decoupled relative to the morphology of the stellar ring. A small, but non-negligible, fraction of young stars (5-10 per cent) is estimated to contribute. This object is mainly dominated by old and intermediate stellar populations. The emission-line spectrum shows low-ionization nuclear emission-line region (LINER) type characteristics. We determined oxygen abundances using calibrations between this parameter and the strong emission line ratios known as the indices O3N2 and N2. Our results suggest a relatively homogeneous O/H across the minor axis of the galaxy, with average values of 12 + log(O/H) = 8.4 dex and 12 + log(O/H) = 8.7 dex, using the O3N2 and N2 parameters, respectively. These values are compatible with the few estimations of oxygen abundance for peculiar ring galaxies published in the literature. Implications on the formation history of HRG 54103 were investigated.

  10. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.

  11. Why O2 Is Required by Complex Life on Habitable Planets and the Concept of Planetary "Oxygenation Time"

    NASA Astrophysics Data System (ADS)

    Catling, David C.; Glein, Christopher R.; Zahnle, Kevin J.; McKay, Christopher P.

    2005-06-01

    Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of ~10-1-100 m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (>m)~m-1 for aquatic aerobes, and we show that for anaerobes the predicted scaling is n~m -1.5, close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (PO2) must exceed ~103 Pa to allow organisms that rely on O2 diffusion to evolve to a size ~10-3 m. PO2 in the range ~103-104 Pa is needed to exceed the threshold of ~10-2 m size for complex life with circulatory physiology. In terrestrial life, O2 also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach PO2 ~104 Pa, or "oxygenation time," was long on the Earth (~3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.

  12. [Oxidation behavior and kinetics of representative VOCs emitted from petrochemical industry over CuCeOx composite oxides].

    PubMed

    Chen, Chang-Wei; Yu, Yan-Ke; Chen, Jin-Sheng; He, Chi

    2013-12-01

    CuCeOx composite catalysts were synthesized via coprecipitation (COP-CuCeO,) and incipient impregnation (IMP-CuCeOx) methods, respectively. The physicochemical properties of the samples were characterized by XRD, low-temperature N2 sorption, H2-TPR and O2-TPD. The influences of reactant composition and concentration, reaction space velocity, O2 content, H2O concentration, and catalyst type on the oxidation behaviors of benzene, toluene, and n-hexane emitted from petrochemical industry were systematically investigated. In addition, the related kinetic parameters were model fitted. Compared with IMP-CuCeOx, COP-CuCeOx had well-dispersed active phase, better low-temperature reducibility, and more active surface oxygen species. The increase of reactant concentration was unfavorable for toluene oxidation, while the opposite phenomenon could be observed in n-hexane oxidation. The inlet concentration of benzene was irrelevant to its conversion under high oxidation rate. The introduction of benzene obviously inhibited the oxidation of toluene and n-hexane, while the presence of toluene had a positive effect on beuzene conversion. The presence of n-hexane could promote the oxidation of toluene, while toluene had a negative influence on e-hexane oxidation. Both low space velocity and high oxygen concentration were beneficial for the oxidation process, and the variation of oxygen content had negligible effect on n-hexane and henzene oxidation. The presence of H2O noticeably inhibited the oxidation of toluene, while significantly accelerated the oxidation procedure of henzene and n-hexane. COP-CuCeOx had superior catalytic performance for toluene and benzene oxidation, while IMP-CuCeOx showed higher n-hexane oxidation activity under dry condition. The oxidation behaviors under different conditions could be well fitted and predicted by the pseudo first-order kinetic model.

  13. Low-Polarization Lithium-Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte.

    PubMed

    Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2018-01-10

    The room-temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide ([DEME][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in Li-O 2 batteries. The [DEME][TFSI]-LiTFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability, and compatibility with lithium metal at 30 °C, 40 °C, and 60 °C. The electrolyte shows suitable properties for application in Li-O 2 battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah g-1carbon in the positive electrode and coulombic efficiency approaching 100 %. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the Li-O 2 cell using the [DEME][TFSI]-LiTFSI electrolyte at increasing temperatures (from 30 to 60 °C) evidences enhanced energy efficiency together with morphology changes of the deposited species at the working electrode. In addition, the use of carbon-coated Zn 0.9 Fe 0.1 O (TMO-C) lithium-conversion anode in an ionic-liquid-based Li-ion/oxygen configuration is preliminarily demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Oceanography. Centennial changes in North Pacific anoxia linked to tropical trade winds.

    PubMed

    Deutsch, Curtis; Berelson, William; Thunell, Robert; Weber, Thomas; Tems, Caitlin; McManus, James; Crusius, John; Ito, Taka; Baumgartner, Timothy; Ferreira, Vicente; Mey, Jacob; van Geen, Alexander

    2014-08-08

    Climate warming is expected to reduce oxygen (O2) supply to the ocean and expand its oxygen minimum zones (OMZs). We reconstructed variations in the extent of North Pacific anoxia since 1850 using a geochemical proxy for denitrification (δ(15)N) from multiple sediment cores. Increasing δ(15)N since ~1990 records an expansion of anoxia, consistent with observed O2 trends. However, this was preceded by a longer declining δ(15)N trend that implies that the anoxic zone was shrinking for most of the 20th century. Both periods can be explained by changes in winds over the tropical Pacific that drive upwelling, biological productivity, and O2 demand within the OMZ. If equatorial Pacific winds resume their predicted weakening trend, the ocean's largest anoxic zone will contract despite a global O2 decline. Copyright © 2014, American Association for the Advancement of Science.

  15. Oxygen budget of a perennially ice-covered Antarctic lake

    NASA Technical Reports Server (NTRS)

    Wharton, R. A., Jr.; Mckay, C. P.; Simmons, G. M., Jr.; Parker, B. C.

    1986-01-01

    A bulk O2 budget for Lake Hoare, Antarctica, is presented. Five years of seasonal data show the lake to be persistently supersaturated with O2. Oxygen is carried into the lake in glacial meltstreams and is left behind when this water is removed as ice by ablation and sublimation. A diffusive loss of O2 from the lake through the summer moat is suggested. Measured values of the total O2 in the water column indicate that the time scale of O2 turnover is much longer than a year. Based on these results, it is suggested that the amount of O2 in the water does not change significantly throughout the year and that the lake is also supersaturated with N2.

  16. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  17. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  18. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  19. Scandinavian consumer preference for beef steaks packed with or without oxygen.

    PubMed

    Aaslyng, M D; Tørngren, M A; Madsen, N T

    2010-07-01

    Beef steaks retail-packed with (80% O(2), 20% CO(2)) or without oxygen (either skin-packed or gas-packed (69.6% N(2), 30% CO(2), 0.04% CO or 70% N(2), 30% CO(2))) were compared by consumers in Denmark (n=382), Norway (n=316) and Sweden (n=374). Two pairs of two steaks - one steak packed in a high oxygen atmosphere and one packed without oxygen - were given to the consumers. They were instructed to prepare the steaks at home on two consecutive days, and two persons had to taste each steak. In Denmark, the oxygen-free packing was either gas packing with CO (69.6% N(2), 30% CO(2), 0.04% CO) or without CO (70% N(2), 30% CO(2)), in Norway it was either gas packing with CO (69.6% N(2), 30% CO(2), 0.04% CO) or skin packing, and in Sweden it was either skin packing or gas packing without CO (70% N(2), 30% CO(2)). The meat represented animals that were between 17 and 80 months old (Denmark) and young bulls (Norway and Sweden). Consumers in all three countries clearly preferred steaks packed without oxygen, in terms of overall liking, willingness to pay and their preferred choice of one steak. Furthermore, they preferred the oxygen-free steaks in terms of both overall liking and liking of tenderness, juiciness and flavour. In Sweden, many consumers would pay more than usual for the skin-packed steak, and it was more often chosen as the preferred steak out of the four compared with gas-packed without oxygen. No difference was seen between the two oxygen-free packing methods in Denmark and Norway. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones

    NASA Astrophysics Data System (ADS)

    Penn, Justin; Weber, Thomas; Deutsch, Curtis

    2016-09-01

    Oxygen deficient zones (ODZs) below the ocean surface regulate marine productivity by removing bioavailable nitrogen (N). A complex microbial community mediates N loss, but the interplay of its diverse metabolisms is poorly understood. We present an ecosystem model of the North Pacific ODZ that reproduces observed chemical distributions yet predicts different ODZ structure, rates, and climatic sensitivity compared to traditional geochemical models. An emergent lower O2 limit for aerobic nitrification lies below the upper O2 threshold for anaerobic denitrification, creating a zone of microbial coexistence that causes a larger ODZ but slower total rates of N loss. The O2-dependent competition for the intermediate nitrite produces gradients in its oxidation versus reduction, anammox versus heterotrophic denitrification, and the net ecological stoichiometry of N loss. The latter effect implies that an externally driven ODZ expansion should favor communities that more efficiently remove N, increasing the sensitivity of the N cycle to climate change.

  1. Correlation Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeO x) Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Neil R.; Grant, J. T.; Sun, L.

    2014-03-18

    Germanium oxide (GeO x) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O 2/(Ar + O 2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO 2 and then finally to GeO 2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeO x films grown were amorphous. The opticalmore » properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeO x films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO 2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50–1.00, where the films become GeO 2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeO x films is presented and discussed.« less

  2. Palladium silicide formation under the influence of nitrogen and oxygen impurities

    NASA Technical Reports Server (NTRS)

    Ho, K. T.; Lien, C.-D.; Nicolet, M.-A.

    1985-01-01

    The effect of impurities on the growth of the Pd2Si layer upon thermal annealing of a Pd film on 100 line-type and amorphous Si substrates is investigated. Nitrogen and oxygen impurities are introduced into either Pd or Si which are subsequently annealed to form Pd2Si. The complementary techniques of Rutherford backscattering spectrometry, and N-15(p, alpha)C-12 or O-18(p, alpha)N-15 nuclear reaction, are used to investigate the behavior of nitrogen or oxygen and the alterations each creates during silicide formation. Both nitrogen and oxygen retard the silicide growth rate if initially present in Si. When they are initially in Pd, there is no significant retardation; instead, an interesting snow-plowing effect of N or O by the reaction interface of Pd2Si is observed. By using N implanted into Si as a marker, Pd and Si appear to trade roles as the moving species when the silicide front reaches the nitrogen-rich region.

  3. Decadal variability in the oxygen inventory of North Atlantic Subtropical Underwater captured by sustained, long-term oceanographic time-series observations

    NASA Astrophysics Data System (ADS)

    Montes, E.; Muller-Karger, F. E.; Cianca, A.; Lomas, M. W.; Lorenzoni, L.; Habtes, S. Y.

    2016-02-01

    Historical observations of potential temperature (θ), salinity (S), and dissolved oxygen concentrations (O2) in the subtropical North Atlantic (0-500 m; 0-40°N, 10-80°W) were examined to understand decadal-scale changes in O2 in Subtropical Underwater (STUW). STUW is observed at four of the longest, sustained ocean biogeochemical and ecological time-series stations, namely the CARIACO Ocean Time-Series Program (10.5°N, 64.7°W), the Bermuda Atlantic Time-series Study (BATS; 31.7°N, 64.2°W), Hydrostation "S" (32.1°N, 64.4°W), and the European Station for Time-series in the Ocean, Canary Islands (ESTOC; 29.2°N, 15.5°W). Data archived by NOAA NODC show that, between 1980 and 2013, STUW O2 (upper 300 m) has declined 0.58 μmol kg-1 yr-1 in the southeastern Caribbean Sea (10-15°N, 60-70°W), and 0.68 μmol kg-1 yr-1 in the western subtropical North Atlantic, respectively (30-35°N, 60-65°W). Observations at CARIACO (1995-2013) and BATS (1988-2012), specifically, show that STUW O2 has decreased approximately 0.61 and 0.21 μmol kg-1 yr-1, respectively. No apparent change in STUW O2 was observed at ESTOC over the course of the time series (1994-2013). Most of the observed O2 loss seems to result from shifts in ventilation associated with wind-driven mixing and slow down of STUW formation rates, rather than changes in diffusive air-sea O2 gas exchange. Variability of STUW O2 showed a strong relationship with the Atlantic Multidecadal Oscillation (AMO; R2=0.32, p < 0.001) index phase. During negative AMO years trade winds are stronger between 10°N and 30°N. These conditions stimulate the formation and ventilation of STUW. The decreasing trend in STUW O2 in the three decades spanning 1980 through 2013 thus reflects a shift from a strongly negative AMO between mid-1980's and mid-1990's to a positive AMO observed between the mid-1990's and 2013. These changes in STUW O2 were captured by the CARIACO, BATS, and Hydrostation "S" time series stations. Sustained positive AMO conditions could lead to further de-oxygenation in tropical and sub-tropical North Atlantic upper waters.

  4. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.

    PubMed

    Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  5. Interplay of oxygen octahedral rotations and electronic instabilities in strontium ruthenate Ruddlesden-Poppers from first principles

    NASA Astrophysics Data System (ADS)

    Voss, Johannes; Fennie, Craig J.

    2011-03-01

    The Ruddlesden-Popper ruthenates Sr n+1 Ru n O3 n + 1 display a broad range of electronic phases including p -wave superconductivity, electronic nematicity, and ferromagnetism. Elucidating the role of the number of perovskite blocks, n , in the realization of these differently ordered electronic states remains a challenge. Additionally dramatic experimental advances now enable the atomic scale growth of these complex oxide thin films on a variety of substrates coherently, allowing for the application of tunable epitaxial strain and subsequently the ability to control structural distortions such as oxygen octahedral rotations. Here we investigate from first principles the effect of oxygen octahedral rotations on the electronic structure of Sr 2 Ru O4 and Sr 3 Ru 2 O7 . We discuss possible implications for the physics of the bulk systems and point towards new effects in thin films.

  6. Imaging putative foetal cerebral blood oxygenation using susceptibility weighted imaging (SWI).

    PubMed

    Yadav, Brijesh Kumar; Krishnamurthy, Uday; Buch, Sagar; Jella, Pavan; Hernandez-Andrade, Edgar; Yeo, Lami; Korzeniewski, Steven J; Trifan, Anabela; Hassan, Sonia S; Haacke, E Mark; Romero, Roberto; Neelavalli, Jaladhar

    2018-05-01

    To evaluate the magnetic susceptibility, ∆χ v , as a surrogate marker of venous blood oxygen saturation, S v O 2 , in second- and third-trimester normal human foetuses. Thirty-six pregnant women, having a mean gestational age (GA) of 31 2/7 weeks, underwent magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) data from the foetal brain were acquired. ∆χ v of the superior sagittal sinus (SSS) was quantified using MR susceptometry from the intra-vascular phase measurements. Assuming the magnetic property of foetal blood, ∆χ do , is the same as that of adult blood, S v O 2 was derived from the measured Δχ v . The variation of ∆χ v and S v O 2 , as a function of GA, was statistically evaluated. The mean ∆χ v in the SSS in the second-trimester (n = 8) and third-trimester foetuses (n = 28) was found to be 0.34± 0.06 ppm and 0.49 ±0.05 ppm, respectively. Correspondingly, the derived S v O 2 values were 69.4% ±3.27% and 62.6% ±3.25%. Although not statistically significant, an increasing trend (p = 0.08) in Δχ v and a decreasing trend (p = 0.22) in S v O 2 with respect to advancing gestation was observed. We report cerebral venous blood magnetic susceptibility and putative oxygen saturation in healthy human foetuses. Cerebral oxygen saturation in healthy human foetuses, despite a slight decreasing trend, does not change significantly with advancing gestation. • Cerebral venous magnetic susceptibility and oxygenation in human foetuses can be quantified. • Cerebral venous oxygenation was not different between second- and third-trimester foetuses. • Foetal cerebral venous oxygenation does not change significantly with advancing gestation.

  7. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    NASA Astrophysics Data System (ADS)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  8. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    DOE PAGES

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less

  9. Plasma Assisted Combustion: Flame Regimes and Kinetic Studies

    DTIC Science & Technology

    2015-01-05

    Kinetic model Fuel: Dimethyl ether Oxidizer= (1-x)O2 + xO3, x=0 - 0.1, p=1 atm Ozone chemistry & Dimethyl ether model ...diffusional cool flames • A heated counterflow burner integrated with vaporization system1 • n-heptane/nitrogen vs. oxygen/ ozone • Ozone generator...micro-DBD) produces 2- 5 % of ozone in oxygen stream, depending on oxygen flow rate • Speciation profiles by using a micro-probe sampling with a

  10. Effects of oxygen-depleted atmospheres on survival and growth of Listeria monocytogenes on fresh-cut Iceberg lettuce stored at mild abuse commercial temperatures.

    PubMed

    O'Beirne, David; Gomez-Lopez, Vicente; Tudela, Juan A; Allende, Ana; Gil, Maria I

    2015-06-01

    The effects of oxygen-depleted atmospheres, 0.25% O2+12% CO2 (balance N2) and 2% O2 + 6% CO2 (balance N2), on growth of Listeria monocytogenes on fresh-cut Iceberg lettuce were determined. The study was carried out at mild abuse temperatures using controlled atmosphere chambers. During storage at a constant temperature of 7 °C, growth was enhanced at the lower oxygen level of 0.25% O2 by Day 10. Over 17 days of storage at temperatures designed to mimic mild abuse commercial conditions, there were again significantly higher counts under 0.25% O2 from Day 10 onwards. These were 0.9 and 0.7 log cycles higher on Days 14 and 17, respectively. When a model lettuce agar medium was used to eliminate possible interactions with competing flora the direct effects of the atmosphere enhancing the growth of L. monocytogenes was also observed. It is concluded that use of very O2-depleted atmospheres for control of enzymatic browning of fresh-cut Iceberg lettuce may introduce a potential hazard under some commercial conditions. There is a need for greater vigilance and possibly additional measures to ensure consumer safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Pleomorphic copper coordination by Alzheimer's disease amyloid-beta peptide.

    PubMed

    Drew, Simon C; Noble, Christopher J; Masters, Colin L; Hanson, Graeme R; Barnham, Kevin J

    2009-01-28

    Numerous conflicting models have been proposed regarding the nature of the Cu(2+) coordination environment of the amyloid beta (Abeta) peptide, the causative agent of Alzheimer's disease. This study used multifrequency CW-EPR spectroscopy to directly resolve the superhyperfine interactions between Cu(2+) and the ligand nuclei of Abeta, thereby avoiding ambiguities associated with introducing point mutations. Using a library of Abeta16 analogues with site-specific (15)N-labeling at Asp1, His6, His13, and His14, numerical simulations of the superhyperfine resonances delineated two independent 3N1O Cu(2+) coordination modes, {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H13)} (component Ia) and {N(a)(D1), O, N(epsilon)(H6), N(epsilon)(H14)} (component Ib), between pH 6-7. A third coordination mode (component II) was identified at pH 8.0, and simulation of the superhyperfine resonances indicated a 3N1O coordination sphere involving nitrogen ligation by His6, His13, and His14. No differences were observed upon (17)O-labeling of the phenolic oxygen of Tyr10, confirming it is not a key oxygen ligand in the physiological pH range. Hyperfine sublevel correlation (HYSCORE) spectroscopy, in conjunction with site-specific (15)N-labeling, provided additional support for the common role of His6 in components Ia and Ib, and for the assignment of a {O, N(epsilon)(H6), N(epsilon)(H13), N(epsilon)(H14)} coordination sphere to component II. HYSCORE studies of a peptide analogue with selective (13)C-labeling of Asp1 revealed (13)C cross-peaks characteristic of equatorial coordination by the carboxylate oxygen of Asp1 in component Ia/b coordination. The direct resolution of Cu(2+) ligand interactions, together with the key finding that component I is composed of two distinct coordination modes, provides valuable insight into a range of conflicting ligand assignments and highlights the complexity of Cu(2+)/Abeta interactions.

  12. Interface properties of SiO2/GaN structures formed by chemical vapor deposition with remote oxygen plasma mixed with Ar or He

    NASA Astrophysics Data System (ADS)

    Truyen, Nguyen Xuan; Taoka, Noriyuki; Ohta, Akio; Makihara, Katsunori; Yamada, Hisashi; Takahashi, Tokio; Ikeda, Mitsuhisa; Shimizu, Mitsuaki; Miyazaki, Seiichi

    2018-06-01

    The impacts of noble gas species (Ar and He) on the formation of a SiO2/GaN structure formed by a remote oxygen plasma-enhanced chemical vapor deposition (ROPE-CVD) method were systematically investigated. Atomic force microscopy revealed that ROPE-CVD with He leads to a smooth SiO2 surface compared with the case of Ar. We found that no obvious oxidations of the GaN surfaces after the SiO2 depositions with the both Ar and He cases were observed. The capacitance–voltage (C–V) curves of the GaN MOS capacitors formed by ROPE-CVD with the Ar and He dilutions show good interface properties with no hysteresis and good agreement with the ideal C–V curves even after post deposition annealing at 800 °C. Besides, we found that the current density–oxide electric field characteristics shows a gate leakage current for the Ar case lower than the He case.

  13. Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode.

    PubMed

    Aijaz, Arshad; Masa, Justus; Rösler, Christoph; Xia, Wei; Weide, Philipp; Botz, Alexander J R; Fischer, Roland A; Schuhmann, Wolfgang; Muhler, Martin

    2016-03-14

    Efficient reversible oxygen electrodes for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are vitally important for various energy conversion devices, such as regenerative fuel cells and metal-air batteries. However, realization of such electrodes is impeded by insufficient activity and instability of electrocatalysts for both water splitting and oxygen reduction. We report highly active bifunctional electrocatalysts for oxygen electrodes comprising core-shell Co@Co3O4 nanoparticles embedded in CNT-grafted N-doped carbon-polyhedra obtained by the pyrolysis of cobalt metal-organic framework (ZIF-67) in a reductive H2 atmosphere and subsequent controlled oxidative calcination. The catalysts afford 0.85 V reversible overvoltage in 0.1 m KOH, surpassing Pt/C, IrO2 , and RuO2 and thus ranking them among one of the best non-precious-metal electrocatalysts for reversible oxygen electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Rapid nitrous oxide cycling in the suboxic ocean

    NASA Astrophysics Data System (ADS)

    Babbin, Andrew R.; Bianchi, Daniele; Jayakumar, Amal; Ward, Bess B.

    2015-06-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions.

  15. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure.

    PubMed

    Ji, Sang Min; Borse, Pramod H; Kim, Hyun Gyu; Hwang, Dong Won; Jang, Jum Suk; Bae, Sang Won; Lee, Jae Sung

    2005-03-21

    Nitrogen-doped perovskite type materials, Sr2Nb2O7-xNx (0, 1.5 < x < 2.8), have been studied as visible light-active photocatalysts for hydrogen production from methanol-water mixtures. Nitrogen doping in Sr2Nb2O7 red-shifted the light absorption edge into the visible light range and induced visible light photocatalytic activity. There existed an optimum amount of nitrogen doping that showed the maximum rate of hydrogen production. Among the potential variables that might cause this activity variation, the crystal structure appeared to be the most important. Thus, as the extent of N-doping increased, the original orthorhombic structure of the layered perovskite was transformed into an unlayered cubic oxynitride structure. The most active catalytic phase was an intermediate phase still maintaining the original layered perovskite structure, but with a part of its oxygen replaced by nitrogen and oxygen vacancy to adjust the charge difference between oxygen and doped nitrogen. These experimental observations were explained by density functional theory calculations. Thus, in Sr2Nb2O7-xNx, N2p orbital was the main contributor to the top of the valence band, causing band gap narrowing while the bottom of conduction band due to Nb 4d orbital remained almost unchanged.

  16. Synthesis and characterization of different MnO2 morphologies for lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-A.; Jang, Hyuk; Hwang, Hyein; Choi, Mincheol; Lim, Dongwook; Shim, Sang Eun; Baeck, Sung-Hyeon

    2014-09-01

    Manganese dioxide (MnO2) was synthesized in the forms of nanorods, nanoparticles, and mesoporous structures and the characteristics of these materials were investigated. Crystallinities were studied by x-ray diffraction and morphologies by scanning and transmission electron microscopy. Average pore sizes and specific surface areas were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. Samples were also studied by cyclic voltammetry using 1M aqueous KOH solution saturated with either O2 or N2 as electrolytes to investigate their ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) activities. Of the samples produced, mesoporous MnO2 exhibited the highest ORR and OER catalytic activities. Mesoporous MnO2 supported on a gas diffusion layer was also used as a catalyst on the air electrode (cathode) of a lithium-air battery in organic electrolyte. The charge-discharge behavior of mesoporous MnO2 was investigated at a current density 0.2 mAcm-2 in a pure oxygen environment. Mesoporous MnO2 electrodes showed stable cycleability up to 65 cycles at a cell capacity of 700 mAhg-1.

  17. Diurnal pattern in nitrous oxide emissions from a sewage-enriched river.

    PubMed

    Xia, Yongqiu; Li, Yuefei; Li, Xiaobo; Guo, Miao; She, Dongli; Yan, Xiaoyuan

    2013-07-01

    Estimates of N2O emission based on limit measurements could be highly inaccurate because of considerable diurnal variations in N2O flux due to rapid transformation of nutrients and diel change of dissolved oxygen (DO). In the present study, the N2O fluxes, dissolved N2O concentrations, and the controlling variables were measured hourly for 3d and night cycles at five sites on a typically sewage-enriched river in the Taihu region. There were no significant diurnal patterns in N2O emissions and dissolved N2O saturation, with respective mean value of 56.1μg N2O-Nm(-2)h(-1) (range=41.1μg N2O-Nm(-2)h(-1) to 87.7μg N2O-Nm(-2)h(-1)) and 813% (range=597-1372%), though distinct diurnal patterns were observed in DO concentration and river chemistry. However, the mean N2O emissions and the mean dissolved N2O saturation during the day (61.7μgNm(-2)h(-1) for N2O fluxes and 0.52μgNL(-1) for dissolved N2O saturation) were significantly higher than those during the night (50.1μgNm(-2)h(-1)for N2O fluxes and 0.44μgNL(-1) for dissolved N2O saturation). Factors controlling the N2O flux were pH, DO, NH4(+),SO4(2-), air temperature, and water temperature. Sampling at 19:00h could well represent the daily average N2O flux at the studied river. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effect of using two-step thermal annealing with different ambient gas on Mg activation and crystalline quality in GaN

    NASA Astrophysics Data System (ADS)

    Azimah, E.; Zainal, N.; Shuhaimi, A.; Hassan, Z.

    2015-06-01

    Two-step thermal annealing with different ambient gas was proposed to improve the activation of Mg doping in MOCVD-GaN films; (1) with nitrogen at the first step and followed by oxygen (N2/O2) and (2) with O2 and then by N2 (O2/N2). For comparison, two samples annealed in one-step thermal annealing using air and N2, respectively were also prepared. From Hall-effect measurement, the two-step annealing with the use of O2/N2 treatment was found to give the highest hole concentration at to 5.5 × 1017 cm-3. On the other hand, Raman spectroscopy and XRD measurements revealed that the O2/N2 annealed sample exhibited the smallest compressive strain and FWHM (full width at high maximum) compared to others. Hence, the annealing with O2/N2 is proposed to be the most promising technique that not only to increase the hole concentration effectively but also to improve the crystalline quality of the samples.

  19. Enzyme-level interconversion of nitrate and nitrite in the fall mixed layer of the Antarctic Ocean

    NASA Astrophysics Data System (ADS)

    Kemeny, P. C.; Weigand, M. A.; Zhang, R.; Carter, B. R.; Karsh, K. L.; Fawcett, S. E.; Sigman, D. M.

    2016-07-01

    In the Southern Ocean, the nitrogen (N) isotopes of organic matter and the N and oxygen (O) isotopes of nitrate (NO3-) have been used to investigate NO3- assimilation and N cycling in the summertime period of phytoplankton growth, both today and in the past. However, recent studies indicate the significance of processes in other seasons for producing the annual cycle of N isotope changes. This study explores the impact of fall conditions on the 15N/14N (δ15N) and 18O/16O (δ18O) of NO3- and nitrite (NO2-) in the Pacific Antarctic Zone using depth profiles from late summer/fall of 2014. In the mixed layer, the δ15N and δ18O of NO3- + NO2- increase roughly equally, as expected for NO3- assimilation; however, the δ15N of NO3--only (measured after NO2- removal) increases more than does NO3--only δ18O. Differencing indicates that NO2- has an extremely low δ15N, often < -70‰ versus air. These observations are consistent with the expression of an equilibrium N isotope effect between NO3- and NO2-, likely due to enzymatic NO3--NO2- interconversion. Specifically, we propose reversibility of the nitrite oxidoreductase (NXR) enzyme of nitrite oxidizers that, having been entrained from the subsurface during late summer mixed layer deepening, are inhibited by light. Our interpretation suggests a role for NO3--NO2- interconversion where nitrifiers are transported into environments that discourage NO2- oxidation. This may apply to surface regions with upwelling, such as the summertime Antarctic. It may also apply to oxygen-deficient zones, where NXR-catalyzed interconversion may explain previously reported evidence of NO2- oxidation.

  20. Proof of concept non-invasive estimation of peripheral venous oxygen saturation.

    PubMed

    Khan, Musabbir; Pretty, Chris G; Amies, Alexander C; Balmer, Joel; Banna, Houda E; Shaw, Geoffrey M; Geoffrey Chase, J

    2017-05-19

    Pulse oximeters continuously monitor arterial oxygen saturation. Continuous monitoring of venous oxygen saturation (SvO 2 ) would enable real-time assessment of tissue oxygen extraction (O 2 E) and perfusion changes leading to improved diagnosis of clinical conditions, such as sepsis. This study presents the proof of concept of a novel pulse oximeter method that utilises the compliance difference between arteries and veins to induce artificial respiration-like modulations to the peripheral vasculature. These modulations make the venous blood pulsatile, which are then detected by a pulse oximeter sensor. The resulting photoplethysmograph (PPG) signals from the pulse oximeter are processed and analysed to develop a calibration model to estimate regional venous oxygen saturation (SpvO 2 ), in parallel to arterial oxygen saturation estimation (SpaO 2 ). A clinical study with healthy adult volunteers (n = 8) was conducted to assess peripheral SvO 2 using this pulse oximeter method. A range of physiologically realistic SvO 2 values were induced using arm lift and vascular occlusion tests. Gold standard, arterial and venous blood gas measurements were used as reference measurements. Modulation ratios related to arterial and venous systems were determined using a frequency domain analysis of the PPG signals. A strong, linear correlation (r 2  = 0.95) was found between estimated venous modulation ratio (R Ven ) and measured SvO 2 , providing a calibration curve relating measured R Ven to venous oxygen saturation. There is a significant difference in gradient between the SpvO 2 estimation model (SpvO 2  = 111 - 40.6*R) and the empirical SpaO 2 estimation model (SpaO 2  = 110 - 25*R), which yields the expected arterial-venous differences. Median venous and arterial oxygen saturation accuracies of paired measurements between pulse oximeter estimated and gold standard measurements were 0.29 and 0.65%, respectively, showing good accuracy of the pulse oximeter system. The main outcome of this study is the proof of concept validation of a novel pulse oximeter sensor and calibration model to assess peripheral SvO 2 , and thus O 2 E, using the method used in this study. Further validation, improvement, and application of this model can aid in clinical diagnosis of microcirculation failures due to alterations in oxygen extraction.

  1. Dinitrogen Fixation Within and Adjacent to Oxygen Deficient Waters of the Eastern Tropical South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Widner, B.; Mulholland, M. R.; Bernhardt, P. W.; Chang, B. X.; Jayakumar, A.

    2016-02-01

    Recent work suggests that planktonic diazotrophs are geographically more widely distributed than previously thought including relatively warm (14-23oC) aphotic oxygenated pelagic waters and in aphotic waters within oxygen deficient zones. Because the volume of aphotic water in the ocean is large and may increase in the future, if dinitrogen (N2) fixation is widely occurring at sub-euphotic depths, this could result in a dramatic upward revision of global nitrogen (N) inputs via this process. N2 fixation rates were measured during a cruise in the Eastern Tropical South Pacific using stable isotope tracer techniques that account for slow gas dissolution. Results are compared with light, nutrient, and oxygen gradients (and necessarily temperature gradients). In addition, rates of N2 fixation made in vertical profiles within and above oxygen deficient waters are compared with those measured in vertical profiles adjacent to oxygen deficient waters. Results suggest that while rates of N2 fixation were measurable in deeper anoxic waters, volumetric N2 fixation rates were higher in surface waters.

  2. Oleophobic optical coating deposited by magnetron PVD

    NASA Astrophysics Data System (ADS)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  3. Soil Nitrification and N2O Production: the connection with N concentration and Soil Water Content

    NASA Astrophysics Data System (ADS)

    Zhu-Barker, X.; Horwath, W. R.

    2016-12-01

    The development of mitigation strategies to reduce nitrous oxide (N2O) emission from soils is dependent on explicating the biophysical factors affecting different N2O production pathways. Ammonia oxidation and heterotrophic denitrification are the main pathways of N2O production, depending on soil conditions such as soil moisture content, oxygen (O2) content and N substrate. Many researchers have reported that N2O production increased as substrate concentration and soil moisture content increased. However, less understood is how N fertilizer concentration and moisture content interact to affect N2O production pathways. To investigate interaction and its effect on O2 consumption, we incubated three agricultural soils (clay, sandy loam, and peat) with different concentrations of (NH4)2SO4 (0-1000 µg N g-1) under 50 %, 75%, and 100% of water holding capacity. All treatments received 15N -KNO3 to bring the concentrations of NO3-_N in soils to 50 mg kg-1 soil and the NO3- pool to an enrichment of 10 atom% 15N. In all soils, the total amount of O2 consumption and N2O production increased as soil ammonical N concentration increased. The increased soil moisture significantly promoted N2O production in sandy loam and clay loam soils, compared to the peat soil. These results indicate that N2O production increased as substrate concentration increased likely due to the onset of O2 limitation caused by ammonia oxidation.

  4. The effects of breathing a helium-oxygen gas mixture on maximal pulmonary ventilation and maximal oxygen consumption during exercise in acute moderate hypobaric hypoxia.

    PubMed

    Ogawa, Takeshi; Calbet, Jose A L; Honda, Yasushi; Fujii, Naoto; Nishiyasu, Takeshi

    2010-11-01

    To test the hypothesis that maximal exercise pulmonary ventilation (VE max) is a limiting factor affecting maximal oxygen uptake (VO2 max) in moderate hypobaric hypoxia (H), we examined the effect of breathing a helium-oxygen gas mixture (He-O(2); 20.9% O(2)), which would reduce air density and would be expected to increase VE max. Fourteen healthy young male subjects performed incremental treadmill running tests to exhaustion in normobaric normoxia (N; sea level) and in H (atmospheric pressure equivalent to 2,500 m above sea level). These exercise tests were carried out under three conditions [H with He-O(2), H with normal air and N] in random order. VO2 max and arterial oxy-hemoglobin saturation (SaO(2)) were, respectively, 15.2, 7.5 and 4.0% higher (all p < 0.05) with He-O(2) than with normal air (VE max, 171.9 ± 16.1 vs. 150.1 ± 16.9 L/min; VO2 max, 52.50 ± 9.13 vs. 48.72 ± 5.35 mL/kg/min; arterial oxyhemoglobin saturation (SaO(2)), 79 ± 3 vs. 76 ± 3%). There was a linear relationship between the increment in VE max and the increment in VO2 max in H (r = 0.77; p < 0.05). When subjects were divided into two groups based on their VO2 max, both groups showed increased VE max and SaO(2) in H with He-O(2), but VO2 max was increased only in the high VO2 max group. These findings suggest that in acute moderate hypobaric hypoxia, air-flow resistance can be a limiting factor affecting VE max; consequently, VO2 max is limited in part by VE max especially in subjects with high VO2 max.

  5. Stereochemistry of silicon in oxygen-containing compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serezhkin, V. N., E-mail: Serezhkin@samsu.ru; Urusov, V. S.

    2017-01-15

    Specific stereochemical features of silicon in oxygen-containing compounds, including hybrid silicates with all oxygen atoms of SiO{sub n} groups ({sub n} = 4, 5, or 6) entering into the composition of organic anions or molecules, are described by characteristics of Voronoi—Dirichlet polyhedra. It is found that in rutile-like stishovite and post-stishovite phases with the structures similar to those of СаСl{sub 2}, α-PbO{sub 2}, or pyrite FeS{sub 2}, the volume of Voronoi—Dirichlet polyhedra of silicon and oxygen atoms decreases linearly with pressure increasing to 268 GPa. Based on these results, the possibility of formation of new post-stishovite phases is shown, namely,more » the fluorite-like structure (transition predicted at ~400 GPa) and a body-centered cubic lattice with statistical arrangement of silicon and oxygen atoms (~900 GPa).« less

  6. A p-Type Zinc-Based Metal-Organic Framework.

    PubMed

    Shang, Congcong; Gautier, Romain; Jiang, Tengfei; Faulques, Eric; Latouche, Camille; Paris, Michael; Cario, Laurent; Bujoli-Doeuff, Martine; Jobic, Stéphane

    2017-06-05

    An original concept for the property tuning of semiconductors is demonstrated by the synthesis of a p-type zinc oxide (ZnO)-like metal-organic framework (MOF), (ZnC 2 O 3 H 2 ) n , which can be regarded as a possible alternative for ZnO, a natural n-type semiconductor. When small oxygen-rich organic linkers are introduced to the Zn-O system, oxygen vacancies and a deep valence-band maximum, the two obstacles for generating p-type behavior in ZnO, are restrained and raised, respectively. Further studies of this material on the doping and photoluminescence behaviors confirm its resemblance to metal oxides (MOs). This result answers the challenges of generating p-type behavior in an n-type-like system. This concept reveals that a new category of hybrid materials, with an embedded continuous metal-oxygen network, lies between the MOs and MOFs. It provides concrete support for the development of p-type hybrid semiconductors in the near future and, more importantly, the enrichment of tuning possibilities in inorganic semiconductors.

  7. Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films

    NASA Astrophysics Data System (ADS)

    Murphy, N. R.; Grant, J. T.; Sun, L.; Jones, J. G.; Jakubiak, R.; Shutthanandan, V.; Ramana, C. V.

    2014-05-01

    Germanium oxide (GeOx) films were grown on (1 0 0) Si substrates by reactive Direct-Current (DC) magnetron sputter-deposition using an elemental Ge target. The effects of oxygen gas fraction, Г = O2/(Ar + O2), on the deposition rate, structure, chemical composition and optical properties of GeOx films have been investigated. The chemistry of the films exhibits an evolution from pure Ge to mixed Ge + GeO + GeO2 and then finally to GeO2 upon increasing Г from 0.00 to 1.00. Grazing incidence X-ray analysis indicates that the GeOx films grown were amorphous. The optical properties probed by spectroscopic ellipsometry indicate that the effect of Г is significant on the optical constants of the GeOx films. The measured index of refraction (n) at a wavelength (λ) of 550 nm is 4.67 for films grown without any oxygen, indicating behavior characteristic of semiconducting Ge. The transition from germanium to mixed Ge + GeO + GeO2 composition is associated with a characteristic decrease in n (λ = 550 nm) to 2.62 and occurs at Г = 0.25. Finally n drops to 1.60 for Г = 0.50-1.00, where the films become GeO2. A detailed correlation between Г, n, k and stoichiometry in DC sputtered GeOx films is presented and discussed.

  8. Oxidation of nitrite by a trans-dioxoruthenium(VI) complex: direct evidence for reversible oxygen atom transfer.

    PubMed

    Man, Wai-Lun; Lam, William W Y; Wong, Wai-Yeung; Lau, Tai-Chu

    2006-11-15

    Reaction of trans-[Ru(VI)(L)(O)(2)](2+) (1, L = 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, a tetradentate macrocyclic ligand with N(2)O(2) donor atoms) with nitrite in aqueous solution or in H(2)O/CH(3)CN produces the corresponding (nitrato)oxoruthenium(IV) species, trans-[Ru(IV)(L)(O)(ONO(2))](+) (2), which then undergoes relatively slow aquation to give trans-[Ru(IV)(L)(O)(OH(2))](2+). These processes have been monitored by both ESI/MS and UV/vis spectrophotometry. The structure of trans-[Ru(IV)(L)(O)(ONO(2))](+) (2) has been determined by X-ray crystallography. The ruthenium center adopts a distorted octahedral geometry with the oxo and the nitrato ligands trans to each other. The Ru=O distance is 1.735(3) A, the Ru-ONO(2) distance is 2.163(4) A, and the Ru-O-NO(2) angle is 138.46(35) degrees . Reaction of trans-[Ru(VI)(L)((18)O)(2)](2+) (1-(18)O(2)) with N(16)O(2)(-) in H(2)O/CH(3)CN produces the (18)O-enriched (nitrato)oxoruthenium(IV) species 2-(18)O(2). Analysis of the ESI/MS spectrum of 2-(18)O(2) suggests that scrambling of the (18)O atoms has occurred. A mechanism that involves linkage isomerization of the nitrato ligand and reversible oxygen atom transfer is proposed.

  9. Simultaneous two-photon imaging of cerebral oxygenation and capillary blood flow in atherosclerotic mice

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Li, Baoqiang; Moeini, Mohammad; Lesage, Frédéric

    2017-02-01

    Gradual changes in brain microvasculature and cerebral capillary blood flow occurring with atherosclerosis may significantly contribute to cognition decline due to their role in brain tissue oxygenation. However, previous stud- ies of the relationship between cerebral capillary blood flow and brain tissue oxygenation are limited. This study aimed to investigate vascular and concomitant changes in brain tissue pO2 with atherosclerosis. Experiments in young healthy C57B1/6 mice (n=6 , WT), young atherosclerotic mice (n=6 , ATX Y) and old atherosclerotic mice (n=6 , ATX O) were performed imaging on the left sensory-motor cortex at resting state under urethane (1.5 g/kg) anesthesia using two-photon fluorescence microscopy. The results showed that pO2 around capillaries, correlated with red blood cell (RBC) flux, increased with atherosclerosis.

  10. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  11. Air travel and chronic obstructive pulmonary disease: a new algorithm for pre-flight evaluation.

    PubMed

    Edvardsen, Anne; Akerø, Aina; Christensen, Carl C; Ryg, Morten; Skjønsberg, Ole H

    2012-11-01

    The reduced pressure in the aircraft cabin may cause significant hypoxaemia and respiratory distress in patients with chronic obstructive pulmonary disease (COPD). Simple and reliable methods for predicting the need for supplemental oxygen during air travel have been requested. To construct a pre-flight evaluation algorithm for patients with COPD. In this prospective, cross-sectional study of 100 patients with COPD referred to hypoxia-altitude simulation test (HAST), sea level pulse oximetry at rest (SpO(2 SL)) and exercise desaturation (SpO(2 6MWT)) were used to evaluate whether the patient is fit to fly without further assessment, needs further evaluation with HAST or should receive in-flight supplemental oxygen without further evaluation. HAST was used as the reference method. An algorithm was constructed using a combination of SpO(2 SL) and SpO(2 6MWT). Categories for SpO(2 SL) were >95%, 92-95% and <92%, the cut-off value for SpO(2 6MWT) was calculated as 84%. Arterial oxygen pressure (PaO(2 HAST)) <6.6 kPa was the criterion for recommending supplemental oxygen. This algorithm had a sensitivity of 100% and a specificity of 80% when tested prospectively on an independent sample of patients with COPD (n=50). Patients with SpO(2 SL) >95% combined with SpO(2 6MWT) ≥84% may travel by air without further assessment. In-flight supplemental oxygen is recommended if SpO(2 SL)=92-95% combined with SpO(2 6MWT) <84% or if SpO(2 SL) <92%. Otherwise, HAST should be performed. The presented algorithm is simple and appears to be a reliable tool for pre-flight evaluation of patients with COPD.

  12. Nitrous oxide emissions in the Shanghai river network: implications for the effects of urban sewage and IPCC methodology.

    PubMed

    Yu, Zhongjie; Deng, Huanguang; Wang, Dongqi; Ye, Mingwu; Tan, Yongjie; Li, Yangjie; Chen, Zhenlou; Xu, Shiyuan

    2013-10-01

    Global nitrogen (N) enrichment has resulted in increased nitrous oxide (N(2)O) emission that greatly contributes to climate change and stratospheric ozone destruction, but little is known about the N(2)O emissions from urban river networks receiving anthropogenic N inputs. We examined N(2)O saturation and emission in the Shanghai city river network, covering 6300 km(2), over 27 months. The overall mean saturation and emission from 87 locations was 770% and 1.91 mg N(2)O-N m(-2) d(-1), respectively. Nitrous oxide (N(2)O) saturation did not exhibit a clear seasonality, but the temporal pattern was co-regulated by both water temperature and N loadings. Rivers draining through urban and suburban areas receiving more sewage N inputs had higher N(2)O saturation and emission than those in rural areas. Regression analysis indicated that water ammonium (NH(4)(+)) and dissolved oxygen (DO) level had great control on N(2)O production and were better predictors of N(2)O emission in urban watershed. About 0.29 Gg N(2)O-N yr(-1) N(2)O was emitted from the Shanghai river network annually, which was about 131% of IPCC's prediction using default emission values. Given the rapid progress of global urbanization, more study efforts, particularly on nitrification and its N(2)O yielding, are needed to better quantify the role of urban rivers in global riverine N(2)O emission. © 2013 John Wiley & Sons Ltd.

  13. Under general anesthesia arginine vasopressin prevents hypotension but impairs cerebral oxygenation during arthroscopic shoulder surgery in the beach chair position.

    PubMed

    Cho, Soo Y; Kim, Seok J; Jeong, Cheol W; Jeong, Chang Y; Chung, Sung S; Lee, JongUn; Yoo, Kyung Y

    2013-12-01

    Patients undergoing surgery in the beach chair position (BCP) are at a risk of cerebral ischemia. We evaluated the effect of arginine vasopressin (AVP) on hemodynamics and cerebral oxygenation during surgery in the BCP. Thirty patients undergoing shoulder surgery in BCP under propofol-remifentanil anesthesia were randomly allocated either to receive IV AVP 0.07 U/kg (AVP group, N = 15) or an equal volume of saline (control group, N = 15) 2 minutes before taking BCP. Mean arterial blood pressure (MAP), heart rate (HR), jugular venous bulb oxygen saturation (SjvO2), and regional cerebral tissue oxygen saturation (SctO2) were measured after induction of anesthesia and before (presitting in supine position) and after patients took BCP. AVP itself given before the positioning increased MAP and decreased SjvO2 and SctO2 (P < 0.0001), with HR unaffected. Although MAP was decreased by BCP in both groups, it was higher in the AVP group (P < 0.0001). While in BCP, HR remained unaltered in the control and decreased in the AVP group. SjvO2 in BCP did not differ between the groups. SctO2 was decreased by BCP in both groups, which was more pronounced in the AVP group until the end of study. The incidence of hypotension (13% vs 67%; P = 0.003) was less frequent, and that of cerebral desaturation (>20% SctO2 decrease from presitting value) (80% vs 13%; P = 0.0003) was higher in the AVP group. The incidence of jugular desaturation (SjvO2 <50%) was comparable between the groups. A prophylactic bolus administration of AVP prevents hypotension associated with BCP in patients undergoing shoulder surgery under general anesthesia. However, it was associated with regional cerebral but not jugular venous oxygen desaturation on upright positioning.

  14. Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures

    DOEpatents

    Penetrante, Bernardino M.; Brusasco, Raymond M.; Merritt, Bernard T.; Vogtlin, George E.

    2004-02-03

    A high-surface-area (greater than 600 m2/g), large-pore (pore size diameter greater than 6.5 angstroms), basic zeolite having a structure such as an alkali metal cation-exchanged Y-zeolite is employed to convert NO.sub.x contained in an oxygen-rich engine exhaust to N.sub.2 and O.sub.2. Preferably, the invention relates to a two-stage method and apparatus for NO.sub.x reduction in an oxygen-rich engine exhaust such as diesel engine exhaust that includes a plasma oxidative stage and a selective reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and added hydrocarbons. The second stage employs a lean-NO.sub.x catalyst including the basic zeolite at relatively low temperatures to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O.

  15. Biochemical establishment and characterization of EncM's flavin-N5-oxide cofactor

    PubMed Central

    Teufel, Robin; Stull, Frederick; Meehan, Michael J.; Michaudel, Quentin; Dorrestein, Pieter C.; Palfey, Bruce; Moore, Bradley S.

    2016-01-01

    The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species - proposed as the flavin-N5-oxide (FlN5[O]) - as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Flred) during substrate turnover. Subsequent reaction of Flred with molecular oxygen restores the postulated FlN5[O] via an unknown pathway. Here we provide direct evidence for the FlN5[O] species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Flred to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the FlN5[O] cofactor. Further biochemical and spectroscopic investigations reveal important features of the FlN5[O] species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5. PMID:26067765

  16. Millimeter Detection Of AlO (X2Σ+) In The Oxygen-rich Envelope Of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Emily D.; Ziurys, L. M.

    2009-05-01

    A new circumstellar molecule, the radical AlO (X 2Σ+), has been detected toward the envelope of the oxygen-rich supergiant star VY Canis Majoris (VY CMa) via three rotational emission lines. The N = 7 → 6 and 6 → 5 features of AlO were observed at 1 mm using the Arizona Radio Observatory Submillimeter Telescope (ARO SMT) and the N = 4 → 3 line was detected at 2 mm using the ARO 12 m dish. All lines exhibit noticeable hyperfine broadening due to the I = 5/2 spin of the aluminum nucleus. Based on simulations of the line profiles, AlO most likely arises from the dust-acceleration zone in the spherical outflow of VY CMa, with a source size of θs 0.5''. Given this source size, the column density of AlO was found to be Ntot 2 × 1015 cm-2 for Trot 230 K, with a fractional abundance, relative to H2, of 10-8. Gas-phase thermodynamic equilibrium chemistry is the likely formation mechanism for AlO in VY CMa, but shocks may disrupt the condensation process into Al2O3, allowing AlO to survive 20 stellar radii. The detection of AlO in VY CMa is additional evidence of an active gas-phase refractory chemistry in oxygen-rich envelopes, and suggests such objects may be fruitful sources for other new oxide identifications.

  17. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  18. A clinical trial of efficacy and safety of inhalation sedation with a 50% nitrous oxide/oxygen premix (Kalinox™) in general practice.

    PubMed

    Hennequin, Martine; Collado, Valérie; Faulks, Denise; Koscielny, Serge; Onody, Peter; Nicolas, Emmanuel

    2012-04-01

    The current study aimed to verify if the safety and effectiveness of inhalation sedation with 50% nitrous oxide in oxygen (N(2)O/O(2)) is maintained when the premix is administrated by trained general practitioners in their dental surgeries compared to its use in the hospital. Success (completion of planned treatment), cooperation (modified Venham scale), and adverse events were recorded. The acceptability of the technique to the patients, the level of patient cooperation, the ease of use, and the satisfaction of the dentist were also evaluated. Thirty-three general practitioners included 549 patients and recorded 638 sessions of N(2)O/O(2) sedation for dental treatment. Of the sessions, 93.7% were successful in terms of both sedation and treatment. Patient cooperation was seen to improve under N(2)O/O(2) sedation, and for 91% of the sessions, the patients declared that they would like future treatment to be undertaken in the same way. No serious adverse events were recorded. Minor adverse events were noted for 10% of the sessions (behavioural, vagal, and digestive disorders). These results were similar to those found for sessions undertaken in hospital practice. The main difference was in the type of patient treated-more patients received N(2)O/O(2) sedation in general practice for a one-off indication or for dental phobia, and more patients with intellectual disability and more pre-cooperative children were treated in hospital practice. This study gives strong supporting evidence for the safety and effectiveness of inhalation sedation using 50% N(2)O/O(2) in general dental practice for healthy patients.

  19. Heterobimetallic Activation of Dioxygen

    PubMed Central

    York, John T.; Young, Victor G.; Tolman, William B.

    2008-01-01

    Reaction of the known germylene Ge[N(SiMe3)2]2 and a new heterocyclic variant Ge[(NMes)2(CH)2] with [LMe2 Cu]2 (LMe2 = the β -diketiminate derived from 2-(2,6-dimethylphenyl)amino-4-(2,6-dimethylphenyl)imino-2-pentene) yielded novel Cu(I)-Ge(II) complexes LMe2Cu-Ge[(NMes)2(CH)2] (1a) and LMe2Cu-Ge[N(SiMe3)2]2 (1b), which were characterized by spectroscopy and X-ray crystallography. The lability of the Cu(I)-Ge(II) bond in 1a and b was probed by studies of their reactivity with benzil, PPh3, and an N-heterocyclic carbene (NHC). Notably, both complexes are cleaved rapidly by PPh3 and the NHC to yield stable Cu(I) adducts (characterized by X-ray diffraction) and the free germylene. In addition, the complexes are highly reactive with O2 and exhibit chemistry which depends on the bound germylene. Thus, oxygenation of 1a results in scission and formation of thermally unstable LMe2CuO2, which subsequently decays to [(LMe2Cu)2(μ-O)2], while 1b yields LMe2Cu(μ-O)2Ge[N(SiMe3)2]2, a novel heterobimetallic intermediate having [CuIII(μ-O)2GeIV]3+ core. The isolation of the latter species by direct oxygenation of a Cu(I)-Ge(II) precursor represents a new route to heterobimetallic oxidants comprising copper. PMID:16676981

  20. Heptanuclear CoII5CoIII2 Cluster as Efficient Water Oxidation Catalyst.

    PubMed

    Xu, Jia-Heng; Guo, Ling-Yu; Su, Hai-Feng; Gao, Xiang; Wu, Xiao-Fan; Wang, Wen-Guang; Tung, Chen-Ho; Sun, Di

    2017-02-06

    Inspired by the transition-metal-oxo cubical Mn 4 CaO 5 in photosystem II, we herein report a disc-like heptanuclear mixed-valent cobalt cluster, [Co II 5 Co III 2 (mdea) 4 (N 3 ) 2 (CH 3 CN) 6 (OH) 2 (H 2 O) 2 ·4ClO 4 ] (1, H 2 mdea = N-methyldiethanolamine), for photocatalytic oxygen evolution. The topology of the Co 7 core resembles a small piece of cobaltate protected by terminal H 2 O, N 3 - , CH 3 CN, and multidentate N-methyldiethanolamine at the periphery. Under the optimal photocatalytic conditions, 1 exhibits water oxidation activity with a turnover number (TON) of 210 and a turnover frequency (TOF initial ) of 0.23 s -1 . Importantly, electrospray mass spectrometry (ESI-MS) was used to not only identify the possible main active species in the water oxidation reaction but also monitor the evolutions of oxidation states of cobalt during the photocatalytic reactions. These results shed light on the design concept of new water oxidation catalysts and mechanism-related issues such as the key active intermediate and oxidation state evolution in the oxygen evolution process. The magnetic properties of 1 were also discussed in detail.

  1. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705; Park, Jeong-Eun

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{submore » 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.« less

  2. Quantitative fluid inclusion gas analysis of airburst, nuclear, impact and fulgurite glasses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parnell, John; Newsom, Horton E.; Blamey, Nigel J. F.

    We present quantitative fluid inclusion gas analysis on a suite of violently-formed glasses. We used the incremental crush mass spectrometry method (Norman & Blamey, 2001) to analyze eight pieces of Libyan Desert Glass (LDG). As potential analogues we also analyzed trinitite, three impact crater glasses, and three fulgurites. The 'clear' LDG has the lowest CO{sub 2} content and O{sub 2}/Ar ratios are two orders of magnitude lower than atmospheric. The 'foamy' glass samples have heterogeneous CO{sub 2} contents and O{sub 2}/Ar ratios. N{sub 2}/Ar ratios are similar to atmospheric (83.6). H{sub 2} and He are elevated but it is difficultmore » to confirm whether they are of terrestrial or meteoritic origin. Combustion cannot account for oxygen depletion that matches the amount of CO{sub 2} produced. An alternative mechanism is required that removes oxygen without producing CO{sub 2}. Trinitite has exceedingly high CO{sub 2} which we attribute to carbonate breakdown of the caliche at ground zero. The O{sub 2}/Ar ratio for trinitite is lower than atmospheric but higher than all LDG samples. N{sub 2}/Ar ratios closely match atmospheric. Samples from Lonar, Henbury and Aouelloul impact craters have atmospheric N{sub 2}/Ar ratios. O{sub 2}/Ar ratios at Lonar and Henbury are 9.5 to 9.9 whereas the O{sub 2}/Ar ratio is 0.1 for the Aouelloul sample. In most fulgurites the N{sub 2}/Ar ratio is higher than atmospheric, possibly due to interference from CO. Oxygen ranges from 1.3 to 19.3%. Gas signatures of LDG inclusions neither match those from the craters, trinitite nor fulgurites. It is difficult to explain both the observed depletion of oxygen in the LDG and a CO{sub 2} level that is lower than it would be if the CO{sub 2} were simply a product of hydrocarbon combustion in air. One possible mechanism for oxygen depletion is that as air turbulently mixed with a hot jet of vaporized asteroid from an airburst and expanded, the atmospheric oxygen reacted with the metal vapor to form metal oxides that condensed. This observation is compatible with the model of Boslough & Crawford (2008) who suggest that an airburst incinerates organic materials over a large area, melting surface materials that then quench to form glass. Bubbles would contain a mixture of pre-existing atmosphere with combustion products from organic material and products of the reaction between vaporized cosmic materials (including metals) and terrestrial surface and atmosphere.« less

  3. Comparison of the killing effects between nitrogen-doped and pure TiO2 on HeLa cells with visible light irradiation

    PubMed Central

    2013-01-01

    The killing effect of nitrogen-doped titanium dioxide (N-TiO2) nanoparticles on human cervical carcinoma (HeLa) cells by visible light photodynamic therapy (PDT) was higher than that of TiO2 nanoparticles. To study the mechanism of the killing effect, the reactive oxygen species produced by the visible-light-activated N-TiO2 and pure-TiO2 were evaluated and compared. The changes of the cellular parameters, such as the mitochondrial membrane potential (MMP), intracellular Ca2+, and nitrogen monoxide (NO) concentrations after PDT were measured and compared for N-TiO2- and TiO2-treated HeLa cells. The N-TiO2 resulted in more loss of MMP and higher increase of Ca2+ and NO in HeLa cells than pure TiO2. The cell morphology changes with time were also examined by a confocal microscope. The cells incubated with N-TiO2 exhibited serious distortion and membrane breakage at 60 min after the PDT. PMID:23433090

  4. Role of oxygen vacancies in visible emission and transport properties of indium oxide nanowires

    NASA Astrophysics Data System (ADS)

    Gali, Pradeep; Kuo, Fang-Ling; Shepherd, Nigel; Philipose, U.

    2012-01-01

    We report on the effect of oxygen vacancies on the defect-related emission and the electronic properties of In2O3 nanowires. The nanowires were synthesized by vapor phase transport and had diameters ranging from 80-100 nm and lengths over 10-20 μm, with a growth direction of [0 0 1]. The as-grown nanowires connected in an FET type of configuration show n-type conductivity, which is ascribed to the presence of intrinsic defects like oxygen vacancies in the nanowire. The resistivity, transconductance, field effect mobility and carrier concentration of the In2O3 nanowires were determined to be 1.82 × 10-2 Ω cm, 11.2 nS, 119 cm2 V-1 s-1 and 4.89 × 1017 cm-3, respectively. The presence of oxygen vacancies was also confirmed by photoluminescence measurements, which show a strong UV emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. We present a technique of post-growth annealing in O2 environment and passivation with (NH4)2S to reduce the defect-induced emission.

  5. Evidence for the frequency-shift of the OA A_1g mode in Hg-based superconductors

    NASA Astrophysics Data System (ADS)

    Yang, In-Sang; Lee, Hye-Gyong

    1996-03-01

    The Hg-based superconductors, HgBa_2Ca_n-1Cu_nO_2n+2+δ (n=1,2,3) have two strong Raman peaks at ~ 570 and 590 cm-1 in the high-frequency region. From the results of Raman measurements of Tl-doped Hg-1223 system, it is concluded that the peak at ~ 570 cm-1 does not arise from the vibration of the interstitial oxygen O_δ in the Hg/Tl-O plane, but from the frequency-shift of the A_1g-type vibration of the apical oxygen O_A. The peak at 570 cm-1 is from the O_As surrounded by the O_δs in the nearest neighbor, while the 590 cm-1 mode is from the O_As without the O_δs in the immediate neighbor. The intensity of the 570 cm-1 mode increases with the O_δ content, but the Raman frequencies of both modes do not change significantly. This suggests that the increase of the frequency of the OA A_1g mode under high pressure (I.-S. Yang et al., Phys. Rev. B 51, 644 (1995)) is independent from the O_δ content, in the Hg-based superconductors.

  6. Microhabitat Effects on N2O Emissions from Floodplain Soils under Controlled Conditions

    NASA Astrophysics Data System (ADS)

    Ley, Martin; Lehmann, Moritz; Niklaus, Pascal; Frey, Beat; Kuhn, Thomas; Luster, Jörg

    2015-04-01

    Semi-terrestrial soils such as floodplain soils are considered to be potential hotspots of nitrous oxide (N2O) emissions. The quantitative assessment of N2O release from these hot spots under field conditions, and of the microbial pathways that underlie net N2O production (ammonium oxidation, nitrifier-denitrification, and denitrification) is challenging in the environment because of the high spatial and temporal variability. The production and consumption of N2O appears to be linked to the presence or absence of micro-niches, providing specific conditions that may be favorable to either of the microbial pathways that produce or consume N2O. The availability of oxygen, reactive organic carbon, and dissolved nitrogen substrates likely play key roles with regards to the net production of N2O. Previous field studies demonstrated, for example, that flooding can trigger "hot moments" of enhanced N2O emission through a close coupling of niches with high and low oxygen availabilities. Such microhabitat effects likely depend on soil aggregate formation, plant soil interactions in the rhizosphere and the degradation of organic matter accumulations. In order to assess how these factors can modulate N2O production and consumption under simulated flooding/drying conditions, we have set up a mesocosm experiment with model soils comprising various mixtures of N-rich floodplain soil aggregates (4000 - 250 µm representing large aggregates, or <250 µm representing small aggregates) and inert matrix material (glass beads of 150 - 250 µm size, or quartz sand of 2000 - 3200 µm size, respectively). Soils containing the different aggregate size groups were either planted with willow (Salix viminalis L.), mixed with leaf litter or left untreated. At several time points before, during and after a simulated flood event, we measure the net efflux rate of N2O. In addition, soil water content, redox potential as well as carbon and nitrogen substrate availability are monitored. In order to gain insight into the sources of, and biogeochemical controls on N2O production, we will measure the bulk isotopic signature of the produced N2O as well as its intramolecular 15N site preference. Changes in soil microbial communities, potentially controlling the balance between N2O production and consumption under different microhabitat conditions will be assessed using high-throughput DNA sequencing and q-PCR of key functional genes. Our study helps to increase our limited understanding of how microhabitats affect the occurrence of high N2O emissions from floodplain soils.

  7. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  8. Influence of Ga vacancies, Mn and O impurities on the ferromagnetic properties of GaN micro- and nanostructures

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Escudero, R.; Silva, R.; Herrera, M.

    2018-04-01

    We present a study of the influence of gallium vacancy (VGa) point defects on the ferromagnetic properties of GaN:Mn and GaN:Mn,O micro- and nanostructures. Results demonstrate that the generation of these point defects enhances the ferromagnetic signal of GaN:Mn microstructures, while incorporation of oxygen as an impurity inhibits this property. XPS measurements revealed that Mn impurities in ferromagnetic GaN:Mn samples mainly exhibit a valence state of 2+. Cathodoluminescence (CL) spectra from Mn-doped GaN samples displayed emissions centered at about 1.97 eV, attributed to transitions between the 4T1-6A1 states of the Mn2+ d orbitals, and emissions centered at 2.45 and 2.9 eV, associated with the presence of VGa. CL measurements also revealed a blue shift of the GaN band-edge emission generated by the expansion of the wurtzite lattice due to Mn incorporation, which was confirmed by XRD measurements. These latter measurements also revealed an amorphization of GaN:Mn due to the incorporation of oxygen as impurities. The GaN:Mn samples were synthesized by thermal evaporation of GaN and MnCO3 powders onto Ni0.8Cr0.2/Si(100) in a horizontal furnace operated at low vacuum. The residual air inside the system was used as a source of oxygen during the synthesis of Mn and O co-doped GaN nanostructures. Mn and O impurities were incorporated into the nanostructures at different concentrations by varying the growth temperature. Energy Dispersive Spectroscopy, XRD, and XPS measurements confirmed that the obtained samples predominantly consisted of GaN.

  9. Quenching of I(2P1/2) by NO2, N2O4, and N2O.

    PubMed

    Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C

    2007-10-11

    Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.

  10. Changing the chemical and physical properties of high valent heterobimetallic bis-(μ-oxido) Cu-Ni complexes by ligand effects.

    PubMed

    Kafentzi, Maria-Chrysanthi; Orio, Maylis; Réglier, Marius; Yao, Shenglai; Kuhlmann, Uwe; Hildebrandt, Peter; Driess, Matthias; Simaan, A Jalila; Ray, Kallol

    2016-10-12

    Two new heterobimetallic [LNiO 2 Cu(RPY2)] + (RPY2 = N-substituted bis 2-pyridyl(ethylamine) ligands with R = indane, 3a or R = Me, 3b) complexes have been spectroscopically trapped at low temperatures. They were prepared by reacting the mononuclear side-on LNi II superoxo precursor bearing a β-diketiminate ligand (L = [HC-(CMeNC 6 H 3 (iPr) 2 ) 2 ]) with the Cu(i) complexes. In contrast to the oxo groups in known high-valent [M 2 (μ-O) 2 ] n+ (M = Fe, Co, Ni, Cu) cores that display electrophilic reactivities, 3a and 3b display rather nucleophilic oxo cores active in aldehyde deformylation reactions. However, the spectroscopic and reactivity properties of 3a/3b are found to be distinct relative to that of the previously reported [LNiO 2 Cu(MeAN)] + complex containing a more basic (nucleophilic) N,N,N',N',N'-pentamethyl-dipropylenetriamine (MeAN) ligand at the copper centre. The geometry and electronic properties of the copper ligands affect the electron density of the oxygen atoms of the heterodinuclear {Ni(μ-O) 2 } core and 3a/3b undergo slower nucleophilic and faster electrophilic reactions than the previously reported [LNiO 2 Cu(MeAN)] + intermediate. The present study therefore demonstrates the tuning of the electrophilicity/nucleophilicity of the oxygen atoms of the heterobimetallic [Ni(μ-O) 2 Cu] 2+ cores by controlling the electron donation from the ancillary ligands, and underlines the significance of subtle electronic changes in the physical and chemical properties of the biologically relevant heterobimetallic metal-dioxygen intermediates.

  11. Burning of CP Titanium (Grade 2) in Oxygen-Enriched Atmospheres

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Jeffers, Nathan; Gallus, Timothy D.

    2012-01-01

    The flammability in oxygen-enriched atmospheres of commercially pure (CP) titanium rods as a function of diameter and test gas pressure was determined. Test samples of varying diameters were ignited at the bottom and burned upward in 70% O2/balance N2 and in 99.5+% O2 at various pressures. The burning rate of each ignited sample was determined by observing the apparent regression rate of the melting interface (RRMI) of the burning samples. The burning rate or RRMI increased with decreasing test sample diameter and with increasing test gas pressure and oxygen concentration

  12. Surface cleaning for enhanced adhesion to packaging surfaces: Effect of oxygen and ammonia plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaddam, Sneha; Dong, Bin; Driver, Marcus

    2015-03-15

    The effects of direct plasma chemistries on carbon removal from silicon nitride (SiN{sub x}) and oxynitride (SiO{sub x}N{sub y}) surfaces have been studied by in-situ x-ray photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O{sub 2} and NH{sub 3} capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiN{sub x}) and Si oxynitride (SiO{sub x}N{sub y}) surfaces. O{sub 2} plasma treatment results in the formation of a silica overlayer. In contrast, the exposure to NH{sub 3} plasma results in negligible additional oxidation of the SiN{sub x} or SiO{sub x}N{sub y} surface. Ex-situ contactmore » angle measurements show that SiN{sub x} and SiO{sub x}N{sub y} surfaces exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH{sub 3} plasma, indicating that the O{sub 2} plasma-induced SiO{sub 2} overlayer is highly reactive toward ambient. At longer ambient exposures (≳10 h), however, surfaces treated by either O{sub 2} or NH{sub 3} plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in contact angle upon exposure to ambient. The results suggest a practical route to enhancing the time available for effective bonding to surfaces in microelectronics packaging applications.« less

  13. Aquatic sources and sinks for nitrous oxide

    NASA Technical Reports Server (NTRS)

    Elkins, J. W.; Wofsy, S. C.; Mcelroy, M. B.; Kaplan, W. A.; Kolb, C. E.

    1978-01-01

    Data are presented which suggest the complexity of the aquatic nitrogen cycle as it affects N2O. The data are from studies made in the central and south-east tropical regions of the Pacific Ocean and in Chesapeake Bay. The data indicate that oxidation of ammonium and amino nitrogen and nitrification form the principle source for marine N2O. It is estimated that the yearly global yield for oceanic N2O is less than about 10 to the 7th power tons. The consumption of atmospheric N2O by the open ocean has not been evidenced, although data from the south-east tropical Pacific and Chesapeake Bay show the consumption of dissolved N2O in low-oxygen conditions. Preliminary observations have also indicated the consumption of atmospheric N2O by aquatic systems such as freshwater pond and a tidal saltmarsh.

  14. Nitrogen removal from wastewater and bacterial diversity in activated sludge at different COD/N ratios and dissolved oxygen concentrations.

    PubMed

    Zielińska, Magdalena; Bernat, Katarzyna; Cydzik-Kwiatkowska, Agnieszka; Sobolewska, Joanna; Wojnowska-Baryła, Irena

    2012-01-01

    The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions.

  15. The correlation between running economy and maximal oxygen uptake: cross-sectional and longitudinal relationships in highly trained distance runners.

    PubMed

    Shaw, Andrew J; Ingham, Stephen A; Atkinson, Greg; Folland, Jonathan P

    2015-01-01

    A positive relationship between running economy and maximal oxygen uptake (V̇O2max) has been postulated in trained athletes, but previous evidence is equivocal and could have been confounded by statistical artefacts. Whether this relationship is preserved in response to running training (changes in running economy and V̇O2max) has yet to be explored. This study examined the relationships of (i) running economy and V̇O2max between runners, and (ii) the changes in running economy and V̇O2max that occur within runners in response to habitual training. 168 trained distance runners (males, n = 98, V̇O2max 73.0 ± 6.3 mL∙kg-1∙min-1; females, n = 70, V̇O2max 65.2 ± 5.9 mL kg-1∙min-1) performed a discontinuous submaximal running test to determine running economy (kcal∙km-1). A continuous incremental treadmill running test to volitional exhaustion was used to determine V̇O2max 54 participants (males, n = 27; females, n = 27) also completed at least one follow up assessment. Partial correlation analysis revealed small positive relationships between running economy and V̇O2max (males r = 0.26, females r = 0.25; P<0.006), in addition to moderate positive relationships between the changes in running economy and V̇O2max in response to habitual training (r = 0.35; P<0.001). In conclusion, the current investigation demonstrates that only a small to moderate relationship exists between running economy and V̇O2max in highly trained distance runners. With >85% of the variance in these parameters unexplained by this relationship, these findings reaffirm that running economy and V̇O2max are primarily determined independently.

  16. Collision cross sections and transport coefficients of O-, O2 -, O3 - and O4 - negative ions in O2, N2 and dry air for non-thermal plasmas modelling

    NASA Astrophysics Data System (ADS)

    Hennad, Ali; Yousfi, Mohammed

    2018-02-01

    The ions interaction data such as interaction potential parameters, elastic and inelastic collision cross sections and the transport coefficients (reduced mobility and diffusion coefficients) have been determined and analyzed in the case of the main negative oxygen ions (O-, O2 -, O3 - and O4 -) present in low temperature plasma at atmospheric pressure when colliding O2, N2 and dry air. The ion transport has been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer collision cross sections have been calculated from a semi-classical JWKB approximation based on a ( n-4) rigid core interaction potential model. The cross sections sets involving elastic and inelastic processes were then validated using measured reduced mobility data and also diffusion coefficient whenever available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for O3-/O2, O2 -/N2, O3 -/N2, and O4 -/N2 systems, the ion transport coefficients were calculated in pure gases and dry air over a wide range of the density reduced electric field E/N.

  17. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri.

    PubMed Central

    Körner, H; Zumft, W G

    1989-01-01

    The onset and cessation of the synthesis of denitrification enzymes of Pseudomonas stutzeri were investigated by using continuous culture and defined dissolved oxygen levels covering the full range of transition from air saturation to complete anaerobiosis. Expression of nitrate reductase, nitrite reductase (cytochrome cd1), and N2O reductase was controlled by discrete oxygen levels and by the nature of the nitrogenous oxide available for respiration. N2O reductase was synthesized constitutively at a low level; for enhanced expression, oxygen concentrations were required to decrease below 5 mg of O2 per liter. The threshold values for synthesis of nitrate reductase and cytochrome cd1 in the presence of nitrate were ca. 5 and ca. 2.5 mg of O2 per liter, respectively. With nitrous oxide as the respiratory substrate, nitrite reductase was again the most sensitive to oxygen concentration; however, thresholds for all denitrification enzymes shifted to lower oxygen levels. Whereas the presence of nitrate resulted in maximum expression and nearly uniform induction of all reductases, nitrite and nitrous oxide stimulated preferably the respective enzyme catalyzing reduction. In the absence of a nitrogenous oxide, anaerobiosis did not induce enzyme synthesis to any significant degree. The accumulation of nitrite seen during both the aerobic-anaerobic and anaerobic-aerobic transition phases was caused by the differences in onset or cessation of synthesis of nitrate and nitrite reductases and an inhibitory effect of nitrate on nitrite reduction. Images PMID:2764573

  18. Bi-level CPAP does not improve gas exchange when compared with conventional CPAP for the treatment of neonates recovering from respiratory distress syndrome.

    PubMed

    Lampland, Andrea L; Plumm, Brenda; Worwa, Cathy; Meyers, Patricia; Mammel, Mark C

    2015-01-01

    We hypothesised that short-term application of bi-level nasal continuous positive airway pressure CPAP (SiPAP) compared with conventional nasal CPAP (nCPAP) at the same mean airway pressure in infants with persistent oxygen need recovering from respiratory distress syndrome would improve CO2 removal with no change in oxygen requirement. Non-blinded, randomised, observational four-period crossover study. Level III NICU; low-birthweight infants requiring CPAP and oxygen while recovering from respiratory distress syndrome. Infants requiring nasal CPAP for >24 h prior to study enrolment, and fraction of inspired oxygen requirement (FiO2) of 0.25-0.5, were randomised to either nCPAP or SiPAP. A crossover design with four 1 h treatment periods was used such that each infant received both treatments twice. Oxygen saturations (SaO2), transcutaneous CO2 (tcCO2) and vital signs were monitored continuously. Polysomnographic recordings were analysed for apnoea, bradycardia and oxygen desaturation. Twenty low-birthweight infants receiving 0.3±0.04% supplemental oxygen on CPAP of 6 cm H2O were studied at an average of 33 days of age (±23 days, SD). There were no differences in tcCO2 or other physiological parameters except mean blood pressure, which was lower during nCPAP (52.3±8.3 vs 54.4±9.1 mm Hg; ±SD; p<0.01). No differences in short or prolonged apnoea, bradycardia or significant desaturation events were observed. At similar mean airway pressures, SiPAP does not improve CO2 removal, oxygenation or other studied physiological parameters with the exception of mean blood pressure, which was not clinically significant. NCT01053455. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Heterojunctions of silver-iron oxide on graphene for laser-coupled oxygen reduction reactions.

    PubMed

    Chen, Wei-Quan; Chung, Min-Chuan; Valinton, Joey Andrew A; Penaloza, David P; Chuang, Shiow-Huey; Chen, Chun-Hu

    2018-05-30

    We report a two-step hybridization of N-doped graphene and Ag-decorated Fe2O3 hematite to realize a balanced oxygen adsorption/desorption equilibrium and a laser-coupled ORR (LORR). The stable plateau currents with n values of 3.9 in a wide potential range (0.2-0.7 V) and 7.5% peroxide inhibition of the LORR are found to be directly associated with the Ag/Fe2O3 heterojunction, where interactions of semiconductor band gap excitation and plasmonic resonance-induced hot electrons are proposed to occur.

  20. Oxygen-related vacancy-type defects in ion-implanted silicon

    NASA Astrophysics Data System (ADS)

    Pi, X. D.; Burrows, C. P.; Coleman, P. G.; Gwilliam, R. M.; Sealy, B. J.

    2003-10-01

    Czochralski silicon samples implanted to a dose of 5 × 1015 cm-2 with 0.5 MeV O and to a dose of 1016 cm-2 with 1 MeV Si, respectively, have been studied by positron annihilation spectroscopy. The evolution of divacancies to vacancy (V)-O complexes is out-competed by V-interstitial (I) recombination at 400 and 500 °C in the Si- and O-implanted samples; the higher oxygen concentration makes the latter temperature higher. The defective region shrinks as the annealing temperature increases as interstitials are injected from the end of the implantation range (Rp). VmOn (m> n) are formed in the shallow region most effectively at 700 °C for both Si and O implantation. VxOy (x< y) are produced near Rp by the annealing. At 800 °C, implanted Si ions diffuse and reduce m and implanted O ions diffuse and increase n in VmOn. All oxygen-related vacancy-type defects appear to begin to dissociate at 950 °C, with the probable formation of oxygen clusters. At 1100 °C, oxygen precipitates appear to form just before Rp in O-implanted silicon.

  1. Fiber-Optic Determination of N2, O2, and Fuel Vapor in the Ullage of Liquid-Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2008-01-01

    A fiber-optic sensor system has been developed that can remotely measure the concentration of molecular oxygen (O2), nitrogen (N2), hydrocarbon vapor, and other gases (CO2, CO, H2O, chlorofluorocarbons, etc.) in the ullage of a liquid-fuel tank. The system provides an accurate and quantitative identification of the above gases with an accuracy of better than 1 percent by volume (for O2 or N2) in real-time (5 seconds). In an effort to prevent aircraft fuel tank fires or explosions similar to the tragic TWA Flight 800 explosion in 1996, OBIGGS are currently being developed for large commercial aircraft to prevent dangerous conditions from forming inside fuel tanks by providing an inerting gas blanket that is low in oxygen, thus preventing the ignition of the fuel/air mixture in the ullage. OBIGGS have been used in military aircraft for many years and are now standard equipment on some newer large commercial aircraft (such as the Boeing 787). Currently, OBIGGS are being developed for retrofitting to existing commercial aircraft fleets in response to pending mandates from the FAA. Most OBIGGS use an air separation module (ASM) that separates O2 from N2 to make nitrogen-enriched air from compressed air flow diverted from the engine (bleed air). Current OBIGGS systems do not have a closed-loop feedback control, in part, due to the lack of suitable process sensors that can reliably measure N2 or O2 and at the same time, do not constitute an inherent source of ignition. Thus, current OBIGGS operate with a high factor-of-safety dictated by process protocol to ensure adequate fuel-tank inerting. This approach is inherently inefficient as it consumes more engine bleed air than is necessary compared to a closed-loop controlled approach. The reduction of bleed air usage is important as it reduces fuel consumption, which translates to both increased flight range and lower operational costs. Numerous approaches to developing OBIGGS feedback-control sensors have been under development by many research groups and companies. However, the direct measurement of nitrogen (N2) is a challenge to most OBIGGS ullage sensors (such as tunable diode laser absorption) as they cannot measure N2 directly but depend on the measurement of oxygen (O2). The problem with a singular measure of O2, is that as the concentration (number density) of O2 decreases due to the inerting process or due to lower pressures from high altitudes, the precision and accuracy of the O2 measurement decreases. However, measuring O2 density in combination with N2 density (which is more abundant in air and in a N2-inerted fuel tank) can provide a much more accurate and reliable determination of the OBIGGS efficacy.

  2. SUMS calibration test report

    NASA Technical Reports Server (NTRS)

    Robertson, G.

    1982-01-01

    Calibration was performed on the shuttle upper atmosphere mass spectrometer (SUMS). The results of the calibration and the as run test procedures are presented. The output data is described, and engineering data conversion factors, tables and curves, and calibration on instrument gauges are included. Static calibration results which include: instrument sensitive versus external pressure for N2 and O2, data from each scan of calibration, data plots from N2 and O2, and sensitivity of SUMS at inlet for N2 and O2, and ratios of 14/28 for nitrogen and 16/32 for oxygen are given.

  3. Thermoelectric Properties in the TiO2/SnO2 System

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  4. Efficacy of INSURE during nasal CPAP in preterm infants with respiratory distress syndrome.

    PubMed

    Leone, F; Trevisanuto, D; Cavallin, F; Parotto, M; Zanardo, V

    2013-04-01

    INSURE (INtubation, SURfactant, Extubation) is a proven complement of nasal CPAP (nCPAP) for respiratory distress syndrome (RDS) treatment of preterm infants. Early administration is characterized by greater success. We aimed to determine the efficacy and failure or other respiratory outcomes of INSURE administration during nasal continous positive airway pressure (nCPAP) treatment of RDS. Among 824 premature infants neonatal intensive care unit (NICU) admitted at Padua University Hospital during 2007-2009, 209 (25.4%) were managed by surfactant replacement (200 mg/kg, Curosurf®) if required >45% oxygen ("rescue" treatment), including 42 (20.1%) during nCPAP. Each premature infant treated with INSURE during nasal CPAP was compared to 2 consecutive control infants treated with surfactant during mechanical ventilation, matched for antenatal steroids, delivery route, gestational age, and sex. Infants with RDS, treated with nCPAP and INSURE-complement (N.=25), were comparable in Apgar score, need of PPV at birth, birth weight, pre-surfactant FiO2 and timing of surfactant replacement to controls. However, nCPAP and INSURE-complement was superior in terms both of oxygenation, evaluated as post-treatment FiO2 (Median, [IQR], 26 [21-40] vs. 21 [21-29]; P=0.03) and (a-A) pO2 (0.48 [0.45-0.60] vs. 0.58 [0.53-0.72]; P=0.03). The improved oxygenation was sustained over the following days. In addition, premature infants treated with nCPAP and INSURE-complement developed less respiratory co-morbidities, including pneumothorax, borncopulmonary disease (BPD), and BPD and death (P=0.04). INSURE-complement of nasal CPAP has a superior efficacy in terms of oxygenation improvement, maintenance of optimal oxygenation, and reduction of respiratory comorbidities respect to "rescue" surfactant administration during mechanical ventilation.

  5. The reaction of N/2D/ with O2 as a source of O/1D/ atoms in aurorae

    NASA Technical Reports Server (NTRS)

    Rusch, D. W.; Sharp, W. E.; Gerard, J.-C.

    1978-01-01

    The source of O(1D) atoms in the auroral ionosphere is investigated using sounding rocket data. Previously, it has been shown that the conventional sources of O(1D) atoms in the aurora, dissociative recombination of O2(plus) and electron impact excitation of atomic oxygen, fail to explain the measured 6300 A volume emission rate profile. It is suggested that the atom-atom interchange reaction of N(2D) with O2 can be the major source of auroral 6300 A emission if O(1D) is created with high efficiency.

  6. Mass spectrometric studies of SiO2 deposition in an indirect plasma enhanced LPCVD system

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.; Mcconica, C. M.

    1993-01-01

    Reaction pathways for the low temperature deposition of SiO2 from silane and indirect plasma-excited oxygen-nitrogen mixtures are proposed based on experimental evidence gained from mass spectrometry in an indirect plasma enhanced chemical vapor deposition chamber. It was observed that about 80-85 percent of the silane was oxidized to byproduct hydrogen and only about 15-20 percent to water. Such conversion levels have led us to interpret that silanol (SiH3OH) could be the precursor for SiO2 film deposition, rather than siloxane /(SiH3)2O/ which has generally been cited in the literature. From mass spectrometry, we have also shown the effects of the plasma, and of mixing small amounts of N2 with the oxygen flow, in increasing the deposition rate of SiO2. Free radical reaction of nitric oxide, synthesized from the reaction of oxygen and nitrogen in the plasma chamber, and an *ncrease in atomic oxygen concentration, are believed to be the reasons for these SiO2 deposition rate increases. Through mass spectrometry we have, in addition, been able to identify products, presumably originating from terminating reactions, among a sequence of chemical reactions proposed for the deposition of SiO2.

  7. TH-AB-209-05: Validating Hemoglobin Saturation and Dissolved Oxygen in Tumors Using Photoacoustic Computed Tomographic Spectroscopic Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, J; Sick, J; Liu, B

    Purpose: Photoacoustic computed tomographic spectroscopy (PCT-S) provides intra-tumor measurements of oxygenation with high spatial resolution (0.2mm) and temporal fidelity (1–2 minutes) without the need for exogenous agents or ionizing radiation, thus providing a unique in vivo assay to measure SaO{sub 2} and investigate acute and chronic forms of hypoxia. The goal of this study is to validate in vivo SaO{sub 2} levels within tail artery of mice and the relationship between SaO{sub 2} and pO{sub 2} within subcutaneous breast tumors using PCT-S imaging, pulse oximetry and an OxyLite probe. Methods: A closed circuit phantom was fabricated to control blood oxygenationmore » levels, where SaO{sub 2} was measured using a co-oximeter and pO{sub 2} using an Oxylite probe. Next, SaO{sub 2} levels within the tail arteries of mice (n=3) were measured using PCT-S and pulse oximetry while breathing high-to-low oxygen levels (6-cycles). Finally, PCT-S was used to measure SaO{sub 2} levels in MCF-7, MCF-7-VEGF165, and MDA-MB-231 xenograft breast tumors and compared to Oxylite pO{sub 2} levels values. Results: SaO{sub 2} and pO{sub 2} data obtained from the calibration phantom was fit to Hill’s equation: aO{sub 2} levels between 88 and 52% demonstrated a linear relationship (r2=0.96) and a 3.2% uncertainty between PCT-S values relative to pulse oximetry. Scatter plots of localized PCT-S measured SaO2 and Oxylite pO{sub 2} levels in MCF-7/MCF-7-VEGF165 and MDA-MD-231 breast tumors were fit to Hill’s equation: P50=17.2 and 20.7mmHg, and n=1.76 and 1.63. These results are consistent with sigmoidal form of Hill’s equation, where the lower P{sub 50} value is indicative of an acidic tumor microenvironment. Conclusion: The results demonstrate photoacoustic imaging can be used to measure SaO{sub 2} cycling and intra-tumor oxygenation, and provides a powerful in vivo assay to investigate the role of hypoxia in radiation, anti-angiogenic, and immunotherapies.« less

  8. Effect of band gap engineering in anionic-doped TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Abd Hamid, Sharifah Bee

    2017-01-01

    A simple yet promising strategy to modify TiO2 band gap was achieved via dopants incorporation which influences the photo-responsiveness of the photocatalyst. The mesoporous TiO2 was successfully mono-doped and co-doped with nitrogen and fluorine dopants. The results indicate that band gap engineering does not necessarily requires oxygen substitution with nitrogen or/and fluorine, but from the formation of additional mid band and Ti3+ impurities states. The formation of oxygen vacancies as a result of modified color centres and Ti3+ ions facilitates solar light absorption and influences the transfer, migration and trapping of the photo-excited charge carriers. The synergy of dopants in co-doped TiO2 shows better optical properties relative to single N and F doped TiO2 with c.a 0.95 eV band gap reduction. Evidenced from XPS, the synergy between N and F in the co-doped TiO2 uplifts the valence band towards the conduction band. However, the photoluminescence data reveals poorer electrons and holes separation as compared to F-doped TiO2. This observation suggests that efficient solar light harvesting was achievable via N and F co-doping, but excessive defects could act as charge carriers trapping sites.

  9. Cerebral blood flow and oxygenation in ovine fetus: responses to superimposed hypoxia at both low and high altitude

    PubMed Central

    Peňa, Jorge Pereyra; Tomimatsu, Takuji; Hatran, Douglas P; McGill, Lisa L; Longo, Lawrence D

    2007-01-01

    For the fetus, although the roles of arterial blood gases are recognized to be critical in the regulation of cerebral blood flow (CBF) and cerebral oxygenation, the relation of CBF, cortical tissue PO2 (t PO2), sagittal sinus PO2, and related indices of cerebral oxygenation to arterial blood gases are not well defined. This is particularly true for that fetus subjected to long-term hypoxia (LTH). In an effort to elucidate these interrelations, we tested the hypothesis that in the fetus acclimatized to high altitude, cerebral oxygenation is not compromised relative to that at low altitude. By use of a laser Doppler flowmeter with a fluorescent O2 probe, in near-term fetal sheep at low altitude (n = 8) and those acclimatized to high altitude hypoxia (3801 m for 90 ± 5 days; n = 6), we measured laser Doppler CBF (LD-CBF), t PO2, and related variables in response to 40 min superimposed hypoxia. At both altitudes, fetal LD-CBF, cerebral O2 delivery, t PO2, and several other variables including sagittal sinus PO2, correlated highly with arterial PO2 (Pa,O2). In response to superimposed hypoxia (Pa,O2 = 11 ± 1 Torr), LD-CBF was significantly blunted at high altitude, as compared with that at low altitude. In the two altitude groups fetal cerebral oxygenation was similar under both control conditions and with superimposed hypoxia, cortical t PO2 decreasing from 8 ± 1 and 6 ± 1 Torr, respectively, to 2 ± 1 Torr. Also, for these conditions sagittal sinus PO2 and [HbO2] values were similar. In response to superimposed hypoxia, cerebral metabolic rate for O2 decreased ∼50% in each group (P < 0.05). For both the fetus at low altitude and that acclimatized to high altitude LTH, we present the first dose–response data on the relation of LD-CBF, cortical t PO2, and sagittal sinus blood gas values to Pa,O2. In addition, despite differences in several variables, the fetus at high altitude showed evidence of successful acclimatization, supporting the hypothesis that such fetuses demonstrate no compromise in cerebral oxygenation. PMID:17068100

  10. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    NASA Astrophysics Data System (ADS)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  11. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.

    PubMed

    Lambe, Andrew T; Onasch, Timothy B; Croasdale, David R; Wright, Justin P; Martin, Alexander T; Franklin, Jonathan P; Massoli, Paola; Kroll, Jesse H; Canagaratna, Manjula R; Brune, William H; Worsnop, Douglas R; Davidovits, Paul

    2012-05-15

    Functionalization (oxygen addition) and fragmentation (carbon loss) reactions governing secondary organic aerosol (SOA) formation from the OH oxidation of alkane precursors were studied in a flow reactor in the absence of NO(x). SOA precursors were n-decane (n-C10), n-pentadecane (n-C15), n-heptadecane (n-C17), tricyclo[5.2.1.0(2,6)]decane (JP-10), and vapors of diesel fuel and Southern Louisiana crude oil. Aerosol mass spectra were measured with a high-resolution time-of-flight aerosol mass spectrometer, from which normalized SOA yields, hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios, and C(x)H(y)+, C(x)H(y)O+, and C(x)H(y)O(2)+ ion abundances were extracted as a function of OH exposure. Normalized SOA yield curves exhibited an increase followed by a decrease as a function of OH exposure, with maximum yields at O/C ratios ranging from 0.29 to 0.74. The decrease in SOA yield correlates with an increase in oxygen content and decrease in carbon content, consistent with transitions from functionalization to fragmentation. For a subset of alkane precursors (n-C10, n-C15, and JP-10), maximum SOA yields were estimated to be 0.39, 0.69, and 1.1. In addition, maximum SOA yields correspond with a maximum in the C(x)H(y)O+ relative abundance. Measured correlations between OH exposure, O/C ratio, and H/C ratio may enable identification of alkane precursor contributions to ambient SOA.

  12. Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films

    NASA Astrophysics Data System (ADS)

    Jacq, S.; Le Paven, C.; Le Gendre, L.; Benzerga, R.; Cheviré, F.; Tessier, F.; Sharaiha, A.

    2016-04-01

    We have synthesized the composition x = 0.01 of the (Sr1-xLax)2(Ta1-xTix)2O7 solid solution, mixing the ferroelectric perovskite phases Sr2Ta2O7 and La2Ti2O7. Related oxide and oxynitride materials have been produced as thin films by magnetron radio frequency sputtering. Reactive sputter deposition was conducted at 750 °C under a 75 vol.% (Ar) + 25 vol.% (N2,O2) mixture. An oxygen-free plasma leads to the deposition of an oxynitride film (Sr0.99La0.01) (Ta0.99Ti0.01)O2N, characterized by a band gap Eg = 2.30 eV and a preferential (001) epitaxial growth on (001) SrTiO3 substrate. Its dielectric constant and loss tangent are respectively Epsilon' = 60 (at 1 kHz) and tanDelta = 62.5 × 10-3. In oxygen-rich conditions (vol.%N2 ≤ 15%), (110) epitaxial (Sr0.99La0.01)2(Ta0.99Ti0.01)2O7 oxides films are deposited, associated to a larger band gap value (Eg = 4.55 eV). The oxide films permittivity varies from 45 to 25 (at 1 kHz) in correlation with the decrease in crystalline orientation; measured losses are lower than 5.10-3. For 20 ≤ vol.% N2 ≤ 24.55, the films are poorly crystallized, leading to very low permittivities (minimum Epsilon' = 3). A correlation between the dielectric losses and the presence of an oxynitride phase in the samples is highlighted.

  13. Seasonal effect on N2O formation in nitrification in constructed wetlands.

    PubMed

    Inamori, Ryuhei; Wang, Yanhua; Yamamoto, Tomoko; Zhang, Jixiang; Kong, Hainan; Xu, Kaiqin; Inamori, Yuhei

    2008-10-01

    Constructed wetlands are considered to be important sources of nitrous oxide (N(2)O). In order to investigate the contribution of nitrification in N(2)O formation, some environmental factors, plant species and ammonia-oxidizing bacteria (AOB) in active layers have been compared. Vegetation cells indicated remarkable effect of seasons and different plant species on N(2)O emission and AOB amount. Nitrous oxide data showed large temporal and spatial fluctuations ranging 0-52.8 mg N(2)O m(-2)d(-1). Higher AOB amount and N(2)O flux rate were observed in the Zizania latifolia cell, reflecting high potential of global warming. Roles of plants as ecosystem engineers are summarized with rhizosphere oxygen release and organic matter transportation to affect nitrogen transformation. The Phragmites australis cell contributed to keeping high T-N removal performance and lower N(2)O emission. The distribution of AOB also supported this result. Statistical analysis showed several environmental parameters affecting the strength of observed greenhouse gases emission, such as water temperature, water level, TOC, plant species and plant cover.

  14. Influence of pyruvate on economy of contraction in isolated rabbit myocardium.

    PubMed

    Keweloh, Boris; Janssen, Paul M L; Siegel, Ulf; Datz, Nicolin; Zeitz, Oliver; Hermann, Hans-Peter

    2007-08-01

    Treatment of acute heart failure frequently requires positive-inotropic stimulation. However, there is still no inotropic agent available, which combines a favourable haemodynamic profile with low expenditure for energy metabolism. Pyruvate exhibits positive inotropic effects in vitro and in patients with heart failure. The effect on myocardial energy metabolism however remains unclear, but is meaningful in light of a clinical application. We investigated the influence of pyruvate on contractility and oxygen consumption in isolated isometric contracting rabbit myocardium compared to beta-adrenergic stimulation with isoproterenol. Pyruvate (30 mM) increased developed force from 18.7+/-4.1 to 50.8+/-12.1 mN/mm2 (n=10, p<0.01). Force-time integral (FTI) increased by 329%, oxygen consumption assessed by diffusion-microelectrode technique increased from 2.86+/-0.30 mlO2/min*100 g to 6.28+/-1.28 mlO2/min*100 g (n=7, p<0.05). Economy of myocardial contraction calculated as the ratio of total FTI to oxygen consumption remained unchanged. In contrast, while isoproterenol (10 microM) produced a comparable increase in developed force from 21.4+/-8.3 to 67.3+/-15 mN/mm2 (n=7, p<0.01), FTI increased only by 260% and MVO2 increased from 2.96+/-0.43 to 6.12+/-1.01 mlO2/min*100 g (n=7, p<0.01); thus, economy decreased by 23% (n=7, p<0.05). Pyruvate does not impair economy of myocardial contraction while isoproterenol decreases economy. Regarding energy expenditure, pyruvate appears superior to isoproterenol for the purpose of positive inotropic stimulation.

  15. Three Co(II) complexes with a sexidentate N2O4-donor bis-Schiff base ligand: Synthesis, crystal structures, DFT studies, urease inhibition and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Xia; Zhao, Yu; Zhang, Dongmei; Jin, Fan; Fan, Yuhua

    2017-11-01

    Three new N2O4-donor bis-Schiff base Co(II) complexes, Co(C36H34N2O8)·2CH3OH (1), Co(C28H34N2O8S2)·H2O (2) and Co(C40H36N4O8)·3CH3OH (3) with distorted octahedral six-coordinate Co(II) centers were synthesized and determined by single crystal X-ray analysis. The X-ray crystallography shows that the metal atoms of three complexes are all six-coordinate with two nitrogen atoms from Cdbnd N groups, two oxygen atoms from ether groups and two carboxylic oxygen atoms in the mono-ligand, forming a distorted octahedral geometry. Theoretical studies of the three complexes were carried out by density functional theory (DFT) Becke's three-parameter hybrid (B3LYP) method employing the 6-31G basis set. The DFT studies indicate that the calculation is in accordance with the experimental results. Moreover, inhibition of jack bean urease by Co(II) complexes 1-3 have also been investigated. At the same time, a docking analysis using a DOCK program was conducted to determine the probable binding mode by inserting the complexes into the active site of jack bean urease. The experimental values and docking simulation exhibited that the complex 3 showed strong inhibitory activity (IC50 = 16.43 ± 2.35 μM) and the structure-activity relationships were further discussed.

  16. Temperature dependence of partial conductivities of the BaZr0.7Ce0.2Y0.1O3-δ proton conductor

    NASA Astrophysics Data System (ADS)

    Heras-Juaristi, Gemma; Pérez-Coll, Domingo; Mather, Glenn C.

    2017-10-01

    Partial conductivities are presented for BaZr0.7Ce0.2Y0.1O3-δ, an important proton conductor for protonic-ceramic fuel cells and membrane reactors. Atmospheric dependencies of impedance performed in humidified and dry O2, air, N2 and H2(10%)/N2(90%) in the temperature range 300-900 °C, supported by the modified emf method, confirm significant electron-hole and protonic contributions to transport. For very reducing and wet atmospheres, the conductivity is predominantly ionic, with a higher participation of protons with decreasing temperature and increasing water-vapour partial pressure (pH2O). From moderately reducing conditions of wet N2 to wet O2, however, the conductivity is considerably influenced by electron holes as revealed by a significant dependence of total conductivity on oxygen partial pressure (pO2). With higher pH2O, proton transport increases, with a concomitant decrease of holes and oxygen vacancies. However, the effect of pH2O is also influenced by temperature, with a greater protonic contribution at both lower temperature and pO2. Values of proton transport number tH ≈ 0.63 and electronic transport number th ≈ 0.37 are obtained at 600 °C for pH2O = 0.022 atm and pO2 = 0.2 atm, whereas tH ≈ 0.95 and th ≈ 0.05 for pO2 = 10-5 atm. A hydration enthalpy of -109 kJ mol-1 is obtained in the range 600-900 °C.

  17. Effects of changing body position on oxygenation and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.

    PubMed

    Braun, Christina; Trim, Cynthia M; Eggleston, Randy B

    2009-01-01

    To investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine. Prospective, randomized experimental study. Twelve Quarter Horse foals, age of 5.4 +/-0.9 months and weighing 222 +/- 48 kg. Foals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute(-1) was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (f(R)), inspired fraction of oxygen (FIO(2)), and end-tidal carbon dioxide (PE'CO(2)) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO(2)), arterial partial pressure of carbon dioxide (PaCO(2))] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO(2)/FIO(2) were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was alpha = 0.05. All values are presented as least square means +/- SE. Values at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 +/- 14.4 mmHg before hoisting to 92 +/- 11.6 mmHg after hoisting (p = 0.0013). The PaO(2)/FIO(2) ratio decreased from 275 +/- 30 to 175 +/- 24 (p = 0.0055). End-tidal carbon dioxide decreased significantly from 48.7 +/- 1.6 to 44.5 +/- 1.2 mmHg (p = 0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting. Hoisting decreased PaO(2) in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO(2) measurement is necessary to detect early changes.

  18. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO{sub 2}/TiN cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowinska, Malgorzata, E-mail: sowinska@ihp-microelectronics.com; Bertaud, Thomas; Walczyk, Damian

    2014-05-28

    In this study, direct experimental materials science evidence of the important theoretical prediction for resistive random access memory (RRAM) technologies that a critical amount of oxygen vacancies is needed to establish stable resistive switching in metal-oxide-metal samples is presented. In detail, a novel in-operando hard X-ray photoelectron spectroscopy technique is applied to non-destructively investigates the influence of the current compliance and direct current voltage sweep cycles on the Ti/HfO{sub 2} interface chemistry and physics of resistive switching Ti/HfO{sub 2}/TiN cells. These studies indeed confirm that current compliance is a critical parameter to control the amount of oxygen vacancies in themore » conducting filaments in the oxide layer during the RRAM cell operation to achieve stable switching. Furthermore, clear carbon segregation towards the Ti/HfO{sub 2} interface under electrical stress is visible. Since carbon impurities impact the oxygen vacancy defect population under resistive switching, this dynamic carbon segregation to the Ti/HfO{sub 2} interface is suspected to negatively influence RRAM device endurance. Therefore, these results indicate that the RRAM materials engineering needs to include all impurities in the dielectric layer in order to achieve reliable device performance.« less

  19. Stoichiometric control for heteroepitaxial growth of smooth ɛ-Ga2O3 thin films on c-plane AlN templates by mist chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro

    2017-07-01

    Epitaxial ɛ-Ga2O3 thin films with smooth surfaces were successfully grown on c-plane AlN templates by mist chemical vapor deposition. Using X-ray diffraction 2θ-ω and φ scans, the out-of-plane and in-plane epitaxial relationship was determined to be (0001) ɛ-Ga2O3 [10\\bar{1}0] ∥ (0001)AlN[10\\bar{1}0]. The gallium/oxygen ratio was controlled by varying the gallium precursor concentration in the solution. While scanning electron microscopy showed the presence of large grains on the surfaces of the films formed for low concentrations of oxygen species, no large grains were observed under stoichiometric conditions. Cathodoluminescence measurements showed a deep-level emission ranging from 1.55-3.7 eV; however, no band-edge emission was observed.

  20. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

    2002-01-01

    Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

  1. Quantification of nitrous oxide (N2O) emissions and soluble microbial product (SMP) production by a modified AOB-NOB-N2O-SMP model.

    PubMed

    Kim, MinJeong; Wu, Guangxue; Yoo, ChangKyoo

    2017-03-01

    A modified AOB-NOB-N 2 O-SMP model able to quantify nitrous oxide (N 2 O) emissions and soluble microbial product (SMP) production during wastewater treatment is proposed. The modified AOB-NOB-N 2 O-SMP model takes into account: (1) two-step nitrification by ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), (2) N 2 O production by AOB denitrification under oxygen-limited conditions and (3) SMP production by microbial growth and endogenous respiration. Validity of the modified model is demonstrated by comparing the simulation results with experimental data from lab-scale sequencing batch reactors (SBRs). To reliably implement the modified model, a model calibration that adjusts model parameters to fit the model outputs to the experimental data is conducted. The results of this study showed that the modeling accuracy of the modified AOB-NOB-N 2 O-SMP model increases by 19.7% (NH 4 ), 51.0% (NO 2 ), 57.8% (N 2 O) and 16.7% (SMP) compared to the conventional model which does not consider the two-step nitrification and SMP production by microbial endogenous respiration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Crystal structure, chemical expansion and phase stability of HoMnO{sub 3} at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selbach, Sverre M., E-mail: selbach@material.ntnu.no; Nordli Lovik, Amund; Bergum, Kristin

    Anisotropic thermal and chemical expansion of hexagonal HoMnO{sub 3} was investigated by high temperature X-ray diffraction in inert (N{sub 2}) and oxidizing (air) atmospheres up to 1623 K. A second order structural phase transition directly from P6{sub 3}cm to P6{sub 3}/mmc was found at 1298{+-}4 K in N{sub 2} atmosphere, and 1318{+-}4 K in air. For the low temperature polymorph P6{sub 3}cm the contraction of the c-axis was more rapid in inert than in oxidizing atmosphere. The c-axis of the P6{sub 3}/mmc polymorph of HoMnO{sub 3} displayed anomalously high expansion above 1400 K, which is discussed in relation to chemicalmore » expansion caused by point defects. The a-axis expanded stronger in inert than oxidizing atmosphere. Anisotropic chemical and thermal expansion of the P6{sub 3}cm phase of YMnO{sub 3} in N{sub 2}, air and O{sub 2} atmospheres was found to be qualitatively similar to that of HoMnO{sub 3}. Decomposition of hexagonal HoMnO{sub 3} by two different processes occurs in oxidizing atmosphere above {approx}1200 K followed by nucleation and growth of the perovskite polymorph of HoMnO{sub 3}. A rapid, reconstructive transition from the perovskite back to the hexagonal polymorph was observed in situ at 1623 K upon reduction of the partial pressure of oxygen. A phase stability diagram of the hexagonal and orthorhombic polymorphs is proposed. Finally, distinctly non-linear electrical conductivity was observed for both HoMnO{sub 3} and YMnO{sub 3} in oxidizing atmosphere between 555 and 630 K, and shown to be associated with excess oxygen. - Graphical abstract: Chemical expansion of hexagonal HoMnO{sub 3} is observed during HTXRD in different pO{sub 2}. Oxidizing atmosphere favors the competing perovskite polymorph. Electrical conductivity anomalies related to excess oxygen are found at 550-630 K. Highlights: Black-Right-Pointing-Pointer Thermal evolution of crystal structure of HoMnO{sub 3} studied up to 1623 K in air and N{sub 2}. Black-Right-Pointing-Pointer Anisotropic chemical expansion of HoMnO{sub 3} and YMnO{sub 3} in N{sub 2}, air and O{sub 2}. Black-Right-Pointing-Pointer Hexagonal phase destabilized with respect to perovskite in oxidizing atmosphere. Black-Right-Pointing-Pointer Crystal structure and phase stability discussed in terms of point defect chemistry. Black-Right-Pointing-Pointer Electrical conductivity anomalies associated with excess oxygen at 550-630 K.« less

  3. A neutral molecular-based layered magnet [Fe(C2O4)(CH3OH)]n exhibiting magnetic ordering at TN approximately 23 K.

    PubMed

    Zhang, Bin; Zhang, Yan; Zhang, Jinbiao; Li, Junchao; Zhu, Daoben

    2008-10-07

    Solvothermal synthesis of FeCl(2).4H2O and H2C2O(4).2H2O in methanol at 120 degrees C yielded yellow plate-like crystals of [Fe(C2O4)(CH3OH)]n. Each iron atom is in a distorted octahedral environment, being bonded to four oxygen atoms from two bisbidentate oxalate anions, one O atom of a chelating oxalate anion and one O atom from a methanol molecule as an oxalate group bridging ligand in a five-coordination mode. The neutral layer of [Fe(C2O4)(CH3OH)]n with a [4,4] net along the ac plane. There is no interaction between layers. A long range magnetic ordering with spin canting at TN approximately 23 K was observed and confirmed by AC susceptibility measurements.

  4. Intermixing and thermal oxidation of ZrO2 thin films grown on a-Si, SiN, and SiO2 by metallic and oxidic mode magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Coloma Ribera, R.; van de Kruijs, R. W. E.; Sturm, J. M.; Yakshin, A. E.; Bijkerk, F.

    2017-03-01

    The initial growth of DC sputtered ZrO2 on top of a-Si, SiN, and SiO2 layers has been studied by in vacuo high-sensitivity low energy ion scattering for two gas deposition conditions with different oxygen contents (high-O and low-O conditions). This unique surface sensitive technique allowed the determination of surface composition and thicknesses required to close the ZrO2 layer on all three substrates for both conditions. The ZrO2 layer closes similarly on all substrates due to more favorable enthalpies of formation for ZrO2 and ZrSiO4, resulting in passivation of the Si from the substrate. However, this layer closes at about half of the thickness (˜1.7 nm) for low-O conditions due to less oxidative conditions and less energetic particles arriving at the sample, which leads to less intermixing via silicate formation. In contrast, for high-O conditions, there is more ZrSiO4 and/or SiOx formation, giving more intermixing (˜3.4 nm). In vacuo X-ray photoelectron spectroscopy (XPS) measurements revealed similar stoichiometric ZrO2 layers deposited by both conditions and a higher interaction of the ZrO2 layer with the underlying a-Si for high-O conditions. In addition, oxygen diffusion through low-O ZrO2 films on a-Si has been investigated by ex situ angular-resolved XPS of samples annealed in atmospheric oxygen. For temperatures below 400 °C, no additional oxidation of the underlying a-Si was observed. This, together with the amorphous nature and smoothness of these samples, makes ZrO2 a good candidate as an oxidation protective layer on top of a-Si.

  5. REACTIVE OXYGEN SPECIES AND OOCYTE AGING: ROLE OF SUPEROXIDE, HYDROGEN PEROXIDE AND HYPOCHLOROUS ACID

    PubMed Central

    GOUD, ANURADHA P.; GOUD, PRAVIN T.; DIAMOND, MICHAEL P.; GONIK, BERNARD; ABU-SOUD, HUSAM M.

    2009-01-01

    Aging of the unfertilized oocyte inevitably occurs following ovulation, limiting its fertilizable life-span. However, the mechanisms that regulate oocyte aging are still unclear. We hypothesize that reactive oxygen species such as superoxide (O2•−), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) are likely candidates that may initiate these changes in the oocyte. In order to test this hypothesis, we investigated direct effects of O2•− [hypoxanthine/xanthine oxidase system generating 0.12 (n=42) and 0.25 μM O2•−/min (n=45)], H2O2 (20 or 100 μM, n=60) and HOCl, (1, 10 and 100 μM, n=50) on freshly ovulated or relatively old mouse oocytes, while their sibling oocytes were fixed immediately or cultured under physiological conditions (n=96). The aging process was assessed by the zona pellucida dissolution time (ZPDT), ooplasm microtubule dynamics (OMD), and cortical granule (CG) status. The ZPDT increased 2-fold in relatively old, compared to young, untreated oocytes (P<0.0001). Exposure to O2•− increased it even further (P<0.0001). Similarly, more O2•− exposed oocytes exhibited increased OMD and major CG loss, with fewer having normal OMD and intact CG compared to untreated controls. Interestingly, young oocytes resisted “aging”, when exposed to 20 μM H2O2, while the same enhanced the aging phenomena in relatively old oocytes (P<0.05). Exposure to even very low levels of HOCl induced aging phenomena in young and relatively old oocytes, and higher concentrations of HOCl compromised oocyte viability. Overall, O2•−, H2O2 and HOCl each augment oocyte “aging”, more so in relatively old oocytes, suggesting compromised antioxidant capacity in aging oocytes. PMID:18177745

  6. Tolerability of an equimolar mix of nitrous oxide and oxygen during painful procedures in very elderly patients.

    PubMed

    Bauer, Carole; Lahjibi-Paulet, Hayat; Somme, Dominique; Onody, Peter; Saint Jean, Olivier; Gisselbrecht, Mathilde

    2007-01-01

    Although an equimolar mix of nitrous oxide-oxygen (N(2)O/O(2)) [Kalinox] is widely used as an analgesic, there have been few specific studies of this product in the elderly. In this article, we investigate the tolerability of this equimolar mix in very elderly patients undergoing painful procedures. This was a prospective, observational study of patients hospitalised in the geriatric short-stay unit of a teaching hospital between July 2001 and September 2003. All patients aged >/=80 years who were scheduled for invasive care procedures were eligible for inclusion. Sixty-two patients were recruited and underwent a total of 68 procedures. The procedures were divided into four classes based on the degree of pain they were expected to cause and their duration. Patients received the equimolar N(2)O/O(2) mix (Kalinox) for 5 minutes before the beginning of the procedure and throughout its duration. The inhaled treatment was administered via a high-concentration mask. Assessments were carried out during the inhalation and over the 15 minute period following inhalation. The primary endpoint of the study was tolerability of the equimolar N(2)O/O(2) mix, and all adverse events were recorded. Secondary endpoints were the efficacy of the product (assessed on a verbal rating scale and/or the Doloplus scale), its ease of use and its acceptability to patients and staff. Fourteen patients (22.6%) each reported at least one adverse event: impaired hearing (n = 1), altered perception of the environment (n = 8), anxiety (n = 1), headache (n = 3) and drowsiness at the end of the procedure (n = 2). All these disorders subsided rapidly after treatment was completed. This study shows the favourable tolerability of the equimolar N(2)O/O(2) mix in very elderly subjects, which makes this product a valuable tool for the management of acute pain in this age group.

  7. Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine

    PubMed Central

    Pan, Xiaobo; Liang, Xinyue; Yao, Longfang; Wang, Xinyi; Jing, Yueyue; Fei, Yiyan; Chen, Li

    2017-01-01

    TiO2 nanoparticles modified with phthalocyanines (Pc) have been proven to be a potential photosensitizer in the application of photodynamic therapy (PDT). However, the generation of reactive oxygen species (ROS) by TiO2 nanoparticles modified with Pc has not been demonstrated clearly. In this study, nitrogen-doped TiO2 conjugated with Pc (N-TiO2-Pc) were studied by means of monitoring the generation of ROS. The absorbance and photokilling effect on HeLa cells upon visible light of different regions were also studied and compared with non-doped TiO2-Pc and Pc. Both N-TiO2-Pc and TiO2-Pc can be activated by visible light and exhibited much higher photokilling effect on HeLa cells than Pc. In addition, nitrogen-doping can greatly enhance the formation of 1O2 and •O2−, while it suppresses the generation of OH•. This resulted in significant photodynamic activity. Therefore, N-TiO2-Pc can be an excellent candidate for a photosensitizer in PDT with wide-spectrum visible irradiation. PMID:29053580

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohshimo, Keijiro; Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai 980-8576; Norimasa, Naoya

    Geometrical structures of titanium oxide cluster cations and anions have been investigated by ion mobility mass spectrometry and quantum chemical calculations based on density functional theory. Stable cluster compositions with respect to collision induced dissociation were also determined by changing ion injection energy to an ion drift cell for mobility measurements. The Ti{sub n}O{sub 2n−1}{sup +} cations and Ti{sub n}O{sub 2n}{sup −} anions were predominantly observed at high injection energies, in addition to Ti{sub n}O{sub 2n}{sup +} for cations and Ti{sub n}O{sub 2n+1}{sup −} for anions. Collision cross sections of Ti{sub n}O{sub 2n}{sup +} and Ti{sub n}O{sub 2n+1}{sup −} formore » n = 1-7, determined by ion mobility mass spectrometry, were compared with those obtained theoretically as orientation-averaged cross sections for the optimized structures by quantum chemical calculations. All of the geometrical structures thus assigned have three-dimensional structures, which are in marked contrast with other oxides of late transition metals. One-oxygen atom dissociation processes from Ti{sub n}O{sub 2n}{sup +} and Ti{sub n}O{sub 2n+1}{sup −} by collisions were also explained by analysis of spin density distributions.« less

  9. Wave-Wave Coupling and Disasters: The 1985 Mexico Earthquake and the 2001 WTC Collapse

    NASA Astrophysics Data System (ADS)

    Lomnitz, C.

    2002-12-01

    Wave-wave coupling occurs in the presence of weak nonlinearity. It can generate quite dramatic, unexpected effects. In the 1985 earthquake disaster in Mexico City more than 400 high-rise buildings collapsed on soft ground with a loss of life of around 10,000. The emergence of a large, monochromatic, coherent ground wave was an unforeseen factor. Linear modeling failed to reproduce the main features of this signal including the prominent spectral peak close to the resonant frequency of the high-rise buildings, and an extremely long time duration (more than five minutes). The signal was apparently due to coupling of a fundamental Rayleigh mode to the quarter-wavelength shear resonance in the surface mud layer through their common frequency at 0.4 Hz. An additional unexpected feature was the low attenuation of these modes in the mud layer, and the presence of prograde particle motion. Prograde rotation, though not necessarily caused by nonlinear effects, will couple with structural modes of vibration that tend to destabilize a tall building, much like a tall ship in ocean waves. Such unanticipated features may play a critical role in earthquake disasters on soft ground. A related case is the World Trade Center disaster of 11 September 2001, which was presumed to be due to gradual heat softening of steel girders. If so, the Twin Towers should have leaned over sideways but actually the collapse occurred vertically and quite suddenly. A likely alternative is coupling between a fireball caused by a phase transition between low- and high-oxygen consumption modes in burning jet fuel: (low-oxygen) 2CnH2n+2 + (n+1)O2 = nC2 + (2n+2)H2O, (1) (high-oxygen) 2CnH2n+2 + (3n+1)O2 = 2nCO2 + (2n+2)H2O, (2) and a pressure pulse propagating vertically inside the tubular structure. The pulse would have taken out the concrete floors, thus initiating collapse by implosion of the structural shell. Linear thinking may fail to anticipate coupling, and thus appropriate preventive measures may not be provided.

  10. Interactions between nitrogen and oxygen molecules studied by gas-phase NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr; Misiak, Maria; Jackowski, Karol

    2018-05-01

    Gas-phase 14N and 15N NMR studies of nitrogen and synthetic air pressurized up to 300 bar were performed. It was found that the magnetic shielding of an isolated N2 molecule, σ0(N) = -63.4(2) ppm, is in good agreement with the results of ab initio calculations. The binary N2-O2 interactions contribute to shielding an order of the magnitude larger than the N2-N2 pairs. For nitrogen the three body collisions become observable by NMR for pressure higher than 200 bar and the appropriate coefficient can be practically assigned to the interaction between one molecule of N2 and a pair of O2 molecules.

  11. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinivas, G., E-mail: srinu123g@gmail.com; Ramesh, B.; Shareefuddin, Md.

    2016-05-06

    The mixed alkali and alkaline earth oxide borate glass with the composition xK{sub 2}O - (25-x) Li{sub 2}O-12.5BaO-12.5MgO-50B{sub 2}O{sub 3} (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α{sub 0}2-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α{sub 0}2-), and (Λ) increases with increasing of K{sub 2}O content and electronicmore » polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K{sub 2}O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).« less

  12. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.

    PubMed

    Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco

    2004-07-01

    A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed also with reference to available thermochemical data and relevant literature reports. The effects on both positive and negative APCI spectra due to ion activation via increasing V(cone) are also reported and discussed: several interesting endothermic processes are observed under these conditions. The results provide important information on the role of ionic reactions in non-thermal plasma processes.

  13. O2 and CO2 glow-discharge-assisted oxygen transport through Ag

    NASA Astrophysics Data System (ADS)

    Outlaw, R. A.

    1990-08-01

    The permeation of oxygen through Ag normally occurs by a sequence of steps which include the initial dissociative adsorption of molecular oxygen at the upstream surface, the dissolution of the atoms into the bulk, and the subsequent migration of the atoms between octahedral sites of the lattice until they arrive at the vacuum interface downstream. The dissociative adsorption step, however, proceeds slowly, as indicated by the low sticking coefficient of O2 on Ag(10-6-10-3). The application of a dc field in 0.5 Torr of O2 (E/n˜10-14 V cm2) on the upstream side of a Ag membrane generated gas phase atomic oxygen that substantially enhanced the transport. The transport flux was observed to increase from a value of 4.4×1013 cm-2 s-1 to a glow discharge value of 2.83×1014 cm-2 s-1 at a membrane temperature of 650 °C. This suggests that the dissociative adsorption step limits the supply of oxygen atoms to the upstream side of the membrane. When the upstream O2 was replaced by an equal pressure of CO2, only a small permeation signal was observed, but the application of the glow discharge substantially increased the transport flux from 3.25×1012 cm-2 s-1 to 1.74×1014 cm-2 s-1. This method of separating O2 from a CO2 environment may be a possible mechanism for providing a supply of oxygen for astronauts in a manned mission to Mars.

  14. Multivariable fractional polynomial interaction to investigate continuous effect modifiers in a meta-analysis on higher versus lower PEEP for patients with ARDS.

    PubMed

    Kasenda, Benjamin; Sauerbrei, Willi; Royston, Patrick; Mercat, Alain; Slutsky, Arthur S; Cook, Deborah; Guyatt, Gordon H; Brochard, Laurent; Richard, Jean-Christophe M; Stewart, Thomas E; Meade, Maureen; Briel, Matthias

    2016-09-08

    A recent individual patient data (IPD) meta-analysis suggested that patients with moderate or severe acute respiratory distress syndrome (ARDS) benefit from higher positive end-expiratory pressure (PEEP) ventilation strategies. However, thresholds for continuous variables (eg, hypoxaemia) are often arbitrary and linearity assumptions in regression approaches may not hold; the multivariable fractional polynomial interaction (MFPI) approach can address both problems. The objective of this study was to apply the MFPI approach to investigate interactions between four continuous patient baseline variables and higher versus lower PEEP on clinical outcomes. Pooled data from three randomised trials in intensive care identified by a systematic review. 2299 patients with acute lung injury requiring mechanical ventilation. Higher (N=1136) versus lower PEEP (N=1163) ventilation strategy. Prespecified outcomes included mortality, time to death and time-to-unassisted breathing. We examined the following continuous baseline characteristics as potential effect modifiers using MFPI: PaO2/FiO2 (arterial partial oxygen pressure/ fraction of inspired oxygen), oxygenation index, respiratory system compliance (tidal volume/(inspiratory plateau pressure-PEEP)) and body mass index (BMI). We found that for patients with PaO2/FiO2 below 150 mm Hg, but above 100 mm Hg or an oxygenation index above 12 (moderate ARDS), higher PEEP reduces hospital mortality, but the beneficial effect appears to level off for patients with very severe ARDS. Patients with mild ARDS (PaO2/FiO2 above 200 mm Hg or an oxygenation index below 10) do not seem to benefit from higher PEEP and might even be harmed. For patients with a respiratory system compliance above 40 mL/cm H2O or patients with a BMI above 35 kg/m(2), we found a trend towards reduced mortality with higher PEEP, but there is very weak statistical confidence in these findings. MFPI analyses suggest a nonlinear effect modification of higher PEEP ventilation by PaO2/FiO2 and oxygenation index with reduced mortality for some patients suffering from moderate ARDS. CRD42012003129. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations.

    PubMed

    Rickards, Caroline A; Sprick, Justin D; Colby, Hannah B; Kay, Victoria L; Tzeng, Yu-Chieh

    2015-04-01

    We tested the hypothesis that transmission of arterial pressure to brain tissue oxygenation is low under conditions of arterial pressure instability. Two experimental models of hemodynamic instability were used in healthy human volunteers; (1) oscillatory lower body negative pressure (OLBNP) (N = 8; 5 male, 3 female), and; (2) maximal LBNP to presyncope (N = 21; 13 male, 8 female). Mean arterial pressure (MAP), middle cerebral artery velocity (MCAv), and cerebral tissue oxygen saturation (ScO2) were measured non-invasively. For the OLBNP protocol, between 0 and -60 mmHg negative pressure was applied for 20 cycles at 0.05 Hz, then 20 cycles at 0.1 Hz. For the maximal LBNP protocol, progressive 5 min stages of chamber decompression were applied until the onset of presyncope. Spectral power of MAP, mean MCAv, and ScO2 were calculated within the VLF (0.04-0.07 Hz), and LF (0.07-0.2 Hz) ranges, and cross-spectral coherence was calculated for MAP-mean MCAv, MAP-ScO2, and mean MCAv-ScO2 at baseline, during each OLBNP protocol, and at the level prior to pre-syncope during maximal LBNP (sub-max). The key findings are (1) both 0.1 Hz OLBNP and sub-max LBNP elicited increases in LF power for MAP, mean MCAv, and ScO2 (p ≤ 0.08); (2) 0.05 Hz OLBNP increased VLF power in MAP and ScO2 only (p ≤ 0.06); (3) coherence between MAP-mean MCAv was consistently higher (≥0.71) compared with MAP-ScO2, and mean MCAv-ScO2 (≤0.43) during both OLBNP protocols, and sub-max LBNP (p ≤ 0.04). These data indicate high linearity between pressure and cerebral blood flow variations, but reduced linearity between cerebral tissue oxygenation and both arterial pressure and cerebral blood flow. Measuring arterial pressure variability may not always provide adequate information about the downstream effects on cerebral tissue oxygenation, the key end-point of interest for neuronal viability.

  16. Oxygen Vacancies in Shape Controlled Cu2O/Reduced Graphene Oxide/In2O3 Hybrid for Promoted Photocatalytic Water Oxidation and Degradation of Environmental Pollutants.

    PubMed

    Liu, Jie; Ke, Jun; Li, Degang; Sun, Hongqi; Liang, Ping; Duan, Xiaoguang; Tian, Wenjie; Tadé, Moses O; Liu, Shaomin; Wang, Shaobin

    2017-04-05

    A novel shape controlled Cu 2 O/reduced graphene oxide/In 2 O 3 (Cu 2 O/RGO/In 2 O 3 ) hybrid with abundant oxygen vacancies was prepared by a facile, surfactant-free method. The hybrid photocatalyst exhibits an increased photocatalytic activity in water oxidation and degradation of environmental pollutants (methylene blue and Cr 6+ solutions) compared with pure In 2 O 3 and Cu 2 O materials. The presence of oxygen vacancies in Cu 2 O/RGO/In 2 O 3 and the formation of heterojunction between In 2 O 3 and Cu 2 O induce extra diffusive electronic states above the valence band (VB) edge and reduce the band gap of the hybrid consequently. Besides, the increased activity of Cu 2 O/RGO/In 2 O 3 hybrid is also attributed to the alignment of band edge, a process that is assisted by different Fermi levels between In 2 O 3 and Cu 2 O, as well as the charge transfer and distribution onto the graphene sheets, which causes the downshift of VB of In 2 O 3 and the significant increase in its oxidation potential. Additionally, a built-in electric field is generated on the interface of n-type In 2 O 3 and p-type Cu 2 O, suppressing the recombination of photoinduced electron-hole pairs and allowing the photogenerated electrons and holes to participate in the reduction and oxidation reactions for oxidizing water molecules and pollutants more efficiently.

  17. Kinetics of nitrous oxide production by denitrification in municipal solid waste.

    PubMed

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei

    2015-04-01

    As one of the Nitrous Oxide (N2O) production pathways, denitrification plays an important role in regulating the emission of N2O into the atmosphere. In this study, the influences of different substrate concentrations and transient conditions on the denitrification rate and N2O-reducing activities were investigated. Results revealed that N2O production rates (i.e. denitrification rates) were stimulated by increased total organic carbon (TOC) concentration, while it was restrained under high oxygen concentrations. Moreover, the impact of nitrate concentrations on N2O production rates depended on the TOC/NO3--N ratios. All the N2O production rate data fitted well to a multiplicative Monod equation, with terms describing the influence of TOC and nitrate concentrations, and an Arrhenius-type equation. Furthermore, results demonstrated that high temperatures minimized the N2O-reducing activities in aged municipal solid waste, resulting in an accumulation of N2O. On the other hand, a transient condition caused by changing O2 concentrations may strongly influence the N2O production rates and N2O-reducing activities in solid waste. Finally, based on the results, we believe that a landfill aeration strategy properly designed to prevent rising temperatures and to cycle air injection is the key to reducing emissions of N2O during remediation of old landfills by means of in situ aeration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    NASA Astrophysics Data System (ADS)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  19. Occurrence of greenhouse gases in the aquifers of the Walloon Region (Belgium).

    PubMed

    Jurado, Anna; Borges, Alberto V; Pujades, Estanislao; Hakoun, Vivien; Otten, Joël; Knöller, Kay; Brouyère, Serge

    2018-04-01

    This work aims to (1) identify the most conductive conditions for the generation of greenhouses gases (GHGs) in groundwater (e.g., hydrogeological contexts and geochemical processes) and (2) evaluate the indirect emissions of GHGs from groundwater at a regional scale in Wallonia (Belgium). To this end, nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations and the stable isotopes of nitrate (NO 3 - ) and sulphate were monitored in 12 aquifers of the Walloon Region (Belgium). The concentrations of GHGs range from 0.05μg/L to 1631.2μg/L for N 2 O, 0μg/L to 17.1μg/L for CH 4 , and 1769 to 100,514ppm for the partial pressure of CO 2 (pCO 2 ). The highest average concentrations of N 2 O and pCO 2 are found in a chalky aquifer. The coupled use of statistical techniques and stable isotopes is a useful approach to identify the geochemical conditions that control the occurrence of GHGs in the aquifers of the Walloon Region. The accumulation of N 2 O is most likely due to nitrification (high concentrations of dissolved oxygen and NO 3 - and null concentrations of ammonium) and, to a lesser extent, initial denitrification in a few sampling locations (medium concentrations of dissolved oxygen and NO 3 - ). The oxic character found in groundwater is not prone to the accumulation of CH 4 in Walloon aquifers. Nevertheless, groundwater is oversaturated with GHGs with respect to atmospheric equilibrium (especially for N 2 O and pCO 2 ); the fluxes of N 2 O (0.32kgN 2 O-NHa -1 y -1 ) and CO 2 (27kgCO 2 Ha -1 y -1 ) from groundwater are much lower than the direct emissions of N 2 O from agricultural soils and fossil-fuel-related CO 2 emissions. Thus, indirect GHG emissions from the aquifers of the Walloon Region are likely to be a minor contributor to atmospheric GHG emissions, but their quantification would help to better constrain the nitrogen and carbon budgets. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  1. Characterization of ternary bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis?Tris) and the comparison of five crystal structures of Bis?Tris complexes*1

    NASA Astrophysics Data System (ADS)

    Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio

    2004-09-01

    Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M(hihm)(H 2O)]SO 4·H 2O (M: Co, Zn) ( 1, 4), [CoCl(hihm)]Cl·H 2O ( 5) and [M(HCOO)(hihm)](HCOO) (M: Ni, Cu, Zn) ( 9- 11) seem to have the same structures as the structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [NiCl(hihm)]Cl·H 2O ( 6) and [Co(HCOO)(hihm)](HCOO) ( 8), respectively, judging by the results of IR and powder diffuse reflection spectra and powder X-ray diffraction analysis. Bis-Tris has coordinated to the metal atoms as a pentadentate ligand in all complexes of which the structures have been determined by single crystal X-ray diffraction analysis in this work.

  2. Enduring disturbances in regional cerebral blood flow and brain oxygenation at 24 h after asphyxial cardiac arrest in developing rats.

    PubMed

    Foley, Lesley M; Clark, Robert S B; Vazquez, Alberto L; Hitchens, T Kevin; Alexander, Henry; Ho, Chien; Kochanek, Patrick M; Manole, Mioara D

    2017-01-01

    Disturbances in cerebral blood flow (CBF) and brain oxygenation (PbO 2 ) are present early after pediatric cardiac arrest (CA). CBF-targeted therapies improved neurological outcome in our CA model. To assess the therapeutic window for CBF- and PbO 2 -targeted therapies, we propose to determine if CBF and PbO 2 disturbances persist at 24 h after experimental pediatric CA. Regional CBF and PbO 2 were measured at 24 h after asphyxial CA in immature rats (n = 26, 6-8/group) using arterial spin label MRI and tissue electrodes, respectively. In all regions but the thalamus, CBF recovered to sham values by 24 h; thalamic CBF was >32% higher after CA vs. sham. PbO 2 values at 24 h after CA in the cortex and thalamus were similar to shams in rats who received supplemental oxygen, however, on room air, cortical PbO 2 was lower after CA vs. shams. CBF remains increased in the thalamus at 24 h after CA and PbO 2 is decreased to hypoxic levels in cortex at 24 h after CA in rats who do not receive supplemental oxygen. Given the enduring disturbances in this model and the lack of routine CBF or PbO 2 monitoring in patients, our data suggest the need for clinical correlation.

  3. FAST TRACK COMMUNICATION: Deposition temperature effect on electrical properties and interface of high-k ZrO2 capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hyung; Ignatova, Velislava A.; Heitmann, Johannes; Oberbeck, Lars

    2008-09-01

    The electrical characteristics, i.e. leakage current and capacitance, of ZrO2 based metal-insulator-metal structures, grown at 225, 250 and 275 °C by atomic layer deposition, were studied. The lowest leakage current was obtained at 250 °C deposition temperature, while the highest dielectric constant (k ~ 43) was measured for the samples grown at 275 °C, most probably due to the formation of tetragonal/cubic phases in the ZrO2 layer. We have shown that the main leakage current of these ZrO2 capacitors is governed by the Poole-Frenkel conduction mechanism. It was observed by x-ray photoelectron spectroscopy depth profiling that at 275 °C deposition temperature the oxygen content at and beyond the ZrO2/TiN interface is higher than at lower deposition temperatures, most probably due to oxygen inter-diffusion towards the electrode layer, forming a mixed TiN-TiOxNy interface layer. At and above 275 °C the ZrO2 layer changes its structure and becomes crystalline as proven by XRD analysis.

  4. [Effects of nitrous oxide on electroencephalographic activity during sevoflurane anesthesia: a zero-crossing analysis].

    PubMed

    Kaneda, T; Ochiai, R; Takeda, J; Fukushima, K

    1995-11-01

    We have investigated the influence of nitrous oxide (N2O) on central nervous system (CNS) during sevoflurane anesthesia by using zero-crossing method of EEG in 31 patients. The study was divided into three parts: Study 1 (n = 18), Study 2 (n = 6) and Study 3 (n = 7). (Study 1) After induction of anesthesia, sevoflurane 1.0 % in oxygen (O2), and sevoflurane 1.0 % with 67 % N2O in O2 were given to the patients sequentially in a random fashion, and EEG was recorded. (Study 2) Sevoflurane 1.7 % in O2, and sevoflurane 0.7 % with 67 % N2O in O2, which were considered to be the same anesthetic depth (= sevoflurane 1 MAC), were inhaled, and EEG was recorded in the same manner as in the study 1. (Study 3) We compared the effects of N2O on EEG during intravenous administration of fentanyl and midazolam with 67 % N2O, and without N2O, and EEG was recorded in the same manner. In all studies, percentage of each frequency range (delta, theta, alpha, beta) and average frequency were calculated by zero-crossing method. During sevoflurane anesthesia, the EEG activity was decelerated with N2O, depending on minimum alveolar concentration (MAC). But there were no significant changes in EEG activity of the patient with and those without N2O during intravenous anesthesia. We concluded that the influences of N2O on CNS can be evaluated by quantitative analysis of EEG.

  5. Control of ROS and RNS productions in liquid in atmospheric pressure plasma-jet system

    NASA Astrophysics Data System (ADS)

    Uchida, Giichiro; Ito, Taiki; Takenaka, Kosuke; Ikeda, Junichiro; Setsuhara, Yuichi

    2016-09-01

    Non-thermal plasma jets are of current interest in biomedical applications such as wound disinfection and even treatment of cancer tumors. Beneficial therapeutic effects in medical applications are attributed to excited species of oxygen and nitrogen from air. However, to control the production of these species in the plasma jet is difficult because their production is strongly dependent on concentration of nitrogen and oxygen from ambient air into the plasma jet. In this study, we analyze the discharge characteristics and the ROS and RNS productions in liquid in low- and high-frequency plasma-jet systems. Our experiments demonstrated the marked effects of surrounding gas near the plasma jet on ROS and RNS productions in liquid. By controlling the surround gas, the O2 and N2 main plasma jets are selectively produced even in open air. We also show that the concentration ratio of NO2- to H2O2 in liquid is precisely tuned from 0 to 0.18 in deionized water by changing N2 gas ratio (N2 / (N2 +O2)) in the main discharge gas, where high NO2- ratio is obtained at N2 gas ratio at N2 / (N2 +O2) = 0 . 8 . The low-frequency plasma jet with controlled surrounding gas is an effective plasma source for ROS and RNS productions in liquid, and can be a useful tool for biomedical applications. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  6. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system

    NASA Astrophysics Data System (ADS)

    Bourbonnais, Annie; Letscher, Robert T.; Bange, Hermann W.; Échevin, Vincent; Larkum, Jennifer; Mohn, Joachim; Yoshida, Naohiro; Altabet, Mark A.

    2017-04-01

    The ocean is an important source of nitrous oxide (N2O) to the atmosphere, yet the factors controlling N2O production and consumption in oceanic environments are still not understood nor constrained. We measured N2O concentrations and isotopomer ratios, as well as O2, nutrient and biogenic N2 concentrations, and the isotopic compositions of nitrate and nitrite at several coastal stations during two cruises off the Peru coast ( 5-16°S, 75-81°W) in December 2012 and January 2013. N2O concentrations varied from below equilibrium values in the oxygen deficient zone (ODZ) to up to 190 nmol L-1 in surface waters. We used a 3-D-reaction-advection-diffusion model to evaluate the rates and modes of N2O production in oxic waters and rates of N2O consumption versus production by denitrification in the ODZ. Intramolecular site preference in N2O isotopomer was relatively low in surface waters (generally -3 to 14‰) and together with modeling results, confirmed the dominance of nitrifier-denitrification or incomplete denitrifier-denitrification, corresponding to an efflux of up to 0.6 Tg N yr-1 off the Peru coast. Other evidence, e.g., the absence of a relationship between ΔN2O and apparent O2 utilization and significant relationships between nitrate, a substrate during denitrification, and N2O isotopes, suggest that N2O production by incomplete denitrification or nitrifier-denitrification decoupled from aerobic organic matter remineralization are likely pathways for extreme N2O accumulation in newly upwelled surface waters. We observed imbalances between N2O production and consumption in the ODZ, with the modeled proportion of N2O consumption relative to production generally increasing with biogenic N2. However, N2O production appeared to occur even where there was high N loss at the shallowest stations.

  7. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  8. Post deposition annealing effect on the properties of Al2O3/InP interface

    NASA Astrophysics Data System (ADS)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2018-02-01

    Post deposition in-situ annealing effect on the interfacial and electrical properties of Au/Al2O3/n-InP junctions were investigated. With increasing the annealing time, both the barrier height and ideality factor changed slightly but the series resistance decreased significantly. Photoluminescence (PL) measurements showed that the intensities of both the near band edge (NBE) emission from InP and defect-related bands (DBs) from Al2O3 decreased with 30 min annealing. With increasing the annealing time, the diffusion of oxygen (indium) atoms into Al2O3/InP interface (into Al2O3 layer) occurred more significantly, giving rise to the increase of the interface state density. Therefore, the out-diffusion of oxygen atoms from Al2O3 during the annealing process should be controlled carefully to optimize the Al2O3/InP based devices.

  9. Thermal annealing induced multiple phase in V/V2O5 alternating multilayer structure

    NASA Astrophysics Data System (ADS)

    Ilahi, B.; Abdel-Rahman, M.; Zaaboub, Z.; Zia, M. F.; Alduraibi, M.; Maaref, H.

    2016-09-01

    In this paper, we report on microstructural, optical and electrical properties of alternating multilayer of vanadium pentoxide (V2O5), 25 nm, and vanadium (V), 5 nm, thin films deposited at room temperature by radio frequency (RF) and DC magnetron sputtering, respectively. Raman and photoluminescence (PL) spectroscopy have been employed to investigate the effects of thermal annealing for 20, 30 and 40 min at 400∘C in Nitrogen (N2) atmosphere on the multiple phase formation and its impact on the film resistance and temperature coefficient of resistance (TCR). We demonstrate that the oxygen free annealing environment allows the formation of multiple phases including V2O5, V6O13 and VO2 through oxygen diffusion and consequent deficiency in V2O5 layer.

  10. Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Arévalo-Martínez, Damian L.; Kock, Annette; Löscher, Carolin R.; Schmitz, Ruth A.; Stramma, Lothar; Bange, Hermann W.

    2016-02-01

    Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen minimum zone (OMZ). Given that nitrous oxide (N2O) production-consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source-sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November-December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion in the core of the OMZ (O2 < 5 µmol L-1) to be consistent with nitrite (NO2-) accumulation and low levels of nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ's core was substantially higher in the centre of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, "ageing" of mesoscale eddies tends to decrease N2O concentrations through the water column in response to the reduced supply of material to fuel N loss, although hydrographic variability might also significantly impact the pace of the production-consumption pathways for N2O. Our results evidence the relevance of mode water eddies for N2O distribution, thereby improving our understanding of the N-cycling processes, which are of crucial importance in times of climate change and ocean deoxygenation.

  11. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    NASA Astrophysics Data System (ADS)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  12. Biological Productivity from an Oxygen Mass Balance in the subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Giesbrecht, K. E.; Hamme, R. C.

    2008-12-01

    Biological productivity is an important process controlling the export of carbon into the deep ocean and thus influencing the earth's climate. An O2 mass balance of the upper ocean can estimate this export of organic carbon if the physical processes affecting the O2 concentrations are accounted for. This can be accomplished by measuring the dissolved O2/Ar ratio, because their similar physical properties allow us to consider Ar an 'abiotic' O2 analogue. Here we present a two-year data set of O2/N2/Ar ratio measurements collected at Station Papa and along Line P in 2007/08. Line P, situated in the subarctic North Pacific, is a series of oceanographic stations running from the southwest tip of Vancouver Island to Station Papa (50°N, 145°W), one of the oldest deep-ocean time series in existence which is located in the High-Nutrient/Low-Chlorophyll (HNLC) region of the subarctic gyre. Current cruises along Line P run three times per year, typically in February, June and August. The dissolved gas ratios are measured using a stable isotope mass spectrometer and oxygen concentrations by titration. In a simple steady state, we equate biological O2 production to diffusive gas exchange, using the O2/Ar ratio to normalize the physical component of the oxygen signal and calculate the net biological oxygen production. Diffusive gas exchange is calculated using a wind speed parameterization. Preliminary estimates of the net biological production in the mixed layer at Station Papa for 2007 are calculated at 30.9 and 14.0 mmol C m-2 d- 1 for June and August respectively, both exhibiting mixed layer O2/Ar supersaturations. The O2/Ar undersaturation in the mixed layer for February 2007 suggests net respiration at that time. The wind speed parameterization of diffusive gas exchange is the major source of error for this method. We plan to refine our productivity calculation to account for vertical mixing and also by measuring rates of production using a number of different methods, so that we may determine if the values obtained converge on a result. Future investigations to obtain a better-constrained estimate of the biological carbon export in this region by measuring Nitrogen and Carbon uptake rates in the euphotic zone using dual, stable isotope tracer 15N/13C incubations in addition to the oxygen mass balance will be discussed.

  13. Thin film integrated capacitors with sputtered-anodized niobium pentoxide dielectric for decoupling applications

    NASA Astrophysics Data System (ADS)

    Jacob, Susan

    Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.

  14. Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C3N4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm.

    PubMed

    Li, Yunxiang; Ouyang, Shuxin; Xu, Hua; Wang, Xin; Bi, Yingpu; Zhang, Yuanfang; Ye, Jinhua

    2016-10-03

    Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g-C 3 N 4 , a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C 3 N 4 -based photocatalyst to effectively convert photocatalytic generation of H 2 O 2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C 3 N 4 -based photocatalyst as an in situ and robust H 2 O 2 generator, and surface-decorated Fe 3+ as a trigger of H 2 O 2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C 3 N 4 , which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air pollution via solar energy.

  15. Heterotrophs are key contributors to nitrous oxide production in activated sludge under low C-to-N ratios during nitrification-Batch experiments and modeling.

    PubMed

    Domingo-Félez, Carlos; Pellicer-Nàcher, Carles; Petersen, Morten S; Jensen, Marlene M; Plósz, Benedek G; Smets, Barth F

    2017-01-01

    Nitrous oxide (N 2 O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N 2 O emissions, often including AOB as the main N 2 O producer. Several model structures have been proposed without consensus calibration procedures. Here, we present a new experimental design that was used to calibrate AOB-driven N 2 O dynamics of a mixed culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence, rigorous experimental design for calibration of autotrophic N 2 O production from mixed cultures is essential. The proposed N 2 O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification pathway could describe the observed data. In the best-fit model, which combined two denitrification pathways, the heterotrophic was stronger than the autotrophic contribution to N 2 O production. Importantly, the individual contribution of autotrophic and heterotrophic to the total N 2 O pool could not be unambiguously elucidated solely based on bulk N 2 O measurements. Data on NO would increase the practical identifiability of N 2 O production pathways. Biotechnol. Bioeng. 2017;114: 132-140. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Crystal structure, chemical composition, and extended defects of the high-Tc (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta compounds.

    PubMed

    Eibl, O

    1995-02-15

    This paper summarizes results obtained by high-resolution transmission electron microscopy on the crystal structure and microstructure of the (Bi,Pb)2Sr2Ca(n)-1CunO4 + 2n + delta high-Tc superconducting oxides. The experimental basis for the work presented here are high-resolution structure images obtained at ultra-thin (3 nm) areas of carefully prepared transmission electron microscope (TEM) samples. The analysis was carried out on a 400 kV TEM equipped with a pole piece yielding 0.17 nm point-to-point resolution. From the images obtained the projected crystal potential of the cations can be extracted directly, as confirmed by detailed image simulation. Structural analysis of the oxygen sublattice remains an unsolved problem by high-resolution TEM (HRTEM), mainly because of the small scattering factors, and thus the contribution of the oxygen sublattice to the image contrast is small. The (BiPb)2Sr2Ca(n)-1CunO4 + 2n + delta phases are modulated structures that can be understood as an average structure plus a superimposed displacement field. The crystal structure consists of BiO double layers and perovskite-type cuboids (containing Sr, Ca, Cu, and O), which are sandwiched between the BiO double layers. The displacement field can be directly analyzed by HRTEM, and the largest displacement amplitudes of 70 pm were determined for the Bi atoms in the n = 1 compound. The chemical composition of the n = 2 and n = 3 compounds was determined by EDX in the TEM for the cation sublattice. A significant (Ca + Sr) deficiency (approximately 10%) with respect to Cu was found. The (Sr + Ca)/Cu mole fraction ratio was 1.31 for the Bi-2212 phase and 1.14 for the Bi(Pb)-2223 phase. The oxygen content cannot be determined by EDX in the TEM with the accuracy necessary for a correlation with electrical and superconducting properties. The defect structure present in these materials, that is, intergrown lamellae with different crystal structures and equal or different chemical compositions, stacking faults, and grain boundaries, is summarized. The importance of grain boundaries for understanding and improving superconducting properties is emphasized.

  17. Metal-Assisted Oxo Atom Addition to an Fe(III) Thiolate.

    PubMed

    Villar-Acevedo, Gloria; Lugo-Mas, Priscilla; Blakely, Maike N; Rees, Julian A; Ganas, Abbie S; Hanada, Erin M; Kaminsky, Werner; Kovacs, Julie A

    2017-01-11

    Cysteinate oxygenation is intimately tied to the function of both cysteine dioxygenases (CDOs) and nitrile hydratases (NHases), and yet the mechanisms by which sulfurs are oxidized by these enzymes are unknown, in part because intermediates have yet to be observed. Herein, we report a five-coordinate bis-thiolate ligated Fe(III) complex, [Fe III (S 2 Me2 N 3 (Pr,Pr))] + (2), that reacts with oxo atom donors (PhIO, IBX-ester, and H 2 O 2 ) to afford a rare example of a singly oxygenated sulfenate, [Fe III (η 2 -S Me2 O)(S Me2 )N 3 (Pr,Pr)] + (5), resembling both a proposed intermediate in the CDO catalytic cycle and the essential NHase Fe-S(O) Cys114 proposed to be intimately involved in nitrile hydrolysis. Comparison of the reactivity of 2 with that of a more electron-rich, crystallographically characterized derivative, [Fe III S 2 Me2 N Me N 2 amide (Pr,Pr)] - (8), shows that oxo atom donor reactivity correlates with the metal ion's ability to bind exogenous ligands. Density functional theory calculations suggest that the mechanism of S-oxygenation does not proceed via direct attack at the thiolate sulfurs; the average spin-density on the thiolate sulfurs is approximately the same for 2 and 8, and Mulliken charges on the sulfurs of 8 are roughly twice those of 2, implying that 8 should be more susceptible to sulfur oxidation. Carboxamide-ligated 8 is shown to be unreactive towards oxo atom donors, in contrast to imine-ligated 2. Azide (N 3 - ) is shown to inhibit sulfur oxidation with 2, and a green intermediate is observed, which then slowly converts to sulfenate-ligated 5. This suggests that the mechanism of sulfur oxidation involves initial coordination of the oxo atom donor to the metal ion. Whether the green intermediate is an oxo atom donor adduct, Fe-O═I-Ph, or an Fe(V)═O remains to be determined.

  18. Understanding the effects of cationic dopants on α-MnO 2 oxygen reduction reaction electrocatalysis

    DOE PAGES

    Lambert, Timothy N.; Vigil, Julian A.; White, Suzanne E.; ...

    2017-01-09

    Nickel-doped α-MnO 2 nanowires (Ni–α-MnO 2) were prepared with 3.4% or 4.9% Ni using a hydrothermal method. A comparison of the electrocatalytic data for the oxygen reduction reaction (ORR) in alkaline electrolyte versus that obtained with α-MnO 2 or Cu–α-MnO 2 is provided. In general, Ni-α-MnO 2 (e.g., Ni-4.9%) had higher n values (n = 3.6), faster kinetics (k = 0.015 cm s –1), and lower charge transfer resistance (R CT = 2264 Ω at half-wave) values than MnO 2 (n = 3.0, k = 0.006 cm s –1, R CT = 6104 Ω at half-wave) or Cu–α-MnO 2 (Cu-2.9%,more » n = 3.5, k = 0.015 cm s –1, R CT = 3412 Ω at half-wave), and the overall activity for Ni–α-MnO 2 trended with increasing Ni content, i.e., Ni-4.9% > Ni-3.4%. As observed for Cu–α-MnO 2, the increase in ORR activity correlates with the amount of Mn 3+ at the surface of the Ni–α-MnO 2 nanowire. Examining the activity for both Ni–α-MnO 2 and Cu–α-MnO 2 materials indicates that the Mn 3+ at the surface of the electrocatalysts dictates the activity trends within the overall series. Single nanowire resistance measurements conducted on 47 nanowire devices (15 of α-MnO 2, 16 of Cu–α-MnO 2-2.9%, and 16 of Ni–α-MnO 2-4.9%) demonstrated that Cu-doping leads to a slightly lower resistance value than Ni-doping, although both were considerably improved relative to the undoped α-MnO 2. As a result, the data also suggest that the ORR charge transfer resistance value, as determined by electrochemical impedance spectroscopy, is a better indicator of the cation-doping effect on ORR catalysis than the electrical resistance of the nanowire.« less

  19. Nitrous oxide versus oral sedation for pain management of first-trimester surgical abortion - a randomized study.

    PubMed

    Singh, Rameet H; Montoya, Maria; Espey, Eve; Leeman, Lawrence

    2017-08-01

    The objective of the study was to compare nitrous oxide with oxygen (N 2 O/O 2 ) to oral hydrocodone/acetaminophen and lorazepam for analgesia during first-trimester surgical abortion. This double-blind randomized trial assigned women undergoing first-trimester surgical abortion at<11 weeks' gestation to inhaled N 2 O/O 2 vs. oral sedation for pain management. The N 2 O/O 2 group received up to 70:30 ratio during the procedure and placebo pills preprocedure; the oral group received inhaled oxygen during the procedure and oral hydrocodone/acetaminophen 5 mg/325 mg and lorazepam 1 mg preprocedure. The primary outcome was maximum procedural pain, assessed on a 100-mm visual analog scale (VAS; anchors 0=no pain and 100=worst pain) at 2 min postprocedure. A difference of 13 mm on the VAS was considered clinically significant. Satisfaction with pain management was measured on a 100-mm VAS (anchors 0=very unsatisfied, 100=very satisfied). We randomized 140 women, 70 per study arm. Mean age of participants was 26±6.6 years; mean gestational age was 7.3±1.5 weeks. Mean maximum procedure pain scores were 52.5±26.7 and 60.8±24.4 for N 2 O/O 2 and oral groups, respectively (p=.09). Satisfaction with pain management was 69.3±28.4 and 61.5±30.4 for N 2 O/O 2 and oral groups. respectively (p=.15). We found no difference in mean procedural pain scores between women assigned to N 2 O/O 2 vs. those assigned to oral sedation for first-trimester surgical abortion. Satisfaction with both options was high. Women undergoing early surgical abortion experienced no differences in pain and satisfaction between those who used inhaled nitrous oxide and oral sedation. Nitrous oxide, with side effects limited to the duration of inhalation and no need for a ride home, is a viable alternative to oral sedation for first-trimester abortion pain management. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.

    PubMed

    Lee, Sanghan; Nam, Gyutae; Sun, Jie; Lee, Jang-Soo; Lee, Hyun-Wook; Chen, Wei; Cho, Jaephil; Cui, Yi

    2016-07-18

    Chemically prepared λ-MnO2 has not been intensively studied as a material for metal-air batteries, fuel cells, or supercapacitors because of their relatively poor electrochemical properties compared to α- and δ-MnO2 . Herein, through the electrochemical removal of lithium from LiMn2 O4 , highly crystalline λ-MnO2 was prepared as an efficient electrocatalyst for the oxygen reduction reaction (ORR). The ORR activity of the material was further improved by introducing oxygen vacancies (OVs) that could be achieved by increasing the calcination temperature during LiMn2 O4 synthesis; a concentration of oxygen vacancies in LiMn2 O4 could be characterized by its voltage profile as the cathode in a lithiun-metal half-cell. λ-MnO2-z prepared with the highest OV exhibited the highest diffusion-limited ORR current (5.5 mA cm(-2) ) among a series of λ-MnO2-z electrocatalysts. Furthermore, the number of transferred electrons (n) involved in the ORR was >3.8, indicating a dominant quasi-4-electron pathway. Interestingly, the catalytic performances of the samples were not a function of their surface areas, and instead depended on the concentration of OVs, indicating enhancement in the intrinsic catalytic activity of λ-MnO2 by the generation of OVs. This study demonstrates that differences in the electrochemical behavior of λ-MnO2 depend on the preparation method and provides a mechanism for a unique catalytic behavior of cubic λ-MnO2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intra-breath arterial oxygen oscillations detected by a fast oxygen sensor in an animal model of acute respiratory distress syndrome

    PubMed Central

    Formenti, F.; Chen, R.; McPeak, H.; Murison, P. J.; Matejovic, M.; Hahn, C. E. W.; Farmery, A. D.

    2015-01-01

    Background There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking Po2 changes dynamically when it varies rapidly. For example, arterial Po2 (PaO2) can vary within the respiratory cycle in cyclical atelectasis (CA), where PaO2 is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these PaO2 oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). Methods We developed a fibreoptic Po2 sensor (<200 µm diameter), suitable for human use, that has a fast response time, and can measure Po2 continuously in blood. By altering the inspired fraction of oxygen (FIO2) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of PaO2 values in vivo. We also hypothesized that the sensor could measure rapid intra-breath PaO2 oscillations in a large animal model of ARDS. Results In the healthy animal models, PaO2 responses to changes in FIO2 were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of PaO2 values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected PaO2 oscillations, also at clinically relevant PaO2 levels close to 9 kPa. Conclusions We conclude that these fibreoptic PaO2 sensors have the potential to become a diagnostic tool for CA in ARDS. PMID:25631471

  2. Relationship between oxygen concentration, respiration and filtration rate in blue mussel Mytilus edulis

    NASA Astrophysics Data System (ADS)

    Tang, Baojun; Riisgård, Hans Ulrik

    2018-03-01

    The large water-pumping and particle-capturing gills of the filter-feeding blue mussel Mytilus edulis are oversized for respiratory purposes. Consequently, the oxygen uptake rate of the mussel has been suggested to be rather insensitive to decreasing oxygen concentrations in the ambient water, since the diffusion rate of oxygen from water flowing through the mussel determines oxygen uptake. We tested this hypothesis by measuring the oxygen uptake in mussels exposed to various oxygen concentrations. These concentrations were established via N2-bubbling of the water in a respiration chamber with mussels fed algal cells to stimulate fully opening of the valves. It was found that mussels exposed to oxygen concentrations decreasing from 9 to 2 mg O2/L resulted in a slow but significant reduction in the respiration rate, while the filtration rate remained high and constant. Thus, a decrease of oxygen concentration by 78% only resulted in a 25% decrease in respiration rate. However, at oxygen concentrations below 2 mg O2/L M. edulis responded by gradually closing its valves, resulting in a rapid decrease of filtration rate, concurrent with a rapid reduction of respiration rate. These observations indicated that M. edulis is no longer able to maintain its normal aerobic metabolism at oxygen concentration below 2 mg O2/L, and there seems to be an energy-saving mechanism in bivalve molluscs to strongly reduce their activity when exposed to low oxygen conditions.

  3. Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication.

    PubMed

    Protti, Alessandro; Russo, Riccarda; Tagliabue, Paola; Vecchio, Sarah; Singer, Mervyn; Rudiger, Alain; Foti, Giuseppe; Rossi, Anna; Mistraletti, Giovanni; Gattinoni, Luciano

    2010-01-01

    Lactic acidosis can develop during biguanide (metformin and phenformin) intoxication, possibly as a consequence of mitochondrial dysfunction. To verify this hypothesis, we investigated whether body oxygen consumption (VO2), that primarily depends on mitochondrial respiration, is depressed in patients with biguanide intoxication. Multicentre retrospective analysis of data collected from 24 patients with lactic acidosis (pH 6.93 +/- 0.20; lactate 18 +/- 6 mM at hospital admission) due to metformin (n = 23) or phenformin (n = 1) intoxication. In 11 patients, VO2 was computed as the product of simultaneously recorded arterio-venous difference in O2 content [C(a-v)O2] and cardiac index (CI). In 13 additional cases, C(a-v)O2, but not CI, was available. On day 1, VO2 was markedly depressed (67 +/- 28 ml/min/m2) despite a normal CI (3.4 +/- 1.2 L/min/m2). C(a-v)O2 was abnormally low in both patients either with (2.0 +/- 1.0 ml O2/100 ml) or without (2.5 +/- 1.1 ml O2/100 ml) CI (and VO2) monitoring. Clearance of the accumulated drug was associated with the resolution of lactic acidosis and a parallel increase in VO2 (P < 0.001) and C(a-v)O2 (P < 0.05). Plasma lactate and VO2 were inversely correlated (R2 0.43; P < 0.001, n = 32). VO2 is abnormally low in patients with lactic acidosis due to biguanide intoxication. This finding is in line with the hypothesis of inhibited mitochondrial respiration and consequent hyperlactatemia.

  4. Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution.

    PubMed

    Nam, Wonwoo; Kim, Inwoo; Lim, Mi Hee; Choi, Hye Jin; Lee, Je Seung; Jang, Ho G

    2002-05-03

    The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.

  5. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease.

    PubMed

    Keymel, Stefanie; Schueller, Benedikt; Sansone, Roberto; Wagstaff, Rabea; Steiner, Stephan; Kelm, Malte; Heiss, Christian

    2018-03-01

    Epidemiological studies have shown increased morbidity and mortality in patients with coronary artery disease (CAD) and chronic obstructive pulmonary disease (COPD). We aimed to characterize the oxygen dependence of endothelial function in patients with CAD and coexisting COPD. In CAD patients with and without COPD ( n = 33), we non-invasively measured flow-mediated dilation (FMD) and intima-media thickness (IMT) of the brachial artery (BA), forearm blood flow (FBF), and perfusion of the cutaneous microcirculation with laser Doppler perfusion imaging (LDPI). In an experimental setup, vascular function was assessed in healthy volunteers ( n = 5) breathing 12% oxygen or 100% oxygen in comparison to room air. COPD was associated with impaired FMD (3.4 ±0.5 vs. 4.2 ±0.6%; p < 0.001) and increased IMT (0.49 ±0.04 vs. 0.44 ±0.04 mm; p <0.01), indicating functional and structural alterations of the BA in COPD. Forearm blood flow and LDPI were comparable between the groups. Flow-mediated dilation correlated with capillary oxygen pressure (pO 2 , r = 0.608). Subgroup analysis in COPD patients with pO 2 > 65 mm Hg and pO 2 ≤ 65 mm Hg revealed even lower FMD in patients with lower pO 2 (3.0 ±0.5 vs. 3.7 ±0.4%; p < 0.01). Multivariate analysis showed that pO 2 was a predictor of FMD independent of the forced expiratory volume and pack years. Exposure to hypoxic air led to an acute decrease in FMD, whereby exposure to 100% oxygen did not change vascular function. Our data suggest that in CAD patients with COPD, decreased systemic oxygen levels lead to endothelial dysfunction, underlining the relevance of cardiopulmonary interaction and the potential importance of pulmonary treatment in secondary prevention of vascular disease.

  6. Stable Isotopes of N2O in a Large Canadian River Impacted by Agricultural and Urban Land Use

    NASA Astrophysics Data System (ADS)

    Thuss, S. J.; Rosamond, M. S.; Schiff, S.; Venkiteswaran, J. J.; Elgood, R. J.

    2009-05-01

    N2O is a potent greenhouse gas. Although denitrification is an important process in the global N cycle, N2O flux measurements from rivers worldwide are scarce. The two main processes producing N2O in rivers -- nitrification and denitrification -- result in N2O that is widely separated in isotopic signature. However, studies on the stable isotopes of N2O in rivers are almost non-existent. Here, we report the N2O fluxes and isotopic signatures in the Grand River, a large, heavily impacted river in southern Ontario. Land use in the basin is predominately agricultural and the river receives effluent from 26 wastewater treatment plants (WWTPs). River samples were collected over a 28 hour period to capture diel variation, along the entire length of the river to capture changing land use and throughout the year to capture the seasonal variability. A dynamic model was used to correct the measured N2O values for the effects of atmospheric exchange. Isotopic analysis of both the NH4+ and the NO3- end members in the WWTP effluent and in the river allowed the determination of N2O production pathways. N2O is produced along the entire length of the river but N2O from denitrification increases dramatically in the river below WWTPs at night when dissolved oxygen is low and nitrification of NH4+ decreases.

  7. Hypoxic Challenge Testing (Fitness to Fly) in children with complex congenital heart disease.

    PubMed

    Naqvi, Nitha; Doughty, Victoria L; Starling, Luke; Franklin, Rodney C; Ward, Simon; Daubeney, Piers E F; Balfour-Lynn, Ian M

    2018-02-14

    Commercial airplanes fly with an equivalent cabin fraction of inspired oxygen of 0.15, leading to reduced oxygen saturation (SpO 2 ) in passengers. How this affects children with complex congenital heart disease (CHD) is unknown. We conducted Hypoxic Challenge Testing (HCT) to assess need for inflight supplemental oxygen. Children aged <16 years had a standard HCT. They were grouped as (A) normal versus abnormal baseline SpO 2 (≥95% vs <95%) and (B) absence versus presence of an actual/potential right-to-left (R-L) shunt. We measured SpO 2 , heart rate, QT interval corrected for heart rate and partial pressure of carbon dioxide measured transcutaneously (PtcCO 2 ). A test failed when children with (1) normal baseline SpO 2 desaturated to 85%, (2) baseline SpO 2 85%-94% desaturated by 15% of baseline; and (3) baseline SpO 2 75%-84% desaturated to 70%. There were 68 children, mean age 3.3 years (range 10 weeks-14.5 years). Children with normal (n=36) baseline SpO 2 desaturated from median 99% to 91%, P<0.0001, and 3/36 (8%) failed the test. Those with abnormal baseline SpO 2 (n=32) desaturated from median 84% to 76%, P<0.0001, and 5/32 (16%) failed (no significant difference between groups). Children with no R-L shunt (n=25) desaturated from median 99% to 93%, P<0.0001, but 0/25 failed. Those with an actual/potential R-L shunt (n=43) desaturated from median 87% to 78%, P<0.0001, and 8/43 (19%) failed (difference between groups P<0.02). PtcCO 2 , heart rate and QT interval corrected for heart rate were unaffected by the hypoxic state. This is the first evidence to help guide which children with CHD need a preflight HCT. We suggest all children with an actual or potential R-L shunt should be tested. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Improved accuracy in high-temperature conversion elemental analyzer δ18O measurements of nitrogen-rich organics.

    PubMed

    Hunsinger, Glendon B; Stern, Libby A

    2012-03-15

    The use of high-temperature conversion (HTC) reduction systems interfaced with isotope ratio mass spectrometers for δ(18)O measurements of nitrogen-containing organic materials is complicated by isobaric interference from (14)N(16)O(+). This ion is produced in the ion source when N(2) reacts with trace oxygen shifting the m/z 30 baseline prior to elution of CO. We compared adaptations to a typical HTC system (TC/EA) to determine the best method to measure the δ(18)O values of nitrogen-rich organic substrates including: (1) 0.6 and 1.5 m 5 Å molecular sieve GC columns; (2) reduction of N(2) peak via He dilution; and (3) diversion of N(2) to waste via an automated four-port valve. These methods were applied to caffeine (IAEA-600), glycine, 4-nitroacetanilide, pentaerythritol tetranitrate (PETN) and cyclotrimethylene trinitramine (RDX), as well as pure and sodium azide-doped benzoic acid (IAEA-601) and sucrose (IAEA-CH6). The efficiency of N(2) production in the HTC interface was highly variable among these compounds. Both the longer column and the dilutor improved, but did not eliminate, the adverse effects of nitrogen. The diversion of N(2) adequately addressed the nitrogen-induced problems as indicated by: (1) consistent m/z 30 background offset between reference and sample CO for both N-free and N-rich materials; (2) production of the highest δ(18)O values; and (3) high correlation between the increase in the δ(18)O values relative to the GC-only measurements and the N(2) peak area. Additional validation would require N-rich oxygen isotope standards for inter-laboratory comparisons. Further, more stringent methodology may improve the poor inter-laboratory δ(18)O reproducibility of IAEA-600. Published in 2012 by John Wiley & Sons, Ltd.

  9. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  10. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  11. Syntheses and multi-NMR study of fac- and mer-OsO(3)F(2)(NCCH(3)) and the X-ray crystal structure (n = 2) and Raman spectrum (n = 0) of fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN.

    PubMed

    Hughes, Michael J; Gerken, Michael; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-06-07

    Dissolution of the infinite chain polymer, (OsO(3)F(2))(infinity), in CH(3)CN solvent at -40 degrees C followed by solvent removal under vacuum at -40 degrees C yielded fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN (n >/= 2). Continued pumping at -40 degrees C with removal of uncoordinated CH(3)CN yielded fac-OsO(3)F(2)(NCCH(3)). Both fac-OsO(3)F(2)(NCCH(3)).nCH(3)CN and fac-OsO(3)F(2)(NCCH(3)) are yellow-brown solids and were characterized by low-temperature (-150 degrees C) Raman spectroscopy. The crystal structure (-173 degrees C) of fac-OsO(3)F(2)(NCCH(3)).2CH(3)CN consists of two co-crystallized CH(3)CN molecules and a pseudo-octahedral OsO(3)F(2).NCCH(3) molecule in which three oxygen atoms are in a facial arrangement and CH(3)CN is coordinated trans to an oxygen atom in an end-on fashion. The Os---N bond length (2.205(3) A) is among the shortest M---N adduct bonds observed for a d(0) transition metal oxide fluoride. The (19)F NMR spectrum of (OsO(3)F(2))(infinity) in CH(3)CN solvent (-40 degrees C) is a singlet (-99.6 ppm) corresponding to fac-OsO(3)F(2)(NCCH(3)). The (1)H, (15)N, (13)C, and (19)F NMR spectra of (15)N-enriched OsO(3)F(2)(NCCH(3)) were recorded in SO(2)ClF solvent (-84 degrees C). Nitrogen-15 enrichment resulted in splitting of the (19)F resonance of fac-OsO(3)F(2)((15)NCCH(3)) into a doublet ((2)J((15)N-(19)F), 21 Hz). In addition, a doublet of doublets ((2)J((19)F(ax)-(19)F(eq)), 134 Hz; (2)J((15)N-(19)F(eq)), 18 Hz) and a doublet ((2)J((19)F(ax)-(19)F(eq)), 134 Hz) were observed in the (19)F NMR spectrum that have been assigned to mer-OsO(3)F(2)((15)NCCH(3)); however, coupling of (15)N to the axial fluorine-on-osmium environment could not be resolved. The nitrogen atom of CH(3)CN is coordinated trans to a fluorine ligand in the mer-isomer. Quantum-chemical calculations at the SVWN and B3LYP levels of theory were used to calculate the energy-minimized gas-phase geometries, vibrational frequencies of fac- and mer-OsO(3)F(2)(NCCH(3)) and of CH(3)CN. The relative stabilities of the mer- and fac-isomers have been determined and are in accordance with the solution NMR assignments.

  12. N(2)O in small para-hydrogen clusters: Structures and energetics.

    PubMed

    Zhu, Hua; Xie, Daiqian

    2009-04-30

    We present the minimum-energy structures and energetics of clusters of the linear N(2)O molecule with small numbers of para-hydrogen molecules with pairwise additive potentials. Interaction energies of (p-H(2))-N(2)O and (p-H(2))-(p-H(2)) complexes were calculated by averaging the corresponding full-dimensional potentials over the H(2) angular coordinates. The averaged (p-H(2))-N(2)O potential has three minima corresponding to the T-shaped and the linear (p-H(2))-ONN and (p-H(2))-NNO structures. Optimization of the minimum-energy structures was performed using a Genetic Algorithm. It was found that p-H(2) molecules fill three solvation rings around the N(2)O axis, each of them containing up to five p-H(2) molecules, followed by accumulation of two p-H(2) molecules at the oxygen and nitrogen ends. The first solvation shell is completed at N = 17. The calculated chemical potential oscillates with cluster size up to the completed first solvation shell. These results are consistent with the available experimental measurements. (c) 2009 Wiley Periodicals, Inc.

  13. [The effect of prophylactically administered n-acetylcysteine on clinical indicators for tissue oxygenation during hyperoxic ventilation in cardiac risk patients].

    PubMed

    Spies, C; Giese, C; Meier-Hellmann, A; Specht, M; Hannemann, L; Schaffartzik, W; Reinhart, K

    1996-04-01

    Hyperoxic ventilation, used to prevent hypoxia during potential periods of hypoventilation, has been reported to paradoxically decrease whole-body oxygen consumption (VO2). Reduction in nutritive blood flow due to oxygen radical production is one possible mechanism. We investigated whether pretreatment with the sulfhydryl group donor and O2 radical scavenger N-acetylcysteine (NAC) would preserve VO2 and other clinical indicators of tissue oxygenation in cardiac risk patients. Thirty patients, requiring hemodynamic monitoring (radial and pulmonary artery catheters) because of cardiac risk factors, were included in this randomized investigation. All patients exhibited stable clinical conditions (hemodynamics, body temperature, hemoglobin, F1O2 < 0.5). Cardiac output was determined by thermodilution and VO2 by cardiovascular Fick. After baseline measurements, patients randomly received either 150 mg kg-1 NAC (n = 15) or placebo (n = 15) in 250 ml 5% dextrose i.v. over a period of 30 min. Measurements were repeated 30 min after starting NAC or placebo infusion, 30 min after starting hyperoxia (F1O2 = 1.0), and 30 min after resetting the original F1O2. There were no significant differences between groups in any of the measurements before treatment and after the return to baseline F1O2 at the end of the study, respectively. NAC, but not placebo infusion, caused a slight but not significant increase in cardiac index (CI), left ventricular stroke work index (LVSWI) and a decrease in systemic vascular resistance. Significant differences between groups during hyperoxia were: VO2 (NAC: 108 +/- 38 ml min-1m-2 vs placebo: 79 +/- 22 ml min-1m-2; P < or = 0.05), CI (NAC: 4.6 +/- 1.0 vs placebo: 3.7 +/- 1.11 min-1m-2; P < or = 0.05) and LVSWI (NAC: 47 +/- 12 vs placebo: 38 +/- 9; P < or = 0.05). The mean decrease of VO2 was 22% in the NAC group vs 47% in the placebo group (P < or = 0.05) and the mean difference between groups in venoarterial carbon dioxide gradient (PvaCO2) was 14% (P < or = 0.05). ST segment depression ( > 0.2 mV) was significantly less marked in the NAC group (NAC: -0.02 +/- 0.17 vs placebo: -0.23 +/- 0.15; P < or = 0.05). NAC helped preserve VO2, oxygen delivery, CI, LVSWI and PvaCO2 during brief hyperoxia in cardiac risk patients. Clinical signs of myocardial ischemia did not occur such as ST-depression if patients were prophylactically treated with NAC. This suggests that pretreatment with NAC could be considered to attenuate impaired tissue oxygenation and to preserve myocardial performance better in cardiac risk patients during hyperoxia.

  14. Statistical Modeling to Predict N2O Production Within the Hyporheic Zone by Coupling Denitrifying Microbial Community Abundance to Geochemical and Hydrological Parameters

    NASA Astrophysics Data System (ADS)

    Farrell, T. B.; Quick, A. M.; Reeder, W. J.; Benner, S. G.; Tonina, D.; Feris, K. P.

    2015-12-01

    The hyporheic zone (HZ) of streams may be a significant source of nitrous oxide (N2O). However, the biogeochemical processes controlling N2O emissions remain poorly constrained due to difficulties in obtaining high-resolution chemical, physical, and biological data from streams. Our research elucidates specific controls on N2O production within the HZ by coupling the distribution of denitrifying microbial communities to flow dynamics (i.e. hydraulics and streambed morphology) and biogeochemical processes. We conducted a large-scale flume experiment that allowed us to constrain streambed morphology, flow rate, organic carbon loading, grain size distribution, and exogenous nitrate loading while enabling regular monitoring of dissolved oxygen, pH, alkalinity, nitrogen species, and elemental concentrations in the HZ. We also employed real-time PCR (qPCR) to quantify the distribution of denitrifying functional genes (nirS and nosZ, nitrite reductase and nitrous oxide reductase genes, respectively) in HZ sediment cores as a measure of denitrifying microorganism abundance. A steady increase in N2O was observed after 8 hours of residence time with a peak in concentration (9.5 μg-N/L) recorded at hour 18. Abundance of nosZ increased an order of magnitude between hours 8 and 18 (2.6x106 to 2.1x107 gene copy #/g dry sediment). nirS abundance remained within the same order of magnitude between hours 8 and 18 (1.7x107 to 3.8x107). Linear and nonlinear mixed-effects models were used to investigate N2O production in the HZ as a function of total nitrogen, nirS, nosZ, residence time, and dissolved oxygen. N2O production was localized at redox-controlled hotspots within the subsurface and concentrations were strongly correlated with the availability of nitrogen when an interaction with nosZ abundance was considered. On-going analysis will provide predictions of N2O production and support for conditions under which the HZ could be a significant contributor of N2O emissions. These results are also being used to parameterize a reactive transport model for predicting N2O production from stream sediments with different bedform morphologies, flow rates, and reactant concentrations.

  15. Comparison of the effects of cognitive behavioural therapy and inhalation sedation on child dental anxiety.

    PubMed

    Kebriaee, F; Sarraf Shirazi, A; Fani, K; Moharreri, F; Soltanifar, A; Khaksar, Y; Mazhari, F

    2015-04-01

    To compare the effectiveness of inhalation sedation with nitrous oxide/oxygen (N2O/O2) and cognitive behavioural therapy (CBT) in reducing dental anxiety in preschool children. Randomised controlled clinical trial. This study was conducted on 45 preschoolers with moderate to severe dental anxiety (determined by the Children's Fear Survey Schedule Dental Subscale), who required pulp treatment of at least one primary mandibular molar. Baseline anxiety and cooperation levels were determined using Venham Clinical Anxiety and Cooperation Scales (VCAS and VCCS) and Venham Picture Test (VPT) at the first dental visit (dental prophylaxis and fluoride treatment). Before the second dental visit (pulp treatment), the children were randomly assigned to one of three groups--1: control, 2: N(2)O/O(2) and 3: CBT. In group 1, the usual behaviour management techniques were used, in group 2, nitrous oxide/oxygen gas was used and in group 3, unrelated play, Benson's breathing and positive self-talk and modelling were used. Anxiety and cooperation levels were determined at three periods: injection, rubber dam placement and the application of a high-speed handpiece with VCAS and VCCS and VPT. Finally, anxiety and cooperation differences between the two dental visits were compared within the three groups. Chi square, ANOVA and Kruskal-Wallis and Mann-Whitney U tests were used. N(2)O/O(2) and CBT significantly resulted in lower anxiety and higher cooperation in the second visit (at all three periods) compared to the control, although there was no significant difference between these two treatment methods. Both test methods were effective in reducing dental anxiety in preschoolers. Considering the adverse effects and necessity of equipment and trained personnel when using nitrous oxide and oxygen inhalation sedation, cognitive behavioural therapy is preferable because of its better applicability.

  16. Potential effects of anthropogenic nitrogen on northern Indian Ocean nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Zamora, L. M.; Suntharalingam, P.; Bange, H. W.; Bikkina, S.; Resplandy, L.; Sarin, M.; Schmidtko, S.; Seitzinger, S.; Singh, A.

    2016-02-01

    The North Indian Ocean (Arabian Sea + Bay of Bengal) accounts for 20-30% of the oceanic emissions of the greenhouse gas, nitrous oxide (N2O). The marine N2O cycle in the suboxic and anoxic waters of this region is very sensitive to relatively small shifts in ambient oxygen (O2); as O2 decreases, N2O production is progressively enhanced and subject to non-linear nitrogen (N) cycle dynamics. Thus, small, sustained changes in local O2 levels (e.g., < 5-10 mmol L-1) may result in detectable impacts on N2O emissions from the North Indian Ocean. Some recent data suggest that O2 may be declining in the already O2-impoverished Arabian Sea. While the reasons for these possible O2 declines are not fully understood, increasing anthropogenic N inputs from atmospheric and riverine sources likely contribute. In this study we bring together a combination of atmospheric deposition models, in situ measurements, and output from the NEWS riverine model to evaluate recent changes in nitrogen nutrient input to the Arabian Sea. We estimate that there has been a twofold increase in N loading from anthropogenic atmospheric deposition and river runoff to the North Indian Ocean during recent decades. To better understand how anthropogenic N increases might affect regional N2O emissions, we also present analysis of historical N2O and O2 measurements from the North Indian Ocean along with estimates of O2 and N2O fluxes from a regional marine biogeochemical model. We find that as in the Arabian Sea, Bay of Bengal O2 is also likely decreasing. However, due to the paucity of data, we are not yet able to estimate the role of anthropogenic N or how these changes might affect Bay of Bengal N2O emissions. While uncertainties are also high in the Arabian Sea, our preliminary results suggest that increases in atmospheric N deposition are enhancing regional N2O production.

  17. Sensors for Food Safety and Security

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.

    Active packaging of food products is aimed at extending shelf life, preserving and improving quality, taste characteristics and appearance of a product. Modified atmosphere packaging (MAP) have become widely used with oxygen sensitive foods, as it enables to inhibit or delay undesirable processes inside packs such as oxidation of lipids and hemecontaining pigments, enzymatic degradation, microbial spoilage, etc. In MAP process, the package container with food is flushed with a mixture of CO2, N2, and O2 gases to replace air, and then sealed. The function of CO2 is to decrease the growth rate of micro-organisms, N2 displaces O2 and also prevents the packaging from collapsing when some of the CO2 is absorbed by moisture in the product1. The majority of MAP foods are packed under the atmosphere with considerably reduced oxygen levels, while products such as raw meat, fruit and vegetables require high concentration of oxygen to keep their appearance and/or shelf life.

  18. Time-dependent middle ear pressure changes under general anaesthesia in children: N2O-O2 mixture versus air-oxygen mixture.

    PubMed

    Apan, A; Muluk, N Bayar; Güler, S; Budak, B

    2013-01-01

    The aim of this study was to investigate the effects of N2O-O2 mixture (Inspired O2 30%) on middle ear pressure (MEP) in children compared with the effects of an air-oxygen mixture (Inspired O2 50%). The study included thirty child patients who underwent general anaesthesia for different reasons, with the exception of ENT problems and ear interventions. They were randomly divided into two groups. Group 1 (15 children: 10 male and 5 female) received a N2O-O2 mixture (Inspired O2 30%); and group 2 (15 children: 10 male and 5 female) were given an air-oxygen mixture (Inspired O2 50%). MEP was measured using a portable impedance analyser before the operation (PreO),10 minutes after intubation (10AEn), 30 minutes after intubation (30AEn), 10 minutes before extubation (10BEx), 15 minutes after the operation (PO15), 30 minutes after the operation (PO30), 1 hour after the operation (PO1h) and 6 hours after the operation (PO6h). The pressure and compliance values were the same in groups 1 and 2. The pressure-time graphs for the two groups were different: in Group 2, MEP rose quickly at 10AEn and positive pressure values were seen in the middle ear. MEP then fell rapidly until the end of the surgery and lower and negative pressures (Mean -50 daPa) were observed at PO6h. In Group 1, MEP was elevated at 10AEn and positive pressure was found (but not as high as in Group 2). MEP then fell more slowly. In other words, positive pressure in the middle ear persisted longer and the middle ear was subjected to positive pressure and nitrogen over a longer period. Separate analyses were made in Groups 1 and 2 of pressure differences and of compliance values at eight measurement points using the Friedman test. Differences in pressure values were found to be statistically significant in both Group 1 (p = 0.000) and Group 2 (p = 0.000). In Group 1, all the 10AEn and 30AEn values were significantly higher than the PreO, PO30, PO1h and PO6h values. The 10BEx value was significantly higher than the PreO and PO1h values. The PO15 value was significantly higher than the PreO value. In Group 2, the PO6h value was significantly lower than the 10BEx, 10AEn and 30AEn values. The PO1h value was significantly lower than the 30AEn values. The MEP values increased in Group 1 in younger and taller children and in children receiving anaesthesia for shorter periods. MEP values increased in Group 2 in younger and taller children, and in heavier children. MEP values fell with the length of anaesthesia. In brief anaesthesia, nitrogen was not removed from the middle ear quickly in Group 1: middle ear pressure values were higher. The nitrous oxide remained in the middle ear longer and so the possibility of ear toxicity may increase. In Group 2, 50% O2 was rapidly absorbed and removed from the middle ear and so middle ear pressure was not as high. It may be concluded that air-oxygen mixture (Inspired O2 50%) anaesthesia should be recommended as being more reliable in tympanoplasties and other middle ear interventions than a N2O-O2 mixture (Inspired O2 30%).

  19. Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen.

    PubMed

    Gatselou, Vasiliki A; Giokas, Dimothenis L; Vlessidis, Athanasios G; Prodromidis, Mamas I

    2015-03-01

    In this work we describe the fabrication of nanostructured electrocatalytic surfaces based on polyethyleneimine (PEI)-supported rhodium nanoparticles (Rh-NP) over graphite screen-printed electrodes (SPEs) for the determination of hydrogen peroxide in the presence of oxygen. Rh-NP, electrostatically stabilized by citrate anions, were immobilized over graphite SPEs, through coulombic attraction on a thin film of positively charged PEI. The functionalized sensors, polarized at 0.0 V vs. Ag/AgCl/3 M KCl, exhibited a linear response to H2O2 over the concentration range from 5 to 600 μmol L(-1) H2O2 in the presence of oxygen. The 3σ limit of detection was 2 μmol L(-1) H2O2, while the reproducibility of the method at the concentration level of 10 μmol L(-1) H2O2 (n=10) and between different sensors (n=4) was lower than 3 and 5%, respectively. Most importantly, the sensors showed an excellent working and storage stability at ambient conditions and they were successfully applied to the determination of H2O2 produced by autooxidation of polylphenols in tea extracts with ageing. Recovery rates ranged between 97 and 104% suggesting that the as-prepared electrodes can be used for the development of small-scale, low-cost chemical sensors for use in on-site applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Is the foot elevation the optimal position for wound healing of a diabetic foot?

    PubMed

    Park, D J; Han, S K; Kim, W K

    2010-03-01

    In managing diabetic foot ulcers, foot elevation has generally been recommended to reduce oedema and prevent other sequential problems. However, foot elevation may decrease tissue oxygenation of the foot more than the dependent position since the dependent position is known to increase blood flow within the arterial system. In addition, diabetic foot ulcers, which have peripheral vascular insufficiency, generally have less oedema than other wounds. Therefore, we argue that foot elevation may not be helpful for healing of vascularly compromised diabetic foot ulcers since adequate tissue oxygenation is an essential factor in diabetic wound healing. The purpose of this study was to evaluate the influence of foot height on tissue oxygenation and to determine the optimal foot position to accelerate wound healing of diabetic foot ulcers. This study included 122 cases (73 males and 47 females; two males had bilateral disease) of diabetic foot ulcer patients aged 40-93 years. Trans-cutaneous partial oxygen tension (TcpO(2)) values of diabetic feet were measured before and after foot elevation (n=21). Elevation was achieved by placing a foot over four cushions. We also measured foot TcpO(2) values before and after lowering the feet (n=122). Feet were lowered to the patient's tibial height, approximately 30-35 cm, beside a bed handrail. Due to the large number of lowering measurements, we divided them into five sub-groups according to initial TcpO(2.) Tissue oxygenation values were compared. Foot-elevation-lowered TcpO(2) values before and after elevation were 32.5+/-22.2 and 23.8+/-23.1 mmHg (p<0.01), respectively. Foot-lowering-augmented TcpO(2) values before and after lowering were 44.6+/-23.8 and 58.0+/-25.9 mmHg (p<0.01), respectively. The lower the initial TcpO(2) level, the more the TcpO(2) level increased. The foot lowering, rather than elevation, significantly augments TcpO(2) and may stimulate healing of diabetic foot ulcers. (c) 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Joos, F.

    2018-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5) scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5 (±1σ range: 3.0 to 6.1) Tg N yr-1, where 4.5% stems from denitrification. Modeled denitrification is 65.1 (40.9 to 91.6) Tg N yr-1, well within current estimates. For high GHG forcing, N2O production decreases by 7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales, marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight coupling between the marine carbon cycle, O2, N2O, and climate.

  2. Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory

    NASA Astrophysics Data System (ADS)

    He, Pin; Ye, Cong; Wu, Jiaji; Wei, Wei; Wei, Xiaodi; Wang, Hao; Zhang, Rulin; Zhang, Li; Xia, Qing; Wang, Hanbin

    2017-05-01

    A ZrOx switching layer with different oxygen content for TiN/ZrOx/Pt resistive switching (RS) memory was prepared by magnetron sputtering in different atmospheres such as N2/Ar mixture, O2/Ar mixture as well as pure Ar. The morphology, structure and RS characteristics were systemically investigated and it was found that the RS performance is highly dependent on the sputtering atmosphere. For the memory device sputtered in N2/Ar mixture, with 8.06% nitrogen content in the ZrOx switching layer, the highest uniformity with smallest distribution of V set and high resistance states (HRS)/low resistance states (LRS) values were achieved. By analyzing the current conduction mechanisms combined with possible RS mechanisms for three devices, we deduce that for the device with a ZrOx layer sputtered in N2/Ar mixture, oxygen ions (O2-), which are decisive to the disruption/formation of the conductive filament, will gather around the tip of the filament due to the existence of doping nitrogen, and lead to the reduction of O2- migration randomness in the operation process, so that the uniformity of the N-doped ZrOx device can be improved.

  3. The source of stratospheric NO and N2O

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.

    1984-01-01

    The photodissociation of O3 was investigated as a possible sources of N2O production in the stratosphere. Photolysis was conducted at 1576 A to generate the excited O2 states that react with N2 to form N2O. At this wavelength, there is a quantum yield of two for prompt production of oygen atoms, which is a consequence of the existence of two photodissociative channels giving comparable yields. One of these channels gives O(D1) and O2(b1sigma(+)subg), with a quantum yield of 0.6, whereas the other results in fragmentation of the O3, with production of three ground state oxygen atoms. The O2(b) is generated with vibrational excitation, and there are comparable populations in levels O to 3. These observations are the first to show O2(b) production from any photodissociative process, and were made under conditions in which the kinetics of vibrationally excited O2(b) can be studied. It appears that O3 photodissociation at 1576 A is not a good system for generating the higher electronic states of O2; it is likely that better results will be obtained at 1930 A.

  4. Oxygen deficient Ti oxides (natural magnéli phases) from mudstone xenoliths with native iron from Disko, central West Greenland

    NASA Astrophysics Data System (ADS)

    Pedersen, A. K.; Rønsbo, J. G.

    1987-05-01

    Mudstone xenoliths in a strongly reduced andesitic subaquatic breccia with native iron from the Asuk Member on Disko contain Ti oxides which are oxygen deficient relative to rutile. Ore microscopy reveals that the mudstone xenoliths contain former clastic oxide grains which have equilibrated to blue Ti oxides and grey aluminous Ti oxides. They also contain still immature coal fragments in a glassy matrix with native iron. The blue oxides are compositionally similar to magnéli phases TinO2n-1 within the range n=4 to 7, and several grains contain more than one natural magnéli phase. Two other phases found are 1) pale orange blebs in magnéli phases with a composition approaching Al1Ti{1/3+}Ti{2/4+}O7 (AlTi phase B) and 2) grey oxide rims on magnéli phases or independent grains of the compositional series Al2-x(Ti{0.5/4+}(Mg,Fe)0.5)xTi{n-2/4+}O2n-1 with n mostly between 7 and 10 (AlTi phase A). The natural magnéli phases equilibrated at oxygen fugacities 4 to 5 log units below the Fe-W oxygen buffer at igneous temperatures and represent the most reduced high-temperature environment yet recorded among native iron bearing rocks from Disko. The extremely reducing conditions were met in rocks where coal fragments were still in a state of degassing hydrocarbon components at the time of quenching. Field geology and carbon barometry indicate equilibration at pressures of less than 10 bars.

  5. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  6. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Relationship between pre-extubation positive endexpiratory pressure and oxygenation after coronary artery bypass grafting

    PubMed Central

    Lima, Reijane Oliveira; Borges, Daniel Lago; Costa, Marina de Albuquerque Gonçalves; Baldez, Thiago Eduardo Pereira; Silva, Mayara Gabrielle Barbosa e; Sousa, Felipe André Silva; Soares, Milena de Oliveira; Pinto, Jivago Gentil Moreira

    2015-01-01

    Introduction After removal of endotracheal tube and artificial ventilation, ventilatory support should be continued, offering oxygen supply to ensure an arterial oxygen saturation close to physiological. Objective The aim of this study was to investigate the effects of positive-end expiratory pressure before extubation on the oxygenation indices of patients undergoing coronary artery bypass grafting. Methods A randomized clinical trial with seventy-eight patients undergoing coronary artery bypass grafting divided into three groups and ventilated with different positive-end expiratory pressure levels prior to extubation: Group A, 5 cmH2O (n=32); Group B, 8 cmH2O (n=26); and Group C, 10 cmH2O (n=20). Oxygenation index data were obtained from arterial blood gas samples collected at 1, 3, and 6 h after extubation. Patients with chronic pulmonary disease and those who underwent off-pump, emergency, or combined surgeries were excluded. For statistical analysis, we used Shapiro-Wilk, G, Kruskal-Wallis, and analysis of variance tests and set the level of significance at P<0.05. Results Groups were homogenous with regard to demographic, clinical, and surgical variables. There were no statistically significant differences between groups in the first 6 h after extubation with regard to oxygenation indices and oxygen therapy utilization. Conclusion In this sample of patients undergoing coronary artery bypass grafting, the use of different positive-end expiratory pressure levels before extubation did not affect gas exchange or oxygen therapy utilization in the first 6 h after endotracheal tube removal. PMID:27163418

  8. Reactive oxygen species alters the electrophysiological properties and raises [Ca2+]i in intracardiac ganglion neurons

    PubMed Central

    Dyavanapalli, Jhansi; Rimmer, Katrina

    2010-01-01

    We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca2+]i in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca2+]i. H2O2 and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H2O2 was reversed fully by Ba2+ and partially by tetraethylammonium, muscarine, and linopirdine. H2O2 and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H2O2 blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H2O2 and t-BHP increased resting intracellular Ca2+ levels to 1.6 ( ± 0.6, n = 11, P < 0.01) and 1.6 ( ± 0.3, n = 8, P < 0.001), respectively, of control value (1.0, ∼60 nM). The ROS scavenger catalase prevented the actions of H2O2, and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H2O2, but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart. PMID:20445155

  9. 3D brain oxygenation measurements in awake hypertensive mice using two photon phosphorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Zhang, Cong; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Cardiovascular risk factors, such as hypertension, have been associated with cognitive decline, potentially due to their impact on brain tissue oxygenation. In this study, high spatial resolution imaging in three dimensions was used to understand changes in brain oxygenation with hypertension. Experiments were performed on Young (WT_Y, 3-4 months, n=8), Old (WT_O, 6-7 months, n=8), and Old with hypertension (HP_O, 6-7 months, n=8) C57bL/6 awake mice. Two photon phosphorescence lifetime microscopy using an O2-sensitive phosphorescent dye PtPC343 was employed to measure two dimensional grids of PO2 in capillary beds (400um*400um, 25*25 pixels, acquired in 4 mins) and decays from arterioles. Scans were obtained continuously at depths from 50 um to 300 um under the brain surface. Using 3D measurements and a 250 um depth stack, we removed the compounding effects on brain oxygenation diffusion from surrounding brain vessels. The entire measurement of each vasculature stack required less than 30 minutes. This study indicates that among vascular risk factors, hypertension can reduce oxygen delivery and could potentially contribute to cognition decline.

  10. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  11. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  12. Phosphorescence quenching microrespirometry of skeletal muscle in situ

    PubMed Central

    Golub, Aleksander S.; Tevald, Michael A.

    2011-01-01

    We have developed an optical method for the evaluation of the oxygen consumption (V̇o2) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po2, together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po2 values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po2 decreased rapidly and the initial slope of the ODC was used to calculate the V̇o2. Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of V̇o2. The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was V̇o2 = 123.4 ± 13.4 (SE) nl O2/cm3·s (N = 38, within 6 muscles) at a baseline interstitial Po2 of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle. PMID:20971766

  13. Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme

    PubMed Central

    Milani, Mario; Pesce, Alessandra; Ouellet, Yannick; Ascenzi, Paolo; Guertin, Michel; Bolognesi, Martino

    2001-01-01

    Macrophage-generated oxygen- and nitrogen-reactive species control the development of Mycobacterium tuberculosis infection in the host. Mycobacterium tuberculosis ‘truncated hemoglobin’ N (trHbN) has been related to nitric oxide (NO) detoxification, in response to macrophage nitrosative stress, during the bacterium latent infection stage. The three-dimensional structure of oxygenated trHbN, solved at 1.9 Å resolution, displays the two-over-two α-helical sandwich fold recently characterized in two homologous truncated hemoglobins, featuring an extra N-terminal α-helix and homodimeric assembly. In the absence of a polar distal E7 residue, the O2 heme ligand is stabilized by two hydrogen bonds to TyrB10(33). Strikingly, ligand diffusion to the heme in trHbN may occur via an apolar tunnel/cavity system extending for ∼28 Å through the protein matrix, connecting the heme distal cavity to two distinct protein surface sites. This unique structural feature appears to be conserved in several homologous truncated hemoglobins. It is proposed that in trHbN, heme Fe/O2 stereochemistry and the protein matrix tunnel may promote O2/NO chemistry in vivo, as a M.tuberculosis defense mechanism against macrophage nitrosative stress. PMID:11483493

  14. Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory-scale biological aerated filter reactor.

    PubMed

    He, Qiang; Zhu, Yinying; Fan, Leilei; Ai, Hainan; Huangfu, Xiaoliu; Chen, Mei

    2017-03-01

    Emission of nitrous oxide (N 2 O) during biological wastewater treatment is of growing concern. This paper reports findings of the effects of carbon/nitrogen (C/N) ratio on N 2 O production rates in a laboratory-scale biological aerated filter (BAF) reactor, focusing on the biofilm during nitrification. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and microelectrode technology were utilized to evaluate the mechanisms associated with N 2 O production during wastewater treatment using BAF. Results indicated that the ability of N 2 O emission in biofilm at C/N ratio of 2 was much stronger than at C/N ratios of 5 and 8. PCR-DGGE analysis showed that the microbial community structures differed completely after the acclimatization at tested C/N ratios (i.e., 2, 5, and 8). Measurements of critical parameters including dissolved oxygen, oxidation reduction potential, NH 4 + -N, NO 3 - -N, and NO 2 - -N also demonstrated that the internal micro-environment of the biofilm benefit N 2 O production. DNA analysis showed that Proteobacteria comprised the majority of the bacteria, which might mainly result in N 2 O emission. Based on these results, C/N ratio is one of the parameters that play an important role in the N 2 O emission from the BAF reactors during nitrification.

  15. A robust and reliable optical trace oxygen sensor

    NASA Astrophysics Data System (ADS)

    McDowell, G. R.; Holmes-Smith, A. S.; Uttamlal, M.; Mitchell, C.; Shannon, P. H.

    2017-05-01

    In applications of nitrogen (N2) generation, industrial gas manufacturing and food packaging there is a need to ensure oxygen (O2) is absent from the environment, even at the lowest concentration levels. Therefore, there has been an increased growth in the development of trace O2 parts per million (ppm) sensors over the past decade to detect and quantify the concentration of molecular O2 in the environment whether it be dissolved or gaseous O2. The majority of commercially available trace O2 sensors are based on electrochemical, zirconia and paramagnetic technologies. Here, the development of a luminescence-based optical trace O2 sensor is presented. Luminescence-based sensing is now regarded as one of the best techniques for the detection and quantification of O2. This is due to the high detection sensitivity, no O2 is consumed and there are a vast array of luminescent indicators and sensing platforms (polymers) that can be selected to suit the desired application. The sensor will be shown to operate from -30 °C to +60 °C in the 0-1000 ppm and/or 0-1200 μbar partial pressure of oxygen (ppO2) range and is equipped with temperature and pressure compensation. The luminescence non-depleting principle, sensor specifications and miniaturized nature offers an attractive alternative to other sensing technologies and advantages over other luminescence-based O2 ppm sensors.

  16. Dynamic interface rearrangement in LaFeO3/n -SrTiO3 heterojunctions

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven R.; Sushko, Peter V.; Chambers, Scott A.; Comes, Ryan B.

    2017-11-01

    Thin-film synthesis methods that have developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. Here we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar/nonpolar junction of LaFeO3 (LFO)/n -SrTiO3 (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO2 and SrO) terminations were prepared prior to LFO deposition; however, local electron-energy-loss spectroscopy measurements of the final heterojunctions show a predominantly LaO/TiO2 interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO/TiO2) and forming oxygen vacancies (in FeO2/SrO), which points to different growth kinetics in each case and may explain the apparent disappearance of the FeO2/SrO interface. We conclude that judicious control of deposition time scales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.

  17. Dynamic interface rearrangement in LaFeO 3 / n - SrTiO 3 heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurgeon, Steven R.; Sushko, Peter V.; Chambers, Scott A.

    2017-11-06

    Thin-film synthesis methods that have developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. In this paper, we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar/nonpolar junction of LaFeO 3 (LFO)/n-SrTiO 3 (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO 2 and SrO) terminations were prepared prior to LFO deposition; however, local electron-energy-loss spectroscopy measurements of the final heterojunctions show amore » predominantly LaO/TiO 2 interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO/TiO 2) and forming oxygen vacancies (in FeO 2/SrO), which points to different growth kinetics in each case and may explain the apparent disappearance of the FeO 2/SrO interface. Finally, we conclude that judicious control of deposition time scales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.« less

  18. Dynamic interface rearrangement in LaFeO 3 / n − SrTiO 3 heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spurgeon, Steven R.; Sushko, Peter V.; Chambers, Scott A.

    2017-11-01

    Thin film synthesis methods developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited understanding of growth pathways and kinetics. Here we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar / non- polar junction of LaFeO3 (LFO) / n-SrTiO3 (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO2 and SrO) terminations were prepared prior to LFO deposition; however, local electron energy loss spectroscopy measurements of the final heterojunctions showmore » a predominantly LaO / TiO2 interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO / TiO2) and forming oxygen vacancies (in FeO2 / SrO), which points to different growth kinetics at these interfaces and may explain the apparent disappearance of the FeO2 / SrO interface. We conclude that judicious control of deposition timescales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.« less

  19. Carbon-doped boron nitride nanosheet as a promising catalyst for N2O reduction by CO or SO2 molecule: A comparative DFT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Saeidi, Nasibeh

    2018-06-01

    We report for the first time, the catalytic activity of the experimentally available carbon-doped boron nitride nanosheet (C-BNNS) towards the reduction of N2O in the presence of CO or SO2 molecule. According to our density functional theory calculations, C-doping can introduce high spin density into BN monolayer which is mainly localized over the C and its neighboring N atoms. The Hirshfeld charge density analysis reveals that the electron-rich C-BNNS acts as an electron donating support to activate N2O molecule which is an important step in the reduction of N2O. The N2O reduction reaction starts with the dissociative adsorption of N2O over the C-BNNS surface, yielding the N2 molecule and an activated oxygen moiety (Oads) adsorbed over the C atom. The reaction then proceeds via the elimination of Oads by a CO or SO2 molecule. The obtained low activation energies clearly indicate that the metal-free C-BNNS surface can be regarded as a highly active catalyst for the reduction of N2O. The results of this study may open new avenues in searching low cost and highly active BN-based catalysts for low temperature reduction of N2O.

  20. Transition Metal Ions in Zeolites: Coordination and activation of O2

    PubMed Central

    Smeets, Pieter J.; Woertink, Julia S.; Sels, Bert F.; Solomon, Edward I.; Schoonheydt, Robert A.

    2010-01-01

    Zeolites containing transition metal ions (TMI) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMI Cu, Co and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMI preferably occupy exchange sites in six-membered oxygen rings (6MR) where the TMI preferentially coordinate with the oxygen atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extra-lattice oxygens during high temperature pretreatments can result in auto-reduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species, called α-oxygen, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive α-oxygen can only be formed with N2O, not with O2. O2 activated Co intermediates in Faujasite (FAU) zeolites can selectively oxidize α-pinene and epoxidize styrene. In Co-FAU, CoIII superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5 various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu]2+ core (Proc. Natl. Acad. Sci. USA 2009, 106, 18908-18913). Overall, O2 activation depends on the interplay of structural factors such as type of zeolite, size of the channels and cages and chemical factors such as Si/Al ratio and the nature, charge and distribution of the charge balancing cations. The presence of several different TMI sites hinders the direct study of the spectroscopic features of the active site. Spectroscopic techniques capable of selectively probing these sites, even if they only constitute a minor fraction of the total amount of TMI sites, are thus required. Fundamental knowledge of the geometric and electronic structure of the reactive active site can help in the design of novel selective oxidation catalysts. PMID:20380459

  1. Isotopic evidence for nitrous oxide production pathways in a partial nitritation-anammox reactor.

    PubMed

    Harris, Eliza; Joss, Adriano; Emmenegger, Lukas; Kipf, Marco; Wolf, Benjamin; Mohn, Joachim; Wunderlin, Pascal

    2015-10-15

    Nitrous oxide (N2O) production pathways in a single stage, continuously fed partial nitritation-anammox reactor were investigated using online isotopic analysis of offgas N2O with quantum cascade laser absorption spectroscopy (QCLAS). N2O emissions increased when reactor operating conditions were not optimal, for example, high dissolved oxygen concentration. SP measurements indicated that the increase in N2O was due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor. The results of this study confirm that process control via online N2O monitoring is an ideal method to detect imbalances in reactor operation and regulate aeration, to ensure optimal reactor conditions and minimise N2O emissions. Under normal operating conditions, the N2O isotopic site preference (SP) was much higher than expected - up to 40‰ - which could not be explained within the current understanding of N2O production pathways. Various targeted experiments were conducted to investigate the characteristics of N2O formation in the reactor. The high SP measurements during both normal operating and experimental conditions could potentially be explained by a number of hypotheses: i) unexpectedly strong heterotrophic N2O reduction, ii) unknown inorganic or anammox-associated N2O production pathway, iii) previous underestimation of SP fractionation during N2O production from NH2OH, or strong variations in SP from this pathway depending on reactor conditions. The second hypothesis - an unknown or incompletely characterised production pathway - was most consistent with results, however the other possibilities cannot be discounted. Further experiments are needed to distinguish between these hypotheses and fully resolve N2O production pathways in PN-anammox systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N, N -dimethylformamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegis, Michael L.; Roberts, John A. S.; Wasylenko, Derek J.

    A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O 2 + 4e – + 4H + ⇌ 2H 2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc +/0) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the freemore » energy for transferring water from aqueous solution to organic solvent, –0.43 kcal mol –1 for MeCN and –1.47 kcal mol –1 for DMF, and the potential of the H +/H 2 couple, – 0.028 V in MeCN and –0.662 V in DMF. The H +/H 2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O 2/H 2O couple has been extended to the CO 2/CO and CO 2/CH 4 couples to give values of –0.12 and +0.15 V in MeCN and –0.73 and –0.48 V in DMF, respectively. Here, extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol –1 for acetonitrile and +0.6 kcal mol –1 for DMF.« less

  3. Standard reduction potentials for oxygen and carbon dioxide couples in acetonitrile and N, N -dimethylformamide

    DOE PAGES

    Pegis, Michael L.; Roberts, John A. S.; Wasylenko, Derek J.; ...

    2015-12-07

    A variety of next-generation energy processes utilize the electrochemical interconversions of dioxygen and water as the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Reported here are the first estimates of the standard reduction potential of the O 2 + 4e – + 4H + ⇌ 2H 2O couple in organic solvents. The values are +1.21 V in acetonitrile (MeCN) and +0.60 V in N,N-dimethylformamide (DMF), each versus the ferrocenium/ferrocene couple (Fc +/0) in the respective solvent (as are all of the potentials reported here). The potentials have been determined using a thermochemical cycle that combines the freemore » energy for transferring water from aqueous solution to organic solvent, –0.43 kcal mol –1 for MeCN and –1.47 kcal mol –1 for DMF, and the potential of the H +/H 2 couple, – 0.028 V in MeCN and –0.662 V in DMF. The H +/H 2 couple in DMF has been directly measured electrochemically using the previously reported procedure for the MeCN value. The thermochemical approach used for the O 2/H 2O couple has been extended to the CO 2/CO and CO 2/CH 4 couples to give values of –0.12 and +0.15 V in MeCN and –0.73 and –0.48 V in DMF, respectively. Here, extensions to other reduction potentials are discussed. Additionally, the free energy for transfer of protons from water to organic solvent is estimated as +14 kcal mol –1 for acetonitrile and +0.6 kcal mol –1 for DMF.« less

  4. Methane Activation Mediated by a Series of Cerium-Vanadium Bimetallic Oxide Cluster Cations: Tuning Reactivity by Doping.

    PubMed

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2016-04-18

    The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    PubMed

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.

  6. ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wordsworth, Robin; Pierrehumbert, Raymond

    2014-04-20

    Detection of life on other planets requires identification of biosignatures, i.e., observable planetary properties that robustly indicate the presence of a biosphere. One of the most widely accepted biosignatures for an Earth-like planet is an atmosphere where oxygen is a major constituent. Here we show that lifeless habitable zone terrestrial planets around any star type may develop oxygen-dominated atmospheres as a result of water photolysis, because the cold trap mechanism that protects H{sub 2}O on Earth is ineffective when the atmospheric inventory of non-condensing gases (e.g., N{sub 2}, Ar) is low. Hence the spectral features of O{sub 2} and O{submore » 3} alone cannot be regarded as robust signs of extraterrestrial life.« less

  7. Millimeter Detection of AlO (X^2 Σ ^+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Tenenbaum, E. D.; Ziurys, L. M.

    2009-06-01

    A new circumstellar molecule, the radical AlO (X^2 Σ ^+), has been detected toward the envelope of the oxygen-rich supergiant star VY Canis Majoris (VY CMa) using the Arizona Radio Observatory (ARO). The N = 7 → 6 and 6 → 5 rotational transitions of AlO at 268 and 230 GHz were observed at 1 mm using the ARO Submillimeter Telescope (SMT) and the N = 4 → 3 line was detected at 2 mm using the ARO 12 m. Based on the shape of the line profiles, AlO most likely arises from the dust-forming region in the spherical outflow of VY CMa, as opposed to the blue- or red-shifted winds, with a source size of θ_s ˜ 0.5^''. Given this source size, the column density of AlO was found to be N_{tot} ˜ 2 × 10^{15} cm^{-2} for T_{rot} ˜ 230 K, with a fractional abundance, relative to H_2, of ˜ 10^{-8}. Gas-phase thermodynamic equilibrium chemistry is the likely formation mechanism for AlO in VY CMa, but shocks may disrupt the condensation process into Al_2O_3, allowing AlO to survive to a radius of ˜ 20 R_*. The detection of AlO in VY CMa is additional evidence of an active gas-phase refractory chemistry in oxygen-rich envelopes, and suggests such objects may be fruitful sources for other new oxide identifications.

  8. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  9. Laboratory IR Detection of H2O, CO2 in Ion-Irradiated Ices Relevant to Europa

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, R. L.

    1999-01-01

    Hydrogen peroxide has been identified on Europa (Carlson et al. 1999) based in part on the 3.50 micron absorption feature observed in Galileo NIMS spectra. The observed feature was fitted with laboratory reflectance spectra of H2O + H2O2. Since condensed phase molecules on Europa (H2O, CO2, SO2, and H2O2) are bombarded with a significant flux of energetic particles (H(+), O(n+), S(n+) and e-), we examined the proton irradiation of H2O at 80 K and the conditions for the IR detection of H2O2 near 3.5 microns. Contrary to expectations, H2O2 was not detected if pure H2O ice was irradiated at 80 K. This was an unexpected result since, H2O2 was detected if pure H2O was irradiated at 18 K. We find, however, that if H2O ice contains either O2 or CO2 then H2O2 is detected after irradiation at 80 K (Moore and Hudson, 1999). The source of O2 for the H2O ice on Europa could come from surface interactions with the tenuous oxygen atmosphere, or from the bombardment of the surface by O(n+).

  10. Atmospheric dayglow diagnostics involving the O2(b-X) Atmospheric band emission: Global Oxygen and Temperature (GOAT) mapping

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.; Pejaković, D. A.; Kostko, O.; Matsiev, D.; Kalogerakis, K. S.

    2017-03-01

    The terrestrial dayglow displays prominent emission features from the 0-0 and 1-1 bands of the O2 Atmospheric band system in the 760-780 nm region. We present an analysis of observations in this wavelength region recorded by the Space Shuttle during the Arizona Airglow Experiment. A major conclusion is that the dominant product of O(1D) + O2 energy transfer is O2(b, v = 1), a result that corroborates our previous laboratory studies. Moreover, critical to the interpretation of dayglow is the possible interference by N2 and N2+ bands in the 760-780 nm region, where the single-most important component is the N2 1PG 3-1 band that overlaps with the O2(b-X) 0-0 band. When present, this background must be accounted for to reveal the O2(b-X) 0-0 and 1-1 bands for altitudes at which the O2 and N2/N2+ emissions coincide. Finally, we exploit the very different collisional behavior of the two lowest O2(b) vibrational levels to outline a remote sensing technique that provides information on Atmospheric composition and temperature from space-based observations of the 0-0 and 1-1 O2 atmospheric bands.

  11. In vitro oxygen exposure promotes maturation of the oxygen sensitive contraction in pre-term chicken ductus arteriosus.

    PubMed

    Greyner, Henry; Dzialowski, Edward M

    2015-10-01

    The ductus arteriosus (DA) are O2-sensitive, embryonic blood vessels that serve as a right-to-left shunt in developing avian embryos. Prior to internal pipping, the chicken DA produces a weak O2-induced contraction. During hatching, the O2-sensitivity of the avian DA vessels increases significantly. To see if we could accelerate the maturation of chicken DA O2-sensitivity, we exposed the vessel in vitro to elevated O2 (25 kPa) for 3-h prior to internal pipping on day 19 of incubation. The DA initially responded to increasing O2 with a weak contraction (0.15±0.04 N/m) that significantly increased in strength (0.63±0.06 N/m) during 3-h 25 kPa O2 exposure. A tonic influence of nitric oxide, not present at low O2, appeared during the 3-h 25 kPa O2 exposure. The long-term O2-induced contraction was mediated by both L-type Ca(2+) channels and internal Ca(2+) stores. The Rho-kinase pathway inhibitors Y-27632 and fasudil produced significant relaxation, suggesting a role for Ca(2+) sensitization in the contractile response to the 3h of elevated O2. While the day 19 DA initially exhibited an immature contractile response to O2, maturation of the pathways regulating O2-induced contraction was accelerated by exposure to 25 kPa O2, producing contractions similar in magnitude to those found during the final stage of hatching. This suggests that maturation of O2-sensitivity may be accelerated in vivo by increasing arterial O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care.

    PubMed

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2016-08-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.

  13. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care

    PubMed Central

    Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.

    2016-01-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  14. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    PubMed

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  15. The Soil Sink for Nitrous Oxide: Trivial Amount but Challenging Question

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K. E.; Sihi, D.

    2015-12-01

    Net uptake of atmospheric nitrous oxide (N2O) has been observed sporadically for many years. Such observations have often been discounted as measurement error or noise, but they were reported frequently enough to gain some acceptance as valid. The advent of fast response field instruments with good sensitivity and precision has permitted confirmation that some soils can be small sinks of N2O. With regards to "closing the global N2O budget" the soil sink is trivial, because it is smaller than the error terms of most other budget components. Although not important from a global budget perspective, the existence of a soil sink for atmospheric N2O presents a fascinating challenge for understanding the physical, chemical, and biological processes that explain the sink. Reduction of N2O by classical biological denitrification requires reducing conditions generally found in wet soil, and yet we have measured the N2O sink in well drained soils, where we also simultaneously measure a sink for atmospheric methane (CH4). Co-occurrence of N2O reduction and CH4 oxidation would require a broad range of microsite conditions within the soil, spanning high and low oxygen concentrations. Abiotic sinks for N2O or other biological processes that consume N2O could exist, but have not yet been identified. We are attempting to simulate processes of diffusion of N2O, CH4, and O2 from the atmosphere and within a soil profile to determine if classical biological N2O reduction and CH4 oxidation at rates consistent with measured fluxes are plausible.

  16. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds

    NASA Astrophysics Data System (ADS)

    Anushree; Kumar, S.; Sharma, C.

    2017-11-01

    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  17. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles

    PubMed Central

    de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio

    2015-01-01

    High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle. PMID:26121248

  18. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles.

    PubMed

    Ramos-Filho, Dionizio; Chicaybam, Gustavo; de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio

    2015-01-01

    High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle.

  19. Experimental and theoretical studies of nuclear generation of ozone from oxygen and oxygen-sulfur hexafluoride mixtures

    NASA Astrophysics Data System (ADS)

    Elsayed-Ali, H. E.; Miley, G. H.

    1986-08-01

    A series of experimental measurements of the yield of O3 in nuclear-induced O2 and O2-SF6 discharges are reported. The discharges were created by bombardment with energetic particles from the 10B(n,α)7Li reaction. Continuous irradiation at dose rates of 1015-1017 eV cm-3 s-1 and pulsed irradiation (˜10 ms FWHM) at a peak dose rate of ˜1020 eV cm-3 s-1 were conducted. At the lower dose rates, the addition of SF6 generally increased the ozone yield due to the slowing of ozone destruction by negative oxygen and ozone ions. In contrast, at the high dose rates, the ozone concentration decreased due to SF6 suppression of atomic oxygen formation by ion-ion recombination. A numerical model was developed and tested against experimental conditions. This model indicates that the steady-state ozone concentration was limited by the reaction O-3+O3→2O2+O-2 with a rate coefficient of ˜1×10-12 cm3 s-1. In addition to dose rate effects, pressure and temperature effects on ozone production are discussed and methods for increasing the ozone yield are suggested.

  20. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    PubMed

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    Vanadium involvement in cellular processes requires deep understanding of the nature and properties of its soluble and bioavailable forms arising in aqueous speciations of binary and ternary systems. In an effort to understand the ternary vanadium-H(2)O(2)-ligand interactions relevant to that metal ion's biological role, synthetic efforts were launched involving the physiological ligands betaine (Me(3)N(+)CH(2)CO(2)(-)) and H(2)O(2). In a pH-specific fashion, V(2)O(5), betaine, and H(2)O(2) reacted and afforded three new, unusual, and unique compounds, consistent with the molecular formulation K(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·H(2)O (1), (NH(4))(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}]·0.75H(2)O (2), and {Na(2)[V(2)O(2)(O(2))(4){(CH(3))(3)NCH(2)CO(2))}(2)]}(n)·4nH(2)O (3). All complexes 1-3 were characterized by elemental analysis; UV/visible, FT-IR, Raman, and NMR spectroscopy in solution and the solid state; cyclic voltammetry; TGA-DTG; and X-ray crystallography. The structures of 1 and 2 reveal the presence of unusual ternary dinuclear vanadium-tetraperoxido-betaine complexes containing [(V(V)═O)(O(2))(2)] units interacting through long V-O bonds. The two V(V) ions are bridged through the oxygen terminal of one of the peroxide groups bound to the vanadium centers. The betaine ligand binds only one of the two V(V) ions. In the case of the third complex 3, the two vanadium centers are not immediate neighbors, with Na(+) ions (a) acting as efficient oxygen anchors and through Na-O bonds holding the two vanadium ions in place and (b) providing for oxygen-containing ligand binding leading to a polymeric lattice. In 1 and 3, interesting 2D (honeycomb) and 1D (zigzag chains) topologies of potassium nine-coordinate polyhedra (1) and sodium octahedra (3), respectively, form. The collective physicochemical properties of the three ternary species 1-3 project the chemical role of the low molecular mass biosubstrate betaine in binding V(V)-diperoxido units, thereby stabilizing a dinuclear V(V)-tetraperoxido dianion. Structural comparisons of the anions in 1-3 with other known dinuclear V(V)-tetraperoxido binary anionic species provide insight into the chemical reactivity of V(V)-diperoxido systems and their potential link to cellular events such as insulin mimesis and anitumorigenicity modulated by the presence of betaine.

  1. The response of nitrous oxide emissions to different operating conditions in activated sludge wastewater treatment plants in Southeastern Brazil.

    PubMed

    Ribeiro, Renato P; Bueno, Rodrigo F; Piveli, Roque P; Kligerman, Débora C; de Mello, William Z; Oliveira, Jaime L M

    2017-11-01

    The continuous measurements of N 2 O emissions from the aeration tanks of three activated sludge wastewater treatment plants (WWTPs) operated with biological nitrogen removal (BNR) and non-BNR were performed during the different operating conditions of several parameters, such as aeration, dissolved oxygen (DO) profiling and organic shock loading (with landfill leachate). The nitrification process is the main driving force behind N 2 O emission peaks. There are indications that the variation of the air flow rate influenced N 2 O emissions; high N 2 O emissions denote over-aeration conditions or incomplete nitrification, with accumulation of NO 2 - concentrations. Thus, continuous measurements of N 2 O emissions can provide information on aeration adequacy and the efficiency of complete nitrification, with major focus on DO control, in order to reduce N 2 O emissions. An additional concern is the observed propensity of WWTPs in developing countries to receive landfill leachates in their wastewater systems. This practice could have adverse effects on climate change, since wastewater treatment during periods of organic shock loading emitted significantly higher amounts of N 2 O than without organic shock loading. In short, non-BNR WWTPs are subject to high N 2 O emissions, in contrast to BNR WWTP with controlled nitrification and denitrification processes.

  2. Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts.

    PubMed

    Michalski, Greg; Kolanowski, Michelle; Riha, Krystin M

    2015-01-01

    Nitrate is a key component of synthetic fertilizers that can be beneficial to crop production in agro-ecosystems, but can also cause damage to natural ecosystems if it is exported in large amounts. Stable isotopes, both oxygen and nitrogen, have been used to trace the sources and fate of nitrate in various ecosystems. However, the oxygen isotope composition of synthetic and organic nitrates is poorly constrained. Here, we present a study on the N and O isotope composition of nitrate-based fertilizers. The δ(15)N values of synthetic and natural nitrates were 0 ± 2 ‰ similar to the air N2 from which they are derived. The δ(18)O values of synthetic nitrates were 23 ± 3 ‰, similar to air O2, and natural nitrate fertilizer δ(18)O values (55 ± 5 ‰) were similar to those observed in atmospheric nitrate. The Δ(17)O values of synthetic fertilizer nitrate were approximately zero following a mass-dependent isotope relationship, while natural nitrate fertilizers had Δ(17)O values of 18 ± 2 ‰ similar to nitrate produced photochemically in the atmosphere. These narrow ranges of values can be used to assess the amount of nitrate arising from fertilizers in mixed systems where more than one nitrate source exists (soil, rivers, and lakes) using simple isotope mixing models.

  3. Crystal structure of bis­{μ-(E)-2-[(2-oxido­phenyl­imino)­meth­yl]quinolin-8-olato-κ4 O,N,N′,O′}bis­[di­butyl­tin(IV)

    PubMed Central

    Carlos, Camacho-Camacho; Naytzé, Ortiz-Pastrana; Ariadna, Garza-Ortiz; Irma, Rojas-Oviedo

    2017-01-01

    Condensation of 8-hy­droxy­quinoline-2-carbaldehyde with 2-amino­phenol gave the (E)-2-[(2-hy­droxy­phenyl­imino)­meth­yl]quinolin-8-ol derivative that reacted with di-n-butyl­tin oxide with release of H2O to yield the chelate title complex, [Sn2(C4H9)4(C16H10N2O2)2]. The compound crystallizes in the triclinic space group P-1, with two independent centrosymmetric dimers in the unit cell. Each features a typical pincer-type structure where the dianionic ligand is tetra­dentate, coordinating to the central tin atom through both phenolate oxygen atoms, as well as through the quinoline and imine N atoms. Each metal atom adopts a distorted penta­gonal–bipyramidal SnC2N2O3 coordination arising from the N,N′,O,O′-tetra­dentate deprotonated Schiff base, one bridging phenolate O atom of the neighbouring ligand and two butyl groups in the axial sites. PMID:28083122

  4. Effect of doping (C or N) and co-doping (C+N) on the photoactive properties of magnetron sputtered titania coatings for the application of solar water-splitting.

    PubMed

    Rahman, M; Dang, B H Q; McDonnell, K; MacElroy, J M D; Dowling, D P

    2012-06-01

    The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The development of materials with smaller band gaps of approximately 2.4 eV is therefore necessary to operate PEC cells efficiently. This study investigates the effect of dopant (C or N) and co-dopant (C+N) on the physical, structural and photoactivity of TiO2 nano thick coating. TiO2 nano-thick coatings were deposited using a closed field DC reactive magnetron sputtering technique, from titanium target in argon plasma with trace addition of oxygen. In order to study the influence of doping such as C, N and C+N inclusions in the TiO2 coatings, trace levels of CO2 or N2 or CO2+N2 gas were introduced into the deposition chamber respectively. The properties of the deposited nano-coatings were determined using Spectroscopic Ellipsometry, SEM, AFM, Optical profilometry, XPS, Raman, X-ray diffraction UV-Vis spectroscopy and tri-electrode potentiostat measurements. Coating growth rate, structure, surface morphology and roughness were found to be significantly influenced by the types and amount of doping. Substitutional type of doping in all doped sample were confirmed by XPS. UV-vis measurement confirmed that doping (especially for C doped sample) facilitate photoactivity of sputtered deposited titania coating toward visible light by reducing bandgap. The photocurrent density (indirect indication of water splitting performance) of the C-doped photoanode was approximately 26% higher in comparison with un-doped photoanode. However, coating doped with nitrogen (N or N+C) does not exhibit good performance in the photoelectrochemical cell due to their higher charge recombination properties.

  5. Flight assessment in patients with respiratory disease: hypoxic challenge testing vs. predictive equations.

    PubMed

    Martin, S E; Bradley, J M; Buick, J B; Bradbury, I; Elborn, J S

    2007-06-01

    Predictive equations have been proposed as a simpler alternative to hypoxic challenge testing (HCT) for determining the risk of in-flight hypoxia. To assess agreement between hypoxic challenge testing (HCT) and predictive equations for assessment of in-flight hypoxia. Retrospective study. Patients with chronic obstructive pulmonary disease (COPD) (n = 15), interstitial lung disease (ILD) (n = 15) and cystic fibrosis (CF) (n = 15) were studied. Spirometry was recorded prior to hypoxic inhalation and oxygen saturations (SpO2) were recorded before, after and during hypoxic inhalation. Blood gases were analysed before and after hypoxic inhalation and when SpO2 = 85%. An HCT was performed using the Ventimask method. The PaO2 at altitude was estimated for each group using four published predictive equations, which use values of PaO2 (ground) and lung function measurements to predict altitude PaO2. Results were interpreted using the BTS recommendations for prescription of in-flight oxygen post HCT. The Stuart Maxwell test of overall homogeneity was used to assess agreement between HCT results and each of the predictive equations. Ground PaO2 was significantly greater in patients with CF than either ILD or COPD (p < 0.05). PaO2 in all three groups significantly decreased following HCT. With the exception of equation 3, significantly fewer patients in each group would require in-flight O2 if prescription was based on HCT, compared to predictive equations (p < 0.05). Predictive equations considerably overestimate the need for in-flight O2, compared to HCT.

  6. 1,2,4,5-benzenetetracarboxylate- and 2,2'-bipyrimidine-containing cobalt(II) coordination polymers: preparation, crystal structure, and magnetic properties.

    PubMed

    Fabelo, Oscar; Pasán, Jorge; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2008-05-05

    Three new mixed-ligand cobalt(II) complexes of formula [Co2(H2O)6(bta)(bpym)]n.4nH2O (1), [Co2(H2O)2(bta)(bpym)]n (2), and [Co2(H2O)4(bta)(bpym)]n.2nH2O ( 3) (bpym = 2,2'-bipyrimidine and H 4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized by single crystal X-ray diffraction. 1 is a chain compound of mer-triaquacobalt(II) units which are linked through regular alternating bis-bidentate bpym and bis-monodentate bta groups. 2 and 3 are three-dimensional compounds where aquacobalt(II) ( 2) and cis-diaquacobalt(II) ( 3) entities are linked by bis-bidentate bpym ( 2 and 3) and tetrakis- ( 2 and 3) and octakis-monodentate ( 2) bta ligands. The cobalt atoms in 1- 3 exhibit somewhat distorted octahedral surroundings. Two bpym-nitrogen atoms ( 1- 3) and either two bta-oxygens ( 2) or one bta-oxygen and a water molecule ( 1 and 3) build the equatorial plane, whereas the axial positions are filled either by two water molecules ( 1) or by a bta-oxygen atom and a water molecule ( 2 and 3). The values of the cobalt-cobalt separation across the bridging bpym vary in the range 5.684(2)-5.7752(7) A, whereas those through the bta bridge cover the ranges 5.288(2)-5.7503(5) A (across the anti-syn carboxylate) and 7.715(3)-11.387(1) A (across the phenyl ring). The magnetic properties of 1- 3 have been investigated in the temperature range 1.9-290 K. They are all typical of an overall antiferromagnetic coupling with the maxima of the magnetic susceptibility at 14.5 ( 1) and 11.5 K ( 2 and 3). Although exchange pathways through bis-bidentate bpym and carboxylate-bta in different coordination modes are involved in 1- 3, their magnetic behavior is practically governed by that across the bpym bridge, the magnitude of the exchange coupling being J = -5.59(2) ( 1), -4.41(2) ( 2), and -4.49(2) ( 3) with the Hamiltonian H = - JS 1 S 2.

  7. A Laughing Gas Greenhouse for the Proterozoic?

    NASA Astrophysics Data System (ADS)

    Roberson, A. L.; Roadt, J.; Halevy, I.; Kasting, J. F.

    2010-12-01

    An anoxic, sulfidic ‘Canfield ocean’ during the Proterozoic (0.75-2.3 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The limitation on copper, specifically, would have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N2O to N2. Today, only about 5-6 percent of denitrification results in release of N2O. If all denitrification stopped at N2O during the Proterozoic, the N2O flux could have been 15-20 times higher than today. Other parts of the nitrogen cycle should have been able to operate at rates comparable to today, as catalysts for these reactions should have existed. The high N2O flux should have created higher atmospheric N2O concentrations; although this effect may have been offset by faster rates of N2O photolysis if O2 concentrations were lower than today. N2O concentrations of 0.3 to 30 ppmv, along with methane levels of 30-100 ppm, could have kept the surface warm during the Proterozoic without necessitating high CO2 levels. The high methane concentrations were a consequence of lack of dissolved O2 and sulfate in the deep ocean, which should have led to a high CH4 flux from marine sediments. A second oxygenation event at the end of the Proterozoic would have resulted in a shift to a more modern ocean and, consequently, more modern concentrations of atmospheric N2O and CH4.

  8. Tissue oxygen partial pressure in the tibialis anterior muscle in patients with claudication before, during and after a two-stage treadmill stress test.

    PubMed

    Jung, F; Krüger, A; Pindur, G; Sternitzky, R; Franke, R P; Gori, T

    2014-01-01

    The role of the microcirculation in the pathophysiology and symptoms of peripheral arterial obliterative disease (PAOD) has been progressively emphasized during the past decades. Under resting conditions, already, the tissue oxygen partial pressure in the m. tibialis anterior (pO2im) is reduced to about 50% compared to healthy subjects. In the framework of this study the pO2im of patients with PAOD stage II according to Fontaine (n=16) in the m. tibialis anterior was measured under resting conditions and during walking on a treadmill in comparison to healthy subjects (n=10). Under resting conditions the pO2im only marginally differed between PAOD patients and healthy subjects. But during exercise the pO2im dropped significantly more severely in PAOD patients and a return to baseline values could only be reached when the treadmill was stopped and the patients stood still. The pO2im minima correlated clearly with the clinical symptom of calf pain. The data revealed that the pO2im values were lower in PAOD patients and dropped significantly faster during walking compared to the pO2im values in healthy subjects. The pO2im decrease correlated with the calf pain occurring when the pO2im values approached or fell below 10 mmHg.

  9. On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal–organic frameworks

    DOE PAGES

    Rosnes, Mali H.; Sheptyakov, Denis; Franz, Alexandra; ...

    2017-09-18

    Low and ambient temperature binding of oxygen, O 2, in MOF-74, CPO-27-M (M = Mn, Co, Ni, Cu, Zn) framework materials remains in the physisorption regime, with energetics very similar to that of nitrogen, N 2, sorption.

  10. On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal–organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosnes, Mali H.; Sheptyakov, Denis; Franz, Alexandra

    Low and ambient temperature binding of oxygen, O 2, in MOF-74, CPO-27-M (M = Mn, Co, Ni, Cu, Zn) framework materials remains in the physisorption regime, with energetics very similar to that of nitrogen, N 2, sorption.

  11. Quantifying N2O emissions and production pathways from fresh waste during the initial stage of disposal to a landfill.

    PubMed

    Wang, Xiaojun; Jia, Mingsheng; Zhang, Han; Pan, Songqing; Kao, Chih Ming; Chen, Shaohua

    2017-05-01

    Intensive nitrous oxide (N 2 O) emissions usually occur at the working face of landfills. However, the specific amounts and contributions of the multiple pathways to N 2 O emissions are poorly understood. N 2 O emissions and the mutual conversions of N-species in both open and sealed simulated landfill reactors filled with fresh refuse were examined during a 100-h incubation period, and N 2 O sources were calculated using 15 N isotope labelling. N 2 O peak fluxes were above 70μgNkg -1 waste h -1 for both treatments. The sealed incubation reactors became a N 2 O sink when N 2 O in the ambient environment was sufficient. The total amount of N 2 O emissions under sealed conditions was 2.15±0.56mgNkg -1 waste, which was higher than that under open conditions (1.91±0.34mgNkg -1 waste). The NO 2 - peak appeared prior to the peak in N 2 O flux. The degree and duration of total nitrogen reduction in open incubations were larger and longer than those of sealed incubations and could possibly be due to oxygen supplementation. Denitrification (DF) was a major source of N 2 O generation during these incubations. The contribution of the DF pathway decreased from 89.2% to 61.3% during the open incubations. The effects of nitrification (NF) and nitrification-coupled denitrification (NCD) increased during the increasing phase and the decreasing phase of N 2 O flux, contributing 24.1-37.4% and 31.7-34.4% of total N 2 O emissions, respectively. In sealed treatments, the DF pathway accounted for more than 90% of the total N 2 O emission during the entire incubation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Blood Oxygen Conservation in Diving Sea Lions: How Low Does Oxygen Really Go

    DTIC Science & Technology

    2015-09-30

    5 6 7 0 20 40 60 80 100 % H b Sa tu ra tio n (S O2 ) Time into Dive (min) Arterial SO2 PostVenaCava SO2 AntVenaCava SO2 3 Figure 2. Rate of...change in posterior venacaval hemoglobin saturation ( SO2 ) in relation to stroke rate during descent, bottom phase, and ascent of all dives of sea

  13. The molecular oxygen dayglow emissions as proxies for atomic oxygen and ozone in the mesosphere and lower thermosphere.

    NASA Astrophysics Data System (ADS)

    Yankovsky, Valentine A.; Manuilova, Rada; Martyshenko, Kseniia

    Currently there is no reliable method for remote sensing of altitude profile of the [O( (3) P)] in the daytime mesosphere and lower thermosphere, but atomic oxygen is a key component in the mechanism of the atmosphere cooling by quenching of vibrationally excited CO _{2} molecules and also one of basic quencher of electronically excited components in MLT region. On the other hand, airglow emission in 1.27 mum IR Atm(0 - 0) band from O _{2}(a (1) Delta _{g}, v = 0) has been used as a proxy for [O _{3}] in MLT for over a decade. However, this method is not suitable for detecting of relatively rapid [O _{3}] variations which occur due to the variability of the solar spectrum in the UV range (120 - 320 nm) and other space factors. The reason of above mentioned is the large value of photochemical lifetime of the O _{2}(a (1) Delta _{g}, v = 0) molecule which is within tau _{O2(a)} =3 (.) 10 (2) - 1 (.) 10 (3) s in the mesosphere and reaches 3 (.) 10 (3) s in the lower thermosphere. The aim of this study is revealing of proxies for retrievals of [O( (3) P)] and [O _{3}]. In the framework of developed model of electronic vibrational kinetics of excited products of O _{3} and O _{2} photolysis in MLT of the Earth (model YM-2011) [1] we solved direct problem for the system of 10 kinetic equations for populations of electronically-vibrationally excited levels of oxygen molecule O _{2}(a (1) Delta _{g}, v=0 - 5), O _{2}(b (1) Sigma (+) _{g}, v=0, 1, 2) and excited oxygen atom O( (1) D). In whole, more than 60 aeronomical reactions of photoexcitation and deexcitation, of energy transfer between these excited levels and of quenching of the levels in collisions with O( (3) P), O _{2}, N _{2}, O _{3} and CO _{2} are considered. Sensitivity analysis of obtained solutions showed that emissions in 629 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=2) and 762 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=0) molecules can be effective proxies for atomic oxygen in the altitude range 85 - 120 km (logarithmic sensitivity coefficients of intensities of these emissions to [O( (3) P)] variation are S= -0.90±0.05 and S= -0.5±0.1, consequently). Also sensitivity analysis for all the considered excited oxygen components showed that emissions in 770 nm band of the O _{2}(b (1) Sigma (+) _{g}, v=1) and 1.27 mum band of the O _{2}(a (1) Delta _{g}, v = 0) molecules can be effective proxies for [O _{3}] retrieval in the altitude range 50 - 110 km (sensitivity coefficients to [O _{3}] variations are S=+0.95±0.05 for both emissions). Possible alternative candidates of proxies for [O _{3}] namely (O _{2}(b (1) Sigma (+) _{g}, v=2), O _{2}(b (1) Sigma (+) _{g}, v=0) and O _{2}(a (1) Delta _{g}, v=1 - 5)) have the sensitivity coefficients to [O _{3}] variations which are one - two orders of magnitude smaller. It must be emphasized that photochemical lifetimes of emitting O _{2}(b (1) Sigma (+) _{g}, v) molecules do not exceed tau _{O2(b,v}) =1.0 s below the mesopause and 10 s in the lower thermosphere (upto 120 km), while tau _{O2(a)} =3 (.) 10 (2) - 3 (.) 10 (3) s. Based on the results , we can recommend the new methods of [O( (3) P)] and [O _{3}] retrieval in MLT from the measurements of the intensities of O _{2}(b (1) Sigma (+) _{g}, v) emission bands. The methods is suitable for undisturbed conditions as well as for periodic and non-periodic short perturbations in the mesosphere and lower thermosphere. 1. Yankovsky V. A., Manuilova R. O., Babaev A. S., Feofilov A. G., Kutepov A. A. 2011. Model of electronic-vibrational kinetics of the O _{3} and O _{2} photolysis products in the middle atmosphere: applications to water vapor retrievals from SABER/TIMED 6.3 mum radiance measurements. International Journal of Remote Sensing, V. 33, N. 12, P. 3065-3078.

  14. Oxygen desaturation during the six-minute walk test in COPD patients*

    PubMed Central

    Moreira, Maria Ângela Fontoura; de Medeiros, Gabriel Arriola; Boeno, Francesco Pinto; Sanches, Paulo Roberto Stefani; da Silva, Danton Pereira; Müller, André Frotta

    2014-01-01

    Objective: To evaluate the behavior of oxygen saturation curves throughout the six-minute walk test (6MWT) in patients with COPD. Methods: We included 85 patients, all of whom underwent spirometry and were classified as having moderate COPD (modCOPD, n = 30) or severe COPD (sevCOPD, n = 55). All of the patients performed a 6MWT, in a 27-m corridor with continuous SpO2 and HR monitoring by telemetry. We studied the SpO2 curves in order to determine the time to a 4% decrease in SpO2, the time to the minimum SpO2 (Tmin), and the post-6MWT time to return to the initial SpO2, the last designated recovery time (RT). For each of those curves, we calculated the slope. Results: The mean age in the modCOPD and sevCOPD groups was 66 ± 10 years and 62 ± 11 years, respectively. At baseline, SpO2 was > 94% in all of the patients; none received supplemental oxygen during the 6MWT; and none of the tests were interrupted. The six-minute walk distance did not differ significantly between the groups. The SpO2 values were lowest in the sevCOPD group. There was no difference between the groups regarding RT. In 71% and 63% of the sevCOPD and modCOPD group patients, respectively, a ≥ 4% decrease in SpO2 occurred within the first minute. We found that FEV1% correlated significantly with the ΔSpO2 (r = −0.398; p < 0.001), Tmin (r = −0.449; p < 0.001), and minimum SpO2 (r = 0.356; p < 0.005). Conclusions: In the sevCOPD group, in comparison with the modCOPD group, SpO2 was lower and the Tmin was greater, suggesting a worse prognosis in the former. PMID:25029644

  15. Millimeter Detection of AlO (X 2Σ+): Metal Oxide Chemistry in the Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Tenenbaum, E. D.; Ziurys, L. M.

    2009-03-01

    A new circumstellar molecule, the radical AlO (X 2Σ+), has been detected toward the envelope of the oxygen-rich supergiant star VY Canis Majoris (VY CMa) using the Arizona Radio Observatory (ARO). The N = 7 → 6 and 6 → 5 rotational transitions of AlO at 268 and 230 GHz were observed at 1 mm using the ARO Submillimeter Telescope (SMT) and the N = 4 → 3 line was detected at 2 mm using the ARO 12 m telescope. Based on the shape of the line profiles, AlO most likely arises from the dust-forming region in the spherical outflow of VY CMa, as opposed to the blue or redshifted winds, with a source size of θ s ~ 0farcs5. Given this source size, the column density of AlO was found to be N tot ~ 2 × 1015 cm-2 for T rot ~ 230 K, with a fractional abundance, relative to H2, of ~10-8. Gas-phase thermodynamic equilibrium chemistry is the likely formation mechanism for AlO in VY CMa, but either shocks disrupt the condensation process into Al2O3, or chemical "freezeout" occurs. The species therefore survives further into the circumstellar envelope to a radius of r ~ 20 R *. The detection of AlO in VY CMa is additional evidence of an active gas-phase refractory chemistry in oxygen-rich envelopes, and suggests such objects may be fruitful sources for other new oxide identifications.

  16. Influence of dissolved oxygen concentration on the start-up of the anammox-based process: ELAN®.

    PubMed

    Morales, N; Val del Río, A; Vázquez-Padín, J R; Gutiérrez, R; Fernández-González, R; Icaran, P; Rogalla, F; Campos, J L; Méndez, R; Mosquera-Corral, A

    2015-01-01

    The anammox-based process ELAN® was started-up in two different sequencing batch reactor (SBR) pilot plant reactors treating municipal anaerobic digester supernatant. The main difference in the operation of both reactors was the dissolved oxygen (DO) concentration in the bulk liquid. SBR-1 was started at a DO value of 0.4 mg O2/L whereas SBR-2 was started at DO values of 3.0 mg O2/L. Despite both reactors working at a nitrogen removal rate of around 0.6 g N/(L d), in SBR-1, granules represented only a small fraction of the total biomass and reached a diameter of 1.1 mm after 7 months of operation, while in SBR-2 the biomass was mainly composed of granules with an average diameter of 3.2 mm after the same operational period. Oxygen microelectrode profiling revealed that granules from SBR-2 where only fully penetrated by oxygen with DO concentrations of 8 mg O2/L while granules from SBR-1 were already oxygen penetrated at DO concentrations of 1 mg O2/L. In this way granules from SBR-2 performed better due to the thick layer of ammonia oxidizing bacteria, which accounted for up to 20% of all the microbial populations, which protected the anammox bacteria from non-suitable liquid media conditions.

  17. Photoluminescence and compositional-structural properties of ion-beam sputter deposited Er-doped TiO2-xNx films: Their potential as a temperature sensor

    NASA Astrophysics Data System (ADS)

    Scoca, D.; Morales, M.; Merlo, R.; Alvarez, F.; Zanatta, A. R.

    2015-05-01

    Er-doped TiO2-xNx films were grown by Ar+ ion-beam sputtering a Ti + Er target under different N2 + O2 high-purity atmospheres. The compositional-structural properties of the samples were investigated after thermal annealing the films up to 1000 °C under a flow of oxygen. Sample characterization included x-ray photoelectron spectroscopy, grazing incidence x-ray diffraction, Raman scattering, and photoluminescence experiments. According to the experimental data, both composition and atomic structure of the samples were very sensitive to the growth conditions and annealing temperature. In the as-deposited form, the N-rich TiO2-xNx films presented TiN crystallites and no photoluminescence. As the thermal treatments proceed, the films were transformed into TiO2 and Er3+-related light emission were observed in the visible and near-infrared ranges at room-temperature. Whereas the development of TiO2 occurred due to the insertion-diffusion of oxygen in the films, light emission originated because of optical bandgap widening and/or structural-chemical variations in the vicinity of the Er3+ ions. Finally, the photoluminescence results in the visible range suggested the potential of the present samples in producing an optically based temperature sensor in the ˜150-500 K range.

  18. The aeronomy of odd nitrogen in the thermosphere. II - Twilight emissions

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.; Oran, E. S.; Feldman, P. D.

    1976-01-01

    A model developed for the aeronomy of odd nitrogen in the thermosphere is used to analyze rocket measurements of N(4S) and NO densities. Data from Atmosphere Explorer were used to develop a consistent reaction kinetics model for odd nitrogen chemistry. It is concluded that most NO(+) dissociative recombination events must produce N(2D), that N(2D) is quenched by O at a rate of 1 trillionth cu cm per sec, and that the atmospheric O2 quenching rate of N(2D) is consistent with the laboratory rate. The major quenching agent of N(2D) between 140 and 220 km is atomic oxygen, and this reaction is the major source of N(4S). Peak N(4S) densities of about (20-60) million per cu cm at 140-150 km are predicted, with the variability being indicative of the model sensitivity to a factor of 2 change in the O/O2 ratio in the thermosphere.

  19. P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Li, Min; Wang, Jian-Zhong; Shi, Li-Qun

    2013-02-01

    We prepare p-type ZnO:N films by annealing Zn3N2 films in oxygen over a range of temperatures. The prepared films are characterized by various techniques, such as Rutherford backscattering spectroscopy, x-ray diffraction, x-ray photoemission spectroscopy, the Hall effect and photoluminescence spectra. The results show that the Zn3N2 films start to transform to ZnO at 300°C and the N content decreases with an increase in annealing temperature. N has two local chemical states: zinc oxynitride (ZnO1-xNx) and substitutional NO in O-rich local environments (α -NO). The conduction type changes from n-type to p-type upon oxidation at 400-600°C, indicating that N is an effective acceptor in the ZnO film. The photoluminescence spectra show the UV emission and defect-related emissions of ZnO:N films. The mechanism and efficiency of p-type doping are briefly discussed.

  20. Atomic-Scale Origin of the Quasi-One-Dimensional Metallic Conductivity in Strontium Niobates with Perovskite-Related Layered Structures.

    PubMed

    Chen, Chunlin; Yin, Deqiang; Inoue, Kazutoshi; Lichtenberg, Frank; Ma, Xiuliang; Ikuhara, Yuichi; Bednorz, Johannes Georg

    2017-12-26

    The quasi-one-dimensional (1D) metallic conductivity of the perovskite-related Sr n Nb n O 3n+2 compounds is of continuing fundamental physical interest as well as being important for developing advanced electronic devices. The Sr n Nb n O 3n+2 compounds can be derived by introducing additional oxygen into the SrNbO 3 perovskite. However, the physical origin for the transition of electrical properties from the three-dimensional (3D) isotropic conductivity in SrNbO 3 to the quasi-1D metallic conductivity in Sr n Nb n O 3n+2 requires more in-depth clarification. Here we combine advanced transmission electron microscopy with atomistic first-principles calculations to unambiguously determine the atomic and electronic structures of the Sr n Nb n O 3n+2 compounds and reveal the underlying mechanism for their quasi-1D metallic conductivity. We demonstrate that the local electrical conductivity in the Sr n Nb n O 3n+2 compounds directly depends on the configuration of the NbO 6 octahedra in local regions. These findings will shed light on the realization of two-dimensional (2D) electrical conductivity from a bulk material, namely by segmenting a 3D conductor into a stack of 2D conducting thin layers.

  1. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.

    PubMed

    Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo

    2014-04-01

    Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.

  2. The detailed chemistry and thermodynamics of sodium in oxygen-rich flames

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Steinberg, M.; Schofield, K.

    1982-01-01

    Measurement of sodium and OH concentrations in ten oxygen-rich H2/O2/N2 flames by respective saturated and low-power laser induced fluorescence techniques have permitted a detailed examination of the pronounced flame chemistry of sodium in such oxygen rich media. Previous interpretations have been shown to be largely incomplete or in error. The flame downstream profiles indicate that the amount of free sodium tracks the decay of H-atom and as the flame radicals decay sodium becomes increasingly bound in a molecular form. A detailed kinetic model indicates that the sodium is distributed between NaOH and NaO2 species. Concentrations of NaO are very small and NaH negligible. The actual distribution is controlled by the state of equilibrium of the flames' basic free radicals. Na, NaO2 and NaOH are all coupled to one another by fast reactions which can rapidly interconvert one to another as flame conditions vary. Above about 2000K, NaOH becomes dominant whereas NaO2 plays an increasingly important contribution at lower temperatures.

  3. Oxidation and reduction rates for organic carbon in the Amazon mainstream tributary and floodplain, inferred from distributions of dissolved gases

    NASA Technical Reports Server (NTRS)

    Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.

    1986-01-01

    Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.

  4. Assessment of online monitoring strategies for measuring N2O emissions from full-scale wastewater treatment systems.

    PubMed

    Marques, Ricardo; Rodriguez-Caballero, A; Oehmen, Adrian; Pijuan, Maite

    2016-08-01

    Clark-Type nitrous oxide (N2O) sensors are routinely used to measure dissolved N2O concentrations in wastewater treatment plants (WWTPs), but have never before been applied to assess gas-phase N2O emissions in full-scale WWTPs. In this study, a full-scale N2O gas sensor was tested and validated for online gas measurements, and assessed with respect to its linearity, temperature dependence, signal saturation and drift prior to full-scale application. The sensor was linear at the concentrations tested (0-422.3, 0-50 and 0-10 ppmv N2O) and had a linear response up to 2750 ppmv N2O. An exponential correlation between temperature and sensor signal was described and predicted using a double exponential equation while the drift did not have a significant influence on the signal. The N2O gas sensor was used for online N2O monitoring in a full-scale sequencing batch reactor (SBR) treating domestic wastewater and results were compared with those obtained by a commercial online gas analyser. Emissions were successfully described by the sensor, being even more accurate than the values given by the commercial analyser at N2O concentrations above 500 ppmv. Data from this gas N2O sensor was also used to validate two models to predict N2O emissions from dissolved N2O measurements, one based on oxygen transfer rate and the other based on superficial velocity of the gas bubble. Using the first model, predictions for N2O emissions agreed by 98.7% with the measured by the gas sensor, while 87.0% similarity was obtained with the second model. This is the first study showing a reliable estimation of gas emissions based on dissolved N2O online data in a full-scale wastewater treatment facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. HIGH DENSITY NUCLEAR FUEL COMPOSITION

    DOEpatents

    Litton, F.B.

    1962-07-17

    ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

  6. Comparison of Arterial Oxygenation Following Head-Down and Head-Up Laparoscopic Surgery.

    PubMed

    Imani, Farsad; Shirani Amniyeh, Fatemeh; Bastan Hagh, Ehsan; Khajavi, Mohammad Reza; Samimi, Saghar; Yousefshahi, Fardin

    2017-12-01

    Regarding the role of gas entry in abdomen and cardiorespiratory effects, the ability of anesthesiologists would be challenged in laparoscopic surgeries. Considering few studies in this area and the relevance of the subject, this study was performed to compare the arterial oxygen alterations before operation in comparison with after surgery between laparoscopic cholecystectomy and ovarian cystectomy. In this prospective cohort, 70 consecutive women aged from 20 to 60 years who were candidate for laparoscopic cholecystectomy (n = 35) and ovarian cystectomy (n = 35) with reverse (20 degrees) and direct (30 degrees) Trendelenburg positions, respectively, with ASA class I or II were enrolled. After intubation and before operation, for the first time, the arterial blood gas from radial artery in supine position was obtained for laboratory assessment. Then, the second blood sample was collected from radial artery in supine position and sent to the lab to be assessed with the same device after 30 minutes from surgery termination. The measured variables from arterial blood gas were arterial partial pressure of oxygen (PaO 2 ) and Oxygen saturation (SpO 2 ) alterations. Total PaO 2 was higher in the first measurement. The higher values of PaO 2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.060) and multivariate analysis (P = 0.654). Furthermore, higher values of SpO 2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.412) and multivariate analysis (P = 0.984). In general, based on the results of this study, the values of PaO 2 in cholecystectomy (upward) were not significantly higher than the values in cystectomy (downward) in laparoscopic surgeries when measured 30 minutes after surgery.

  7. Comparison of Arterial Oxygenation Following Head-Down and Head-Up Laparoscopic Surgery

    PubMed Central

    Imani, Farsad; Shirani Amniyeh, Fatemeh; Bastan Hagh, Ehsan; Khajavi, Mohammad Reza; Samimi, Saghar; Yousefshahi, Fardin

    2017-01-01

    Background Regarding the role of gas entry in abdomen and cardiorespiratory effects, the ability of anesthesiologists would be challenged in laparoscopic surgeries. Considering few studies in this area and the relevance of the subject, this study was performed to compare the arterial oxygen alterations before operation in comparison with after surgery between laparoscopic cholecystectomy and ovarian cystectomy. Methods In this prospective cohort, 70 consecutive women aged from 20 to 60 years who were candidate for laparoscopic cholecystectomy (n = 35) and ovarian cystectomy (n = 35) with reverse (20 degrees) and direct (30 degrees) Trendelenburg positions, respectively, with ASA class I or II were enrolled. After intubation and before operation, for the first time, the arterial blood gas from radial artery in supine position was obtained for laboratory assessment. Then, the second blood sample was collected from radial artery in supine position and sent to the lab to be assessed with the same device after 30 minutes from surgery termination. The measured variables from arterial blood gas were arterial partial pressure of oxygen (PaO2) and Oxygen saturation (SpO2) alterations. Results Total PaO2 was higher in the first measurement. The higher values of PaO2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.060) and multivariate analysis (P = 0.654). Furthermore, higher values of SpO2 in cholecystectomy (upward) than in ovarian cystectomy (downward) were not significant in univariate (P = 0.412) and multivariate analysis (P = 0.984). Conclusions In general, based on the results of this study, the values of PaO2 in cholecystectomy (upward) were not significantly higher than the values in cystectomy (downward) in laparoscopic surgeries when measured 30 minutes after surgery. PMID:29696125

  8. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    PubMed

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.

  9. Study Program to Develop and Evaluate Die and Container Materials for the Growth of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Ounby, P. D.; Yu, B. B.; Barsoum, M. W.

    1979-01-01

    The completion of a major hardware delivery milestone was accomplished with the delivery of three CNTD Si3N4 coated hot pressed Si3N4 crucibles. A limited characterization of the coating was performed at MRL prior to delivery. The coatings were fine grained alpha - Si3N4. It was determined that a two piece die design is required. The importance of the role of oxygen in influencing the attack of the CNTD materials by molten silicon was demonstrated. The stability is greatly enhanced by maintaining the oxygen partial pressure near or below the Si + O2 = SiO2 equilibrium.

  10. Stable isotopes and iron oxide mineral products as markers of chemodenitrification.

    PubMed

    Jones, L Camille; Peters, Brian; Lezama Pacheco, Juan S; Casciotti, Karen L; Fendorf, Scott

    2015-03-17

    When oxygen is limiting in soils and sediments, microorganisms utilize nitrate (NO3-) in respiration--through the process of denitrification--leading to the production of dinitrogen (N2) gas and trace amounts of nitrous (N2O) and nitric (NO) oxides. A chemical pathway involving reaction of ferrous iron (Fe2+) with nitrite (NO2-), an intermediate in the denitrification pathway, can also result in production of N2O. We examine the chemical reduction of NO2- by Fe(II)--chemodenitrification--in anoxic batch incubations at neutral pH. Aqueous Fe2+ and NO2- reacted rapidly, producing N2O and generating Fe(III) (hydr)oxide mineral products. Lepidocrotite and goethite, identified by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, were produced from initially aqueous reactants, with two-line ferrihydrite increasing in abundance later in the reaction sequence. Based on the similarity of apparent rate constants with different mineral catalysts, we propose that the chemodenitrification rate is insensitive to the type of Fe(III) (hydr)oxide. With stable isotope measurements, we reveal a narrow range of isotopic fractionation during NO2- reduction to N2O. The location of N isotopes in the linear N2O molecule, known as site preference, was also constrained to a signature range. The coexistence of Fe(III) (hydr)oxide, characteristic 15N and 18O fractionation, and N2O site preference may be used in combination to qualitatively distinguish between abiotic and biogenically emitted N2O--a finding important for determining N2O sources in natural systems.

  11. Epitaxial ZnO gate dielectrics deposited by RF sputter for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Seonno; Lee, Seungmin; Kim, Hyun-Seop; Cha, Ho-Young; Lee, Hi-Deok; Oh, Jungwoo

    2018-01-01

    Radio frequency (RF)-sputtered ZnO gate dielectrics for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) were investigated with varying O2/Ar ratios. The ZnO deposited with a low oxygen content of 4.5% showed a high dielectric constant and low interface trap density due to the compensation of oxygen vacancies during the sputtering process. The good capacitance-voltage characteristics of ZnO-on-AlGaN/GaN capacitors resulted from the high crystallinity of oxide at the interface, as investigated by x-ray diffraction and high-resolution transmission electron microscopy. The MOS-HEMTs demonstrated comparable output electrical characteristics with conventional Ni/Au HEMTs but a lower gate leakage current. At a gate voltage of -20 V, the typical gate leakage current for a MOS-HEMT with a gate length of 6 μm and width of 100 μm was found to be as low as 8.2 × 10-7 mA mm-1, which was three orders lower than that of the Ni/Au Schottky gate HEMT. The reduction of the gate leakage current improved the on/off current ratio by three orders of magnitude. These results indicate that RF-sputtered ZnO with a low O2/Ar ratio is a good gate dielectric for high-performance AlGaN/GaN MOS-HEMTs.

  12. Fact and Fiction of Nitrous Oxide Production By Nitrification

    NASA Astrophysics Data System (ADS)

    Stein, L. Y.; Kozlowski, J.; Stieglmeier, M.; Klotz, M. G.; Schleper, C.

    2014-12-01

    An accepted dogma in nitrification research is that ammonia-oxidizing bacteria (AOB) produce a modicum of nitrous oxide (N2O) during nitritation via incomplete oxidation of hydroxylamine, and substantially more at low oxygen concentrations via nitrifier denitrification.The nitrifier denitrification pathway involves the reduction of nitrite to N2O via nitric oxide and was thought to require activities of a copper-containing nitrite reductase (NirK) and nitric oxide reductase (NorB); inventory encoded in most, but not all AOB genome sequences. The discovery of nirK genes in ammonia-oxidizing Thaumarchaeota (AOA) resulted in a slew of publications stating that AOA must also perform nitrifier denitrification and, due to their high abundance, must control the majority of nitrification-linked N2O emissions. Prior to a publication by Stieglmeier et al. (2014), which definitively showed a lack of nitrifier denitrification by two axenic AOA cultures, other researchers relied on enrichment cultures, negative data, and heavy inferencing without direct demonstration of either a functional pathway or involvement of specific genes or enzymes. AOA genomes lack recognizable nitric oxide reductases and thermophilic AOA also lack nirK genes. Physiological and microrespirometry experiments with axenic AOB and AOA cultures allowed us to demonstrate that: 1) AOB produce N2O via nitrifier denitrification even though some lack annotated nirK and/or norB genes; 2) nitrifier denitrification by AOB is reliant on nitric oxide but ammonia oxidation is not; 3) ammonia oxidation by AOA is reliant on production of nitric oxide; 4) AOA are incapable of generating N2O via nitrifier denitrification; 5) N2O production by AOA is from chemical interactions between NO and media components, most likely not by enzyme activity. Our results reveal operation of different N oxide transformation pathways in AOB and AOA governed by different environmental controls and involving different mechanisms of N2O production. Critical controls on these mechanisms are levels of oxygen and ammonium. Future calculations of relative contributions of AOB and AOA to N2O emissions must take into account physiological, enzymatic, and environmental differences between these two nitrifying microorganisms.

  13. Mechanistic insight of the photodynamic effect induced by tri- and tetra-cationic porphyrins on Candida albicans cells.

    PubMed

    Cormick, M Paula; Quiroga, Ezequiel D; Bertolotti, Sonia G; Alvarez, M Gabriela; Durantini, Edgardo N

    2011-10-01

    The photodynamic mechanism of action induced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP(3+)), 5,10,15,20-tetrakis(4-N,N,N-trimethylammoniumphenyl)porphyrin (TMAP(4+)) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP(4+)) was investigated on Candida albicans cells. These cationic porphyrins are effective photosensitizers, producing a ~5 log decrease of cell survival when the cultures are incubated with 5 μM photosensitizer and irradiated for 30 min with visible light. Studies under anoxic conditions indicated that oxygen is necessary for the mechanism of action of photodynamic inactivation of this yeast. Furthermore, photoinactivation of C. albicans cells was negligible in the presence of 100 mM azide ion, whereas the photocytotoxicity induced by these porphyrins increased in D(2)O. In contrast, the addition of 100 mM mannitol produced a negligible effect on the cellular phototoxicity. On the other hand, in vitro direct observation of singlet molecular oxygen, O(2)((1)Δ(g)) phosphorescence at 1270 nm was analyzed using C. albicans in D(2)O. A shorter lifetime of O(2)((1)Δ(g)) was found in yeast cellular suspensions. These cationic porphyrins bind strongly to C. albicans cells and the O(2)((1)Δ(g)) generated inside the cells is rapidly quenched by the biomolecules of the cellular microenvironment. Therefore, the results indicate that these cationic porphyrins appear to act as photosensitizers mainly via the intermediacy of O(2)((1)Δ(g)). This journal is © The Royal Society of Chemistry and Owner Societies 2011

  14. Aspects of Industrial Water Treatment.

    DTIC Science & Technology

    1978-02-01

    Biochemical oxygen demand, Nitrate (as I) Cyanide, total 5- d (DOD 5 ) Nitr$te (a N) Cyanide amenable to i Chealc€l oxygen deuma! (COD)) chlorination...for Industrial ProcessWaters * o s .o. . o , ,,. . . , s o , , , , 26 Is CON~TfNTS (Cont’dI TAMLE (Cont’ d ) 10 Limiting Concentration Ranges...the United States are graphically presented in Figures I and 2. D . Z C O’ M ITUMMS OJT WATM U 1. Untreated feedwater can cause numerous problems in

  15. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    PubMed

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  16. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells.

    PubMed

    Wang, Yongcheng; Tang, Jing; Zhou, Tong; Da, Peimei; Li, Jun; Kong, Biao; Yang, Zhongqin; Zheng, Gengfeng

    2014-12-10

    A facile, solution method for reversible tuning of oxygen vacancies inside TiO2 nanowires, in which the reducing treatment of TiO2 by NaBH4 leads to 2.4-fold increase of photocurrent density, compared to pristine TiO2 nanowires, is reported. Subsequent oxidizing treatment using KMnO4 or annealing in air can reset the photocurrent density to the original values. The incident photo-to-current conversion efficiency measurement exhibits that the reduced TiO2 nanowires present both enhanced photoactivity in both UV and visible regions. Density functional theory calculations reveal that the oxygen vacancies in the reduced TiO2 cause defect states in the band structure and result in enhanced carrier density and conductivity. In addition, the enhanced solar energy-driven photoelectrochemical conversion allows real-time, sensitive chemical probing of living cells that are directly grown on the TiO2 nanowire photoanodes. As proofs-of-concept, after functionalized with horseradish peroxidase (HRP) on the surface, the reduced TiO2 NWs demonstrate sensitive, real-time monitoring of the H2O2 levels in several distinctive living cell lines, with the lowest detectable H2O2 concentration of 7.7 nM. This reversible tuning of oxygen vacancies suggests a facile means for transition metal oxides, with enhanced photoconversion activity and electrochemical sensitivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Facile synthesis of thermal- and photostable titania with paramagnetic oxygen vacancies for visible-light photocatalysis.

    PubMed

    Zou, Xiaoxin; Liu, Jikai; Su, Juan; Zuo, Fan; Chen, Jiesheng; Feng, Pingyun

    2013-02-18

    A novel dopant-free TiO(2) photocatalyst (V(o)(.)-TiO(2)), which is self-modified by a large number of paramagnetic (single-electron-trapped) oxygen vacancies, was prepared by calcining a mixture of a porous amorphous TiO(2) precursor, imidazole, and hydrochloric acid at elevated temperature (450 °C) in air. Control experiments demonstrate that the porous TiO(2) precursor, imidazole, and hydrochloric acid are all necessary for the formation of V(o)(.)-TiO(2). Although the synthesis of V(o)(.)-TiO(2) originates from such a multicomponent system, this synthetic approach is facile, controllable, and reproducible. X-ray diffraction, XPS, and EPR spectroscopy reveal that the V(o)(.)-TiO(2) material with a high crystallinity embodies a mass of paramagnetic oxygen vacancies, and is free of other dopant species such as nitrogen and carbon. UV/Vis diffuse-reflectance spectroscopy and photoelectrochemical measurement demonstrate that V(o)(.)-TiO(2) is a stable visible-light-responsive material with photogenerated charge separation efficiency higher than N-TiO(2) and P25 under visible-light irradiation. The V(o)(.)-TiO(2) material exhibits not only satisfactory thermal- and photostability, but also superior photocatalytic activity for H(2) evolution (115 μmol h(-1) g(-1)) from water with methanol as sacrificial reagent under visible light (λ>400 nm) irradiation. Furthermore, the effects of reaction temperature, ratio of starting materials (imidazole:TiO(2) precursor) and calcination time on the photocatalytic activity and the microstructure of V(o)(.)-TiO(2) were elucidated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. O2(b1∑+g) relaxation in active medium of oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Tolstov, G. I.; Zagidullin, M. V.; Khvatov, N. A.; Medvedkov, I. A.; Mikheyev, P. A.

    2018-04-01

    Rate constants for the removal of O2 b1∑+g by collisions with O2, N2, CO2 and H2O have been determined at temperature 297 K. O2(b1 ∑+g) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b1∑+g - X3∑-g fluorescence. The removal rate constants for CO2, N2 and H2O were not strongly dependent on temperature, and could be represented by the expressions kCO2=(1.8+/-0.05)×10-16 kN2=(2.2 +/- 0.2)×10-15, and kH2O=(6.12+/-0.67)×10-12 cm3 molecule-1 s-1. Rate constant for O2(b1∑+ ) removal by O2(X), being orders of magnitude lower, represented by the fitted expression kO2=(3.67 +/- 0.06)×10-17 cm3 molecule-1 s-1. All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.

  19. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    PubMed Central

    Huyen, Duong Ngoc; Tung, Nguyen Trong; Thien, Nguyen Duc; Thanh, Le Hai

    2011-01-01

    A nanocomposite of titanium dioxide (TiO2) and polyaniline (PANi) was synthesized by in-situ chemical polymerization using aniline (ANi) monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules. PMID:22319389

  20. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    NASA Technical Reports Server (NTRS)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

Top