Sample records for n2 sorption isotherms

  1. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  2. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    PubMed

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2  > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  3. [Equilibrium sorption isotherm for Cu2+ onto Hydrilla verticillata Royle and Myriophyllum spicatum].

    PubMed

    Yan, Chang-zhou; Zeng, A-yan; Jin, Xiang-can; Wang, Sheng-rui; Xu, Qiu-jin; Zhao, Jing-zhu

    2006-06-01

    Equilibrium sorption isotherms for Cu2+ onto Hydrilla verticillata Royle and Myriophyllum spicatum were studied. Both methods of linear and non-linear fitting were applied to describe the sorption isotherms, and their applicability were analyzed and compared. The results were: (1) The applicability of simulated equation can't be compared only by R2 and chi2 when equilibrium sorption model was used to quantify and contrast the performance of different biosorbents. Both methods of linear and non-linear fitting can be applied in different fitting equations to describe the equilibrium sorption isotherms respectively in order to obtain the actual and credible fitting results, and the fitting equation best accorded with experimental data can be selected; (2) In this experiment, the Langmuir model is more suitable to describe the sorption isotherm of Cu2+ biosorption by H. verticillata and M. spicatum, and there is greater difference between the experimental data and the calculated value of Freundlich model, especially for the linear form of Freundlich model; (3) The content of crude cellulose in dry matter is one of the main factor affecting the biosorption capacity of a submerged aquatic plant, and -OH and -CONH2 groups of polysaccharides on cell wall maybe are active center of biosorption; (4) According to the coefficients qm of the linear form of Langmuir model, the maximum sorption capacity of Cu2+ was found to be 21.55 mg/g and 10.80mg/g for H. verticillata and M. spicatum, respectively. The maximum specific surface area for H. verticillata for binding Cu2+ was 3.23m2/g, and it was 1.62m2/g for M. spicatum.

  4. Comparison of high-pressure CO 2 sorption isotherms on Eastern and Western US coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, V; Hur, T -B; Fazio, J

    2013-10-01

    Accurate estimation of carbon dioxide (CO 2) sorption capacity of coal is important for planning the CO 2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO 2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary cagingmore » of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.« less

  5. Soil-adjusted sorption isotherms for arsenic(V) and vanadium(V)

    NASA Astrophysics Data System (ADS)

    Rückamp, Daniel; Utermann, Jens; Florian Stange, Claus

    2017-04-01

    The sorption characteristic of a soil is usually determined by fitting a sorption isotherm model to laboratory data. However, such sorption isotherms are only valid for the studied soil and cannot be transferred to other soils. For this reason, a soil-adjusted sorption isotherm can be calculated by using the data of several soils. Such soil-adjusted sorption isotherms exist for cationic heavy metals, but are lacking for heavy metal oxyanions. Hence, the aim of this study is to establish soil-adjusted sorption isotherms for the oxyanions arsenate (arsenic(V)) and vanadate (vanadium(V)). For the laboratory experiment, 119 soils (samples from top- and subsoils) typical for Germany were chosen. The batch experiments were conducted with six concentrations of arsenic(V) and vanadium(V), respectively. By using the laboratory data, sorption isotherms for each soil were derived. Then, the soil-adjusted sorption isotherms were calculated by non-linear regression of the sorption isotherms with additional soil parameters. The results indicated a correlation between the sorption strength and oxalate-extractable iron, organic carbon, clay, and electrical conductivity for both, arsenic and vanadium. However, organic carbon had a negative regression coefficient. As total organic carbon was correlated with dissolved organic carbon; we attribute this observation to an effect of higher amounts of dissolved organic substances. We conclude that these soil-adjusted sorption isotherms can be used to assess the potential of soils to adsorb arsenic(V) and vanadium(V) without performing time-consuming sorption experiments.

  6. Moisture sorption isotherms and thermodynamic properties of bovine leather

    NASA Astrophysics Data System (ADS)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 < R2 < 0.999). The sorption isotherms exhibit hysteresis effect. Additionally, sorption isotherms data were used to determine the thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  7. The analysis of isotherms of radionuclides sorption by inorganic sorbents

    NASA Astrophysics Data System (ADS)

    Bykova, E. P.; Nedobukh, T. A.

    2017-09-01

    The isotherm of cesium sorption by an inorganic sorbent based on granulated glauconite obtained in a wide cesium concentrations range was mathematically treated using Langmuir, Freundlich and Redlich-Peterson sorption models. The algorithms of mathematical treatment of experimental data using these models were described; parameters of all isotherms were determined. It was shown that estimating the correctness of various sorption models relies not only on the correlation coefficient values but also on the closeness of the calculated and experimental data. Various types of sorption sites were found as a result of mathematical treatment of the isotherm of cesium sorption. The algorithm was described and calculation of parameters of the isotherm was performed under the assumption that simultaneous sorption on all three types of sorption sites occurs in accordance with Langmuir isotherm.

  8. Impact of kerogen heterogeneity on sorption of organic pollutants. 2. Sorption equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.; Yu, Z.Q.; Xiao, B.H.

    2009-08-15

    Phenanthrene and naphthalene sorption isotherms were measured for three different series of kerogen materials using completely mixed batch reactors. Sorption isotherms were nonlinear for each sorbate-sorbent system, and the Freundlich isotherm equation fit the sorption data well. The Freundlich isotherm linearity parameter n ranged from 0.192 to 0.729 for phenanthrene and from 0.389 to 0.731 for naphthalene. The n values correlated linearly with rigidity and aromaticity of the kerogen matrix, but the single-point, organic carbon-normalized distribution coefficients varied dramatically among the tested sorbents. A dual-mode sorption equation consisting of a linear partitioning domain and a Langmuir adsorption domain adequately quantifiedmore » the overall sorption equilibrium for each sorbent-sorbate system. Both models fit the data well, with r{sup 2} values of 0.965 to 0.996 for the Freundlich model and 0.963 to 0.997 for the dual-mode model for the phenanthrene sorption isotherms. The dual-mode model fitting results showed that as the rigidity and aromaticity of the kerogen matrix increased, the contribution of the linear partitioning domain to the overall sorption equilibrium decreased, whereas the contribution of the Langmuir adsorption domain increased. The present study suggested that kerogen materials found in soils and sediments should not be treated as a single, unified, carbonaceous sorbent phase.« less

  9. CEC-normalized clay-water sorption isotherm

    NASA Astrophysics Data System (ADS)

    Woodruff, W. F.; Revil, A.

    2011-11-01

    A normalized clay-water isotherm model based on BET theory and describing the sorption and desorption of the bound water in clays, sand-clay mixtures, and shales is presented. Clay-water sorption isotherms (sorption and desorption) of clayey materials are normalized by their cation exchange capacity (CEC) accounting for a correction factor depending on the type of counterion sorbed on the mineral surface in the so-called Stern layer. With such normalizations, all the data collapse into two master curves, one for sorption and one for desorption, independent of the clay mineralogy, crystallographic considerations, and bound cation type; therefore, neglecting the true heterogeneity of water sorption/desorption in smectite. The two master curves show the general hysteretic behavior of the capillary pressure curve at low relative humidity (below 70%). The model is validated against several data sets obtained from the literature comprising a broad range of clay types and clay mineralogies. The CEC values, derived by inverting the sorption/adsorption curves using a Markov chain Monte Carlo approach, are consistent with the CEC associated with the clay mineralogy.

  10. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics.

    PubMed

    Wang, Wenfeng; Wang, Jun

    2018-02-01

    Concerns regarding microplastics pollution and their potential to concentrate and transport organic contaminants in aquatic environments are growing in recent years. Sorption of organic chemicals by microplastics may affect the distribution and bioavailability of the chemicals. Here sorption process of pyrene (Pyr), a frequently encountered polycyclic aromatic hydrocarbon in aquatic environments, on three types of mass-produced plastic particles (high-density polyethylene (PE), polystyrene (PS) and polyvinylchloride (PVC)), was investigated by comparative analysis of different sorption kinetic and isotherm models. Optimum kinetic and isotherm models were predicted by the linear least-squares regression method. The pseudo-second-order kinetic model was more appropriate in describing the entire sorption process (R 2  > 0.99). Sorption rates of Pyr onto microplastics were mainly controlled by intraparticle diffusion. PE exhibited the highest affinity for Pyr, followed by PS and PVC. The sorption equilibrium data were best fitted to the Langmuir isotherm (R 2  > 0.99), indicating monolayer coverage of Pyr onto the microplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis.

    PubMed

    Shirvani, Mehran; Kalbasi, Mahmoud; Shariatmadari, Hosein; Nourbakhsh, Farshid; Najafi, Bijan

    2006-12-01

    Sorption isotherms have been widely used to assess the heavy metal retention characteristics of soil particles. Desorption behavior of the retained metals, however, usually differ from that of sorption, leading to a lack of coincidence in the experimentally obtained sorption and desorption isotherms. In this study, we examine the nonsingularity of cadmium (Cd) sorption-desorption isotherms, to check the possible hysteresis and reversibility phenomena, in aqueous palygorskite, sepiolite and calcite systems. Sorption of Cd was carried out using a 24-h batch equilibration experiment with eight different Cd solution concentrations, equivalent to 20-100% of maximum sorption capacity of each mineral. Immediately after sorption, desorption took place using successive dilution method with five consecutive desorption steps. Both Cd sorption and desorption data were adequately described by Freundlich equation (0.812)<0.99). The sorption and desorption reactions, however, did not provide the same isotherms, indicating that hysteresis occurred in Cd sorption-desorption processes. The extent of hysteresis was quantified based on the differences obtained from sorption and desorption isotherms regarding the amount of Cd sorbed, the Freundlich exponent, and the Cd distribution coefficient. The results revealed that, sepiolite possessed the most hysteretic behavior among the minerals studied. Calcite showed much smaller hysteresis compared to the other two silicate clays at low Cd surface load, but its hysteresis indices significantly increased, and exceeded that of palygorskite, as the amount of Cd in the systems increased. The average amount of Cd released after five desorption steps, was 13.8%, 2.2% and 3.6% for the palygorskite, sepiolite and calcite, respectively, indicating that a large portion of Cd was irreversibly retained by the minerals.

  12. A method to simultaneously determine sorption isotherms and sorption enthalpies with a double twin microcalorimeter

    NASA Astrophysics Data System (ADS)

    Wadso, Lars; Markova, Natalia

    2002-07-01

    Sorption of vapors of water, ethanol, and other liquids on solids like pharmaceuticals, textiles and food stuffs are of both practical and theoretical importance. In this article we present a technique to simultaneously measure sorption isotherms and sorption enthalpies. The sample is contained in one end of a sorption vessel. In the other end a vaporizable liquid is introduced to start the measurement. Mass transfer from the liquid to the sample is by vapor diffusion and the rate of mass transfer is calculated from the measured thermal power of vaporization. Simultaneously, the thermal power of sorption is measured and from this one may calculate the differential enthalpy of sorption. The thermal power measurements are made by inserting the sorption vessel in an isothermal double twin microcalorimeter.

  13. Measurement of Moisture Sorption Isotherm by DVS Hydrosorb

    NASA Astrophysics Data System (ADS)

    Kurniawan, Y. R.; Purwanto, Y. A.; Purwanti, N.; Budijanto, S.

    2018-05-01

    Artificial rice made from corn flour, sago, glycerol monostearate, vegetable oil, water and jelly powder was developed by extrusion method through the process stages of material mixing, extrusion, drying, packaging and storage. Sorption isotherm pattern information on food ingredients used to design and optimize the drying process, packaging, storage. Sorption isotherm of water of artificial rice was measured using humidity generating method with Dynamic Vapor Sorption device that has an advantage of equilibration time is about 10 to 100 times faster than saturated salt slurry method. Relative humidity modification technique are controlled automatically by adjusting the proportion of mixture of dry air and water saturated air. This paper aims to develop moisture sorption isotherm using the Hydrosorb 1000 Water Vapor Sorption Analyzer. Sample preparation was conducted by degassing sample in a heating mantle of 65°C. Analysis parameters need to be fulfilled were determination of Po, sample data, selection of water activity points, and equilibrium conditions. The selected analytical temperatures were 30°C and 45°C. Analysis lasted for 45 hours and curves of adsorption and desorption were obtained. Selected bottom point of water activity 0.05 at 30°C and 45°C yielded adsorbed mass of 0.1466 mg/g and 0.3455 mg/g, respectively, whereas selected top water activity point 0.95 at 30°C and 45°C yielded adsorbed mass of 190.8734 mg/g and 242.4161mg/g, respectively. Moisture sorption isotherm measurements of articial rice made from corn flour at temperature of 30°C and 45°C using Hydrosorb showed that the moisture sorption curve approximates sigmoid-shaped type II curve commonly found in corn-based foodstuffs (high- carbohydrate).

  14. The use of synthesized aqueous solutions for determining strontium sorption isotherms

    USGS Publications Warehouse

    Liszewski, M.J.; Bunde, R.L.; Hemming, C.; Rosentreter, J.; Welhan, J.

    1998-01-01

    The use of synthesized aqueous solutions for determining experimentally derived strontium sorption isotherms of sediment was investigated as part of a study accessing strontium chemical transport properties. Batch experimental techniques were used to determine strontium sorption isotherms using synthesized aqueous solutions designed to chemically represent water from a natural aquifer with respect to major ionic character and pH. A strontium sorption isotherm for a sediment derived using a synthesized aqueous solution was found to be most comparable to an isotherm derived using natural water when the synthesized aqueous solution contained similar concentrations of calcium and magnesium. However, it is difficult to match compositions exactly due to the effects of disequilibrium between the solution and the sediment. Strong linear relations between sorbed strontium and solution concentrations of calcium and magnesium confirm that these cations are important co-constituents in these synthesized aqueous solutions. Conversely, weak linear relations between sorbed strontium and solution concentrations of sodium and potassium indicate that these constituents do not affect sorption of strontium. The addition of silica to the synthesized aqueous solution does not appreciably affect the resulting strontium sorption isotherm.

  15. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite.

    PubMed

    Zheng, Hong; Liu, Donghong; Zheng, Yan; Liang, Shuping; Liu, Zhe

    2009-08-15

    In this paper, the sorption characteristics of aniline on Cr-bentonite prepared using synthetic wastewater containing chromium was investigated in a batch system at 30 degrees C. The effects of relevant parameters, such as pH value of solution, adsorbent dosage and initial aniline concentration were examined. The experimental data were analyzed by the Langmuir and Freundlich, and Temkin models of sorption. The sorption isotherm data were fitted well to Langmuir isotherm and the monolayer sorption capacity was found to be 21.60 mg/g at 30 degrees C. Dubinin-Redushkevich (D-R) isotherm was applied to describe the nature of aniline uptake and it was found that it occurred chemically. The kinetic data obtained at different concentrations were analyzed using a pseudo first-order, pseudo second-order kinetic equation and intraparticle diffusion model. The experimental data fitted very well the pseudo second-order kinetic model. Intraparticle diffusion affects aniline uptake. The results indicate that there is significant potential for Cr-bentonite as an adsorbent material for aniline removal from aqueous solutions.

  16. ISOT_Calc: A versatile tool for parameter estimation in sorption isotherms

    NASA Astrophysics Data System (ADS)

    Beltrán, José L.; Pignatello, Joseph J.; Teixidó, Marc

    2016-09-01

    Geochemists and soil chemists commonly use parametrized sorption data to assess transport and impact of pollutants in the environment. However, this evaluation is often hampered by a lack of detailed sorption data analysis, which implies further non-accurate transport modeling. To this end, we present a novel software tool to precisely analyze and interpret sorption isotherm data. Our developed tool, coded in Visual Basic for Applications (VBA), operates embedded within the Microsoft Excel™ environment. It consists of a user-defined function named ISOT_Calc, followed by a supplementary optimization Excel macro (Ref_GN_LM). The ISOT_Calc function estimates the solute equilibrium concentration in the aqueous and solid phases (Ce and q, respectively). Hence, it represents a very flexible way in the optimization of the sorption isotherm parameters, as it can be carried out over the residuals of q, Ce, or both simultaneously (i.e., orthogonal distance regression). The developed function includes the most usual sorption isotherm models, as predefined equations, as well as the possibility to easily introduce custom-defined ones. Regarding the Ref_GN_LM macro, it allows the parameter optimization by using a Levenberg-Marquardt modified Gauss-Newton iterative procedure. In order to evaluate the performance of the presented tool, both function and optimization macro have been applied to different sorption data examples described in the literature. Results showed that the optimization of the isotherm parameters was successfully achieved in all cases, indicating the robustness and reliability of the developed tool. Thus, the presented software tool, available to researchers and students for free, has proven to be a user-friendly and an interesting alternative to conventional fitting tools used in sorption data analysis.

  17. Summary report on the evaluation of a 1977--1985 edited sorption data base for isotherm modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polzer, W.L.; Beckman, R.J.; Fuentes, H.R.

    1993-09-01

    Sorption data bases collected by Los Alamos National Laboratory (LANL) from 1977 to 1985 for the Yucca Mountain Project.(YMP) have been inventoried and fitted with isotherm expressions. Effects of variables (e.g., particle size) on the isotherm were also evaluated. The sorption data are from laboratory batch measurements which were not designed specifically for isotherm modeling. However a limited number of data sets permitted such modeling. The analysis of those isotherm data can aid in the design of future sorption experiments and can provide expressions to be used in radionuclide transport modeling. Over 1200 experimental observations were inventoried for their adequacymore » to be modeled b isotherms and to evaluate the effects of variables on isotherms. About 15% of the observations provided suitable data sets for modeling. The data sets were obtained under conditions that include ambient temperature and two atmospheres, air and CO{sub 2}.« less

  18. Sorption Isotherm of Southern Yellow Pine-High Density Polyethylene Composites.

    PubMed

    Liu, Feihong; Han, Guangping; Cheng, Wanli; Wu, Qinglin

    2015-01-20

    Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson's sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV) stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB). The experimental data of EMCs at various RHs fit to the Nelson's sorption isotherm model well. The Nelson's model can be used to predicate EMCs of WPCs under different RH environmental conditions.

  19. Sorption Isotherm of Southern Yellow Pine—High Density Polyethylene Composites

    PubMed Central

    Liu, Feihong; Han, Guangping; Cheng, Wanli; Wu, Qinglin

    2015-01-01

    Temperature and relative humidity (RH) are two major external factors, which affect equilibrium moisture content (EMC) of wood-plastic composites (WPCs). In this study, the effect of different durability treatments on sorption and desorption isotherms of southern yellow pine (SYP)-high density polyethylene (HDPE) composites was investigated. All samples were equilibriumed at 20 °C and various RHs including 16%, 33%, 45%, 66%, 75%, 85%, 93%, and100%. EMCs obtained from desorption and absorption for different WPC samples were compared with Nelson’s sorption isotherm model predictions using the same temperature and humidity conditions. The results indicated that the amount of moisture absorbed increased with the increases in RH at 20 °C. All samples showed sorption hysteresis at a fixed RH. Small difference between EMC data of WPC samples containing different amount of ultraviolet (UV) stabilizers were observed. Similar results were observed among the samples containing different amount of zinc borate (ZB). The experimental data of EMCs at various RHs fit to the Nelson’s sorption isotherm model well. The Nelson’s model can be used to predicate EMCs of WPCs under different RH environmental conditions. PMID:28787943

  20. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    NASA Astrophysics Data System (ADS)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  1. Relation between some two- and three-parameter isotherm models for the sorption of methylene blue onto lemon peel.

    PubMed

    Kumar, K Vasanth; Porkodi, K

    2006-12-01

    Equilibrium uptake of methylne blue onto lemon peel was fitted to the 2 two-parameter isotherm models namely Freundlich and Langmuir and 3 six-parameter isotherm models namely Redlich-Peterson, Toth, Radke-Prausnitz, Fritz-Schluender, Vieth-Sladek and Sips isotherms by non-linear method. A comparison between two-parameter and three-parameter isotherms was reported. The best fitting isotherm was the Sips isotherm followed by Langmuir isotherm and Redlich-Peterson isotherm equation. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity. Radke-Prausnitz, Toth, Vieth-Sladek isotherm were the same when the Toth isotherm constant, n(T) and the Radke-Prausnitz isotherm, m(RP) are equal to unity and when the Vieth-Sladek isotherm constant, K(VS) equals zero. The sorption capacity of lemon peel for methylene blue uptake was found to be 29 mg/g.

  2. Assessment of suitability of some chosen functions for describing of sorption isotherms in building materials

    NASA Astrophysics Data System (ADS)

    Stolarska, Agata; Garbalińska, Halina

    2017-05-01

    This paper presents results of tests and studies conducted on six common building materials, used for constructing and finishing of external walls. These included: ceramic brick, silicate brick, autoclaved aerated concrete, cement mortar, cement-lime mortar and cement mortar modified with polypropylene fibers. Each of these materials is distinguished by the other structure of porousness, affecting both the course of sorption processes and the isotherms obtained. At first, measurements of moisture sorption kinetics at temperatures of 5, 20 and 35 °C were performed, each time at six levels of relative humidity. Then, when the sorption processes expired, equilibrium moisture sorption values were determined for the materials in 18 individual temperature and humidity conditions. The experimental data were used to determine the sorption isotherm courses for each material at the three temperatures. Then, theoretical analysis was performed in order to determine, which of the models available in the literature described the sorption isotherms of the concerned building materials the best. For each material and each of the three temperature values, twenty-four equations were tested. In each case, those of them were identified which ensured the best matching between the theoretical courses and the experimental data. The obtained results indicate that the Chen's model proved to be the most versatile. It ensured a detailed description of the sorption isotherms for each material and temperature tested.

  3. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics.

    PubMed

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-06-01

    Microplastics and sulfamethoxazole coexist ubiquitously in the marine environment, and microplastics tend to sorb organic pollutants from the surrounding environment. Here, the sorption kinetics and isotherms of sulfamethoxazole on polyethylene (PE) microplastics closely fitted a pseudo-second-order model (R 2  = 0.98) and linear model (R 2  = 0.99), respectively, indicating that the sorption process was partition-dominant interaction. The main binding mechanism was possibly the van der Waals interaction for hydrophilic sulfamethoxazole onto hydrophobic PE microplastics. The effects of pH, dissolved organic matter and salinity on sorption behavior were also studied. The sorption behavior of sulfamethoxazole on PE microplastics was not significantly influenced by pH and salinity, probably because the electrostatic repulsion played a minor role. In addition, the negligible effect of dissolved organic matter was attributed to the greater affinity of sulfamethoxazole to PE microplastics than to dissolved organic matter. Our results demonstrated that PE microplastics may serve as a carrier for sulfamethoxazole in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Sorption of albendazole in sediments and soils: Isotherms and kinetics.

    PubMed

    Mutavdžić Pavlović, Dragana; Glavač, Antonija; Gluhak, Mihaela; Runje, Mislav

    2018-02-01

    Albendazole is a broad-spectrum anthelmintic drug effective against gastrointestinal parasites in humans and animals. Despite the fact that it has been detected in environment (water, sediment and soil), there is no information on its fate in the environment. So, in order to understand the sorption process of albendazole in environment, the sorption mechanism and kinetic properties were investigated through sorption equilibrium and sorption rate experiments. For that purpose, batch sorption of albendazole on five sediment samples and five soil samples from Croatia's region with different physico-chemical properties was investigated. Except physico-chemical properties of used environmental solid samples, the effects of various parameters such as contact time, initial concentration, ionic strength and pH on the albendazole sorption were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Langmuir sorption models were applied to describe the equilibrium isotherms. The estimated K d values varied from 29.438 to 104.43 mLg -1 at 0.01 M CaCl 2 and for natural pH value of albendazole solution (pH 6.6). Experimental data showed that the best agreement was obtained with the linear model (R 2  > 0.99), while the rate of albendazole sorption is the best described with the kinetic model of pseudo-second-order. Obtained results point to a medium or even strong sorption of albendazole for soil or sediment particles, which is particularly dependent on the proportion of organic matter, pH, copper and zinc in them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study.

    PubMed

    Yu, Qiang; Zhang, Ruiqi; Deng, Shubo; Huang, Jun; Yu, Gang

    2009-03-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) have increasingly attracted global concerns in recent years due to their global distribution, persistence, strong bioaccumulation and potential toxicity. The feasibility of using powder activated carbon (PAC), granular activated carbon (GAC) and anion-exchange resin (AI400) to remove PFOS and PFOA from water was investigated with regard to their sorption kinetics and isotherms. Sorption kinetic results show that the adsorbent size influenced greatly the sorption velocity, and both the GAC and AI400 required over 168h to achieve the equilibrium, much longer than 4h for the PAC. Two kinetic models were adopted to describe the experimental data, and the pseudo-second-order model well described the sorption of PFOS and PFOA on the three adsorbents. The sorption isotherms show that the GAC had the lowest sorption capacity both for PFOS and PFOA among the three adsorbents, while the PAC and AI400 possessed the highest sorption capacity of 1.04mmolg(-1) for PFOS and 2.92mmolg(-1) for PFOA according to the Langmuir fitting. Based on the sorption behaviors and the characteristics of the adsorbents and adsorbates, ion exchange and electrostatic interaction as well as hydrophobic interaction were deduced to be involved in the sorption, and some hemi-micelles and micelles possibly formed in the intraparticle pores.

  6. Sorption isotherm characteristics of aonla flakes.

    PubMed

    Alam, Md Shafiq; Singh, Amarjit

    2011-06-01

    The equilibrium moisture content was determined for un-osmosed and osmosed (salt osmosed and sugar osmosed) aonla flakes using the static method at temperatures of 25, 40,50, 60 and 70 °C over a range of relative humidities from 20 to 90%. The sorption capacity of aonla decreased with an increase in temperature at constant water activity. The sorption isotherms exhibited hysteresis, in which the equilibrium moisture content was higher at a particular equilibrium relative humidity for desorption curve than for adsorption. The hysteresis effect was more pertinent for un-osmosed and salt osmosed samples in comparison to sugar osmosed samples. Five models namely the modified Chung Pfost, modified Halsey, modified Henderson, modified Exponential and Guggenheim-Anderson-de Boer (GAB) were evaluated to determine the best fit for the experimental data. For both adsorption and desorption process of aonla fruit, the equilibrium moisture content of un-osmosed and osmosed aonla samples can be predicted well by GAB model as well as modified Exponential model. Moreover, the modified Exponential model was found to be the best for describing the sorption behaviour of un-osmosed and salt osmosed samples while, GAB model for sugar osmosed aonla samples.

  7. Isotherm investigation for the sorption of fluoride onto Bio-F: comparison of linear and non-linear regression method

    NASA Astrophysics Data System (ADS)

    Yadav, Manish; Singh, Nitin Kumar

    2017-12-01

    A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.

  8. A nonlinear isotherm model for sorption of anionic dyes on cellulose fibers: a case study.

    PubMed

    Xu, Changhai; Tang, Wenjuan; Du, Jinmei

    2014-02-15

    The sorption data of an anionic dye on cellulose fiber are often correlated with a log-linear model to determine the internal accessible volume of the fiber to the anionic dye (V, L/kg) and as such the standard affinity of the anionic dye to the fiber (-Δμ°, J/mol), but without taking into account the influence of ionized carboxyl groups due to cellulose oxidation ([COO(-)]f, mol/kg). In this study, a nonlinear isotherm model was derived by incorporating [COO(-)]f, V and -Δμ° as three model parameters. A set of classical sorption data of C. I. Direct Blue 1 on bleached cotton was correlated with the nonlinear isotherm model. The nonlinear curve fitting analysis showed that the nonlinear isotherm model was in excellent agreement with the sorption data and robust to determine the values of [COO(-)]f, V and -Δμ° for describing the sorption behaviors of anionic dyes on cellulose fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Parameterizing sorption isotherms using a hybrid global-local fitting procedure.

    PubMed

    Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J

    2017-05-01

    Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases

  10. Sorption of metolachlor and atrazine in fly ash amended soils: comparison of optimized isotherm models.

    PubMed

    Ghosh, Rakesh K; Singh, Neera

    2012-01-01

    Adsorption of metolachlor and atrazine was studied in the fly ash (Inderprastha and Badarpur)- amended Inceptisol and Alfisol soils using batch method. Results indicated that sorption of both the herbicides in soil+fly ash mixtures was highly nonlinear and sorption decreased with a higher herbicide concentration in the solution. Also, nonlinearity increased with an increase in the level of fly ash amendment from 0-5%. Three two-parameter monolayer isotherms viz. Langmuir, Temkin, Jovanovic and one imperical Freundlich models were used to fit the experimental data. Data analysis and comparison revealed that the Temkin and the Freundlich isotherms were best-suited to explain the sorption results and the observed and the calculated adsorption coefficient values showed less variability. The study suggested that sorption mechanism of metolachlor and atrazine involved the physical association at the sorbate surface and the nonlinearity in the sorption at higher pesticide or fly ash concentration was due to a decrease in the heat of adsorption and higher binding energy.

  11. Cobalt sorption onto anaerobic granular sludge: isotherm and spatial localization analysis.

    PubMed

    van Hullebusch, Eric D; Gieteling, Jarno; Zhang, Min; Zandvoort, Marcel H; Daele, Wim Van; Defrancq, Jacques; Lens, Piet N L

    2006-01-24

    This study investigated the effect of different feeding regimes on the cobalt sorption capacity of anaerobic granular sludge from a full-scale bioreactor treating paper mill wastewater. Adsorption experiments were done with non-fed granules in monometal (only Co) and competitive conditions (Co and Ni in equimolar concentrations). In order to modify the extracellular polymeric substances and sulfides content of the granules, the sludge was fed for 30 days with glucose (pH 7, 30 degrees C, organic loading rate=1.2 g glucose l(-1) day-1) in the presence (COD/SO4(2-)=1) or absence of sulfate. The partitioning of the sorbed cobalt between the exchangeable, carbonates, organic matter/sulfides and residual fractions was determined using a sequential extraction procedure (modified Tessier). Experimental equilibrium sorption data for cobalt were analysed by the Langmuir, Freundlich and Redlich-Peterson isotherm equations. The total Langmuir maximal sorption capacity of the sludge fed with glucose and sulfate loaded with cobalt alone displayed a significantly higher maximal cobalt sorption (Qmax =18.76 mg g-1 TSS) than the sludge fed with glucose alone (Qmax =13.21 mg g-1 TSS), essentially due to an increased sorption capacity of the exchangeable (30-107%) and organic/sulfides fractions (70-30%). Environmental scanning electron microscopy coupled with an energy dispersive X-ray analysis of granular cross-sections showed that mainly iron minerals (i.e. iron sulfides) were involved in the cobalt accumulation. Moreover, the sorbed cobalt was mainly located at the edge of the granules. The sorption characteristics of the exchangeable and carbonates fractions fitted well to the Redlich-Peterson model (intermediate multi-layer sorption behaviour), whereas the sorption characteristics of the organic matter/sulfides and residual fractions fitted well to the Langmuir model (monolayer sorption behaviour). The organic matter/sulfides fraction displayed the highest affinity for cobalt

  12. A new experimental method to determine the sorption isotherm of a liquid in a porous medium.

    PubMed

    Ouoba, Samuel; Cherblanc, Fabien; Cousin, Bruno; Bénet, Jean-Claude

    2010-08-01

    Sorption from the vapor phase is an important factor controlling the transport of volatile organic compounds (VOCs) in the vadose zone. Therefore, an accurate description of sorption behavior is essential to predict the ultimate fate of contaminants. Several measurement techniques are available in the case of water, however, when dealing with VOCs, the determination of sorption characteristics generally relies on gas chromatography. To avoid some drawbacks associated with this technology, we propose a new method to determine the sorption isotherm of any liquid compounds adsorbed in a soil. This method is based on standard and costless transducers (gas pressure, temperature) leading to a simple and transportable experimental device. A numerical estimation underlines the good accuracy and this technique is validated on two examples. Finally, this method is applied to determine the sorption isotherm of three liquid compounds (water, heptane, and trichloroethylene) in a clayey soil.

  13. Evaluation of various isotherm models, and metal sorption potential of cyanobacterial mats in single and multi-metal systems.

    PubMed

    Kumar, Dhananjay; Pandey, Lalit K; Gaur, J P

    2010-12-01

    Isotherm curves for the biosorption of Cu(II), Cd(II) and Pb(II) by the biomass of five different cyanobacterial mats (Mat # 1-5) showed concave shape and plateau. Suitability of ten different isotherm models was evaluated for the equilibrium modeling of these isotherm curves, however, only the Toth model was found appropriate. Mat # 2, dominated by Phormidium sp., was identified as an excellent metal biosorbent because: (i) the Toth estimated maximum biosorption capacity (mmol g(-1)) of Mat # 2 for Pb(II) (1.028), Cu(II) (0.696) and Cd(II) (0.549) was the highest among the tested mats and compares favourably with Langmuir estimated metal sorption capacity of many seaweeds, regarded as the best metal biosorbents, (ii) Na+, K+ and Ca2+ did not substantially inhibit the biosorption of the test metals, (iii) and total metal sorption ability of Mat # 2 increased or remained unaffected in binary and ternary metal systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia.

    PubMed

    Kumar, Dhananjay; Singh, Alpana; Gaur, J P

    2008-11-01

    The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.

  15. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis.

    PubMed

    Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M

    2017-04-01

    A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data

    USGS Publications Warehouse

    Chiou, C.T.; Rutherford, D.W.; Manes, M.

    1993-01-01

    Vapor sorption isotherms of ethylene glycol monoethyl ether (EGME) at room temperature and isotherms of N2 gas at liquid nitrogen temperature were determined for various soils and minerals. The N2 monolayer capacities [Qm (N2)] were calculated from the BET equation and used to determine the surface areas. To examine whether EGME is an appropriate adsorbate for determination of surface areas, the apparent EGME monolayer capacities [Qm (EGME)ap] were also obtained by use of the BET equation. For sand, aluminum oxide, kaolinite, hematite, and synthetic hydrous iron oxide, which are relatively free of organic impurity and expanding/solvating minerals, the Qm (EGME)ap values are in good conformity with the corresponding Qm (N2) values and would give surface areas consistent with BET (N2) values. For other samples (Woodburn soil, a natural hydrous iron oxide, illite, and montmorillonite), the Qm (EGME)ap values overestimate the Qm (N2) values from a moderate to a large extent, depending on the sample. A high-organic-content peat shows a very small BET (N2) surface area; the EGME/ peat isotherm is linear and does not yield a calculation of the surface area. Large discrepancies between results of the two methods for some samples are attributed to the high solubility of polar EGME in soil organic matter and/ or to the cation solvation of EGME with solvating clays. The agreement for other samples is illustrative of the consistency of the BET method when different adsorbates are used, so long as they do not exhibit bulk penetration and/or cation solvation. ?? 1993 American Chemical Society.

  17. Sorption kinetics and isotherm modelling of imidacloprid on bentonite and organobentonites.

    PubMed

    Jain, Shailesh K; Shakil, Najam A; Dutta, Anirban; Kumar, Jitendra; Saini, Mukesh K

    2017-05-04

    Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31-22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94-83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (K f .1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g -1 ) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92).

  18. SORPTION OF ARSENATE AND ARSENITE ON RUO2.XH2O: A SPECTROSCOPIC AND MACROSCOPIC STUDY

    EPA Science Inventory

    The sorption of arsenate (As(V)) and arsenite (As(III)) on RuO2 xH2O was examined using macroscopic and microscopic techniques. Constant solid:solution ratio isotherms were constructed from batch sorption experiments to study the sorption of the inorganic arsenic species on RuO2...

  19. Soft computing modelling of moisture sorption isotherms of milk-foxtail millet powder and determination of thermodynamic properties.

    PubMed

    Simha, H V Vikram; Pushpadass, Heartwin A; Franklin, Magdaline Eljeeva Emerald; Kumar, P Arun; Manimala, K

    2016-06-01

    Moisture sorption isotherms of spray-dried milk-foxtail millet powder were determined at 10, 25 and 40 °C. Sorption data was fitted using classical and soft-computing approaches. The isotherms were of type II, and equilibrium moisture content (EMC) was temperature dependent. The BET monolayer moisture content decreased from 3.30 to 2.67 % as temperature increased from 10 to 40 °C. Amongst the classical models, Ferro-Fontan gave the best fit of EMC-aw data. However, the Sugeno-type adaptive neuro-fuzzy inference system (ANFIS) with generalized bell-shaped membership function performed better than artificial neural network and classical models with RMSE as low as 0.0099. The isosteric heat of sorption decreased from 150.32 kJ mol(-1) at 1 % moisture content to 44.11 kJ mol(-1) at 15 % moisture. The enthalpy-entropy compensation theory was validated, and the isokinetic and harmonic mean temperatures were determined as 333.1 and 297.5 K, respectively.

  20. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  1. Effect of plasticizer on moisture sorption isotherm of sugar palm (Arenga Pinnata) starch film

    NASA Astrophysics Data System (ADS)

    Jatmiko, Tri Hadi; Poeloengasih, Crescentiana D.; Prasetyo, Dwi Joko; Rosyida, Vita Taufika

    2016-02-01

    The effect of plasticizer type (glycerol, sorbitol) and plasticizer concentrations (30, 35, 40, 45% w/w polymer) on the moisture sorption isotherm characteristics of sugar palm (Arenga pinnata) starch films were investigated. Moisture affinity of sugar palm starch films was influenced by the plasticizer type and plasticizer concentration. The affinity of the glycerol plasticized film is stronger than that of sorbitol plasticized film. Sugar palm starch film with a higher concentration of glycerol absorbs more moisture with higher initial absorption rate than that of with sorbitol. Films with higher plasticizer concentration of glycerol and sorbitol show higher equilibrium moisture contents at the given relative humidity. The moisture sorption isotherm characteristic of sugar palm starch films can be described very well with the semi empirical 4 parameter Peleg's model.

  2. Determination of sorption isotherm and rheological properties of lysozyme using a high-resolution humidity scanning QCM-D technique.

    PubMed

    Graf, Gesche; Kocherbitov, Vitaly

    2013-08-29

    The high-resolution humidity scanning QCM-D technique enables investigation of hydration of soft matter films using a quartz crystal microbalance with dissipation monitoring (QCM-D) equipped with a humidity module. Based on a continuous increase of relative humidity, properties of soft matter films can be investigated depending on the water content of the surrounding atmosphere. Determination of complete water sorption isotherms is possible via analysis of the overtone dependence of the resonance frequencies. Rheological properties are monitored via measurement of the dissipation. The glass transition can be identified from the change of viscoelastic properties of the film reflected in changes of the dissipation. A high-resolution water sorption isotherm of lysozyme was measured and compared with results from water sorption calorimetry. Analysis of the rheological behavior during hydration of lysozyme films revealed the presence of two separate sharp transitions at the water activities 0.67 and 0.91, which are connected to the glass transition. In previous works, only the existence of a broad glass transition has been reported so far. Combining the QCM-D data with Raman scattering data presented earlier, a new mechanism of isothermal glass transition in lysozyme is proposed.

  3. Sorption kinetics and isotherm studies of a cationic dye using agricultural waste: broad bean peels.

    PubMed

    Hameed, B H; El-Khaiary, M I

    2008-06-15

    In this paper, broad bean peels (BBP), an agricultural waste, was evaluated for its ability to remove cationic dye (methylene blue) from aqueous solutions. Batch mode experiments were conducted at 30 degrees C. Equilibrium sorption isotherms and kinetics were investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The experimental data fitted very well the pseudo-first-order kinetic model. Analysis of the temportal change of q indicates that at the beginning of the process the overall rate of adsorption is controlled by film-diffusion, then at later stage intraparticle-diffusion controls the rate. Diffusion coefficients and times of transition from film to pore-diffusion control were estimated by piecewise linear regression. The experimental data were analyzed by the Langmuir and Freundlich models. The sorption isotherm data fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 192.7 mg/g and the equilibrium adsorption constant Ka is 0.07145 l/mg at 30 degrees C. The results revealed that BBP was a promising sorbent for the removal of methylene blue from aqueous solutions.

  4. Results of a European interlaboratory comparison on CO2 sorption on activated carbon and coals

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Busch, Andreas; Krooss, Bernhard; de Weireld, Guy; Billemont, Pierre; van Hemert, Patrick; Wolf, Karl-Heinz

    2013-04-01

    For the assessment of CO2 storage in coal seams or enhanced coalbed methane production (ECBM), the sorption properties of natural coals are important parameters. Since more and more laboratories worldwide are concerned with measurements of gas sorption on coal it is indispensable to establish quality standards for such experiments. The first two interlaboratory studies on CO2 sorption on coal (Goodman et al. 2004, 2007) revealed a poor agreement of sorption isotherms among the participating laboratories, particularly in the high-pressure range. During the MOVECBM (http://www.movecbm.eu/) project funded by the European Commission (6th framework), an interlaboratory comparison of CO2 sorption on selected coals and activated carbon was initiated. Measurements were performed on dry samples at 45° C using the manometric and the gravimetric method. up to a final pressure of 15 MPa. The first set of high-pressure sorption measurements was performed on a Filtrasorb 400 activated carbon sample in order to minimise heterogeneity effects and to optimize the experimental procedures for the individual (manometric or gravimetric) methods (Gensterblum et al. 2009). Since comparability for the activated carbon was excellent, the measurements were continued using natural coals of various rank (anthracite, bituminous coal and lignite) to study the influence of heterogeneities and varying starting conditions on the CO2 sorption properties (Gensterblum et al. 2010). Compared to the poor reproducibility observed in previous interlaboratory studies (Goodman et al., 2004, 2007) this European study showed excellent agreement (<5 % deviation) among the participating laboratories with good repeatability. The sorption data and technical information on the different experimental setups have been used to investigate errors and potential pitfalls in the assessment of high-pressure CO2 sorption isotherms. References Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, B.M. Krooss, G. de

  5. SORPTION OF VOLATILE ORGANIC SOLVENTS FROM AQUEOUS SOLUTION ONTO SUBSURFACE SOLIDS

    EPA Science Inventory

    Sorption isotherms for tetrachloroethene on low-carbon subsurface core samples were linear to equilibrium solution concentrations of 2 mg L−1. Concentrations above this value produced pronounced curvature in the sorption isotherms. Sorption of tetrachloroethene, benzene, trichlor...

  6. Competitive sorption of organic contaminants in chalk.

    PubMed

    Graber, E R; Borisover, M

    2003-12-01

    In the Negev desert, Israel, a chemical industrial complex is located over fractured Eocene chalk formations where transfer of water and solutes between fracture voids and matrix pores affects migration of contaminants in the fractures due to diffusion into the chalk matrix. This study tests sorption and sorption competition between contaminants in the chalk matrix to make it possible to evaluate the potential for contaminant attenuation during transport in fractures. Single solute sorption isotherms on chalk matrix material for five common contaminants (m-xylene, ametryn, 1,2-dichloroethane, phenanthrene, and 2,4,6-tribromophenol) were found to be nonlinear, as confirmed in plots of Kd versus initial solution concentration. Over the studied concentration ranges, m-xylene Kd varied by more than a factor of 100, ametryn Kd by a factor of 4, 1,2-dichloroethane Kd by more than a factor of 3, phenanthrene Kd by about a factor of 2, and 2,4,6-tribromophenol Kd by a factor of 10. It was earlier found that sorption is to the organic matter component of the chalk matrix and not to the mineral phases (Chemosphere 44 (2001) 1121). Nonlinear sorption isotherms indicate that there is at least some finite sorption domain. Bi-solute competition experiments with 2,4,6-tribromophenol as the competitor were designed to explore the nature of the finite sorption domain. All of the isotherms in the bi-solute experiments are more linear than in the single solute experiments, as confirmed by smaller variations in Kd as a function of initial solution concentration. For both m-xylene and ametryn, there is a small nonlinear component or domain that was apparently not susceptible to competition by 2,4,6-tribromophenol. The nonlinear sorption domain(s) is best expressed at low solution concentrations. Inert-solvent-normalized single and bi-solute sorption isotherms demonstrate that ametryn undergoes specific force interactions with the chalk sorbent. The volume percent of phenanthrene sorbed

  7. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    PubMed

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  8. Determination of drying kinetics and sorption isotherm of black pepper (Piper Nigrum)

    NASA Astrophysics Data System (ADS)

    De Vera, Flordeliza C.; Atienza, Vanessa Bernadette B.; Capili, Jomicah B.; Sauli, Zaliman

    2017-11-01

    In the present study of food products, determination of the drying characteristics of black pepper using an oven is not yet completely established. This study aimed to determine the drying kinetics and sorption isotherm of black pepper using a convective oven at 30°C, 40°C and 50°C. The data gathered in this study were used to fit in selected mathematical models for drying kinetics and sorption isotherm. Among these models, the Midilli model (MR=0.5338exp(0.7273t-0.0551)+-0.0005t for 30°C, MR=0.5814exp(0.6293t-0.0764)+ -0.0008t for 40°C and MR=0.3187exp(1.1777t-0.0466)+ -0.0011t for 50°C) was the best fit to explain the moisture transfer in black pepper, while the GAB Model (m/0.1302=((0.1906)(0.7811)aw)/(1-(0.7811)aw)[1-(0.7811)aw+(0.1906)(0.7811)aw])) was for the equilibrium moisture content and water activity relationship. After evaluating the data, the drying characteristics of black pepper at 40°C yielded better results than 30°C and 50°C. XLSTAT and ANOVA Add-in of Microsoft Excel was the software used to compute for the necessary values in the assessment of the mathematical models for this study.

  9. Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution.

    PubMed

    Zhang, Lei; Liu, Na; Yang, Lijun; Lin, Qing

    2009-10-30

    Titanium dioxide nanoparticles were employed for the sorption of selenium ions from aqueous solution. The process was studied in detail by varying the sorption time, pH, and temperature. The sorption was found to be fast, and to reach equilibrium basically within 5.0 min. The sorption has been optimized with respect to the pH, maximum sorption has been achieved from solution of pH 2-6. Sorbed Se(IV) and Se(VI) were desorbed with 2.0 mL 0.1 mol L(-1) NaOH. The kinetics and thermodynamics of the sorption of Se(IV) onto nano-TiO2 have been studied. The kinetic experimental data properly correlate with the second-order kinetic model (k(2)=0.69 g mg(-1) min(-1), 293 K). The overall rate process appears to be influenced by both boundary layer diffusion and intraparticle diffusion. The sorption data could be well interpreted by the Langmuir sorption isotherm. The mean energy of adsorption (14.46 kJ mol(-1)) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. The thermodynamic parameters for the sorption were also determined, and the DeltaH(0) and DeltaG(0) values indicate exothermic behavior.

  10. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  11. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes

    NASA Astrophysics Data System (ADS)

    Björklund, Sebastian; Kocherbitov, Vitaly

    2015-05-01

    A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.

  12. CO 2 Sorption to Subsingle Hydration Layer Montmorillonite Clay Studied by Excess Sorption and Neutron Diffraction Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Ilton, Eugene S.; Wallacher, Dirk

    2013-01-02

    Geologic storage of CO 2 requires that the caprock sealing the storage rock is highly impermeable to CO 2. Swelling clays, which are important components of caprocks, may interact with CO 2 leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO 2 with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of ≈0.15 g/cm 3, followed by an approximately linear decrease of excess sorption to zero and negativemore » values with increasing CO 2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO 2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO 2 in the clay pores is relatively stable over a wide range of CO 2 pressures at a given temperature, indicating the formation of a clay-CO 2 phase. Finally, at the excess sorption maximum, increasing CO 2 sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.« less

  13. Sorption of atrazine, acetochlor, and 2,4-D by hardwood-derived biochar

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. M.; Shipitalo, M. J.

    2016-12-01

    Offsite transport of herbicides and other agricultural pesticides to streams and other bodies of water can adversely impact drinking water supplies and aquatic ecology. Atrazine, acetochlor, and 2,4-D are herbicides commonly used to control weeds in maize (Zea mays) and soybean (Glycine max), the dominant crops in the U.S. Midwest. Unfortunately, these materials are frequently detected at high concentrations in surface runoff and subsurface drainage, especially when rainstorms occur shortly after their application. Thus, edge-of-field technologies employing effective sorbents to remove pesticides in water are needed to reduce this concern. In this study, we investigated the sorption of atrazine, acetochlor, and 2,4-D by a hardwood-derived biochar. Sorption kinetics and isotherms were determined for each pesticide using concentrations ranging from 5 to 100 ug L-1. The results from the kinetic sorption studies were fitted to pseudo first- and second-order reaction models and demonstrated that sorption was fast; in less than an hour > 90% of the added pesticides were sorbed and after 24 hours up to 100% was removed. The pH of the suspensions after the sorption kinetic and isotherm studies was 8.26 ± 0.51. Thus, because of the nature of the biochar and the pesticides used in this study, hydrophobic interactions appear to be the main mechanism of sorption. Furthermore, since the sorption was fast, we hypothesize that sorption occurred on the surface of biochar. The information from this study can be used to develop agricultural best management practices to remove pesticides in water.

  14. SORPTION OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN FROM WATER BY SURFACE SOILS

    EPA Science Inventory

    The sorption of l4C-labeled 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) from water by two uncontaminated surface soils from the Times Beach, MO, area was evalu- ated by using batch shake testing. Sorption isotherm plots for the soil with the lower fraction organic carbon (f,) wer...

  15. Moisture Sorption Isotherms and Properties of Sorbed Water of Neem ( Azadirichta indica A. Juss) Kernels

    NASA Astrophysics Data System (ADS)

    Ngono Mbarga, M. C.; Bup Nde, D.; Mohagir, A.; Kapseu, C.; Elambo Nkeng, G.

    2017-01-01

    A neem tree growing abundantly in India as well as in some regions of Asia and Africa gives fruits whose kernels have about 40-50% oil. This oil has high therapeutic and cosmetic qualities and is recently projected to be an important raw material for the production of biodiesel. Its seed is harvested at high moisture contents, which leads tohigh post-harvest losses. In the paper, the sorption isotherms are determined by the static gravimetric method at 40, 50, and 60°C to establish a database useful in defining drying and storage conditions of neem kernels. Five different equations are validated for modeling the sorption isotherms of neem kernels. The properties of sorbed water, such as the monolayer moisture content, surface area of adsorbent, number of adsorbed monolayers, and the percent of bound water are also defined. The critical moisture content necessary for the safe storage of dried neem kernels is shown to range from 5 to 10% dry basis, which can be obtained at a relative humidity less than 65%. The isosteric heats of sorption at 5% moisture content are 7.40 and 22.5 kJ/kg for the adsorption and desorption processes, respectively. This work is the first, to the best of our knowledge, to give the important parameters necessary for drying and storage of neem kernels, a potential raw material for the production of oil to be used in pharmaceutics, cosmetics, and biodiesel manufacturing.

  16. Humidity sorption on natural building stone

    NASA Astrophysics Data System (ADS)

    Franzen, C.; Mirwald, P.

    2003-04-01

    processes, physical, chemical or biological, depend on the presence of water. Like most porous materials building stone respond on humidity by water uptake. The sorption isotherm represents the equilibrium moisture, specific for each material. The determination of the isotherm for stone of low and small porosity like marble is difficult. With the help of a newly developed water sorption analysis chamber [2], which allows the simultaneous measurement of 11 samples, good results on stone/rock samples have been obtained. Even at marble species with pore volumes lower than 0.4 % isotherms are measured. This analytical method offers new insights in the pore behaviour of low porosity materials. The advantages of this technique which supplements other techniques (e.g. BET, Hg-porosimetry) are: i) the testing agent is identical to the weathering agent, water; ii) the atmospheric parameters at the measurement reflect the natural conditions - thus no changes to the material properties have to be considered; iii) due to the small diameter of the water molecule (~0.28 nm), smaller pores are reached than e.g. with N2 (~0.31 nm). Sorption isotherms of sandstone (Baumberg, Obernkirchen, Groeden), granite (Brixen), and marble (Sterzing, Laas) are presented. Particular as to marbles the resolution is considerably higher. A previously observed negative hysteresis [3] seems an effect due to limited data resolution. [1] Snethlage, R. (1984) Steinkonservierung, Bayer. LA Denkmalpflege, Ah. 22, 203 S. [2] Griesser, U.J., Dillenz, J. (2002) Neuartiges, vollautomatisches Feuchtesorptionsprüfgerät mit hohem Probendurchsatz, Feuchtetag 2002, Weimar, 85-93. [3] Fimmel, R. (1996) Verwitterungsverhalten der alpinen Marmore von Laas und Sterzing, Diss. Univ. Ibk, 116 S.

  17. Dynamic wetting on a thin film of soluble polymer: effects of nonlinearities in the sorption isotherm.

    PubMed

    Dupas, Julien; Verneuil, Emilie; Ramaioli, Marco; Forny, Laurent; Talini, Laurence; Lequeux, Francois

    2013-10-08

    The wetting dynamics of a solvent on a soluble substrate interestingly results from the rates of the solvent transfers into the substrate. When a supported film of a hydrosoluble polymer with thickness e is wet by a spreading droplet of water with instantaneous velocity U, the contact angle is measured to be inversely proportionate to the product of thickness and velocity, eU, over two decades. As for many hydrosoluble polymers, the polymer we used (a polysaccharide) has a strongly nonlinear sorption isotherm φ(a(w)), where φ is the volume fraction of water in the polymer and aw is the activity of water. For the first time, this nonlinearity is accounted for in the dynamics of water uptake by the substrate. Indeed, by measuring the water content in the polymer around the droplet φ at distances as small as 5 μm, we find that the hydration profile exhibits (i) a strongly distorted shape that results directly from the nonlinearities of the sorption isotherm and (ii) a cutoff length ξ below which the water content in the substrate varies very slowly. The nonlinearities in the sorption isotherm and the hydration at small distances from the line were not accounted for by Tay et al., Soft Matter 2011, 7, 6953. Here, we develop a comprehensive description of the hydration of the substrate ahead of the contact line that encompasses the two water transfers at stake: (i) the evaporation-condensation process by which water transfers into the substrate through the atmosphere by the condensation of the vapor phase, which is fed by the evaporation from the droplet itself, and (ii) the diffusion of liquid water along the polymer film. We find that the eU rescaling of the contact angle arises from the evaporation-condensation process at small distances. We demonstrate why it is not modified by the second process.

  18. The effects of sugars on moisture sorption isotherm and functional properties of cold water fish gelatin films.

    PubMed

    Hazaveh, Parham; Mohammadi Nafchi, Abdorreza; Abbaspour, Hossein

    2015-08-01

    Sugars were incorporated into CWFG solutions at different ratios (0%, 2%, 4%, and 6% w/w). Functional properties of the modified films were characterized following American standard test methods, and moisture sorption isotherm was characterized by polynomial and GAB models. Permeation to water vapor and oxygen of the modified films decreased compared to that of the control CWFG films. Moisture content, solubility, and monolayer water content of CWFG films decreased with the increase of sugar content. The addition of sugars significantly increased the Tensile strength of CWFG films from 30 to 40 MPa for ribose, and 30 to 35 MPa for fructose whereas elongation at the breaks decreased from 60% to 30% for ribose, and from 60% to 45% for that which incorporated fructose sugars. Moisture sorption isotherm curve significantly shifted to lower moisture content in aw<0.6. In aw>0.6, ribose-incorporated CWFG films, had similar function to hydrogel materials. In all the characterizations, the effects of ribose were significantly higher than those of fructose. Results of this research can be explored for commercial use, depending on the application for either packaging purposes or in the cosmetics industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications.

    PubMed

    Jeremias, Felix; Lozan, Vasile; Henninger, Stefan K; Janiak, Christoph

    2013-12-07

    Sorption-based heat transformation and storage appliances are very promising for utilizing solar heat and waste heat in cooling or heating applications. The economic and ecological efficiency of sorption-based heat transformation depends on the availability of suitable hydrophilic and hydrothermally stable sorption materials. We investigated the feasibility of using the metal-organic frameworks UiO-66(Zr), UiO-67(Zr), H2N-UiO-66(Zr) and H2N-MIL-125(Ti) as sorption materials in heat transformations by means of volumetric water adsorption measurements, determination of the heat of adsorption and a 40-cycle ad/desorption stress test. The amino-modified compounds H2N-UiO-66 and H2N-MIL-125 feature high heat of adsorption (89.5 and 56.0 kJ mol(-1), respectively) and a very promising H2O adsorption isotherm due to their enhanced hydrophilicity. For H2N-MIL-125 the very steep rise of the H2O adsorption isotherm in the 0.1 < p/p0 < 0.2 region is especially beneficial for the intended heat pump application.

  20. Water absorption of freeze-dried meat at different water activities: a multianalytical approach using sorption isotherm, differential scanning calorimetry, and nuclear magnetic resonance.

    PubMed

    Venturi, Luca; Rocculi, Pietro; Cavani, Claudio; Placucci, Giuseppe; Dalla Rosa, Marco; Cremonini, Mauro A

    2007-12-26

    Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.

  1. Sorption equilibria of ethanol on cork.

    PubMed

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  2. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    PubMed

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sorption isotherms of salted minced pork and of lean surface of dry-cured hams at the end of the resting period using KCl as substitute for NaCl.

    PubMed

    Comaposada, J; Arnau, J; Gou, P

    2007-12-01

    The effect of KCl on sorption isotherms was determined on salted minced meat (with 0%, 30% and 100% molar substitution of NaCl by KCl) at 5°C and 25°C and meat from a 3mm thick slice from the surface of dry-cured hams (with 0% and 35% molar substitution of NaCl by KCl) held at 70-75%, 75-80% and 80-85% air relative humidity during the resting period. The sorption isotherms were determined gravimetrically by exposing the meat samples to several atmospheres of known relative humidity controlled by different saturated salts according to the COST90 method. The sorption equipment consisted of a chamber containing 11 containers, covering the water activity (a(w)) range from 0.112 to 0.946 at 25°C. The hermetically closed sorption containers filled with KCl and minced meat samples were irradiated at 3kGrey (gamma irradiation (60)Co). The water content at equilibrium was higher in minced meat with NaCl than in minced meat with KCl (100% molar substitution of NaCl by KCl) at 5°C within the range of 0.4313 and 0.7565 a(w). However, when substitution was 30% in minced meat and 35% in hams the isotherms were similar to isotherm without substitution.

  4. Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature.

    PubMed

    Srinivasan, Prakash; Sarmah, Ajit K; Manley-Harris, Merilyn

    2014-02-15

    The sorption potential for three sulfonamides (SAs), sulfamethoxazole (SMO), sulfachloropyridazine (SCP) and sulfamethazine (SM) and a macrolide, tylosin tartrate (TT) was assessed on six New Zealand dairy farming soils of contrasting physico-chemical properties. Kinetics studies showed that the sorption was rapid in the first few hours of the contact time (0-2h for SA and 0-4h for TT) and thereafter apparent equilibrium was achieved. Batch sorption isotherm data revealed that the degree of isotherm linearity (N) for SCP and SM varied between 0.50 and 1.08 in the six soils. Isotherms of both TT and SMO were mostly non-linear with the degree of non-linearity for TT (N=0.38-0.71) being greater than for SMO (0.42-0.75) in all soils except Manawatu (TT) and Te Kowhai (SMO) where a linear pattern was observed. Concentration-dependent effective distribution coefficient (Kd(eff)) values for the SMO, SCP and SM antibiotics in the soils ranged from 0.85 to 16.35 L kg(-1), while that for TT was 1.6 to 1,042 L kg(-1). The sorption affinity for all soils followed an order: TT>SCP>SM>SMO. Remarkable high sorption for tylosin in Matawhero soil as compared to other soils was attributed to the presence of oxygen containing acidic polar functional groups as evident in the FT-IR spectra of the soil. Furthermore, it was hypothesised that sorption of TT onto soils was mostly driven by metal oxide-surface mediated transformations whereas for sulfonamides it was primarily due to hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces.

    PubMed

    Liang, Y; Liu, X; Allen, M R

    2018-02-01

    Understanding the sorption mechanisms for organophosphate flame retardants (OPFRs) on impervious surfaces is important to improve our knowledge of the fate and transport of OPFRs in indoor environments. The sorption processes of semivolatile organic compounds (SVOCs) on indoor surfaces are heterogeneous (multilayer sorption) or homogeneous (monolayer sorption). In this study, we adopted simplified Langmuir isotherm and Freundlich isotherm in a dynamic sink model to characterize the sorption dynamics of OPFRs on impervious surfaces such as stainless steel and made comparisons between the two models through a series of empty chamber studies. The tests involve two types of stainless steel chambers (53-L small chambers and 44-mL micro chambers) using tris(2-chloroethyl)phosphate (TCEP) and tris(1-chloro-2-propyl)phosphate (TCPP) as target compounds. Our test results show that the dynamic sink model using Freundlich isotherm can better represent the sorption process in the empty small chamber. Micro chamber test results from this study show that the sink model using both simplified Langmuir isotherm and Freundlich isotherm can well fit the measured gas-phase concentrations of OPFRs. We further applied both models and the parameters obtained to predict the gas phase concentrations of OPFRs in a small chamber with an emission source. Comparisons between model predictions and measurements demonstrate the reliability and applicability of the sorption parameters. Published by Elsevier Ltd.

  6. Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.

    PubMed

    Saberi, Bahareh; Vuong, Quan V; Chockchaisawasdee, Suwimol; Golding, John B; Scarlett, Christopher J; Stathopoulos, Costas E

    2015-12-24

    The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%-96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above a w = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%-96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer-Emmitt-Teller (BET), Flory-Huggins, and Iglesias-Chirife), three-parameter equations Guggenhiem-Anderson-deBoer (GAB), Ferro-Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%-98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments.

  7. Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models

    PubMed Central

    Saberi, Bahareh; Vuong, Quan V.; Chockchaisawasdee, Suwimol; Golding, John B.; Scarlett, Christopher J.; Stathopoulos, Costas E.

    2015-01-01

    The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%–96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments. PMID:28231096

  8. Sorption of a nonionic surfactant Tween 80 by minerals and soils.

    PubMed

    Kang, Soyoung; Jeong, Hoon Young

    2015-03-02

    Batch experiments were conducted to evaluate Tween 80 sorption by oxides, aluminosilicates, and soils. For oxides, the sorption by silica and alumina follow linear isotherms, and that by hematite follows a Langmuir isotherm. Considering isotherm type and surface coverage, Tween 80 may partition into the silica/alumina-water interface, whereas it may bind to hematite surface sites. Among aluminosilicates, montmorillonite shows the greatest sorption due to the absorption of Tween 80 into interlayers. For other aluminosilicates, it sorbs to surfaces, with the sorption increasing as plagioclasesorption. The greater sorption by untreated soils than H2O2-treated soils indicates that soil organic matter is a vital sorbent. The sorption hysteresis, contributed to by clay minerals and soil organic matter, is characterized by the greater sorption during the desorption than the sorption stages. This suggests the potential difficulty in removing surfactants from soils. Also, sorption of surfactants can adversely affect surfactant-enhanced remediation by decreasing the aquifer permeability and the availability of surfactants for micellar solubilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Sorption of pure N2O to biochars and other organic and inorganic materials under anhydrous conditions

    USGS Publications Warehouse

    Cornelissen, Gerard; Rutherford, David W.; Arp, Hans Peter H.; Dorsch, Peter; Kelly, Charlene N.; Rostad, Colleen E.

    2013-01-01

    Suppression of nitrous oxide (N2O) emissions from soil is commonly observed after amendment with biochar. The mechanisms accounting for this suppression are not yet understood. One possible contributing mechanism is N2O sorption to biochar. The sorption of N2O and carbon dioxide (CO2) to four biochars was measured in an anhydrous system with pure N2O. The biochar data were compared to those for two activated carbons and other components potentially present in soils—uncharred pine wood and peat—and five inorganic metal oxides with variable surface areas. Langmuir maximum sorption capacities (Qmax) for N2O on the pine wood biochars (generated between 250 and 500 °C) and activated carbons were 17–73 cm3 g–1 at 20 °C (median 51 cm3 g–1), with Langmuir affinities (b) of 2–5 atm–1 (median 3.4 atm–1). Both Qmaxand b of the charred materials were substantially higher than those for peat, uncharred wood, and metal oxides [Qmax 1–34 cm3 g–1 (median 7 cm3 g–1); b 0.4–1.7 atm–1 (median 0.7 atm–1)]. This indicates that biochar can bind N2O more strongly than both mineral and organic soil materials. Qmax and b for CO2 were comparable to those for N2O. Modeled sorption coefficients obtained with an independent polyparameter—linear free-energy relationship matched measured data within a factor 2 for mineral surfaces but underestimated by a factor of 5–24 for biochar and carbonaceous surfaces. Isosteric enthalpies of sorption of N2O were mostly between −20 and −30 kJ mol–1, slightly more exothermic than enthalpies of condensation (−16.1 kJ mol–1). Qmax of N2O on biochar (50000–130000 μg g–1 biochar at 20 °C) exceeded the N2O emission suppressions observed in the literature (range 0.5–960 μg g–1 biochar; median 16 μg g–1) by several orders of magnitude. Thus, the hypothesis could not be falsified that sorption of N2O to biochar is a mechanism of N2O emission suppression.

  10. Irreversibility of 2,4-Dichlorophenoxyacetic Acid Sorption onto a Volcanic Ash Soil

    NASA Astrophysics Data System (ADS)

    Mon, E.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2008-12-01

    Pesticide sorption and desorption in soils are key processes governing fate and transport of pesticides in the soil environment. The irreversibility (or hysteresis) in the processes of pesticide sorption and desorption needs to be known to accurately predict behavior of pesticides in soil systems. 2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used pesticide in agriculture fields. However, only few studies of 2,4-D adsorption onto Andosols (volcanic ash soils) have been published, and the knowledge of 2,4-D desorption onto Andosols is very limited. In this study, a volcanic ash soil sampled from a pasture site in Nishi-Tokyo, Japan was used as a sorbent in order to investigate the irreversibility of 2,4-D sorption. For comparison, a pure clay mineral (kaolinite) obtained from Clay Science Society of Japan (CSSJ) was also used. 2,4-D solutions with three concentrations (0.011, 0.022 and 0.045 mmol/L) were prepared in artificial rain water (ARW= 0.085mM NaCl + 0.015mM CaCl2) to simulate field conditions. To prepare the sample solutions, the solid mass/liquid volume ratio of 1:10 was used for both sorbents (volcanic ash soil and kaolinite). The experiments were conducted in triplicate using a batch method under different pH conditions to examine the effect of pH. Desorption was measured during a equilibration procedure: After removal of 7 mL of supernatant in the sorption step, 7 mL of ARW excluding 2,4-D was added to the sample solution after which, it was equilibrated and centrifuged. The procedure was performed sequentially three or four times to obtain a desorption isotherm. Sorption and desorption generally followed Freundlich isotherms. The results showed markedly effects of pH on 2,4-D sorption and desorption in both the soil and kaolinite, with the percentage of sorption increasing with decreasing pH whereas the percentage of desorption decreased. There was a larger adsorption-desorption hysteresis in the volcanic ash soil as compared to kaolinite

  11. A general computer model for predicting the performance of gas sorption refrigerators

    NASA Technical Reports Server (NTRS)

    Sigurdson, K. B.

    1983-01-01

    Projected performance requirements for cryogenic spacecraft sensor cooling systems which demand higher reliability and longer lifetimes are outlined. The gas/solid sorption refrigerator is viewed as a potential solution to cryogenic cooling needs. A software model of an entire gas sorption refrigerator system was developed. The numerical model, evaluates almost any combination and order of refrigerator components and any sorbent-sorbate pair or which the sorption isotherm data are available. Parametric curves for predicting system performance were generated for two types of refrigerators, a LaNi5-H2 absorption cooler and a Charcoal-N2 adsorption cooler. It is found that precooling temperature and heat exchanger effectiveness affect the refrigerator performance. It is indicated that gas sorption refrigerators are feasible for a number of space applications.

  12. Sorption of citalopram, irbesartan and fexofenadine in soils: Estimation of sorption coefficients from soil properties.

    PubMed

    Klement, Aleš; Kodešová, Radka; Bauerová, Martina; Golovko, Oksana; Kočárek, Martin; Fér, Miroslav; Koba, Olga; Nikodem, Antonín; Grabic, Roman

    2018-03-01

    The sorption of 3 pharmaceuticals, which may exist in 4 different forms depending on the solution pH (irbesartan in cationic, neutral and anionic, fexofenadine in cationic, zwitter-ionic and anionic, and citalopram cationic and neutral), in seven different soils was studied. The measured sorption isotherms were described by Freundlich equations, and the sorption coefficients, K F (for the fixed n exponent for each compound), were related to the soil properties to derive relationships for estimating the sorption coefficients from the soil properties (i.e., pedotransfer rules). The largest sorption was obtained for citalopram (average K F value for n = 1 was 1838 cm 3  g -1 ) followed by fexofenadine (K F  = 35.1 cm 3/n μg 1-1/n g -1 , n = 1.19) and irbesartan (K F  = 3.96 cm 3/n μg 1-1/n g -1 , n = 1.10). The behavior of citalopram (CIT) in soils was different than the behaviors of irbesartan (IRB) and fexofenadine (FEX). Different trends were documented according to the correlation coefficients between the K F values for different compounds (R IRB,FEX  = 0.895, p-value<0.01; R IRB,CIT  = -0.835, p-value<0.05; R FEX,CIT  = -0.759, p-value<0.05) and by the reverse relationships between the K F values and soil properties in the pedotransfer functions. While the K F value for citalopram was positively related to base cation saturation (BCS) or sorption complex saturation (SCS) and negatively correlated to the organic carbon content (Cox), the K F values of irbesartan and fexofenadine were negatively related to BCS, SCS or the clay content and positively related to Cox. The best estimates were obtained by combining BCS and Cox for citalopram (R 2  = 93.4), SCS and Cox for irbesartan (R 2  = 96.3), and clay content and Cox for fexofenadine (R 2  = 82.9). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25°C.

    PubMed

    Cervenka, L; Kubínová, J; Juszczak, L; Witczak, M

    2012-02-01

    Sorption isotherms of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) root samples were obtained at 25 °C. Elecampe exhibited hysteresis loop in the range of 0.35-0.90 a(w) , whereas burdock roots showed significant differences between adsorption and desorption isotherms from 0.65 to 0.80 a(w) . Blahovec-Yanniotis was considered to give the best fit over the whole range of a(w) tested. Various parameters describing the properties of sorbed water derived from GAB, Henderson and Blahovec-Yanniotis models have been discussed. Differential scanning calorimetric method was used to measure the glass transition temperature (T (g)) of root samples in relation to water activity. The safe moisture content was determined in 12.01 and 14.96 g/100 g d. b. for burdock and elecampe root samples at 25 °C, respectively. Combining the T (g) line with sorption isotherm in one plot, it was found that the glass transition temperature concept overestimated the temperature stability for both root samples.

  14. Sorption of Pseudomonas putida onto differently structured kaolinite minerals

    NASA Astrophysics Data System (ADS)

    Vasiliadou, I. A.; Papoulis, D.; Chrysikopoulos, C.; Panagiotaras, D.; Karakosta, E.; Fardis, M.; Papavassiliou, G.

    2010-12-01

    The presence of bio-colloids (e.g. bacteria and viruses) in the subsurface could be attributed to the release of particles from septic tanks, broken sewer lines or from artificial recharge with treated municipal wastewater. Bio-colloid transport in the subsurface is significantly affected by sorption onto the solid matrix. Bio-colloid attachment onto mobile or suspended in the aqueous phase soil particles (e.g. clay or other minerals) also may influence their fate and transport in the subsurface. The present study focuses on the investigation of Pseudomonas (Ps.) putida sorption onto well (KGa-1) and poorly (KGa-2) crystallized kaolinite minerals. Batch experiments were carried out to determine the sorption isotherms of Ps. putida onto both types of kaolinite particles. The sorption process of Ps. putida onto KGa-1 and KGa-2 is adequately described by a Langmuir isotherm. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy as well as Nuclear Magnetic Resonance were employed to study the sorption mechanisms of Ps. putida. Experimental results indicated that KGa-2 presented higher affinity and sorption capacity than KGa-1. It was shown that electrostatic interactions and structural disorders can influence the sorption capacity of clay particles.

  15. Surface complexation modeling of zinc sorption onto ferrihydrite.

    PubMed

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  16. Rates and equilibria of perfluorooctanoate (PFOA) sorption on soils from different regions of China.

    PubMed

    Miao, Yu; Guo, Xuetao; Dan Peng; Fan, Tingyu; Yang, Chen

    2017-05-01

    Understanding sorption of PFOA on soil particles is crucial to evaluate its environmental risk. Here, sorption of PFOA onto ten agricultural soils was examined. The influence of soil physico-chemical properties on PFOA sorption was investigated. The sorption rate of PFOA followed a pseudo-second-order kinetics. Isotherm data of PFOA sorption was fitted with both Freundlich and linear models and the latter fitted better. The sorption-desorption of PFOA onto ten soil samples depended on soil organic carbon content and composition of soil minerals. The sorption and desorption isotherms of PFOA on ten soils were linear, except for the sorption of PFOA onto a few soils, which was described by the Freundlich equation with the parameter N >1. The main sorption mechanism of PFOA was hydrophobic interaction between the perfluorinated carbon chain and the organic matter of soil, as evidenced by the correlation between the solid-liquid distribution coefficient and the fraction of soil organic carbon. The sorption of PFOA in soils was highly irreversible. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experimental study and modelling of water sorption/desorption isotherms on two agricultural products: Apple and carrot

    NASA Astrophysics Data System (ADS)

    Timoumi, S.; Zagrouba, F.; Mihoubi, D.; Tlili, M. M.

    2004-12-01

    This work is focused on some properties of dried apple (Red Chief) and carrot (Misky). Water sorption isotherms of carrot and apple were investigated at three temperatures: 30, 40 and 60°C, corresponding to drying temperatures, by the static method consisting of the use of different sulphuric acid solutions. Guggenheim-Anderson-de Boer (G.A.B) model is found to describe the experimental curves better than Henderson, Hasley and Oswin models with a correlation coefficient superior to 0.97 for both products. The hysteresis phenomenon was clearly observed in the case of apple isotherms. The experimental data were also used to determine the isosteric enthalpy of desorption of apple and carrot. The isosteric enthalpy of desorption decreased with increase in moisture content and the trend became asymptotic.

  18. Sorption of Cu(2+) on humic acids sequentially extracted from a sediment.

    PubMed

    Yang, Kun; Miao, Gangfen; Wu, Wenhao; Lin, Daohui; Pan, Bo; Wu, Fengchang; Xing, Baoshan

    2015-11-01

    In addition to the diverse properties of humic acids (HAs) extracted from different soils or sediments, chemical compositions, functional groups and structures of HAs extracted from a single soil or sediment could also be diverse and thus significantly affect sorption of heavy metals, which is a key process controlling the transfer, transformation and fate of heavy metals in the environment. In this study, we sequentially extracted four HA fractions from a single sediment and conducted the sorption experiments of Cu(2+) on these HA fractions. Our results showed that aromaticity and acidic group content of HA fraction decreased with increasing extraction. Earlier extracted HA fraction had higher sorption capacity and affinity for Cu(2+). There were two fractions of adsorbed Cu(2+) on HAs, i.e., ion exchanged fraction and surface bonded fraction, which can be captured mechanically by the bi-Langmuir model with good isotherm fitting. The ion exchanged fraction had larger sorption capacity but lower sorption affinity, compared with the surface bonded fraction. The dissociated carboxyl groups of HAs were responsible for both fractions of Cu(2+) sorption, due to the more Cu(2+) sorption on the earlier extracted HA fraction with more carboxyl groups and at higher pH. The intensive competition between H(+) and the exchangeable Cu(2+) could result in the decrease of ion exchanged capacity and affinity for Cu(2+) on HAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies.

    PubMed

    Bertoni, Fernando A; Medeot, Anabela C; González, Juan C; Sala, Luis F; Bellú, Sebastián E

    2015-05-15

    Spongomorpha pacifica biomass was evaluated as a new sorbent for Mo(VI) removal from aqueous solution. The maximum sorption capacity was found to be 1.28×10(6)±1×10(4) mg kg(-1) at 20°C and pH 2.0. Sorption kinetics and equilibrium studies followed pseudo-first order and Langmuir adsorption isotherm models, respectively. FTIR analysis revealed that carboxyl and hydroxyl groups were mainly responsible for the sorption of Mo(VI). SEM images show that morphological changes occur at the biomass surface after Mo(VI) sorption. Activation parameters and mean free energies obtained with Dubinin-Radushkevich isotherm model demonstrate that the mechanism of sorption process was chemical sorption. Thermodynamic parameters demonstrate that the sorption process was spontaneous, endothermic and the driven force was entropic. The isosteric heat of sorption decreases with surface loading, indicating that S. pacifica has an energetically non-homogeneous surface. Experimental breakthrough curves were simulated by Thomas and modified dose-response models. The bed depth service time (BDST) model was employed to scale-up the continuous sorption experiments. The critical bed depth, Z0 was determined to be 1.7 cm. S.pacifica biomass showed to be a good sorbent for Mo(VI) and it can be used in continuous treatment of effluent polluted with molybdate ions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Sorption equilibrium of mercury onto ground-up tree fern.

    PubMed

    Ho, Yuh-Shan; Wang, Chung-Chi

    2008-08-15

    The sorption behavior of mercury at different temperatures onto ground-up tree fern was investigated. The experimental results were fitted to two two-parameter isotherms, the Freundlich and Langmuir isotherms, as well as to two three-parameter isotherms, the Redlich-Peterson and Sips isotherms to obtain the characteristic parameters of each model. A comparison of best-fitting was performed using the coefficient of determination and Chi-square test. Both the Langmuir and Redlich-Peterson isotherms were found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of mercury ions onto ground-up tree fern was 26.5 mg/g at 298 K. It was noted that an increase in temperature resulted in a higher mercury ion loading per unit weight of the tree fern. In addition, various thermodynamic parameters, such as DeltaG degrees, DeltaH degrees, and DeltaS degrees, were calculated and compared with the sorption of mercury by other sorbents.

  1. “Multi-temperature” method for high-pressure sorption measurements on moist shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves

    2013-08-15

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as “multi-temperature” (short “multi-T”) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1more » K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.« less

  2. Mechanistic insights of 2,4-D sorption onto biochar: Influence of feedstock materials and biochar properties.

    PubMed

    Mandal, Sanchita; Sarkar, Binoy; Igalavithana, Avanthi Deshani; Ok, Yong Sik; Yang, Xiao; Lombi, Enzo; Bolan, Nanthi

    2017-12-01

    Objective of this study was to investigate the mechanisms of 2,4-Dichlorophynoxy acetic acid (2,4-D) sorption on biochar in aqueous solutions. Sorption isotherm, kinetics, and desorption experiments were performed to identify the role of biochars' feedstock and production conditions on 2,4-D sorption. Biochars were prepared from various green wastes (tea, burcucumber, and hardwood) at two pyrolytic temperatures (400 and 700°C). The tea waste biochar produced at 700°C was further activated with steam under a controlled flow. The sorption of 2,4-D was strongly dependent on the biochar properties such as specific surface area, surface functional groups, and microporosity. The steam activated biochar produced from tea waste showed the highest (58.8mgg -1 ) 2,4-D sorption capacity, which was attributed to the high specific surface area (576m 2 g -1 ). The mechanism of 2,4-D removal from aqueous solution by biochar is mainly attributed to the formation of heterogeneous sorption sites due to the steam activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Sorption mechanism of ofloxacin by carbon nanotubes].

    PubMed

    Zhao, Xing-Xing; Yu, Shui-Li; Wang, Zhe

    2014-02-01

    Sorption of ofloxacin (OFL) by carbon nanotubes is an effective method to control its fate in aquatic environment. The sorption process of OFL by mixed acid-treated and non-treated multi-walled carbon nanotubes was discussed. Sorption kinetics, sorption isotherm, desorption, sorption thermodynamics and effect of pH were investigated. The results indicated that the sorption kinetics followed the pseudo-second order kinetics model. The equilibrium sorption capacity of OFL on MWCNTs-O was higher. The sorption isotherm could be fitted by both the Langmuir and Freundlich models. The equilibrium sorption capacity dropped when the pH of aqueous solution was in the range of 6.0 to 10.0. Obvious desorption hysteresis was observed during the desorption experiments, especially on MWCNTs-O. Sorption thermodynamics analysis showed that the interactions between the OFL and sorbents were mainly between molecules. More oxygen-containing functional groups introduced on MWCNTs provided OFL molecules with more sorptive sites, which facilitated the generation of hydrogen bonds, a relatively strong interaction. The hydrogen bonds dominated the sorption process of OFL by MWCNTs/MWCNTs-O, explaining the experimental phenomena.

  4. Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium.

    PubMed

    Berhane, Tedros M; Levy, Jonathan; Krekeler, Mark P S; Danielson, Neil D; Stalcup, Apryll

    2015-01-23

    Palygorskite-montmorillonite (PM) was studied as a potential sewage treatment effluent filter material for carbamazepine. Batch sorption experiments were conducted as a function of granule size (0.3-0.6, 1.7-2.0 and 2.8mm) and different sewage effluent conditions (pH, ionic strength and temperature). Results showed PM had a mix of fibrous and plate-like morphologies. Sorption and desorption isotherms were fitted to the Freundlich model. Sorption is granule size-dependent and the medium granule size would be an appropriate size for optimizing both flow and carbamazepine retention. Highest and lowest sorption capacities corresponded to the smallest and the largest granule sizes, respectively. The lowest and the highest equilibrium aqueous (Ce) and sorbed (qe) carbamazepine concentrations were 0.4 mg L(-1) and 4.5 mg L(-1), and 0.6 mg kg(-1) and 411.8 mg kg(-1), respectively. Observed higher relative sorption at elevated concentrations with a Freundlich exponent greater than one, indicated cooperative sorption. The sorption-desorption hysteresis (isotherm non-singularity) indicated irreversible sorption. Higher sorption observed at higher rather than at lower ionic strength conditions is likely due to a salting-out effect. Negative free energy and the inverse sorption capacity-temperature relationship indicated the carbamazepine sorption process was favorable or spontaneous. Solution pH had little effect on sorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Composite polymeric beads containing N,N,N',N'-tetraoctyldiglycolamide for actinide ion uptake from nitric acid feeds: Batch uptake, kinetic modelling and column studies.

    PubMed

    Gujar, R B; Mohapatra, P K; Lakshmi, D Shanthana; Figoli, A

    2015-11-27

    Polyethersulphone (PES) based composite polymeric beads (CPB) containing TODGA (N,N,N',N'-tetraoctyldiglycolamide) as the extractant were prepared by conventional phase inversion technique and were tested for the uptake of actinide ions such as Am(3+), UO2(2+), Pu(4+), Np(4+) and fission product ions such as Eu(3+) and Sr(2+). The CPBs containing 2.5-10wt.% TODGA were characterized by various physical methods and their porosity, size, surface morphology, surface area and the degradation profile by thermogravimetry were analyzed. The batch uptake studies involved kinetics of metal ion sorption, uptake as a function of nitric acid concentration, kinetic modelling and adsorption isotherms and most of the studies involved the Am(3+) ions. The batch saturation sorption capacities for Eu(3+) loading at 3M HNO3 were determined to be 6.6±0.02, 9.1±0.02 and 22.3±0.04mgg(-1) of CRBs with 2.5wt.%, 5wt.% and 10wt.% TODGA, respectively. The sorption isotherm analysis with Langmuir, D-R and Freundlisch isotherms indicated chemisorption monolayer mechanism. Chromatographic studies indicated breakthrough of Eu(3+) (using a solution containing Eu carrier) after about 0.75 bed volume (3.5-4mL). Elution of the loaded Eu was carried out using 0.01M EDTA as the eluent. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Inhibitory effect on the uptake and diffusion of Cd(2+) onto soybean hull sorbent in Cd-Pb binary sorption systems.

    PubMed

    Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Colombo, Andréia; Geraldi, Claudinéia L; Trigueros, Daniela E G

    2015-05-01

    The uptake of Cd(2+) and Pb(2+) ions by a soybean hull (SH) biosorbent in single and binary systems has been investigated. Sorption tests regarding SH in natura and chemically treated were carried out testing a suitable value range of solution pH, sorption temperature and shaking velocity. Sorption capacity is improved at pH 4, 30 °C temperature and 100 rpm. When a strong base is applied, a related-to-untreated SH increasing of 20% in the sorption capacity of Pb(2+) ions was observed, but with poor results for Cd(2+) uptake. Additionally, a relatively strong decreasing in both sorption capacities of Pb(2+) and Cd(2+) ions was evidenced for all acidic treatments. Regarding untreated SH, kinetic sorption data of both metals were well-interpreted by a pseudo second-order model and a rate-limiting step on the basis of an intra-particle diffusion model was suggested to occur. An inhibitory effect of Pb(2+) diffusion over Cd(2+) one was observed, limiting to reach the obtained maximum sorption capacity in single system. Maximum adsorption capacities of 0.49 and 0.67mequivg(-1) for Cd(2+) and Pb(2+), respectively, were predicted by the Langmuir isotherm model that reproduced well the equilibrium sorption data for single systems. The inhibitory effect of one metal over the other one was verified in equilibrium sorption data for binary systems interpreted on the basis of a modified extended Langmuir isotherm model, predicting changes in metal affinity onto the SH surface. Finally, SH is an alternative biosorbent with a great potential for the wastewater treatment containing cadmium and lead ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Detailed sorption characteristics of the anti-diabetic drug metformin and its transformation product guanylurea in agricultural soils.

    PubMed

    Briones, Rowena M; Sarmah, Ajit K

    2018-07-15

    Detection of metformin, an antidiabetic drug and its transformation product guanylurea in various environmental matrices such as surface water and groundwater, coupled with their effects on aquatic organisms warrant an understanding of the compounds fate and behaviour in the environment. Batch studies were conducted with the aim of evaluating the sorption of these two emerging contaminants in six New Zealand agricultural soils of contrasting physico-chemical properties. Kinetic studies revealed that metformin and guanylurea sorption in Te Kowhai soil was very rapid initially achieving 90% sorption within the first 4 and 13h, respectively. Fit of several isotherm models to the measured batch sorption data showed that the hybrid models Langmuir-Freundlich and Redlich-Peterson best described the isotherms. Freundlich isotherm showed higher linearity for guanylurea (n F =0.58-0.93) in all soils compared to metformin (n F =0.25-0.71). A linear isotherm was fitted at environmentally relevant low concentrations (< 3mg/L) of target compounds and calculated values of sorption distribution coefficient (K d ) were in the range of 8.97 to 53.49L/kg for metformin and between 10.6 and 37.51L/kg for guanylurea. Sorption of both metformin and guanylurea was dependent on the soil characteristics, however, no generalisation could be made as to which had higher affinity to soils studied. Pearson's correlation and multiple regression analyses indicate that Si/Al (p=0.042) and clay (p=0.015) significantly influenced metformin K d values, whereas the soil's cation exchange capacity (p=0.024) is the single most significant factor determining guanylurea sorption in soils. It is likely that the type of minerals present in soils and its ion-exchange capacity could play an important role in metformin and guanylurea sorption, respectively. Copyright © 2018. Published by Elsevier B.V.

  8. Sorption-desorption of imidacloprid onto a lacustrine Egyptian soil and its clay and humic acid fractions.

    PubMed

    Kandil, Mahrous M; El-Aswad, Ahmed F; Koskinen, William C

    2015-01-01

    Sorption-desorption of the insecticide imidacloprid 1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine onto a lacustrine sandy clay loam Egyptian soil and its clay and humic acid (HA) fractions was investigated in 24-h batch equilibrium experiments. Imidacloprid (IMDA) sorption-desorption isotherms onto the three sorbents were found to belong to a non-linear L-type and were best described by the Freundlich model. The value of the IMDA adsorption distribution coefficient, Kd(ads), varied according to its initial concentration and was ranged 40-84 for HA, 14-58 for clay and 1.85-4.15 for bulk soil. Freundlich sorption coefficient, Kf(ads), values were 63.0, 39.7 and 4.0 for HA, clay and bulk soil, respectively. The normalized soil Koc value for imidacloprid sorption was ∼800 indicating its slight mobility in soils. Nonlinear sorption isotherms were indicated by 1/n(ads) values <1 for all sorbents. Values of the hysteresis index (H) were <1, indicating the irreversibility of imidacloprid sorption process with all tested sorbents. Gibbs free energy (ΔG) values indicated a spontaneous and physicosorption process for IMDA and a more favorable sorption to HA than clay and soil. In conclusion, although the humic acid fraction showed the highest capacity and affinity for imidacloprid sorption, the clay fraction contributed to approximately 95% of soil-sorbed insecticide. Clay and humic acid fractions were found to be the major two factors controlling IMDA sorption in soils. The slight mobility of IMDA in soils and the hysteresis phenomenon associated with the irreversibility of its sorption onto, mainly, clay and organic matter of soils make its leachability unlikely to occur.

  9. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon.

    PubMed

    Kumar, K Vasanth; Porkodi, K; Rocha, F

    2008-01-15

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.

  10. Sorption of fluoride using chemically modified Moringa oleifera leaves

    NASA Astrophysics Data System (ADS)

    Dan, Shabnam; Chattree, Amit

    2018-05-01

    Contamination of drinking water due to fluoride is a severe health hazard problem. Excess of fluoride (> 1.5 mg/L) in drinking water is harmful to human health. Various treatment technologies for removing fluoride from groundwater have been investigated. The present study showed that the leaves of Moringa oleifera, a herbal plant is an effective adsorbent for the removal of fluoride from aqueous solution. Acid treated Moringa oleifera leaves powder showed good adsorption capacity than alkali treated Moringa oleifera leaves powder. Batch sorptive defluoridation was conducted under the variable experimental condition such as pH, contact time, adsorbent dose and initial fluoride ion concentration. Maximum defluoridation was achieved at pH 1. The percentage of fluoride removal increases with adsorbent dose. The equilibrium sorption data were fitted into Langmuir, Freundlich and Temkin isotherms. Of the three adsorption isotherms, the R 2 value of Langmuir isotherm model was the highest. The maximum monolayer coverage ( Q max) from Langmuir isotherm model was determined to be 1.1441 mg/g, the separation factor indicating a favorable sorption experiment is 0.035. It was also discovered that the adsorption did not conform to the Freundlich adsorption isotherm. The heat of sorption process was estimated from Temkin Isotherm model to be - 0.042 J/mol which vividly proved that the adsorption experiment followed a physical process.

  11. Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity

    USGS Publications Warehouse

    Chiou, C.T.; Shoup, T.D.

    1985-01-01

    Vapor sorption isotherms on dry Woodburn soil at 20-30??C were determined for benzene, chlorobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,2,4-trichlorobenzene, and water as single vapors and for benzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene as functions of relative humidity (RH). Isotherms for all compounds on dry soil samples are distinctively nonlinear, with water showing the greatest capacity. Water vapor sharply reduced the sorption capacities of organic compounds with the dry soil; on water-saturated soil, the reduction was about 2 orders of magnitude. The markedly higher sorption of organic vapors at subsaturation humidities is attributed to adsorption on the mineral matter, which predominates over the simultaneous uptake by partition into the organic matter. At about 90% RH, the sorption capacities of organic compounds become comparable to those in aqueous systems. The effect of humidity is attributed to adsorptive displacement by water of organics adsorbed on the mineral matter. A small residual uptake is attributed to the partition into the soil-organic phase that has been postulated in aqueous systems. The results are essentially in keeping with the model that was previously proposed for sorption on the soil from water and from organic solvents.Vapor sorption isotherms on dry Woodburn soil at 20-30 degree C were determined for benzene, chlorobenzene, p-dichlorobenzene, m-dichlorobenzene, 1,2,4-trichlorobenzene, and water as single vapors and for benzene, m-dichlorobenzene, and 1,2,4-trichlorobenzene as functions of relative humidity (RH). Isotherms for all compounds on dry soil samples are distinctively nonlinear, with water showing the greatest capacity. Water vapor sharply reduced the sorption capacities of organic compounds with the dry soil; on water-saturated soil, the reduction was about 2 orders of magnitude. The markedly higher sorption of organic vapors at subsaturation humidities is attributed to adsorption on the mineral matter

  12. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (T g ), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔT g (≡T g  - T g0 ; where T g0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  13. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    PubMed

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(ii) and Pb(ii) sorption by δ-MnO2 and ferrihydrite.

    PubMed

    van Genuchten, Case M; Peña, Jasquelin

    2016-08-10

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(ii) and Pb(ii) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that of the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(ii) and Pb(ii) both bind to birnessite layer vacancies, only Pb(ii) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(ii) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(ii) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(ii) < Cd(ii) < Ni(ii) < Zn(ii) < Cu(ii) < Pb(ii).

  15. Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd( ii ) and Pb( ii ) sorption by δ-MnO 2 and ferrihydrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Genuchten, Case M.; Peña, Jasquelin

    2016-01-01

    Birnessite minerals (layer-type MnO2), which bear both internal (cation vacancies) and external (particle edges) metal sorption sites, are important sinks of contaminants in soils and sediments. Although the particle edges of birnessite minerals often dominate the total reactive surface area, especially in the case of nanoscale crystallites, the metal sorption reactivity of birnessite particle edges remains elusive. In this study, we investigated the sorption selectivity of birnessite particle edges by combining Cd(II) and Pb(II) adsorption isotherms at pH 5.5 with surface structural characterization by differential pair distribution function (d-PDF) analysis. We compared the sorption reactivity of δ-MnO2 to that ofmore » the nanomineral, 2-line ferrihydrite, which exhibits only external surface sites. Our results show that, whereas Cd(II) and Pb(II) both bind to birnessite layer vacancies, only Pb(II) binds extensively to birnessite particle edges. For ferrihydrite, significant Pb(II) adsorption to external sites was observed (roughly 20 mol%), whereas Cd(II) sorption was negligible. These results are supported by bond valence calculations that show comparable degrees of saturation of oxygen atoms on birnessite and ferrihydrite particle edges. Therefore, we propose that the sorption selectivity of birnessite edges follows the same order of that reported previously for ferrihydrite: Ca(II) < Cd(II) < Ni(II) < Zn(II) < Cu(II) < Pb(II).« less

  16. High-pressure sorption of nitrogen, carbon dioxide, and their mixtures on Argonne Premium Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreas Busch; Yves Gensterblum; Bernhard M. Krooss

    2007-06-15

    Gas sorption isotherms have been measured for carbon dioxide and nitrogen and their binary mixture (N{sub 2}/CO{sub 2} {approximately} 80/20) on three different moisture-equilibrated coals from the Argonne Premium Coal Sample Program by the U.S. Department of Energy, varying in rank from 0.25 to 1.68% vitrinite reflectance (VR{sub r}). The measurements were conducted at 55 C and at pressures up to 27 MPa for the pure gases and up to 10 MPa for the gas mixture. The effects of the large differences in equilibrium moisture contents (0.8 to 32.2%) on sorption capacity were estimated on the basis of the aqueousmore » solubility of CO{sub 2} and N{sub 2} at experimental conditions. Especially for the Beulah-Zap coal with an equilibrium moisture content of {approximately} 32%, the amount of dissolved CO{sub 2} contributes significantly to the overall storage capacity, whereas the amounts of N{sub 2} dissolved in the moisture water are low and can be neglected. Sorption measurements with nitrogen/carbon dioxide mixtures showed very low capacities for N{sub 2}. For Illinois coal, these excess sorption values were even slightly negative, probably due to small volumetric effects (changes in condensed phase volume). The evolution of the composition of the free gas phase in contact with the coal sample has been monitored continuously during each pressure step of the sorption tests. This composition changed strongly over time. Apparently, CO{sub 2} reaches sorption sites very quickly initially and is subsequently partly replaced by N{sub 2} molecules until concentration equilibration is reached. 18 refs., 10 figs., 2 tabs.« less

  17. Sorption of aromatic organic pollutants to grasses from water

    USGS Publications Warehouse

    Barbour, J.P.; Smith, J.A.; Chiou, C.T.

    2005-01-01

    The influence of plant lipids on the equilibrium sorption of three aromatic solutes from water was studied. The plant-water sorption isotherms of benzene, 1,2-dichlorobenzene, and phenanthrene were measured over a large range of solute concentrations using sealed vessels containing water, dried plant material, and solute. The plant materials studied include the shoots of annual rye, tall fescue, red fescue, and spinach as well as the roots of annual rye. Seven out of eight sorption isotherms were linear with no evidence of competitive effects between the solutes. For a given plant type, the sorption coefficient increased with decreasing solute water solubility. For a given solute, sorption increased with increasing plant lipid content. The estimated lipid-water partition coefficients of individual solutes were found to be significantly greater than the corresponding octanol-water partition coefficients. This indicates that plant lipids are a more effective partition solvent than octanol for the studied aromatic compounds. As expected, the solute lipid-water partition coefficients were log-linearly related to the respective water solubilities. For the compounds studied, partitioning into the lipids is believed to be the primary sorption mechanism. ?? 2005 American Chemical Society.

  18. Derived and thiourea-functionalized silica for cadmium removal: isotherm, kinetic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Omotunde, Iyanu; Okoronkwo, Afamefuna; Oluwashina, Olugbenga

    2018-03-01

    The present study explored the feasibility of using derived and thiourea-functionalized silica as adsorbent for the removal of cadmium under different experimental conditions. Effects of various parameters such as function of point of zero charge (pHPZC), solution pH, sorbent-sorbate resident time and ratio, concentration and temperature were investigated. The sorption of cadmium followed the pseudo-second-order rate kinetics. Thermodynamic studies revealed that the sorption of cadmium was endothermic and spontaneous, with good affinity toward the sorbent. Various isotherm models, viz. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkins-Jura, and Halsey isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich, Halsey, Langmuir, and Temkin models were found to be in good agreement with the experimental data with high R 2, low RMSE, and low χ 2 values. The results show that the sorption capacity increases with an increase in solution temperature from 28 to 65 °C. The maximum sorption capacity calculated from Langmuir isotherm was 27.55 and 28.41 mg g-1 for derived and thiourea-functionalized silica, respectively, at optimum condition of pH 5 and contact time of 120 min.

  19. Sorption behaviour of nonylphenol and nonylphenol monoethoxylate in soils.

    PubMed

    Milinovic, J; Lacorte, S; Rigol, A; Vidal, M

    2015-11-01

    Sorption behaviour of two alkylphenolic compounds (APCs), nonylphenol (NP) and nonylphenol monoethoxylate (NP1EO), was studied in five soils with contrasting characteristics. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions containing different initial concentrations of NP or NP1EO. Linear fitting was generally appropriate for describing the sorption behaviour of NP and NP1EO in the soils, with the exception of two cases, for which the Freundlich model was more suitable for describing the sorption pattern of NP1EO. Solid-liquid distribution coefficients derived from sorption isotherms (Kd) varied from 24 to 1059 mL g(-1) for NP and from 51 to 740 mL g(-1) for NP1EO. For most soils, sorption Kd values were higher for NP than for NP1EO due to the higher hydrophobicity of NP. Sorption reversibility of NP and NP1EO was also tested from desorption isotherms. Desorption solid-liquid distribution coefficients (Kd,des), obtained from linear fitting, were between 130 and 1467 mL g(-1) for NP and between 24 and 1285 mL g(-1) for NP1EO. Kd,des values were higher than Kd values, which demonstrated that target compounds were irreversibly sorbed into soils, with the exception of the high desorption yield (45%) of NP1EO in the soil with the lowest content of organic matter. The fraction of soil organic carbon (FOC) was a key parameter that influenced the sorption of NP and NP1EO in soils, with logKOC values of 4.0 and 3.8, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Role of Donor-Acceptor Interactions in the Sorption of TNT and Other Nitroaromatics from Solution

    DTIC Science & Technology

    1991-09-01

    Leggett isotherms . Nevertheless, these single-valued sorption 1986, Yinon and Hwang 1986), industrial hygiene coefficients can be considered somewhat...Patrick 1990). In all cases similar sorption isotherms were reported, some typical examples of which are shown in Figure 1. They 40- are...is that two (or more) mechanisms operate simultaneously-one with lower capacity and higher Figure 1. Some typical TNT sorption isotherms . (C, and

  1. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  2. Synthesis and applications of eco-magnetic nano-hydroxyapatite chitosan composite for enhanced fluoride sorption.

    PubMed

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-12-10

    Adsorption is a significant reaction occurs between adsorbent/water interface for controlling the pollutants in the aqueous environment. In this regard, an eco-magnetic biosorbent was prepared by uniform deposition of magnetic Fe3O4 particles on the surface of nano-hydroxyapatite (n-HAp)/chitosan (CS) nanocomposite namely Fe3O4@n-HApCS composite as versatile sorbent for fluoride sorption. The resulting Fe3O4@n-HApCS nanocomposite was characterized by FTIR and SEM with EDAX techniques. The defluoridation capacity (DC) was found to depend on the contact time, pH, co-existing anions, initial fluoride concentration and temperature. The sorption isotherm was investigated by Freundlich, Langmuir and Temkin isotherm models using the batch method. The thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of fluoride sorption. The results of this research work designated that Fe3O4@n-HApCS composite having the excellent defluoridation capacity than the individual components and interesting to note that the easy magnetic separation of Fe3O4@n-HApCS composite from aqueous medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. COSOLVENT EFFECTS ON SORPTION ISOTHERM LINEARITY

    EPA Science Inventory

    Sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. In this study, aqueous and mixed solvent systems were used t...

  4. Sorption Isotherm Modelling Of Fermented Cassava Flour by Red Yeast Rice

    NASA Astrophysics Data System (ADS)

    Cahyanti, M. N.; Alfiah, M. N.; Hartini, S.

    2018-04-01

    The objective of the study is to determine the characteristic of moisture sorption isotherm from fermented cassava flour by red yeast rice using various modeling. This research used seven salt solutions and storage temperature of 298K, 303K, and 308K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 4.51 – 5.99% db. Constant related to absorption heat in the multilayer area of [GAB model was around 0.86-0,91. Constant related to absorption heat in the monolayer area of GAB model was around 4.67-5.97. Constant related to absorption heat in the monolayer area of BET model was around 4.83-7.04. Caurie constant was around 1.25-1.59. The equilibrium and monolayer moisture content on fermented cassava flour by red yeast rice was decreasing as increasing temperature. GAB constant value indicated that the process of moisture absorption on the fermented cassava flour by red yeast rice categorized in type II.

  5. Moisture Sorption-desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate.

    PubMed

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption-desorption characteristics and thermodynamic properties of CDP have been investigated. The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%-90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer-Emmett-Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. The sorption-desorption isotherms have sigmoidal shape - confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption-desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  6. Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus.

    PubMed

    Guo, Xin; Wu, Yiqiang; Xie, Xinfeng

    2017-10-27

    Hygroscopic behavior is an inherent characteristic of nanocellulose which strongly affects its applications. In this study, the water vapor sorption behavior of four nanocellulose samples, such as cellulose nanocrystals and nanofibers with cellulose I and II structures (cellulose nanocrystals (CNC) I, CNC II, cellulose nanofibers (CNF) I, and CNF II) were studied by dynamic vapor sorption. The highly reproducible data including the running time, real-time sample mass, target relative humidity (RH), actual RH, and isotherm temperature were recorded during the sorption process. In analyzing these data, significant differences in the total running time, equilibrium moisture content, sorption hysteresis and sorption kinetics between these four nanocellulose samples were confirmed. It was important to note that CNC I, CNC II, CNF I, and CNF II had equilibrium moisture contents of 21.4, 28.6, 33.2, and 38.9%, respectively, at a RH of 95%. Then, the sorption kinetics behavior was accurately described by using the parallel exponential kinetics (PEK) model. Furthermore, the Kelvin-Voigt model was introduced to interpret the PEK behavior and calculate the modulus of these four nanocellulose samples.

  7. Sorption of Ochratoxin A from aqueous solutions using beta-cyclodextrin-polyurethane polymer

    USDA-ARS?s Scientific Manuscript database

    The ability of a cyclodextrin-polyurethane polymer to remove ochratoxin A from aqueous solutions, including wine, was examined by batch rebinding assays and equilibrium sorption isotherms. The results were fit to two parameter models. Freundlich analysis of the sorption isotherm indicates the polyme...

  8. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    NASA Astrophysics Data System (ADS)

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.

    2017-10-01

    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  9. Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water

    USGS Publications Warehouse

    Smith, J.A.

    1990-01-01

    The mineral surface of Wyoming bentonite (clay) was modified by replacing inorganic ions by each of 10 quaternary ammonium compounds, and tetrachloromethane sorption to the modified sorbents from water was studied. Tetrachloromethane sorption from solution to clay modified with tetramethyl-, tetraethyl-, benzyltrimethyl-, or benzyltriethylammonium cations generally is characterized by relatively high solute uptake, isotherm nonlinearity, and competitive sorption (with trichloroethene as the competing sorbate). For these sorbents, the ethyl functional groups yield reduced sorptive capacity relative to methyl groups, whereas the benzyl group appears to have a similar effect on sorbent capacity as the methyl group. Sorption of tetrachloromethane to clay modified with dodecyldimethyl(2-phenoxyethyl)-, dodecyltrimethyl-, tetradecyltrimethyl-, hexadecyltrimethyl-, or benzyldimethylhexadecylammonium bromide is characterized by relatively low solute uptake, isotherm linearity, and noncompetitive sorption. For these sorbents, an increase in the size of the nonpolar functional group(s) causes an increase in the organic carbon normalized sorption coefficient (Koc). No measurable uptake of tetrachloromethane sorption by the unmodified clay or clay modified by ammonium bromide was observed. ?? 1990 American Chemical Society.

  10. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    PubMed

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (<12%). The low values of hysteresis coefficient confirm that glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  11. Sorption of lead by settling pond soils after reclamation treatments

    NASA Astrophysics Data System (ADS)

    Asensio, Verónica; Forján, Rubén; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.

    2013-04-01

    The reclamation of degraded soils adding waste amendments can add significant concentrations of Pb. Because of this, it is important to know the sorption capacity of Pb by the soils where wastes with high concentrations of this metal are applied. To determine the sorption capacity of Pb by mine soils, before and after reclamation treatments, four different sites were selected at a settling pond mine zone: an untreated one as the control sample (B1), a vegetated one with pines for 21 years (B2v), a vegetated with eucalyptus for 6 years (B3v) and an amended with sewage sludges and paper mill residues for 5 months (B4w). All soils had one horizon except B4w, where twice were sampled (B4Aw and B4Bw). The B4Bw is considered analogous of the control soil. To evaluate the sorption capacity by the soils, sorption isotherms were constructed using single-metal solutions of Pb2+ nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Pb was evaluated as the slope Kr (Vega et al., 2008). The obtained results show that the sorption isotherm of Pb by control soil (B1) and its analogous (B4Bw) are of L-type curve, whereas the sorption isotherms of the treated soils (B2v, B3v and B4Aw) are of H-type curve (Giles et al., 1974). The most of the obtained isotherms do not fit with the models of Langmuir or Freundlich, therefore sorption capacity was evaluated by Kr parameter. According to the obtained Kr parameter, B1 and B4Bw have the lowest Pb sorption capacity (Kr = 0.480 and 0.556, respectively), which increased two times after recently waste amending (B4Aw; Kr = 0.998). The vegetated sites (B2v and B3v) also have higher sorption capacity than B1, but lower than B4Aw (Kr = 0.692 and 0.725, respectively). The highest sorption capacity of Pb by the amended soil is due to its characteristics such as high pH and organic carbon content. This is corroborated by the significantly

  12. Sorption-desorption and biosorption of bisphenol A, triclosan, and 17α-ethinylestradiol to sewage sludge.

    PubMed

    Banihashemi, Bahman; Droste, Ronald L

    2014-07-15

    To better understand the fate of microconstituents (MCs) in an activated sludge (AS) system, sorption, biosorption, and desorption studies were investigated at μg/L range for 17α-ethinylestradiol (EE2), bisphenol A (BPA), and triclosan (TCS). Batch experiments with activated and deactivated sludge originating from continuous flow porous pot reactors operating at solid retention times (SRTs) of 5, 10, and 15 days were conducted in order to investigate the sorption kinetics and distinguish physicochemical sorption and biosorption. The effect of SRT and the biomass concentration on sorption kinetics were also studied. Selected MCs showed high sorption affinity to the non-viable biomass during the first 30 min of the experiment, which was gradually reduced until equilibrium was reached. Desorption results showed two distinct stages, a very rapid desorption within 20 min followed by a slow desorption stage. Biosorption study indicated that the soluble concentrations of target compounds decreased rapidly for selected MCs similar to the sorption study; however, the soluble and solid phase concentrations continued to decrease slowly during the length of the experiment which indicates the possible biodegradation of these compounds in both phases. Finally, mathematical models were applied to describe the sorption mechanism and Freundlich sorption isotherms with values of 1/n close to 1 were found to best fit the results which demonstrate that all tested concentrations result on the linear part of the Freundlich isotherm. Calculation of the Freundlich constant, KF and distribution coefficient, Kd exhibited the greater tendency of EE2 and TCS for sorption, compared to BPA. The results of this study indicated that the SRT had a clear effect on the sorption kinetics where the highest sorption rate constant was achieved for a SRT of 10 days for all three target substances. This could be due to change of the morphology of the biomass from reactors operating at different SRTs

  13. Sorption of Groundwater Dissolved Organic Carbon onto Minerals

    NASA Astrophysics Data System (ADS)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Meredith, K.; Andersen, M. S.; O'Carrol, D. M.; Baker, A.

    2017-12-01

    Our understanding of groundwater organic matter (OM) as a carbon source or sink in the environmental carbon cycle is limited. The dynamics of groundwater OM is mainly governed by biological processing and its sorption to minerals. In saturated groundwaters, dissolved OM (DOM) represents one part of the groundwater organic carbon pool. Without consideration of the DOM sorption, it is not possible to quantify governing groundwater OM processes. This research explores the rate and extent of DOM sorption on different minerals. Groundwater DOM samples, and International Humic Substances Society (IHSS) standard solutions, were analysed. Each was mixed with a range of masses of iron coated quartz, clean quartz, and calcium carbonate, and shaken for 2 hours to reach equilibrium before being filtered through 0.2 μm for total dissolved organic carbon (DOC) and composition analysis by size-exclusion chromatography-organic carbon detection (LC-OCD). Sorption isotherms were constructed and groundwater DOM sorption were compared to the sorption of IHSS standards. Initial results suggest that for the IHSS standards, the operationally-defined humic substances fraction had the strongest sorption compared to the other LC-OCD fractions and total DOC. Some samples exhibited a small increase in the low molecular weight neutral (LMW-N) aqueous concentration with increasing humic substances sorption. This gradual increase observed could be the result of humic substances desorbing or their breakdown during the experiment. Further results comparing these IHSS standards with groundwater samples will be presented. In conjunction with complementary studies, these results can help provide more accurate prediction of whether groundwater OM is a carbon source or sink, which will enable the management of the groundwater resources as part of the carbon economy.

  14. Application of headspace analysis to the study of sorption of hydrophobic organic chemicals to α-Al2O3

    USGS Publications Warehouse

    Pelinger, Judith A.; Eisenreich, Steven J.; Capel, Paul D.

    1993-01-01

    The sorption of hydrophobic organic chemicals (HOCs) to ??-Al2O3 was investigated with a headspace analysis method. The semiautomated headspace analyzer gave rapid, precise, and accurate results for a homologous series alkylbenzenes even at low percentages of solute mass sorbed (3-50%). Sorption experiments carried out with benzene alone indicated weak interactions with well-characterized aluminum oxide, and a solids concentration effect was observed. When the sorption coefficients for benzene alone obtained by headspace analysis were extrapolated up to the solids concentrations typically used in batch sorption experiments, the measured sorption coefficients agreed with reported sorption coefficients for HOCs and sediments of low fractional organic carbon content. Sorbed concentrations increased exponentially with aqueous concentration in isotherms with mixtures of alkylbenzenes, indicating solute-solute interactions at the mineral surface. Sorption was, however, greater than predicted for partitioning of a solute between its pure liquid phase and water, indicating additional influences of the surface and/or the structured liquid near the mineral surface. ?? 1993 American Chemical Society.

  15. Synthesis, characterization and trivalent arsenic sorption potential of Ce-Al nanostructured mixed oxide

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Gupta, K.; Ghosh, U. C.

    2017-04-01

    Arsenic contamination in the ground water has serious health consequences in many parts of the world. The surface sorption method for arsenic mitigation has been widely investigated due to its simple method, inexpensive operation, highly efficient and low content of by-products. In the present study, nanostructured hydrated cerium aluminum oxide (NHCAO) was synthesized and characterized and its arsenic (III) sorption behavior from the aqueous solution was studied. The material was characterized in SEM, FE-SEM, TEM, AFM, XRD, and FT-IR. Batch method was used for the kinetics of As (III) sorption on nanoparticles at 303 (± 1.6) K and at pH 7.0 (± 0.2). The experiments on isotherm subject were performed individually at 288K, 303K, 318K temperatures at pH 7.0 (± 0.2) using the batch sorption method. In the kinetics study of arsenic (III) sorption, the sorption percentage was observed to remain nearly unchanged up to pH 9.0, thereafter only slight reduction in sorption percentage. The equilibrium sorption results were tested using the models of Langmuir and the Freundlich isotherm. The Langmuir model is the most fitted model for the sorption reaction. NHCAO was highly efficient in As(III) removal out of the water in the extensive range of pH and could be used for arsenic removal from contaminated water.

  16. Dynamic vapor sorption isotherms of medium grain rice varieties

    USDA-ARS?s Scientific Manuscript database

    It is known that the two popular medium rice varieties, namely M202 and M206, in California have different fissuring resistances. Therefore, the main goal of this study was to investigate the sorption behavior of these two varieties by a new approach using dynamic vapor sorption (DVS) method for elu...

  17. Desorption isotherms and isosteric heat of desorption of previously frozen raw pork meat.

    PubMed

    Clemente, G; Bon, J; Benedito, J; Mulet, A

    2009-08-01

    Some meat products involve drying previously frozen pork meat, which makes the knowledge of sorption characteristics very important for the design and management of meat dehydration processes. The sorption isotherms of raw pork meat from the Biceps femoris and Semimembranosus muscles were determined at four temperatures: 25, 30, 35 and 40°C. The experimental results were modelled using the GAB (Guggenheim, Anderson and De Boer) model. The effect of temperature was also taken into account to model the experimental sorption isotherms using four models (GAB, Oswin, Halsey and Henderson). The best results were provided by the GAB model. From the experimental sorption isotherms the isosteric heats of sorption were determined. For a moisture content higher than 0.15kgwater/kgdm, the isosteric heat of meat was similar to the latent heat of vaporization for pure water. For a lower moisture content, an increase in the isosteric heat was observed when the moisture content decreased.

  18. Sorption, degradation and transport phenomena of alcohol ethoxysulfates in agricultural soils. Laboratory studies.

    PubMed

    Fernández-Ramos, C; Rodríguez-Gómez, R; Reis, M S; Zafra-Gómez, A; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2017-03-01

    In the present work, laboratory studies were conducted in order to determine and model the sorption, degradation and transport processes of alcohol ethoxysulfates (AES), one of the most important groups of anionic surfactants. Adsorption/desorption isotherms were obtained for several structurally related AES ethoxymers (homologue AES-C 12 E n with n = 0-10 ethoxymer units and homologue AES-C 14 E n with n = 0-7 ethoxymer units) using a batch equilibrium method. Data were fitted to a linear and a Freundlich isotherm models. Additionally, experiments in continuous-flow soil columns were also carried out and the breakthrough curves observed for each compound were studied. Breakthrough curves were used to determine the fundamental parameters of the transport model (hydrodynamic dispersion coefficient, degradation rate constant and adsorption/desorption isotherm slope), that is the main phenomena that take place simultaneously when AES move through agricultural soil. When the results obtained for the AES ethoxymers are combined, they reveal a clear and consistent trend towards a sorption increase with the number of ethoxylated units and with the length of the alkyl chain that opens the possibility to estimate the values of the transport parameters for other structurally related ethoxymers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution.

    PubMed

    Hüffer, Thorsten; Hofmann, Thilo

    2016-07-01

    The presence of microscale polymer particles (i.e., microplastics) in the environment has become a major concern in recent years. Sorption of organic compounds by microplastics may affect the phase distribution within both sediments and aqueous phases. To investigate this process, isotherms were determined for the sorption of seven aliphatic and aromatic organic probe sorbates by four polymers with different physico-chemical properties. Sorption increased in the order polyamide < polyethylene < polyvinylchloride < polystyrene. This order does not reflect the particle sizes of the investigated microplastics within the aqueous dispersions, indicating the influence of additional factors (e.g., π-π-interactions) on the sorption of aromatic compounds by polystyrene. Linear isotherms by polyethylene suggested that sorbate uptake was due to absorption into the bulk polymer. In contrast, non-linear isotherms for sorption by PS, PA, and PVC suggest a predominance of adsorption onto the polymer surface, which is supported by the best fit of these isotherms using the Polanyi-Manes model. A strong relationship between the sorption coefficients of the microplastics and the hydrophobicity of the sorbates suggests that hydrophobic interactions are of major importance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analysis of sorption into single ODS-silica gel microparticles in acetonitrile-water.

    PubMed

    Nakatani, Kiyoharu; Kakizaki, Hiroshi

    2003-08-01

    Intraparticle mass transfer processes of Phenol Blue (PB) in single octadecylsilyl (ODS)-silica gel microparticles in acetonitrile-water were analyzed by microcapillary manipulation and microabsorption methods. An absorption maximum of PB, the sorption isotherm parameters, and the sorption rate in the microparticle system were highly dependent on the percentage of acetonitrile in solution. The results are discussed in terms of the microscopic polarity surrounding PB in the ODS phase and the relationship between the isotherm parameters and the sorption rate.

  1. Sorption characteristics and separation of tellurium ions from aqueous solutions using nano-TiO2.

    PubMed

    Zhang, Lei; Zhang, Min; Guo, Xingjia; Liu, Xueyan; Kang, Pingli; Chen, Xia

    2010-12-15

    Titanium dioxide nanoparticles (nano-TiO(2)) were employed for the sorption of Te(IV) ions from aqueous solution. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 8 min. When the concentration of Te(IV) was below 40 mg L(-1), at least 97% of tellurium was adsorbed by nano-TiO(2) in the pH range of 1-2 and 8-9. The sorbed Te(IV) ions were desorbed with 2.0 mL of 0.5 mol L(-1) NaOH. The sorption data could be well interpreted by the Langmuir model with the maximum adsorption capacity of 32.75 mg g(-1) (20 ± 0.1 °C) of Te(IV) on nano-TiO(2). The kinetics and thermodynamics of the sorption of Te(IV) onto nano-TiO(2) were also studied. The kinetic experimental data properly correlated with the second-order kinetic model (k(2)=0.0368 g mg(-1)min(-1), 293 K). The overall rate process appeared to be influenced by both boundary layer diffusion and intra-particle diffusion. The mean energy of adsorption was calculated to be 17.41 kJ mol(-1) from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Moreover, the thermodynamic parameters for the sorption were estimated, and the ΔH(0) and ΔG(0) values indicated the exothermic and spontaneous nature of the sorption process, respectively. Finally, Nano-TiO(2) as sorbent was successfully applied to the separation of Te(IV) from the environmental samples with satisfactory results (recoveries >95%, relative standard deviations was 2.0%). Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Study on the sorption behaviour of estrone on marine sediments.

    PubMed

    Zhang, Jing; Yang, Gui-Peng; Li, Quan; Cao, Xiaoyan; Liu, Guangxing

    2013-11-15

    The sorption behaviour of estrone (E1) on marine sediments treated by different methods was systematically investigated. About 22 h was required for sorption equilibrium of E1. Sorption isotherms of E1 were well fitted with Freundlich model. The sorption behaviour of E1 on HCl-treatment and H2O-treatment sediments related significantly with the sediment organic carbon contents. Additionally, clay minerals and surface areas of sediments played dominant roles in the sorption of E1 on H2O2-treatment sediments. Some external factors which could affect sorption behaviour of E1 were also investigated. Our results showed that the sorption capacity of E1 on the sediments increased with the increasing concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB), nonionic surfactant polyoxyethylene (80) sorbitan esters (Tween 80) and salinity of seawater. In contrast, the sorption capacity of E1 decreased with the increasing concentration of anionic surfactant sodium dodecylbenzene sulfonate (SDBS), pH value and temperature of seawater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    NASA Astrophysics Data System (ADS)

    Chubar, Natalia; Visser, Tom; Avramut, Cristina; de Waard, Helen

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24 h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30 days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125 ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands.

  4. Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies.

    PubMed

    Zhang, Lida; Sun, Da-Wen; Zhang, Zhihang

    2017-03-24

    Moisture sorption isotherm is commonly determined by saturated salt slurry method, which has defects of long time cost, cumbersome labor, and microbial deterioration of samples. Thus, a novel method, a w measurement (AWM) method, has been developed to overcome these drawbacks. Fundamentals and applications of this fast method have been introduced with respects to its typical operational steps, a variety of equipment set-ups and applied samples. The resultant rapidness and reliability have been evaluated by comparing with conventional methods. This review also discussed factors impairing measurement precision and accuracy, including inappropriate choice of predryingwetting techniques and unachieved moisture uniformity in samples due to inadequate time. This analysis and corresponding suggestions can facilitate improved AWM method with more satisfying accuracy and time cost.

  5. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.

    2001-01-01

    Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.

  6. Pyrethroid sorption to Sacramento River suspended solids and bed sediments

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2011-01-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, CA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r2 > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature by approximately an order of magnitude and ranged from 106.16 to 106.68 at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. PMID:21191877

  7. ISOFIT - A PROGRAM FOR FITTING SORPTION ISOTHERMS TO EXPERIMENTAL DATA

    EPA Science Inventory

    Isotherm expressions are important for describing the partitioning of contaminants in environmental systems. ISOFIT (ISOtherm FItting Tool) is a software program that fits isotherm parameters to experimental data via the minimization of a weighted sum of squared error (WSSE) obje...

  8. Sorption of polycyclic aromatic hydrocarbons to polystyrene nanoplastic.

    PubMed

    Liu, Lijing; Fokkink, Remco; Koelmans, Albert A

    2016-07-01

    Microplastic has become an emerging contaminant of global concern. Bulk plastic can degrade to form smaller particles down to the nanoscale (<100 nm), which are referred to as nanoplastics. Because of their high surface area, nanoplastic may bind hydrophobic chemicals very effectively, increasing their hazard when such nanoplastics are taken up by biota. The present study reports distribution coefficients for sorption of polycyclic aromatic hydrocarbons (PAHs) to 70 nm polystyrene in freshwater, and PAH adsorption isotherms spanning environmentally realistic aqueous concentrations of 10(-5)  μg/L to 1 μg/L. Nanopolystyrene aggregate state was assessed using dynamic light scattering. The adsorption isotherms were nonlinear, and the distribution coefficients at the lower ends of the isotherms were very high, with values up to 10(9) L/kg. The high and nonlinear sorption was explained from π-π interactions between the planar PAHs and the surface of the aromatic polymer polystyrene and was higher than for micrometer-sized polystyrene. Reduction of nanopolystyrene aggregate sizes had no significant effect on sorption, which suggests that the PAHs could reach the sorption sites on the pristine nanoparticles regardless of the aggregation state. Pre-extraction of the nanopolystyrene with C18 polydimethylsiloxane decreased sorption of PAHs, which could be explained by removal of the most hydrophobic fraction of the nanopolystyrene. Environ Toxicol Chem 2016;35:1650-1655. © 2015 SETAC. © 2015 SETAC.

  9. Sorption characteristics of cadmium in a clay soil of Mae Ku creek, Tak Province, Thailand

    NASA Astrophysics Data System (ADS)

    Thunyawatcharakul, P.; Chotpantarat, S.

    2018-05-01

    Mae Sot is a district in Tak province, the northern part of Thailand where has encountered with cadmium (Cd) contaminated in soils. Exposure of Cd can lead to severe health effect, for examples, bone softening, osteoporosis, renal dysfunction, and Itai-Itai disease. This study aims at elucidating sorption behavior of Cd in the contaminated soil collected from Mae Ku creek, Mae Sot district, Thailand. Batch sorption experiment was conducted in order to investigate sorption characteristics of Cd onto the contaminated soil. The soil sample taken from the study area consists of 26% sand, 16% silt 58% clay, which categorized as a clay soil, based on USDA classification. Soil pH is slightly alkaline (pH∼7.7) and organic matter in the soil is 2.93%. The initial concentration in the batch sorption experiment was in the range from 0- 200 ppm. The result from the batch sorption experiment showed that soil sample can adsorb Cd up to 173.5 ppm and the sorption behavior of the soil sample can be well described by Freundlich isotherm, indicating the multilayer sorption (R2 = 0.9964), with Freundlich constants of 0.312 and 1.760 L g-1 for 1/n and Kf, respectively.

  10. The influence of clay surface modification with berberine on the sorption of anthocyanins

    NASA Astrophysics Data System (ADS)

    Chulkov, A. N.; Deineka, V. I.; Tikhova, A. A.; Vesentzev, A. I.; Deineka, L. A.

    2012-03-01

    The influence of preliminary sorption of berberine on the sorption of anthocyanins by bentonite clay was studied. The cation exchange sorption mechanism was found to be replaced by hydrophobic sorption of these compounds after clay modification with berberine. The enthalpy of sorption along the initial isotherm part changed from endothermic to exothermic.

  11. Isotope studies to the sorption behavior of atmospheric sulfate in humus layers of scots pine ecosystems.

    PubMed

    Schulz, H; Neue, H-U

    2005-03-01

    The sorption potential for SO4(2-) in humus layer samples from field sites along a deposition gradient was determined experimentally in batch experiments. The Freundlich equation was used to quantify the sorption of added SO4(2-) in humus layer samples and to determine site-dependent sorption parameters. SO4(2-) sorption in humus layers is a concentration-dependent process. The linearity of isotherms reveals that SO4(2-) is reversibly bound in the organic surface layer, as long as soil solution concentrations remain above 26 to 44 mg SO4(2-) L(-1). Natural isotope variations of sulfur in SO4(2-) were analysed to investigate the degree of sorption of dissolved atmospheric and added SO4(2-). Both sulfate species differed significantly in their isotope composition. The pattern of delta34S values for SO4(2-) in all equilibrium solutions confirm the findings from sorption isotherms, showing a close relationship between the sulfur isotope ratios of SO4(2-) in soil solutions and the amount of SO4(2-) sorbed at the humus layer matrix. Stored atmospheric SO4(2-) in humus layers is released at sites where sulfate concentration in throughfall drops below 26 mg SO4(2-) L(-1). Concentration of soluble Fe decreased with increasing sulfate sorption, thus supporting the assumption that active Fe for example is important. Iron probably stabilizes the reactive surface of humus complexes and therefore has a positive influence on the SO4(2-) sorption in humus layers.

  12. Modeling Fission Product Sorption in Graphite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  13. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay

    USGS Publications Warehouse

    Smith, J.A.; Jaffe, P.R.

    1991-01-01

    The interlamellar space of Wyoming bentonite (clay) was modified by exchanging either decyltrimethyl-ammonium (DTMA) or decyltrimethyldiammonium (DTMDA) cations for inorganic ions, and tetrachloromethane sorption to the resulting two organoclays from water was studied at 10, 20, and 35??C. Only one end of the 10-carbon alkyl chain of the DTMA cation is attached to the silica surface of the clay mineral, and tetrachloromethane sorption of DTMA-clay is characterized by isotherm linearity, noncompetitive sorption, weak solute uptake, and a relatively low heat of sorption. Both ends of the 10-carbon chain of the DTMDA cation are attached to the silica surface of the clay mineral, and tetrachloromethane sorption to DTMDA-clay is characterized by nonlinear isotherms, competitive sorption, strong solute uptake, and a relatively high, exothermic heat of sorption that varies as a function of the mass of tetrachloromethane sorbed. Therefore, the attachment of both ends of the alkyl chain to the interlamellar mineral surface appears to change the sorption mechanism from a partition-dominated process to an adsorption-dominated process. ?? 1991 American Chemical Society.

  14. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.

    PubMed

    Qiu, Zhaofu; Yang, Weiwei; He, Long; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian

    2016-02-01

    To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600 °C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600 °C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600 °C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci ≥ 0.1 M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600 °C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600 °C-heated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption.

    PubMed

    Mandal, Abhishek; Singh, Neera; Nain, Lata

    2017-09-02

    Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with K F values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [K F .(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.

  16. Pyrethroid sorption to Sacramento River suspended solids and bed sediments.

    PubMed

    Fojut, Tessa L; Young, Thomas M

    2011-04-01

    Sorption of pyrethroid insecticides to solid materials will typically dominate the fate and transport of these hydrophobic compounds in aquatic environments. Batch reactor isotherm experiments were performed with bifenthrin and λ-cyhalothrin with suspended material and bed sediment collected from the Sacramento River, California, USA. These batch reactor experiments were performed with low spiking concentrations and a long equilibration time (28 d) to be more relevant to environmental conditions. Sorption to suspended material and bed sediment was compared to examine the role of differential sorption between these phases in the environmental transport of pyrethroids. The equilibrium sorption data were fit to the Freundlich isotherm model and fit with r(2)  > 0.87 for all experiments. Freundlich exponents ranged from 0.72 ± 0.19 to 1.07 ± 0.050, indicating sorption nonlinearity for some of the experimental conditions and linearity for others over the concentration range tested. The Freundlich capacity factors were larger for the suspended solids than for the bed sediments, and the suspended material had a higher specific surface area and higher organic carbon content compared to the bed sediment. Calculated organic carbon-normalized distribution coefficients were larger than those previously reported in the literature, by approximately an order of magnitude, and ranged from 10(6.16) to 10(6.68) at an equilibrium aqueous concentration of 0.1 µg/L. Higher than expected sorption of pyrethroids to the tested materials may be explained by sorption to black carbon and/or mineral surfaces. Copyright © 2011 SETAC.

  17. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  18. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  19. Prediction of optimum sorption isotherm: comparison of linear and non-linear method.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2005-11-11

    Equilibrium parameters for Bismarck brown onto rice husk were estimated by linear least square and a trial and error non-linear method using Freundlich, Langmuir and Redlich-Peterson isotherms. A comparison between linear and non-linear method of estimating the isotherm parameters was reported. The best fitting isotherm was Langmuir isotherm and Redlich-Peterson isotherm equation. The results show that non-linear method could be a better way to obtain the parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.

  20. Sorption of amitriptyline and amphetamine to mixed-mode solid-phase microextraction in different test conditions.

    PubMed

    Peltenburg, Hester; Droge, Steven T J; Hermens, Joop L M; Bosman, Ingrid J

    2015-04-17

    A solid-phase microextraction (SPME) method based on a sampler coating that includes strong cation groups (C18/SCX) is explored as a rapid direct sampling tool to detect and quantify freely dissolved basic drugs. Sampling kinetics, sorption isotherms and competitive effects on extraction yields in mixtures were tested for amphetamine and the relatively large/hydrophobic tricyclic antidepressant amitriptyline. Both compounds are >99% ionized at pH 7.4 but their affinity for the C18/SCX fiber is markedly different with distribution coefficients (Dfw values) of 2.49±0.02 for amphetamine and 4.72±0.10 for amitriptyline. Typical changes in electrolyte homeostasis that may occur in biomedical samples were simulated by altering pH and ionic composition (Na(+) and K(+) concentrations). These changes were shown to affect C18/SCX sorption affinities of the tested drugs with less than 0.2log units. At relatively low fiber loadings (<10mmol/L coating) and at all tested exposure times, linear sorption isotherms were obtained for both compounds but at aqueous concentrations of the individual drugs corresponding to concentrations in blood that are lethal, sorption isotherms became strongly nonlinear. Competition effects within binary mixtures occurred only if combinations of aqueous concentrations resulted in total fiber loadings that were in the nonlinear range of the SPME sorption isotherm for the individual compounds. We also compared sorption to the (prototype) C18/SCX SPME coating with analogue (biocompatible) C18 coated SPME fibers. C18/SCX fibers show increased sorption affinity for cationic compounds compared to C18 fibers, as tested using amitriptyline, amphetamine and trimethoprim. Surprisingly, sorption affinity of these ionized compounds for the C18 SPME fibers were within 1log unit of the C18/SCX SPME fibers. This shows that the strong cation exchange groups within the C18/SCX coating only has a relatively small contribution to the total sorption affinity of

  1. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.

    2000-01-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  2. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles.

    PubMed

    Wang, Chongqing; Wang, Hui

    2018-02-01

    Novel sorbent (HBC) is prepared by introducing nano-particles (Maghemite and EDTA functionalized layered double hydroxides) on biochar surface. FTIR, XRD, SEM and EDS are used to characterize the biochar nanocomposites. Pb(II) sorption is highly dependent on solution pH. Sorption kinetics and isotherms indicate that Pb(II) sorption onto the sorbents follows pseudo-second order model and Langmuir isotherm. The maximum sorption capacity of Pb(II) onto HBC is up to146.84 mg g -1 , higher than previously reported sorbents. The magnetic particles enable easy separation of HBC from aqueous solution by external magnetic fields. HBC can be used as effective sorbent for removal of heavy metals from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. SORPTION OF TOXIC ORGANIC COMPOUNDS ON WATERWATER SOLIDS: MECHANISMS AND MODELING

    EPA Science Inventory

    It is proposed that sorption is a combination of two fundamentally different processes: adsorption and partitioning. A sorption model was developed for both single-component and multicomponent systems. The model was tested using single-component experimental isotherm data of eig...

  4. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides

    NASA Astrophysics Data System (ADS)

    Matysina, Z. A.; Zaginaichenko, S. Yu.; Shchur, D. V.; Gabdullin, M. T.

    2016-06-01

    Based on molecular-kinetic representations, theory of hydrogen absorption-desorption processes in binary Mg-Fe and Mg-Ni alloys is developed. Free energies of hydrides of these alloys are calculated. Equations of their thermodynamically equilibrium state determining the P-T-c diagrams are derived. A temperature dependence of the desorbed hydrogen concentration is established. A maximal desorption temperature is estimated. The state diagrams determining the concentration dependence of the maximal desorption temperature are constructed. Isopleths and isotherms of hydrogen solubility in the alloys are calculated. The possibility of manifestation of the hysteresis effect in hydrogen solubility isotherms is revealed and the decrease of the width and length of a hysteresis loop with increasing temperature is demonstrated together with the influence of the magnesium hydrate MgH2 in Mg2FeH6 samples and running of chemical reactions on the behavior of the isotherms and the occurrence of bends and jumps in them. All established functional dependences of the sorption properties of the examined alloys are compared with experimental data available from the literature.

  6. Sorption Behavior of Dye Compounds onto Natural Sediment of Qinghe River.

    PubMed

    Liu, Ruixia; Liu, Xingmin; Tang, Hongxiao; Su, Yongbo

    2001-07-15

    The objective of this study is to assess the adsorption behavior of C.I. Basic Yellow X-5GL, C.I. Basic Red 13, C.I. Direct Blue 86, C.I. Vat Yellow 2, and C.I. Mordant Black 11 on natural sediment and to identify sediment characteristics that play a predominant role in the adsorption of the dyes. The potentiometric titration experiment is used to investigate acid-base properties of the sediment surface with a constant capacitance surface complexation model. The parameters controlling the sorption such as solution pH and ion strength, as well as the influence of organic carbon and Ca(2+) ion on the adsorption, are evaluated. It is shown that the titration data can be successfully described by the surface protonation and deprotonation model with the least-squares FITEQL program 2.0. The sorption isotherm data are fitted to the Freundlich equation in a nonlinear form (1/n=0.3-0.9) for all tested dyes. With increasing pH value, the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86 on the sediment decreases, while for C.I. Basic Yellow X-5GL and C.I. Basic Red 13, the extent of sorption slightly increases. In addition, ion strength also exhibits a considerably different effect on the sorption behavior of these dye compounds. The addition of Ca(2+) can greatly reduce the sorption of C.I. Basic Red 13 on the sediment surface, while it enhances the sorption of C.I. Direct Blue 6. The removal of organic carbon decreases the sorption of C.I. Mordant Black 11 and C.I. Direct Blue 86. In contrast, the sorption of C.I. Basic Red 13 and C.I. Basic Yellow X-5GL is obviously enhanced after the removal of organic carbon. The differences in adsorption behavior are mainly attributed to the physicochemical properties of these dye compounds. Copyright 2001 Academic Press.

  7. Characterization of the atrazine sorption process on Andisol and Ultisol volcanic ash-derived soils: kinetic parameters and the contribution of humic fractions.

    PubMed

    Báez, María E; Fuentes, Edwar; Espinoza, Jeannette

    2013-07-03

    Atrazine sorption was studied in six Andisol and Ultisol soils. Humic and fulvic acids and humin contributions were established. Sorption on soils was well described by the Freundlich model. Kf values ranged from 2.2-15.6 μg(1-1/n)mL(1/n)g⁻¹. The relevance of humic acid and humin was deduced from isotherm and kinetics experiments. KOC values varied between 221 and 679 mLg⁻¹ for these fractions. Fulvic acid presented low binding capacity. Sorption was controlled by instantaneous equilibrium followed by a time-dependent phase. The Elovich equation, intraparticle diffusion model, and a two-site nonequilibrium model allowed us to conclude that (i) there are two rate-limited phases in Andisols related to intrasorbent diffusion in organic matter and retarded intraparticle diffusion in the organo-mineral complex and that (ii) there is one rate-limited phase in Ultisols attributed to the mineral composition. The lower organic matter content of Ultisols and the slower sorption rate and mechanisms involved must be considered to assess the leaching behavior of atrazine.

  8. Sorption-desorption of indaziflam and its three metabolites in sandy soils

    USDA-ARS?s Scientific Manuscript database

    Indaziflam is a relatively new herbicide for which sorption-desorption information is lacking, and nothing is available on its metabolites. Information is needed on the multiple soil and pesticide characteristics known to influence these processes. Freundlich sorption isotherm slopes were < 1, there...

  9. Sorption and Transport of Ranitidine in Natural Soils

    NASA Astrophysics Data System (ADS)

    Gaynor, A. J.; Vulava, V. M.

    2013-12-01

    Increasing levels of pharmaceuticals and their degradants are being discovered in natural water systems all over the world. These chemicals are reported to be discharged from wastewater treatment plants, sewage overflow, and leaking septic tanks. Ranitidine is an example of one such pharmaceutical chemical found in municipal drinking water, streams, and streambed sediments. It is a histamine H2-receptor antagonist, which inhibits the production of stomach acid and is commonly used to treat peptic ulcers and gastro esophageal reflux disease. Ranitidine is a complex organic compound; it is acidic, highly polar, and has two pKa values of approximately 8.2 and 2.7 because of the amine functional groups. When administered orally 25 - 30% of unchanged ranitidine has been shown to expel through urine. The objective of this research is to establish sorption and transport patterns of ranitidine in natural soils and to determine which soil properties influence these patterns the most. Laboratory experiments were preformed on A-horizon and B-horizon soil samples collected from the relatively undisturbed Francis Marion National Forest, a managed forest near Charleston, SC. The soils were characterized for chemical and physical properties: ranges of clay content = 6-20%, total organic content = 1-8%, and pH = 3.6-4.9. Kinetic reaction rates and equilibrium sorption isotherms were measured using batch experiments, whereas column experiments were used to quantify transport behavior. The reaction rates were -0.22/day and -0.33/day for organic-rich and clay-rich soils, respectively. The kinetic reaction rates were used to determine equilibration times for further equilibrium batch reactor experiments, which have soil solutions spiked with concentrations of ranitidine ranging from 0.1 mg/L to 100 mg/L. The concentration remaining in solution (C, mg/L) was plotted against the concentration in the soil (q, mg/kg) to create sorption isotherms. Ranitidine was more strongly sorbed to B

  10. A facile synthesis of Fe3O4-charcoal composite for the sorption of a hazardous dye from aquatic environment.

    PubMed

    Ahmed, Md Juned K; Ahmaruzzaman, M

    2015-11-01

    Herein, we synthesized Fe3O4-charcoal composite using chemical precipitation technique and utilized it for the sorption of methylene blue from aqueous solution. The synthesized composite was characterized by Infra-red spectroscopy, N2 adsorption-desorption isotherm, X-ray diffraction, selected area electron diffraction, transmission electron microscopy, and vibrating sample magnetometer. The composite depicts absorption bands conforming to Fe-O, -OH, CO, and C-O vibrations. The composite was mesoporous in nature with a surface area of 387.30 m(2) g(-1). The observed diffraction planes correspond to face-centered cubic Fe3O4 and disordered graphitic carbon. The spherical Fe3O4 particles (average diameter ∼13.8 nm) were uniformly distributed in the carbon matrix of the charcoal. The saturation and remanent magnetizations demonstrate its potential for magnetic separation and reuse. The composite showed dye sorption capacities of 97.49 mg g(-1) and 90.85 mg g(-1) in batch and fixed-bed system. Pseudo-second order kinetics and Temkin isotherm best represented the sorption data. The sorption process was endothermic, spontaneous, and administered by electrostatic, π-π dispersive interactions, film, and intraparticle diffusion. Microwave irradiations followed by methanol elution regenerated the dye-loaded composite with nearly no loss in sorption capacity. The recovery of energy and potential utilization of bottom ash enhances the prospective of Fe3O4-charcoal composite for industrial applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.

    PubMed

    Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent

    2017-05-16

    Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.

  12. Using polyacrylate-coated SPME fibers to quantify sorption of polar and ionic organic contaminants to dissolved organic carbon.

    PubMed

    Haftka, Joris J-H; Scherpenisse, Peter; Jonker, Michiel T O; Hermens, Joop L M

    2013-05-07

    A passive sampling method using polyacrylate-coated solid-phase microextraction (SPME) fibers was applied to determine sorption of polar and ionic organic contaminants to dissolved organic carbon (DOC). The tested contaminants included pharmaceuticals, industrial chemicals, hormones, and pesticides and represented neutral, anionic, and cationic structures. Prior to the passive sampler application, sorption of the chemicals to the fibers was characterized. This was needed in order to accurately translate concentrations measured in fibers to freely dissolved aqueous concentrations during the sorption tests with DOC. Sorption isotherms of neutral compounds to the fiber were linear, whereas isotherms of basic chemicals covered a nonlinear and a linear range. Sorption of acidic and basic compounds to the fiber was pH-dependent and was dominated by sorption of the neutral sorbate species. Fiber- and DOC-water partition coefficients of neutral compounds were both linearly related to octanol-water partition coefficients (log Kow). The results of this study show that polyacrylate fibers can be used to quantify sorption to DOC of neutral and ionic contaminants, having multiple functional groups and spanning a wide hydrophobicity range (log Kow = 2.5-7.5).

  13. Isotherm and kinetic models and cell surface analysis for determination of the mechanism of metal sorption by Aspergillus versicolor.

    PubMed

    Gazem, Mufedah A H; Nazareth, Sarita

    2012-07-01

    The isolate Aspergillus versicolor was obtained from an estuary, which is exposed to metal contamination. It was found to have a good metal tolerance and sorption capacity. Further studies revealed that the rate of metal removal from solution is very rapid in the first 5-10 min, and is favoured by a pH of 6.0. The biosorption data obtained was explained by the Freundlich adsorption isotherm model and followed a pseudo-second order kinetics reaction. The fungus showed a higher accumulation of fatty acids when grown in presence of metals as compared to the mycelium grown in absence of the metal; there was also an increase in the saturation index of fatty acids in presence of Cu(2+) which serves as a protective mechanism for the fungus. Fourier Transform Infrared, scanning electron microscopy and EDAX analysis indicated that metal removal from solution by A. versicolor occurred by a passive adsorption to the fungal cell surface, involving an ion exchange mechanism.

  14. Production of activated carbon from biodiesel solid residues: An alternative for hazardous metal sorption from aqueous solution.

    PubMed

    Ribeiro, Rita F L; Soares, Vitor C; Costa, Letícia M; Nascentes, Clésia C

    2015-10-01

    In this study, the potential for the sorption of Pb(2+) and Cd(2+) from aqueous solutions using HNO3-treated activated carbon (TAC) obtained from radish press cake (Raphanus sativus L.), a solid residue from biodiesel production, was investigated. Activated carbon (AC) was obtained by physical activation with CO2(g). Chemical modification with HNO3 was employed to increase the sorption capability of the AC. The sorption of Pb(2+) and Cd(2+) was studied in monometallic systems in equilibrium with different metal-ion concentrations (10-400 mg L(-1)). The experimental sorption equilibrium data were fit to the Langmuir and Freundlich isotherm models. The maximum sorption capacity (qmax) obtained for AC from the Langmuir isotherm was 45.5 mg g(-1) for Cd(2+) and 250 mg g(-1) for Pb(2+). Moreover, TAC presented qmax of 166.7 mg g(-1) (1.48 mmol g(-1)) for Cd(2+) and 500.0 mg g(-1) (2.41 mmol g(-1)) for Pb(2+)showing the effect of chemical modification. Sorption-desorption studies showed that the interaction between metals and TAC is reversible and this sorbent can be reused for several consecutive cycles. Furthermore, the sorption of Cd(2+) and Pb(2+) by TAC was not affected by the presence of competing ions. The experimental data obtained in this study indicated that this solid residue is viable for the production of sorbents that remove metals, such as cadmium and lead, from wastewaters and thereby contribute to the sustainable development of the production of biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sorption and Transport of Sildenafil in Natural Soils

    NASA Astrophysics Data System (ADS)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using

  16. Sorption of dodecyltrimethylammonium chloride (DTAC) to agricultural soils.

    PubMed

    Xiang, Lei; Sun, Teng-Fei; Zheng, Mei-Jie; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung; Cai, Quan-Ying; Mo, Ce-Hui

    2016-08-01

    Quaternary ammonium compounds (QACs) used as cationic surfactants are intensively released into environment to be pollutants receiving more and more concerns. Sorption of dodecyltrimethylammonium chloride (DTAC), one of commonly used alkyl QACs, to five types of agricultural soils at low concentrations (1-50mg/L) was investigated using batch experiments. DTAC sorption followed pseudo-second-order kinetics and reached reaction equilibrium within 120min. Both Freundlich model and Langmuir model fitted well with DTAC isotherm data with the latter better. DTAC sorption was spontaneous and favorable, presenting a physical sorption dominated by ion exchanges. Sorption distribution coefficient and sorption affinity demonstrated that soil clay contents acted as a predominant phase of DTAC sorption. DTAC could display a higher mobility and potential accumulation in crops in the soils with lower clay contents and lower pH values. Sorption of DTAC was heavily affected by ions in solution with anion promotion and cation inhibition. Copyright © 2016. Published by Elsevier B.V.

  17. Graphical determination of metal bioavailability to soil invertebrates utilizing the Langmuir sorption model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donkin, S.G.

    1997-09-01

    A new method of performing soil toxicity tests with free-living nematodes exposed to several metals and soil types has been adapted to the Langmuir sorption model in an attempt at bridging the gap between physico-chemical and biological data gathered in the complex soil matrix. Pseudo-Langmuir sorption isotherms have been developed using nematode toxic responses (lethality, in this case) in place of measured solvated metal, in order to more accurately model bioavailability. This method allows the graphical determination of Langmuir coefficients describing maximum sorption capacities and sorption affinities of various metal-soil combinations in the context of real biological responses of indigenousmore » organisms. Results from nematode mortality tests with zinc, cadmium, copper, and lead in four soil types and water were used for isotherm construction. The level of agreement between these results and available literature data on metal sorption behavior in soils suggests that biologically relevant data may be successfully fitted to sorption models such as the Langmuir. This would allow for accurate prediction of soil contaminant concentrations which have minimal effect on indigenous invertebrates.« less

  18. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange - Influence of material properties, sorption mechanism and modeling.

    PubMed

    Schuricht, Falk; Borovinskaya, Ekaterina S; Reschetilowski, Wladimir

    2017-04-01

    Perfluorooctane sulfonate (PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N 2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force (LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient β s . The big difference in the initial mass transfer coefficient β s,0 , when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate. But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. Copyright © 2016. Published by Elsevier B.V.

  19. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type.

    PubMed

    Chen, Changlun; Wang, Xiangke

    2007-02-01

    The removal behavior of thorium (Th(IV)) has been investigated in multicomponent systems containing silica (SiO2) as the model of inorganic particles because of its widespread presence in the earth's crust and soil humic acid (HA)/fulvic acid (FA) by batch experiments. The influence of pH from 2 to 12, ionic strength from 0.02 to 0.2 M KNO3, soil HA/FA concentration from 8.3 to 22.5 mg/L, and foreign cations (Li+, Na+, K+) and anions (NO3(-), Cl-) on the sorption of Th(IV) onto SiO2 was also tested. The sorption isotherms of Th(IV) at approximately constant pH (3.50+/-0.02) were determined and analyzed regressively with three kinds of sorption isotherm models, i.e., linear, Langmuir, and Freundlich models. The results demonstrated that the sorption of Th(IV) onto SiO2 increased steeply with increasing pH from 2 to 4. Generally, humic substances (HSs) were shown to enhance Th(IV) sorption at low pH, but to reduce Th(IV) sorption at intermediate and high pH. It was a hypothesis that the significantly positive influence of HA/FA at pH from 2 to 4 on the sorption of Th(IV) onto SiO2 was attributed to strong surface binding of HA/FA on SiO2 and subsequently the formation of ternary surface complexes such as [triple bond]MO-O-HA-Th or [triple bond]MO-O-FA-Th. The results also demonstrated that the sorption was strongly dependent on the concentration of HA/FA, and independent of ionic strength and foreign ions under our experimental conditions.

  20. Sorption-desorption of selenite and selenate on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate.

    PubMed

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Monteiro, Alessandra Maffei; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2017-08-01

    Selenate and selenite are considered emerging contaminants and pose a risk to living organisms. Since selenium anion species are at low concentration in aquatic environments, materials for its retention are required to enable monitoring. Herein, hydrotalcite was calcined and characterised to investigate sorption and desorption of selenite and selenate in competition with nitrate, sulfate and phosphate. Sorption experiments were carried out in batch system and desorption by sequential dilution. Selenite and selenate concentration remaining after N desorption steps was determined by mass balance. The isotherms were adjusted to the dual-mode Langmuir-Freundlich model (R 2  > 0.99). Maximum sorption capacity ranged from 494 to 563 meq kg -1 for selenite and from 609 to 659 meq kg -1 for selenate. Sulfate and phosphate ions showed greater competitive effect on the sorption of selenate and selenite, respectively. Low mobilization factors and high sorption efficiency (MF<3%; SE ≈ 100%) indicated that calcined hydrotalcite has the wanted characteristics for retention of relevant selenium anion species in aqueous media. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isotherm ranking and selection using thirteen literature datasets involving hydrophobic organic compounds.

    PubMed

    Matott, L Shawn; Jiang, Zhengzheng; Rabideau, Alan J; Allen-King, Richelle M

    2015-01-01

    Numerous isotherm expressions have been developed for describing sorption of hydrophobic organic compounds (HOCs), including "dual-mode" approaches that combine nonlinear behavior with a linear partitioning component. Choosing among these alternative expressions for describing a given dataset is an important task that can significantly influence subsequent transport modeling and/or mechanistic interpretation. In this study, a series of numerical experiments were undertaken to identify "best-in-class" isotherms by refitting 10 alternative models to a suite of 13 previously published literature datasets. The corrected Akaike Information Criterion (AICc) was used for ranking these alternative fits and distinguishing between plausible and implausible isotherms for each dataset. The occurrence of multiple plausible isotherms was inversely correlated with dataset "richness", such that datasets with fewer observations and/or a narrow range of aqueous concentrations resulted in a greater number of plausible isotherms. Overall, only the Polanyi-partition dual-mode isotherm was classified as "plausible" across all 13 of the considered datasets, indicating substantial statistical support consistent with current advances in sorption theory. However, these findings are predicated on the use of the AICc measure as an unbiased ranking metric and the adoption of a subjective, but defensible, threshold for separating plausible and implausible isotherms. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influence of the isomerism on the sorption of imazamethabenz-methyl by soil.

    PubMed

    Pinna, Maria Vittoria; Pusino, Alba

    2013-04-01

    The sorption of meta and para isomers of the herbicide imazamethabenz-methyl, methyl 6-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-m- or p-toluate, by three soils and soil organic matter, was studied. Sorption isotherms conformed to the Freundlich equation. It was found that pH was the main factor influencing the adsorption in all of the systems. The highest level of sorption was measured on soils with low pH and high organic carbon content. Moreover, at low pH value, the soil rich in smectite clays, favoured the sorption of meta rather than para isomer. The higher affinity of clay surfaces for the meta isomer of the herbicide is due to the stabilization of the meta protonated form by resonance. At all pH values, the sorption on soil organic matter did not differ between two isomers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The sorption properties of polymers with molecular imprints of chlorine-containing pesticides

    NASA Astrophysics Data System (ADS)

    Popov, S. A.; Dmitrienko, S. G.; Chumichkina, Yu. A.; Zolotov, Yu. A.

    2009-04-01

    Polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid (2,4-D), 3,6-dichloro-2-methoxybenzoic acid (dicamba), and (RS)-1- p-chlorophenyl-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl) pentan-3-ol and the corresponding blank polymers were synthesized using acrylamide as a functional monomer. The specific surface area of the resulting materials was estimated and their sorption properties were studied. It was found that the sorption characteristics of the polymers with molecular imprints of chlorine-containing pesticides depended on the nature of template molecules, functional monomer: template ratio in the polymerization mixture, and nature and content of solvents varied at the synthesis stage. According to the sorption isotherms, the difference in the sorption behavior of molecularly imprinted and blank polymers was observed over a wide range of chlorine-containing pesticide concentrations. The selectivity of the adsorbent with 2,4-D imprints was estimated for the example of structurally related compounds.

  4. Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions

    NASA Astrophysics Data System (ADS)

    Heidmann, Ilona; Christl, Iso; Kretzschmar, Ruben

    2005-04-01

    The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L -1 kaolinite and 0.03 g L -1 fulvic acid in 0.01 M NaNO 3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu 2+ and Pb 2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu 2+ ion activity (10 -12 to 10 -5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.

  5. Sorption of lambda-cyhalothrin, cypermethrin, deltamethrin and fenvalerate to quartz, corundum, kaolinite and montmorillonite.

    PubMed

    Oudou, H Chaaieri; Hansen, H C Bruun

    2002-12-01

    Sorption to mineral surfaces may be important for retention and degradation of hydrophobic pesticides in subsoils and aquifers poor in organic matter. In this work the title pyrethroids have been used to investigate selective interactions with the surfaces of four minerals. Sorption of the four pyrethroids was quantified in batch experiments with initial pyrethroid concentrations of 1-100 microg/l. Sorption to centrifuge tubes used in the batch experiments accounted for 25-60% of total sorption. Net sorption was obtained from total sorption after subtracting the amounts of pyrethroids sorbed to centrifuge tubes used. All isotherms could be fitted by the Freundlich equation with n ranging between 0.9 and 1.1. Bonding affinities per unit surface area decreased in the order: corundum > quartz > montmorillonite approximately equal kaolinite. A similar sequence as found for the total surface tension of the minerals. All minerals showed the same selectivity order with respect to sorption affinity of the four pyrethroids: lambda-cyhalothrin > deltamethrin > cypermethrin > fenvalerate, which shows that the most hydrophobic compound is sorbed most strongly. Stereochemical properties of the four pyrethroid formulations may also contribute to the selectivity pattern.

  6. Sorption characteristic of uranium(VI) ion onto K-feldspar.

    PubMed

    Gao, Xiaoqing; Bi, Mingliang; Shi, Keliang; Chai, Zhifang; Wu, Wangsuo

    2017-10-01

    The effect of pH, contact time, temperature, ionic strength and initial U(VI) concentration on U(VI) sorption onto K-feldspar was investigated using batch techniques. The sorption kinetics was evaluated and the activation energy was obtained based on the rate constants at different temperature. Graphical correlations of sorption isotherm models have been evaluated and applied for U(VI) uptake by K-feldspar. Various thermodynamic parameters, such as, Gibb's free energy, entropy and enthalpy of the on-going sorption process have been calculated and the possible sorption mechanism of U(VI) was deduced. The results are expected to help better understand the migration of uranium in the host materials of granite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Morphology and crystallographic orientation relationship in isothermally transformed Fe–N austenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Dongling, E-mail: dljiao@scut.edu.cn; Luo, Chengping; Liu, Jiangwen

    2014-02-15

    The 225 °C isothermal transformation of a high-nitrogen austenite with Fe–2.71 wt.% N was investigated by means of electron microscopy. It was found that the transformation products were composed of ultrafine α-Fe and γ′-Fe{sub 4}N plus retained austenite γ, which were in two types of morphologies, namely, (i) with the retained austenite patches dispersed among the (α-Fe + γ′-Fe{sub 4}N) packets and (ii) with the ultrafine α-Fe and γ/γ′-Fe{sub 4}N laths interwoven with each other within a single bainitic packet. A cube–cube orientation relationship between the γ (austenite) and γ′-Fe{sub 4}N, and a near Greninger–Troiano (G–T) one between the γmore » (austenite) and the bainitic α-ferrite were detected. The morphology, orientation relationship and high hardness (> 1000 HV) of the transformation products indicated that the isothermal transformation of the high nitrogen austenite was analogous to a bainitic one. - Highlights: • Isothermal transformation products consisted of nano-sized α-Fe + γ′ + γ (retained). • The hardness of transformation product exceeded 1000 HV. • The α-Fe and γ/γ′-Fe{sub 4}N kept a near G-T OR in the grain interior.« less

  8. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars.

    PubMed

    Hale, S E; Alling, V; Martinsen, V; Mulder, J; Breedveld, G D; Cornelissen, G

    2013-06-01

    The sorption of PO4-P, NH4-N and NO3-N to cacao shell and corn cob biochars produced at 300-350°C was quantified. The biochars were used; (i) as received (unwashed), (ii) after rinsing with Millipore water and (iii) following leaching with Millipore water. In addition to sorption, desorption of PO4-P from the unwashed biochars was quantified. There was no sorption of PO4-P to either washed or rinsed biochars, but following leaching, both biochars adsorbed PO4-P and distribution coefficients (Kd L kg(-1)) were very similar for both materials (10(1.1±0.5) for cacao shell biochar and 10(1.0±0.2) for corn cob biochar). The BET surface area and micropore volume increased 80% and 60% for the cacao shell and corn cob biochars following leaching. After 60 d, 1483±45 mg kg(-1) and 172±1 mg kg(-1) PO4-P was released from the cacao shell and corn cob biochars. NH4-N was sorbed by both unwashed biochars, albeit weakly with Kd values around 10(2) L kg(-1). We speculate that NH4-N could bind via an electrostatic exchange with other cationic species on the surface of the biochar. There was no significant release or sorption of NO3-N from or to either of the biochars. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effect of Cosolutes on the Sorption of Phenanthrene onto Mineral Surface of River Sediments and Kaolinite

    PubMed Central

    2014-01-01

    Sorption of phenanthrene onto the natural sediment with low organic carbon content (OC%), organic-free sediment, and kaolinite was investigated through isotherm experiments. Effects of cosolutes (pyrene, 4-n-nonyphenol (NP), and humic acid (HA)) on phenanthrene sorption were also studied by comparing apparent solid-water distribution coefficients (K d app) of phenanthrene. Two addition sequences, including “cosolute added prior to phenanthrene” and “cosolute and phenanthrene added simultaneously,” were adopted. The Freundlich model fits phenanthrene sorption on all 3 sorbents well. The sorption coefficients on these sorbents were similar, suggesting that mineral surface plays an important role in the sorption of hydrophobic organic contaminants on low OC% sediments. Cosolutes could affect phenanthrene sorption on the sorbents, which depended on their properties, concentrations, and addition sequences. Pyrene inhibited phenanthrene sorption. Sorbed NP inhibited phenanthrene sorption at low levels and promoted sorption at high levels. Similar to NP, effect of HA on phenanthrene sorption onto the natural sediment depended on its concentrations, whereas, for the organic-free sediment and kaolinite, preloading of HA at high levels led to an enhancement in phenanthrene K d app while no obvious effect was observed at low HA levels; dissolved HA could inhibit phenanthrene sorption on the two sorbents. PMID:25147865

  10. Moisture sorption characteristics of freeze-dried human platelets*

    PubMed Central

    Xu, Meng-jie; Chen, Guang-ming; Fan, Ju-li; Liu, Jin-hui; Xu, Xian-guo; Zhang, Shao-zhi

    2011-01-01

    Freeze-drying is a promising method for a long-term storage of human platelets. The moisture sorption characteristics of freeze-dried human platelets (FDHPs) were studied in this paper. The moisture sorption isotherms of FDHPs and freeze-dried lyophilization buffer (FDLB) were measured at 4, 25, and 37 °C. The experimental data were fitted to Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) equations. There were no significant statistical differences (P>0.05) between the sorption characteristics of FDHPs and FDLB at 4 and 25 °C, while FDHPs absorbed more water at 37 °C. The net isosteric heat of sorption was derived. The heat for FDHPs showed an abnormal negative value at low moisture contents when 25 and 37 °C data were used. Dynamic sorption experiments were carried out at 25 °C with environmental water activity controlled at 0.75, 0.85, and 0.90. The moisture diffusion coefficient was fitted to be 8.24×10−12 m2/s when experimental data at initial time were used. These results would be helpful in choosing prehydration and storage condition for FDHPs. PMID:21370506

  11. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.

    PubMed

    Verma, V K; Tewari, Saumyata; Rai, J P N

    2008-04-01

    In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.

  12. Single-solute and bisolute sorption of phenol and trichloroethylene from aqueous solution onto modified montmorillonite and application of sorption models.

    PubMed

    Wu, C D; Wang, L; Hu, C X; He, M H

    2013-01-01

    The single-solute and bisolute sorption behaviour of phenol and trichloroethylene, two organic compounds with different structures, onto cetyltrimethylammonium bromide (CTAB)-montmorillonite was studied. The monolayer Langmuir model (MLM) and empirical Freundlich model (EFM) were applied to the single-solute sorption of phenol or trichloroethylene from water onto monolayer or multilayer CTAB-montmorillonite. The parameters contained in the MLM and EFM were determined for each solute by fitting to the single-solute isotherm data, and subsequently utilized in binary sorption. The extended Langmuir model (ELM) coupled with the single-solute MLM and the ideal adsorbed solution theory (IAST) coupled with the single-solute EFM were used to predict the binary sorption of phenol and trichloroethylene onto CTAB-montmorillonite. It was found that the EFM was better than the MLM at describing single-solute sorption from water onto CTAB-montmorillonite, and the IAST was better than the ELM at describing the binary sorption from water onto CTAB-montmorillonite.

  13. Phosphorus Accumulation and Sorption in Calcareous Soil under Long-Term Fertilization

    PubMed Central

    Wang, Rui; Guo, Shengli; Li, Nana; Li, Rujian; Zhang, Yanjun; Jiang, Jishao; Wang, Zhiqi; Liu, Qingfang; Wu, Defeng; Sun, Qiqi; Du, Lanlan; Zhao, Man

    2015-01-01

    Application of phosphorus (P) fertilizers to P-deficient soils can also result in P accumulation. In this study, soil P status and P uptake by apple trees were investigated in 5-, 10-, and 15-year-old orchards in the semi-arid Loess Plateau, China, and subset soils with different soil P statuses (14–90 Olsen-P mg kg−1) were selected to evaluate the characteristic P adsorption. Due to the low P-use efficiency (4–6%), total soil P increased from 540 mg kg−1 to 904 mg kg−1, Olsen-P ranged from 3.4 mg kg−1 to 30.7 mg kg−1, and CaCl2-P increased from less than 0.1 mg kg−1 to 0.66 mg kg−1 under continuous P fertilization. The P sorption isotherms for each apple orchard were found to fit the Langmuir isotherm model (R 2 = 0.91–0.98). K (binding energy) and Q m (P sorption maximum) decreased, whereas DPS (degree of phosphorus sorption) increased with increasing P concentration. CaCl2-P increased significantly with the increase of Olsen-P, especially above the change point of 46.1 mg kg−1. Application of surplus P could result in P enrichment in P-deficient soil which has high P fixation capacity, thus posing a significant environmental risk. PMID:26288011

  14. Sorption of chlorobenzenes to cape cod aquifer sediments

    USGS Publications Warehouse

    Barber, L.B.

    1994-01-01

    Sorption of tetra- and pentachlorobenzene by sediment from a glacial outwash aquifer on Cape Cod, MA, was evaluated. Particle size and mineralogical fractions (separated based on paramagnetic susceptibility) were characterized with respect to sediment organic carbon (SOC), mineralogy, surface area, metal oxide coatings, and spatial variability. SOC increases by a factor of 10 as particle size decreases from 500-1000 to ?? 25 % in the <63-??m fraction, and SOC is preferentially associated with the magnetic minerals. Sorption increases with decreasing particle size (increasing SOC, magnetic minerals, surface area, and metal oxyhydroxides), and the magnetic mineral fraction has greater sorption than the bulk or nonmagnetic fractions. Removal of SOC decreases sorption proportional to the decrease in SOC and results in a nonlinear isotherm.

  15. Lead sorption-desorption from organic residues.

    PubMed

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  16. Sorption and desorption studies of a reactive azo dye on effective disposal of redundant material.

    PubMed

    Çelekli, Abuzer; Bozkurt, Hüseyin

    2013-07-01

    The effective disposal of redundant elephant dung (ED) is important for environmental protection and utilization of resource. The aim of this study was to remove a toxic-azo dye, Reactive Red (RR) 120, using this relatively cheap material as a new adsorbent. The FTIR-ATR spectra of ED powders before and after the sorption of RR 120 and zero point charge (pHzpc) of ED were determined. The sorption capacity of ED for removing of RR 120 were carried out as functions of particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. Sorption isotherm, kinetic, activation energy, thermodynamic, and desorption parameters of RR 120 on ED were studied. The sorption process was found to be dependent on particle size, adsorbent dose, pH, temperature, ionic strength, initial dye concentration, and contact time. FTIR-ATR spectroscopy indicated that amine and amide groups have significant role on the sorption of RR 120 on ED. The pHzpc of ED was found to be 7.3. Sorption kinetic of RR 120 on ED was well described by sigmoidal Logistic model. The Langmuir isotherm was well fitted to the equilibrium data. The maximum sorption capacity was 95.71 mg g(-1). The sorption of RR 120 on ED was mainly physical and exothermic according to results of D-R isotherm, Arrhenius equation, thermodynamic, and desorption studies. The thermodynamic parameters showed that this process was feasible and spontaneous. This study showed that ED as a low-cost adsorbent had a great potential for the removal of RR 120 as an alternative eco-friendly process.

  17. SORPTION ON WASTEWATER SOLIDS: ELIMINATION OF BIOLOGICAL ACTIVITY

    EPA Science Inventory

    Sorption was found to be greatly affected by the biological activity in wastewater solids. wo experimental techniques, cyanide treatment and pasteurization, were developed for eliminating the biological activity during isotherm measurements. oth methods are effective; however, pa...

  18. Sorption mechanism of Cd(II) from water solution onto chicken eggshell

    NASA Astrophysics Data System (ADS)

    Flores-Cano, Jose Valente; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa María; Aragón-Piña, Antonio; Labrada-Delgado, Gladis Judith

    2013-07-01

    The mechanism and capacity of eggshell for sorbing Cd(II) from aqueous solution was examined in detail. The eggshell was characterized by several techniques. The eggshell was mainly composed of Calcite (CaCO3). The surface charge distribution was determined by acid-base titration and the point of zero charge (PZC) of the eggshell was found to be 11.4. The sorption equilibrium data were obtained in a batch adsorber, and the adsorption isotherm of Langmuir fitted the data quite well. The sorption capacity of eggshell increased while raising the pH from 4 to 6, this tendency was attributed to the electrostatic interaction between the Cd2+ in solution and the surface of the eggshell. Furthermore, the sorption capacity was augmented by increasing the temperature from 15 to 35 °C because the sorption was endothermic. The sorption of Cd(II) occurred mainly onto the calcareous layer of the eggshell, but slightly on the membrane layer. It was demonstrated that the sorption of Cd(II) was not reversible, and the main sorption mechanisms were precipitation and ion exchange. The precipitation of (Cd,Ca)CO3 on the surface of the eggshell was corroborated by SEM and XRD analysis.

  19. Sorption of biodegradation end products of nonylphenol polyethoxylates onto activated sludge.

    PubMed

    Hung, Nguyen Viet; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori; Tsunoi, Shinji; Tanaka, Minoru

    2004-01-01

    Nonylphenol(NP), nonylphenoxy acetic acid (NP1EC), nonylphenol monoethoxy acetic acid (NP2EC), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) are biodegradation end products (BEPs) of nonionic surfactant nonylphenolpolyethoxylates (NPnEO). In this research, sorption of these compounds onto model activated sludge was characterized. Sorption equilibrium experiments showed that NP, NP1EO and NP2EO reached equilibrium in about 12 h, while equilibrium of NP1EC and NP2EC were reached earlier, in about 4 h. In sorption isotherm experiments, obtained equilibrium data at 28 degrees C fitted well to Freundlich sorption model for all investigated compounds. For NP1EC, in addition to Freundlich, equilibrium data also fitted well to Langmuir model. Linear sorption model was also tried, and equilibrium data of all NP, NP1EO, NP2EO and NP2EC except NP1EC fitted well to this model. Calculated Freundlich coefficient (K(F)) and linear sorption coefficient (K(D)) showed that sorption capacity of the investigated compounds were in order NP > NP2EO > NP1EO > NP1EC approximately NP2EC. For NP, NP1EO and NP2EO, high values of calculated K(F) and K(D) indicated an easy uptake of these compounds from aqueous phase onto activated sludge. Whereas, NP1EC and NP2EC with low values of K(F) and K(D) absorbed weakly to activated sludge and tended to preferably remain in aqueous phase.

  20. Theoretical Investigations of CO2 and CH4 Sorption in an Interpenetrated Diamondoid Metal–Organic Material

    PubMed Central

    2015-01-01

    Grand canonical Monte Carlo (GCMC) simulations of CO2 and CH4 sorption and separation were performed in dia-7i-1-Co, a metal–organic material (MOM) consisting of a 7-fold interpenetrated net of Co2+ ions coordinated to 4-(2-(4-pyridyl)ethenyl)benzoate linkers. This MOM shows high affinity toward CH4 at low loading due to the presence of narrow, close fitting, one-dimensional hydrophobic channels—this makes the MOM relevant for applications in low-pressure methane storage. The calculated CO2 and CH4 sorption isotherms and isosteric heat of adsorption, Qst, values in dia-7i-1-Co are in good agreement with the corresponding experimental results for all state points considered. The experimental initial Qst value for CH4 in dia-7i-1-Co is currently the highest of reported MOM materials, and this was further validated by the simulations performed herein. The simulations predict relatively constant Qst values for CO2 and CH4 sorption across all loadings in dia-7i-1-Co, consistent with the one type of binding site identified for the respective sorbate molecules in this MOM. Examination of the three-dimensional histogram showing the sites of CO2 and CH4 sorption in dia-7i-1-Co confirmed this finding. Inspection of the modeled structure revealed that the sorbate molecules form a strong interaction with the organic linkers within the constricted hydrophobic channels. Ideal adsorbed solution theory (IAST) calculations and GCMC binary mixture simulations predict that the selectivity of CO2 over CH4 in dia-7i-1-Co is quite low, which is a direct consequence of the MOM’s high affinity toward both CO2 and CH4 as well as the nonspecific mechanism shown here. This study provides theoretical insights into the effects of pore size on CO2 and CH4 sorption in porous MOMs and its effect upon selectivity, including postulating design strategies to distinguish between sorbates of similar size and hydrophobicity. PMID:24835550

  1. Lead sorption by waste biomass of hazelnut and almond shell.

    PubMed

    Pehlivan, Erol; Altun, Türkan; Cetin, Serpil; Iqbal Bhanger, M

    2009-08-15

    The potential to remove Pb(2+) ion from aqueous solutions using the shells of hazelnut (HNS) (Corylus avellana) and almond (AS) (Prunus dulcis) through biosorption was investigated in batch experiments. The main parameters influencing Pb(2+) ion sorption on HNS and AS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Pb(2+) ion concentration (0.1-1.0mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been investigated. Equilibrium isotherms have been measured and modelled. Adsorption of Pb(2+) ions was in all cases pH-dependent showing a maximum at equilibrium pH values between 6.0 and 7.0, depending on the biomaterial, that corresponded to equilibrium pH values of 6.0 for HNS and 7.0 for AS. The equilibrium sorption capacities of HNS and AS were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2h. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that adsorption, chelation and ion exchange are major adsorption mechanisms for binding Pb(2+) ion to the sorbents.

  2. [Properties of maize stalk biochar produced under different pyrolysis temperatures and its sorption capability to naphthalene].

    PubMed

    Huang, Hua; Wang, Ya-Xiong; Tang, Jing-Chun; Tang, Jing-Chun; Zhu, Wen-Ying

    2014-05-01

    Biochar was made from maize stalk under three different temperatures of 300, 500 and 700 degreeC. The elemental composition of biochar was measured by elemental analyzer. Scanning electron microscope (SEM) was used to measure the surface morphology. Sorption of naphthalene to biochar was researched by batch sorption experiments. Results showed that, with the increase of temperature, C content increased from 66. 79% to 76. 30% , H and O contents decreased from 4.92% and 19. 25% to 3. 18% and 9.53%, respectively; H/C, O/C, (O + N)/C, aromaticity and hydrophobicity increased, and polarity decreased. SEM results showed that maize stalk biochar was platy particles, and its roughness of surface increased with increasing temperature. The sorption of naphthalene on biochar followed the Lagergren pseudo-second order dynamic sorption model. Initial sorption rate and equilibrium sorption capacity increased as preparation temperatures increased at the same initial concentration of naphthalene. The isotherm sorption behavior can be described by the Freundlich model, which indicated that, as pyrolysis temperature increased, the sorption capacity of biochar increased, and nonlinearity increased first and then decreased. Biochar derived from maize stalk had distinct features when compared with other feedstocks, and its elemental composition, surface features and sorption behaviors were significantly influenced by pyrolysis temperature.

  3. Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite

    NASA Astrophysics Data System (ADS)

    Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.

    2012-12-01

    The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67

  4. Determination of soil–water sorption coefficients of volatile methylsiloxanes

    PubMed Central

    Kozerski, Gary E; Xu, Shihe; Miller, Julie; Durham, Jeremy

    2014-01-01

    The sorption behaviors of 4 cyclic and linear volatile methyl siloxane (VMS) compounds between water and organic matter in 3 United Kingdom soils were studied by a batch equilibrium method using13C-enriched sorbates. Sorption and desorption kinetics and isotherms were determined for octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), octamethyltrisiloxane (L3), and decamethyltetrasiloxane (L4). Concentrations of [13C]-VMS in the soil and aqueous phases were measured directly by extraction and gas chromatography–mass spectrometry techniques. All VMS compounds were sorbed rapidly, reaching constant distributions in all soils by 24 h. Desorption kinetics were very rapid, with reattainment of equilibrium within 1 h. In the main, linear isotherms were observed for aqueous concentrations at or below 4% of the solubility limits. The average sorption organic carbon partition coefficient (log KOC) values across soils were 4.23 for D4, 5.17 for D5, 4.32 for L3, and 5.13 for L4, with standard deviations of 0.09 to 0.34. Desorption KOC values were systematically greater by 0.1 log units to 0.3 log units. The linear isotherms and low variation in KOC values across soils suggested partitioning-dominated sorption of the VMS. Compared with traditional hydrophobic organic compounds, KOC values for the VMS compounds were significantly lower than expected on the basis of their octanol–water partition coefficients. A linear free energy relationship analysis showed that these differences could be rationalized quantitatively in terms of the inherent characteristics of the VMS compounds, combined with the differences in solvation properties of organic matter and octanol. Environ Toxicol Chem 2014; 33:1937–1945. PMID:24862578

  5. Sorption of PAHs and PCBs to activated carbon: coal versus biomass-based quality.

    PubMed

    Amstaetter, Katja; Eek, Espen; Cornelissen, Gerard

    2012-04-01

    The addition of activated carbon (AC) is an increasingly popular method for pollutant immobilization, and the AC material can be made of biomass or coal/fossil feedstock. The aim of the present study was to investigate whether there are differences between pollutant sorption to biomass and coal-based AC in the presence and absence of sediment. Through N(2) and CO(2) adsorption to probe surface area and pore size it was shown that the biomass-based AC had a stronger dominance of narrow pores in the size range 3.5-15Šthan the anthracite-based material. In the absence of sediment, sorption isotherms for the probe compounds pyrene and PCB-101 showed stronger sorption for the biomass-based AC (logarithmic Freundlich coefficients 8.15 for pyrene; 9.91 for PCB-101) than for the anthracite-based one (logarithmic Freundlich coefficients 7.20 and 9.70, respectively). In the presence of sediment, the opposite trend was observed, with the stronger sorption for anthracite-based AC. Thus, the presence of competing and/or pore-blocking sediment constituents reduces sorption to a larger extent for biomass-derived AC (factor of 5 for pyrene to almost 100 for PCB-101) than for anthracite-based AC (no reduction for pyrene to factor of 5 for PCB-101). This difference is tentatively attributed to the difference in pore size distribution, narrow pores being more prone to clogging, and could have implications for remediation feasibility with AC from different sources. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Dynamic Triple-Mode Sorption and Outgassing in Materials.

    PubMed

    Sharma, Hom N; Harley, Stephen J; Sun, Yunwei; Glascoe, Elizabeth A

    2017-06-07

    Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C-70 °C) by varying the water activity (0.0-0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis, especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.

  7. Dynamic Triple-Mode Sorption and Outgassing in Materials

    DOE PAGES

    Sharma, Hom N.; Harley, Stephen J.; Sun, Yunwei; ...

    2017-06-07

    Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C–70 °C) by varying the water activity (0.0–0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis,more » especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.« less

  8. Dynamic Triple-Mode Sorption and Outgassing in Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Harley, Stephen J.; Sun, Yunwei

    Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C–70 °C) by varying the water activity (0.0–0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis,more » especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.« less

  9. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust.

    PubMed

    Kaczala, F; Marques, M; Hogland, W

    2009-01-01

    Batch sorption with untreated Pinus sylvestris sawdust after settling/sedimentation phase to remove vanadium and lead from a real industrial wastewater was investigated using different adsorbent doses, initial pH, and contact time. The development of pH along the sorption test and a parallel investigation of metals release from sawdust in distilled water were carried out. In order to evaluate kinetic parameters and equilibrium isotherms, Lagergren first-order, pseudo-second-order, intra-particle diffusion and Freundlich models were explored. When the initial pH was reduced from 7.4 to 4.0, the sorption efficiency increased from 32% to 99% for Pb and from 43% to 95% for V. Whereas, V removal was positively correlated with the adsorbent dose, Pb removal was not. The sorption process was best described by pseudo-second-order kinetics. According to Freundlich parameters (K(f) and n) sawdust presented unfavourable intensity for sorption of V.

  10. The specific sorption of Np(V) on the corundum (α-Al2O3) surface in the presence of trivalent lanthanides Eu(III) and Gd(III): A batch sorption and XAS study.

    PubMed

    Virtanen, S; Bok, F; Ikeda-Ohno, A; Rossberg, A; Lützenkirchen, J; Rabung, T; Lehto, J; Huittinen, N

    2016-12-01

    The sorption of pentavalent neptunium, Np(V), on corundum (α-Al2O3) was investigated in the absence and presence of trivalent europium or gadolinium as a competing element under CO2-free conditions. The objective of this study was to investigate how a trivalent metal ion with a higher charge than that of the neptunyl(V) ion would affect the sorption of Np(V) when allowed to adsorb on the mineral surface before the addition of Np(V). Batch sorption experiments conducted as a function of pH (pH-edges) and as a function of Np(V) concentration (isotherms) in the absence and presence of 1×10(-5)M Eu(III) showed no sign of Eu being able to block Np sorption sites. Surface complexation modelling using the diffuse double layer model was applied to the batch data to obtain surface complexation constants for the formed Np(V) complexes on corundum. To account for potential changes occurring in the coordination environment of the neptunium ion in the presence of a trivalent lanthanide, X-ray absorption spectroscopy (XAS) measurements were carried out on the samples containing only Np(V) and Np(V)+Gd(III). The results reveal the presence of a bidentate Np(V) edge-sharing complex on the corundum surface in the absence of Gd(III), while the coordination environment of Np(V) on the corundum surface could be changed when Gd(III) is added to the sample before the sorption of Np(V). Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Anionic and cationic drug sorption on interpolyelectrolyte complexes.

    PubMed

    de Lima, C R M; Gomes, D N; de Morais Filho, J R; Pereira, M R; Fonseca, J L C

    2018-06-15

    Interpolyelectrolyte complexes of chitosan and poly(sodium 4-styrenesulfonate) [NaPSS] were synthesized and obtained in the form of solid particles, with two different sulfonate to aminium molar ratios: 0.7, resulting in particles with positive zeta potential (IPEC + ), and 1.4, yielding particles with negative zeta potential (IPEC - ). Both particles were characterized as potential drug sorbents using differently charged drugs: sodium cromoglycate (negatively charged), and tetracycline hydrochloride (positively charged). The adsorption isotherm for cromoglycate and tetracycline on IPEC + was adequately described by the Langmuir model, while the IPEC - sorption of tetracycline followed the Redlich-Peterson isotherm without the occurrence of cromoglycate sorption. The sorption kinetics consisted of two processes, one fast and the other slow, which were correlated to purely surface-related interactions and processes that resulted in diffusion and/or destruction/rearrangement on the particle surface and subsurface, respectively. Charge build up equilibrium and kinetics were also monitored via zeta potential measurements, and the differences between mass drug uptake and particle charging were used to propose adsorption mechanisms for the systems studied in this work. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Sorption behaviour of perfluoroalkyl substances in soils.

    PubMed

    Milinovic, Jelena; Lacorte, Silvia; Vidal, Miquel; Rigol, Anna

    2015-04-01

    The sorption behaviour of three perfluoroalkyl substances (PFASs), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonic acid (PFBS), was studied in six soils with contrasting characteristics, especially in the organic carbon content. Sorption isotherms were obtained by equilibrating the soil samples with 0.01 mol L(-1) CaCl2 solutions spiked with increasing concentrations of the target PFAS. The sorption reversibility of PFASs was also tested for some of the samples. Liquid chromatography coupled to tandem mass spectrometry was used to quantify the target PFASs in the solutions. Both the Freundlich and linear models were appropriate to describe the sorption behaviour of PFASs in soils, and enabled us to derive solid-liquid distribution coefficients (Kd) for each compound in each soil. Kd values increased from 19 to 295 mL g(-1) for PFOS, from 2.2 to 38 mL g(-1) for PFOA and from 0.4 to 6.8 mL g(-1) for PFBS, and were positively correlated with the organic carbon content of the soil. KOC values obtained from the correlations were 710, 96 and 17 mL g(-1) for PFOS, PFOA and PFBS, respectively. Whereas Kd values decreased in the sequence PFOS>PFOA>PFBS, desorption yields were lower than 13% for PFOS, from 24 to 58% for PFOA, and from 32 to 60% for PFBS. This shows that the physicochemical characteristics of PFASs, basically their hydrophobicity, controlled their sorption behaviour in soils, with PFOS being the most irreversibly sorbed PFAS. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sorption of water by biochar: Closer look at micropores

    NASA Astrophysics Data System (ADS)

    Spokas, Kurt; Hall, Kathleen; Joseph, Stephan; Kammann, Claudia; Novak, Jeffrey; Gámiz, Beatriz; Cox, Lucia

    2017-04-01

    Typically, biochar has been assumed to increase total water content of the soil system and thereby positively influence plant-soil moisture hydraulics. In this work, we focused on water's interaction with micro-pores (<2 nm) and its influence on water availability. In other words, the main question was if the driving force of water's behavior was the physics or chemistry of biochar pores. The temporal scale of liquid water entry into biochar's pore network is very complex, with observed bubbling occurring days, weeks, and even months after a piece of biochar is immersed under water at ambient conditions. Elevated temperature biochar typically has a positive heat of immersion measured calorimetrically, whereas the calculated BET energy of sorption from a water sorption isotherm typically decrease with production temperatures. To further complicate matters, different pieces of biochar interact differently with water even though the entire batch was created in the same reactor at the same time and after liquid water exposure the physical structure of biochar is irreversibly altered, sometimes negligible other times catastrophically. Nevertheless, based on the estimations of diffusion coefficients in biochar from drying curve analyses, pore surface moieties do reduce the effective diffusivity of water vapor in biochar. Contrary to the rule of thumb in soil physics, where higher gas filled porosity correlates with higher soil moisture holding capacities, our results indicate that biochar's water sorption rate and capacity is actually reduced at ambient conditions by an increase in microporous volume. Thereby, biochar's hydrophobic behavior is partly due to the entrapment of gas within the air-filled porosity which prevents liquid water's entry, even though these biochars possess elevated gas phase sorption capacities (e.g., BET N2/CO2 surface areas).

  14. Phenylurea herbicide sorption to biochars and agricultural soil

    PubMed Central

    WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.

    2016-01-01

    Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  15. Experimental study of Pb (II) solution sorption behavior onto Coffee Husk Bioactivated Carbon

    NASA Astrophysics Data System (ADS)

    Fona, Z.; Habibah, U.

    2018-04-01

    Coffee husk which is abundantly produced in the coffee plantations is potential to be a challenging adsorbent. The fate of Pb (II) solution in the sorption mechanism onto the adsorbent has been investigated. This paper aimed to study the efficiency of Pb (II) aqueous solution removal using activated carbon from coffee husk (CAC). The sorption characteristics were using two isotherm models, Langmuir and Freundlich, were also reported. The coffee husk from local plantations in Middle Aceh was carbonized and sieved to 120/140 mesh. The charcoal was activated using hydrochloric acid before contacted with the different initial concentrations of Pb (II) solution. The remaining concentrations of the metal in the specified contact times were determined using Atomic Adsorption Spectrophotometer at 283.3 wavelength. The result showed that the equilibrium concentrations were obtained in about 30 minutes which depended on the initial concentration. The sorption mechanism followed Freundlich isotherm model where the adsorption constant and capacity were accordingly 1.353 and 1.195 mgg‑1. The iodine sorption was up to 1,053 mgg‑1. Based on the ash and moisture content, as well as iodine sorption, the activated carbon met the national standard.

  16. Phenanthrene sorption with heterogeneous organic matter in a landfill aquifer material

    USGS Publications Warehouse

    Karapanagioti, H.K.; Sabatini, D.A.; Kleineidam, S.; Grathwohl, P.; Ligouis, B.

    1999-01-01

    Phenanthrene was used as a model chemical to study the sorption properties of Canadian River Alluvium aquifer material. Both equilibrium and kinetic sorption processes were evaluated through batch studies. The bulk sample was divided into subsamples with varying properties such as particle size, organic content, equilibration time, etc. in order to determine the effect of these properties on resulting sorption parameters. The data have been interpreted and the effect of experimental variables was quantified using the Freundlich isotherm model and a numerical solution of Fick's 2nd law in porous media. Microscopic organic matter characterization proved to be a valuable tool for explaining the results. Different organic matter properties and sorption mechanisms were observed for each soil subsample. Samples containing coal particles presented high Koc values. Samples with organic matter dominated by organic coatings on quartz grains presented low Koc values and contained a high percentage of fast sorption sites. The numerical solution of Fick's 2ndlaw requires the addition of two terms (fast and slow) in order to fit the kinetics of these heterogeneous samples properly. These results thus demonstrate the need for soil organic matter characterization in order to predict and explain the sorption properties of a soil sample containing heterogeneous organic matter and also the difficulty and complexity of modeling sorption in such samples.

  17. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    PubMed

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (<0.1 mg g -1 ). Sorption varied across feedstock materials, and isotherms indicated concentration dependence. Biochars with a greater fraction of micropores exhibited lower sorption capacities, and specific surface groups were also found to be influential. Prepyrolysis treatments with iron and copper, which complex glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Sulfamethazine Sorption to Soil: Vegetative Management, pH, and Dissolved Organic Matter Effects.

    PubMed

    Chu, Bei; Goyne, Keith W; Anderson, Stephen H; Lin, Chung-Ho; Lerch, Robert N

    2013-01-01

    Elucidating veterinary antibiotic interactions with soil is important for assessing and mitigating possible environmental hazards. The objectives of this study were to investigate the effects of vegetative management, soil properties, and >1000 Da dissolved organic matter (DOM) on sulfamethazine (SMZ) behavior in soil. Sorption experiments were performed over a range of SMZ concentrations (2.5-50 μmol L) using samples from three soils (Armstrong, Huntington, and Menfro), each planted to one of three vegetation treatments: agroforestry buffers strips (ABS), grass buffer strips (GBS), and row crops (RC). Our results show that SMZ sorption isotherms are well fitted by the Freundlich isotherm model (log = 0.44-0.93; Freundlich nonlinearity parameter = 0.59-0.79). Further investigation of solid-to-solution distribution coefficients () demonstrated that vegetative management significantly ( < 0.05) influences SMZ sorption (ABS > GBS > RC). Multiple linear regression analyses indicated that organic carbon (OC) content, pH, and initial SMZ concentration were important properties controlling SMZ sorption. Study of the two most contrasting soils in our sample set revealed that increasing solution pH (pH 6.0-7.5) reduced SMZ sorption to the Armstrong GBS soil, but little pH effect was observed for the Huntington GBS soil containing 50% kaolinite in the clay fraction. The presence of DOM (150 mg L OC) had little significant effect on the Freundlich nonlinearity parameter; however, DOM slightly reduced SMZ values overall. Our results support the use of vegetative buffers to mitigate veterinary antibiotic loss from agroecosystems, provide guidance for properly managing vegetative buffer strips to increase SMZ sorption, and enhance understanding of SMZ sorption to soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface.

    PubMed

    Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin

    2017-09-06

    The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.

  20. Thermodynamics of Cadmium Sorption on Different Soils of West Bengal, India

    PubMed Central

    Paul, Ranjit Kumar; Das, D. K.; Boruah, Romesh K.; Sonar, Indira

    2014-01-01

    A sorption study was conducted on different soils collected from five agroecological zones of West Bengal, India, to understand the soil environmental behavior and fate of cadmium. For this purpose batch adsorption experiments were carried out at the native soil pH and at three different temperatures (25°C, 35°C, and 45°C). The adsorption data fitted by a linear least squares technique to the different sorption isotherms. Most data obtained give the good fit to both Freundlich and modified Langmuir isotherms, but they are not consistent with the linear Langmuir adsorption model. Thermodynamic parameters, namely, thermodynamics equilibrium constant at a particular temperature T  (K T 0), Gibbs free energy at a particular temperature T  (ΔG T 0), and change of enthalpy (ΔH 0) and change of entropy at temperature T  (ΔS T 0), were also determined by applying sorption value and concentrations of Cd in equilibrium solution within the temperature range. The thermodynamic parameters revealed that Cd sorption increases as the values of K T 0, ΔG T 0, ΔH 0, and ΔS T 0 were increased on reaction temperatures. The spontaneous sorption reaction can be concluded due to high values of ΔG T 0. The positive values of ΔH 0 indicated that the Cd sorption is an endothermic one. Under these present conditions, the soil and its components possibly supply a number of sites having different adsorption energies for cadmium sorption. PMID:24683322

  1. Effect of humic acid on the sorption of perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS) on boehmite.

    PubMed

    Wang, Fei; Shih, Kaimin; Leckie, James O

    2015-01-01

    The sorption of PFOS and PFBS on boehmite was significantly retarded by the competitive sorption of humic acid (HA), implying that PFOS and PFBS are likely more mobile in water and groundwater systems enriched with HA. The sorption behavior of PFOS and PFBS on the HA-modified boehmite surface were also found to differ due to their different chain lengths. For a partially HA-modified boehmite surface, the isotherm study showed that PFOS had a much higher maximum sorption capacity than PFBS and that PFOS might possess additional surface interactions besides electrostatic interaction. For a HA-saturated boehmite, a linear sorption isotherm was found for PFOS while nearly no PFBS sorption was observed. This indicates that sorption behavior between PFOS and the sorbed HA on boehmite was dominated by hydrophobic interactions, instead of electrostatic interaction. In addition, a conceptual model combining hydrophobic and electrostatic interaction was established to explain the sorption behavior of PFOS and PFBS on HA-modified boehmite. Finally, the results revealed that the sorption of PFOS and PFBS on HA-modified boehmite is pH-dependent. The neutralization of negative sites on HA-modified boehmite reduced the electrostatic repulsion and enhanced the partitioning of PFBS on the sorbed HA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sorption of paracetamol onto biomaterials.

    PubMed

    Ferchichi, Maroua; Dhaouadi, Hatem

    2016-01-01

    Pharmaceutical residues released into the environment are posing more and more public health problems. It is worthwhile to study the retention of pharmaceuticals residues by adsorption on solid supports. Batch sorption experiments are intended to identify the adsorption isotherms of the pharmaceutically active ingredient on the biomaterials. The results obtained in this study have shown that the retention possibilities of these compounds by bio-adsorbents (clay and sand) are not significant. The negligible sorption for these media is explained by the low hydrophobicity of paracetamol (Log K(ow) = 0.46). The retention of paracetamol on the dehydrated sewage sludge and on Posidonia oceanica showed a relatively significant adsorption with a maximal quantity of 0.956 mg g(-1) and 1.638 mg g(-1) for the dehydrate sludge and P. oceanica, respectively. On the other hand, the study of paracetamol retention on the powdered activated carbon showed a high adsorption capacity of about 515.27 mg g(-1). Isotherm data show a good fit with Langmuir's model. An infrared analysis is carried out. It shows identical bands before and after adsorption, with some modifications.

  3. Evaluating phenanthrene sorption on various wood chars

    USGS Publications Warehouse

    James, G.; Sabatini, D.A.; Chiou, C.T.; Rutherford, D.; Scott, A.C.; Karapanagioti, H.K.

    2005-01-01

    A certain amount of wood char or soot in a soil or sediment sample may cause the sorption of organic compounds to deviate significantly from the linear partitioning commonly observed with soil organic matter (SOM). Laboratory produced and field wood chars have been obtained and analyzed for their sorption isotherms of a model solute (phenanthrene) from water solution. The uptake capacities and nonlinear sorption effects with the laboratory wood chars are similar to those with the field wood chars. For phenanthrene aqueous concentrations of 1 ??gl-1, the organic carbon-normalized sorption coefficients (log Koc) ranging from 5.0 to 6.4 for field chars and 5.4-7.3 for laboratory wood chars, which is consistent with literature values (5.6-7.1). Data with artificial chars suggest that the variation in sorption potential can be attributed to heating temperature and starting material, and both the quantity and heterogeneity of surface-area impacts the sorption capacity. These results thus help to corroborate and explain the range of log Koc values reported in previous research for aquifer materials containing wood chars. ?? 2004 Elsevier Ltd. All rights reserved.

  4. Equilibrium sorption and diffusion rate studies with halogenated organic chemical and sandy aquifer material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, W.P.

    1990-01-01

    Concepts for rate limitation of sorptive uptake of hydrophobic organic solutes by aquifer solids are reviewed, emphasizing physical diffusion models and in the context of effects on contaminant transport. Data for the sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) on Borden sand are presented, showing that equilibrium is attained very slowly, requiring equilibration times on the order of tens of days for PCE and hundreds of days for TeCB. The rate of approach to equilibrium decreased with increasing particle size and sorption distribution coefficient, in accordance with retarded intragranular diffusion models. Pulverization of the samples significantly decreased the required timemore » to equilibrium without changing the sorption capacity of the solids. Batch sorption methodology was refined to allow accurate measurement of long-term distribution coefficients, using purified {sup 14}C-labelled solute spikes and sealed glass ampules. Sorption isotherms for PCE and TeCB were conducted with size fractions of Borden sand over four to five orders of magnitude in aqueous concentration, and were found to be slightly nonlinear (Freundlich exponent = 0.8). A concentrated set of data in the low concentration range (<50 ug/L) revealed that sorption in this range could be equally well described by a linear isotherm. Distribution coefficients of the two solutes with seven size fractions of Borden sand, measured at low concentration and at full equilibrium, were between seven and sixty times the value predicted on the basis of recent correlations with organic carbon content. Rate results for coarse size fractions support a simple pore diffusion model, with pore diffusion coefficients estimated to be approximately 3 {times} 10{sup {minus}8} cm{sup 2}/sec, more than 200{times} lower than the aqueous diffusivities.« less

  5. Effects of sorbents in sorption of agrochemical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasundera, T.; Jayasundera, S.

    1996-10-01

    Sorption to soil materials is a key process controlling the fate of agrochemicals in the environment. Batch experiments were performed to determine sorption coefficients of metolachlor, alachlor and linuron onto clays, natural organic matter (NOM) coated-clays, and organic sorbents. Our results indicate that the partition coefficient K{sub d} is a function of both sorbent and sorbate properties. The carbon referenced sorption coefficient (K{sub oc}) decreased with increasing polarity of the organic sorbent. Adsorption isotherms onto clays and NOM coated-clays conformed to a Freunlich equation. Studies indicate that at low NOM surface coverage, interactions between NOM and clay surfaces could reducemore » the surface affinity for agrochemical adsorption. Our results suggest that sorption cannot be simply defined as {open_quotes}adsorption{close_quotes} or {open_quotes}partitioning{close_quotes}, but rather there is a continuum of possible interactions. The more polar the solute, the more likely it is that interactions other than hydrophobic will contribute to sorption, causing the currently used K{sub oc}-K{sub ow} correlations to fail.« less

  6. Impacts of heterogeneous organic matter on phenanthrene sorption--Equilibrium and kinetic studies with aquifer material

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand

    2000-01-01

    Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.

  7. In situ precipitation of nano-hydroxyapatite in gelatin polymatrix towards specific fluoride sorption.

    PubMed

    Pandi, Kalimuthu; Viswanathan, Natrayasamy

    2015-03-01

    This study investigates the synthesis of nano-hydroxyapatite (n-HAp) incorporated gelatin (Gel) biocomposite namely n-HAp@Gel composite for efficient removal of fluoride from aqueous solution. The results demonstrated that, the developed n-HAp@Gel biocomposite possess an enhanced defluoridation capacity (DC) of 4157 mgF-/kg. The batch experiments were optimized as a function of various influencing parameters like contact time, pH, co-ions, temperature and initial fluoride concentration. The physicochemical characteristics of n-HAp@Gel composite was examined by using different instrumental techniques like FTIR, XRD, TGA-DSC and SEM with EDAX analysis. The sorption data were fitted with various isotherm models. The acquired thermodynamic parameters showed that the sorption of fluoride onto the sorbent was endothermic and spontaneous in nature. The reaction-based and diffusion-based models were used to identify the kinetics of the reaction. At field conditions, n-HAp@Gel composite reduce the fluoride concentration below the tolerance limit. A regeneration technique was proposed in order to reuse the sorbent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. An Impact of Mechanical Stress in Coal Briquettes on Sorption of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Mirosław

    2017-09-01

    The presence of gases (methane or carbon dioxide) in hard coal is connected with numerous threats for miners employed in underground mining facilities. When analyzing the coal-methane system, it is necessary to determine the relationship between pressure and gas sorption. Such a relationship should be determined under conditions similar to the natural ones - when it comes to both temperature and pressure. The present paper discusses the results of research conducted with the use of coal briquettes under the state of mechanical stress. Carbon dioxide sorption isotherms were determined for different values of stress affecting the coal material. For five coal samples collected in different mines of the Upper Silesian Coal Basin, Langmuir's sorption isotherms were determined. The results point to significant impact that mechanical stress has upon the sorption process. It is about 1 percent of the value obtained for coal not subjected to stress per 1 MPa. The research results can also prove useful when analyzing hard coal seams from the perspective of their carbon dioxide sequestration abilities.

  9. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Defluoridation by Bacteriogenic Iron Oxides: Sorption Studies

    NASA Astrophysics Data System (ADS)

    Evans, K.; Ferris, F.

    2009-05-01

    At concentrations above 1 mg/L, fluoride in drinking water can lead to dental and skeletal fluorosis, a disease that causes mottling of the teeth, calcification of ligaments, crippling bone deformities and many other physiological disorders that can, ultimately, lead to death. Conservative estimates are that fluorosis afflicts tens of millions of people worldwide. As there is no treatment for fluorosis, prevention is the only means of controlling the disease. While numerous defluoridation techniques have been explored, no single method has been found to be both effective and inexpensive enough to implement widely. Our research began in India, with a large-scale geochemical study of the groundwater in a fluoride-contaminated region of Orissa. Having developed a better understanding of the geochemical relationships that exist between fluoride and other parameters present in an affected area, as well as the complex relationships that arise among those parameters that can impact the presence of fluoride, we began investigating certain remediation scenarios involving iron oxides. A common approach to remediation involves the partitioning of fluoride from groundwater by sorption onto a variety of materials, one of the most effective of which is iron oxide whose surface area acts as a scavenger for fluoride. In the presence of iron oxidizing bacteria, the oxidation rate of iron has been shown to be ˜6 times greater than in their absence; fluoride should, therefore, be removed from an aqueous environment by bacteriogenic iron oxides (BIOS) much more quickly than by abiotic iron oxides. Most recently, sorption studies have been conducted using both BIOS and synthetic hydrous ferric oxides in order to compare the behavior between biotic and abiotic sorbents. These studies have provided sorption isotherms that allow comparison of fluoride removed by sorption to BIOS versus synthetic iron oxides. Sorption affinity constants have also been determined, which allow for the

  11. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state.

    PubMed

    Zhu, Dongqiang; Pignatello, Joseph J

    2005-11-15

    A LFER of the type in the title is applied to sorption of numerous compounds to polyethylene and three soils for which sorption to natural organic matter (NOM) is presumed dominant. It provides fractional contributions to the Gibbs free energy of sorption corresponding to hydrophobic effects, dipolar/polarizability (D/P) effects in excess of the reference state, and the sum of possible specific forces such as H-bonding and pi-pi electron donor-acceptor (pi-pi EDA) interactions in excess of the reference state. Minimal inputs are the isotherm, the n-hexadecane-water partition coefficient and the Abraham pi parameter representing D/P effects. Sorption of all compounds to polyethylene can be described by considering only hydrophobic effects. Sorption of a calibration set of apolar compounds (aromatic and aliphatic hydrocarbons and chlorinated hydrocarbons) to the natural sorbents is well-described by a combination of hydrophobic and D/P effects. For the apolar set, D/P contributes approximately 15-40% (2-8% for cyclohexane) of sorption free energy. D/P effects increase with the degree of chlorination for aliphatic compounds. For aromatic compounds D/P effects increase with fused ring size but do not vary with degree of chlorination and chlorine substitution pattern. H-bonding contributes substantially to sorption of alcohols, and similarly for 2-nonanol and 2,4-dichlorophenol (33-44%). pi-pi EDA forces contribute to phenanthrene sorption in one case. The effects of concentration, sorbent aromaticity (literature NMR), and sorbent polarity [(O + N)/C] on hydrophobic and D/P contributions for all compounds indicate that (a) molecules fill sites of progressively greater hydrophilic character; (b) the energy penalty for cavity formation in the solid decreases with concentration due to plasticization and greater intermolecular contact; (c) sorbent aromatic content more than sorbent polarity controls D/P interactions. Basing free energy on an inert electrostatic chemical

  12. Free energy study of H2O, N2O5, SO2, and O3 gas sorption by water droplets/slabs

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Pak, Chi Yuen; Tse, Ying-Lung Steve

    2018-04-01

    Understanding gas sorption by water in the atmosphere is an active research area because the gases can significantly alter the radiation and chemical properties of the atmosphere. We attempt to elucidate the molecular details of the gas sorption of water and three common atmospheric gases (N2O5, SO2, and O3) by water droplets/slabs in molecular dynamics simulations. The system size effects are investigated, and we show that the calculated solvation free energy decreases linearly as a function of the reciprocal of the number of water molecules from 1/215 to 1/1000 in both the slab and the droplet systems. By analyzing the infinitely large system size limit by extrapolation, we find that all our droplet results are more accurate than the slab results when compared to the experimental values. We also show how the choice of restraints in umbrella sampling can affect the sampling efficiency for the droplet systems. The free energy changes were decomposed into the energetic ΔU and entropic -TΔS contributions to reveal the molecular details of the gas sorption processes. By further decomposing ΔU into Lennard-Jones and Coulombic interactions, we observe that the ΔU trends are primarily determined by local effects due to the size of the gas molecule, charge distribution, and solvation structure around the gas molecule. Moreover, we find that there is a strong correlation between the change in the entropic contribution and the mean residence time of water, which is spatially nonlocal and related to the mobility of water.

  13. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  14. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sorption kinetics, isotherms, and mechanism of aniline aerofloat to agricultural soils with various physicochemical properties.

    PubMed

    Xiang, Lei; Xiao, Tao; Mo, Ce-Hui; Zhao, Hai-Ming; Li, Yan-Wen; Li, Hui; Cai, Quan-Ying; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-06-15

    Aniline aerofloat (AAF), a high-toxic organic flotation reagent, is widely used in mineral processing industry. However, little information on its environmental fate is available. AAF sorption to four types of agricultural soils at low concentrations (1-10 mg/L) was investigated using batch experiments. AAF sorption kinetics involved both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics with equilibrium time within 120 min. Both Langmuir and Freundlich models fitted well the AAF sorption with the former better. Sorption of AAF to soils was a spontaneous and favorable physical sorption that was controlled by ion bridge effect and hydrophobic interaction that was related to van der Waals force and π-π coordination based on FTIR analyses. AAF sorption was remarkably affected by soil constituents, positively correlating with the contents of organic matter and clay. The relatively higher logK oc values (3.53-4.66) of AAF at environmental concentrations (1-5 mg/L) imply that soils are serving as a sink of AAF from beneficiation wastewater, posing great potential risks to environment and human health. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    NASA Astrophysics Data System (ADS)

    Venterea, R. T.; Sadowsky, M.; Breuillin-Sessoms, F.; Wang, P.; Clough, T. J.; Coulter, J. A.

    2015-12-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  17. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production.

    PubMed

    Venterea, Rodney T; Clough, Timothy J; Coulter, Jeffrey A; Breuillin-Sessoms, Florence; Wang, Ping; Sadowsky, Michael J

    2015-07-16

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted 'hot spots' and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils ('L' and 'W') having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4(+)) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3(-)) levels than soil L, but was more resistant to nitrite (NO2(-)) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2(-) oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2(-) was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2(-). Differences between soils were explained by greater slNH3 in soil L which inhibited NO2(-) oxidization leading to greater NO2(-) levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2(-), N2O and nitrifier genes, and the first to show how ASC can regulate NO2(-) levels and N2O production.

  18. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    NASA Astrophysics Data System (ADS)

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-07-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3-) levels than soil L, but was more resistant to nitrite (NO2-) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2- oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2- was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2-. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2- oxidization leading to greater NO2- levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2-, N2O and nitrifier genes, and the first to show how ASC can regulate NO2- levels and N2O production.

  19. Praseodymium sorption on Laminaria digitata algal beads and foams.

    PubMed

    Wang, Shengye; Hamza, Mohammed F; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-10-15

    Algal (Laminaria digitata) beads and algal foams have been prepared by a new synthesis mode and the sorbents were tested for praseodymium sorption in batch and fixed-bed like systems (recirculation or one-pass modes), respectively. Metal binding occurs through ion-exchange with Ca(II) ions used for ionotropic gelation of alginate contained in the algal biomass and eventually with protons. Sorption isotherms at pH 4 are described by the Langmuir and the Sips equations with maximum sorption capacities close to 110-120mgPrg -1 . Uptake kinetics are fitted by the pseudo-second order reaction rate equation for both beads and foams; in the case of beads the Crank equation also gives good fit of experimental data. Metal is successfully desorbed using 2M HCl/0.05M CaCl 2 solutions and the sorbent can be efficiently re-used for a minimum of 5 cycles with negligible decrease in sorption/desorption properties and appreciable concentrating effect (around 8-10 times the initial metal concentration). Tested in continuous mode, the algal foam shows typical breakthrough curves that are fitted by the Yan method; desorption is also efficient and allows under the best conditions to achieve a concentration factor close to 8. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes.

    PubMed

    Velzeboer, I; Kwadijk, C J A F; Koelmans, A A

    2014-05-06

    The presence of microplastic and carbon-based nanoparticles in the environment may have implications for the fate and effects of traditional hydrophobic chemicals. Here we present parameters for the sorption of 17 CB congeners to 10-180 μm sized polyethylene (micro-PE), 70 nm polystyrene (nano-PS), multiwalled carbon nanotubes (MWCNT), fullerene (C60), and a natural sediment in the environmentally relevant 10(-5)-10(-1) μg L(-1) concentration range. Effects of salinity and sediment organic matter fouling were assessed by measuring the isotherms in fresh- and seawater, with and without sediment present. Sorption to the "bulk" sorbents sediment organic matter (OM) and micro-PE occurred through linear hydrophobic partitioning with OM and micro-PE having similar sorption affinity. Sorption to MWCNT and nano-PS was nonlinear. PCB sorption to MWCNT and C60 was 3-4 orders of magnitude stronger than to OM and micro-PE. Sorption to nano-PS was 1-2 orders of magnitude stronger than to micro-PE, which was attributed to the higher aromaticity and surface-volume ratio of nano-PS. Organic matter effects varied among sorbents, with the largest OM fouling effect observed for the high surface sorbents MWCNT and nano-PS. Salinity decreased sorption for sediment and MWCNT but increased sorption for the polymers nano-PS and micro-PE. The exceptionally strong sorption of (planar) PCBs to C60, MWCNT, and nano-PS may imply increased hazards upon membrane transfer of these particles.

  1. Thermodynamics of imidacloprid sorption in Croatian soils

    NASA Astrophysics Data System (ADS)

    Milin, Čedomila; Broznic, Dalibor

    2015-04-01

    Neonicotinoids are increasingly replacing the organophosphate and methylcarbamate acetylcholinesterase inhibitors which are losing their effectiveness because of selection for resistant pest populations. Imidacloprid is the most important neonicotinoid with low soil persistence, high insecticidal potency and relatively low mammalian toxicity. In Croatia, imidacloprid is most commonly used in olive growing areas, including Istria and Kvarner islands, as an effective means of olive fruit fly infestation control. Sorption-desorption behavior of imidacloprid in six soils collected from five coastal regions in Croatia at 20, 30 and 40°C was investigated using batch equilibrium technique. Isothermal data were applied to Freundlich, Langmuir and Temkin equation, and the thermodynamic parameters ΔH°, ΔG°, ΔS° were calculated. The sorption isotherm curves were of non-linear and may be classified as L-type suggesting a relatively high sorption capacity for imidacloprid. Our results showed that the KFsor values decreased for all the tested soils as the temperature increases, indicating that the temperature strongly influence the sorption. Values of ΔG° were negative (-4.65 to -2.00 kJ/mol) indicating that at all experimental temperatures the interactions of imidacloprid with soils were spontaneous process. The negative and small ΔH° values (-19.79 to -8.89 kJ/mol) were in the range of weak forces, such as H-bonds, consistent with interactions and par¬titioning of the imidacloprid molecules into soil organic matter. The ΔS° values followed the range of -57.12 to -14.51 J/molK, suggesting that imidacloprid molecules lose entropy during transition from the solution phase to soil surface. It was found that imidacloprid desorption from soil was concentration and temperature dependent, i.e. at lower imidacloprid concentrations and temperature, lower desorption percentage occurred. Desorption studies revealed that hysteretic behavior under different temperature

  2. Selective carbon dioxide sorption by a new breathing three-dimensional Zn-MOF with Lewis basic nitrogen-rich channels.

    PubMed

    Kim, Hyun-Chul; Huh, Seong; Lee, Do Nam; Kim, Youngmee

    2018-04-03

    Lewis basic heteroatoms orderly located inside the well-defined channels of metal-organic frameworks (MOFs) are potentially ideal active sites for selective gas sorption and catalysis. To develop functional MOFs with Lewis basic sites inside channels, a new C2h-symmetric dicarboxylate-based bridging ligand, 3,3'-(pyrazine-2,5-diyl)dibenzoic acid (3,3'-PDBA), was prepared by a Suzuki coupling reaction. Subsequently, two new Zn-MOFs containing the C2h-symmetric 3,3'-PDBA bridging ligand and two different bis(pyridyl)-based pillars, 1,2-bis(4-pyridyl)ethane (bpa) or 1,2-bis(4-pyridyl)ethylene (bpe), were prepared through a thermal reaction in N,N-dimethylformamide (DMF). The resulting two Zn-MOFs of the general formula of three-dimensional (3D) [Zn2(μ4-3,3'-PDBA)22-bpa)]3·(DMF)5(H2O)13 (1) or 3D-like 2D [Zn2(μ4-3,3'-PDBA)22-bpe)]·(H2O) (2) displayed primitive cubic pcu net and 2D sql net, respectively. Both Zn-MOFs 1 and 2 contain uncoordinated Lewis basic pyrazinyl nitrogen atoms in the frameworks. The solvent-free 1 with flexible bpa linkers only showed a potential porosity of 15.9% by PLATON analysis. Zn-MOF 1 with openly accessible Lewis basic sites exhibited selective sorption of CO2 over N2, H2, and CH4 at low temperature. The adsorption and desorption isotherms for CO2 sorption at 196 K showed phenomenal hysteretic behaviour indicative of a breathing process through an adsorbate-discriminatory gate-opening process toward CO2 at a low gas pressure.

  3. Moisture sorption isotherms and thermodynamic properties of mexican mennonite-style cheese.

    PubMed

    Martinez-Monteagudo, Sergio I; Salais-Fierro, Fabiola

    2014-10-01

    Moisture adsorption isotherms of fresh and ripened Mexican Mennonite-style cheese were investigated using the static gravimetric method at 4, 8, and 12 °C in a water activity range (aw) of 0.08-0.96. These isotherms were modeled using GAB, BET, Oswin and Halsey equations through weighed non-linear regression. All isotherms were sigmoid in shape, showing a type II BET isotherm, and the data were best described by GAB model. GAB model coefficients revealed that water adsorption by cheese matrix is a multilayer process characterized by molecules that are strongly bound in the monolayer and molecules that are slightly structured in a multilayer. Using the GAB model, it was possible to estimate thermodynamic functions (net isosteric heat, differential entropy, integral enthalpy and entropy, and enthalpy-entropy compensation) as function of moisture content. For both samples, the isosteric heat and differential entropy decreased with moisture content in exponential fashion. The integral enthalpy gradually decreased with increasing moisture content after reached a maximum value, while the integral entropy decreased with increasing moisture content after reached a minimum value. A linear compensation was found between integral enthalpy and entropy suggesting enthalpy controlled adsorption. Determination of moisture content and aw relationship yields to important information of controlling the ripening, drying and storage operations as well as understanding of the water state within a cheese matrix.

  4. The sorption of lead, cadmium, copper and zinc ions from aqueous solutions on a raw diatomite from Algeria.

    PubMed

    Safa, Messaouda; Larouci, Mohammed; Meddah, Boumediene; Valemens, Pierre

    2012-01-01

    The adsorption of Cu(2+), Zn(2+), Cd(2+) and Pb(2+) ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu(2+), Zn(2+), Cd(2+) and Pb(2+) were 0.319, 0.311, 0.18 and 0.096 mmol g(-1), respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.

  5. Universality of isothermal fluid spheres in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.

    2016-02-01

    We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.

  6. Fast hydrogen sorption from MgH2-VO2(B) composite materials

    NASA Astrophysics Data System (ADS)

    Milošević, Sanja; Kurko, Sandra; Pasquini, Luca; Matović, Ljiljana; Vujasin, Radojka; Novaković, Nikola; Novaković, Jasmina Grbović

    2016-03-01

    The hydrogen sorption kinetics of MgH2‒VO2(B) composites synthesised by mechanical milling have been studied. The microstructural properties of composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Particle size analysis (PSD), while sorption behaviour was followed by differential scanning calorimetry (DSC) and Sievert measurements. Results have shown that although desorption temperature reduction is moderate; there is a substantial improvement in hydrogen sorption kinetics. The complete desorption of pure MgH2 at elevated temperature takes place in more than 30 min while the composite fully desorbs in less than 2 min even at lower temperatures. It has been shown that the metastable γ-MgH2 phase and the point defects have a decisive role in desorption process only in the first sorption cycle, while the second and the subsequent sorption cycles are affected by microstructural and morphological characteristics of the composite.

  7. Sorption of small molecules in polymeric media

    NASA Astrophysics Data System (ADS)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  8. Determination of sorption of seventy-five pharmaceuticals in sewage sludge.

    PubMed

    Hörsing, Maritha; Ledin, Anna; Grabic, Roman; Fick, Jerker; Tysklind, Mats; la Cour Jansen, Jes; Andersen, Henrik R

    2011-10-01

    Sorption of 75 active pharmaceutical ingredients (APIs) to three different types of sludge (primary sludge, secondary sludge with short and long sludge age respectively) were investigated. To obtain the sorption isotherms batch studies with the APIs mixture were performed in four nominal concentrations to water containing 1 g of sludge. The range of APIs concentrations was between ng L(-1) to μg L(-1) which are found in the wastewater effluents. Isotherms were obtained for approximately 45 of the APIs, providing distribution coefficients for linear (Kd), Freundlich (Kf) and Langmuir (KL) isotherms. Kd, Kf and KL ranging between 7.1×10(4) and 3.8×10(7), 1.1×10(-2) and 6.1×10(4) and 9.2×10(-3) and 1.1 L kg(-1), respectively. The obtained coefficients were applied to estimate the fraction of APIs in the water phase (see Abstract Graphic). For 37 of the 75 APIs, the predicted presence in the liquid phase was estimated to >80%. 24 APIs were estimated to be present in the liquid phase between 20 and 80%, and 14 APIs were found to have <20% presence in the liquid phase, i.e. high affinity towards sludge. Furthermore, the effect of pH at values 6, 7 and 8 was evaluated using one way ANOVA-test. A significant difference in Kds due to pH changes were found for 6 of the APIs (variation 10-20%). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Sorption of organophosphate and triazine agrochemicals on biochars and soils

    USDA-ARS?s Scientific Manuscript database

    Biochars are known to strongly sorb polar and nonpolar organic compounds, and biochar soil amendment can have counteracting impacts on the efficacy of, and runoff contamination by agrochemicals. This study investigated the sorption-desorption isotherms and kinetics of triazine (deisopropylatrazine)...

  10. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine.

    PubMed

    Zhao, Xuchen; Ouyang, Wei; Hao, Fanghua; Lin, Chunye; Wang, Fangli; Han, Sheng; Geng, Xiaojun

    2013-11-01

    Biochar has been recognised as an efficient pollution control material. In this study, biochars (CS450 and ADPCS450) were produced using corn straw with different pretreatment techniques (without and with ammonium dihydrogen phosphate (ADP)). The character of the two biochars was compared using elemental analysis, specific surface area (SSA) and Fourier transform infrared spectra (FTIR). ADPCS450 had a higher residue yield and a much larger specific surface area than CS450. The Freundlich, Langmuir and Redlich-Peterson models were used to interpret the sorption behaviour of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), and the results fit the Redlich-Peterson equation best. The isothermal sorption parameters indicated that the sorption capacity of atrazine on ADPCS450 was much larger than the sorption capacity of atrazine on CS450. Atrazine sorption was also favoured in acidic solution and under higher temperature conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production

    PubMed Central

    Venterea, Rodney T.; Clough, Timothy J.; Coulter, Jeffrey A.; Breuillin-Sessoms, Florence

    2015-01-01

    Better understanding of process controls over nitrous oxide (N2O) production in urine-impacted ‘hot spots’ and fertilizer bands is needed to improve mitigation strategies and emission models. Following amendment with bovine (Bos taurus) urine (Bu) or urea (Ur), we measured inorganic N, pH, N2O, and genes associated with nitrification in two soils (‘L’ and ‘W’) having similar texture, pH, C, and C/N ratio. Solution-phase ammonia (slNH3) was also calculated accounting for non-linear ammonium (NH4+) sorption capacities (ASC). Soil W displayed greater nitrification rates and nitrate (NO3−) levels than soil L, but was more resistant to nitrite (NO2−) accumulation and produced two to ten times less N2O than soil L. Genes associated with NO2− oxidation (nxrA) increased substantially in soil W but remained static in soil L. Soil NO2− was strongly correlated with N2O production, and cumulative (c-) slNH3 explained 87% of the variance in c-NO2−. Differences between soils were explained by greater slNH3 in soil L which inhibited NO2− oxidization leading to greater NO2− levels and N2O production. This is the first study to correlate the dynamics of soil slNH3, NO2−, N2O and nitrifier genes, and the first to show how ASC can regulate NO2− levels and N2O production. PMID:26179972

  12. Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood

    Treesearch

    Samuel V. Glass; Charles R. Boardman; Samuel L. Zelinka

    2017-01-01

    Recently, the dynamic vapor sorption (DVS) technique has been used to measure sorption isotherms and develop moisture-mechanics models for wood and cellulosic materials. This method typically involves measuring the time-dependent mass response of a sample following step changes in relative humidity (RH), fitting a kinetic model to the data, and extrapolating the...

  13. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    PubMed

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of moisture sorption on the performance of crospovidone.

    PubMed

    Hiew, Tze Ning; Johan, Nur Atiqah Binte; Desai, Parind Mahendrakumar; Chua, Siang Meng; Loh, Zhi Hui; Heng, Paul Wan Sia

    2016-11-30

    Crospovidone is a commonly used tablet disintegrant. However, the synthetic disintegrant has been known to be hygroscopic and high moisture content in crospovidone used could exert deleterious effects on tablets formulated with it. The objective of this study was to elicit a better understanding between crospovidone-water interaction and its effect on disintegrant performance. Moisture sorption and desorption isotherms were obtained together with the enthalpy of immersion. Crospovidone samples stored at four relative humidities were used to formulate tablets and the resultant tablets were evaluated for their mechanical, dimensional and disintegratability attributes. Analyses of the moisture sorption isotherms indicated that externally adsorbed moisture accounted for the bulk of the total moisture content in crospovidone, with minimal amount of moisture absorbed intramolecularly. Enthalpy of immersion became less exothermic with crospovidone samples stored at increasing storage humidity. Correspondingly, improvement in disintegration time became less pronounced. This was postulated to be a consequence of premature wetting of the particle surfaces by externally adsorbed moisture. High humidity was also detrimental to tablet hardness and thickness. In conclusion, the impact of moisture sorption during storage by excipients such as crospovidone could be better understood by the appreciation of crospovidone-water interaction and its consequence on tablet quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  16. Chemical and mineralogical composition of the Mongolian rural soils and their uranium sorption behavior.

    PubMed

    Tserenpil, Sh; Maslov, O D; Norov, N; Liu, Q C; Fillipov, M F; Theng, Benny K G; Belov, A G

    2013-04-01

    Distribution of uranium (VI) between soil solids and solutions is a key parameter in assessing the risk to the biosphere of disposing uranium-rich waste products from nuclear plants as well as uranium (U) ore mining. Both of these topics have recently been brought to public attention in Mongolia. Regional background levels of soil elements are an important dataset for accessing the actual environmental situation and monitoring pollution levels. Little information, however, is available on background concentrations of various elements in Mongolian soils. Thirteen rural soils were sampled from six provinces in Mongolia, and the concentrations of macro-, micro- and trace elements were measured. The values obtained served as a reference (baseline) for uncontaminated soils. The soils were characterized with slightly acidic to strongly alkaline pH values. With the exception of the sample from a western province, all the soils investigated contained little organic matter. The content of soil elements did not vary widely among geographical regions. The concentration of most micro elements was within the range of worldwide soil values but the value for Zn tended to be moderately higher. The U (VI) sorption into the soils was investigated using the batch technique and the (237)U radionuclide tracer, produced by the photo fission reaction (238)U(γ, n) (237)U at an electron accelerator. The (237)U distribution coefficient (K(d)), derived from the sorption isotherms, was related to solution pH and varying from 9 to 2547 mL g(-1) when the pH ranged between 3 and 7.7. The sorption process was interpreted in terms of the formation of different U (VI) species at given concentrations, calculated using the Speciation program with and without carbonate in the system. The U sorption isotherm displayed two general patterns: one where sorption decreased as solution pH increased, showing a maximum at pH 3, and another pattern revealed an adsorption maximum at pH 5 and then decreased up

  17. Lithium sorption properties of HMnO in seawater and wastewater.

    PubMed

    Park, HyunJu; Singhal, Naresh; Jho, Eun Hea

    2015-12-15

    The lithium concentration in seawater is 0.17 mg/L, which is very low, but the overall quantity is approximately 2.5 × 10(14) kg. Therefore, seawater, which contains a vast amount of lithium, could be a major alternative source that might supply the rising demand for lithium. This research was undertaken to evaluate the feasibility of a manganese oxide (HMnO) adsorbent, which was produced after leaching lithium from lithium manganese oxide, for lithium collection from seawater. The HMnO was synthesized and deformed to a plastic after wet blending of manganese oxide and lithium hydroxide, and subsequently, the influence of pH, sorption isotherms, sorption rates, sorption energies, and effects of the co-ions were measured. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° indicated that the nature of the lithium sorption was both spontaneous and endothermic. The used HMnO could be regenerated by washing it with an HCl solution. The results demonstrated that HMnO could be effectively used for the collection of lithium from seawater with good selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent.

    PubMed

    Garole, Dipak J; Choudhary, Bharat C; Paul, Debajyoti; Borse, Amulrao U

    2018-04-01

    In this study, Lagerstroemia speciosa biomass modified by polyethylenimine (PEI-LS) was developed as a potential biosorbent for sorption and recovery of platinum(II) from platinum bearing waste solutions. Batch experiments were conducted to study the effect of various parameters on the sorption and recovery of platinum(II) using PEI-LS. The equilibrium time for platinum(II) sorption process was found to be 6 h. Both the sorption kinetics and sorption isotherm data fits pseudo second-order kinetic model and Langmuir isotherm, respectively. The maximum sorption capacity of platinum(II) onto PEI-LS at pH 2 for the studied temperature range (25-45 °C) is in the range of 122-154 mg/g. Evaluation of thermodynamic parameters suggests that the platinum(II) sorption is spontaneous and endothermic in nature. The regeneration of PEI-LS can be achieved using acidic thiourea as an eluent for recovery of platinum from the biosorbent. Fourier transform infrared (FT-IR) analysis suggests many functional groups were involved in platinum(II) sorption onto PEI-LS. Both the scanning electron microscope/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) analysis suggest a successful modification of raw biomass with PEI. The XPS analysis further concludes that platinum(II) sorption is governed by ion-exchange and co-ordination reaction. Finally, the PEI-LS was shown to recover ≥ 90% of platinum from two simulated solutions: the acid-leached spent catalyst solution and refinery wastewater. The biosorbent developed in this study is a low-cost and eco-friendly media that can be effectively used for platinum recovery from industrial wastewater.

  19. Sorption and stability of the polycyclic nitramine explosive CL-20 in soil.

    PubMed

    Balakrishnan, Vimal K; Monteil-Rivera, Fanny; Gautier, Mathieu A; Hawari, Jalal

    2004-01-01

    The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is being considered for use as a munition, but its environmental fate and impact are unknown. The present study consisted of two main elements. First, sorption-desorption data were measured with soils and minerals to evaluate the respective contributions of organic matter and minerals to CL-20 immobilization. Second, since CL-20 hydrolyzes at a pH of >7, the effect of sorption on CL-20 degradation was examined in alkaline soils. Sorption-desorption isotherms measured using five slightly acidic soils (5.1 < pH < 6.9) containing various amounts of total organic carbon (TOC) revealed a nonlinear sorption that increased with TOC [K(d) (0.33% TOC) = 2.4 L kg(-1); K(d) (20% TOC) = 311 L kg(-1)]. Sorption to minerals (Fe(2)O(3), silica, kaolinite, montmorillonite, illite) was very low (0 < K(d) < 0.6 L kg(-1)), suggesting that mineral phases do not contribute significantly to CL-20 sorption. Degradation of CL-20 in sterile soils having different pH values increased as follows: sandy agricultural topsoil from Varennes, QC, Canada (VT) (pH = 5.6; K(d) = 15 L kg(-1); 8% loss) < clay soil from St. Sulpice, QC, Canada (CSS) (pH = 8.1; K(d) = 1 L kg(-1); 82% loss) < sandy soil provided by Agriculture Canada (SAC) (pH = 8.1, K(d) = approximately 0 L kg(-1); 100% loss). The faster degradation in SAC soil compared with CSS soil was attributed to the absence of sorption in the former. In summary, CL-20 is highly immobilized by soils rich in organic matter. Although sorption retards abiotic degradation, CL-20 still decomposes in soils where pH is >7.5, suggesting that it will not persist in even slightly alkaline soils.

  20. Comparative study of particle structure evolution during water sorption: skim and whole milk powders.

    PubMed

    Murrieta-Pazos, I; Gaiani, C; Galet, L; Cuq, B; Desobry, S; Scher, J

    2011-10-01

    Surface composition of dairy powders influences significantly a quantity of functional properties such as rehydration, caking, agglomeration. Nevertheless, the kinetic of water uptake by the powders was never directly related to the structure and the composition of the surface. In this work, the effect of relative humidity on the structural reorganization of two types of dairy powder was studied. The water-powder interaction for industrial whole milk powder, and skim milk powder was studied using dynamic vapor sorption. The water sorption isotherms were fitted with a Brunner-Emmet-Teller model and each stage of the sorption curve was analyzed with a Fickian diffusion. The water content in the monolayer predicted for each powder and the moisture diffusivity calculated were discussed and compared. Concurrently, powders microstructure and powders surface under variable relative humidity were assessed by X-ray photoelectron spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray and atomic force microscopy. A correlation between the data obtained from the sorption isotherms and the modifications of structure allowed us to conclude that powder microstructure and chemical state of the components could play an important role in determining the water diffusivity. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils.

    PubMed

    Yu, Yong; Liu, Yin; Wu, Laosheng

    2013-06-01

    Pharmaceuticals and personal care products (PPCPs) are one class of the most urgent emerging contaminants, which have drawn much public and scientific concern due to widespread contamination in aquatic environment. Most studies on the environmental fate and behavior of PPCPs have focused on nonsteroidal anti-inflammatory drugs. Some other compounds with high concentrations were less mentioned. In this study, sorption and degradation of five selected PPCPs, including bisphenol A (BPA), carbamazepine (CBZ), gemfibrozil (GFB), octylphenol (OP), and triclosan (TCS) have been investigated using three different soils. Sorption isotherms of all tested PPCPs in soils were well described by Freundlich equation. TCS and OP showed moderate to strong sorption, while the sorption of GFB and CBZ in soils was negligible. Degradation of PPCPs in three soils was generally fitted first-order exponential decay model, with half-lives (t 1/2) varying from 9.8 to 39.1 days. Sterilization could prolong the t 1/2 of PPCPs in soil, indicating that microbial activity played an important role in the degradation of these chemicals in soils. Degradation of PPCPs in soils was also influenced by the soil organic carbon (f oc) contents. Results from our data show that sorption to the soils varied among the different PPCPs, and their sorption affinity on soil followed the order of TCS > OP > BPA > GFB > CBZ. The degradation of the selected PPCPs in soil was influenced by the microbial activity and soil type. The poor sorption and relative persistence of CBZ suggest that it may pose a high leaching risk for groundwater contamination when recycled for irrigation.

  2. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels.

    PubMed

    Haq, Atta Ul; Saeed, Muhammad; Anjum, Salma; Bokhari, Tanveer Hussain; Usman, Muhammad; Tubbsum, Saiqa

    2017-07-01

    The present study was carried out to know the sorption mechanism of Pb (II) and Ni (II) in aqueous solution using pea peels under the influence of sorbent dose, pH, temperature, initial metal ion concentration and contact time. SEM and FTIR were used for characterization of pea peels. The study showed that solution pH affects sorption process and the optimum pH for Pb (II) was 6.0 while for that of Ni (II) was 7.0. Pseudo-second order kinetic model was found to be the most suitable one to explain the kinetic data not only due to high value of R 2 (>0.99) but also due to the closeness of the experimental sorption capacity values to that of calculated sorption capacity values of pseudo second order kinetic model. It can be seen from the results that Freundlich isotherm explains well the equilibrium data (R 2 >0.99). Sorption capacity of pea peels was 140.84 and 32.36 for Pb (II) and Ni (II) mg g -1 respectively. The positive value of ΔH° and negative values of ΔG° suggest that sorption of Pb (II) and Ni (II) onto pea peels is an endothermic and spontaneous process respectively.

  3. Pharmaceuticals' sorptions relative to properties of thirteen different soils.

    PubMed

    Kodešová, Radka; Grabic, Roman; Kočárek, Martin; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Jakšík, Ondřej

    2015-04-01

    Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles. Here we evaluate the sorption isotherms for 7 pharmaceuticals on 13 soils, described by Freundlich equations, and assess the impact of soil properties on various pharmaceuticals' sorption on soils. Sorption of ionizable pharmaceuticals was, in many cases, highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH, and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity, and positively related to base cation saturation. The sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Positive correlations between sorption coefficients and clay content were found for clindamycin, clarithromycin, atenolol, and metoprolol. Positive correlations between sorption coefficients and organic carbon content were obtained for trimethoprim and carbamazepine. Pedotransfer rules for predicting sorption coefficients of various pharmaceuticals included hydrolytic acidity (sulfamethoxazole), organic carbon content (trimethoprimand carbamazepine), base cation saturation (atenolol and metoprolol), exchangeable acidity and clay content (clindamycin), and soil active pH and clay content (clarithromycin). Pedotransfer rules, predicting the Freundlich sorption coefficients, could be applied for prediction of pharmaceutical mobility in soils with similar soil properties. Predicted sorption coefficients together with pharmaceutical half-lives and other imputes (e.g., soil-hydraulic, geological, hydro-geological, climatic) may be used for

  4. Sorption of polar herbicides and herbicide metabolites by biochar-amended soil.

    PubMed

    Dechene, Annika; Rosendahl, Ingrid; Laabs, Volker; Amelung, Wulf

    2014-08-01

    Biochar-amended soil has been proven to possess superior sorption capacities for several environmental pollutants compared with pure soil. However, the role of biochar in the immobilization of polar pesticides and their metabolites has hardly been tested. The aim of this study was therefore to investigate the effect of a soil amendment with biochar on the sorption of selected polar herbicides and herbicide metabolites (log Kow 0.3-<2). To simulate worst-case sorption, a sandy soil (1.7% organic matter) was amended with 1.5% biochar (fresh or composted) to determine sorption/desorption isotherms of the test compounds. One herbicide (imazamox) and three herbicide metabolites (methyl-desphenyl-chloridazon, metazachlor oxalic acid, metazachlor sulfonic acid) were tested, i.e. three anionic and one neutral polar compound. The results showed that the presence of biochar increased the sorption capacity of the soil only in the case of the uncharged compound methyl-desphenyl-chloridazon, for which the average distribution coefficients in biochar-amended soils were higher than in pure soil by a factor of 2.1-2.5. However, this effect rather seemed to reflect the increased soil organic carbon content after the addition of biochar than a preferred sorption of methyl-desphenyl-chloridazon to biochar. In the case of the three anionic compounds imazamox, metazachlor oxalic acid and metazachlor sulfonic acid, biochar amendment did not increase the sorption capacity of the soil for these compounds, presumably as a result of its negative net charge. Similarly, desorption experiments did not show any significant effect of the biochar amendment on desorption. This suggests that the potential of using biochar to mitigate the leaching of the tested polar pesticides or metabolites is limited. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Impact of Interfacial Roughness on the Sorption Properties of Nanocast Polymers

    DOE PAGES

    Sridhar, Manasa; Gunugunuri, Krishna R.; Hu, Naiping; ...

    2016-03-16

    Nanocasting is an emerging method to prepare organic polymers with regular, nanometer pores using inorganic templates. This report assesses the impact of imperfect template replication on the sorption properties of such polymer castings. Existing X-ray diffraction data show that substantial diffuse scattering exists in the small-angle region even though TEM images show near perfect lattices of uniform pores. To assess the origin of the diffuse scattering, the morphology of the phenol - formaldehyde foams (PFF) was investigated by small-angle X-ray scattering (SAXS). The observed diffuse scattering is attributed to interfacial roughness due to fractal structures. Such roughness has a profoundmore » impact on the sorption properties. Conventional pore- filling models, for example, overestimate protein sorption capacity. A mathematical framework is presented to calculate sorption properties based on observed morphological parameters. The formalism uses the surface fractal dimension determined by SAXS in conjunction with nitrogen adsorption isotherms to predict lysozyme sorption. The results are consistent with measured lysozyme loading.« less

  6. Biochar as a sorbent for chlorinated hydrocarbons - sorption and extraction experiments in single and bi-solute systems

    NASA Astrophysics Data System (ADS)

    Schreiter, I. J.; Wefer-Roehl, A.; Graber, E. R.; Schueth, C.

    2016-12-01

    Biochar (BC) is increasingly deemed a potential sorbent for contaminants in soil and water remediation, and brownfield restoration. In this study, sorption and extraction experiments were performed to assess the potential of three different BCs to sorb and retain the chlorinated hydrocarbons TCE and PCE. BCs studied were produced from wood chips, grain husk, and cattle manure at 450 °C. A commercially available activated carbon (AC) served as a reference. The sorption behaviour was studied in batch experiments in single solute and bi-solute systems. Resulting isotherms were fitted to the Freundlich model. To assess the desorption behaviour, a five step extraction scheme (water at 40°C, water at 80°C, methanol at 50°C, toluene at 50°C, and n-hexane at 50°) was developed utilizing Accelerated Solvent Extraction. Isotherms revealed distinct differences in sorption behaviour depending on BC feedstock. Sorption capacity ranked as follows: wood chip BC > grain husk BC > cattle manure BC for both contaminants. This sequence could be attributable to an increasing specific surface area and a decreasing ash content of the sorbents. It is noteworthy that all three BCs were more effective in adsorbing TCE, which is surprising, given the higher logKOWof PCE. The reverse trend was observed for the AC. In bi-solute experiments, PCE sorbed as good as or stronger than TCE, yet the total mass of sorbed compounds was higher. In contrast, AC showed a significant decrease of TCE sorption. Extraction experiments revealed that for all BCs a large fraction of the contaminants could not be readily desorbed. In all cases, water remobilized < 5 % of the total contaminant mass and up to 70 % could not be extracted by any of the solvents. The findings suggest that BC is a promising sorbent for mixed contaminant systems as it offers a diverse nature of sorption sites and is more effective in long-term stabilization than AC.

  7. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.

    PubMed

    Obst, Martin; Grathwohl, Peter; Kappler, Andreas; Eibl, Oliver; Peranio, Nicola; Gocht, Tilman

    2011-09-01

    Sorption of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) particles has been the focus of numerous studies. Conclusions on sorption mechanisms of PAH on BC were mostly derived from studies of sorption isotherms and sorption kinetics, which are based on batch experiments. However, mechanistic modeling approaches consider processes at the subparticle scale, some including transport within the pore-space or different spatial pore-domains. Direct evidence based on analytical techniques operating at the submicrometer scale for the location of sorption sites and the adsorbed species is lacking. In this work, we identified, quantified, and mapped the sorption of PAHs on different BC particles (activated carbon, charcoal and diesel soot) on a 25-100 nm scale using scanning transmission X-ray microscopy (STXM). In addition, we visualized the pore structure of the particles by transmission electron microscopy (TEM) on the 1-10 nm-scale. The combination of the chemical information from STXM with the physical information from TEM revealed that phenanthrene accumulates in the interconnected pore-system along primary "cracks" in the particles, confirming an adsorption mechanism.

  8. Porous nano-cerium oxide wood chip biochar composites for aqueous levofloxacin removal and sorption mechanism insights.

    PubMed

    Yi, Shengze; Sun, Yuanyuan; Hu, Xin; Xu, Hongxia; Gao, Bin; Wu, Jichun

    2017-01-14

    The adsorption removal of levofloxacin (LEV), a widely used fluoroquinolone antibiotic, by using the biochars derived from the pyrolysis of pine wood chip pretreated with cerium trichloride was investigated through batch sorption experiments and multiple characterization techniques. The differences in the basic physicochemical properties between Ce-impregnated biochars and the pristine biochars were confirmed by the analysis of elemental compositions, specific surface areas, energy dispersive spectrometry, X-ray diffraction, and thermo-gravimetry. FT-IR spectra of the pre- and post-sorption biochars confirmed the chemical adsorption for LEV sorption onto the biochars. Large shifts in the binding energy of Ce 3d , O 1s , C 1s , and N 1s regions on the pre- and post-sorption biochars indicated the surface complexation of LEV molecule onto the biochars. The binding species of Ce 4+ and Ce 3+ identified by X-ray photoelectron spectroscopy reflect the role of Ce oxides during sorption. Batch adsorption showed the significant enhancement of adsorption capacity for LEV after the Ce modification. Batch adsorption kinetic data fitted well with the pseudo-second-order model. Both the Langmuir and the Freundlich models reproduced the isotherm data well. Findings from this work indicated that Ce-impregnated biochars can be effective for the removal of aqueous LEV.

  9. Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite.

    PubMed

    Chen, Lili; Feng, Shaojie; Zhao, Donglin; Chen, Shaohua; Li, Feifei; Chen, Changlun

    2017-03-15

    In this work, zero-valent iron-polyaniline-graphene aerogel composite (Fe-PANI-GA) was prepared and applied in the removal of U(VI) from aqueous solutions by batch sorption experiments. The experimental results showed that the Fe-PANI-GA composite had an excellent removal capacity for the removal of U(VI) in acidic solutions. The results also showed that the maximum removal capacity of the Fe-PANI-GA toward U(VI) was 350.47mg/g at pH 5.5. The sorption kinetics data were well-described by pseudo-second-order. The sorption isotherms of U(VI) fitted well with Langmuir isotherm and exhibited better removal efficiency with the increase of temperature. The thermodynamic parameters (ΔG, ΔS, ΔH) indicated that the sorption of U(VI) on the Fe-PANI-GA was an endothermic and spontaneous process. Moreover, removal mechanisms were studied based on the results of XRD, FTIR and XPS. Both U(VI) sorption and partially reductive precipitation of U(VI) to U(IV) contributed to the removal of U(VI) on Fe-PANI-GA. Therefore, Fe-PANI-GA was an economic and effective material for the removal of uranium from nuclear waste in practical application. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    NASA Astrophysics Data System (ADS)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  11. Interfacial Mechanisms of Water Vapor Sorption into Cellulose Nanofibril Films as Revealed by Quantitative Models.

    PubMed

    Hakalahti, Minna; Faustini, Marco; Boissière, Cédric; Kontturi, Eero; Tammelin, Tekla

    2017-09-11

    Humidity is an efficient instrument for facilitating changes in local architectures of two-dimensional surfaces assembled from nanoscaled biomaterials. Here, complementary surface-sensitive methods are used to collect explicit and precise experimental evidence on the water vapor sorption into (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidized cellulose nanofibril (CNF) thin film over the relative humidity (RH) range from 0 to 97%. Changes in thickness and mass of the film due to water vapor uptake are tracked using spectroscopic ellipsometry and quartz crystal microbalance with dissipation monitoring, respectively. Experimental data is evaluated by the quantitative Langmuir/Flory-Huggins/clustering model and the Brunauer-Emmett-Teller model. The isotherms coupled with the quantitative models unveil distinct regions of predominant sorption modes: specific sorption of water molecules below 10% RH, multilayer build-up between 10 to 75% RH, and clustering of water molecules above 75% RH. The study reveals the sorption mechanisms underlying the well-known water uptake behavior of TEMPO oxidized CNF directly at the gas-solid interface.

  12. Sorption and mobility of 14C-fenamiphos in Brazilian soils.

    PubMed

    Cáceres, Tanya; Venkateswarlu, Kadiyala

    2018-02-02

    Although fenamiphos is widely used as an insecticide and nematicide in bowling greens and agriculture, information on its sorption in tropical soils is limited. In this study, mobility, sorption, and desorption dynamics of 14 C-fenamiphos in three contrasting Brazilian soils were examined both in batch and column experiments. Fenamiphos sorption coefficients (K d ) were 2.33, 3.86, and 3.9 L kg -1 for the three soils tested. The insecticide exhibited linear adsorption isotherms in all the three soils, and desorption was in a range of 30-40% during a 72-h period. With its low mobility, fenamiphos did not percolate through the soil profile even after 48 h. However, there is a risk of leaching to water bodies due to runoff because of its high solubility in water. In view of the fact that fenamiphos and its oxidation products are highly toxic to aquatic invertebrates and could affect the soil microbial activities even at low concentrations, the present information is of great importance in risk assessment of fenamiphos in the environment.

  13. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil.

    PubMed

    Thiele-Bruhn, S; Aust, M O

    2004-07-01

    Sorption of p-aminobenzoic acid (pABA) and five sulfonamide antibiotics to loess Chernozem topsoil amended with varied additions of pig slurry was investigated in batch trials. In unfertilized soil, partition coefficients (Kd) of sulfonamides ranged from 0.3 to 2.0. Strong sorption nonlinearity (1/n = 0.5 to 0.8) was best fitted by the Freundlich isotherm (R2 = 0.7 to 1.0) and was indicative for specific sorption mechanisms. Adsorption to pig slurry was much stronger, and nondesorbable portions were increased compared with soil. However, in a mixture of soil and slurry (50:1 w/w), sorption of the antibiotics was significantly decreased at a lower concentration range of pABA and the sulfonamides. This was attributed to competitive adsorption of dissolved organic matter (DOM) constituents from manure. An increase in pig slurry amendment resulted in increased total organic matter, DOM concentration, and ionic strength, but pH decreased. As a result, the nonadsorbed portions of pABA, sulfanilamide, and sulfadiazine (logD(ow) < -0.4) ranged from 47% to 82% of the applied concentration in the differently manured substrates. Dissolved fractions of the antibiotics reached a maximum at a soil-slurry ratio of 9:1 and decreased with further addition of manure. This decrease was related to the formation of less-effective DOM associates in solution. The adsorbed and desorbed portions of the less-polar substances--sulfadimidine, sulfadimethoxine, and sulfapyridine (logD(ow) > 0.1)--remained nearly constant in the presence of increased manure input. The pH changes caused by manure amendment strongly affected ionisation status of the latter compounds, thus resulting in increased adsorption, which compensated the mobilizing effect of DOM. It is suggested that the effect of manure be considered in test methods to determine the soil retention of pharmaceutical substances.

  14. Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite.

    PubMed

    Rana, Kiran; Boyd, Stephen A; Teppen, Brian J; Li, Hui; Liu, Cun; Johnston, Cliff T

    2009-04-28

    The interaction of dibenzo-p-dioxin (DD), from aqueous suspension, with smectite was investigated using in situ vibrational spectroscopy (FTIR and Raman), structural and batch sorption techniques. Batch sorption isotherms were integrated with in situ attenuated total reflectance (ATR)-FTIR and Raman spectroscopy and X-ray diffraction. Sorption isotherms revealed that the affinity of DD for smectite in aqueous suspension was strongly influenced both by the type of smectite and by the nature of the exchangeable cation. Cs-saponite showed a much higher affinity over Rb-, K- and Na-exchange saponites. In addition, DD sorption was found to depend on clay type with DD showing a high affinity for the tetrahedrally substituted trioctahedral saponite over SWy-2 and Upton montmorillonites. A structural model is introduced to account for the influence of clay type. Raman and FTIR data provided complementary molecular-level insight into the sorption mechanisms. In the case of Cs-saponite, the selection rules of DD based on D(2h) symmetry were broken indicating a site-specific interaction between DD and intercalated Cs(+) ions in the interlayer of the clay. Polarized in situ ATR-FTIR spectra revealed that the molecular plane of sorbed DD was tilted with respect to the clay surface which was consistent with a d-spacing of 1.49 nm. Finally, cation-induced changes in both the skeletal ring vibrations and the asymmetric C-O-C stretching vibrations provided evidence for site specific interactions between the DD and exchangeable cations in the clay interlayer. Together, the combined macroscopic and spectroscopic data show a surprising link between a hydrophilic material and a planar hydrophobic aromatic hydrocarbon.

  15. Kinetic and Isotherm Modelling of the Adsorption of
Phenolic Compounds from Olive Mill Wastewater onto Activated Carbon

    PubMed Central

    Casazza, Alessandro A.; Perego, Patrizia

    2015-01-01

    Summary The adsorption of phenolic compounds from olive oil wastewater by commercial activated carbon was studied as a function of adsorbent quantity and temperature. The sorption kinetics and the equilibrium isotherms were evaluated. Under optimum conditions (8 g of activated carbon per 100 mL), the maximum sorption capacity of activated carbon expressed as mg of caffeic acid equivalent per g of activated carbon was 35.8 at 10 °C, 35.4 at 25 °C and 36.1 at 40 °C. The pseudo-second-order model was considered as the most suitable for kinetic results, and Langmuir isotherm was chosen to better describe the sorption system. The results confirmed the efficiency of activated carbon to remove almost all phenolic compound fractions from olive mill effluent. The preliminary results obtained will be used in future studies. The carbohydrate fraction of this upgraded residue could be employed to produce bioethanol, and adsorbed phenolic compounds can be recovered and used in different industries. PMID:27904350

  16. Biochar as a sorbent for chlorinated hydrocarbons - sorption and extraction experiments in single and bi-solute systems

    NASA Astrophysics Data System (ADS)

    Schreiter, Inga J.; Wefer-Roehl, Annette; Graber, Ellen R.; Schüth, Christoph

    2017-04-01

    Biochar (BC) is increasingly deemed a potential sorbent for contaminants in soil and water remediation, and brownfield restoration. In this study, sorption and extraction experiments were performed to assess the potential of three different BCs to sorb and retain the chlorinated hydrocarbons trichloroethylene (TCE) and tetrachloroethylene (PCE). BCs studied were produced from wood chips, grain husk, and cattle manure at 450 °C. A commercially available activated carbon (AC) served as a reference. The sorption behaviour was studied in batch experiments in single solute and bi-solute systems. Resulting isotherms were fitted to the Freundlich model. To assess the desorption behaviour, a five-step extraction scheme (water at 40°C, water at 80°C, methanol at 50°C, toluene at 50°C, and n-hexane at 50°) was developed, utilizing Accelerated Solvent Extraction. Isotherms revealed distinct differences in sorption behaviour depending on BC feedstock. Sorption capacity ranked as follows: wood chip BC > grain husk BC > cattle manure BC for both contaminants. This sequence could be attributable to an increasing specific surface area, an increasing amount of carbon, and a decreasing ash content of the sorbents. It is noteworthy that all three BCs were more effective in adsorbing TCE, which is surprising, given the higher logKow of PCE. The reverse was observed for the AC. Here, sorption is purely driven by the hydrophobicity of the compound rather than sorbent properties. In bi-solute experiments, PCE sorbed as good as or stronger than TCE, yet the total mass of sorbed compounds increased slightly. In contrast, AC showed a significant decrease of TCE sorption and no significant changes in the total mass sorbed. Extraction experiments revealed that for all BCs a large fraction of the contaminants could not be readily desorbed. In all cases, water remobilized < 5 % of the total contaminant mass and up to 70 % could not be extracted by any of the solvents. The findings suggest

  17. Sorption mechanisms of sulfamethazine to soil humin and its subfractions after sequential treatments.

    PubMed

    Guo, Xiaoying; Shen, Xiaofang; Zhang, Meng; Zhang, Haiyun; Chen, Weixiao; Wang, Hui; Koelmans, A A; Cornelissen, Gerard; Tao, Shu; Wang, Xilong

    2017-02-01

    Sorption mechanisms of an antibiotic sulfamethazine (SMT) to humin (HM) isolated from a peat soil and its subfractions after sequential treatments were examined. The treatments of HM included removal of ash, O-alkyl carbon, lipid, and lignin components. The HF/HCl de-ashing treatment removed a large amount of minerals (mainly silicates), releasing a fraction of hydrophobic carbon sorption domains that previously were blocked, increasing the sorption of SMT by 33.3%. The de-O-alkyl carbon treatment through acid hydrolysis greatly reduced polarity of HM samples, thus weakening the interaction between sorbents with water at the interfaces via H-bonding, leaving more effective sorption sites. Sorption of SMT via mechanisms such as van der Waals forces and π-π interactions was enhanced by factors of 2.04-2.50. After removing the lipid/lignin component with the improved Soxhlet extraction/acid hydrolysis, the organic carbon content-normalized sorption enhancement index E oc was calculated. The results demonstrated that the E oc-lipid for SMT (16.9%) was higher than E oc-lignin (10.1%), implying that removal of unit organic carbon mass of lipid led to a higher increase in sorption strength than that of lignin. As each component was progressively removed from HM, the sorption strength and isotherm nonlinearity of the residual HM samples for SMT were gradually enhanced. The K oc values of SMT by HM samples were positively correlated with their aromatic carbon contents, implying that π-π electron donor-acceptor interactions between the benzene ring of sorbate and the aromatic domains in HM played a significant role in their interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions.

    PubMed

    Luo, Xiuhua; Yu, Lin; Wang, Changzhao; Yin, Xianqiang; Mosa, Ahmed; Lv, Jialong; Sun, Huimin

    2017-02-01

    Batch sorption kinetics and isothermal characteristics of V(V) were investigated on three natural soil colloids (manual loessial soil colloid (MSC), aeolian sandy soil colloid (ASC), and cultivated loessial soil colloid (CSC)) under various solution pH and ionic strength (IS) conditions. Colloids were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). AFM micrographs showed CSC with an aggregated shape with larger particle diameter as compared with ASC and MSC. XRD spectra revealed the presence of different minerals in natural soil colloids including biotite, kaolinite, calcite and quartz, which might contribute to sorption process. The sorption ability decreased with increase of colloidal particle size. The sorption was mainly attributed to complexation by active carboxylate and alcohol groups of colloidal components. Sorption kinetics and isotherms of V(V) onto natural soil colloids were best fitted with Pseudo-second-order and Freundlich models. Langmuir model indicated that sorption capacity of MSC and ASC was comparable (285.7 and 238.1 mg g -1 ); however, CSC exhibited the lowest sorption capacity (41.5 mg g -1 ) due to its larger particle diameter and aggregated shape. The maximum V(V) sorption capacity reached plateau values at a solution pH ranged between 5.0 and 9.0 for MSC and ASC, and 6.0-8.0 for CSC. Sorption capacity of V(V) onto natural soil colloids decreased with increasing IS. Based on result of this study we can conclude that sorption of V(V) onto natural soil colloids is pH- and IS-dependent. These findings provide insights on the remediation of vanadium-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect made by the colloids to the sorption behavior of strontium on granite fracture-fillings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Zuo, R.

    2017-12-01

    The objective of this study was to investigate the effects made by the colloid to the sorption capacity of colloids in granite fracture-fillings in aqueous solutions. The granite fracture-fillings were collected from three different depth of the research mine in Gansu province. According to the composition of the local soil and groundwater, two colloids were chosen to investigate this sorption process. Batch tests had been investigated at 27° under the air atmosphere as a function of pH(3 11), initial uranium concentration(5 400 mg/L) and water-rock ratio on the sorption of Sr on granite fracture-fillings. The batch experimental results showed that the sorption capacity presented a positive relationship with pH value, which may be caused by the hydrolytic adsorption raised by the reaction between Sr(OH)+ and OH- groups on the surface on the adsorbent. Initial strontium concentration also showed a positive relationship with sorption capacity when the concentration was lower than 200mg/mL, when the concentration was higher than 200mg/ml sorption reached the equilibrium. Sorption percentage showed a positive relationship with water/solid ratios, when the ratio was lower than 1:100 the system got equilibrium. When other experiment parameters were fixed and only the solid-liquid ratio changed, the adsorption capacity increased with the increasing solid-water ratio. The reason was that the total amount of Sr in the adsorption system remained unchanged, the adsorption sites increased with the solid-liquid ratio, and the adsorption capacity increased gradually with the increasing adsorption sites. The experiments data were interpreted in terms of Freundlich and Langmuir isotherms and the data fitted the former better. Equilibrium isotherm studies were used to evaluate the maximum sorption capacity of colloid.

  20. Effect of artificial root exudates on the sorption and desorption of PAHs in meadow brown soils

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    2017-10-01

    The batch equilibrium experiment was conducted to investigate the effect of artificial root exudates on sorption and desorption of phenanthrene and pyrene. The result showed sorption isotherms were fitted well to the Freundlich equation with the treatment of artificial root exudates. Fructose had the most obvious effect on sorption. The artificial root exudates improved desorption of PAHs, while low molecular weight organic acids were better than serine and fructose. The capability of sorption and desorption was strengthened with the increase of organic acids concentration. And the DOM in the solution might be the most important factor of the adsorption of PAHs in solid phase.

  1. Sorption of ionic and nonionic organic solutes onto giant Miscanthus-derived biochar from methanol-water mixtures.

    PubMed

    Kim, Juhee; Hyun, Seunghun

    2018-02-15

    The sorption of naphthalene (NAP) and 1-naphthoic acid (1-NAPA) onto giant Miscanthus-derived biochar was investigated in methanol volume fractions (f c ) of 0-0.6 as a function of ionic composition (5mM CaCl 2 and 10mM KCl) and liquid pH (2 and 7). The sorption onto biochar was nonlinear with 0.42≤N≤0.95; thus, a concentration-specific sorption constant (K m ) was compared. The K m log linearly decreased with increasing f c , except for 1-NAPA from a CaCl 2 mixture at pH7. Isotherm data was fitted with a cosolvency sorption model through which the slope (ασ) of the inverse log linear K m -f c plot and empirical constant (α) were obtained. NAP sorption was well described by the cosolvency model with the α value being 0.41-0.53, indicating a methanol-biochar interaction favoring more sorption than the cosolvency based prediction. In particular, the slope (ασ) of 1-NAPA was lower than that of NAP, indicating less reduction of 1-NAPA sorption (i.e., lower α value) by methanol. In comparison with other sorbents, the α value was approximately intermediate between a humic substance and kaolinite clay. An analysis of FT-IR spectra suggested the transformation of O-containing functional groups by methanol, which will subsequently boost the π-π interaction between an organic solute and biochar. Moreover, Ca 2+ -induced sorption between anionic 1-NAPA and a negatively charged biochar surface was also fortified in the methanol mixture. The results revealed unexplored cosolvent effects on organic solute sorption onto biochar and identified the hydrophobic and hydrophilic sorption moieties of biochar as affected by the cosolvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions.

    PubMed

    Yang, Sheng-Fu; Lin, Cheng-Fang; Lin, Angela Yu-Chen; Hong, Pui-Kwan Andy

    2011-05-01

    This study investigated the adsorption, desorption, and biodegradation characteristics of sulfonamide antibiotics in the presence of activated sludge with and without being subjected to NaN(3) biocide. Batch experiments were conducted and the relative contributions of adsorption and biodegradation to the observed removal of sulfonamide antibiotics were determined. Three sulfonamide antibiotics including sulfamethoxazole (SMX), sulfadimethoxine (SDM), and sulfamonomethoxine (SMM), which had been detected in the influent and the activated sludge of wastewater treatment plants (WWTP) in Taiwan, were selected for this study. Experimental results showed that the antibiotic compounds were removed via sorption and biodegradation by the activated sludge, though biodegradation was inhibited in the first 12 h possibly due to competitive inhibition of xenobiotic oxidation by readily biodegradable substances. The affinity of sulfonamides to sterilized sludge was in the order of SDM > SMM > SMX. The sulfonamides existed predominantly as anions at the study pH of 6.8, which resulted in a low level of adsorption to the activated sludge. The adsorption/desorption isotherms were of a linear form, as well described by the Freundlich isotherm with the n value approximating unity. The linear distribution coefficients (K(d)) were determined from batch equilibrium experiments with values of 28.6 ± 1.9, 55.7 ± 2.2, and 110.0 ± 4.6 mL/g for SMX, SMM, and SDM, respectively. SMX, SMM, and SDM desorb reversibly from the activated sludge leaving behind on the solids 0.9%, 1.6%, and 5.2% of the original sorption dose of 100 μg/L. The sorbed antibiotics can be introduced into the environment if no further treatments were employed to remove them from the biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2012-12-01

    Plastics are known to sorb persistent organic pollutants from seawater. However, studies to quantify sorption rates have only considered the affinity of chemicals in isolation, unlike the conditions in the environment where contaminants are present as complex mixtures. Here we examine whether phenanthrene and 4,4'-DDT, in a mixture, compete for sorption sites onto PVC with no added additives (unplasticised PVC or uPVC) and Ultra-High Molecular Weight polyethylene. Interactions were investigated by exposing particles of uPVC and UHMW PE to mixtures of 3H and 14C radiolabelled Phe and DDT. Changes in sorption capacity were modelled by applying a Freundlich binding sorption isotherms. An Extended Langmuir Model and an Interaction Factor Model were also applied to predict equilibrium concentrations of pollutants onto plastic. This study showed that in a bi-solute system, DDT exhibited no significantly different sorption behaviour than in single solute systems. However, DDT did appear to interfere with the sorption of Phe onto plastic, indicating an antagonistic effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. A conversion of CO2-ECBM related lab observations to reservoir requirements

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Merkel, A.; Busch, A.; Krooss, B. M.

    2012-04-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO2-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH4 desorption and CO2 adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO2-ECBM processes, the areal distribution of the CO2 injected is accomplished by flow through the cleat network. When CO2 is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH4. This replacement occurs either by a reduction in the CH4 partial pressure or by a higher selective sorption of CO2 over CH4. Because of a concentration gradient between CH4 in the matrix compared to the cleat system, CH4 diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO2, CH4) and water sorption on coal and specifically addresses the following topics: • CH4 and CO2 sorption capacity as a function depth and rank • CO2 and CH4 sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011). • Water sorption on coal, its dependence on coal properties such as rank and coal chemistry and gas sorption in the presence of water (Busch and Gensterblum, 2011). • N2, CH4, CO2 displacement experiments and the volumetric response of the coal on the present gas type (sorbing or inert

  5. Effects of disulfide bridges and backbone connectivity on water sorption by protein matrices.

    PubMed

    Kim, Sang Beom; Singh, Rakesh S; Paul, Prem K C; Debenedetti, Pablo G

    2017-08-11

    Understanding the water sorption behavior of protein powders is important in applications such as the preservation of protein-based pharmaceuticals. Most globular proteins exhibit a characteristic sigmoidal water adsorption isotherm at ambient conditions. However, it is not well understood how water sorption behavior is influenced by intrinsic factors that are related to structural properties of proteins. We investigate computationally how structural constraints on proteins influence the water sorption isotherms of amorphous protein powders. Specifically, we study the effects of non-local disulfide linkages and backbone connectivity using pheromone ER-23 and lysozyme as model proteins. We find that non-local disulfide linkages can significantly restrict structural changes during hydration and dehydration, and this in turn greatly reduces the extent of hysteresis between the adsorption and desorption branches. Upon removing the backbone connectivity by breaking all peptide bonds in lysozyme, we find that the hysteresis shifts towards the lower humidity regime, and the water uptake capacity is significantly enhanced. We attribute these changes to the higher aggregation propensity of the constraint-free amino acids in dehydrated condition, and the formation of a spanning water network at high hydration levels.

  6. Trihalomethane formation potential of aquatic and terrestrial fulvic and humic acids: Sorption on activated carbon.

    PubMed

    Abouleish, Mohamed Y Z; Wells, Martha J M

    2015-07-15

    Humic substances (HSs) are precursors for the formation of hazardous disinfection by-products (DBPs) during chlorination of water. Various surrogate parameters have been used to investigate the generation of DBPs by HS precursors and the removal of these precursors by activated carbon treatment. Dissolved organic carbon (DOC)- and ultraviolet absorbance (UVA254)-based isotherms are commonly reported and presumed to be good predictors of the trihalomethane formation potential (THMFP). However, THMFP-based isotherms are rarely published such that the three types of parameters have not been compared directly. Batch equilibrium experiments on activated carbon were used to generate constant-initial-concentration sorption isotherms for well-characterized samples obtained from the International Humic Substances Society (IHSS). HSs representing type (fulvic acid [FA], humic acid [HA]), origin (aquatic, terrestrial), and geographical source (Nordic, Suwannee, Peat, Soil) were examined at pH6 and pH9. THMFP-based isotherms were generated and compared to determine if DOC- and UVA254-based isotherms were good predictors of the THMFP. The sorption process depended on the composition of the HSs and the chemical nature of the activated carbon, both of which were influenced by pH. Activated carbon removal of THM-precursors was pH- and HS-dependent. In some instances, the THMFP existed after UVA254 was depleted. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content.

    PubMed

    Ouyang, Wei; Zhao, Xuchen; Tysklind, Mats; Hao, Fanghua

    2016-04-01

    Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    PubMed

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  9. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil.

    PubMed

    Foolad, Mahsa; Hu, Jiangyong; Tran, Ngoc Han; Ong, Say Leong

    2016-01-01

    In the present study, the sorption and biodegradation characteristics of five pharmaceutical and personal care products (PPCPs), including acetaminophen (ACT), carbamazepine (CBZ), crotamiton (CTMT), diethyltoluamide (DEET) and salicylic acid (SA), were studied in laboratory-batch experiments. Sorption kinetics experimental data showed that sorption systems under this study were more appropriately described by the pseudo second-order kinetics with a correlation coefficient (R2)>0.98. Sorption equilibrium data of almost all target compounds onto soil could be better described by the Freundlich sorption isotherm model. The adsorption results showed higher soil affinity for SA, following by ACT. Results also indicated a slight effect of pH on PPCP adsorption with lower pH causing lower adsorption of compounds onto the soil except for SA at pH 12. Moreover, adsorption of PPCPs onto the soil was influenced by natural organic matter (NOM) since the higher amount of NOM caused lower adsorption to the soil. Biodegradation studies of selected PPCPs by indigenous microbial community present in soil appeared that the removal rates of ACT, SA and DEET increased with time while no effect had been observed for the rest. This study suggests that the CBZ and CTMT can be considered as suitable chemical sewage indicators based on their low sorption affinity and high resistance to biodegradation.

  10. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.

    PubMed

    Ashraf, Anam; Bibi, Irshad; Niazi, Nabeel Khan; Ok, Yong Sik; Murtaza, Ghulam; Shahid, Muhammad; Kunhikrishnan, Anitha; Li, Dongwei; Mahmood, Tariq

    2017-07-03

    In the present study, we examined sorption of chromate (Cr(VI)) to acid-activated banana peel (AABP) and organo-montmorillonite (O-mont) as a function of pH, initial Cr(VI) concentration at a sorbent dose of 4 g L -1 and at 20 ± 1°C in aqueous solutions. In sorption edge experiments, maximum Cr(VI) removal was obtained at pH 3 after 2 hours by AABP and O-mont (88% and 69%). Sorption isotherm data showed that the sorption capacity of AABP was higher than O-mont (15.1 vs. 6.67 mg g -1 , respectively, at pH 4). Freundlich and Langmuir models provided the best fits to describe Cr(VI) sorption onto AABP (R 2 = 0.97) and O-mont (R 2 = 0.96). Fourier transform infrared spectroscopy elucidated that for AABP mainly the -OH, -COOH, -NH 2 , and for O-mont intercalated amines and -OH surface functional groups were involved in Cr(VI) sorption. The scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM-EDX) analyses, although partly, indicate that the (wt. %) proportion of cations (e.g., Ca, Mg) in AABP decreased after Cr(VI) sorption. This may be due to ion exchange of chromite (Cr(III)) (produced from Cr(VI) reduction) with cationic elements in AABP. Also, Cr(VI) desorption (using phosphate solution) from AABP was lower (29%) than that from O-mont (51%) up to the third regeneration cycle. This bench scale comparative study highlights that the utilization of widely available and low-cost acid-activated biomaterials has a greater potential than organo-clays for Cr(VI) removal in aqueous media. However, future studies are warranted to precisely delineate different mechanisms of Cr(VI) sorption/reduction by acid-activated biomaterials and organo-clays.

  11. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    NASA Astrophysics Data System (ADS)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  12. The Effect of Pluronic 123 Surfactant concentration on The N2 Adsorption Capacity of Mesoporous Silica SBA-15: Dubinin-Astakhov Adsorption Isotherm Analysis

    NASA Astrophysics Data System (ADS)

    Dhaneswara, Donanta; Siti Agustina, A. A. A.; Dewantoro Adhy, P.; Delayori, Farhan; Fajar Fatriansyah, Jaka

    2018-04-01

    Mesoporous SBA-15 has been successfully synthesized at various concentration of Pluronic 123 surfactant (7mM, 50 mM, 54 mM, 60 mM and 66 mM) and the effect of these various concentrations on the N2 adsorption capacity has been investigated. The adsorption analysis was conducted using Dubinin-Astakhov isotherm model for multilayer adsorption phenomenon. It was found that etryat low concentration of Pluronic 123, the system exhibits type I adsorption isotherm while at high concentration, the system exhibits type IV adsorption with H1 hysteresis curve which indicates the existence of pores with cylindrical geometry, relatively uniform pore size and possibility of pore network effects. It also was found that, by using D-A isotherm model fitting, at 60 mM concentration of Pluronic 123, SBA-15 has the highest adsorption capacity which stands at 421 cm3/gram.

  13. Effect of surfactants on sorption of atrazine by soil

    NASA Astrophysics Data System (ADS)

    Abu-Zreig, Majed; Rudra, R. P.; Dickinson, W. T.; Evans, L. J.

    1999-03-01

    This study investigates the effect of synthetic wastewater containing surfactants on the sorption of atrazine using an equilibrium batch technique. Laboratory experiments were conducted on three soils with two non-ionic (Rexol and Rexonic) surfactants and one anionic (Sulphonic) surfactant, specifically manufactured for the detergent industry. Four sets of experiments were conducted to examine the influence of surfactants on the equilibrium time of atrazine sorption, to explore the effect of surfactant concentration, pH and type of surfactant on the amount of atrazine sorbed and to determine sorption isotherms of atrazine in the presence of surfactants. The results indicate that the application of Sulphonic results in dramatic increase in the adsorption of atrazine on to soils, the increase being directly proportional to the concentration of the surfactant. Application of the Sulphonic surfactants with a concentration of 3000 mg/l can result in a significant increase in Kd values of atrazine for loam and sandy loam soils. On the other hand, the effect of non-ionic surfactants depends on their concentration. Generally, non-ionic surfactants can result in a slight increase in atrazine sorption at high concentration, an exception being Rexol on sandy loam soil. At low concentrations, non-ionic surfactants have shown a tendency to decrease atrazine sorption.

  14. Sorption of organic compounds by aged polystyrene microplastic particles.

    PubMed

    Hüffer, Thorsten; Weniger, Anne-Katrin; Hofmann, Thilo

    2018-05-01

    Microplastics that are released into the environment undergo aging and interact with other substances such as organic contaminants. Understanding the sorption interactions between aged microplastics and organic contaminants is therefore essential for evaluating the impact of microplastics on the environment. There is little information available on how the aging of microplastics affects their sorption behavior and other properties. We have therefore investigated the effects of an accelerated UV-aging procedure on polystyrene microplastics, which are used in products such as skin cleaners and foams. Physical and chemical particle characterizations showed that aging led to significant surface oxidation and minor localized microcrack formation. Sorption coefficients of organic compounds by polystyrene microplastics following aging were up to one order of magnitude lower than for pristine particles. Sorption isotherms were experimentally determined using a diverse set of probe sorbates covering a variety of substance classes allowing an in-depth evaluation of the poly-parameter linear free-energy relationship (ppLFER) modelling used to investigate the contribution of individual molecular interactions to overall sorption. The ppLFER modelling was validated using internal cross-validation, which confirmed its robustness. This approach therefore yields improved estimates of the interactions between aged polystyrene microplastics and organic contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Comparison of linear and non-linear method in estimating the sorption isotherm parameters for safranin onto activated carbon.

    PubMed

    Kumar, K Vasanth; Sivanesan, S

    2005-08-31

    Comparison analysis of linear least square method and non-linear method for estimating the isotherm parameters was made using the experimental equilibrium data of safranin onto activated carbon at two different solution temperatures 305 and 313 K. Equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm equations. All the three isotherm equations showed a better fit to the experimental equilibrium data. The results showed that non-linear method could be a better way to obtain the isotherm parameters. Redlich-Peterson isotherm is a special case of Langmuir isotherm when the Redlich-Peterson isotherm constant g was unity.

  16. Sorption-desorption of indaziflam in selected agricultural soils.

    PubMed

    Alonso, Diego G; Koskinen, William C; Oliveira, Rubem S; Constantin, Jamil; Mislankar, Suresh

    2011-12-28

    Indaziflam, a new alkylazine herbicide that inhibits cellulose biosynthesis, is under current development for soil applications in perennial crops and nonagricultural areas. Sorption and desorption of indaziflam in six soils from Brazil and three soils from the United States, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in <24 h. The Freundlich equation described the sorption behavior of the herbicide for all soils (R(2) > 0.99). K(f) values of the Brazilian oxisols ranged from 4.66 to 29.3, and 1/n values were ≥ 0.95. Sorption was positively correlated to %OC and clay contents. U.S. mollisol K(f) values ranged from 6.62 to 14.3; 1/n values for sorption were ≥ 0.92. K(f) values from mollisols were also positively correlated with %OC. These results suggest that indaziflam potential mobility, based solely on its sorption coefficients, would range from moderate to low in soil. Desorption was hysteretic on all soils, further decreasing its potential mobility for offsite transport.

  17. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams

    NASA Astrophysics Data System (ADS)

    Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit

    2017-10-01

    The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.

  18. Mesoporous silicas with covalently immobilized β-cyclodextrin moieties: synthesis, structure, and sorption properties

    NASA Astrophysics Data System (ADS)

    Roik, Nadiia V.; Belyakova, Lyudmila A.; Trofymchuk, Iryna M.; Dziazko, Marina O.; Oranska, Olena I.

    2017-09-01

    Mesoporous silicas with chemically attached macrocyclic moieties were successfully prepared by sol-gel condensation of tetraethyl orthosilicate and β-cyclodextrin-silane in the presence of a structure-directing agent. Introduction of β-cyclodextrin groups into the silica framework was confirmed by the results of IR spectral, thermogravimetric, and quantitative chemical analysis of surface compounds. The porous structure of the obtained materials was characterized by nitrogen adsorption-desorption measurements, powder X-ray diffraction, transmission electron microscopy, and dynamic light scattering. It was found that the composition of the reaction mixture used in β-cyclodextrin-silane synthesis significantly affects the structural parameters of the resulting silicas. The increase in (3-aminopropyl)triethoxysilane as well as the coupling agent content in relation to β-cyclodextrin leads ultimately to the lowering or complete loss of hexagonal arrangement of pore channels in the synthesized materials. Formation of hexagonally ordered mesoporous structure was observed at molar composition of the mixture 0.049 TEOS:0.001 β-CD-silane:0.007 CTMAB:0.27 NH4OH:7.2 H2O and equimolar ratio of components in β-CD-silane synthesis. The sorption of alizarin yellow on starting silica and synthesized materials with chemically attached β-cyclodextrin moieties was studied in phosphate buffer solutions with pH 7.0. Experimental results of the dye equilibrium sorption were analyzed using Langmuir, Freundlich, and Redlich-Peterson isotherm models. It was proved that the Redlich-Peterson isotherm model is the most appropriate for fitting the equilibrium sorption of alizarin yellow on parent silica with hexagonally arranged mesoporous structure as well as on modified one with chemically immobilized β-cyclodextrin groups. [Figure not available: see fulltext.

  19. Sorption and Transport of Diphenhydramine in Natural Soils

    NASA Astrophysics Data System (ADS)

    Rutherford, C. J.; Vulava, V. M.

    2013-12-01

    reaction rates for A-horizon soils were -0.20/day, and for B-horizon soils were -0.60/day. The sorption isotherms measured from batch reactor experiments were nonlinear and were fit using the Freundlich model (q=KfCn, where q is sorbed concentration and C is concentration in solution, Kf and n are fitting parameters). Chromatography glass columns were uniformly packed with soils, saturated with 5 mM CaCl2, then spiked with tracer solution containing 50 mg/L diphenhydramine. The concentrations in the effluent solutions were plotted as a function of time to create breakthrough curves. Shape of the breakthrough curves and the retardation factors reflected nonlinear sorption processes observed during batch sorption experiments. Data show that diphenhydramine sorbs more strongly into clay-rich soils than organic-rich soils that have less clay. This could be partly attributed to ionic bonding between the amine functional groups present in the compound with the negatively charged clay surfaces. The benzene rings in the compound can also partition into the soil organic matter. The results have implications for how diphenhydramine sorbs into different soil environments, and eventually affect a much larger ecosystem.

  20. Sorption of arsenic to biogenic iron (oxyhydr)oxides produced in circumneutral environments

    NASA Astrophysics Data System (ADS)

    Sowers, Tyler D.; Harrington, James M.; Polizzotto, Matthew L.; Duckworth, Owen W.

    2017-02-01

    Arsenic (As) is a widespread and problematic pollutant that can be derived from natural or anthropogenic sources. Iron (oxyhydr)oxides readily sorb As and thus play critical roles in As cycling in terrestrial environments; however, little is known about the affinity and mechanism of As sorption by biogenic iron (oxyhydr)oxides formed in circumneutral environments. To investigate this, we conducted sorption isotherm and kinetics experiments to compare As(V) and As(III) sorption to synthetic 2-line ferrihydrite and iron biominerals harvested from the hyporheic zone of an uncontaminated creek. Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify both As(V) and As(III), and X-ray absorption spectroscopy (XAS) was utilized to obtain As and Fe K-edge spectra for As(V) and As(III) sorbed to environmentally collected and laboratory produced Fe(III) minerals. All environmental Fe(III) biominerals were determined to be structurally similar to 2-line ferrihydrite. However, environmental Fe(III) biominerals have a surface area normalized affinity for As(V) and for As(III) that is greater than or equivalent to synthetic 2-line ferrihydrite. Whereas the extent of sorption was similar for As(III) on all minerals, As(V) sorption to environmental Fe(III) biominerals was approximately three times higher than what was observed for synthetic 2-line ferrihydrite. Structural modeling of EXAFS spectra revealed that the same surface complexation structure was formed by As(V) and by As(III) on environmental Fe(III) biominerals and ferrihydrite. These results suggest that, despite similarities in binding mechanisms, Fe(III) biominerals may be more reactive sorbents that synthetic surrogates often used to model environmental reactivity.

  1. Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe₃O₄.

    PubMed

    Zhang, Ya-Lei; Zhang, Juan; Dai, Chao-Meng; Zhou, Xue-Fei; Liu, Shu-Guang

    2013-09-12

    A novel magnetic-molecularly imprinted polymer (MMIP) based on chitosan-Fe₃O₄ has been synthesized for fast separation of carbamazepine (CBZ) from water. During polymerization, the modified chitosan-Fe₃O₄ was used not only as supporter but also as functional monomer. The properties of obtained MMIP were characterized by scanning electron and transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra, thermo-gravimetric analysis and so on. The sorption equilibrium data was well described by Freundlich isotherm model and the increase in the temperature generated an increase in the sorption amount, indicating endothermic nature of adsorption process. Sorption kinetics followed the pseudo-second-order model. The feasibility of selective sorption of CBZ from real water by the MMIP was analyzed by using spiked real water samples. The result showed that the sorption capacity of MMIP has no obvious decrease in different water samples whereas there was obvious decline in the sorption amount of the MNIP. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Exploring the problem of mold growth and the efficacy of various mold inhibitor methods during moisture sorption isotherm measurements.

    PubMed

    Yu, X; Martin, S E; Schmidt, S J

    2008-03-01

    Mold growth is a common problem during the equilibration of food materials at high relative humidity values using the standard saturated salt slurry method. Exposing samples to toluene vapor and mixing samples with mold inhibitor chemicals are suggested methods for preventing mold growth while obtaining isotherms. However, no published research was found that examined the effect of mold growth on isotherm performance or the efficacy of various mold inhibitor methods, including their possible effect on the physicochemical properties of food materials. Therefore, the objectives of this study were to (1) explore the effect of mold growth on isotherm performance in a range of food materials, (2) investigate the effectiveness of 4 mold inhibitor methods, irradiation, 2 chemical inhibitors (potassium sorbate and sodium acetate), and toluene vapor, on mold growth on dent corn starch inoculated with A. niger, and (3) examine the effect of mold inhibitor methods on the physicochemical properties of dent corn starch, including isotherm performance, pasting properties, gelatinization temperature, and enthalpy. Mold growth was found to affect starch isotherm performance by contributing to weight changes during sample equilibration. Among the 4 mold inhibitor methods tested, irradiation and toluene vapor were found to be the most effective for inhibiting growth of A. niger on dent cornstarch. However, both methods exhibited a significant impact on the starches' physiochemical properties, suggesting the need to probe the efficacy of other mold inhibitor methods and explore the use of new rapid isotherm instruments, which hamper mold growth by significantly decreasing measurement time.

  3. Sorptive removal of nickel onto weathered basaltic andesite products: kinetics and isotherms.

    PubMed

    Shah, Bhavna A; Shah, Ajay V; Singh, Rajesh R; Patel, Nayan B

    2009-07-15

    The suitability of weathered basaltic andesite products (WBAP) as a potential sorbent was assessed for the removal of Ni (II) from electroplating industrial wastewater. A model study based on the batch mode of operation was carried out for Ni (II) removal from aqueous solution. The effect of various parameters such as hydronium ion concentration, shaking time, sorbent dose, initial Ni (II) concentration, and temperature on the sorption process was studied. At optimised conditions of the various parameters, the industrial wastewater loaded with Ni (II) was sorbed onto WBAP. Thermodynamic parameters for the sorption process were evaluated. Freundlich, Langmuir, Temkin, and Dubinin-Kaganer-Radushkevich isotherms were applied to the sorption pattern on the WBAP. The sorption dynamics of the process was evaluated by applying Lagergren, Bangham, and Weber & Morris equations. The sorption process follows Pseudo-second-order rate of surface diffusion which is identified as the predominating mechanism. The sorption process was found to be reversible by the recovery of sorbed Ni (II) upon extraction with 0.5 MHNO3. The sorbent before and after sorption, was characterized by Fourier transform infrared (FTIR), Powder X-Ray diffraction PXRD), and Thermogravimetric analysis (TGA) methods. The change in surface morphology and crystallanity of the mineral after sorption was analyzed by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Based on the previous model study, an electroplating industrial effluent was successfully treated with WBAP to minimize the pollution load caused by Ni (II).

  4. Influence of pH, layer charge location and crystal thickness distribution on U(VI) sorption onto heterogeneous dioctahedral smectite.

    PubMed

    Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu

    2016-11-05

    The UO2(2+) adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I=0.02M) and pH 6 (I=0.2M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8nm (sample PS2), to 5.1nm (sample PS3) and, to 7.4nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO2(2+) sorption on smectite. The amount of UO2(2+) adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8±0.3 and 382.2±0.3eV, assigned to hydrated UO2(2+) adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f7/2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3±0.3 and 381.8±0.3eV assigned to AlOUO2(+) and SiOUO2(+) surface species were observed at pH 6. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Long term isothermal aging and thermal analysis of N-CYCAP polyimides

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Waters, John F.; Schverman, Marla A.

    1991-01-01

    The N-CYCAP polyimides utilize a (2,2) paracyclophane endcap that polymerizes and does not generate volatile gases during the cure process. These polyimides have both high glass temperatures (390 C) and an onset of decomposition in air of 560 C. Thermal oxidative stability (TOS) weight loss studies show that replacing 25 percent by weight of the paraphenylene diamine in the polymer backbone with metaphenylene diamine improves the weight loss characteristics. N-CYCAP neat resin samples performed better than PMR-II-50 when exposed at 343 and 371 C in air for up to 1000 hours. Preliminary composite studies show that both PMR-II-50 and N-CYCAP have better thermal stability when fabricated on T-40R. Higher isothermal aging temperatures of longer aging times are needed to determine the differences in TOS between composite samples of PMR-II-50 and N-CYCAP polyimides.

  6. Sorption of carbamazepine by commercial graphene oxides: a comparative study with granular activated carbon and multiwalled carbon nanotubes.

    PubMed

    Cai, Nan; Larese-Casanova, Philip

    2014-07-15

    Graphene nanosheet materials represent a potentially new high surface area sorbent for the treatment of endocrine disrupting compounds (EDCs) in water. However, sorption behavior has been reported only for laboratory graphene prepared by a laborious and hazardous graphite exfoliation process. A careful examination of commercially available, clean, high-volume produced graphene materials should reveal whether they are appropriate for sorbent technologies and which physicochemical properties most influence sorption performance. In this study, three commercially available graphene oxide powders of various particle sizes, specific surface areas, and surface chemistries were evaluated for their sorption performance using carbamazepine and nine other EDCs and were compared to that of conventional granular activated carbon (GAC) and multi-walled carbon nanotubes (MWCNTs). Sorption kinetics of carbamazepine on graphene oxide powders was rapid and reversible with alcohol washing, consistent with π-π interactions. The various sorption extents as described by Freundlich isotherms were best explained by available surface area, and only the highest surface area graphene oxide (771 m(2)/g) out-performed GAC and MWCNTs. Increasing pH caused more negative surface charge, a twofold decrease in sorption of anionic ibuprofen, a onefold increase in sorption of cationic atenolol, and no change for neutral carbamazepine, highlighting the role of electrostatic interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin.

    PubMed

    Kasozi, G N; Nkedi-Kizza, P; Li, Y; Zimmerman, A R

    2012-10-01

    Sorption of two s-triazines, atrazine and ametryn, by carbonatic soils, Histosols, Spodosols and Oxisols was examined. Linear isotherms were observed and sorption coefficients (K(d)) of both compounds were significantly lower (α = 0.05) onto carbonatic soils compared to non-carbonatic soils. Furthermore, among carbonatic soil types, the marl-carbonatic soils had the lowest sorption affinities. K(d) and organic carbon content were highly correlated, suggesting predominant influence of organic carbon in the sorption of the s-triazine, except in Oxisols and Spodosols where variations suggest other factors. Upon removal of organic matter (OM) using sodium hypochlorite and hydrogen peroxide, the K(d) values were reduced by ~90%, indicating minimal contribution of mineral surfaces. Thus OM compositional differences likely explain the large variation in s-triazine sorption within and between soil orders. This study highlights the need to consider OM composition in addition to quantity when determining pesticide applications rates, particularly for carbonatic soils. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Sorption and reemission of formaldehyde by gypsum wallboard. Report for June 1990-August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, J.C.S.

    1993-01-01

    The paper gives results of an analysis of the sorption and desorption of formaldehyde by unpainted wallboard, using a mass transfer model based on the Langmuir sorption isotherm. The sorption and desorption rate constants are determined by short-term experimental data. Long-term sorption and desorption curves are developed by the mass transfer model without any adjustable parameters. Compared with other empirically developed models, the mass transfer model has more extensive applicability and provides an elucidation of the sorption and desorption mechanism that empirical models cannot. The mass transfer model is also more feasible and accurate than empirical models for applications suchmore » as scale-up and exposure assessment. For a typical indoor environment, the model predicts that gypsum wallboard is a much stronger sink for formaldehyde than for other indoor air pollutants such as tetrachloroethylene and ethylbenzene. The strong sink effects are reflected by the high equilibrium capacity and slow decay of the desorption curve.« less

  9. Sorption of thiabendazole in sub-tropical Brazilian soils.

    PubMed

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  10. Controlling parameters of fluorescent tracer sorption on soils and sediments

    NASA Astrophysics Data System (ADS)

    Bork, Marcus; Graf-Rosenfellner, Markus; Lange, Jens; Lang, Friederike

    2017-04-01

    Fluorescent dyes like uranine (UR) and sulforhodamine B (SRB) have been widely used, especially for tracing hydrological processes. In the recent past, efforts have intensified to use fluorescent tracers also in soils, for example as proxies for organic pollutants. However, the sorption properties of both organic pollutants and fluorescent tracers have to be exactly known to succeed. Yet existing knowledge for soils is still incomplete and poorly standardized. For this reason, we carried out laboratory batch experiments to determine sorption isotherms of UR and SRB with varying pH, soil texture and organic carbon content (OC). As sorbents we used a sandy sediment with low OC, a silty loamy topsoil with 2.8 %-OC and a similar textured subsoil containing 0.6 %-OC. For both tracers six concentration steps each were prepared and shaken with the suspended sorbent for 42 h using a sorbent:solution ratio of 1:5. During the equilibration, the pH was repeatedly adjusted to 5.5, 6.5, and 7.5 by adding hydrochloric acid (HCl) or sodium hydroxide (NaOH). Subsequently, the tracer-sorbent-suspension was centrifuged and the fluorescence of the tracer in the supernatant was measured. In order to examine the influence of OC and the clay fraction on the tracer sorption, batch-experiments at pH 7.5 were also conducted with manipulated sorbents: top- and subsoil samples were treated with H2O2 to remove organic matter and the clay mineral montmorillonite was added to the sandy sediment to achieve final clay contents of 0.1 %, 0.5 %, 1 %, 2 %, 2.5 %, 5 % and 10 % clay. We observed a negative relationship between the linear sorption coefficient Kd and pH, which was stronger for UR than for SRB. Increasing numbers of negative sorption sites and functional groups of both tracers and sorbents with increasing pH might be the reason for this observation. Besides the pH-value, quantity and quality of clay and OC had a crucial influence on the sorption of UR and SRB in soils and sediment. As

  11. Geochemical heterogeneity in a sand and gravel aquifer: Effect of sediment mineralogy and particle size on the sorption of chlorobenzenes

    USGS Publications Warehouse

    Barber, L.B.; Thurman, E.M.; Runnells, D.R.; ,

    1992-01-01

    The effect of particle size, mineralogy and sediment organic carbon (SOC) on solution of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is < 0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5-25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and

  12. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.

    PubMed

    Kret, E; Kiecak, A; Malina, G; Nijenhuis, I; Postawa, A

    2015-07-01

    The main aim of this study was to determine the sorption and biodegradation parameters of trichloroethene (TCE) and tetrachloroethene (PCE) as input data required for their fate and transport modelling in a Quaternary sandy aquifer. Sorption was determined based on batch and column experiments, while biodegradation was investigated using the compound-specific isotope analysis (CSIA). The aquifer materials medium (soil 1) to fine (soil 2) sands and groundwater samples came from the representative profile of the contaminated site (south-east Poland). The sorption isotherms were approximately linear (TCE, soil 1, K d = 0.0016; PCE, soil 1, K d = 0.0051; PCE, soil 2, K d = 0.0069) except for one case in which the best fitting was for the Langmuir isotherm (TCE, soil 2, K f = 0.6493 and S max = 0.0145). The results indicate low retardation coefficients (R) of TCE and PCE; however, somewhat lower values were obtained in batch compared to column experiments. In the column experiments with the presence of both contaminants, TCE influenced sorption of PCE, so that the R values for both compounds were almost two times higher. Non-significant differences in isotope compositions of TCE and PCE measured in the observation points (δ(13)C values within the range of -23.6 ÷ -24.3‰ and -26.3 ÷-27.7‰, respectively) indicate that biodegradation apparently is not an important process contributing to the natural attenuation of these contaminants in the studied sandy aquifer.

  13. Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, W.P.; Roberts, P.V.

    1991-07-01

    The sorption of tetrachloroethene (PCE) and 1,2,4,5-tetrachlorobenzene (TeCB) was studied on sandy aquifer material from Borden, ON, by using a batch methodology designed to accurately measure sorption over long equilibration periods. Autoclaving was effective in inhibiting biotransformation, and use of fire-sealed glass ampules precluded volatilization losses. Data analysis techniques were developed to accurately account for partitioning to sample headspace and other losses. Sorption isotherms for PCE and TeCB with Borden solids deviated from linearity when a 4-5 order of magnitude range in aqueous concentration was considered. However, in the dilute range (<50 {mu}/l), the deviations from linearity were inconsequential. Themore » sorption of TeCB was approximately 40 times stronger than for PCE, in qualitative accordance with TeCB's approximately 100-fold greater octanol-water partitioning coefficient. For a given solute, the distribution coefficients differed by a factor of 30 among the various size fractions, being greatest for the largest grains. For most Borden solids, the long-term sorption of PCE and TeCB exceeded by more than 1 order of magnitude the predictions of generalized correlations based on hydrophobic partitioning into organic matter. This difference is believed to be partially the result of mineral contributions to sorption, but may also reflect unattainment of equilibrium in previously regressed results - in this study, contact times on the order of tens to hundreds of days were required. For Borden solids, pulverization of solid samples was shown to be a viable expedient to obviate the need for excessively long equilibrations.« less

  14. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption

    PubMed Central

    Garrido-Hoyos, Sofia; Romero-Velazquez, Lourdes

    2015-01-01

    Arsenic has been classified as a toxic and carcinogenic chemical element. It therefore presents a serious environmental problem in different regions of the country and the world. In the present work, two adsorbent media were developed and evaluated to remove arsenic from water in the Pájaro Verde mine shaft, Huautla, Tlaquiltenango, Morelos. The media were synthesized and characterized, obtaining a surface area of 43.04 m2·g−1 for the goethite and 2.44 m2·g−1 for silica sand coated with Fe(III). To conduct the sorption kinetics and isotherms, a 23 factorial design was performed for each medium in order to obtain the optimal conditions for the factors of arsenic concentration, pH and mass of the adsorbent. The best results were obtained for goethite, with a removal efficiency of 98.61% (C0 of As(V) 0.360 mg·L−1), and an effluent concentration of 0.005 mg·L−1, a value that complies with the modified Official Mexican Standard NOM-127-SSA1-1994 [1] and WHO guidelines (2004) [2]. The kinetic equation that best fit the experimental data was the pseudo-second-order, resulting in the highest values for the constants for synthetic goethite, with a rate constant sorption of 4.019·g·mg−1·min−1. With respect to the sorption isotherms, both media were fitted to the Langmuir-II linear model with a sorption capacity (qm) of 0.4822 mg·g−1 for goethite and 0.2494 mg·g−1 for silica sand coated with Fe(III). PMID:26703707

  15. The modeling of reactive solute transport with sorption to mobile and immobile sorbents 1. Experimental evidence and model development

    NASA Astrophysics Data System (ADS)

    Knabner, P.; Totsche, K. U.; Kögel-Knabner, I.

    Modeling carrier-influenced transport needs to take into account the reactivity of the carrier itself. This paper presents a mathematical model of reactive solute transport with sorption to mobile and immobile sorbents. The mobile sorbent is also considered to be reactive. To justify the assumptions and generality of our modeling approach, experimental findings are reviewed and analyzed. A transformation of the model in terms of total concentrations of solute and mobile sorbents is presented which simplifies the mathematical formulations. Breakthrough data on dissolved organic carbon are presented to exemplify the need to take into account the reactivity of the mobile sorbent. Data on hexachlorobiphenyl and cadmium are presented to demonstrate carrier-introduced increased mobility, whereas data on anthracene and pyrene are presented to demonstrate carrier-introduced reduced mobility. The experimental conditions leading to the different findings are pointed out. The sorption processes considered in the model are both equilibrium and nonequilibrium processes, allowing for different sorption sites and nonlinear isotherms and rate functions. Effective isotherms, which describe the sorption to the immobile sorbent in the presence of a mobile sorbent and rate functions, are introduced and their properties are discussed.

  16. Biodegradation and Sorption of Organic Solvents and Hydrocarbon Fuel Constituents in Subsurface Environments

    DTIC Science & Technology

    1988-03-01

    soluticn-phase concentration changes is the iack of precision when sorption is low. In many of these experiments, because of low soil solution ratios less...effect of varying soil solution ratio was evAluated for Sample 6 by performing concurrent isotherm experiments at three different ratios. For this sorbent

  17. A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.

    PubMed

    Hiew, Tze Ning; Huang, Rongying; Popov, Ivan; Feldman, Yuri; Heng, Paul Wan Sia

    2017-12-01

    This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.

  18. Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment.

    PubMed

    Wathukarage, Awanthi; Herath, Indika; Iqbal, M C M; Vithanage, Meththika

    2017-08-17

    Dye-based industries, particularly small and medium scale, discharge their effluents into waterways without treatment due to cost considerations. We investigated the use of biochars produced from the woody tree Gliricidia sepium at 300 °C (GBC300) and 500 °C (GBC500) in the laboratory and at 700 °C from a dendro bioenergy industry (GBC700), to evaluate their potential for sorption of crystal violet (CV) dye. Experiments were conducted to assess the effect of pH reaction time and CV loading on the adsorption process. The equilibrium adsorption capacity was higher with GBC700 (7.9 mg g -1 ) than GBC500 (4.9 mg g -1 ) and GBC300 (4.4 mg g -1 ), at pH 8. The CV sorption process was dependent on the pH, surface area and pore volume of biochar (GBC). Both Freundlich and Hill isotherm models fitted best to the equilibrium isotherm data suggesting cooperative interactions via physisorption and chemisorption mechanisms for CV sorption. The highest Hill sorption capacity of 125.5 mg g -1 was given by GBC700 at pH 8. Kinetic data followed the pseudo-second-order model, suggesting that the sorption process is more inclined toward the chemisorption mechanism. Pore diffusion, π-π electron donor-acceptor interaction and H-bonding were postulated to be involved in physisorption, whereas electrostatic interactions of protonated amine group of CV and negatively charged GBC surface led to a chemisorption type of adsorption. Overall, GBC produced as a by-product of the dendro industry could be a promising remedy for CV removal from an aqueous environment.

  19. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2006-08-01

    Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.

  20. Mechanistic understanding and performance of biosorption of metal ions by grapefruit peel using FTIR spectroscopy, kinetics and adsorption isotherms modeling, alkali and alkaline metal displacement and EDX analysis

    USDA-ARS?s Scientific Manuscript database

    The performance and mechanism of the sorptive removal of Ni2+ and Zn2+ from aqueous solution using grapefruit peel (GFP) as a new sorbent was investigated. The sorption process was fast, equilibrium was established in 60 min. The equilibrium process was described well by the Langmuir isotherm model,...

  1. Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar

    NASA Astrophysics Data System (ADS)

    Kołodyńska, D.; Bąk, J.; Kozioł, M.; Pylypchuk, L. V.

    2017-06-01

    Magnetic biochar nanocomposites were obtained by modification of biochar by zero-valent iron. The article provides information on the impact of contact time, initial Cd(II), Co(II), Zn(II), and Pb(II) ion concentrations, dose of the sorbents, solution pH and temperature on the adsorption capacity. On the basis of experiments, it was found that the optimum parameters for the sorption process are phase contact time 360 min (after this time, the equilibrium of all concentrations is reached), the dose of sorbent equal to 5 g/dm3, pH 5 and the temperature 295 K. The values of parameters calculated from the kinetic models and isotherms present the best match to the pseudo second order and Langmuir isotherm models. The calculated thermodynamic parameters ΔH 0, ΔS 0 and ΔG 0 indicate that the sorption of heavy metal ions is an exothermic and spontaneous process as well as favoured at lower temperatures, suggesting the physical character of sorption. The solution of nitric acid(V) at the concentration 0.1 mol/dm3 was the best acidic desorbing agent used for regeneration of metal-loaded magnetic sorbents. The physicochemical properties of synthesized composites were characterized by FTIR, SEM, XRD, XPS and TG analyses. The point characteristics of the double layer for biochar pHPZC and pHIEP were designated.

  2. Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents

    NASA Astrophysics Data System (ADS)

    Ajenifuja, E.; Ajao, J. A.; Ajayi, E. O. B.

    2017-11-01

    Photocatalytically modified ceramic adsorbents were synthesized for the removal of high concentration Cu (II) and Co (II) ions from their aqueous solutions. The raw material, diatomaceous aluminosilicate mineral was modified using silver and anatase titanium oxide nanoparticles. Batch adsorption experiment was carried out on the targeted metal ions and the results were analyzed by the Langmuir and Freundlich equation at different concentrations (100-1000 mg/l) and the characteristic parameters for each adsorption isotherm were determined. As-received raw materials do not exhibit any sorption capacity for high concentration Cu2+ and Co2+ adsorbates. However, the adsorption isotherms for modified diatomaceous ceramic adsorbents could be fitted well by the Langmuir model for both Cu2+ and Co2+ with correlation coefficient ( R) of up to 0.99953. The highest and lowest monolayer coverage ( q max) were 121.803 and 31.289 mg/g for Cu2+ and Co2+, respectively. The separation factor ( R L) in the experiment was less than one (<1), indicating that the adsorption of metal ions on the Ag-TiO2-modified ceramic adsorbent is favorable. The highest adsorption capacity ( K f) and intensity ( n) constants obtained from Freundlich model are 38.832 (Cu2+ on ZEO-T) and 5.801 (Co2+ on STOX-Z).

  3. Sorption and degradation of selected organic UV filters (BM-DBM, 4-MBC, and OD-PABA) in laboratory water-sediment systems.

    PubMed

    Li, Sheng; Lu, Guanghua; Xie, Zhengxin; Ding, Jiannan; Liu, Jianchao; Li, Yi

    2016-05-01

    Organic UV filters that have been widely used in sunscreens and other personal care products have drawn much public concern because of their widespread contamination in the environment and their potential ecological risks to ecosystems. We selected three UV filters with high frequency of detection in the environment, namely butyl methoxy dibenzoylmethane (BM-DBM), ethylhexyl dimethyl p-aminobenzoate (OD-PABA), and 4-methylbenzylidene camphor (4-MBC), to investigate the sorption and degradation behaviors of these compounds in lab-scale water-sediment systems set up with natural water and sediment samples collected from different rivers and lakes (i.e., Yangtze River, Qinhuai River, Xuanwu Lake, and Mochou Lake) in Nanjing, East China. The sorption isotherms of these UV filters were well described by the Freundlich equation (C s   = K f  × C w (n) ). The sorption of three UV filters in four sediments was all linear or close to it, with n values between 0.92 and 1.13. A moderate to strong sorption affinity was observed for these compounds, and the sorption appears to be irreversible. For the combined sorption and degradation studies, sorption was found to be a primary mechanism for the disappearance of these UV filters from the water phase, and biotransformation appears to be the predominant factor for the degradation of the target compounds in the water-sediment systems. All three UV filters were found to be slightly resistant to the microbes in these systems, with DT50total and DT90total values-the disappearance time (DT) describes the time in which the initial total mass of the UV filters in the whole system is reduced by 50 and 90 %-ranging between 18 and 31 days and 68 and 101 days, respectively.

  4. Sorption of 4-ethylphenol and 4-ethylguaiacol by suberin from cork.

    PubMed

    Gallardo-Chacón, Joan-Josep; Karbowiak, Thomas

    2015-08-15

    Cork shows an active role in the sorption of volatile phenols from wine. The sorption properties of 4-ethylphenol and 4-ethylguaiacol phenols in hydro-alcoholic medium placed in contact with suberin extracted from cork were especially investigated. To that purpose, suberin was immersed in model wine solutions containing several concentrations of each phenol and the amount of the compound remaining in the liquid phase was determined by SPME-GC-MS. Sorption isotherms of 4-ethylguaiacol and 4-ethylphenol by suberin followed the Henry's model. The solid/liquid partition coefficients (KSL) between the suberin and the model wine were also determined for several other volatile phenols. Suberin displayed rather high sorption capacity, which was positively correlated to the hydrophobicity of the volatile. Finally, the capacity of suberin to decrease the concentration of 4-ethylphenol and 4-ethylguaiacol was also tested in real wines affected by a Brettanomyces character. It also lead to a significant reduction of their concentration in wine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Synthesis of Minerals with Iron Oxide and Hydroxide Contents as a Sorption Medium to Remove Arsenic from Water for Human Consumption.

    PubMed

    Garrido-Hoyos, Sofia; Romero-Velazquez, Lourdes

    2015-12-23

    Arsenic has been classified as a toxic and carcinogenic chemical element. It therefore presents a serious environmental problem in different regions of the country and the world. In the present work, two adsorbent media were developed and evaluated to remove arsenic from water in the Pájaro Verde mine shaft, Huautla, Tlaquiltenango, Morelos. The media were synthesized and characterized, obtaining a surface area of 43.04 m²·g(-1) for the goethite and 2.44 m²·g(-1) for silica sand coated with Fe(III). To conduct the sorption kinetics and isotherms, a 2³ factorial design was performed for each medium in order to obtain the optimal conditions for the factors of arsenic concentration, pH and mass of the adsorbent. The best results were obtained for goethite, with a removal efficiency of 98.61% (C₀ of As(V) 0.360 mg·L(-1)), and an effluent concentration of 0.005 mg·L(-1), a value that complies with the modified Official Mexican Standard NOM-127-SSA1-1994 [1] and WHO guidelines (2004) [2]. The kinetic equation that best fit the experimental data was the pseudo-second-order, resulting in the highest values for the constants for synthetic goethite, with a rate constant sorption of 4.019·g·mg(-1)·min(-1). With respect to the sorption isotherms, both media were fitted to the Langmuir-II linear model with a sorption capacity (qm) of 0.4822 mg·g(-1) for goethite and 0.2494 mg·g(-1) for silica sand coated with Fe(III).

  6. Effects of sorption competition on caesium diffusion through compacted argillaceous rock

    NASA Astrophysics Data System (ADS)

    Jakob, Andreas; Pfingsten, Wilfried; Van Loon, Luc

    2009-05-01

    We carried out a small-scale laboratory diffusion experiment on a disk-like sample of Opalinus clay from the Mont Terri underground laboratory (Switzerland) using 134Cs as tracer. A through-diffusion phase was followed by an out-diffusion phase where the tracer taken up by the sample was released again. Since the tracer concentration at both boundaries was monitored, careful mass-balance considerations were feasible. A first analysis of the experimental data was done in the frame of a single-species model accounting only for transport and non-linear sorption of caesium. The model could match the data of the through-diffusion phase, however only, when strongly reducing the sorption data based on batch sorption experiments. Yet, such a procedure was in strong contradiction with sorption measurements performed on dispersed and compacted systems. In addition, predictions concerning tracer out-diffusion and mass-balance considerations clearly revealed the shortcomings of this type of model. In a second attempt we applied a multi-species transport model where now the whole water chemistry and a sorption model for caesium were considered. First, the value for the diffusion coefficient was fixed to the best-fit value of the single-species model. But again, the sorption site densities had to be reduced strongly albeit the reduction factor was smaller. Only when fixing the sorption site densities to those values of the sorption model and letting the effective diffusion coefficient D e free for the adjustment, could through-diffusion data be reasonably well fitted and out-diffusion as well as mass-balances be predicted in a satisfying manner. The main results are: (1) The best-fit could be achieved with a value for D e of 1.8 × 10 -10 m 2 s -1 which is rather high but corroborated by results of a molecular modelling study. (2) If caesium arrives in the Opalinus clay sample potassium and sodium (calcium etc.) ions are released and caesium ions are sorbed. The released cations

  7. Sorption properties of an amorphous hydroxo titanate towards Pb(2+), Ni(2+), and Cu(2+) ions in aqueous solution.

    PubMed

    Volpe, Angela; Pagano, Michele; Pastore, Carlo; Cuocci, Corrado; Milella, Antonella

    2016-11-09

    Titanates may be selectively used as inorganic adsorbents for heavy metal ions owing to their stability and fast adsorption kinetics. Nevertheless, the synthesis of such materials usually requires extreme reaction conditions. In this work, a new titanium-based material was rapidly synthesized under mild laboratory conditions. The obtained amorphous hydroxo titanate was tested for heavy metal sorption through kinetic and equilibrium batch tests, which indicated that the new material had high adsorption rates and adsorption capacities towards Cu(2+), Ni(2+) and Pb(2) ions. Adsorption kinetics were pseudo-second order, and equilibrium data fitted the Langmuir isotherm model. The calculated maximum adsorption capacities of Cu(2+), Ni(2+) and Pb(2+) in deionized water were around 1 mmol g(-1), and they decreased for Cu(2+) and Ni(2+) in the presence of Na(+), Ca(2+) and Mg(2+) ions, whereas the alkali metal ions did not influence Pb(2+) uptake. The efficiency of adsorption and recovery of lead ions were evaluated through column dynamic tests, by feeding the column with groundwater and tap water spiked with Pb(2+). The high performance of the hydroxo titanate over several cycles of retention and elution suggested that the product is potentially useful for the solid phase extraction of lead at trace levels in natural water samples, with potential use in metal pre-concentration for analytical applications.

  8. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA

    USGS Publications Warehouse

    Mastalerz, Maria; Gluskoter, Harold J.; Rupp, J.

    2004-01-01

    Samples of coals from several coalbeds in Indiana were analyzed for CO2 and CH4 sorption capacity using a high-pressure adsorption isotherm technique. Coal quality and petrographic composition of the coals were determined to study their relationships to the volume of CO2 and CH4 that could be sorbed into the coal. At the temperature of 17 ??C and 400 psi (??? 2.8 MPa), the coals can sorb (on dry ash-free basis) from 4 to 6.3 m3/ton (128-202 scf/ton) of CH4 and 19.5-24.6 m3/ton4 (624 to 788 scf/ton) of CO2. The ratio of CO2/CH4 at these conditions ranges from 3.5 to 5.3 and decreases with an increasing pressure for all coals. The coals studied are of a very similar coal rank (Ro from 0.48 to 0.62%) but of varying petrographic composition, and CO2 sorption volumes appear to be positively correlated to the content of maceral telocollinite. ?? 2004 Elsevier B.V. All rights reserved.

  9. Water vapor barrier and sorption properties of edible films from pullulan and rice wax.

    USDA-ARS?s Scientific Manuscript database

    Edible films were prepared by using various ratios of pullulan and rice wax. Freestanding composite films were obtained with up to 46.4% rice wax. Water vapor barrier properties of the film were improved with increased addition of rice wax. Moisture sorption isotherms were also studied to examine...

  10. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3.

    PubMed

    Jóźwiak, Tomasz; Filipkowska, Urszula; Szymczyk, Paula; Kuczajowska-Zadrożna, Małgorzata; Mielcarek, Artur

    2017-11-01

    A hydrogel chitosan sorbent ionically cross-linked with sodium citrate and covalently cross-linked with epichlorohydrin was used to remove nutrients from an equimolar mixture of P-PO 4 , N-NO 2 and N-NO 3 . The scope of the study included, among other things, determination of the influence of pH on nutrient sorption effectiveness, nutrient sorption kinetics as well as determination of the maximum sorption capacity of cross-linked chitosan sorbents regarding P-PO 4 (H 2 PO 4 - , HPO 4 2- ), N-NO 2 (HNO 2 , NO 2 - ), and N-NO 3 (NO 3 - ). The effect of the type of the cross-linking agent on the affinity of the modified chitosan to each nutrient was studied as well. The kinetics of nutrient sorption on the tested chitosan sorbents was best described with the pseudo-second order model. The model of intramolecular diffusion showed that P-PO 4 , N-NO 2 and N-NO3 sorption on cross-linked hydrogel chitosan beads proceeded in two phases. The best sorbent of nutrients turned out to be chitosan cross-linked covalently with epichlorohydrin; with P-PO 4 , N-NO 2 and N-NO 3 sorption capacity reaching: 1.23, 0.94 and 0.76mmol/g, respectively (total of 2.92mmol/g). For comparison, the sorption capacity of chitosan cross-linked ionically with sodium citrate was: 0.43, 0.39 and 0.39mmol/g for P-PO 4 , N-NO 2 and N-NO 3 , respectively (total of 1.21mmol/g). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of biochar addition on the sorption of polar herbicides in paddy soils

    NASA Astrophysics Data System (ADS)

    Garcia-Jaramillo, Manuel; Cox, Lucía; Hermosín, Mari Carmen; Helmus, Rick; Parsons, John R.; Kalbitz, Karsten

    2016-04-01

    Organic amendments, and their water soluble fraction, induce an important impact on pesticide dissipation in soils, affecting their adsorption and transport processes through various chemical interactions. Although in most cases addition of organic amendments increases sorption, leaching of the pesticides can be either reduced or promoted. Because of that, their effect on pesticide behavior must be assessed in order to optimize their use. The major objectives of this study were to investigate the impact of biochar and biochar water extractable substances (BWES) on the sorption behavior of two polar herbicides, azimsulfuron and penoxsulam, in two amended and unamended paddy soils under flooded conditions. The adsorption - desorption of these herbicides was studied in soils amended with fresh biochar and in soils amended with a washed version of the biochar, simulating the conditions of a soil recently amended and a soil where biochar was applied longer time before and most part of the BWES has been already removed because of the flooded conditions. Therefore, sorption on biochar was assessed before and after removing 80% of its water extractable substances, separately and in combination with each soil (at 2 and 5% w/w). BWES were analyzed by high resolution mass spectrometry. The most abundant fractions present in the high mass range were nitrogen-containing molecules. The aromatic character of the DOC-extracts of the unamended and amended soils, based on the specific UV absorbance at 280 nm (SUVA280), was increased with the amendment in all the conditions tested. Adsorption data of both herbicides fitted very well to the Freundlich equation, with R2 values higher than 0.9 in all the conditions tested. Sorption isotherms were in all cases nonlinear, with Nf values <1, resembling L-type isotherms. Biochar had a very different effect on the sorptive properties of each soil. The highest sorption affinity of azimsulfuron to amended soils was observed for the soils

  12. Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Tsang, Daniel C W; Qiu, Rongliang

    2015-07-01

    Recycling sewage sludge by pyrolysis has attracted increasing attention for pollutant removal from wastewater and soils. This study scrutinized As(III) sorption behavior on sludge-derived biochar (SDBC) under different pyrolysis conditions and solution chemistry. The SDBC pyrolyzed at a higher temperature showed a lower As(III) sorption capacity and increasingly nonlinear isotherm due to loss of surface sites and deoxygenation-dehydrogenation. The Langmuir sorption capacity on SDBC (3.08-6.04 mg g) was comparable to other waste-derived sorbents, with the highest As(III) sorption on SDBC pyrolyzed at 400°C for 2 h. The As(III) sorption kinetics best fit with the pseudo-second-order equation, thus suggesting the significance of the availability of surface sites and initial concentration. Sorption of As(III) was faster than that of Cr(VI) but slower than that of Pb(II), which was attributed to their differences in molar volume (correlated to diffusion coefficients) and sorption mechanisms. The X-ray photoelectron spectra revealed an increase of oxide oxygen (O) with a decrease of sorbed water, indicative of ligand exchange with hydroxyl groups on SDBC surfaces. The As(III) sorption was not pH dependent in acidic-neutral range (pH < 8) due to the buffering capacity and surface characteristics of the SDBC; however, sorption was promoted by increasing pH in the alkaline range (pH > 8) because of As(III) speciation in solution. An increasing ionic strength (0.001-0.1 mol L) facilitated As(III) sorption, indicating the predominance of ligand exchange over electrostatic interactions, while high concentrations (0.1 mol L) of competing anions (fluoride, sulfate, carbonate, and phosphate) inhibited As(III) sorption. These results suggest that SDBC is applicable for As(III) immobilization in most environmentally relevant conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Sorption of vapors of some organic liquids on soil humic acid and its relation to partitioning of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chlou, G.T.; Kile, D.E.; Malcolm, R.L.

    1988-01-01

    Vapor sorption of water, ethanol, benzene, hexane, carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and 1,2-dibromoethane on (Sanhedron) soil humic acid has been determined at room temperature. Isotherms for all organic liquids are highly linear over a wide range of relative pressure (P/P??), characteristic of the partitioning (dissolution) of the organic compounds in soil humic acid. Polar liquids exhibit markedly greater sorption capacities on soil humic acid than relatively nonpolar liquids, in keeping with the polar nature of the soil humic acid as a partition medium. The limiting sorption (partition) capacities of relatively non-polar liquids are remarkably similar when expressed in terms of volumes per unit weight of soil humic acid. The soil humic acid is found to be about half as effective as soil organic matter in sorption of relatively nonpolar organic compounds. The nearly constant limiting sorption capacity for nonpolar organic liquids with soil humic acid on a volume-to-weight basis and its efficiency in sorption relative to soil organic matter provide a basis for predicting the approximate sorption (partition) coefficients of similar compounds in uptake by soil in aqueous systems.

  14. Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-08-21

    The experimental equilibrium data of malachite green onto activated carbon were fitted to the Freundlich, Langmuir and Redlich-Peterson isotherms by linear and non-linear method. A comparison between linear and non-linear of estimating the isotherm parameters was discussed. The four different linearized form of Langmuir isotherm were also discussed. The results confirmed that the non-linear method as a better way to obtain isotherm parameters. The best fitting isotherm was Langmuir and Redlich-Peterson isotherm. Redlich-Peterson is a special case of Langmuir when the Redlich-Peterson isotherm constant g was unity.

  15. Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water.

    PubMed

    Rajfur, Małgorzata; Kłos, Andrzej; Wacławek, Maria

    2010-11-01

    Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions--Mn(2+), Cu(2+), Zn(2+) and Cd(2+)--were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30 min, with 90-95% of metal ions sorbed in first 10 min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30 min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Sorption of Sr, Co and Zn on illite: Batch experiments and modelling including Co in-diffusion measurements on compacted samples

    NASA Astrophysics Data System (ADS)

    Montoya, V.; Baeyens, B.; Glaus, M. A.; Kupcik, T.; Marques Fernandes, M.; Van Laer, L.; Bruggeman, C.; Maes, N.; Schäfer, T.

    2018-02-01

    Experimental investigations on the uptake of divalent cations (Sr, Co and Zn) onto illite (Illite du Puy, Le-Puy-en-Velay, France) were carried out by three different international research groups (Institute for Nuclear Waste Disposal, KIT (Germany), Group Waste & Disposal, SCK-CEN, (Belgium) and Laboratory for Waste Management, PSI (Switzerland)) in the framework of the European FP7 CatClay project. The dependence of solid-liquid distribution ratios (Rd values) on pH at trace metal conditions (sorption edges) and on the metal ion concentration (sorption isotherms) was determined in dilute suspensions of homo-ionic Na-illite (Na-IdP) under controlled N2 atmosphere. The experimental results were modelled using the 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model. The sorption of Sr depends strongly on ionic strength, while a rather weak pH dependence is observed in a pH range between 3 and 11. The data were modelled with cation exchange reactions, taking into account competition with H, K, Ca, Mg and Al, and surface complexation on weak amphotheric edge sites at higher pH values. The sorption of Co on Na-IdP, however, is strongly pH dependent. Cation exchange on the planar sites and surface complexation on strong and weak amphoteric edge sites were used to describe the Co sorption data. Rd values for Co derived from in-diffusion measurements on compacted Na-IdP samples (bulk-dry density of 1700 kg m-3) between pH 5.0 and 9.0 are in good agreement with the batch sorption data. The equivalence of both approaches to measure sorption was thus confirmed for the present test system. In addition, the results highlight the importance of both major and minor surface species for the diffusive transport behaviour of strongly sorbing metal cations. While surface complexes at the edge sites determine largely the Rd value, the diffusive flux may be governed by those species bound to the planar sites, even at low fractional

  17. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  18. Sorption of cadmium and lead by clays from municipal incinerator ash- water suspensions

    USGS Publications Warehouse

    Roy, W.R.; Krapac, I.G.; Steele, J.D.

    1993-01-01

    The effect of Cl complexation in extracts of a flue gas-scrubber incinerator fly ash sample on the sorption of Cd and Pb by kaolinite and illite was investigated using batch-sorption methods. In the pH range of 5 to 9, Cl complexation may reduce sorption and thus increase the mobility of these metals. When an ash-water suspension was acidified to pH 6.85, the dissolution of Cl and Ca essentially eliminated Cd sorption because of complexation and cationic competition. Cadmium would be considered as either mobile or very mobile under these conditions. Lead was not soluble in the pH- 6.85 suspension. At pH 12, the approximate pH of water in contact with flue gas-scrubber fly ash, Cd was essentially insoluble and Pb occurred as anionic Pb hydroxide. Anionic Pb was sorbed by the two clays, and the extent of sorption was not influenced by Cl or carbonate complexation. Sorption constants, derived from isotherms, suggested that Pb would be relatively immobile in saturated soil-water systems. The recent concern that highly alkaline, flue gas-scrubber fly ash may release environmentally significant concentrations of mobile Pb when placed in an ash-disposal site with a soil liner should be reevaluated in light of this study.

  19. Effects of N-vinylcaprolactam containing polyelectrolytes on hardness, fluoride release and water sorption of conventional glass ionomers.

    PubMed

    Moshaverinia, Alireza; Ansari, Sahar; Roohpour, Nima; Reshad, Mamaly; Schricker, Scott R; Chee, Winston Wl

    2011-05-01

    N-vinylcaprolactam (NVC) containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical properties of this type of modified glass ionomer, especially their water sorption, fluoride releasing properties and microhardness. The purpose of this study was to investigate the effects of NVC-containing polyelectrolytes on microhardness, fluoride release and water sorption of conventional glass ionomer cements (GIC). The terpolymer of acrylic acid (AA), itaconic acid (IA) and N-vinylcaprolactam (NVC) with 8:1:1 and 7:1:2 (AA: IA: NVC) molar ratios was synthesized by free radical polymerization and characterized using 1H-NMR and FTIR. Experimental GIC specimens were made from a 50% solution of the synthesized terpolymer with Fuji IX powder in a 3.6:1 P/L ratio. Specimens were mixed and fabricated at room temperature. Vickers hardness was determined using a microhardness tester. Water sorption and fluoride releasing properties were also investigated. Commercial Fuji IX was used as the control group. All specimens were first conditioned in distilled water at 37°C for 1 day up to 1 month. Results for the experimental GIC were compared with the control group, using 1-way and 2-way ANOVA and the Tukey multiple range test (α=.05). The NVC-modified GIC exhibited higher mean values of Vickers hardness numbers (VHN). However, the data exhibited no statistically significant differences between the experimental and control groups. The experimental cement (TP2) absorbed significantly more water than the control group (P<.034). Additionally, NVC-containing specimens showed comparable fluoride releasing properties with almost the same fluoride burst and continued fluoride release from the bulk of the material. It was concluded that a hydrophilic monomer such as NVC might be able to increase the water sorption and decrease the amount of initial fluoride release of the glass ionomers

  20. Arsenic Sorption on TiO2 Nanoparticles: Size And Crystallinity Effects

    EPA Science Inventory

    Single solute As (III) and As (V) sorption on nano-sized amorphous and crystalline TiO2 was investigated to determine: size and crystallinity effects on arsenic sorption capacities, possible As (III) oxidation, and the nature of surface complexes. Amorphous and cryst...

  1. Geochemical heterogeneity in a sand and gravel aquifer: Effect of sediment mineralogy and particle size on the sorption of chlorobenzenes

    USGS Publications Warehouse

    Barber, Larry B.; Thurman, E. Michael; Runnells, Donald D.

    1992-01-01

    The effect of particle size, mineralogy and sediment organic carbon (SOC) on sorption of tetrachlorobenzene and pentachlorobenzene was evaluated using batch-isotherm experiments on sediment particle-size and mineralogical fractions from a sand and gravel aquifer, Cape Cod, Massachusetts. Concentration of SOC and sorption of chlorobenzenes increase with decreasing particle size. For a given particle size, the magnetic fraction has a higher SOC content and sorption capacity than the bulk or non-magnetic fractions. Sorption appears to be controlled by the magnetic minerals, which comprise only 5–25% of the bulk sediment. Although SOC content of the bulk sediment is <0.1%, the observed sorption of chlorobenzenes is consistent with a partition mechanism and is adequately predicted by models relating sorption to the octanol/water partition coefficient of the solute and SOC content. A conceptual model based on preferential association of dissolved organic matter with positively-charged mineral surfaces is proposed to describe micro-scale, intergranular variability in sorption properties of the aquifer sediments.

  2. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    PubMed

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Water sorption equilibria and kinetics of henna leaves

    NASA Astrophysics Data System (ADS)

    Sghaier, Khamsa; Peczalski, Roman; Bagane, Mohamed

    2018-05-01

    In this work, firstly the sorption isotherms of henna leaves were determined using a dynamic vapor sorption ( DVS) device at 3 temperatures (30, 40, 50 °C). The equilibrium data were well fitted by the GAB model. Secondly, drying kinetics were measured using a pilot convective dryer for 3 air temperatures (same as above), 3 velocities (0.5, 1, 1.42 m/s) and 4 relative humidities (20, 30, 35, 40%). The drying kinetic coefficients were identified by fitting the DVS and pilot dryer data by Lewis semi-empirical model. In order to compare the obtained kinetic parameters with literature, the water diffusivities were also identified by fitting the data by the simplified solution of fickian diffusion equation. The identified kinetic coefficient was mainly dependent on air temperature and velocity what proved that it represented rather the external transfer and not the internal one.

  4. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils.

    PubMed

    Francisco, Jeane G; Mendes, Kassio F; Pimpinato, Rodrigo F; Tornisielo, Valdemar L; Guimarães, Ana C D

    2017-07-03

    This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14 C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [K f (sorption) ] ranged from 0.37 to 1.34 µmol (1-1/n) L 1/n kg -1 and showed a significant positive correlation with the clay content of the soil, while the K f (desorption) ranged from 3.62 to 5.36 µmol (1-1/n) L 1/n kg -1 . The K f (desorption) values were higher than their respective K f (sorption) , indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0-30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ∼3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.

  5. Thermodynamics and sorption characteristics of Zn(II) onto natural and chemically modified zeolites for agricultural and environmental using

    NASA Astrophysics Data System (ADS)

    Saltali, K.; Tazebay, N.; Kaya, M.

    2017-10-01

    Zeolites with high porous and cation exchange capacity have been widely used for agricultural and environmental purposes. This study was conducted to assess the thermodynamics and sorption characteristics of chemically modified zeolite (CMZ) from obtained natural zeolite (NZ), and to compare its properties. At first step of the sorption experiment, effects of pH, slurry concentration, stirring time, and heat on Zn removal were determined. Linear Langmuir isotherm was well fitted to data, and maximum sorption capacities ( q max) were calculated as 20.87 and 33.44 mg/g for NZ and CMZ, respectively. Dubinin-Redushkevich (D-R) isotherm showed that the adsorption process was probably controlled by chemical ion-exchange mechanism. The solubility of zinc DTPA should be so directly related to the model of D-R model. Therefore, zeolites can be used as carrier Zn in soils with insufficient zinc arid and semiarid regions. Enthalpy (Δ H°) and entropy (Δ S°) values were positive. The change values of Gibbs free energy (Δ G°) illustrated that the sorption of Zn ions onto zeolites was feasible and spontaneous. From the obtained results, it could be concluded that chemical modification increased q max value of NZ, and the findings indicate clearly the possibility of using NZ and CMZ as Zn carrier in agricultural and also environmental treatments.

  6. Enhanced O-2 Selectivity versus N-2 by Partial Metal Substitution in Cu-BTC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.

    2015-03-24

    Here, we describe the homogeneous substitution of Mn, Fe, and Co at various levels into a prototypical metal organic framework (MOP), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O-2/N-2 selectivities determined experimentally at 77 K and the difference in O-2 and N-2 binding energies calculated from DFTmore » modeling data: Mn > Fe Co >> Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273-298 K) as compared to all other metals studied, indicative of favorable interactions between N-2 and coordinatively unsaturated Fe metal centers. Interestingly, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.« less

  7. Enhanced O 2 selectivity versus N 2 by partial metal substitution in Cu-BTC

    DOE PAGES

    Sava Gallis, Dorina F.; Parkes, Marie V.; Greathouse, Jeffery A.; ...

    2015-03-05

    Here we describe the homogeneous substitution of Mn, Fe and Co at various levels into a prototypical metal-organic framework (MOF), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O 2/N 2 selectivities determined experimentally at 77 K and the difference in O 2 and N 2 binding energiesmore » calculated from DFT modeling data: Mn > Fe > Co > Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273 K - 298 K) as compared to all other metals studied, indicative of favorable interactions between N 2 and coordinatively unsaturated Fe metal centers. Furthermore, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.« less

  8. Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a β-nucleating agent: isothermal crystallization and melting behavior.

    PubMed

    Naffakh, Mohammed; Marco, Carlos; Ellis, Gary

    2012-02-16

    The isothermal crystallization and subsequent melting behavior of isotactic polypropylene (iPP) nucleated with different nucleating agents (NAs) are investigated. Tungsten disulfide (IF-WS(2)) and N,N'-dicyclohexyl-2,6-naphthalene (NJ) and dual-additive mixtures are introduced into an iPP matrix to generate new materials that exhibit variable α- and β-polymorphism. As shown in previous work, small amounts of IF-WS(2) or NJ have a nucleating effect during the crystallization of iPP. However, the isothermal crystallization and melting behavior of iPP nucleated by dual α(IF-WS(2))/β(NJ) additive systems are dependent on both the NA composition balance and the crystallization temperature. In particular, our results demonstrate that it is possible to obtain any α-phase to β-phase content ratio by controlling the composition of NAs under appropriate isothermal crystallization conditions. The nucleating behavior of the additives can be illustrated by competitive nucleation, and the correlation between crystallization and melting temperatures and relative α- and β-crystals content in iPP in the nanocomposites is discussed.

  9. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less

  10. Metals sorption from aqueous solutions by Kluyveromyces marxianus: process optimization, equilibrium modeling and chemical characterization.

    PubMed

    Pal, Rama; Tewari, Saumyata; Rai, Jai P N

    2009-10-01

    The dead Kluyveromyces marxianus biomass, a fermentation industry waste, was used to explore its sorption potential for lead, mercury, arsenic, cobalt, and cadmium as a function of pH, biosorbent dosage, contact time, agitation speed, and initial metal concentration. The equilibrium data fitted the Langmuir model better for cobalt and cadmium, but Freundlich isotherm for all metals tested. At equilibrium, the maximum uptake capacity (Qmax) was highest for lead followed by mercury, arsenic, cobalt, and cadmium. The RL values ranged between 0-1, indicating favorable sorption of all test metals by the biosorbent. The maximum Kf value of Pb showed its efficient removal from the solution. However, multi-metal analysis depicted that sorption of all metals decreased except Pb. The potentiometric titration of biosorbent revealed the presence of functional groups viz. amines, carboxylic acids, phosphates, and sulfhydryl group involved in heavy metal sorption. The extent of contribution of functional groups and lipids to biosorption was in the order: carboxylic>lipids>amines>phosphates. Blocking of sulfhydryl group did not have any significant effect on metal sorption.

  11. Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke.

    PubMed

    Zhang, Mohe; Zhao, Quanlin; Ye, Zhengfang

    2011-01-01

    We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite. Since the composition of TNT red water was very complicated, chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency. This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water, and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography, UV-Vis spectra and gas chromatography/mass spectroscopy. The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model. The adsorption process was an exothermic and physical process. The sorption isotherm was in good agreement with Redlich-Peterson isotherm. At the conditions of initial pH = 6.28, 20 degrees C and 3 hr of agitation, under 160 g/L AC, 64.8% of COD was removed. The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%, respectively. After adsorption, the acute toxicity of TNT red water reduced greatly, compared with that of unprocessed TNT red water.

  12. Ammonia-nitrogen sorptional properties of banana peels.

    PubMed

    Chen, Yunnen; Ding, Lichao; Fan, Jingbiao

    2011-04-01

    Using modified banana peel as a biosorbent to treat water containing ammonia-nitrogen (NH4(+)-N) was studied. Related parameters in the sorptional process, such as chemical modification, pH, and contact time were investigated. The experimental results showed that banana peel modified by 30% sodium hydroxide (NaOH) and mesothermal microwaves (NMBPs) can greatly improve the sorption removal for NH4(+)-N. The kinetics study revealed that the sorption behavior better fit the pseudo-second-order equation than the Lagergren first-order equation. Fourier transform infrared absorption spectrum analysis of banana peels and NMBPs before and after NH4(+)-N sorption revealed that the activity of hydroxyl groups at the surface of the banana peels was strengthened after modification, and nitrogenous groups appeared after biosorpting the NH4(+)-N. In the end, metallurgical wastewater containing a low concentration of NH4(+)-N was treated by NMBPs. The initial NH4(+)-N concentration of 138 mg/L was reduced to 13 mg/L in 25 minutes by 4 g/L NMBPs at pH 10.

  13. Removal of lindane from an aqueous solution by using aminopropyl silica gel-immobilized calix[6]arene.

    PubMed

    Tor, Ali; Aydin, Mehmet Emin; Aydin, Senar; Tabakci, Mustafa; Beduk, Fatma

    2013-11-15

    An aminopropyl silica gel-immobilized calix[6]arene (C[6]APS) has been used for the removal of lindane from an aqueous solution in batch sorption technique. The C[6]APS was synthesized with p-tert-butylcalix[6]arene hexacarboxylate derivative and aminopropyl silica gel in the presence of N,N'-diisopropyl carbodiimide coupling reagent. The sorption study was carried out as functions of solution pH, contact time, initial lindane concentration, C[6]APS dosage and ionic strength of solution. The matrix effect of natural water samples on the sorption efficiency of C[6]APS was also investigated. Maximum lindane removal was obtained at a wide pH range of 2-8 and sorption equilibrium was achieved in 2h. The isotherm analysis indicated that the sorption data can be represented by both Langmuir and Freundlich isotherm models. Increasing ionic strength of the solutions increased the sorption efficiency and matrix of natural water samples had no effect on the sorption of lindane. By using multilinear regression model, regression equation was also developed to explain the effects of the experimental variables. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

    DOE PAGES

    Alamin, Ahmed Hassan; Kaewsichan, Lupong

    2016-06-30

    Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less

  15. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamin, Ahmed Hassan; Kaewsichan, Lupong

    Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less

  16. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm

    PubMed Central

    Akhtar, Muhammad

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC b/a) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  17. Effect of experimental variables onto Co(2+) and Sr(2+) sorption behavior in red mud-water suspensions.

    PubMed

    Milenković, Aleksandra S; Smičiklas, Ivana D; Šljivić-Ivanović, Marija Z; Živković, Ljiljana S; Vukelić, Nikola S

    2016-07-02

    The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged. The increase of initial cation content and pH resulted in increased equilibrium times and sorption capacity and decreased rate constants. From single metal solutions and various binary mixtures, Co(2+) was sorbed more efficiently and selectively than Sr(2+). While Sr(2+) sorption was reduced by coexisting cations in the order Al(3+) ≥ Ca(2+) >Na(+) ≥Cs(+), removal of Co(2+) was affected by Al(3+) species and complexing agents (EDTA and citrate). Desorption of Co(2+) was negligible in Ca(2+) and Sr(2+) containing media and in solutions with initial pH 4-7. Sr(2+) desorption was generally more pronounced, especially at low pH and in the presence of Co(2+). Collected macroscopic data signify that Co(2+) sorption by red mud minerals occurred via strong chemical bonds, while Sr(2+) was retained mainly by weaker ion-exchange or electrostatic interactions. Results indicate that the rinsed red mud represent an efficient, low-cost sorbent for Co(2+) and Sr(2+) immobilization.

  18. Sorption of organic cations onto silica surfaces over a wide concentration range of competing electrolytes.

    PubMed

    Kutzner, Susann; Schaffer, Mario; Licha, Tobias; Worch, Eckhard; Börnick, Hilmar

    2016-12-15

    The fundamental understanding of organic cation-solid phase interactions is essential for improved predictions of the transport and ultimate environmental fates of widely used substances (e.g., pharmaceutical compounds) in the aquatic environment. We report sorption experiments of two cationic model compounds using two silica gels and a natural aquifer sediment. The sorbents were extensively characterized and the results of surface titrations under various background electrolyte concentrations were discussed. The salt dependency of sorption was systematically studied in batch experiments over a wide concentration range (five orders of magnitude) of inorganic ions in order to examine the influence of increasing competition on the sorption of organic cations. The organic cation uptake followed the Freundlich isotherm model and the sorption capacity decreases with an increase in the electrolyte concentration due to the underlying cation exchange processes. However, the sorption recovers considerably at high ionic strength (I>1M). To our knowledge, this effect has not been observed before and appears to be independent from the sorbent characteristics and sorbate structure. Furthermore, the recovery of sorption was attributed to specific, non-ionic interactions and a connection between the sorption coefficient and activity coefficient of the medium is presumed. Eventually, the reasons for the differing sorption affinities of both sorbates are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of Temperature on the Kinetics of Sorption of Co2+ and Ni2+ Ions by a Sorbent Based on an Inositol Hexaphosphoric Acid Derivative

    NASA Astrophysics Data System (ADS)

    Yarusova, S. B.; Makarenko, N. V.; Gordienko, P. S.; Karpenko, M. A.; Novikova, E. S.

    2018-03-01

    Data on the effect temperature has on the kinetics of the removal of Co2+ and Ni2+ ions under static conditions by a sorbent based on a derivative of phytic acid fabricated from rice production waste are presented. It is shown that when the temperature is raised from 20 to 60°C, the sorption capacity of the sorbent based on phytic acid increases over the period of sorption and within 180 min reaches values of 1.4 mmol g-1 for Co2+ ions and 1.3 mmol g-1 for Ni2+ ions. It is established that for the investigated range of temperatures, order n of the sorption of Co2+ and Ni2+ ions is <1, which characterizes the reactions accompanied by diffusion processes. It is found that the process of removal of Co2+ and Ni2+ ions is characterized with low activation energy (20.74 kJ mol-1 for Co2+ ions and 14.2 kJ mol-1 for Ni2+ ions). It is also demonstrated that the sorption process in the considered time frame is best described by a kinetic model of a pseudo-second order, as is indicated by respective correlation coefficients.

  20. A conversion of CO2-ECBM related lab observations to reservoir requirements

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Merkel, Alexej; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    To predict a CBM production profile either during primary or secondary production, aspects like coal permeability and porosity, density, ash and moisture content, initial gas-in-place (GIP) (from canister desorption tests), gas sorption capacity from laboratory isotherms (to obtain gas saturations and desorption pressure), gas diffusivities, coal volumetrics (thickness and areal extent) need to be understood as a minimum requirement. When dealing with CO2-ECBM selective adsorption, counter diffusion in the coal matrix, or coal shrinkage and swelling (from CH4 desorption and CO2 adsorption, respectively) and the influence of moisture need to be investigated in addition to the parameters above. During CO2-ECBM processes, the areal distribution of the CO2 injected is accomplished by flow through the cleat network. When CO2 is entering the coal matrix by a combined sorption/diffusion process it will adsorb to the coal inner surface and at the same time replace part of the CH4. This replacement occurs either by a reduction in the CH4 partial pressure or by a higher selective sorption of CO2 over CH4. Because of a concentration gradient between CH4 in the matrix compared to the cleat system, CH4 diffuses from the coal matrix into the cleat system where, by pressure drawdown towards a production well, it can be produced. In this context this presentation summarizes gas (CO2, CH4) and water sorption on coal and specifically addresses the following topics: • CH4 and CO2 sorption capacity as a function depth and rank • CO2 and CH4 sorption on natural coals and its dependence on coal specific parameters like coal rank, maceral composition or ash content (Busch and Gensterblum, 2011). • Water sorption on coal, its dependence on coal properties such as rank and coal chemistry and gas sorption in the presence of water (Busch and Gensterblum, 2011). • Uncertainties in reservoir characterisation (Gensterblum et al., 2010; Gensterblum et al., 2009) • Sorption uptake

  1. Sorption of Pesticides to Natural and Synthetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guluzada, Leyla; Luo, Leilei; Pattky, Martin; Anwander, Reiner; Huhn, Carolin; Haderlein, Stefan

    2017-04-01

    Many organic pollutants tend to associate with particles in environment. Such interactions with solid surfaces may not only alter the reactivity and bioavailability of pesticides, but also their uptake. This alteration may occur both in the way and in the amount the compound enters the organisms. In its turn this may change the overall effects of these compounds on organisms and ecosystems. The main goal of the work presented here is to provide mechanistic information on the sorbate-sorbent interactions between nanoparticles and a set of pesticides under environmentally relevant and physiological conditions. As such, the work is part of the interdisciplinary graduate research program EXPAND at the University of Tübingen investigating molecular interactions between pesticides and particles to elucidate how such interactions impact the toxicological effects. To this end, natural and synthetic nanoparticles covering a wide range of physicochemical properties and pesticides for different target organisms were used. Sorption experiments were carried out with insecticides (imidacloprid; thiacloprid), fungicides (hexaconazole; propiconazole) and herbicides (glyphosate with its metabolite AMPA; glufosinate). The choice of the pesticides was based on their environmental significance and their mode of action. Both engineered nanoparticles with tailored surface properties and nanoparticles of natural origin were characterized and applied to cover various modes of sorptive interactions with the pesticides. The impact of various geochemical and physiological conditions including pH, temperature, ionic strength, background electrolytes and DOM (dissolved organic matter) on the sorption of the pesticides to nanoparticles was studied. Sorption kinetics and sorption isotherms were determined and the results are discussed in terms of predominant sorption mechanisms and the suitability of certain nanoparticles for toxicological studies in the framework of the EXPAND project.

  2. Mechanisms of Pb(II) sorption on a biogenic manganese oxide.

    PubMed

    Villalobos, Mario; Bargar, John; Sposito, Garrison

    2005-01-15

    Macroscopic Pb(II) uptake experiments and Pb L3-edge extended X-ray absorption fine structure (EXAFS) spectroscopy were combined to examine the mechanisms of Pb(II) sequestration by a biogenic manganese oxide and its synthetic analogues, all of which are layer-type manganese oxides (phyllomanganates). Relatively fast Pb(II) sorption was observed, as well as extremely high sorption capacities, suggesting Pb incorporation into the structure of the oxides. EXAFS analysis revealed similar uptake mechanisms regardless of the specific nature of the phyllomanganate, electrolyte background, total Pb(II) loading, or equilibration time. One Pb-O and two Pb-Mn shells at distances of 2.30, 3.53, and 3.74 A, respectively, were found, as well as a linear relationship between Brunauer-Emmett-Teller (BET; i.e., external) specific surface area and maximum Pb(II) sorption that also encompassed data from previous work. Both observations support the existence of two bonding mechanisms in Pb(II) sorption: a triple-corner-sharing complex in the interlayers above/ below cationic sheet vacancies (N theoretical = 6), and a double-corner-sharing complex on particle edges at exposed singly coordinated -O(H) bonds (N theoretical = 2). General prevalence of external over internal sorption is predicted, but the two simultaneous sorption mechanisms can account for the widely noted high affinity of manganese oxides for Pb(ll) in natural environments.

  3. Annealing effect on thermodynamic and physical properties of mesoporous silicon: A simulation and nitrogen sorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pushpendra, E-mail: pkumar-iitd@yahoo.com; Huber, Patrick, E-mail: patrick.huber@tuhh.de

    Discovery of porous silicon formation in silicon substrate in 1956 while electro-polishing crystalline Si in hydrofluoric acid (HF), has triggered large scale investigations of porous silicon formation and their changes in physical and chemical properties with thermal and chemical treatment. A nitrogen sorption study is used to investigate the effect of thermal annealing on electrochemically etched mesoporous silicon (PS). The PS was thermally annealed from 200°C to 800°C for 1 hr in the presence of air. It was shown that the pore diameter and porosity of PS vary with annealing temperature. The experimentally obtained adsorption / desorption isotherms show hysteresis typicalmore » for capillary condensation in porous materials. A simulation study based on Saam and Cole model was performed and compared with experimentally observed sorption isotherms to study the physics behind of hysteresis formation. We discuss the shape of the hysteresis loops in the framework of the morphology of the layers. The different behavior of adsorption and desorption of nitrogen in PS with pore diameter was discussed in terms of concave menisci formation inside the pore space, which was shown to related with the induced pressure in varying the pore diameter from 7.2 nm to 3.4 nm.« less

  4. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do notmore » sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10{sup -7} to 3 X 10{sup -5} M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10{sup -8} to 1 X 10{sup -4} M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz.« less

  5. Sorption and degradation of neonicotinoid insecticides in tropical soils.

    PubMed

    Dankyi, Enock; Gordon, Chris; Carboo, Derick; Apalangya, Vitus A; Fomsgaard, Inge S

    2018-05-22

    Neonicotinoids are the most widely applied class of insecticides in cocoa farming in Ghana. Despite the intensive application of these insecticides, knowledge of their fate in the Ghanaian and sub-Saharan African environment remains low. This study examined the behavior of neonicotinoids in soils from cocoa plantations in Ghana by estimating their sorption and degradation using established kinetic models and isotherms. Studies of sorption were conducted using the batch equilibrium method on imidacloprid, thiamethoxam, clothianidin, acetamiprid and thiacloprid, while degradation of imidacloprid, thiamethoxam and their respective deuterated counterparts was studied using models proposed by the European forum for coordination of pesticide fate and their use (FOCUS). Analytes were extracted using the quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Average recoveries were high (≥ 85%) for all analytes. The findings from the study suggest that neonicotinoid insecticides may be persistent in the soils studied based on estimated half-lives > 150 days. The study also revealed generally low-sorption coefficients for neonicotinoids in soils, largely influenced by soil organic carbon.

  6. High-frequency large-amplitude oscillations of a non-isothermal N/S boundary

    NASA Astrophysics Data System (ADS)

    Bezuglyj, A. I.; Shklovskij, V. A.

    2016-10-01

    Within the framework of a phenomenological approach based on the heat balance equation and the current dependence of the critical temperature of the superconductor, the effect of high-frequency current of large amplitude and arbitrary waveform on the non-isothermal balance of an oscillating N/S interface in a long superconductor was studied. Self-consistent average temperature field of the rapidly oscillating non-isothermal N/S boundary (heat kink) was introduced, which allowed us to go beyond the well-known concept of mean-square heating and consider the effect of the current waveform. With regard to experiments on the effects of high-power microwave radiation on the current-voltage (IV) characteristics of superconducting films, their classification was performed and the families of IV curves of inhomogeneous superconductors carrying a current containing a high-frequency component of large amplitude. Several IV curves exhibited a hysteresis of thermal nature.

  7. Sorption characteristics of pesticides on matrix substrates used in biopurification systems.

    PubMed

    De Wilde, Tineke; Spanoghe, Pieter; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk

    2009-03-01

    On-farm biopurification systems were developed to remove pesticides from contaminated water generated at the farmyard. An important process in the system's efficiency is the sorption of pesticides to the substrates used in the biopurification systems. The composition and type of material present in the biobed are crucial for retention of chemicals. This study investigated the sorption of linuron, isoproturon, metalaxyl, isoxaben, bentazon and lenacil on substrates commonly used in a biopurification system, i.e. cow manure, straw, willow chopping, soil, coconut chips, garden waste compost, and peat mix. Linear, Freundlich, and Langmuir sorption isotherms were fitted to the obtained data. The best fit was obtained with the Freundlich model. More immobile pesticides (i.e. linuron and isoxaben) tended to associate with the organic substrate, while more mobile pesticides partition in the water (i.e. bentazon). According to sorption capacity, the substrates could be classified as peat mix > compost, coco chips, straw > cow manure, willow chopping > sandy loam soil. Sorption capacity was positively correlated with the organic carbon content, CaO and the cation exchange capacity. Furthermore, no significant differences in sorption could be found between technical and formulated isoproturon and bentazon. Moreover, the individual sorption coefficient K(d) was additive, which means that individual sorption coefficients can be used to calculate the sorption coefficients of a mixture of substrates. What concerns the mutual interaction of pesticides it could be observed that the sorption of linuron and metalaxyl was significantly lower in combination with isoproturon and bentazon, while the latter pesticides were not influenced by the presence of linuron and metalaxyl. As guidelines, firstly, it could be stated that using the most sorbing materials such as peat mix, might significantly increase the biopurification systems efficiency. Secondly, the treatment of very mobile

  8. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications.

    PubMed

    Polesel, Fabio; Lehnberg, Kai; Dott, Wolfgang; Trapp, Stefan; Thomas, Kevin V; Plósz, Benedek Gy

    2015-01-01

    Many of the pharmaceuticals and personal care products occurring in municipal sewage are ionizing substances, and their partitioning behaviour is affected by ionic interactions with solid matrices. In activated sludge systems, such interactions have currently not been adequately understood and described, particularly for zwitterionic chemicals. Here we present an assessment of the effects of pH and iron salt dosing on the sorption of ciprofloxacin onto activated sludge using laboratory experiments and full-scale fate modelling. Experimental results were described with Freundlich isotherms and showed that non-linear sorption occurred under all the conditions tested. The greatest sorption potential was measured at pH=7.4, at which ciprofloxacin is speciated mostly as zwitterion. Iron salt dosing increased sorption under aerobic and, to a lesser extent, anoxic conditions, whereas no effect was registered under anaerobic conditions. The activated sludge model for xenobiotics (ASM-X) was extended with Freundlich-based sorption kinetics and used to predict the fate of ciprofloxacin in a wastewater treatment plant (WWTP). Scenario simulations, using experimental Freundlich parameters, were used to identify whether the assessed factors caused a significant increase of aqueous ciprofloxacin concentration in full-scale bioreactors. Simulation results suggest that a pH increase, rather than a reduction in iron salt dosing, could be responsible for a systematic deterioration of sorption of ciprofloxacin in the WWTP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA 2- to goethite and a subsurface sediment

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Smith, Steven C.; Fredrickson, James K.

    2000-04-01

    Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA 2-, a representative metal-ligand complex of intermediate stability (log K Co(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m 2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimilatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co 2+, Fe 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- on the two sorbents in 0.001 mol/L Ca(ClO 4) 2 to aid in experiment interpretation. Anoxic suspensions of the sorbents in PIPES buffer at pH 6.5-7.0 were spiked with Co(II)EDTA 2- (10 -5 mol/L, 60Co and 14EDTA labeled), inoculated with BrY (1-6 × 10 8 organisms/mL), and the headspace filled with a N 2/H 2 gas mix. The experiments were conducted under non-growth conditions. The medium did not contain PO 43- (with one exception), trace elements, or vitamins. The tubes were incubated under anoxic conditions at 25°C for time periods in excess of 100 d. Replicate tubes were sacrificed and analyzed at desired time periods for pH, Fe(II) TOT, Fe (aq)2+, 60Co, and 14EDTA. Abiotic analogue experiments were conducted where Fe (aq)2+ was added in increasing concentration to Co(II)EDTA 2-/mineral suspensions to simulate the influence of bacterial Fe(II) evolution. The DIRB generated Fe(II) from both goethite and the Milford sediment that was strongly sorbed by mineral surfaces. Aqueous Fe 2+ increased during the experiment as surfaces became saturated; Fe (aq)2+ induced the dissociation of Co(II)EDTA 2- into a mixture of Co 2+, Co(II)EDTA 2-, and Fe(II)EDTA 2- (log K Fe(II)EDTA = 15.98). The extent of dissociation of Co(II)EDTA 2- was greater in the subsurface sediment because it sorbed Fe(II) less strongly than did

  10. Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine.

    PubMed

    Richard, Thomas; Weidhaas, Jennifer

    2014-09-15

    The insensitive munition, IMX-101 approved for use in the USA, contains 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) and is designed to be less sensitive to shock and sympathetic detonation. Given the estimated future use of IMX-101, an understanding of IMX-101 constituent attenuation mechanisms on testing and training ranges is needed. Studies were conducted to determine (1) the rates of IMX-101 fragment dissolution during simulated rainfall, (2) DNAN and NTO soil sorption coefficients, (3) ability of grasses to germinate in and phytoremediate IMX-101 contaminated soil, and (4) effect of the addition of IMX-101 degrading enrichment cultures on phytoremediation. The IMX-101 particles were found to dissolve slowly under simulated rainfall conditions with NQ and NTO dissolving first, leaving DNAN crystals. DNAN and NTO sorption to soils fit Freundlich isotherms and limited desorption was observed. DNAN and NQ were shown to be taken up into the roots and shoots of a mixture of big bluestem grass (Andropogon gerardii), Nash Indiangrass (Sorghastrum nutans), and switchgrass (Panicum virgatum) during phytoremediation of soils contaminated with up to 50 mg kg(-1) IMX-101. Complete degradation of IMX-101 to below detection limits occurred over 225 days. The addition of an IMX-101 degrading enrichment culture to the treatments significantly increased the root and shoot mass. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Improved understanding of tributyltin sorption on natural and biochar-amended sediments.

    PubMed

    Xiao, Xiaoyu; Sheng, G Daniel; Qiu, Yuping

    2011-12-01

    A poor understanding of tributyltin (TBT) sorption on sediments has hindered an accurate evaluation of its environmental fate. The present study determined TBT sorption by a freshwater sediment (BH) and a coastal marine sediment (TZ) as influenced by pH, salinity, and biochar (BC) amendment into TZ. The isotherms were essentially linear, with K(OC) values in the range of 10(4) to 10(5) L/kg. Tributyltin sorption at pH 3.56 and 8.00 occurred mainly via partitioning. It reached maxima at pH equal to its pK(a) (=6.25) because of added ion exchange. A salinity increase from 5 to 35 practical salinity units enhanced TBT sorption at pH 3.56 and 8.00 on TZ by approximately 30% and on BH by approximately 80%, ascribed to the salting-out effect that reduced the solubilities of tributyltin hydroxide (TBTOH) and tributyltin chloride (TBTCl). At pH 6.25, the same salinity increase reduced TBT sorption on TZ by approximately 20% but enhanced TBT sorption on BH by approximately 35%. This was attributed to the enhancing role of salting out and the reducing role of metal competition for ion exchange. Tributyltin was two orders of magnitude more effectively sorbed by BC than by total organic carbon of TZ, mainly because of the high level of surface area of the BC. Although BC affinity for TBT may be significantly diminished when present in TZ, it was considered to be the primary contributor to TBT sorption from water. Biochar may thus be used to immobilize TBT in sediment for potential remediation. Copyright © 2011 SETAC.

  12. Reversible and irreversible sorption of perfluorinated compounds (PFCs) by sediments of an urban reservoir.

    PubMed

    Chen, Huiting; Reinhard, Martin; Nguyen, Viet Tung; Gin, Karina Yew-Hoong

    2016-02-01

    Uncertainty about the extent to which contaminant sorption by suspended solids and bed sediments is irreversible is a major impediment for modeling and managing the water quality of surface water resources. This study examined reversible and irreversible sorption of several perfluorinated compounds (PFCs) to bed sediments from an urban reservoir. PFCs investigated include C4, C6, C8, C9 and C10 perfluoroalkanoate homologues (PFBA, PFHxA, PFOA, PFNA and PFDA, respectively) and perfluorooctane and hexane sulfonate (PFOS and PFHxS, respectively). Although sorption branches of the PFOS, PFNA and PFDA isotherms were nearly linear (implying a partitioning-like process), desorption experiments indicated that a fraction of the sorbed PFCs were entrapped and resistant to desorption. The hysteretic desorption branches were approximately linear. Irreversibility increased with chain length and was nearly complete for PFDA (thermodynamic irreversibility index (TII) 0.98). For the weakly sorbing PFOA and PFHxS, sorption was largely reversible. Data suggest that (1) for the strongly sorbing PFCs, e.g. PFNA, PFDA and PFOS, bed sediments acted predominantly as irreversible sinks, (2) aqueous concentrations of the moderately sorbing PFCs (PFOA and PFHxS) are buffered by reversibly sorbing suspended solids, and (3) the short-chain PFCs (PFBA and PFHxA) are not significantly sorbed and therefore not expected to be significantly influenced by sediment transport. Situations in which highly contaminated particles entering relatively clean water bodies, equilibrium is approached from the reverse (desorption) direction. For irreversibly sorbed contaminants field-based K(D) values will be higher than the K(D) values derived from laboratory sorption data obtained from forward sorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Alginate and Algal-Based Beads for the Sorption of Metal Cations: Cu(II) and Pb(II)

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2016-01-01

    Alginate and algal-biomass (Laminaria digitata) beads were prepared by homogeneous Ca ionotropic gelation. In addition, glutaraldehyde-crosslinked poly (ethyleneimine) (PEI) was incorporated into algal beads. The three sorbents were characterized by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX): the sorption occurs in the whole mass of the sorbents. Sorption experiments were conducted to evaluate the impact of pH, sorption isotherms, and uptake kinetics. A special attention was paid to the effect of drying (air-drying vs. freeze-drying) on the mass transfer properties. For alginate, freeze drying is required for maintaining the porosity of the hydrogel, while for algal-based sorbents the swelling of the material minimizes the impact of the drying procedure. The maximum sorption capacities observed from experiments were 415, 296 and 218 mg Pb g−1 and 112, 77 and 67 mg Cu g−1 for alginate, algal and algal/PEI beads respectively. Though the sorption capacities of algal-beads decreased slightly (compared to alginate beads), the greener and cheaper one-pot synthesis of algal beads makes this sorbent more competitive for environmental applications. PEI in algal beads decreases the sorption properties in the case of the sorption of metal cations under selected experimental conditions. PMID:27598128

  14. Modification of a method-of-characteristics solute-transport model to incorporate decay and equilibrium-controlled sorption or ion exchange

    USGS Publications Warehouse

    Goode, D.J.; Konikow, Leonard F.

    1989-01-01

    The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.

  15. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.

    PubMed

    Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C

    2016-08-01

    The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.

    PubMed

    Bouaziz, Fatma; Koubaa, Mohamed; Kallel, Fatma; Ghorbel, Rhoudha Ellouz; Chaabouni, Semia Ellouz

    2017-12-01

    This work aimed at investigating the potential of almond gum as low cost adsorbent for the removal of the cationic dye; malachite green from aqueous solutions. Almond gum was first analyzed by scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), and then the adsorption behavior was studied in batch system. The effects of the adsorption parameters (adsorbent dose, pH, contact time, particle size, initial dye concentration, temperature and agitation) on the dye removal have been studied. Adsorption equilibrium and isotherms were evaluated depending on temperature using the isotherms of Freundlich, Langmuir, and Tempkin. The obtained result showed that both Langmuir and Freundlich models were adapted to study the dye sorption. The maximum adsorption capacities were equal to 172.41mg/g, 181.81mg/g, and 196.07mg/g at 303.16K, 313.16K, and 323.16K, respectively. The kinetics of sorption were following the pseudo-second order model. The thermodynamic changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) indicated that the adsorption of malachite green at the surface of almond gum is endothermic and occurs spontaneously. Desorption experiments were conducted to regenerate almond gum, showing great desorption capacity when using HCl at pH 2. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-01-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η − γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment. PMID:27682811

  18. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-09-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η - γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment.

  19. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter.

    PubMed

    Xu, Baile; Liu, Fei; Brookes, Philip C; Xu, Jianming

    2018-09-01

    Microplastics have a great potential to sorb organic pollutants from the adjacent environment. In this study, the sorption of tetracycline, a polar and ionizable antibiotic, on three types of microplastics (polyethylene (PE), polypropylene (PP) and polystyrene (PS)) were investigated in batch sorption experiments. The sorption isotherms were well fitted by the Langmuir model, indicating that not only hydrophobic interactions but also other interactions (e.g. electrostatic interactions) played important roles in the sorption process. PS had the maximum sorption capacity, following the order PS > PP > PE, which can be attributed to polar interactions and π-π interactions. The sorption of tetracycline on microplastics was significantly influenced by pH, with sorption capacity increasing gradually, peaking at pH 6.0 and then decreasing, likely due to the influence of tetracycline speciation with the change of pH. Fulvic acid was selected as representative dissolved organic matter (DOM) to examine the effect on sorption. The increasing concentration of fulvic acid inhibited the sorption of tetracycline on three microplastics, decreasing them by more than 90% at the fulvic acid concentration of 20 mg/L, which implied a greater affinity of tetracycline to fulvic acid than to microplastics. Increasing salinity from 0.05 to 3.5% had negligible effects on the sorption of tetracycline on the three microplastics. Our results highlight the importance of pH and DOM on the sorption of tetracycline on microplastics, and suggest the relatively minor role of microplastics in the fate and transport of tetracycline in the aquatic environment in the presence of DOM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Selective O 2 Sorption at Ambient Temperatures via Node Distortions in Sc-MIL-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.

    2016-05-24

    An open pored metal–organic framework (MOF) with oxygen selectivity at exceptionally high temperatures is confirmed by synthesis, sorption, and synchrotron structural analyses. The large-pore MIL-100 framework with access to the metal center (e.g., Sc and Fe) resulted in preferential O2 over N2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258, 298, and 313 K). Most notably, Sc-MIL-100 shows exceptional O2 sorption; pair distribution function analyses indicate that this is due to distortions in the framework owing to the size of Sc atoms, in particular in the trimer metal cluster. Experimental studies also correlate very well withmore » GCMC simulations, confirming more favorable O2-framework interactions at pressures up to 1 bar, due to the close proximity of O2 to the high density of metal centers in the small tetrahedral cages. Both materials maintain their crystallinity upon gas adsorption cycling, are regenerable, and show exceptional promise for use in energy efficient oxygen purification processes, such as Pressure Swing Adsorption.« less

  1. Infrared Study of CO2 Sorption over ?Molecular Basket? Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overbury, Steven; Wang, Xiaoxing; Clark, Jason

    2009-01-01

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75 C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIRmore » showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75 C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75 C. Comparative IR examination of the CO{sub 2} sorption/desorption spectra on dry and prewetted PEI/SBA-15 sorbent revealed that presorbed water does not significantly affect the CO{sub 2}-amine interaction patterns.« less

  2. Densimetry for the Quantification of Sorption Phenomena on Nonporous Media Near the Dew Point of Fluid Mixtures.

    PubMed

    Richter, Markus; McLinden, Mark O

    2017-07-21

    Phase equilibria of fluid mixtures are important in numerous industrial applications and are, thus, a major focus of thermophysical property research. Improved data, particularly along the dew line, are needed to improve model predictions. Here we present experimental results utilizing highly accurate densimetry to quantify the effects of sorption and capillary condensation, which exert a distorting influence on measured properties near the dew line. We investigate the (pressure, density, temperature, composition) behaviour of binary (CH 4  + C 3 H 8 ) and (Ar + CO 2 ) mixtures over the temperature range from (248.15 to 273.15) K starting at low pressures and increasing in pressure towards the dew point along isotherms. Three distinct regions are observed: (1) minor sorption effects in micropores at low pressures; (2) capillary condensation followed by wetting in macro-scale surface scratches beginning approximately 2% below the dew-point pressure; (3) bulk condensation. We hypothesize that the true dew point lies within the second region.

  3. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE PAGES

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    2017-05-02

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  4. The impacts of effective stress and CO 2 sorption on the matrix permeability of shale reservoir rocks [The impacts of CO 2 sorption and effective stress on the matrix permeability of shale reservoir rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wei; Zoback, Mark D.; Kohli, Arjun H.

    We assess the impacts of effective stress and CO 2 sorption on the bedding-parallel matrix permeability of the Utica shale through pressure pulse-decay experiments. We first measure permeability using argon at relatively high (14.6 MPa) and low (2.8 MPa) effective stresses to assess both pressure dependence and recoverability. We subsequently measure permeability using supercritical CO 2 and again using argon to assess changes due to CO 2 sorption. We find that injection of both argon and supercritical CO 2 reduces matrix permeability in distinct fashion. Samples with permeability higher than 10 –20 m 2 experience a large permeability reduction aftermore » treatment with argon, but a minor change after treatment with supercritical CO 2. However, samples with permeability lower than this threshold undergo a slight change after treatment with argon, but a dramatic reduction after treatment with supercritical CO 2. These results indicate that effective stress plays an important role in the evolution of relatively permeable facies, while CO 2 sorption dominates the change of ultra-low permeability facies. The permeability reduction due to CO 2 sorption varies inversely with initial permeability, which suggests that increased surface area from hydraulic stimulation with CO 2 may be counteracted by sorption effects in ultra-low permeability facies. As a result, we develop a conceptual model to explain how CO 2 sorption induces porosity reduction and volumetric expansion to constrict fluid flow pathways in shale reservoir rocks.« less

  5. Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Azeez, Luqmon; Lateef, Agbaje; Adebisi, Segun A.; Oyedeji, Abdulrasaq O.

    2018-03-01

    This study has investigated the adsorption of Rhodamine B (Rh-B) dye on novel biosynthesized silver nanoparticles (AgNPs) from cobweb. The effects of contact time, initial pH, initial dye concentration, adsorbent dosage and temperature were studied on the removal of Rh-B and they significantly affected its uptake. Adsorption isotherms were evaluated using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The adsorption process was best described by Langmuir isotherm with R 2 of 0.9901, indicating monolayer adsorption. The maximum adsorption capacity ( q max) of 59.85 mg/g showed that it has relatively high performance, while adsorption intensity showed a favourable adsorption process. Pseudo-second-order kinetics fitted best the rate of adsorption and intra-particle diffusion revealed both surface adsorption and intra-particle diffusion-controlled adsorption process. Negative values of thermodynamic parameters (Δ H°, Δ S° and Δ G°) indicated an exothermic and spontaneous adsorption process. The mean sorption energy ( E) and activation energy ( E a) suggested the uptake of Rh-B onto AgNPs was chemical in nature (chemosorption).

  6. Plutonium(IV) and (V) sorption to goethite at sub-femtomolar to micromolar concentrations: Redox transformations and surface precipitation

    DOE PAGES

    Zhao, Pihong; Begg, James D.; Zavarin, Mavrik; ...

    2016-06-06

    Here, Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10 –15–10 –5 M at pH 8. Experiments with initial Pu concentrations of 10 –15 – 10 –8 M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of themore » initial Pu oxidation state. At initial concentrations >10 –8 M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10 –8 – 10 –6 M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10 –6 M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu 4O 7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.« less

  7. Sorption of selected pharmaceuticals and pesticides on different river sediments.

    PubMed

    Radović, Tanja T; Grujić, Svetlana D; Kovačević, Srđan R; Laušević, Mila D; Dimkić, Milan A

    2016-12-01

    In the present work, the sorption ability of 17 pharmaceutical compounds, two metabolites, and 15 pesticides (34 target compounds in total) onto four different river sediments was investigated separately. Selected compounds present the most frequently prescribed pharmaceuticals in human and animal medicine and the most frequently used pesticides in agriculture. Their presence into the surface, ground, and waste waters was confirmed into the numerous papers in literature, as well as their presence into the river sediments (for some of them). However, investigations of their sorption onto the river sediments, as major natural protection from potential pollution of ground water by them is missing. Sorption in this study was investigated onto river sediments taken from rivers in the Republic of Serbia, where only less than 10 % of total generated waste water passes through mainly basic treatment processes. Experiments were based on batch equilibrium procedures and obtained solutions were analyzed by previously developed and validated sensitive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analytical methods. All results were modeled by Freundlich isotherms. Obtained results have shown that Kf coefficient values are in correlation with organic carbon content. Kd sorption coefficient values were relatively low and ranged in wide ranges for almost all compounds and sediments. That implicates on the conclusion that capacities of the investigated sorbents are not large for those compounds.

  8. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    PubMed

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  9. Lipase hydration state in the gas phase: sorption isotherm measurements and inverse gas chromatography.

    PubMed

    Marton, Zsuzsanna; Chaput, Ludovic; Pierre, Guillaume; Graber, Marianne

    2010-11-01

    The adsorption of water and substrate on immobilized Candida antarctica lipase B was studied by performing adsorption isotherm measurements and using inverse gas chromatography (IGC). Water adsorption isotherm of the immobilized enzyme showed singular profile absorption incompatible with the Brunauer-Emmet-Teller model, probably due to the hydrophobic nature of the support, leading to very low interactions with water. IGC allowed determining the evolution with water thermodynamic activity (a(W)) of both dispersive surface energies and acidity and basicity constants of immobilized enzyme. These results showed that water molecules progressively covered immobilized enzyme, when increasing a(W), leading to a saturation of polar groups above a(W) 0.1 and full coverage of the surface above a(W) 0.25. IGC also enabled relevant experiments to investigate the behavior of substrates under a(W) that they will experience, in a competitive situation with water. Results indicated that substrates had to displace water molecules in order to adsorb on the enzyme from a(W) values ranging from 0.1 to 0.2, depending on the substrate. As the conditions used for these adsorption studies resemble the ones of the continuous enzymatic solid/gas reactor, in which activity and selectivity of the lipase were extensively studied, it was possible to link adsorption results with particular effects of water on enzyme properties.

  10. Competitive sorption of atenolol, trimetoprim, carbamazepine and sulfamethoxazole in three soil types

    NASA Astrophysics Data System (ADS)

    Kočárek, Martin; Kodešová, Radka; Klement, Aleš; Golovko, Oksana; Fér, Miroslav; Nikodem, Antonín; Vondráčková, Lenka; Jakšík, Ondřej; Grabic, Roman

    2016-04-01

    Transport of human and veterinary pharmaceuticals in soils and consequent ground-water contamination are influenced by many factors, including compound sorption on soil particles and dissipation. Batch sorption experiment for 9 soils (3 soil types with 3 (Greyic Phaeozem on loess), 4 (Haplic Luvisol on loess) and 2 (Haplic Cambisol on gneiss) horizons) and mixture of 4 pharmaceuticals (atenolol, trimetoprim, carbamazepine and sulfamethoxazole) was performed to study competitive sorption of compounds in each soil sample. Sorption affinities and dissipation half-lives of all compounds in topsoils were previously studied by Kodešová et al. (2015 and 2016). Ten grams of dry soil was placed directly into the plastic centrifuge tubes and 20 ml of solution of a known pharmaceutical concentration was added. The same concentrations (0.5, 1, 2.5, 5 and 10 mg/l) were used for all compounds. Three replicates of each concentration were applied for each soil. Tube was shaken for 24 h using the shaking apparatus at 20 C. After shaking, the analyzed soil suspension was centrifuged for 10 min at 6,000 rotations per minute. The actual initial and final equilibrium pharmaceutical concentrations were measured using two-dimensional liquid chromatography-tandem mass spectrometry LC/LC-MS/MS using isotope dilution and internal standard methods. The pharmaceutical concentration adsorbed on soil particles was calculated using the initial and final (i.e. after incubation) pharmaceutical concentrations. The Freundlich equations were used to fit data points of the measured adsorption isotherms. In the case of carbamazepine (neutral form) and sulfamethoxazole (partly negatively charged) sorption affinity of compounds decrease with soil depth. On the other hand in the case of atenolol and trimethoprim (both positively charged) compound sorption affinity was not depth dependent. Data obtained for top soils were compared with sorption affinities for single compounds published by (Kodešová et

  11. Effect of humic substances on P sorption capacity of three different soils

    NASA Astrophysics Data System (ADS)

    Delgado, Antonio

    2010-05-01

    Organic matter decreases P sorption by soils. It has been demonstrated the effect of low molecular weight compounds decreasing P adsorption on active surfaces and the effect of humic and fulvic acids inhibiting the precipitation of hydroxyapatite and favouring the formation of more soluble phosphates. This contributes to increase the recovery of applied P fertilizer. The objective of this work was to study the effect of 4 different humic substances (commercially available and provided by Tradecorp Internacional S.A.) on the sorption capacity of three soils differing widely in chemical properties (two calcareous from south Spain, pH 8 and 8.5, and other acidic from Brazil, pH 5.9 and 50 % of exchangeable basic cations). To this end, sorption isotherms were performed at a soil:0.01 M CaCl2 ratio of 1:10 at 6, 30 and 90 days. 2.5 mg of humic substances per g of soil were added to the solution. Data were fitted to the best model and linearized sorption curves for each humic substance were compared with the linearized sorption curve for the control without humic substances application (intersection point and slopes). Soil from Brazil showed a much higher sorption capacity (400 mg P kg-1 soil sorbed at 1 mg L-1 of P in the solution at 1 day) than the other two soils (50 and 100 mg P kg-1). Slow reactions significantly contributed to P sorption in the three soils, amounts sorbed at 90 days being twice than those sorbed at 1 day. Two of the products increased P sorption in the soil from Brazil at 1 day. At 90 days all the products increased P sorption significantly. This increased P sorption can be only explained by metal complexation by the substances applied, which may result in organo-metallic compounds with a high P sorption capacity. This effect was independent of the proportion of humic and fulvic acids in the applied products because the amounts of metal complexed by these compouds depend on the amount of functional groups to coordinate with metals. In the Spanish

  12. Sorption and degradation of selected pharmaceuticals in representative soils of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Golovko, Oksana; Grabic, Roman; Fer, Miroslav; Nikodem, Antonin; Jaksik, Ondrej

    2015-04-01

    Knowledge of contaminant behavior (e.g. its sorption onto soil particle, degradation etc.) is essential when assessing contaminant migration in soil and groundwater environment. This study was focused on evaluating sorption isotherms and half-lives for 7 pharmaceuticals (clarithromycin, trimethoprim, metoprolol, atenolol, clindamycin, carbamazepine, sulfamethoxazole) on 13 soils of different soil properties. Sorption of ionizable compounds was highly affected by soil pH. The sorption coefficient of sulfamethoxazole was negatively correlated to soil pH and thus positively related to hydrolytic acidity and exchangeable acidity. Sorption coefficients for clindamycin and clarithromycin were positively related to soil pH and thus negatively related to hydrolytic acidity and exchangeable acidity and positively related to base cation saturation. Sorption coefficients for the remaining pharmaceuticals (trimethoprim, metoprolol, atenolol, and carbamazepine) were also positively correlated with the base cation saturation and cation exchange capacity. Degradation rates in some degree reflected sorption of studied pharmaceuticals on soil particles and increased with decreasing sorption. The highest mobility in studied soils was observed for sulfamethoxazole, but this pharmaceutical was relatively quickly degraded. The second highest mobility was found for carbamazepine, which mostly did not noticeably degrade during our experiments. Thus this pharmaceutical has the highest potential to migrate in water environment. The lowest mobility was observed for clarithromycin. However, this pharmaceutical due to its stability may be retained in an environment for a long time. Acknowledgement: The authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S, Transport of pharmaceuticals in soils). References: Kodesova, R., Grabic, R., Kocarek, M., Klement, A., Golovko, O., Fer, M., Nikodem, A., Jaksik, O., Pharmaceuticals' sorptions relative to

  13. Prediction of the sorption capacities and affinities of organic chemicals by XAD-7.

    PubMed

    Yang, Kun; Qi, Long; Wei, Wei; Wu, Wenhao; Lin, Daohui

    2016-01-01

    Macro-porous resins are widely used as adsorbents for the treatment of organic contaminants in wastewater and for the pre-concentration of organic solutes from water. However, the sorption mechanisms for organic contaminants on such adsorbents have not been systematically investigated so far. Therefore, in this study, the sorption capacities and affinities of 24 organic chemicals by XAD-7 were investigated and the experimentally obtained sorption isotherms were fitted to the Dubinin-Ashtakhov model. Linear positive correlations were observed between the sorption capacities and the solubilities (SW) of the chemicals in water or octanol and between the sorption affinities and the solvatochromic parameters of the chemicals, indicating that the sorption of various organic compounds by XAD-7 occurred by non-linear partitioning into XAD-7, rather than by adsorption on XAD-7 surfaces. Both specific interactions (i.e., hydrogen-bonding interactions) as well as nonspecific interactions were considered to be responsible for the non-linear partitioning. The correlation equations obtained in this study allow the prediction of non-linear partitioning using well-known chemical parameters, namely SW, octanol-water partition coefficients (KOW), and the hydrogen-bonding donor parameter (αm). The effect of pH on the sorption of ionizable organic compounds (IOCs) could also be predicted by combining the correlation equations with additional equations developed from the estimation of IOC dissociation rates. The prediction equations developed in this study and the proposed non-linear partition mechanism shed new light on the selective removal and pre-concentration of organic solutes from water and on the regeneration of exhausted XAD-7 using solvent extraction.

  14. Water sorption-desorption in conifer cuticles: The role of lignin.

    PubMed

    Reina, José J.; Domínguez, Eva; Heredia, Antonio

    2001-07-01

    Current information on the type and amount of biopolymers present in the epidermis of conifer species is still insufficient. This work presents the detailed morphology and chemical composition of Araucaria bidwillii cuticle after selective treatments to remove the different types of biopolymers. After removal of the waxes, cutin and polar hydrolyzable components, a lignin-like fraction, which makes up 25% of the initial cuticle weight, was identified by GC-MS and infrared spectroscopy. The isolated lignin is of G type, mainly formed by guaiacyl units. This composition indicates that the conifer cuticle investigated here has similar composition to other conifer-isolated cuticles. Water sorption and desorption by the isolated cuticle and the different cuticle fractions, including lignin, were studied. The analysis of the isotherms, following distinct physicochemical models, gave useful information on the structural and physiological role of the different biopolymers present in the cuticle. Lignin fraction showed both a high water sorption and capability of retaining it in comparision to other cuticle components. Hysteresis effect on water sorption-desorption cycle and water cluster formations has also been studied, and their physiological role discussed.

  15. Differences in sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid on artificial soils as a function of soil pre-aging.

    PubMed

    Waldner, Georg; Friesl-Hanl, Wolfgang; Haberhauer, Georg; Gerzabek, Martin H

    The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/ n exponents, and K d values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

  16. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    NASA Astrophysics Data System (ADS)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  17. Kinetic studies on phosphorus sorption by selected soil amendments for septic tank effluent renovation.

    PubMed

    Cheung, K C; Venkitachalam, T H

    2006-01-01

    A systematic kinetic study of phosphorus (P) sorption by various materials in the soil infiltration system of septic tanks was undertaken by following the time course of P sorption by sorbents in contact with various P solutions over periods up to 360 days. Uptake of P seemed to consist of two distinct stages. Initial uptake was very rapid and this phase was completed in 4 days or less. A slower removal stage followed for some materials over many months. Phosphorus sorption during the fast reaction stage appeared to be associated with the soluble Ca content of the materials. The fast reaction of calcareous materials accounted for the bulk (>70%) of the total P removed. Merribrook loamy sand exhibited the highest proportion of P sorption during the slow phase. It should be noted, however, that for solution P concentrations in the range found in typical effluents (approximately 20 mg L(-1)) the fast reaction phase seemed to be responsible for virtually all P removed. None of the six kinetic formulae examined possessed the sophistication and detail needed to portray accurately the time course of P sorption for all the sorbents investigated. The Elovich equation and the kinetic modification of the Freundlich isotherm expression appeared to provide a reasonable fit of the experimental data.

  18. Sorption behavior of uranium(VI) on a biotite mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idemitsu, K.; Obata, K.; Furuya, H.

    1995-12-31

    Biotite has the most important role for the sorption of radionuclides in granitic rocks. Experiments on the sorption of uranium(VI) on biotite were conducted to understand the fundamental controls on uranium sorption on biotite mineral, including the effects of pH and uranium concentration in solution. Biotite powder (mesh 32--60) were washed with 1N HCl for a week and were rinsed twice with deionized water for a week. This HCl treatment was necessary to avoid the effects by other minerals. The agreement between surface adsorption coefficient, Ka, of both biotites with and without HCl treatment was within one order of magnitude.more » The peak Ka value was in the range of 0.1 to 0.01 cm{sup 3}/cm{sup 2} around pH 6. A comparison of aqueous uranium speciations and sorption results indicates that neutral uranyl hydroxide could be an important species sorbed on the biotite. Sequential desorption experiments with KCl and HCl solutions were also carried out after sorption experiments to investigate sorption forms of uranium. Approximately 20% of uranium in solution were sorbed on the biotite as an exchangeable ion. The fraction of exchangeable uranium had a little dependence on pH. The other uranium could not be extracted even by 6N HCl solution. It is possible that most of the uranium could be precipitated as U(IV) via Fe(II) reduction on the biotite surface.« less

  19. Sorption of Ferrioxime B to Synthetic and Biogenic layer type Mn Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O. W.; Bargar, J. R.; Sposito, G.

    2005-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effect of solid-phase Mn(IV), we studied the sorption reaction of ferrioxamine B [principally the species, Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore, desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over the pH range between 5 and 9. After 72 h equilibration time at pH 8, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-Ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the X-ray absorption spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed with DFOB, but instead is incorporated into the mineral structure, thus implying that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron.

  20. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G.; White, S. M.

    2012-12-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg l-1 to 0.061 mg l-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  1. Phosphorus sorption and buffering mechanisms in suspended sediments from the Yangtze Estuary and Hangzhou Bay, China

    NASA Astrophysics Data System (ADS)

    Li, M.; Whelan, M. J.; Wang, G. Q.; White, S. M.

    2013-05-01

    The adsorption isotherm and the mechanism of the buffering effect are important controls on phosphorus (P) behaviors in estuaries and are important for estimating phosphate concentrations in aquatic environments. In this paper, we derive phosphate adsorption isotherms in order to investigate sediment adsorption and buffering capacity for phosphorus discharged from sewage outfalls in the Yangtze Estuary and Hangzhou Bay near Shanghai, China. Experiments were also carried out at different temperatures in order to explore the buffering effects for phosphate. The results show that P sorption in sediments with low fine particle fractions was best described using exponential equations. Some P interactions between water and sediment may be caused by the precipitation of CaHPO4 from Ca2+ and HPO42- when the phosphate concentration in the liquid phase is high. Results from the buffering experiments suggest that the Zero Equilibrium Phosphate Concentrations (EPC0) vary from 0.014 mg L-1 to 0.061 mg L-1, which are consistent with measured phosphate concentrations in water samples collected at the same time as sediment sampling. Values of EPC0 and linear sorption coefficients (K) in sediments with high fine particle and organic matter contents are relatively high, which implies that they have high buffering capacity. Both EPC0 and K increase with increasing temperature, indicating a higher P buffering capacity at high temperatures.

  2. Interactions among K+-Ca2+ exchange, sorption of m-dinitrobenzene, and smectite quasicrystal dynamics.

    PubMed

    Chatterjee, Ritushree; Laird, David A; Thompson, Michael L

    2008-12-15

    The fate of organic contaminants in soils and sediments is influenced by sorption of the compounds to surfaces of soil materials. We investigated the interaction among sorption of an organic compound, cation exchange reactions, and both the size and swelling of smectite quasicrystals. Two reference smectites that vary in location and amount of layer charge, SPV (a Wyoming bentonite) and SAz-1 were initially Ca- and K-saturated and then equilibrated with mixed 0.01 M KCl and 0.005 M CaCl2 salt solutions both with and without the presence of 200 mg L(-1) m-dinitrobenzene (m-DNB). In general, sorption of m-DNB increased with the amount of K+ in the system for both clays, and the SPV sorbed more m-DNB than the SAz-1. Sorption of m-DNB increased the preference of Ca-SPV for K+ relative to Ca2+ but had little effect on K+-Ca2+ selectivity for K-SPV. Selectivity for K+ relative to Ca2+ was slightly higher for both K-SAz-1 and Ca-SAz-1 in the presence of m-DNB than in its absence. Distinct hysteresis loops were observed for the K+-Ca2+ cation exchange reactions for both clays, and the legacy of having been initially Ca- or K-saturated influenced sorption of m-DNB by SPV but had little effect for SAz-1. Suspension X-ray diffraction was used to measure changes in d-spacing and the relative thickness of smectite quasicrystals during the cation exchange and m-DNB sorption reactions. The results suggest that interactions among cation exchange and organic sorption reactions are controlled byan inherently hysteretic complex feedback process that is regulated by changes in the size and extent of swelling of smectite quasicrystals.

  3. Sorption of phenanthrene and benzene on differently structural kerogen: important role of micropore-filling.

    PubMed

    Zhang, Yulong; Ma, Xiaoxuan; Ran, Yong

    2014-02-01

    Shale was thermally treated to obtain a series of kerogen with varied maturation. Their chemical, structural and porous properties were related to the sorption and/or desorption behaviors of phenanthrene and benzene. As the treatment temperature increases, aliphatic and carbonyl carbon of the kerogen samples decrease, while their aromaticity and maturation increase. Meanwhile, the isothermal nonlinearity of phenanthrene and benzene increases whereas the sorption capacity and micropore adsorption volumes (Vo,d) initially increase and then decrease. The Vo,d of benzene is significantly correlated with, but higher than that of phenanthrene, suggesting similar micropore filling mechanism and molecular sieve effect. The benzene desorption exhibits hysteresis, which is related to the pore deformation of the kerogen and the entrapment of solute in the kerogen matrix. The Vo,d of phenanthrene and benzene on the kerogen samples accounts for 23-46% and 36-65% of the maximum sorption volumes, respectively, displaying the importance of the micropore filling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    PubMed

    Timmer, Niels; Droge, Steven T J

    2017-03-07

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (D MW,PBS ) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log D MW values above 4. Renewal of the medium resulted in linear sorption isotherms. D MW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed D MW,PBS . Log D MW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the D MW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  5. Sorption processes affecting arsenic solubility in oxidized surface sediments from Tulare Lake Bed, California

    USGS Publications Warehouse

    Gao, S.; Goldberg, S.; Herbel, M.J.; Chalmers, A.T.; Fujii, R.; Tanji, K.K.

    2006-01-01

    Elevated concentrations of arsenic (As) in shallow groundwater in Tulare Basin pose an environmental risk because of the carcinogenic properties of As and the potential for its migration to deep aquifers that could serve as a future drinking water source. Adsorption and desorption are hypothesized to be the major processes controlling As solubility in oxidized surface sediments where arsenate [As(V)] is dominant. This study examined the relationship between sorption processes and arsenic solubility in shallow sediments from the dry Tulare Lake bed by determining sorption isotherms, pH effect on solubility, and desorption-readsorption behavior (hysteresis), and by using a surface complexation model to describe sorption. The sediments showed a high capacity to adsorb As(V). Estimates of the maximum adsorption capacity were 92 mg As kg- 1 at pH 7.5 and 70 mg As kg- 1 at pH 8.5 obtained using the Langmuir adsorption isotherm. Soluble arsenic [> 97% As(V)] did not increase dramatically until above pH 10. In the native pH range (7.5-8.5), soluble As concentrations were close to the lowest, indicating that As was strongly retained on the sediment. A surface complexation model, the constant capacitance model, was able to provide a simultaneous fit to both adsorption isotherms (pH 7.5 and 8.5) and the adsorption envelope (pH effect on soluble As), although the data ranges are one order of magnitude different. A hysteresis phenomenon between As adsorbed on the sediment and As in solution phase was observed in the desorption-readsorption processes and differs from conventional hysteresis observed in adsorption-desorption processes. The cause is most likely due to modification of adsorbent surfaces in sediment samples upon extensive extractions (or desorption). The significance of the hysteresis phenomenon in affecting As solubility and mobility may be better understood by further microscopic studies of As interaction mechanisms with sediments subjected to extensive leaching

  6. Adsorption of methyl orange from aqueous solution by aminated pumpkin seed powder: Kinetics, isotherms, and thermodynamic studies.

    PubMed

    Subbaiah, Munagapati Venkata; Kim, Dong-Su

    2016-06-01

    Present research discussed the utilization of aminated pumpkin seed powder (APSP) as an adsorbent for methyl orange (MO) removal from aqueous solution. Batch sorption experiments were carried to evaluate the influence of pH, initial dye concentration, contact time, and temperature. The APSP was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The experimental equilibrium adsorption data were fitted using two two-parameter models (Langmuir and Freundlich) and two three-parameter models (Sips and Toth). Langmuir and Sips isotherms provided the best model for MO adsorption data. The maximum monolayer sorption capacity was found to be 200.3mg/g based on the Langmuir isotherm model. The pseudo-first-order and pseudo-second-order model equations were used to analyze the kinetic data of the adsorption process and the data was fitted well with the pseudo-second-order kinetic model (R(2)>0.97). The calculated thermodynamic parameters such as ΔG(0), ΔH(0) and ΔS(0) from experimental data showed that the sorption of MO onto APSP was feasible, spontaneous and endothermic in the temperature range 298-318 K. The FTIR results revealed that amine and carboxyl functional groups present on the surface of APSP. The SEM results show that APSP has an irregular and porous surface which is adequate morphology for dye adsorption. Desorption experiments were carried to explore the feasibility of adsorbent regeneration and the adsorbed MO from APSP was desorbed using 0.1M NaOH with an efficiency of 93.5%. Findings of the present study indicated that APSP can be successfully used for removal of MO from aqueous solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Infrared study of CO{sub 2} sorption over 'molecular basket' sorbent consisting of polyethylenimine-modified mesoporous molecular sieve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.X.; Schwartz, V.; Clark, J.C.

    2009-04-15

    An infrared study has been conducted on CO{sub 2} sorption into nanoporous CO{sub 2} 'molecular basket' sorbents prepared by loading polyethylenimine (PEI) into mesoporous molecular sieve SBA-15. IR results from DRIFTS showed that a part of loaded PEI is anchored on the surface of SBA-15 through the interaction between amine groups and isolated surface silanol groups. Raising the temperature from 25 to 75{sup o}C increased the molecular flexibility of PEI loaded in the mesopore channels, which may partly contribute to the increase of CO{sub 2} sorption capacity at higher temperatures. CO{sub 2} sorption/desorption behavior studied by in situ transmission FTIRmore » showed that CO{sub 2} is sorbed on amine sites through the formation of alkylammonium carbamates and absorbed into the multiple layers of PEI located in mesopores of SBA-15. A new observation by in situ IR is that two broad IR bands emerged at 2450 and 2160 cm{sup -1} with CO{sub 2} flowing over PEI(50)/SBA-15, which could be attributed to chemically sorbed CO{sub 2} species on PEI molecules inside the mesopores of SBA-15. The intensities of these two bands also increased with increasing CO{sub 2} exposure time and with raising CO{sub 2} sorption temperature. By comparison of the CO{sub 2} sorption rate at 25 and 75{sup o}C in terms of differential IR intensities, it was found that CO{sub 2} sorption over molecular basket sorbent includes two rate regimes which suggest two distinct steps: rapid sorption on exposed outer surface layers of PEI (controlled by sorption affinity or thermodynamics) and the diffusion and sorption inside the bulk of multiple layers of PEI (controlled by diffusion). The sorption of CO{sub 2} is reversible at 75{sup o}C.« less

  8. Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies.

    PubMed

    Tan, Xiaoli; Fan, Qiaohui; Wang, Xiangke; Grambow, Bernd

    2009-05-01

    The sorption of Eu(III) on anatase and rutile was studied as a function of ionic strength, humic acid (HA, 7.5 mg/L), and electrolyte anions over a large range of pH (2-12). The presence of HA significantly affected Eu(III) sorption to anatase and rutile. The sorption of Eu(III) on anatase and rutile was independent of ionic strength. Results of an X-ray photoelectron spectroscopy (XPS) analysis showed that Eu(III) was chemically present within the near-surface of TiO2 due to the formation of triple bond SOEu and triple bond SOHAEu complexes. An extended X-ray absorption fine structure (EXAFS) technique was applied to characterize the local structural environment of the adsorbed Eu(III), and the results indicated that Eu(III) was bound to about seven or eight O atoms at a distance of about 2.40 A. The functional groups of surface-bound HA were expected to be involved in the sorption process. The measured Eu-Ti distance confirmed the formation of inner-sphere sorption complexes on a TiO2 surface.

  9. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.

    PubMed

    Deng, Shubo; Ting, Yen Peng

    2005-11-01

    Heavy metal pollution in the aqueous environment is a problem of global concern. Biosorption has been considered as a promising technology for the removal of low levels of toxic metals from industrial effluents and natural waters. A modified fungal biomass of Penicillium chrysogenum with positive surface charges was prepared by grafting polyethylenimine (PEI) onto the biomass surface in a two-step reaction. The presence of PEI on the biomass surface was verified by FTIR and X-ray photoelectron spectroscopy (XPS) analyses. Due to the high density of amine groups in the long chains of PEI molecules on the surface, the modified biomass was found to possess positive zeta potential at pH below 10.4 as well as high sorption capacity for anionic Cr(VI). Using the Langmuir adsorption isotherm, the maximum sorption capacity for Cr(VI) at a pH range of 4.3-5.5 was 5.37 mmol/g of biomass dry weight, the highest sorption capacity for Cr(VI) compared to other sorbents reported in the literature. Scanning electronic microscopy (SEM) provided evidence of chromium aggregates formed on the biomass surface. XPS results verified the presence of Cr(III) on the biomass surface in the pH range 2.5-10.5, suggesting that some Cr(VI) anions were reduced to Cr(III) during the sorption. The sorption kinetics indicated that redox reaction occurred on the biomass surface, and whether the converted Cr(III) ions were released to solution or adsorbed on the biomass depended on the solution pH. Sorption mechanisms including electrostatic interaction, chelation, and precipitation were found to be involved in the complex sorption of chromium on the PEI-modified biomass.

  10. Phenanthrene and 2,2',5,5'-PCB sorption by several soils from methanol-water solutions: the effect of weathering and solute structure.

    PubMed

    Hyun, Seunghun; Kim, Minhee; Baek, Kitae; Lee, Linda S

    2010-01-01

    The effect of the sorption of phenanthrene and 2,2',5,5'-polychlorinated biphenyl (PCB52) by five differently weathered soils were measured in water and low methanol volume fraction (f(c)0.5) as a function of the apparent solution pH (pH(app)). Two weathered oxisols (A2 and DRC), and moderately weathered alfisols (Toronto) and two young soils (K5 and Webster) were used. The K(m) (linear sorption coefficient) values, which log-linearly decreases with f(c), were interpreted using a cosolvency sorption model. For phenanthrene sorption at the natural pH, the empirical constant (alpha) ranged between 0.95 and 1.14, and was in the order of oxisols (A2 and DRC)sorption reduction than those predicted from the increment of the solute's activity coefficient in the solution phase. A similar trend was observed for PCB52 sorption. The K(m) values measured at the range of pH 3-7 also showed an inversely log-linear relationship. The regression slope (alphasigma) calculated from the cosolvency sorption model as a function of pH(app) only varied within <5%, with the exception for phenanthrene sorption by two highly weathered soils, which had 10% greater alphasigma values obtained at acidic pH(app). This phenomenon is a result of the greater acid enhancement effect on phenanthrene sorption by the oxisols, which is reduced with increasing f(c). These results revealed an unexplored relationship between the cosolvent effect on the sorption and the properties of the soil organic matter (a primary sorption domain) as a function of the degree of soil weathering. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Selective O 2 sorption at ambient temperatures via node distortions in Sc-MIL-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.

    2016-04-14

    In this study, oxygen selectivity in metal-organic frameworks (MOFs) at exceptionally high temperatures originally predicted by Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) modeling is now confirmed by synthesis, sorption metal center access, in particular Sc and Fe. Based on DFT M-O 2 binding energies, we chose the large pored MIL-100 framework for metal center access, in particular Sc and Fe. Both resulted in preferential O 2 and N 2 gas uptake at temperatures ranging from 77 K to ambient temperatures (258 K, 298 K and 313 K).

  12. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA)

    PubMed Central

    Shi, Xuedan; Ruan, Wenqian; Hu, Jiwei; Fan, Mingyi; Cao, Rensheng; Wei, Xionghui

    2017-01-01

    Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model. PMID:28587196

  13. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    NASA Astrophysics Data System (ADS)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  14. Roles of functional groups of naproxen in its sorption to kaolinite.

    PubMed

    Yu, Chenglong; Bi, Erping

    2015-11-01

    The sorption of acidic anti-inflammatory drugs to soils is important for evaluating their fate and transformations in the water-soil environment. However, roles of functional groups of ionisable drugs onto mineral surfaces have not been sufficiently studied. In this study, batch experiments of naproxen (NPX, anti-inflammatory drug) and two kinds of competitors to kaolinite were studied. The Kd of naproxen to kaolinite is 1.30-1.62 L kg(-1). The n-π electron donor-acceptor (n-π EDA) interaction between diaromatic ring of naproxen (π-electron acceptors) and the siloxane oxygens (n-donors) of kaolinite is the dominant sorption mechanism. The carboxyl group of naproxen can contribute to the overall sorption. A conception model was put forward to elucidate to sorption mechanisms, in which the contribution of n-π EDA and hydrogen bond to overall sorption was quantified. These sorption mechanisms can be helpful for estimating the fate and mobility of acid pharmaceuticals in soil-water environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Isothermal reduction kinetics of Panzhihua ilmenite concentrate under 30vol% CO-70vol% N2 atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-yi; Lü, Wei; Lü, Xue-wei; Li, Sheng-ping; Bai, Chen-guang; Song, Bing; Han, Ke-xi

    2017-03-01

    The reduction of ilmenite concentrate in 30vol% CO-70vol% N2 atmosphere was characterized by thermogravimetric and differential thermogravimetric (TG-DTG) analysis methods at temperatures from 1073 to 1223 K. The isothermal reduction results show that the reduction process comprised two stages; the corresponding apparent activation energy was obtained by the iso-conversional and model-fitting methods. For the first stage, the effect of temperature on the conversion degree was not obvious, the phase boundary chemical reaction was the controlling step, with an apparent activation energy of 15.55-40.71 kJ·mol-1. For the second stage, when the temperatures was greater than 1123 K, the reaction rate and the conversion degree increased sharply with increasing temperature, and random nucleation and subsequent growth were the controlling steps, with an apparent activation energy ranging from 182.33 to 195.95 kJ·mol-1. For the whole reduction process, the average activation energy and pre-exponential factor were 98.94-118.33 kJ·mol-1 and 1.820-1.816 min-1, respectively.

  16. Sorption of nonpolar aromatic contaminants by chlorosilane surface modified natural minerals.

    PubMed

    Huttenloch, P; Roehl, K E; Czurda, K

    2001-11-01

    The efficacy of the surface modification of natural diatomite and zeolite material by chlorosilanes is demonstrated. Chlorosilanes used were trimethylchlorosilane (TMSCI), tert-butyldimethylchlorosilane (TBDMSCI), dimethyloctadecylchlorosilane (DMODSCI), and diphenyldichlorosilane (DPDSCI) possessing different headgroups and chemical properties. Silanol groups of the diatomite and zeolite were modified by chemical reaction with the chlorosilanes resulting in a stable covalent attachment of the organosilanes to the mineral surface. The alteration of surface properties of the modified material was proved by measurements of water adsorption capacity, total organic carbon (TOC) content, and thermoanalytical data. The surface modified material showed great stability even when exposed to extremes in ionic strength, pH, and to pure organic solvents. Sorption of toluene, o-xylene, and naphthalene from water was greatly enhanced by the surface modification compared to the untreated materials which showed no measurable sorption of these compounds. The enhanced sorption was dependent on the organic carbon content as well as on chemical characteristics of the chlorosilanes used. Batch sorption experiments showed that the phenyl headgroups of DPDSCI have the best affinity for aromatic compounds. Removal from an aqueous solution of 10 mg/L of naphthalene, o-xylene, and toluene was 71%, 60%, and 30% for surface modified diatomite and 51%, 30%, and 16% for modified clinoptilolite, respectively. Sorption data were well described by the Freundlich isotherm equation, which indicated physical adsorption onto the lipophilic surface rather than partitioning into the surface organic phase. The chlorosilane modified materials have an apparent potential for application in environmental technologies such as permeable reactive barriers (PRB) or wastewater treatment.

  17. Cadmium removal by bioclastic granules (Lithothamnium calcareum): batch and fixed-bed column systems sorption studies.

    PubMed

    Veneu, Diego Macedo; Schneider, Claudio Luiz; de Mello Monte, Marisa Bezerra; Cunha, Osvaldo Galvão Caldas; Yokoyama, Lídia

    2018-07-01

    The potential of Bioclastic Granules - BG (calcium-carbonate-based material) using the algae Lithothamnium calcareum as sorbent for the removal of Cd(II) from aqueous solutions by sorption was evaluated through batch and continuous systems tests using a fixed-bed column. Sorption process variables, in particular pH (2-7), particle size (<38-300 μm), initial BG concentration (0.1-1.0 g L -1 ), initial Cd(II) concentrations (5-400 mg L -1 ) and contact time (5-240 min), were evaluated. Adsorption isotherm profiles of Cd(II) per BG were similar to an L-type, or Langmuir type, with the adsorption forming a monolayer of approximately 0.61 μm, with a q max of 188.74 mg g -1 and k L of 0.710 L mg -1 . Thomas's model considers that sorption is not limited to a chemical reaction but is controlled by mass transfer at the interface. In the present study, the obtained value of k Th was 0.895 mL h -1  mg -1 , reaching a sorption capacity q o of 124.4 mg g -1 . For the Yoon-Nelson model, it was possible to obtain two important parameters to describe the behavior of the column, the rate constant (k YN ), obtaining a value of 0.09 h -1 and an τ of 82.12 h corresponding to the time required for sorption to occur of 50% of the solute in the rupture curve. X-ray diffraction and scanning electron microscopy analyses coupled to the X-ray dispersive energy system (SEM/EDS) of the BG after the Cd(II) ion sorption tests evidenced the formation of crystals with the prevalence of a new mineral phase (otavite).

  18. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums.

    PubMed

    Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J

    2012-06-20

    Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Role of Inherent Inorganic Constituents in SO2 Sorption Ability of Biochars Derived from Three Biomass Wastes.

    PubMed

    Xu, Xiaoyun; Huang, Daxuan; Zhao, Ling; Kan, Yue; Cao, Xinde

    2016-12-06

    Biochar is rich in both organic carbon and inorganic components. Extensive work has attributed the high sorption ability of biochar to the pore structure and surface chemical property related to its organic carbon fraction. In this study, three biochars derived from dairy manure (DM-biochar), sewage sludge (SS-biochar), and rice husk (RH-biochar), respectively, were evaluated for their SO 2 sorption behavior and the underlying mechanisms, especially the role of inherent inorganic constituents. The sorption capacities of SO 2 by the three biochars were 8.87-15.9 mg g -1 . With the moisture content increasing from 0% to 50%, the sorption capacities increased by up to about 3 times, mainly due to the formation of alkaline water membrane on the biochar surface which could promote the sorption and transformation of acidic SO 2 . DM- and SS-biochar containing larger mineral constituents showed higher sorption capacity for SO 2 than RH-biochar containing less mineral components. CaCO 3 and Ca 3 (PO 4 ) 2 in DM-biochar induced sorbed SO 2 transformation into K 2 Ca(SO 4 ) 2 ·H 2 O and CaSO 4 ·2H 2 O, while the sorbed SO 2 was converted to Fe 2 (SO 4 ) 3 ·H 2 SO 4 ·2H 2 O, CaSO 4 ·2H 2 O, and Ca 3 (SO 3 ) 2 SO 4 ·12H 2 O in SS-biochar. For RH-biochar, K 3 H(SO 4 ) 2 might exist in the exhausted samples. Overall, the chemical transformation of SO 2 induced by biochar inherent mineral components occupied 44.6%-85.5% of the total SO 2 sorption. The results obtained from this study demonstrated that biochar as a unique carbonaceous material could distinctly be a promising sorbent for acidic SO 2 removal in which the inorganic components played an important role in the SO 2 sorption and transformation.

  20. Isothermal Analysis of the Crystallization Kinetics in Lithium Disilicate Glass using Trans Temp Furnace

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Ray, C. S.; Day, D. E.

    2006-01-01

    Crystallization kinetics for lithium disilicate, Li2O2SiO2, (LS2) glass has been studied extensively by nonisothermal methods, but only a few studies on the isothermal crystallization kinetics of LS2 are available. In the present research, isothermal crystallization experiments or the LS2 glass were conducted in a Trans Temp furnace between 600 and 635 C, and selected properties such as the activation energy for crystallization (E), crystal growth index or Avrami parameter (n), the concentration of quenched-in nuclei in the starting glass (Ni) and the crystal nucleation rate (I) were measured. The crystal nucleation rate (I) was measured at only one selected temperature of 452 C, at this time. This commercial furnace has a 13 cm long isothermal heating zone (+/- 1 C) that allows precise heat treatment of relatively large samples. By placing a thermocouple within approx. 2 mm of the sample, it was possible to detect the heat of crystallization in the form of an isothermal crystallization exotherm during isothermal heat treatment of the sample. The values of E (318 plus or minus 10 kJ/mol), n (3.6 plus or minus 0.l), and N(sub i) (1.6 x 10(exp l2) m(sup -3)) calculated by analyzing these isotherms using the standard Johnson-Mehl-Avrami (JMA) equation were reproducible and in agreement with the literature values. The value of I, 1.9 x 10(exp 10) m(sup -3) s(sup -1) at 452 C, is an order of magnitude higher than the reported value for LS2.

  1. Sorption-desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: effect of soil type, dissolved organic matter, and pH.

    PubMed

    Zhang, Ya-Lei; Lin, Shuang-Shuang; Dai, Chao-Meng; Shi, Lu; Zhou, Xue-Fei

    2014-05-01

    Use of animal manure is a main source of veterinary pharmaceuticals (VPs) in soil and groundwater through a series of migration processes. The sorption-desorption and transport of four commonly used VPs including trimethoprim (TMP), sulfapyridine, sulfameter, and sulfadimethoxine were investigated in three soil layers taken from an agricultural field in Chongming Island China and two types of aqueous solution (0.01 M CaCl2 solution and wastewater treatment plant effluent). Results from sorption-desorption experiments showed that the sorption behavior of selected VPs conformed to the Freundlich isotherm equation. TMP exhibited higher distribution coefficients (K d = 6.73-9.21) than other sulfonamides (K d = 0.03-0.47), indicating a much stronger adsorption capacity of TMP. The percentage of desorption for TMP in a range of 8-12 % is not so high to be considered significant. Low pH (sorption of VPs. Slightly lower distribution coefficients were obtained for VPs in wastewater treatment plant (WWTP) effluent, which suggested that dissolved organic matter might affect their sorption behavior. Column studies indicated that the transport of VPs in the soil column was mainly influenced by sorption capacity. The weakly adsorbed sulfonamides had a high recovery rate (63.6-98.0 %) in the leachate, while the recovery rate of TMP was only 4.2-10.4 %. The sulfonamides and TMP exhibited stronger retaining capacity in 20-80 cm and 0-20 cm soil samples, respectively. The transport of VPs was slightly higher in the columns leached by WWTP effluent than by CaCl2 solution (0.01 M) due to their sorption interactions.

  2. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Fractionation of aquatic natural organic matter upon sorption to goethite and kaolinite

    USGS Publications Warehouse

    Meier, M.; Namjesnik-Dejanovic, K.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    1999-01-01

    Natural organic matter (NOM) consists of a complex mixture of organic molecules; previous studies have suggested that preferential sorption of higher molecular weight, more hydrophobic, and more aromatic components may lead to fractionation of the NOM pool upon passage through porous media. Our work expands upon previous studies by quantifying the change in solution-phase weight average molecular weight (M(w)) upon sorption of bulk (rather than isolated) surface water NOM from the Suwannee River (SR) and the Great Dismal Swamp (GDS) to goethite and kaolinite at different sorption densities and at pH 4, 22??C. High pressure size exclusion chromatography (HPSEC) was used to quantify changes in M(w) upon sorption, and molar absorptivities at ?? = 280 nm were used to approximate changes in solution NOM aromaticity. Two SR water samples were used, with M(w) = 2320 and 2200 Da; a single GDS sample was used, with M(w) = 1890 Da. The SR NOM was slightly more hydrophobic and aromatic. These differences were reflected in greater sorption of SR NOM than GDS NOM. Both surface water NOMs showed a much greater affinity for goethite than for kaolinite. HPSEC analysis of the NOM remaining in solution after 24 h reaction time with geothite revealed that the largest changes in solution phase M(w)s (decreases by 900-1700 Da) occurred at relatively low equilibrium sorbate concentrations (approximately 5-20 mg C 1-1); the decrease in solution M(w) suggested that reactive surface sites were occupied disproportionately by large and intermediate size NOM moieties. At higher equilibrium NOM concentrations (>20 mg C 1-1), as percent adsorption decreased, M(w) in solution was similar to original samples. A smaller decrease in solution NOM M(w) (300-500 Da at 10-20 mg C 1-1 ~ 100 Da at > 20 mg) also occurred upon sorption to kaolinite. Overall, our results showed that factors (as related to NOM composition, clay mineral surface properties, and position along the sorption isotherm) which

  4. Sorption-desorption equilibrium and diffusion of tetracycline in poultry litter and municipal biosolids soil amendments.

    PubMed

    D'Angelo, E

    2017-12-01

    Tetracycline (TET) is commonly used to treat bacterial diseases in humans and chickens (Gallus gallus domesticus), is largely excreted, and is found at elevated concentrations in treated sewage sludge (biosolids) and poultry litter (excrement plus bedding materials). Routine application of these nutrient-and carbon-enriched materials to soils improves fertility and other characteristics, but the presence of antibiotics (and other pharmaceuticals) in amendments raises questions about potential adverse effects on biota and development of antibiotic resistance in the environment. Hazard risks are largely dictated by sorption-desorption and diffusion behavior in amendments, so these processes were evaluated from sorption-desorption equilibrium isotherm and diffusion cell experiments with four types amendments (biosolids, poultry manure, wood chip litter, and rice hull litter) at three temperatures (8 °C, 20 °C and 32 °C). Linear sorption-desorption equilibrium distribution constants (Kd) in native amendments ranged between 124-2418 L kg -1 . TET sorption was significantly increased after treatment with alum, and there was a strong exponential relationship between Kd and the concentration of bound Al 3+ in amendments (R 2  = 0.94), which indicated that amendments contained functional groups capable of chelating Al 3+ and forming metal bridges with TET. Effective diffusion coefficients of TET in amendments ranged between 0.1 and 5.2 × 10 -6  cm 2  s -1 , which were positively related to temperature and inversely related to Kd by a multiple regression model (R 2  = 0.86). Treatment of organic amendments with alum greatly increased Kd, would decrease D s , and so would greatly reduce hazard risks of applying these organic amendments with this antibiotic to soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover ( L.) and Oak Wood ( spp.).

    PubMed

    Hollister, C Colin; Bisogni, James J; Lehmann, Johannes

    2013-01-01

    Biochar (BC) was evaluated for nitrogen (N) and phosphorus (P) removal from aqueous solution to quantify its nutrient pollution mitigation potential in agroecosystems. Sorption isotherms were prepared for solutions of ammonium (NH), nitrate (NO), and phosphate (PO-P) using BC of corn ( L.) and oak ( spp.) feedstock, each pyrolyzed at 350 and 550°C highest treatment temperature (HTT). Sorption experiments were performed on original BC as well as on BC that went through a water extraction pretreatment (denoted WX-BC). Ammonium sorption was observed for WX-Oak-BC and WX-Corn-BC, and Freundlich model linearization showed that a 200°C increase in HTT resulted in a 55% decrease in * values for WX-Oak-BC and a 69% decrease in * for WX-Corn-BC. Nitrate sorption was not observed for any BC. Removing metals by water extraction from WX-Oak-350 and WX-Oak-550 resulted in a 25 to 100% decrease in phosphate removal efficiency relative to original Oak-350 and Oak-550, respectively. No PO-P sorption was observed using any Corn-BC. Calcium (Ca) leached from BC produced at 550°C was 63 and 104% higher than from BC produced at 350°C for corn and oak, respectively. Leaching of P was two orders of magnitude lower in WX-Oak-BC than in WX-Corn-BC, concurrent with similar difference in magnesium (Mg). Nitrate and NH leaching from consecutive water extractions of all tested BCs was mostly below detection limits. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.

    PubMed

    Szecsody, J E; Girvin, D C; Devary, B J; Campbell, J A

    2004-08-01

    The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and

  7. Sorption of radionuclides by cement-based barrier materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kefei, E-mail: likefei@tsinghua.edu.cn; Pang, Xiaoyun

    2014-11-15

    This paper investigates the sorption of radionuclide ions, {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+}, by cement-based barrier materials for radioactive waste disposal. A mortar with ternary binder is prepared and powder samples are ground from the hardened material following a predetermined granulometry. After pre-equilibrium with an artificial pore solution, the sorption behaviors of powder samples are investigated through single sorption and blended sorption. The results show that: (1) no systematic difference is observed for single and blended sorptions thus the interaction between {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+} sorptions must be weak; (2) the sorption kinetics is rapidmore » and all characteristic times are less than 1d; (3) the sorption capacity is enhanced by C–A–S–H hydrates and the measured K{sub d} values can be predicted from C–S–H sorption data with Ca/Si ratio equal to Ca/(Si + Al) ratio.« less

  8. Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, I.A.H.; Rubio, J.

    1999-07-01

    The removal of heavy metal ions by the nonliving biomass of aquatic macrophytes was investigated. The work involved studies of physical and biochemical properties of the materials, batch sorption experiments carried out in agitation flasks, and continuous runs in a packed bed column at laboratory scale. Results showed that the dried biomass of Potamogeton lucens, Salvinia herzogii, and Eichhornia crassipes were excellent biosorbents for Cr(III), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II). The sorption mechanism by these biomaterials was found to proceed mainly by ion exchange reactions between the metal ions and the cationic weak exchanger groups present on the plantmore » surface. Sorption followed the Langmuir isotherm, and maximum metal uptakes values (independent of the metal ion species) were attained at about 1.5 mequiv g{sup {minus}1} for P. lucens, 0.9 mequiv g{sup {minus}1} for S. herzogii, and 0.7 mequiv g{sup {minus}1} for E. crassipes. Advantages and disadvantages found in the use of these natural adsorbents for heavy metals ions present in industrial wastewaters are envisaged.« less

  9. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement.

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-04-04

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO 2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, n rel , it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in n rel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO 2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO 2 , the effective reduction of the T g was estimated to be ∼200 °C going from 128 to 7 nm films.

  10. Long-term TNT sorption and bound residue formation in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hundal, L.S.; Shea, P.J.; Comfort, S.D.

    1997-05-01

    Soils surrounding former munitions production facilities are highly contaminated with 2,4,6-trinitrotoluene (TNT). Long-term availability and fate of TNT and its transformation products must be understood to predict environmental impact and develop appropriate remediation strategies. Sorption and transport in surface soil containing solid-phase TNT are particularly critical, since nonlinear sorption isotherms indicate greater TNT availability for transport at high concentrations. Our objectives were to determine long-term sorption and bound residue formation in surface and subsurface Sharpsburg soil (Typic Argiudoll). Prolonged equilibration of {sup 14}C-TNT with the soil revealed a gradual increase in amount sorbed and formation of unextractable (bound) {sup 14}Cmore » residues. The presence of solid-phase TNT did not initially affect the amount of {sup 14}C sorbed during a 168-d equilibration. After 168d, 93% of the added {sup 14}C was sorbed by uncontaminated soil, while 79% was sorbed by soil containing solid-phase TNT. In the absence of solid phase, pools of readily available (extractable with 3 mM CaCl{sub 2}) and potentially available (CH{sub 3}CN-extractable) sorbed TNT decreased rapidly with time and coincided with increased {sup 14}C in soil organic matter. More {sup 14}C was found in fulvic acid than in the humic acid fraction when no solid-phase TNT was present. After sequential extractions, including strong alkali and acid, 32 to 40% of the sorbed {sup 14}C was irreversibly bound (unextractable) in Sharpsburg surface and subsurface soil. Results provide strong evidence for humification of TNT in soil. This process may represent a significant route for detoxification in the soil-water environment. 58 refs., 6 figs., 3 tabs.« less

  11. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  12. Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels.

    PubMed

    Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri

    2013-01-01

    In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn(2+)-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies.

  13. Influence of dissolved organic matter on sorption and desorption of MCPA in ferralsol.

    PubMed

    Wu, Dongming; Yun, Yonghuan; Jiang, Lei; Wu, Chunyuan

    2018-03-01

    MCPA (4-chloro-2-methylphenoxyacetic acid) is an acidic herbicide, widely used in paddy fields. The presence of dissolved organic matter (DOM) modifies the sorption-desorption of herbicides in soils. In this study, effects of DOM on sorption- desorption of MCPA were tested using three typical ferralsol soil types from China: rhodic ferralsol, haplic ferralsol and paddy soil. DOM preparations were extracted from the paddy soil (DOM P ), from a compost mixture of cassava stems with chicken manure (DOM C ), and from rice straw (DOM R ). Sorption-desorption of MCPA in the tested soil types was shown to follow pseudo first-order kinetics, and the calculated isotherm data fitted well with a Freundlich equilibrium model in the range of the studied concentrations. MCPA was weakly sorbed by the soils, producing low Freundlich coefficient values (K f ) (0.854 to 4.237). The presence of DOM reduced the K f whereby DOM C had the strongest and DOM R the weakest effect. Presence of DOM also promoted MCPA desorption from the soils, again with DOM C having the strongest effect and DOM R the weakest. DOM coating changed the soil particle surface, as demonstrated by electron microscopy, and DOM also directly interacted with MCPA, as shown by Fourier-transform infrared spectroscopy. The experimental data were interpreted to suggest a competing sorption of DOM to ferralsol and an increased solubility of MCPA in the presence of DOM. The results indicate that the environmental risk of MCPA leaching to groundwater and surface flow is increased by presence of DOM, for instance as a result of organic fertilizer use. Copyright © 2017. Published by Elsevier B.V.

  14. Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption.

    PubMed

    Peng, Hongbo; Liang, Ni; Li, Hao; Chen, Fangyuan; Zhang, Di; Pan, Bo; Xing, Baoshan

    2015-09-01

    Sorption of organic contaminants on organo-mineral complexes has been investigated extensively, but the sorption contribution of mineral particles was not properly addressed before calculating KOC, especially for ionic organic contaminants. We measured the surface coverage of a humic acid (HA) on nano iron oxides (n-Fe2O3) in a series of synthesized organo-mineral complexes. The contribution of the coated HA to ofloxacin (OFL) and norfloxacin (NOR) sorption in HA-n-Fe2O3 complexes was over 80% of the total sorption with the surface coverage of 36% and fOC of 1.6%. All the coated HA showed higher sorption to NOR and OFL in comparison to the original HA, suggesting HA fractionation and/or physical re-conformation during organo-mineral complex formation. The decreased KOC with multilayer coating may suggest the importance of site-specific interactions for OFL sorption, while the increased KOC with multilayer coating may suggest the importance of partitioning in hydrophobic region for NOR sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sorption isotherm studies of Cd(II) ions using living cells of the marine microalga Tetraselmis suecica (Kylin) Butch.

    PubMed

    Pérez-Rama, M; Torres, E; Suárez, C; Herrero, C; Abalde, J

    2010-10-01

    The present work reports the use of living cells of the marine microalga Tetraselmis suecica for the biosorption of cadmium ions. For a better understanding of the biosorption characteristics, three fractions of removed cadmium (total, bioadsorbed and intracellular) were measured in the cells after 24 and 72 h of exposure to different initial cadmium concentrations (0.6-45 mg L(-1)). Both the Langmuir and Freundlich models were suitable for describing the sorption of cadmium ions by this microalga. The maximum sorption capacity was estimated to be 40.22 mg Cd g(-1) after 72 h using the Langmuir sorption model. In the lower cadmium concentrations, metal removed intracellularly was higher than that removed on the microalgal cell surface. Therefore, the intracellular fraction contributed more to the total removed cadmium than the fraction bioadsorbed to the cellular surface. The results showed that the cadmium removal capacity using living biomass could be much more effective than with non-living biomass due to the intracellular bioaccumulation. According to the microorganism selected and its tolerance to the toxic effect of the metal, the cadmium content in the intracellular fraction can become very significant, just like it happened with Tetraselmis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Phosphorus Sorption Capacity of Gray Forest Soil as Dependent on Fertilization System

    NASA Astrophysics Data System (ADS)

    Rogova, O. B.; Kolobova, N. A.; Ivanov, A. L.

    2018-05-01

    In this paper, the results of the study of changes in the phosphorus sorption capacity of gray forest soils of Vladimir opolie under the impact of different fertilization systems are discussed. The quantitative parameters of the potential buffer capacity of soils for phosphorus (PBCP) and Langmuir sorption isotherms have been calculated. It is shown that the application of organic fertilizers results in a stronger decrease in PBCP than the application of mineral fertilizers. The portion of phosphorus of mineral compounds considerably increases, and the high content of available phosphates is maintained. In the variants with application of mineral phosphorus in combination with manure, the portions of organic and mineral phosphorus are at the level typical of unfertilized soils. The energy of phosphate bonds with the soil is minimal upon the application of a double rate of mineral phosphorus at the maximum capacity in relation to phosphate ions.

  17. Impact of Sequential Ammonia Fiber Expansion (AFEX) Pretreatment and Pelletization on the Moisture Sorption Properties of Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonner, Ian J.; Thompson, David N.; Teymouri, Farzaneh

    Combining ammonia fiber expansion (AFEX™) pretreatment with a depot processing facility is a promising option for delivering high-value densified biomass to the emerging bioenergy industry. However, because the pretreatment process results in a high moisture material unsuitable for pelleting or storage (40% wet basis), the biomass must be immediately dried. If AFEX pretreatment results in a material that is difficult to dry, the economics of this already costly operation would be at risk. This work tests the nature of moisture sorption isotherms and thin-layer drying behavior of corn (Zea mays L.) stover at 20°C to 60°C before and after sequentialmore » AFEX pretreatment and pelletization to determine whether any negative impacts to material drying or storage may result from the AFEX process. The equilibrium moisture content to equilibrium relative humidity relationship for each of the materials was determined using dynamic vapor sorption isotherms and modeled with modified Chung-Pfost, modified Halsey, and modified Henderson temperature-dependent models as well as the Double Log Polynomial (DLP), Peleg, and Guggenheim Anderson de Boer (GAB) temperature-independent models. Drying kinetics were quantified under thin-layer laboratory testing and modeled using the Modified Page's equation. Water activity isotherms for non-pelleted biomass were best modeled with the Peleg temperature-independent equation while isotherms for the pelleted biomass were best modeled with the Double Log Polynomial equation. Thin-layer drying results were accurately modeled with the Modified Page's equation. The results of this work indicate that AFEX pretreatment results in drying properties more favorable than or equal to that of raw corn stover, and pellets of superior physical stability in storage.« less

  18. Moisture sorption curves of fruit and nut cereal bar prepared with sugar and sugar substitutes.

    PubMed

    Pallavi, Byrappa Vasu; Chetana, Ramakrishna; Ravi, Ramaswamy; Reddy, Sunkireddy Yella

    2015-03-01

    Low sugar, low fat, dry fruit and nut cereal bars without sugar were prepared using cereals, nuts, and sugar substitutes. The sorption characteristics of the bars prepared with sugar substitutes in comparison with that of sugar were studied by keeping the bars at water activity (aw) from 0.1 to 0.9. The sorption isotherms of low sugar bars were practically identical below aw of 0.5 but above aw of 0.5, a clear differentiation in the isotherms could be observed compared to that of sugar counterpart. A sharp increase in moisture content was observed in the bars prepared with alternative sweeteners, above aw 0.6, whereas a gradual increase in aw was observed in the case of bar prepared with sugar. The ERH (Equilibrium relative humidity) value for bar with sugar was 50 %, and for bars prepared with alternative sweeteners, it was about 60 %. Low sugar cereal bar prepared with sorbitol + maltitol (SM) syrup scored higher sensory quality compared to other product prepared with sorbitol + nutriose (SN) as the former retained softness and chewiness on storage. Thus, it was observed that bars with alternative sweeteners will be more stable as their ERH is closer to normal ambient conditions compared to that prepared with sugar.

  19. Determining the critical relative humidity at which the glassy to rubbery transition occurs in polydextrose using an automatic water vapor sorption instrument.

    PubMed

    Yuan, Xiaoda; Carter, Brady P; Schmidt, Shelly J

    2011-01-01

    Similar to an increase in temperature at constant moisture content, water vapor sorption by an amorphous glassy material at constant temperature causes the material to transition into the rubbery state. However, comparatively little research has investigated the measurement of the critical relative humidity (RHc) at which the glass transition occurs at constant temperature. Thus, the central objective of this study was to investigate the relationship between the glass transition temperature (Tg), determined using thermal methods, and the RHc obtained using an automatic water vapor sorption instrument. Dynamic dewpoint isotherms were obtained for amorphous polydextrose from 15 to 40 °C. RHc was determined using an optimized 2nd-derivative method; however, 2 simpler RHc determination methods were also tested as a secondary objective. No statistical difference was found between the 3 RHc methods. Differential scanning calorimetry (DSC) Tg values were determined using polydextrose equilibrated from 11.3% to 57.6% RH. Both standard DSC and modulated DSC (MDSC) methods were employed, since some of the polydextrose thermograms exhibited a physical aging peak. Thus, a tertiary objective was to compare Tg values obtained using 3 different methods (DSC first scan, DSC rescan, and MDSC), to determine which method(s) yielded the most accurate Tg values. In general, onset and midpoint DSC first scan and MDSC Tg values were similar, whereas onset and midpoint DSC rescan values were different. State diagrams of RHc and experimental temperature and Tg and %RH were compared. These state diagrams, though obtained via very different methods, showed relatively good agreement, confirming our hypothesis that water vapor sorption isotherms can be used to directly detect the glassy to rubbery transition. Practical Application: The food polymer science (FPS) approach, pioneered by Slade and Levine, is being successfully applied in the food industry for understanding, improving, and

  20. Room-Temperature Synthesis of Two-Dimensional Metal–Organic Frameworks with Controllable Size and Functionality for Enhanced CO 2 Sorption

    DOE PAGES

    Zha, Jie; Zhang, Xueyi

    2018-04-17

    Here, two-dimensional (2D) metal-organic frameworks (MOFs), as a newly emerged member of 2D materials, have gained extensive attention due to their great potential in gas separation, sensing, and catalysis. However, it is still challenging to synthesize 2D MOFs with controllable size and functionalities using direct and scalable approaches at mild conditions (e.g., room temperature). Herein, we demonstrated onestep, room-temperature synthesis of a series of 2D MOFs based on Cu(II) paddle-wheel units, where the intrinsically anisotropic building blocks led to the anisotropic growth of 2D MOF nanoparticles, and the pillared structure led to high surface areas. The size of 2D MOFsmore » can be adjusted by using a DMF/H 2O mixed solvent. The thinnest particles were around 3 nm, and the highest aspect ratio was up to 200. The functionalization of 2D MOFs was also achieved by selecting ligands with desired functional groups. The gas sorption results revealed that amino and nitro-functionalized 2D MOFs showed higher CO 2 sorption selectivity over CH 4 and N 2, suggesting these materials can be further applied in natural gas sweetening (CO 2/CH 4 separation) and carbon capture from flue gas (CO 2/N 2 separation).« less

  1. Room-Temperature Synthesis of Two-Dimensional Metal–Organic Frameworks with Controllable Size and Functionality for Enhanced CO 2 Sorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Jie; Zhang, Xueyi

    Here, two-dimensional (2D) metal-organic frameworks (MOFs), as a newly emerged member of 2D materials, have gained extensive attention due to their great potential in gas separation, sensing, and catalysis. However, it is still challenging to synthesize 2D MOFs with controllable size and functionalities using direct and scalable approaches at mild conditions (e.g., room temperature). Herein, we demonstrated onestep, room-temperature synthesis of a series of 2D MOFs based on Cu(II) paddle-wheel units, where the intrinsically anisotropic building blocks led to the anisotropic growth of 2D MOF nanoparticles, and the pillared structure led to high surface areas. The size of 2D MOFsmore » can be adjusted by using a DMF/H 2O mixed solvent. The thinnest particles were around 3 nm, and the highest aspect ratio was up to 200. The functionalization of 2D MOFs was also achieved by selecting ligands with desired functional groups. The gas sorption results revealed that amino and nitro-functionalized 2D MOFs showed higher CO 2 sorption selectivity over CH 4 and N 2, suggesting these materials can be further applied in natural gas sweetening (CO 2/CH 4 separation) and carbon capture from flue gas (CO 2/N 2 separation).« less

  2. Combining experimental techniques with non-linear numerical models to assess the sorption of pesticides on soils

    NASA Astrophysics Data System (ADS)

    Magga, Zoi; Tzovolou, Dimitra N.; Theodoropoulou, Maria A.; Tsakiroglou, Christos D.

    2012-03-01

    The risk assessment of groundwater pollution by pesticides may be based on pesticide sorption and biodegradation kinetic parameters estimated with inverse modeling of datasets from either batch or continuous flow soil column experiments. In the present work, a chemical non-equilibrium and non-linear 2-site sorption model is incorporated into solute transport models to invert the datasets of batch and soil column experiments, and estimate the kinetic sorption parameters for two pesticides: N-phosphonomethyl glycine (glyphosate) and 2,4-dichlorophenoxy-acetic acid (2,4-D). When coupling the 2-site sorption model with the 2-region transport model, except of the kinetic sorption parameters, the soil column datasets enable us to estimate the mass-transfer coefficients associated with solute diffusion between mobile and immobile regions. In order to improve the reliability of models and kinetic parameter values, a stepwise strategy that combines batch and continuous flow tests with adequate true-to-the mechanism analytical of numerical models, and decouples the kinetics of purely reactive steps of sorption from physical mass-transfer processes is required.

  3. Functionalization of Magnetic Chitosan Particles for the Sorption of U(VI), Cu(II) and Zn(II)—Hydrazide Derivative of Glycine-Grafted Chitosan

    PubMed Central

    Hamza, Mohammed F.; Aly, Mohsen M.; Abdel-Rahman, Adel A.-H.; Ramadan, Samar; Raslan, Heba; Wang, Shengye; Vincent, Thierry; Guibal, Eric

    2017-01-01

    A new magnetic functionalized derivative of chitosan is synthesized and characterized for the sorption of metal ions (environmental applications and metal valorization). The chemical modification of the glycine derivative of chitosan consists of: activation of the magnetic support with epichlorohydrin, followed by reaction with either glycine to produce the reference material (i.e., Gly sorbent) or glycine ester hydrochloride, followed by hydrazinolysis to synthesize the hydrazide functionalized sorbent (i.e., HGly sorbent). The materials are characterized by titration, elemental analysis, FTIR analysis (Fourrier-transform infrared spectrometry), TGA analysis (thermogravimetric analysis) and with SEM-EDX (scanning electron microscopy coupled to energy dispersive X-ray analysis). The sorption performances for U(VI), Cu(II), and Zn(II) are tested in batch systems. The sorption performances are compared for Gly and HGly taking into account the effect of pH, the uptake kinetics (fitted by the pseudo-second order rate equation), and the sorption isotherms (described by the Langmuir and the Sips equations). The sorption capacities of the modified sorbent reach up to 1.14 mmol U g−1, 1.69 mmol Cu g−1, and 0.85 mmol Zn g−1. In multi-metal solutions of equimolar concentration, the chemical modification changes the preferences for given metal ions. Metal ions are desorbed using 0.2 M HCl solutions and the sorbents are re-used for five cycles of sorption/desorption without significant loss in performances. PMID:28772896

  4. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).

    PubMed

    Jiménez-Cedillo, M J; Olguín, M T; Fall, C; Colin-Cruz, A

    2013-03-15

    The sorption of As(III) and As(V) from aqueous solutions onto iron-modified Petroselinum crispum (PCFe) and iron-modified carbonaceous material from the pyrolysis of P. crispum (PCTTFe) was investigated. The modified sorbents were characterized with scanning electron microscopy. The sorbent elemental composition was determined with energy-dispersive X-ray spectroscopy (EDS). The principal functional groups from the sorbents were determined with FT-IR. The specific surfaces and points of zero charge (pzc) of the materials were also determined. As(III) and As(V) sorption onto the modified sorbents were performed in a batch system. After the sorption process, the As content in the liquid and solid phases was determined with atomic absorption and neutron activation analyses, respectively. After the arsenic sorption processes, the desorption of Fe from PCFe and PCTTFe was verified with atomic absorption spectrometry. The morphology of PC changed after iron modification. The specific area and pzc differed significantly between the iron-modified non-pyrolyzed and pyrolyzed P. crispum. The kinetics of the arsenite and arsenate sorption processes were described with a pseudo-second-order model. The Langmuir-Freundlich model provided the isotherms with the best fit. Less than 0.02% of the Fe was desorbed from the PCFe and PCTTFe after the As(III) and As(V) sorption processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Sorption Modeling of Strontium, Plutonium, Uranium and Neptunium Adsorption on Monosodium Titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2003-10-30

    We examined the ability of various equilibrium isotherms to replicate the available data for the adsorption of strontium (Sr), plutonium (Pu), uranium (U) and neptunium (Np) on monosodium titanate (MST) during the treatment of simulated and actual Savannah River Site high-level waste. The analysis considered 29 isotherm models from the literature. As part of this study, we developed a general method for selecting the best isotherm models. The selection criteria for rating the isotherms considered the relative error in predicting the experimental data, the complexity of the mathematical expressions, the thermodynamic validity of the expressions, and statistical significance for themore » expressions. The Fowler Guggenheim-Jovanovic Freundlich (FG-JF), the Fowler Guggenheim-Langmuir Freundlich (FG-LF) and the Dubinin-Astashov (DA) models each reliably predicted the actinide and strontium adsorption on MST. The first two models describe the adsorption process by single layer formation and later al interactions between adsorbed sorbates while the Dubinin-Astashov model assumes volume filling of micropores (by osmotic pressure difference). These two mechanisms include mutually exclusive assumptions. However, we can not determine which model best represents the various adsorption mechanisms on MST. Based on our analysis, the DA model predicted the data well. The DA model assumes that an initial sorption layer forms after which networking begins in the pore spaces, filling the volume by a second mechanism. If this mechanism occurs in MST, as the experimental data suggests, then we expect all the empty and closed spaces of MST to contain actinides and strontium when saturated. Prior microstructure analyses determined that the MST surface is best described as heterogeneous (i.e., a semi-crystalline outer layer on an amorphous core) or composite material for adsorption. Therefore, we expect the empty spaces (of nanometer size) between the crystalline units in the fibrous

  6. Development of a graphene oxide/chitosan nanocomposite for the removal of picric acid from aqueous solutions: Study of sorption parameters.

    PubMed

    Mohseni Kafshgari, Mona; Tahermansouri, Hasan

    2017-12-01

    The functionalization of graphene oxide (GO) with chitosan (Chi) has been investigated to prepare a nanocomposite material (GO-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, XRD and BET. Batch experiments such as solution pH, amount of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. Isotherm studies showed that the Langmuir isotherm for GO and Freundlich and Halsey models for GO-Chi were found to best represent the measured sorption data. Negative ΔG° values for GO-Chi and positive ones for GO indicated the nature of spontaneous and unspontaneous, respectively for adsorption process. In addition, picric acid molecules can be desorbed from GO-Chi up to 80% at pH=9 and that the consumed GO-Chi could be reutilized up to 5th cycle of regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sorption of DNA by diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels

    PubMed Central

    Tozak, Kabil Özcan; Erzengin, Mahmut; Sargin, Idris; Ünlü, Nuri

    2013-01-01

    In this study, the DNA sorption performance of diatomite-Zn(II) embedded supermacroporous monolithic p(HEMA) cryogels were investigated for the purpose of designing a novel adsorbent that can be utilized for DNA purification, separation and immunoadsorption studies such as removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. Poly(2-hydroxyethyl methacrylate) [p(HEMA)]-based monolithic cryogel column embedded with Zn2+-diatomite particles was prepared by free radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm). The polymerization reaction was initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. After thawing, the monolithic composite cryogels were used for affinity sorption and then subsequent desorption of DNA molecules from aqueous solutions. Diatomite (DA) particles were characterized by XRF and BET method. The characterization of composite cryogel was done through SEM imaging. The effects of pH of the solution, initial DNA concentration, ionic strength, temperature and flow rates on adsorption were investigated to determine the optimum conditions for adsorption/desorption experiments. The particle embedding procedure was shown to yield significantly enhanced adsorption of DNA on the adsorbent. Furthermore, considering its excellent bio-compatibility, p(HEMA) cryogels are promising a candidate for further DNA sorption studies. PMID:26600734

  8. Rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium distribution coefficients of a surficial sediment at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Bunde, R.L.; Rosentreter, J.J.; Liszewski, M.J.

    1998-01-01

    The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (K(d)s) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26 h. K(d)s were derived using the linear isotherm model at initial sodium concentrations from 100 to 5,000 mg/l and initial potassium concentrations from 2 to 150 mg/l. K(d)s ranged from 56 ?? 2 to 62 ?? 3 ml/g at initial aqueous concentrations of sodium and potassium equal to or less than 300 and 150 mg/l, respectively. K(d)s hinged from 4.7 ?? 0.2 to 19 ?? 1 ml/g with initial aqueous concentrations of sodium between 1,000 and 5,000 mg/l. These data indicate that sodium concentrations greater than 300 mg/l in wastewater increase the availability of strontium for transport beneath waste disposal ponds at the INEL by decreasing strontium sorption on the surficial sediment. Wastewater concentrations of sodium and potassium less than 300 and 150 mg/l, respectively, have little effect on the availability of strontium for transport.The rate of strontium sorption and the effects of variable aqueous concentrations of sodium and potassium on strontium sorption were measured as part of an investigation to determine strontium chemical transport properties of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine the rate of strontium sorption and strontium distribution coefficients (Kds) between aqueous and solid phases. Rate experiments indicate that strontium in solution reached an apparent equilibrium with the sediment in 26

  9. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption.

    PubMed

    Ge, Huacai; Hua, Tingting

    2016-11-20

    Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Simultaneous removal of aqueous Zn2+, Cu2+, Cd2+, and Pb2+ by zeolites synthesized from low-calcium and high-calcium fly ash.

    PubMed

    Ji, X D; Ma, Y Y; Peng, S H; Gong, Y Y; Zhang, F

    2017-10-01

    In this study, zeolites were synthesized from low-calcium (LCZ) and high-calcium (HCZ) fly ash, respectively. Subsequently, the zeolites were tested for their removal effectiveness for four aqueous cations, namely, Zn 2+ , Cu 2+ , Cd 2+ , and Pb 2+ , as a function of contact time, pH value, adsorbent dosage, and initial concentration of heavy metals. Both zeolites were characterized by X-ray diffraction, X-ray fluorescence spectrometry, scanning electron microscopy, specific surface area, and cation exchange capacity. The results show that HCZ mainly consists of an unnamed zeolite (Na 6 [AlSiO 4 ] 6 ·4H 2 O), whereas LCZ mainly consists of faujasite-type zeolite. The optimum sorption conditions were pH = 6.0; adsorbent dosage = 1.0 g·L -1 ; temperature = 25 °C; contact time = 100 min; and initial heavy metal concentration = 100 mg·L -1 . The sorption kinetics of the four aqueous cations on both LCZ and HCZ followed the pseudo-second-order kinetic model, and the sorption isotherm data fitted well with the Langmuir isotherm model. For LCZ, the maximum adsorption capacities of Zn 2+ , Cu 2+ , Cd 2+ , and Pb 2+ were 155.76, 197.86, 123.76, and 186.22 mg·g -1 , respectively. For HCZ, the values were 154.08, 183.15, 118.91, and 191.94 mg·g -1 , respectively. The zeolites were regenerated by NaCl solution (1 mol·L -1 ) and showed high removal efficiency. In conclusion, zeolites produced by fly ash are promising materials for removing Zn 2+ , Cu 2+ , Cd 2+ , and Pb 2+ from wastewater.

  11. Effects of resident water and non-equilibrium adsorption on the primary and enhanced coalbed methane gas recovery

    NASA Astrophysics Data System (ADS)

    Jahediesfanjani, Hossein

    The major part of the gas in coalbed methane and shale gas reservoirs is stored as the adsorbed gas in the coal and organic materials of the black shale internal surfaces. The sorption sites in both reservoirs are composed of several macropores that contain very small pore sizes. Therefore, the adsorption/desorption is very slow process and follows a non-equilibrium trend. The time-dependency of the sorption process is further affected by the reservoir resident water. Water can diffuse into the matrix and adsorption sites, plug the pores and affect the reservoir gas production. This study presents an experimental and theoretical procedure to investigate the effects of the resident water and time-dependency of the sorption process on coalbed and shale gas primary and enhanced recovery by simultaneous CO 2/N2 injection. Series of the experiments are conducted to construct both equilibrium and non-equilibrium single and multi-component isotherms with the presence of water. A novel and rapid data interpretation technique is developed based on the nonequilibrium adsorption/desorption thermodynamics, mass conservation law, and volume filling adsorption theory. The developed technique is implemented to construct both equilibrium and non-equilibrium multi-component multi-phase isotherms from the early time experimental measurements. The non-equilibrium isotherms are incorporated in the coalbed methane/shale gas reservoir simulations to account for the time-dependency of the sorption process. The experimental results indicate that the presence of water in the sorption system reduces both carbon dioxide and nitrogen adsorption rates. Reduction in the adsorption rate for carbon dioxide is more than nitrogen. The results also indicate that the resident water reduces the adsorption ability of low rank coals more than high rank ones. The results of the multi-component sorption tests indicate that increasing the initial mole fraction of the nitrogen gas in the injected CO2/N2

  12. ECO2N V2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Spycher, Nicolas; Doughty, Christine

    2015-02-01

    ECO2N V2.0 is a fluid property module for the TOUGH2 simulator (Version 2.1) that was designed for applications to geologic sequestration of CO2 in saline aquifers and enhanced geothermal reservoirs. ECO2N V2.0 is an enhanced version of the previous ECO2N V1.0 module (Pruess, 2005). It expands the temperature range up to about 300oC whereas V1.0 can only be used for temperatures below about 110oC. V2.0 includes a comprehensive description of the thermodynamic and thermophysical properties of H2O - NaCl - CO2 mixtures, that reproduces fluid properties largely within experimental error for the temperature, pressure and salinity conditions 10 °C 2O, NaCl and CO2 among the different phases. In particular, V2.0 accounts for the effects of water on the thermophysical properties of the CO2-rich phase, which was ignored in V1.0, using a model consistent with the solubility models developed by Spycher and Pruess (2005, 2010). In terms of solubility models, V2.0 uses the same model for partitioning of mass components among the different phases (Spycher and Pruess, 2005) as V1.0 for the low temperature range (<99oC) but uses a new model (Spycher and Pruess, 2010) for the high temperature range (>109oC). In the transition range (99-109oC), a smooth interpolation is applied to estimate the partitioning as a function of the temperature. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO2-rich) phase, as well as two-phase (brine-CO2) mixtures. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. Note that the model cannot be applied to subcritical conditions that involves both liquid and gaseous CO2

  13. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine.

    PubMed

    Jin, Jie; Kang, Mingjie; Sun, Ke; Pan, Zezhen; Wu, Fengchang; Xing, Baoshan

    2016-04-15

    Biochars produced from rice straw, wheat straw and swine manure at 300, 450 and 600°C were added to soil at 1, 5, 10, or 20% levels to determine whether they would predictably reduce the pore water concentration of imidacloprid, isoproturon, and atrazine. The sorption capacity of the mixtures increased with increasing biochar amounts. The enhanced sorption capacity could be attributed to the increased organic carbon (OC) content and surface area (SA) as well as the decreased hydrophobicity. Biochar dominated the overall sorption when its content was above 5%. The OC contents of the mixtures with 10% and 20% biochar were generally lower than the predicted values. This implies possible interaction between soil components and biochar and/or the effect of biochar oxidation. For soils amended with biochars produced at 300°C, the N2 SA (N2-SA) values were underestimated. The predicted CO2 SA (CO2-SA) values of the mixtures at the biochar content of 10% and 20% were generally higher than the experimental values. Sorption of imidacloprid to the soils amended with biochar at 10% and 20% levels, excluding the soils amended with rice (SR300) and wheat (SW300) straw-derived biochar produced at 300°C, was lower than the predicted value. For SR300 and SW300, the intrinsic sorption capacity of biochar was enhanced by 1.3-5.6 times, depending on the biochar, solute concentration, and biochar dose. This study indicates that biochars would be helpful to stabilize the soil contaminated with imidacloprid, isoproturon, and atrazine, but the sorption capacity of the mixtures could exceed or fall short of predicted values without assuming a cross-effect between soil and biochar. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    PubMed

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  15. Impact of long-term wastewater irrigation on sorption and transport of atrazine in Mexican agricultural soils.

    PubMed

    Müller, K; Duwig, C; Prado, B; Siebe, C; Hidalgo, C; Etchevers, J

    2012-01-01

    In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.

  16. The use of inverse gas chromatography and gravimetric vapour sorption to study transitions in amorphous lactose.

    PubMed

    Ambarkhane, Ameet V; Pincott, Kim; Buckton, Graham

    2005-04-27

    The aim of this study was to measure the glass transition of amorphous lactose under well-controlled temperature and humidity, using inverse gas chromatography (IGC) and to relate these data to gravimetric vapour sorption experiments. Amorphous lactose (spray-dried) was exposed to a stepwise increment in the relative humidity (%RH) under isothermal conditions in an IGC. At the end of each conditioning step a decane injection was made, and the retention volumes were calculated using the maximum peak height (V(max)) method. The pressure drop across the column was recorded using the pressure transducers. These measurements were performed at various temperatures from 25 to 40 degrees C. The extent of water sorption at identical humidity (%RH) and temperature conditions was determined gravimetrically using dynamic vapour sorption (DVS). At each T, it was possible to determine: (1) a transition at low RH relating to the onset of mobility; (2) changes in retention volume relating to the point, where T(g) = T; (3) changes in pressure drop, which were related to the sample collapse. The rate and extent of water sorption was seen to alter at T(g) and also at a collapse point. Combinations of temperature and critical %RH (%cRH required to lower the dry glass transition temperature to the experimental temperature) obtained from IGC were comparable to those obtained from DVS. It was shown that at each T, the sample spontaneously crystallised, when T(g) was 32 degrees C below T. Inverse gas chromatograph can be used in this novel way to reveal the series of transitions that occur in amorphous materials.

  17. Atomic-deficient nanostructurization in water-sorption alumomagnesium spinel ceramics MgAl2O4

    NASA Astrophysics Data System (ADS)

    Ingram, A.

    2018-02-01

    Atomic-deficient nanostructurization in alumomagnesium MgAl2O4 ceramics sintered at 1100-1400 °C caused by water sorption are studied employing positron annihilation lifetime spectroscopy. Detected PAL spectra are reconstructed from unconstrained x4-term decomposition, and further transformed to x3-term form to be applicable for analysis with x3-x2-CDA (coupling decomposition algorithm). It is proved that water-immersion processes reduce positronium (Ps) decaying in large-size holes of ceramics (1.70-1.84 nm in radius) at the expense of enhanced trapping in tiny ( 0.2 nm in radius) Ps-traps. The water sorption is shown to be more pronounced in structurally imperfect ceramics sintered at T s = 1100-1200 °C due to irreversible transformations between constituting phases, while reversible physical-sorption processes are dominated in structurally uniform ceramics composed of main spinel phase.

  18. Effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene.

    PubMed

    Wang, Peng; Hua, Zulin; Cai, Yunjie; Shen, Xia; Li, Qiongqiong; Liu, Xiaoyuan

    2015-08-01

    The sorption behaviors of pollutants affected by hydrodynamic conditions were confirmed in natural water environment. The effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene were investigated. The particle entrainment simulator (PES) was used to simulate varied bottom shear stresses. The batch equilibrium method was applied to the experiments with the stress levels and the action time controlled at 0.2-0.5 N/m(2) and 24 h, respectively. The findings indicated that apparent partition coefficient of aniline on sediment increased with the shear stress significantly, while decreased with nitrobenzene concentration. On the contrary, both the sorption amount of aniline on suspended particulate matter (Q s) and the effect of nitrobenzene concentration on Q s declined as the shear stress increased. The sorption kinetic results showed that the sorption process followed the pseudo-second-order kinetics equation, and the process included two stages: fast sorption stage and slow sorption stage, among which the average sorption rate of fast stage was 7.5-9.5 times that of slow one. The effect of shear stress on the average sorption rate of aniline was enhanced with the increase of nitrobenzene concentration. And shear stress weakened the disturbance of cosolute on main solute sorption process. In addition, experiment results of sorption kinetic show that only the initial sorption rate was affected by shear stress and cosolute concentration. In the first 5 min, shear stress had positive effects on the sorption rate. After that, the sorption rate barely changed with shear stress and cosolute concentration.

  19. Calorimetric Studies and Structural Aspects of Ionic Liquids in Designing Sorption Materials for Thermal Energy Storage.

    PubMed

    Brünig, Thorge; Krekić, Kristijan; Bruhn, Clemens; Pietschnig, Rudolf

    2016-11-02

    The thermal properties of a series of twenty-four ionic liquids (ILs) have been determined by isothermal titration calorimetry (ITC) with the aim of simulating processes involving water sorption. For eleven water-free ILs, the molecular structures have been determined by X-ray crystallography in the solid state, which have been used to derive the molecular volumes of the ionic components of the ILs. Moreover, the structures reveal a high prevalence of hydrogen bonding in these compounds. A relationship between the molecular volumes and the experimentally determined energies of dilution could be established. The highest energies of dilution observed in this series were obtained for the acetate-based ILs, which underlines their potential as working fluids in sorption-based thermal energy storage systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Environmental factors determining the trace-level sorption of silver and thallium to soils.

    PubMed

    Jacobson, Astrid R; McBride, Murray B; Baveye, Philippe; Steenhuis, Tammo S

    2005-06-01

    Silver (Ag) and thallium (Tl) are nonessential elements that can be highly toxic to a number of biota even when present in the environment at trace levels. In spite of that, the literature on the chemistry and fate of Ag and Tl in soils is extremely scanty. In that context, the key objective of this research was to compare the sorption characteristics of trace amounts of Ag and Tl on a range of soils and minerals. A second objective was to determine the extent to which the composition and surface chemistry of the sorbents, as well as other environmental factors (simulated acid rain application and the presence of competing ions like K+ and NH4+) influence the sorption and lability of Ag and Tl. To this end, short-term and long-term sorption isotherms were generated under batch conditions for trace levels of Ag and Tl onto three illite-rich mineral soils from central New York (silt loam and fine sandy loam), a peaty-muck soil drained for agricultural use, and soil minerals (ferrihydrite and birnessite). Silver sorbed more strongly than thallium to all the soils. The peaty-muck soil sorbed Ag more strongly than the mineral soils, confirming that silver sorption to soils is dominated by soil organic matter either through exchange or complexation. The organic matter-rich soil's retention of Tl, however, was similar to that of the sandy soil. Amounts of Ag and Tl sorbed to the mineral soils increased after a 1-year incubation period. Whereas Ag sorption to the peaty-muck soil also increased with time, Tl sorption was unaffected. Short batch studies indicated that high amounts of Tl sorb to birnessite (30% by mass). However, subsequent X-ray diffraction (XRD) analysis of the solid did not detect the presence of any Tl3+ as Tl2O3 on the MnO4. In contrast, TlI was relatively poorly sorbed on noncrystalline ferrihydrite at pH 5.1 (1.5% by mass). Thus, Mn oxides may play a role in Tl retention by soils; whereas, contrary to previous reports, iron oxides do not effectively

  1. Kinetics and isotherm analysis of 2,4-dichlorophenoxyl acetic acid adsorption onto soil components under oxic and anoxic conditions.

    PubMed

    Ololade, Isaac A; Alomaja, Folasade; Oladoja, Nurudeen A; Ololade, Oluwaranti O; Oloye, Femi F

    2015-01-01

    2,4-dichlorophenoxyl acetic acid (2,4-D, pKa = 2.8) is used extensively as a herbicide in agricultural practices. Its sorption behavior on both untreated and soils treated to significantly remove specific components (organic and iron and manganese [Fe-Mn] oxides and hydroxides phases) was investigated under oxic and anoxic conditions. The chemical and structural heterogeneity of the soil components were characterized by elemental analysis and X-ray diffraction (XRD). The coexistence of the various components seems to either mask sorption sites on the untreated soil surfaces or inhibit interlayer diffusion of 2,4-D. All sorption data conform to the Freundlich description and a pseudo-second-order kinetic model. There was a strong positive correlation between sorption capacity K(d), and surface area (r(2) ≤ 0.704), but a negative correlation was uncovered with both pH and organic carbon (r(2) ≤ -0.860). The results indicate that 2,4-D is preferably sorbed under oxic rather than anoxic conditions and it is greater on soils containing a high Fe content. There was incomplete 2,4-D sorption reversibility, with desorption occurring more rapidly under anoxic conditions. The study suggests that stimulation of Fe III reduction could be used for the bioremediation of a 2,4-D-contaminated site.

  2. Comparative sorption, desorption and leaching potential of aminocyclopyrachlor and picloram

    USDA-ARS?s Scientific Manuscript database

    Aminocyclopyrachlor and picloram sorption, desorption and leaching potential were investigated in three soils from Minnesota and Hawaii. Aminocyclopyrachlor and picloram sorption fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram ...

  3. The sorption characteristics of mercury as affected by organic matter content and/or soil properties

    NASA Astrophysics Data System (ADS)

    Šípková, Adéla; Šillerová, Hana; Száková, Jiřina

    2014-05-01

    The determination and description of the mercury sorption extend on soil is significant for potential environmental toxic effects. The aim of this study was to assess the effectiveness of mercury sorption at different soil samples and vermicomposts. Mercury interactions with soil organic matter were studied using three soils with different physical-chemical properties - fluvisol, cambisol, and chernozem. Moreover, three different vermicomposts based on various bio-waste materials with high organic matter content were prepared in special fermentors. First was a digestate, second was represented by a mixture of bio-waste from housing estate and woodchips, and third was a garden bio-waste. In the case of vermicompost, the fractionation of organic matter was executed primarily using the resin SuperliteTM DAX-8. Therefore, the representation of individual fractions (humic acid, fulvic acid, hydrophilic compounds, and hydrophobic neutral organic matter) was known. The kinetics of mercury sorption onto materials of interest was studied by static sorption experiments. Samples were exposed to the solution with known Hg concentration of 12 mg kg-1 for the time from 10 minutes to 24 hours. Mercury content in the solutions was measured by the inductively coupled plasma mass spectrometry (ICP-MS). Based on this data, the optimum conditions for following sorption experiments were chosen. Subsequently, the batch sorption tests for all soil types and vermicomposts were performed in solution containing variable mercury concentrations between 1 and 12 mg kg-1. Equilibrium concentration values measured in the solution after sorption and calculated mercury content per kilogram of the soil or the vermi-compost were plotted. Two basic models of sorption isotherm - Langmuir and Freundlich, were used for the evaluation of the mercury sorption properties. The results showed that the best sorption properties from studied soil were identified in chernozem with highest cation exchange

  4. Predicting sorption of organic acids to a wide range of carbonized sorbents

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  5. Experimental and theoretical study of Co sorption in clay montmorillonites

    NASA Astrophysics Data System (ADS)

    Gil Rebaza, A. V.; Montes, M. L.; Taylor, M. A.; Errico, L. A.; Alonso, R. E.

    2018-03-01

    Montmorillonite (MMT) clays are 2:1 layered structures which in natural state may allocate different hydrated cations such as M-nH2O (M = Na, Ca, Fe, etc) in its interlayer space. Depending on the capability for ion sorption, these materials are interesting for environmental remediation. In this work we experimentally study the Co sorption in a natural Na-MMT using UV-visible spectrometry and XRD on semi-oriented samples, and then analyze the sorption ability of this clay by means of ab initio calculation performed on pristine MMT. The structural properties of Na-MMT and Co-adsorbed MMT, and the hyperfine parameters at different atomic sites were analyzed and compared with the experimental ones for the first, and for the case of the hyperfine parameters, presented for the first time for the last. The theoretical predictions based on total energy considerations confirm that Co incorporation replacing Na is energetically favorable. Also, the basal spacing d001 experimentally obtained is well reproduced.

  6. Reliability analysis of nutrient removal from stormwater runoff with green sorption media under varying influent conditions.

    PubMed

    Jones, Jamie; Chang, Ni-Bin; Wanielista, Martin P

    2015-01-01

    To support nutrient removal, various stormwater treatment technologies have been developed via the use of green materials, such as sawdust, tire crumbs, sand, clay, sulfur, and limestone, as typical constituents of filter media mixes. These materials aid in the physiochemical sorption and precipitation of orthophosphates as well as in the biological transformation of ammonia, nitrates and nitrites. However, these processes are dependent upon influent conditions such as hydraulic residence time, influent orthophosphate concentrations, and other chemical species present in the inflow. This study aims to compare the physiochemical removal of orthophosphate by isotherm and column tests under differing influent conditions to realize the reliability of orthophosphate removal process with the aid of green sorption media. The green sorption media of interest in this study is composed of a 5:2:2:1 (by volume) mixture of cement sand, tire crumb, fine expanded clay, and limestone. Scenarios of manipulating the hydraulic residence time of the water from 18 min and 60 min, the influent dissolved phosphorus concentrations of 1.0 mg·L(-1) and 0.5 mg·L(-1), and influent water types of distilled and pond water, were all investigated in the column tests. Experimental data were compared with the outputs from the Thomas Model based on orthophosphate removal to shed light on the equilibrium condition versus kinetic situation. With ANOVA tests, significant differences were confirmed between the experimental data sets of the breakthrough curves in the column tests. SEM imaging analysis helps to deepen the understanding of pore structures and pore networks of meta-materials being used in the green sorption media. Life expectancy curves derived from the output of Thomas Model may be applicable for future system design of engineering processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  8. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation.

    PubMed

    Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide

    2013-11-01

    Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.

  9. Enhanced sorption of PAHs in natural-fire-impacted sediments from Oriole Lake, California.

    PubMed

    Sullivan, Julia; Bollinger, Kevyn; Caprio, Anthony; Cantwell, Mark; Appleby, Peter; King, John; Ligouis, Bertrand; Lohmann, Rainer

    2011-04-01

    Surface sediment cores from Oriole Lake (CA) were analyzed for organic carbon (OC), black carbon (BC), and their δ(13)C isotope ratios. Sediments displayed high OC (20-25%) and increasing BC concentrations from ∼0.40% (in 1800 C.E.) to ∼0.60% dry weight (in 2000 C.E.). Petrographic analysis confirmed the presence of fire-derived carbonaceous particles/BC at ∼2% of total OC. Natural fires were the most likely cause of both elevated polycyclic aromatic hydrocarbon (PAH) concentrations and enhanced sorption in Oriole Lake sediments prior to 1850, consistent with their tree-ring-based fire history. In contrast to other PAHs, retene and perylene displayed decreasing concentrations during periods with natural fires, questioning their use as fire tracers. The occurrence of natural fires, however, did not result in elevated concentrations of black carbon or chars in the sediments. Only the 1912-2007 sediment layer contained anthropogenic particles, such as soot BC. In this layer, combining OC absorption with adsorption to soot BC (using a Freundlich coefficient n = 0.7) explained the observed sorption well. In the older layers, n needed to be 0.3 and 0.5 to explain the enhanced sorption to the sediments, indicating the importance of natural chars/inertinites in sorbing PAHs. For phenanthrene, values of n differed significantly between sorption to natural chars (0.1-0.4) and sorption to anthropogenic black carbon (>0.5), suggesting it could serve as an in situ probe of sorbents.

  10. Biodegradation, sorption, and transport of 2,4-dichlorophenoxyacetic acid in saturated and unsaturated soils.

    PubMed Central

    Estrella, M R; Brusseau, M L; Maier, R S; Pepper, I L; Wierenga, P J; Miller, R M

    1993-01-01

    The fate of an organic contaminant in soil depends on many factors, including sorption, biodegradation, and transport. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was used as a model compound to illustrate the impact of these interacting factors on the fate of an organic contaminant. Batch and column experiments performed with a sandy loam soil mixture under saturated and unsaturated conditions were used to determine the effects of sorption and biodegradation on the fate and transport of 2,4-D. Sorption of 2,4-D was found to have a slight but significant effect on transport of 2,4-D under saturated conditions (retardation factor, 1.8) and unsaturated conditions (retardation factor, 3.4). Biodegradation of 2,4-D was extensive under both batch and column conditions and was found to have a significant impact on 2,4-D transport in column experiments. In batch experiments, complete mineralization of 2,4-D (100 mg kg-1) occurred over a 4-day period following a 3-day lag phase under both saturated and unsaturated conditions. The biodegradation rate parameters calculated for batch experiments were found to be significantly different from those estimated for column experiments. PMID:8285717

  11. Sorption of selected pesticides on soils, sediment and straw from a constructed agricultural drainage ditch or pond.

    PubMed

    Vallée, Romain; Dousset, Sylvie; Billet, David; Benoit, Marc

    2014-04-01

    Buffer zones such as ponds and ditches are used to reduce field-scale losses of pesticides from subsurface drainage waters to surface waters. The objective of this study was to assess the efficiency of these buffer zones, in particular constructed wetlands, focusing specifically on sorption processes. We modelled the sorption processes of three herbicides [2-methyl-4-chlorophenoxyacetic acid (2,4-MCPA), isoproturon and napropamide] and three fungicides (boscalid, prochloraz and tebuconazole) on four substrates (two soils, sediment and straw) commonly found in a pond and ditch in Lorraine (France). A wide range of Freundlich coefficient (K fads) values was obtained, from 0.74 to 442.63 mg(1 - n) L (n) kg(-1), and the corresponding K foc values ranged from 56 to 3,725 mg(1 - n) L (n) kg(-1). Based on potential retention, the substrates may be classified as straw > sediments > soils. These results show the importance of organic carbon content and nature in the process of sorption. Similarly, the studied pesticides could be classified according to their adsorption capacity as follows: prochloraz > tebuconazole-boscalid > napropamide > MCPA-isoproturon. This classification is strongly influenced by the physico-chemical properties of pesticides, especially solubility and K oc. Straw exhibited the largest quantity of non-desorbable pesticide residues, from 12.1 to 224.2 mg/L for all pesticides. The presence of plants could increase soil-sediment sorption capacity. Thus, establishment and maintenance of plants and straw filters should be promoted to optimise sorption processes and the efficiency of ponds and ditches in reducing surface water pollution.

  12. Adsorption isotherms and kinetics of activated carbons produced from coals of different ranks.

    PubMed

    Purevsuren, B; Lin, Chin-Jung; Davaajav, Y; Ariunaa, A; Batbileg, S; Avid, B; Jargalmaa, S; Huang, Yu; Liou, Sofia Ya-Hsuan

    2015-01-01

    Activated carbons (ACs) from six coals, ranging from low-rank lignite brown coal to high-rank stone coal, were utilized as adsorbents to remove basic methylene blue (MB) from an aqueous solution. The surface properties of the obtained ACs were characterized via thermal analysis, N2 isothermal sorption, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. As coal rank decreased, an increase in the heterogeneity of the pore structures and abundance of oxygen-containing functional groups increased MB coverage on its surface. The equilibrium data fitted well with the Langmuir model, and adsorption capacity of MB ranged from 51.8 to 344.8 mg g⁻¹. Good correlation coefficients were obtained using the intra-particle diffusion model, indicating that the adsorption of MB onto ACs is diffusion controlled. The values of the effective diffusion coefficient ranged from 0.61 × 10⁻¹⁰ to 7.1 × 10⁻¹⁰ m² s⁻¹, indicating that ACs from lower-rank coals have higher effective diffusivities. Among all the ACs obtained from selected coals, the AC from low-rank lignite brown coal was the most effective in removing MB from an aqueous solution.

  13. Copper(II) sorption onto goethite, hematite and lepidocrocite: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Peacock, Caroline L.; Sherman, David M.

    2004-06-01

    We measured the adsorption of Cu(II) onto goethite (α-FeOOH), hematite (α-Fe 2O 3) and lepidocrocite (γ-FeOOH) from pH 2-7. EXAFS spectra show that Cu(II) adsorbs as (CuO 4H n) n-6 and binuclear (Cu 2O 6H n) n-8 complexes. These form inner-sphere complexes with the iron (hydr)oxide surfaces by corner-sharing with two or three edge-sharing Fe(O,OH) 6 polyhedra. Our interpretation of the EXAFS data is supported by ab initio (density functional theory) geometries of analogue Fe 2(OH) 2(H 2O) 8Cu(OH) 4and Fe 3(OH) 4(H 2O) 10Cu 2(OH) 6 clusters. We find no evidence for surface complexes resulting from either monodentate corner-sharing or bidentate edge-sharing between (CuO 4H n) n-6 and Fe(O,OH) 6 polyhedra. Sorption isotherms and EXAFS spectra show that surface precipitates have not formed even though we are supersaturated with respect to CuO and Cu(OH) 2. Having identified the bidentate (FeOH) 2Cu(OH) 20 and tridentate (Fe 3O(OH) 2)Cu 2(OH) 30 surface complexes, we are able to fit the experimental copper(II) adsorption data to the reactions 3( FeOH)+2 Cu2++3 H2O=( Fe3O( OH) 2) Cu2( OH) 30+4 H+ and 2( FeOH)+ Cu2++2 H2O=( FeOH) 2Cu( OH) 20+2 H+. The two stability constants are similar for the three iron (hydr)oxide phases investigated.

  14. Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol.

    PubMed

    Steinhardt, Rachel; Hiew, Stanley C; Mohapatra, Hemakesh; Nguyen, Du; Oh, Zachary; Truong, Richard; Esser-Kahn, Aaron

    2017-12-27

    Designing new liquids for CO 2 absorption is a challenge in CO 2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal-organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO 2 absorption isotherms. Upon introduction, CO 2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO 2 . The precipitation of this second viscous phase drives CO 2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO 2 uptake across the same pressure range. In our system, CO 2 absorption is strongly solvent dependent. In DMSO, both systems exhibit hyperbolic isotherms and no precipitation occurs. Subsequent 1 H NMR experiments confirmed the formation of distinct alkylcarbonate species having either one or two molecules of CO 2 bound. The solvent and structure relationships derived from these results can be used to tailor new liquid absorption systems to the conditions of a given CO 2 separation process.

  15. Selective Sorption of Dissolved Organic Carbon Compounds by Temperate Soils

    PubMed Central

    Jagadamma, Sindhu; Mayes, Melanie A.; Phillips, Jana R.

    2012-01-01

    Background Physico-chemical sorption onto soil minerals is one of the major processes of dissolved organic carbon (OC) stabilization in deeper soils. The interaction of DOC on soil solids is related to the reactivity of soil minerals, the chemistry of sorbate functional groups, and the stability of sorbate to microbial degradation. This study was conducted to examine the sorption of diverse OC compounds (D-glucose, L-alanine, oxalic acid, salicylic acid, and sinapyl alcohol) on temperate climate soil orders (Mollisols, Ultisols and Alfisols). Methodology Equilibrium batch experiments were conducted using 0–100 mg C L−1 at a solid-solution ratio of 1∶60 for 48 hrs on natural soils and on soils sterilized by γ-irradiation. The maximum sorption capacity, Qmax and binding coefficient, k were calculated by fitting to the Langmuir model. Results Ultisols appeared to sorb more glucose, alanine, and salicylic acid than did Alfisols or Mollisols and the isotherms followed a non-linear pattern (higher k). Sterile experiments revealed that glucose and alanine were both readily degraded and/or incorporated into microbial biomass because the observed Qmax under sterile conditions decreased by 22–46% for glucose and 17–77% for alanine as compared to non-sterile conditions. Mollisols, in contrast, more readily reacted with oxalic acid (Qmax of 886 mg kg−1) and sinapyl alcohol (Qmax of 2031 mg kg−1), and no degradation was observed. The reactivity of Alfisols to DOC was intermediate to that of Ultisols and Mollisols, and degradation followed similar patterns as for Ultisols. Conclusion This study demonstrated that three common temperate soil orders experienced differential sorption and degradation of simple OC compounds, indicating that sorbate chemistry plays a significant role in the sorptive stabilization of DOC. PMID:23209742

  16. Precision Determination of Adsorption Layers on Stainless Steel Mass Standards by Mass Comparison and Ellipsometry: Part I: Adsorption Isotherms in Air

    NASA Astrophysics Data System (ADS)

    Schwartz, R.

    1994-01-01

    Adsorption layers on stainless steel mass standards (OIML classes E1 and E2) have been determined directly and precisely by the optical method of ellipsometry as a function of relative humidity in the range 0,03 <= h <= 0,77, the relevant influencing factors being surface cleanliness, roughness, steel composition and ambient temperature. Under the same environmental conditions, two pairs of 1 kg artefacts, having geometrical surfaces differing in area by about δ A = 390 cm2, but the same material properties and surface finish as the mass standards, have been compared on a 1 kg mass comparator. The two independent measuring techniques yield strongly correlated results, the standard uncertainties of the measured surface coverings being 2. The sorption behaviour of carefully polished surfaces (average peak-to-valley height Rz <= 0,12 μm) is well described by the BET equation for multilayer adsorption, the adsorption isotherm being of type II according to the BET classification. For clean, well-polished surfaces the BET parameters μm = 0,008 4 μg cm-2 and cB = 8,9 were found; the corresponding coefficient in the limited humidity range 0,30 <= h <= 0,60 is 31 × δh ng cm-2. The sorption behaviour of precision stainless steel mass standards is mainly influenced by the degree of surface cleanliness: uncleaned standards with an absolute surface covering of μ' >= 0,7 μg cm-2 show sorption-induced mass variations which are greater by about a factor of 2,5 relative to the clean surfaces.

  17. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media.

    PubMed

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-06-01

    Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey's HSD test with p≤ 0.05 set as the level of significance. There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically.

  18. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG 5 -SDB was estimated to be about 682 and 544.2mgg -1 respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis, characterization and study of sorption parameters of multi-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions.

    PubMed

    Khakpour, Roghayeh; Tahermansouri, Hasan

    2018-04-01

    The modification of carboxylated multi-wall carbon nanotubes (MWCNT-COOH) with chitosan (Chi) has been investigated to prepare a nanocomposite material (MWCNT-Chi) for the removal of picric acid from aqueous solutions. Materials were characterized by FT-IR, TGA, DTG, FESEM, EDX, BET and zeta potential. Batch experiments such as solution pH, dosage of adsorbents, contact time, concentration of the picric acid and temperature were achieved to study sorption process. Kinetic studies were well described by pseudo-second-order kinetic model for both adsorbents. The six isotherm models: Langmuir (four linear forms), Freundlich, Tempkin, Halsey, Harkins-Jura and Dubinin-Radushkevich models were applied to determine the characteristic parameters of the adsorption process. Isotherm studies showed that the Langmuir isotherm for MWCNT-Chi and Freundlich and Halsey models for both adsorbents were found to best represent the measured sorption data. In addition, the results of Dubinin-Radushkevich model confirmed the physical adsorption. Negative ΔG° values for MWCNT-Chi and positive ones for MWCNT-COOH indicated the nature of spontaneous and unspontaneous, respectively for adsorption process in the range of the studied concentrations. In addition, picric acid molecules can be desorbed from MWCNT-Chi up to 90% at pH = 9 and that the consumed MWCNT-Chi could be reutilized up to 5th cycle of regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system.

    PubMed

    Choung, Sungwook; Zimmerman, Lisa R; Allen-King, Richelle M; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-15

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc=0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen+black carbon was the dominant CM fraction extracted from the sediments and accounted for >60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that >80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration <1000 μgL(-1). These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Heterogeneous carbonaceous matter in sedimentary rock lithocomponents causes significant trichloroethylene (TCE) sorption in a low organic carbon content aquifer/aquitard system

    NASA Astrophysics Data System (ADS)

    Choung, Sungwook; Zimmerman, Lisa R.; Allen-King, Richelle M.; Ligouis, Bertrand; Feenstra, Stanley

    2014-10-01

    This study evaluated the effects of heterogeneous thermally altered carbonaceous matter (CM) on trichloroethylene (TCE) sorption for a low fraction organic carbon content (foc) alluvial sedimentary aquifer and aquitard system (foc = 0.046-0.105%). The equilibrium TCE sorption isotherms were highly nonlinear with Freundlich exponents of 0.46-0.58. Kerogen + black carbon was the dominant CM fraction extracted from the sediments and accounted for > 60% and 99% of the total in the sands and silt, respectively. Organic petrological examination determined that the kerogen included abundant amorphous organic matter (bituminite), likely of marine origin. The dark calcareous siltstone exhibited the greatest TCE sorption among aquifer lithocomponents and accounted for most sorption in the aquifer. The results suggest that the source of the thermally altered CM, which causes nonlinear sorption, was derived from parent Paleozoic marine carbonate rocks that outcrop throughout much of New York State. A synthetic aquifer-aquitard unit system (10% aquitard) was used to illustrate the effect of the observed nonlinear sorption on mass storage potential at equilibrium. The calculation showed that > 80% of TCE mass contained in the aquifer was sorbed on the aquifer sediment at aqueous concentration < 1000 μg L- 1. These results show that sorption is likely a significant contributor to the persistence of a TCE groundwater plume in the aquifer studied. It is implied that sorption may similarly contribute to TCE persistence in other glacial alluvial aquifers with similar geologic characteristics, i.e., comprised of sedimentary rock lithocomponents that contain thermally altered CM.

  2. Phosphorus Sorption Characteristics in Aluminum-based Water Treatment Residuals Reacted with Dairy Wastewater: 1. Isotherms, XRD, and SEM-EDS Analysis.

    PubMed

    Zohar, Iris; Massey, Michael S; Ippolito, James A; Litaor, M Iggy

    2018-05-01

    We examined P sorption characteristics in Al-based water treatment residuals (Al-WTR) generated from slightly alkaline surface water and in an organic residual composite (WW-Al/O-WTR), produced by using the Al-WTR to treat organic-rich and high P concentration dairy wastewater. Solids from both residuals were examined using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray diffraction (XRD), and exposed to P additions of 0 to 4000 mg L in a sorption experiment. The Al-WTR removed ∼97% of the added P, whereas WW-Al/O-WTR removed only 78% of the added P in the addition range of 0 to 100 mg P L. With P additions of ≥100 mg L, the removal rate declined to <38% by Al-WTR and to 16% by WW-Al/O-WTR, possibly implying a change in sorption mechanisms. Analysis by XRD indicated that the major mineral was calcite, with some silica and poorly crystalline Al hydroxides. Analysis by SEM-EDS, which used three-element overlay maps of the residual surfaces, indicated that P was sparsely sorbed on both calcic and Al (hydr)oxide surfaces, along with a few clusters, even at low P concentrations of the treated waters. Ternary clusters of P, Al, and Ca were more abundant on the WW-Al/O-WTR. Carbon distribution suggested that organic substances covered Al surfaces. Sorption of P onto WW-Al/O-WTR may be reversible due to relatively weak Ca-P and Al-P bonds induced by the slight alkaline nature and in the presence of organic moieties, enhancing the WW-Al/O-WTR potential to act as a P source, rather than a P sink, in agricultural applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties.

    PubMed

    Álvarez, J Raziel; Sánchez-González, Elí; Pérez, Eric; Schneider-Revueltas, Emilia; Martínez, Ana; Tejeda-Cruz, Adriana; Islas-Jácome, Alejandro; González-Zamora, Eduardo; Ibarra, Ilich A

    2017-07-18

    Water and ethanol stabilities of the crystal structure of the Cu-based metal-organic framework (MOF) HKUST-1 have been investigated. Vapour (water and ethanol) sorption isotherms and cyclability were measured by a dynamic strategy. The ethanol sorption capacity of HKUST-1 at 303 K remained unchanged contrasting water sorption (which decreased along with the sorption experiment time). Considering the binding energy of each sorbate with the open Cu(ii) sites, obtained by the use of diffusion coefficients, we showed the superior crystal stability of the HKUST-1 framework towards ethanol. Finally, a small quantity of ethanol (pre-adsorbed) slightly enhanced CO 2 capture without crystal structure degradation.

  4. Methylarsenic Sorption to Mackinawite (FeS) and Implications for Methylarsenic Mobility in Wetland Environments

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Vallat, F.; Bernier-Latmani, R.; Pena, J.

    2017-12-01

    The fate and transport of arsenic (As) in terrestrial environments is determined by its chemical speciation. Specifically, microorganisms play key roles in mediating transformations between inorganic and methylarsenic species as well as influencing the formation of soil minerals with which As interacts. Biomethylation reactions are an important component of the As biogeochemical cycle, particularly in paddy soil environments where methylarsenic species can accumulate in rice. Methylarsenic concentrations in rice paddy and other wetland porewaters are typically quite low, however, despite the fact that microbes harboring arsM genes that catalyze As methylation are prevalent. This contribution examines the role of methylarsenic sorption to mackinawite (FeS) in immobilizing methylarsenic species produced in reducing soil environments. Mackinawite is the first Fe(II) sulfide mineral to form under iron- and sulfate-reducing conditions, and is an important biogenic mineral in reducing soil and sediment environments. We report results from a laboratory study of monomethylarsonic acid (MMAs(V)) and dimethylarsinic acid (DMAs(V)) sorption onto the surface of synthetic mackinawite. Sorption kinetics for MMAs(V) were faster than those for arsenite (As(III)). MMAs(V) and DMAs(V) sorption data at pH 6.5 were fit with a Langmuir isotherm. Sorption capacities of the methylarsenic species were comparable. However, DMAs(V) exhibited a greater affinity constant than MMAs(V). Affinity constants for methylarsenic species were two to four times lower than previously reported values for arsenite and ten to twenty times lower than values for arsenate [1], suggesting greater mobility of methylarsenic species in sulfidic environments relative to their inorganic precursors. [1] M. Wolthers et al. 2005, GCA 69 (14), 3483-3492

  5. Sorption of Metal Ions on Clay Minerals.

    PubMed

    Schlegel; Charlet; Manceau

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances

  6. Description of two-metal biosorption equilibria by Langmuir-type models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.H.; Volesky, B.

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-metal systems containing either (Cu+Zn), (Cu+Cd), or (Zn+Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 ``affinity`` for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu of Cd were present. The uptake ofmore » Cd was much more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the ``affinity`` of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal.« less

  7. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.

    PubMed

    Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae

    2013-12-01

    The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The implications of water extractable organic matter (WEOM) on the sorption of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics.

    PubMed

    Li, Ruilong; Tan, Huadong; Zhang, Linlin; Wang, Shaopeng; Wang, Yinghui; Yu, Kefu

    2018-07-30

    Microplastics sorption of persistent organic pollutants (POPs) was the core processes that cause negative effects to biota, and their influencing factors and related mechanisms are poorly understood. In this study, we explored the impacts of water extractable organic matter (WEOM), an important source of endogenous dissolved organic matter in mangrove sediment, on the sorption coefficients of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics. The presence of L-WEOM (D) impeded the PAHs sorption as the coefficients (K f ) decreased to 10.17 (μg/kg)/(μg/L) n and to 8.39 (μg/kg)/(μg/L) n for fluorene (Flu) and 1-methyl-fluorene (1-M-Flu), respectively. The K f exhibited good linear relationships with the aliphaticity of L-WEOM (p < 0.05) rather than the aromatic carbon/alkyl carbon content (p > 0.05). Under the presences of L-WEOM (D), (S) and (K), the lone pair electrons of N/O/S-containing PAHs was the dominant factor contributing to the obvious difference of the K f values from the other groups. Moreover, the largest impact of L-WEOM (D) on the Flu sorption was in the case of PVC microplastics, while almost no effect was in the case of PS microplastics. The findings of our work may be helpful in improving our understanding of the role of WEOM on the sorption of PAHs to microplastics in the field mangrove sediment. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cr(VI) Sorption by Nanosized FeS-Coated Sand

    NASA Astrophysics Data System (ADS)

    Park, M.; Jeong, H. Y.; Lee, S.; Kang, N.; Kim, K. H.; Choi, H. J.

    2015-12-01

    Cr(VI) sorption experiments were conducted as a function of pH (4.7, 7.0 and 9.7) using nanosized FeS-coated sand under anoxic environments. Under the experimental conditions, the sand used, with the FeS content of 0.068 mmol per 1 g sand, completely reduced the initially added Cr(VI) to Cr(III) over the pH range examined. The sorption of the once-reduced Cr(III) varied greatly with the solution pH. By the solution-phase analysis, significant amounts of Cr(III) remained as dissolved species at pH 4.7. On the other hands, dissolved Cr was below the detection limit (0.2 μM) at pH 7.0 and 9.7, indicating the greater sorption of Cr(III) at neutral to basic pH than acidic pH. From Cr-K edge X-ray absorption spectroscopy (XAS) analysis of the solid products, the sorbed Cr was shown to be present predominantly as trivalent state in all samples. Regardless of pH, the second coordination shell around Cr (i.e., the Cr-Cr(Fe) shell) was shown to be located at ~2.6 Å, which was far shorter than those in Cr(III)-bearing model compounds such as Cr(OH)3(s) and [Cr, Fe](OH)3(s). Furthermore, the coordination numbers of the second and third shells in the sorption samples (N = 0.7-1.8) were much lower than those in Cr(OH)3(s) and [Cr, Fe](OH)3(s). Taken together, the sorption of the once-reduced Cr(III) was likely to occur via surface-mediated processes (e.g., surface complexation and/or surface precipitation) rather than the bulk-phase precipitation. Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).

  10. Isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol

    NASA Astrophysics Data System (ADS)

    Fransson, Å.; Bäckström, G.

    The isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol has been measured at six temperatures. The relaxation time and the distribution parameters extracted from fits of the Williams-Watts relaxation function are compared with parameters obtained by other techniques and on other substances. A detailed comparison of the Williams-Watts and the Davidson-Cole relaxation functions is presented.

  11. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles.

    PubMed

    Tan, Xiaoli; Wang, Xiangke; Chen, Changlun; Sun, Aihua

    2007-04-01

    Thorium is considered as a chemical analog of other tetravalent actinides. Herein, the sorption of Th(IV) on TiO(2) in the presence or absence of soil fulvic acid (FA)/humic acid (HA) as a function of pH, ionic strength and FA/HA concentration has been studied by a batch method. The morphology was characterized by scanning electron microscopy (SEM). The results indicate that sorption of Th(IV) on TiO(2) increases from 0% to approximately 94% at pH 1 approximately 4, and then maintains level with increasing pH values. Both FA and HA have a positive effect on Th(IV) sorption at low pH values and the contribution of FA on Th(IV) sorption is rather higher than that of HA at pH<4. The sorption is weakly dependent on the concentration of KNO(3) in solution, but the cations K(+), Na(+) and Li(+) influence Th(IV) sorption more obviously. The batch results indicate that the inner sphere complex formation is formed at bare surfaces or FA/HA-bound TiO(2) particle surfaces. Results of SEM analysis show that the particle sizes of TiO(2), Th-TiO(2) and Th-HA-TiO(2) colloids are quite different. Surface complexation may be considered as the main sorption mechanism.

  12. Super-microporous solid base MgO-ZrO2 composite and their application in biodiesel production

    NASA Astrophysics Data System (ADS)

    Su, Jiaojiao; Li, Yongfeng; Wang, Huigang; Yan, Xiaoliang; Pan, Dahai; Fan, Binbin; Li, Ruifeng

    2016-10-01

    The super-microporous microcrystalline MgO-ZrO2 nanomaterials (pore size 1-2 nm) was prepared successfully via a facile one-pot evaporation-induced self-assembly (EISA) method and employed in the transesterification of soybean oil and methanol. X-ray diffraction, transmission electron microscope, temperature programmed desorption of CO2, and N2 adsorption porosimetry were employed to characterize the nanocomposites. Nitrogen sorption isotherms revealed that these materials had large surface areas of more than 200 m2/g. Moreover, the sample with a Mg/Zr molar ratio of 0.5 and calcined at 400 °C showed high biodiesel yield (around 99% at 150 °C).

  13. Effects of plasticizers on sorption and optical properties of gum cordia based edible film.

    PubMed

    Haq, Muhammad Abdul; Jafri, Feroz Alam; Hasnain, Abid

    2016-06-01

    The present study aimed to characterize a biodegradable film produced from the polysaccharide of an indigenous plant Cordia myxa. Effect of plasticizer type (Glycerol, Sorbitol, PEG200 and PEG 400) and concentration (0-30 %) was studied on sorption and optical properties of the casted film. Increase in plasticizer concentration resulted in increase in equilibrium moisture content of the film and was supported by GAB model of sorption indicating that isotherms were of Type II. The monolayer value increased with the increase in plasticizer concentration with a peak of 0.93 g.g-1 for glycerol. Addition of plasticizers improved the total color (ΔE) with glycerol showing the highest effects. All films showed resistance to UV light in the range of 280-200 nm. The polysaccharide of the fruit of C.myxa can be used to prepare an edible film with improved properties as compared to other available edible coatings.

  14. Moisture sorption and permeability characteristics of polymer films: implications for their use as barrier coatings for solid dosage forms containing hydrolyzable drug substances.

    PubMed

    Mwesigwa, Enosh; Basit, Abdul W; Buckton, Graham

    2008-10-01

    Moisture sorption and permeability characteristics of polymer films were studied and their effectiveness to protect a hydrolyzable drug assessed. Cast films were prepared from Eudragit L30 D-55, Eudragit EPO, Opadry AMB and Sepifilm LP dispersions, which were also applied onto tablet cores formulated with aspirin as a model moisture sensitive active ingredient. Sorption studies were undertaken using dynamic vapour sorption, ranging between 0% and 90% RH at 25 degrees C. Cast films exhibited fast equilibration (isotherms and non-Fickian kinetics. Sepifilm LP and Opadry AMB produced the highest solubility coefficients, demonstrating greater preference for water. Eudragit EPO was the least permeable film, followed by Opadry AMB, Eudragit L30 D-55 and Sepifilm LP (permeability coefficients of the order of 10(-6)-10(-7) cm(3) (STP) cm/cm(2) s cm Hg). Coated cores achieved a net reduction in moisture uptake, which was commensurate with the permeability characteristics of films. However, higher aspirin degradation was observed in coated cores, with Eudragit EPO emerging as the least effective barrier. Thus, there was no correlation between sorption/permeability characteristics of films and their functionality as protective coatings. These results suggest that polymer coatings are not sufficiently robust to withstand moisture and do not prevent moisture-related deterioration of drugs. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  15. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li{sub 2}SiO{sub 3}) hollow spheres: II-Textural analysis and CO{sub 2}-H{sub 2}O sorption evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Landeros, Jose; Gomez-Yanez, Carlos; Pfeiffer, Heriberto, E-mail: pfeiffer@iim.unam.mx

    In a previous work, the synthesis and structural-microstructural characterization of different nanocrystalline lithium metasilicate (Li{sub 2}SiO{sub 3}) samples were performed. Then, in this work, initially, a textural analysis was performed over the same samples. Li{sub 2}SiO{sub 3} samples prepared with a non-ionic surfactant (TRITON X-114) presented the best textural properties. Therefore, this sample was selected to evaluate its water vapor (H{sub 2}O) and carbon dioxide (CO{sub 2}) sorption properties. Sorption experiments were performed at low temperatures (30-80 deg. C) in presence of water vapor using N{sub 2} or CO{sub 2} as carrier gases. Results clearly evidenced that CO{sub 2} sorptionmore » on these materials is highly improved by H{sub 2}O vapor, and of course, textural properties enhanced the H{sub 2}O-CO{sub 2} sorption efficiency, in comparison with the solid-state reference sample. - Graphical abstract: Li{sub 2}SiO{sub 3} varied significantly its capacity of CO{sub 2} absorption as a function of the microstructural properties and by the water presence. Highlights: > We studied the CO{sub 2} absorption on different Li{sub 2}SiO{sub 3} samples in presence of H{sub 2}O vapor. > It was proved that CO{sub 2} absorption on Li{sub 2}SiO{sub 3} is controlled by different factors. > Li{sub 2}SiO{sub 3} with a porous microstructure produces a higher CO{sub 2} absorption. > H{sub 2}O vapor favors the CO{sub 2} absorption on Li{sub 2}SiO{sub 3} due to a surface hydroxylation.« less

  16. Understanding mechanisms to predict and optimize biochar for agrochemical sorption

    NASA Astrophysics Data System (ADS)

    Hall, Kathleen; Gámiz, Beatriz; Cox, Lucia; Spokas, Kurt; Koskinen, William

    2017-04-01

    The ability of biochars to bind various organic compounds has been widely studied due to the potential effects on pesticide fate in soil and interest in the adoption of biochar as a "low-cost" filter material. However, the sorptive behaviors of biochars are extremely variable and much of the reported data is limited to specific biochar-chemical interactions. The lack of knowledge regarding biochar sorption mechanisms limits our current ability to predict and optimize biochar's use. This work unveils mechanistic drivers of organic pesticide sorption on biochars through targeted alteration of biochar surface chemistry. Changes in the quantity and type of functional groups on biochars and other black carbon materials were achieved through treatments with H2O2, and CO2, and characterized using Fourier transform infrared spectroscopy and scanning electron microscope (SEM/EDX). The sorption capacities of these treated biochars were subsequently measured to evaluate the effects of different surface moieties on the binding of target herbicides cyhalofop acid ((R)-2-[4-(4-cyano-2-fluorophenoxy)phenoxy]propionic acid) and clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-1,2-oxazolidin-3-one). Sorption of both herbicides on the studied biochars increased following H2O2 activation; however, the influence of the H2O2 activation on sorption was more pronounced for cyhalofop acid (pKa = 3.9) than clomazone, which is non-ionizable. Increased cyhalofop acid sorption on H2O2 treated biochars can be attributed to the increase in oxygen containing functional groups as well as the decrease in biochar pH. In contrast, CO2 activation reduced the sorption of cyhalofop acid compared to untreated biochar. FTIR data suggest the reduced sorption on CO2 -treated biochar was due to the removal of surface carboxyl groups, further supporting the role of specific functionality in the sorption of ionizable herbicides. Results from this work offer insight into the mechanisms of sorption and

  17. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures.

    PubMed

    Tadapaneni, Ravi Kiran; Yang, Ren; Carter, Brady; Tang, Juming

    2017-12-01

    In recent years, research studies have shown that the thermal resistance of foodborne pathogens in the low moisture foods is greatly influenced by the water activity (a w ) at temperatures relevant to thermal treatments for pathogen control. Yet, there has been a lack of an effective method for accurate measurement of a w at those temperatures. Thus, the main aim of this study was to evaluate a new method for measuring a w of food samples at elevated temperatures. An improved thermal cell with a relative humidity and temperature sensor was used to measure the a w of the three different food samples, namely, organic wheat flour, almond flour, and non-fat milk powder, over the temperature range between 20 and 80°C. For a constant moisture content, the a w data was used to estimate the net isosteric heat of sorption (q st ). The q st values were then used in the Clausius Clapeyron equation (CCE) equation to estimate the moisture sorption isotherm for all test food samples at different temperatures. For all the tested samples of any fixed moisture content, a w value generally increased with the temperature. The energy for sorption decreased with increasing moisture content. With the experimentally determined q st value, CCE describes well about the changes in a w of the food samples between 20 and 80°C. This study presents a method to obtain a w of a food sample for a specific moisture content at different temperatures which could be extended to obtain q st values for different moisture contents and hence, the moisture sorption isotherm of a food sample at different temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites Used for Pb(II) Removal

    PubMed Central

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wu, Qing; Wei, Xionghui; Li, Lingyun; Shi, Xuedan; Ruan, Wenqian

    2016-01-01

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2-sorption and X-ray photoelectron spectroscopy (XPS). Operating parameters for the removal process of Pb(II) ions, such as temperature (20–40 °C), pH (3–5), initial concentration (400–600 mg/L) and contact time (20–60 min), were optimized using a quadratic model. The coefficient of determination (R2 > 0.99) obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II) ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II) removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II) ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II)-containing wastewater. PMID:28773813

  19. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-09

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks.

    PubMed

    Barron, Leon; Havel, Josef; Purcell, Martha; Szpak, Michal; Kelleher, Brian; Paull, Brett

    2009-04-01

    A comprehensive analytical investigation of the sorption behaviour of a large selection of over-the-counter, prescribed pharmaceuticals and illicit drugs to agricultural soils and freeze-dried digested sludges is presented. Batch sorption experiments were carried out to identify which compounds could potentially concentrate in soils as a result of biosolid enrichment. Analysis of aqueous samples was carried out directly using liquid chromatography-tandem mass spectrometry (LC-MS/MS). For solids analysis, combined pressurised liquid extraction and solid phase extraction methods were used prior to LC-MS/MS. Solid-water distribution coefficients (K(d)) were calculated based on slopes of sorption isotherms over a defined concentration range. Molecular descriptors such as log P, pK(a), molar refractivity, aromatic ratio, hydrophilic factor and topological surface area were collected for all solutes and, along with generated K(d) data, were incorporated as a training set within a developed artificial neural network to predict K(d) for all solutes within both sample types. Therefore, this work represents a novel approach using combined and cross-validated analytical and computational techniques to confidently study sorption modes within the environment. The logarithm plots of predicted versus experimentally determined K(d) are presented which showed excellent correlation (R(2) > 0.88), highlighting that artificial neural networks could be used as a predictive tool for this application. To evaluate the developed model, it was used to predict K(d) for meclofenamic acid, mefenamic acid, ibuprofen and furosemide and subsequently compared to experimentally determined values in soil. Ratios of experimental/predicted K(d) values were found to be 1.00, 1.00, 1.75 and 1.65, respectively.

  1. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina

    2014-10-01

    Radioactive pollution is a significant threat for the people's health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives' utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  2. Sorption of phenol and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-mode sorption model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huh, J.K.; Song, D.I.; Jeon, Y.W.

    2000-01-01

    Single- and multisolute competitive sorptions were carried out in a batch reactor to investigate the uptake of phenol, 4-methylphenol (MeP), 2,4-dimethylphenol (DMeP), and 4-ethylphenol (EtP) dissolved in water at 25 C onto organically modified montmorillonite. Hexadecyltrimethylammonium (HDTMA) cation was exchanged for metal cations on the montmorillonite to the extent of the cation-exchange capacity (CEC) of the montmorillonite to prepare HDTMA-montmorillonite, changing its surface property from hydrophilic to organophilic. It was observed from the experimental results that the adsorption affinity on HDTMA-montmorillonite was in the order 4-EtP {approx} 2,4-DMeP > 4-MeP > phenol. The Langmuir, dual-mode sorption (DS), and Redlich-Peterson (RP)more » models were used to analyze the single-solute sorption equilibria. The competitive Langmuir model (CLM), competitive dual-mode sorption model (CDSM), and ideal adsorbed solution theory (IAST), coupled with the single-solute models (i.e., Langmuir, DS, and RP models), were used to predict the multisolute competitive sorption equilibria. All the models considered in this work yielded favorable representations of both single- and multisolute sorption behaviors. DSM, CDSM, and IAST coupled with the DSM were found to be other satisfactory models to describe the single- and multisolute sorption of the phenolic compounds onto HDTMA-montmorillonite.« less

  3. Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.

    PubMed

    Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib

    2015-01-01

    Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

    NASA Astrophysics Data System (ADS)

    Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.

    2018-04-01

    A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.

  5. Sorption of Organophosphorus Flame Retardants (OPFRs) on ...

    EPA Pesticide Factsheets

    Organophosphorus flame retardants (OPFRs) are widely used as additives in industrial and consumer products such as electrical and electronic products, furniture, plastics, textiles, and building/construction materials. Due to human exposure and potential health effects, OPFRs including tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) are EPA Action Plan chemicals for chemical assessments under the Toxic Substances Control Act (TSCA). This work investigated the sorption of these three compounds from the air to settled Arizona Test Dust (ATD) and house dust (HD) in a dual small chamber system. The OPFR exposed dust was analyzed to determine the sorption concentration and sorption rate of OPFRs on the dust. The effect of the composition of the dust on OPFR sorption was evaluated. The results showed that ATD and HD have varied sorption capacity for OPFRs from air. This work explores the relationship between OPFR concentrations in settled dust and air. The data can be used to determine partitioning of OPFRs between the gas phase and settled dust indoors and to inform strategies to reduce exposure and risk.

  6. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA).

    PubMed

    Shi, Xuedan; Ruan, Wenqian; Hu, Jiwei; Fan, Mingyi; Cao, Rensheng; Wei, Xionghui

    2017-06-03

    Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N₂-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model.

  7. Characterization of Sweetmeat Waste and Its Suitability for Sorption of As(III) in Aqueous Media.

    PubMed

    Islam, Md Mirajul; Adak, Asok; Paul, Prabir K

    2017-04-01

      Presence of arsenic in effluents from mining, mineral processing, and metal plating industries pose a serious health hazard to human beings. In this research, suitability of cheap sweetmeat waste (SMW), which is sweet industry byproduct, was investigated for the treatment of As(III). The physicochemical properties of the sorbent were characterized. The SEM images revealed highly heterogeneous sorbent surface. XRD analysis showed the presence of different polysaccharides mainly containing hydroxyl functional group. FTIR analysis was also performed to confirm the functional groups present in the sorbent. Batch experiments were conducted for kinetic analysis, effect of initial As(III) concentration, sorbent dose, electrolytes, pH, and temperature in order to understand sorption behavior. Presence of electrolyte, solution pH, and temperature were found to affect the performance of the sorbent. The sorption followed pseudo-second order reaction and Langmuir isotherm model best. The studies revealed SMW to be an efficient media for removal of As(III) from aqueous environment.

  8. Sorption of silver, gold and palladium with a polythioether foam.

    PubMed

    Khan, A S; Chow, A

    1986-02-01

    Silver, gold and palladium can be sorbed by a thiopolymer of the type [HO(CH(2)CH(2)CH(2)SS)(n)CH(2)CH(2)OH]. The distribution coefficient for palladium increases with halide concentration, with iodide having the largest effect. Silver can be extracted from chloride, nitrate or picrate media. The different distribution coefficients for gold in hydrochloric acid and in sodium chloride suggest that different sorption mechanisms predominate.

  9. Ultraselective Carbon Molecular Sieve Membranes with Tailored Synergistic Sorption Selective Properties.

    PubMed

    Zhang, Chen; Koros, William J

    2017-09-01

    Membrane-based separations can reduce the energy consumption and the CO 2 footprint of large-scale fluid separations, which are traditionally practiced by energy-intensive thermally driven processes. Here, a new type of membrane structure based on nanoporous carbon is reported, which, according to this study, is best referred to as carbon/carbon mixed-matrix (CCMM) membranes. The CCMM membranes are formed by high-temperature (up to 900 °C) pyrolysis of polyimide precursor hollow-fiber membranes. Unprecedentedly high permselectivities are seen in CCMM membranes for CO 2 /CH 4 , N 2 /CH 4 , He/CH 4 , and H 2 /CH 4 separations. Analysis of permeation data suggests that the ultrahigh selectivities result from substantially increased sorption selectivities, which is hypothetically owing to the formation of ultraselective micropores that selectively exclude the bulkier CH 4 molecules. With tunable sorption selectivities, the CCMM membranes outperform flexible polymer membranes and traditional rigid molecular-sieve membranes. The capability to increase sorption selectivities is a powerful tool to leverage diffusion selectivities, and has opened the door to many challenging and economically important fluid separations that require ultrafine differentiation of closely sized molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Determining Kinetic Parameters for Isothermal Crystallization of Glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.

    2006-01-01

    Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.

  11. Technetium Sorption By Cementitious Materials Under Reducing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.; Estes, Shanna L.; Arai, Yuji

    2013-07-18

    The objective of this study was to measure Tc sorption to cementitious materials under reducing conditions to simulate Saltstone Disposal Facility conditions. Earlier studies were conducted and the experimental conditions were found not to simulate those of the facility. Through a five month subcontract with Clemson University, sorption of {sup 99}Tc to four cementitious materials was examined within an anaerobic glovebag targeting a 0.1% H{sub 2}(g)/ 99.9% N{sub 2}(g) atmosphere. Early experiments based on Tc sorption and Eh indicated that 0.1% H{sub 2}(g) (a reductant) was necessary to preclude experimental impacts from O{sub 2}(g) diffusion into the glovebag. Preliminary datamore » to date (up to 56 days) indicates that sorption of {sup 99}Tc to cementitious materials increased with increasing slag content for simulated saltstone samples. This is consistent with the conceptual model that redox active sulfide groups within the reducing slag facilitate reduction of Tc(VII) to Tc(IV). These experiments differ from previous experiments where a 2% H{sub 2}(g) atmosphere was maintained (Kaplan et al., 2011 (SRNL-STI-2010-00668)). The impact of the 2% H{sub 2}(g) reducing atmosphere on this data was examined and determined to cause the reduction of Tc in experimental samples without slag. In the present ongoing study, after 56 days, Tc sorption by the 50-year old cement samples (no slag) was undetectable, whereas Tc sorption in the cementitious materials containing slag continues to increase with contact time (measured after 1, 4, 8, 19 and 56 days). Sorption was not consistent with spike concentrations and steady state has not been demonstrated after 56 days. The average conditional K{sub d} value for the Vault 2 cementitious material was 873 mL/g (17% slag), for the TR547 Saltstone (45% slag) the conditional K{sub d} was 168 mL/g, and for TR545 (90% slag) the conditional K{sub d} was 1,619 mL/g. It is anticipated that additional samples will be collected until

  12. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1998-01-01

    A series of single-solute and binary-solute sorption data have been obtained on representative samples of polar compounds (substituted ureas and phenolic compounds) and of nonpolar compounds (e.g., EDB and TCE) on a peat soil and a mineral (Woodburn) soil; the data extend to low relative solute concentrations (C(e)/S(w)). At relatively low C(e)/S(w), both the nonpolar and the polar solutes exhibit nonlinear sorption. The sorption nonlinearity approaches apparent saturation at about C(e)/S(w) = 0.010-0.015 for the nonpolar solutes and at about C(e)/S(w) = 0.10-0.13 for the polar solutes; above these C(e)/S(w) regions, the isotherms are practically linear. The nonlinear sorption capacities are greater for polar solutes than for nonpolar solutes and the peat soil shows a greater effect than the Woodburn soil. The small nonlinear sorption capacity for a nonpolar solute is suppressed indiscriminately by either a nonpolar or a polar cosolute at relatively low C(e)/S(w) of the cosolute. By contrast, the abilities of different cosolutes to suppress the nonlinear capacity of a nominal polar solute differ drastically. For polar solutes, a nonpolar cosolute exhibits a limited suppression even at high cosolute C(e)/S(w); effective suppression occurs when the cosolute is relatively polar and at various C(e)/S(w). These differences suggest that more than a single mechanism is required to account for the nonlinear sorption of both nonpolar and polar compounds at low C(e)/S(w). Mechanistic processes consistent with these observations and with soil surface areas are discussed along with other suggested models. Some important consequences of the nonlinear competitive sorption to the behavior of contaminants in natural systems are discussed.A number of conceptual models was postulated to account for the nonlinear solute sorption on soils of significant soil organic matter. A series of single-solute and binary-route sorption data was obtained representing samples of polar compounds of

  13. Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment.

    PubMed

    Meriçer, Çağlar; Minelli, Matteo; Giacinti Baschetti, Marco; Lindström, Tom

    2017-10-15

    Water sorption behavior of two different microfibrillated cellulose (MFC) films, produced by delamination of cellulose pulp after different pretreatment methods, is examined at various temperatures (16-65°C) and up to 70% RH. The effect of drying temperature of MFC films on the water uptake is also investigated. The obtained solubility isotherms showed the typical downward curvature at moderate RH, while no upturn is observed at higher RH; the uptakes are in line with characteristic values for cellulose fibers. Enzymatically pretreated MFC dispersion showed lower solubility than carboxymethylated MFC, likely due to the different material structure, which results from the different preparation methods The experimental results are analyzed by Park and GAB models, which proved suitable to describe the observed behaviors. Interestingly, while no significant thermal effect is detected on water solubility above 35°C, the uptake at 16 and 25°C, at a given RH, is substantially lower than that at higher temperature, indicating that, in such range, sorption process is endothermic. Such unusual behavior for a cellulose-based system seems to be related mainly to the structural characteristics of MFC films, and to relaxation phenomena taking place upon water sorption. The diffusion kinetics, indeed, showed a clear Fickian behavior at low temperature and RH, whereas a secondary process seems to occur at high temperature and higher RH, leading to anomalous diffusion behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fe(III)-EDDHA and -EDDHMA sorption on Ca-montmorillonite, ferrihydrite, and peat.

    PubMed

    Hernández-Apaolaza, L; Lucena, J J

    2001-11-01

    The effectiveness of Fe chelates as Fe sources and carriers in soil can be severely limited by the adsorption of Fe chelates or chelating agents in the solid phase. To study this phenomenon, well-characterized peat, Ca-montmorillonite, and ferrihydrite were used as model compounds, and the adsorption of Fe-EDDHA and Fe-EDDHMA chelates were studied. Sorption isotherms for the meso and racemic isomers of these chelates on the soil materials are described. The variability of sorption with pH in peat and ferrihydrite was also determined because both have variable surface charge at different pH values. In montmorillonite, at low concentrations, the retention of Fe from the Fe-EDDHMA chelate is greater than the one of the Fe-EDDHA chelate. As well as the concentration increased, the inverse situation occurs. The behavior of both meso and racemic isomers of chelates in contact with Ca-montmorillonite is similar. The Fe-meso-EDDHA isomer was highly adsorbed on ferrihydrite, but the racemic isomer is not significantly retained by this oxide. For Fe-EDDHMA isomers, the racemic isomer was more retained by the oxide, but a small sorption of the racemic isomer was also observed. Results suggest that Fe-EDDHA chelates were more retained in peat than Fe-EDDHMA chelates. The most retained isomer of Fe-EDDHA was the meso isomer. For Fe-EDDHMA, the adsorption was very low for both racemic and meso isomers.

  15. Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new pore size distribution (PSD) model is developed to readily describe PSDs of microporous materials with an analytical expression. Results from this model can be used to calculate the corresponding adsorption isotherm to compare the calculated isotherm to the experimental isotherm. This aspect of the model provides another check on the validity of the model's results. The model is developed on the basis of a 3-D adsorption isotherm equation that is derived from statistical mechanical principles. Least-squares error minimization is used to solve the PSD without any preassumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers a relatively realistic PSD description for select reference materials, including activated-carbon fibers. N2 and CH4 adsorption is correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms at 296 K based on N2 adsorption at 77 K are in reasonable agreement with experimental CH4 isotherms. Use of the model is also described for characterizing PSDs of tire-derived activated carbons and coal-derived activated carbons for air-quality control applications.

  16. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils.

    PubMed

    Boivin, Arnaud; Amellal, Samira; Schiavon, Michel; van Genuchten, Martinus Th

    2005-11-01

    The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.

  18. Formation and Release of Cobalt(II) Sorption and Precipitation Products in Aging Kaolinite-Water Slurries.

    PubMed

    Thompson; Parks; Brown

    2000-02-15

    The uptake and release behavior of cobalt(II) was studied over thousands of hours in CO(2)-free aqueous suspensions of kaolinite under three pairs of total cobalt concentration (Co(T)) and near-neutral pH (7.5-7.8) conditions. Dissolved cobalt, aluminum, and silicon concentrations were monitored by ICPMS, and cobalt-containing products were identified by EXAFS spectroscopy. In each uptake experiment, cobalt sorbed to kaolinite as a mixture of surface-adsorbed monomers or polymers and hydrotalcite-like precipitates of the approximate composition Co(x)Al(OH)(2x+2)(A(n-))(1/n), where 2n-) is nitrate or silicate anion. Precipitate stoichiometry varied with experimental conditions, with the highest Co:Al ratio in the high Co(T)/high pH experiment. Cobalt surface adsorption occurred within seconds, whereas precipitation was slower and continued for the duration of the experiments. Consequently, the proportion of precipitate in the sorbed mixture increased with time in all experiments. The most rapid precipitation occurred in the high Co(T)/high pH experiment, where solutions were most supersaturated with respect to cobalt hydrotalcite. Precipitates incorporated some previously adsorbed cobalt, as well as cobalt from solution. Cobalt release from the solid phase was effected by lowering solution pH to 7.0. Release experiments initiated after shorter sorption times returned a larger fraction of cobalt to solution than those initiated after longer sorption times, for a fixed duration of release. In other words, sorption product stability increased with sorption time. Specifically, under the conditions of the release experiments, the hydrotalcite-like precipitates are more stable than smaller adsorbates, and precipitates that formed over longer time periods are more stable than those that formed rapidly. The latter result suggests that precipitates ripened or modified their structure or composition to become more stable over the course of the several

  19. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil.

    PubMed

    Conkle, Jeremy L; Lattao, Charisma; White, John R; Cook, Robert L

    2010-09-01

    Significant amounts of pharmaceuticals are discharged into the environment through wastewater effluent. Sorption has been shown to be a significant aqueous removal pathway for many of these compounds. Competition between ciprofloxacin (CIP), ofloxacin (OFL) and norfloxacin (NOR) and their sorption to, and desorption from, a surrogate Louisiana wastewater treatment wetland soil were investigated to gain insight into the fate and transport of the pollutants within wastewater treatment wetlands. This study was undertaken in the context of a treatment wetland that continuously receives pharmaceuticals. Therefore it is important to understand the total capacity of this soil to sorb these compounds. Sorption to this treatment wetland soil was found to provide a major and potentially long-term removal pathway for these antibiotics from wastewater. LogK(F) values for all three compounds were between 4.09 and 3.90 for sorption and 4.24 and 4.05 microg(1-1/)(n)(cm(3))(1/)(n)g(-1) for desorption. The compounds were sorbed in amounts ranging from 60% to 90% for high and low loading, respectively. The majority of the compounds were sorbed to the soil within the first 20h, indicating that treatment wetland may not need long retention times (weeks to months) in order to remove these compounds. Sorption K(D) values for competition (20 ppm of each compound for 60 ppm of total fluoroquinolones) ranged from 2300 to 3800 cm(3)g(-1) which is between both the 20 (4300-5800 cm(3)g(-1)) and 60 (1300-3000 cm(3)g(-1)) ppm single compound K(D) values, indicating that there is competition between these three compound for sorption sites. Sorption and desorption data (single component and mixture) collectively provide the following evidence: (1) NOR and, to a lesser extent, CIP outcompete OFL for sorption sites, (2) OFL sorbes to its share of "quality" sorption sites, and (3) competition only occurs for lesser "quality" binding sites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Contribution of wastes and biochar amendment to the sorption capacity of heavy metals by a minesoil

    NASA Astrophysics Data System (ADS)

    Forján, Rubén; Asensio, Verónica; Vega, Flora A.; Andrade, Luisa; Covelo, Emma F.

    2013-04-01

    The use of wastes as soil amendments is a technique applied to reduce the available concentration of heavy metals in polluted sites (Pérez-de-Mora et al., 2005). However, the used wastes sometimes have high concentration of metals such as Cu, Pb, and Zn. Therefore, the sorption capacity of the amendments is important to understand its behavior in soil. The settling pond soil in a mine (S) located at Touro (Spain) was amended with a mixture of sewage sludges, sludges from an aluminum plant, ash, food industry wastes, sands from a wastewater treatment plant and biochar (A). The present study was performed to determine the influence of the addition of the amendment (A) in the sorption capacity of Cu, Pb, and Zn of the studied soil (S). The amendment (A) and the soil (S) were mixed (SA) at 20, 40, 60% and then introduced into glass vessels. The amendment A and S the soil at 100% were also introduced in glass vials as control samples. Mixtures and controls were incubated to field capacity for one month. To evaluate the sorption capacity of the soil and the mixtures soil-amendment, sorption isotherms were constructed using multiple-metal solutions of Cu, Pb and Zn nitrates (0.03, 0.05, 0.08, 0.1 and 0.5 mmol L-1) containing 0.01 M NaNO3 as background electrolyte (Vega et al., 2009). The overall capacity of the soil to sorb Cu, Pb y Zn was evaluated as the slope Kr (Vega et al., 2008). The sorption capacity of the amendment (A) is higher than the soil (S) for the three studied elements, which reflects that this amendment has a binding capacity of Cu, Pb and Zn higher than soil (S) (P <0.05). The soil-amendment mixtures (SA) in all proportions used, except 20% for Zn, also showed higher sorption capacity than the soil (S). The amended soil has higher sorption capacity of Cu, Pb and Zn than the soil without amending (P < 0.05). The element preferably sorbed by SA in the proportions 20, 40 and 60% is Pb and the least sorbed is Zn. The amendment without mixing with the soil