Sample records for na column density

  1. On the Origin of the High Column Density Turnover in the HI Column Density Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less

  2. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  3. Single fiber lignin distributions based on the density gradient column method

    Treesearch

    Brian Boyer; Alan W. Rudie

    2007-01-01

    The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...

  4. The shapes of column density PDFs. The importance of the last closed contour

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2017-10-01

    The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.

  5. Galactic cold cores. IX. Column density structures and radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V.

    2018-06-01

    Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims: Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods: We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results: In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values DP = 1.25 ± 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N r-1. In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N r-1 relation below r 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with AV > 5 mag but most bound objects appear to be

  6. HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.

    2003-12-01

    We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.

  7. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density

  8. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in

  9. Interstellar C IV and Si IV column densities toward early-type stars

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.

    1980-01-01

    Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.

  10. Isoelectric focusing of red blood cells in a density gradient stabilized column

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Miller, T. Y.

    1980-01-01

    The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.

  11. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  12. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  13. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  14. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical

  15. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  16. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  17. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Smooth H I Low Column Density Outskirts in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ianjamasimanana, R.; Walter, Fabian; de Blok, W. J. G.; Heald, George H.; Brinks, Elias

    2018-06-01

    The low column density gas at the outskirts of galaxies as traced by the 21 cm hydrogen line emission (H I) represents the interface between galaxies and the intergalactic medium, i.e., where galaxies are believed to get their supply of gas to fuel future episodes of star formation. Photoionization models predict a break in the radial profiles of H I at a column density of ∼5 × 1019 cm‑2 due to the lack of self-shielding against extragalactic ionizing photons. To investigate the prevalence of such breaks in galactic disks and to characterize what determines the potential edge of the H I disks, we study the azimuthally averaged H I column density profiles of 17 nearby galaxies from the H I Nearby Galaxy Survey and supplemented in two cases with published Hydrogen Accretion in LOcal GAlaxieS data. To detect potential faint H I emission that would otherwise be undetected using conventional moment map analysis, we line up individual profiles to the same reference velocity and average them azimuthally to derive stacked radial profiles. To do so, we use model velocity fields created from a simple extrapolation of the rotation curves to align the profiles in velocity at radii beyond the extent probed with the sensitivity of traditional integrated H I maps. With this method, we improve our sensitivity to outer-disk H I emission by up to an order of magnitude. Except for a few disturbed galaxies, none show evidence of a sudden change in the slope of the H I radial profiles: the alleged signature of ionization by the extragalactic background.

  19. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  20. Constraining the H2 column density distribution at z ˜ 3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-07-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions [with N(H2) ≳ 1018 cm-2] to be 4.0 ± 0.5(stat) ± 1.0 (sys) per cent in H I absorption systems with N(H I) ≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18{-}22 is {˜ } 15 per cent of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong damped Lyman α absorption systems (DLAs) [log N(H I) (cm^{-2}) ≥ 21.7], which, together with the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  1. Constraining the H2 column density distribution at z˜3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-04-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z ˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman-α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions (with N(H2) ≳ 1018 cm-2) to be 4.0 ± 0.5(stat) ± 1.0 (sys) % in H I absorption systems with N(H I)≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18-22 is ˜15% of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong DLAs (log N(H I) (cm^{-2}) ≥ 21.7), which, together with the the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  2. CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo

    2001-12-01

    We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.

  3. Inviscid linear stability analysis of two fluid columns of different densities subject to gravity

    NASA Astrophysics Data System (ADS)

    Prathama, Aditya; Pantano, Carlos

    2017-11-01

    We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.

  4. The O VI Mystery: Mismatch between X-Ray and UV Column Densities

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.

    2017-12-01

    The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.

  5. Topology in Synthetic Column Density Maps for Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Burkhart, B. K.; Lazarian, A.

    2013-01-01

    We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.

  6. Study on Na layer response to geomagnetic activities based on Odin/OSIRIS Na density data

    NASA Astrophysics Data System (ADS)

    Tsuda, Takuo; Nakamura, Takuji; Hedin, Jonas; Gumbel, Jorg; Hosokawa, Keisuke; Ejiri, Mitsumu K.; Nishiyama, Takanori; Takahashi, Toru

    2016-07-01

    The Na layer is normally distributed from 80 to 110 km, and the height range is corresponding to the ionospheric D and E region. In the polar region, the energetic particles precipitating from the magnetosphere can often penetrate into the E region and even into the D region. Thus, the influence of the energetic particles to the Na layer is one of interests in the aspect of the atmospheric composition change accompanied with the auroral activity. There are several previous studies in this issue. For example, recently, we have reported an initial result on a clear relationship between the electron density increase (due to the energetic particles) and the Na density decrease from observational data sets obtained by Na lidar, EISCAT VHF radar, and optical instruments at Tromsoe, Norway on 24-25 January 2012. However, all of the previous studies had been carried out based on case studies by ground-based lidar observations. In this study, we have performed, for the first time, statistical analysis using Na density data from 2004 to 2009 obtained with the Optical Spectrograph and InfraRed Imager System (OSIRIS) onboard Odin satellite. In the presentation, we will show relationship between the Na density and geomagnetic activities, and its latitudinal variation. Based on these results, the Na layer response to the energetic particles will be discussed.

  7. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.

    2010-08-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  8. Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.

    2018-01-01

    We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.

  9. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  10. On the link between column density distribution and density scaling relation in star formation regions

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  11. Temperature as a third dimension in column-density mapping of dusty astrophysical structures associated with star formation

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Whitworth, A. P.; Lomax, O.

    2015-12-01

    We present point process mapping (PPMAP), a Bayesian procedure that uses images of dust continuum emission at multiple wavelengths to produce resolution-enhanced image cubes of differential column density as a function of dust temperature and position. PPMAP is based on the generic `point process formalism, whereby the system of interest (in this case, a dusty astrophysical structure such as a filament or pre-stellar core) is represented by a collection of points in a suitably defined state space. It can be applied to a variety of observational data, such as Herschel images, provided only that the image intensity is delivered by optically thin dust in thermal equilibrium. PPMAP takes full account of the instrumental point-spread functions and does not require all images to be degraded to the same resolution. We present the results of testing using simulated data for a pre-stellar core and a fractal turbulent cloud, and demonstrate its performance with real data from the Herschel infrared Galactic Plane Survey (Hi-GAL). Specifically, we analyse observations of a large filamentary structure in the CMa OB1 giant molecular cloud. Histograms of differential column density indicate that the warm material (T ≳ 13 K) is distributed lognormally, consistent with turbulence, but the column densities of the cooler material are distributed as a high-density tail, consistent with the effects of self-gravity. The results illustrate the potential of PPMAP to aid in distinguishing between different physical components along the line of sight in star-forming clouds, and aid the interpretation of the associated Probability distribution functions (PDFs) of column density.

  12. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  13. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  14. The structure of galactic HI in directions of low total column density

    NASA Technical Reports Server (NTRS)

    Lockman, F. J.; Jahoda, K.; Mccammon, D.

    1985-01-01

    A detailed 21 cm study of areas of that have the smallest known amount of HI in the northern sky was performed. These observations were corrected for stray radiation. The region of main interest, around alpha = 10(h)45(m), delta = 57 deg 20', has a minimium N(HI) of 4.5 x 10 to the 19th power/sq cm. Spectra taken at 21' resolution over a field 4 x 3 deg in this direction show up to four HI line components. Two, near 0 and -50 km/s, are ubiquitous. There is also a narrow component at -10 km/s attributable to a diffuse cloud covering half of the field, and scattered patches of HI at v -100 km/s. the low and intermediate velocity components have a broad line width and are so smoothly distributed across the region that it is unlikely that they contain significant unresolved angular structure. Eight other low column density directions were also observed. Their spectra typically have several components, but the total column density is always 7 x 10 to the 19th power/sq cm and changes smoothly along a 2 deg strip. Half of the directions show narrow lines arising from weak diffuse HI clouds that contain 0.5 to 3.0 x 10 to the 19th power/sq cm.

  15. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  16. CS band intensity and column densities and production rates of 15 comets

    NASA Astrophysics Data System (ADS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-09-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  17. CS band intensity and column densities and production rates of 15 comets

    NASA Technical Reports Server (NTRS)

    Sanzovo, G. C.; Singh, P. D.; Huebner, W. F.

    1993-01-01

    An accurate fluorescence efficiency of the CS(0,0) band and the lifetime of CS have been calculated at 1 AU heliocentric distance. Model-independent CS column densities and production rates are determined from derived fluorescent emission rates (g-factors) and lifetimes for 15 comets: Austin (1982g), Borrelly (1980i), Bradfield (1979X), Crommelin (1983n), Encke (1980), Encke (1984), Giacobini-Zinner (1984e), Halley (1982i), IRAS-Araki-Alcock (1983d), Meier (1980q), Panther (1980u), Stephan-Oterma (1980g), Tuttle (1980h), West (1975n), and Wilson (1986l).

  18. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    PubMed

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Correlation between Na/K ratio and electron densities in blood samples of breast cancer patients.

    PubMed

    Topdağı, Ömer; Toker, Ozan; Bakırdere, Sezgin; Bursalıoğlu, Ertuğrul Osman; Öz, Ersoy; Eyecioğlu, Önder; Demir, Mustafa; İçelli, Orhan

    2018-05-31

    The main purpose of this study was to investigate the relationship between the electron densities and Na/K ratio which has important role in breast cancer disease. Determinations of sodium and potassium concentrations in blood samples performed with inductive coupled plasma-atomic emission spectrometry. Electron density values of blood samples were determined via ZXCOM. Statistical analyses were performed for electron densities and Na/K ratio including Kolmogorov-Smirnov normality tests, Spearman's rank correlation test and Mann-Whitney U test. It was found that the electron densities significantly differ between control and breast cancer groups. In addition, statistically significant positive correlation was found between the electron density and Na/K ratios in breast cancer group.

  20. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  1. A straightforward method for measuring the range of apparent density of microplastics.

    PubMed

    Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong

    2018-10-15

    Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  3. NaK-ATPase pump sites in cultured bovine corneal endothelium of varying cell density at confluence.

    PubMed

    Crawford, K M; Ernst, S A; Meyer, R F; MacCallum, D K

    1995-06-01

    The driving force for ion and water flow necessary for efficient deturgesence of the corneal stroma resides in the ouabain-sensitive sodium (Na) pump of corneal endothelial cells. Using a cell culture model of corneal endothelial cell hypertrophy, the authors examined the expression of Na pumps at the cell surface to see how this central element of the endothelial pump changed as corneal endothelial cell density decreased to a level associated with corneal decompensation in vivo. 3H-ouabain binding to NaK-ATPase at saturating conditions was used to quantitate the number of Na pump sites on cultured bovine corneal endothelial cells as the confluent density decreased from approximately 2750 cells/mm2 to approximately 275 cells/mm2. The mean number of Na pump sites per cell at confluence (1.92 +/- 0.07 x 10(6)) did not change as the cell density decreased 2.7-fold from 2763 cells/mm2 to 1000 cells/mm2. However, pump site expression doubled to approximately 4 x 10(6) sites/cell as the cell density decreased from 1000 cells/mm2 to 275 cells/mm2. Despite the incremental increase in Na pump site expression that occurred as the cells hypertrophied below a density of 1000/mm2 to achieve confluence, this increase was insufficient to prevent a decrease in Na pump site density of the intact monolayer, expressed as pump sites/mm2. The confluent cell density of cultured bovine corneal endothelial cells can be varied from that found in the normal native cornea to that associated with corneal decompensation. In confluent cultures with cell densities ranging from 2750 cells/mm2 to 1000 cells/mm2, the number of pump sites per cell remains relatively unchanged. Below cell densities of 1000 cells/mm2, the number of pump sites per cell progressively increases. The increased Na pump site abundance in markedly hypertrophied endothelial cells cannot adequately compensate for the progressive reduction in the number of transporting cells per unit area within the intact monolayer. Even when

  4. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less

  5. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2012-10-05

    The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  7. On N. Park's Analytical solution for steady state density- and mixing regime—dependent solute transport in a vertical soil column

    NASA Astrophysics Data System (ADS)

    Thiele, Michael

    1998-04-01

    Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives

  8. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.

    PubMed

    Wang, Ping; Hu, Zhenqi; Wang, Peijun

    2013-01-01

    In the subsided areas backfilled with coal gangue, an issue of continuing environmental concern is the migration of hazardous metals to the subsurface soil and groundwater. As an effective isolation material, geosynthetics have been scarcely applied into mining areas reclamation of China. This paper describes research aimed at characterizing the behaviours of different geosynthetics in the leaching columns filled with coal gangues. Four types of geosynthetics were selected: fibres needle-punched nonwoven geotextiles, high-density polyethylene, needle-punched Na-bentonite geosynthetic clay liner (GCL-NP) and Na-bentonite geosynthetic-overbited film. Heavy metals were significantly attenuated and by monitoring aqueous solutions in the whole percolation period, negative correlation was found between pH value and concentration of heavy metals. Generally, GCL-NP showed comparatively better effects on attenuating the migration of heavy metals. According to the meta-analysis of heavy metals present in the leachates and retained in the columns, geosynthetics have good capabilities of sorption and retardation, which can delay the breakthrough time of heavy metals and retard the accumulation in the subsurface. Future research will use X-ray diffraction and micro-imaging (electron microprobe and scanning electron microscopy) to further explain retention mechanisms.

  9. Ozone column density determination from direct irradiance measurements in the ultraviolet performed by a four-channel precision filter radiometer.

    PubMed

    Ingold, T; Mätzler, C; Wehrli, C; Heimo, A; Kämpfer, N; Philipona, R

    2001-04-20

    Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 degrees , 9.68 degrees , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305/311 and 305/318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305/311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305/311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

  10. Ozone Column Density Determination From Direct Irradiance Measurements in the Ultraviolet Performed by a Four-Channel Precision Filter Radiometer

    NASA Astrophysics Data System (ADS)

    Ingold, Thomas; Mätzler, Christian; Wehrli, Christoph; Heimo, Alain; Kämpfer, Niklaus; Philipona, Rolf

    2001-04-01

    Ultraviolet light was measured at four channels (305, 311, 318, and 332 nm) with a precision filter radiometer (UV-PFR) at Arosa, Switzerland (46.78 , 9.68 , 1850 m above sea level), within the instrument trial phase of a cooperative venture of the Swiss Meteorological Institute (MeteoSwiss) and the Physikalisch-Meteorologisches Observatorium Davos /World Radiation Center. We retrieved ozone-column density data from these direct relative irradiance measurements by adapting the Dobson standard method for all possible single-difference wavelength pairs and one double-difference pair (305 /311 and 305 /318) under conditions of cloud-free sky and of thin clouds (cloud optical depth <2.5 at 500 nm). All UV-PFR retrievals exhibited excellent agreement with those of collocated Dobson and Brewer spectrophotometers for data obtained during two months in 1999. Combining the results of the error analysis and the findings of the validation, we propose to retrieve ozone-column density by using the 305 /311 single difference pair and the double-difference pair. Furthermore, combining both retrievals by building the ratio of ozone-column density yields information that is relevant to data quality control. Estimates of the 305 /311 pair agree with measurements by the Dobson and Brewer instruments within 1% for both the mean and the standard deviation of the differences. For the double pair these values are in a range up to 1.6%. However, this pair is less sensitive to model errors. The retrieval performance is also consistent with satellite-based data from the Earth Probe Total Ozone Mapping Spectrometer (EP-TOMS) and the Global Ozone Monitoring Experiment instrument (GOME).

  11. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.

  13. A supercritical density of fast Na+ channels ensures rapid propagation of action potentials in GABAergic interneuron axons

    PubMed Central

    Hu, Hua; Jonas, Peter

    2014-01-01

    Fast-spiking, parvalbumin-expressing GABAergic interneurons/basket cells (BCs) play a key role in feedforward and feedback inhibition, gamma oscillations, and complex information processing. For these functions, fast propagation of action potentials (APs) from the soma to the presynaptic terminals is important. However, the functional properties of interneuron axons remain elusive. Here, we examined interneuron axons by confocally targeted subcellular patch-clamp recording in rat hippocampal slices. APs were initiated in the proximal axon ~20 μm from the soma, and propagated to the distal axon with high reliability and speed. Subcellular mapping revealed a stepwise increase of Na+ conductance density from the soma to the proximal axon, followed by a further gradual increase in the distal axon. Active cable modeling and experiments with partial channel block indicated that low axonal Na+ conductance density was sufficient for reliability, but high Na+ density was necessary for both speed of propagation and fast-spiking AP phenotype. Our results suggest that a supercritical density of Na+ channels compensates for the morphological properties of interneuron axons (small segmental diameter, extensive branching, and high bouton density), ensuring fast AP propagation and high-frequency repetitive firing. PMID:24657965

  14. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.

    PubMed

    Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth

    2005-12-23

    The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.

  15. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  16. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  17. Density-functional calculations of the surface tension of liquid Al and Na

    NASA Technical Reports Server (NTRS)

    Stroud, D.; Grimson, M. J.

    1984-01-01

    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  18. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    NASA Technical Reports Server (NTRS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; hide

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  19. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    PubMed

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  20. MAX-DOAS measurements of NO2 column densities in Vienna

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan; Weihs, Philipp; Peters, Enno; Richter, Andreas; Ostendorf, Mareike; Schönhardt, Anja; Burrows, John P.; Schmalwieser, Alois

    2017-04-01

    In the VINDOBONA (VIenna horizontal aNd vertical Distribution OBservations Of Nitrogen dioxide and Aerosols) project, two Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) systems will be set up at two different locations and altitudes in Vienna, Austria. After comparison measurements in Bremen, Germany, and Cabauw, The Netherlands, the first of the two MAX-DOAS instruments was set up at the University of Veterinary Medicine in the northeastern part of Vienna in December 2016. The instrument performs spectral measurements of visible scattered sunlight at defined horizontal and vertical viewing directions. From these measurements, column densities of NO2 and aerosols are derived by applying the DOAS analysis. First preliminary results are presented. The second MAX-DOAS instrument will be set up in April/May 2017 at the University of Natural Resources and Life Sciences in the northwestern part of Vienna. Once these two instruments are measuring simultaneously, small campaigns including car DOAS zenith-sky and tower DOAS off-axis measurements are planned. The main emphasis of this project will be on the installation and operation of two MAX-DOAS instruments, the improvement of tropospheric NO2 and aerosol retrieval, and the characterization of the horizontal, vertical, and temporal variations of tropospheric NO2 and aerosols in Vienna, Austria.

  1. NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update

    NASA Technical Reports Server (NTRS)

    Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.

    2009-01-01

    The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.

  2. Modeling cesium ion exchange on fixed-bed columns of crystalline silicotitanate granules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latheef, I.M.; Huckman, M.E.; Anthony, R.G.

    2000-05-01

    A mathematical model is presented to simulate Cs exchange in fixed-bed columns of a novel crystalline silicotitanate (CST) material, UOP IONSIV IE-911. A local equilibrium is assumed between the macropores and the solid crystals for the particle material balance. Axial dispersed flow and film mass-transfer resistance are incorporated into the column model. Cs equilibrium isotherms and diffusion coefficients were measured experimentally, and dispersion and film mass-transfer coefficients were estimated from correlations. Cs exchange column experiments were conducted in 5--5.7 M Na solutions and simulated using the proposed model. Best-fit diffusion coefficients from column simulations were compared with previously reported batchmore » values of Gu et al. and Huckman. Cs diffusion coefficients for the column were between 2.5 and 5.0 x 10{sup {minus}11} m{sup 2}/s for 5--5.7 M Na solutions. The effect of the isotherm shape on the Cs diffusion coefficient was investigated. The proposed model provides good fits to experimental data and may be utilized in designing commercial-scale units.« less

  3. “Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.

    Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less

  4. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    NASA Astrophysics Data System (ADS)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  5. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  6. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  7. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  8. Flow morphologies after oblique shock acceelration of a cylindrical density interface

    NASA Astrophysics Data System (ADS)

    Wayne, Patrick; Simons, Dylan; Olmstead, Dell; Truman, C. Randall; Vorobieff, Peter; Kumar, Sanjay

    2015-11-01

    We present an experimental study of instabilities developing after an oblique shock interaction with a heavy gas column. The heavy gas in our experiments is sulfur hexafluoride infused with 11% acetone by mass. A misalignment of the pressure and density gradients results in three-dimensional vorticity deposition on the gaseous interface, dtriggering the onset of Richtmyer-Meshkov instability (RMI). Shortly thereafter, other instabilities develop along the interface, including a shear-driven instability that presents itself on the leading (with respect to the shock) and trailing edges of the column. This leads to the development of rows of co-rotating ``cat's eye'' vortices, characteristic of Kelvin-Helmholtz instability (KHI). Characteristics of the KHI, such as growth rate and wavelength, depend on several factors including the Mach number of the shock, the shock tube angle of inclination α (equal to the angle between the axis of the column and the plane of the shock), and the Atwood number. This work is supported by the US National Nuclear Security Agency (NNSA) via grant DE-NA0002913.

  9. Ab-initio Density Functional Theory (DFT) Studies of Electronic, Transport, and Bulk Properties of Sodium Oxide (Na2O)

    NASA Astrophysics Data System (ADS)

    Polin, Daniel; Ziegler, Joshua; Malozovsky, Yuriy; Bagayoko, Diola

    We present the findings of ab-initio calculations of electronic, transport, and structural properties of cubic sodium oxide (Na2O). These results were obtained using density functional theory (DFT), specifically a local density approximation (LDA) potential, and the linear combination of Gaussian orbitals (LCGO). Our implementation of LCGO followed the Bagayoko, Zhao, and Williams method as enhanced by the work of Ekuma and Franklin (BZW-EF). We describe the electronic band structure of Na2O with a direct band gap of 2.22 eV. Our results include predicted values for the electronic band structure and associated energy eigenvalues, the total and partial density of states (DOS and pDOS), the equilibrium lattice constant of Na2O, and the bulk modulus. We have also calculated the electron and holes effective masses in the Γ to L, Γ to X, and Γ to K directions. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.

  10. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  11. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-04-11

    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in

  12. Seasonal and spatial variation of topside He+ column density obtained from Extreme Ultra Violet Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Murakami, G.; Yamazaki, A.; Yoshikawa, I.

    2016-12-01

    The seasonal, longitudinal and latitudinal variations of He+ distribution in the topside ionosphere in 2013 are elucidated with data of He+ resonant scattering obtained by Extreme Ultra Violet Imager (EUVI) onboard the International Space Station (ISS). EUVI provides a data set of the column density of He+ above the ISS orbit altitude. The data set provides a unique opportunity to study He+ distribution in the topside ionosphere from a different perspective of past studies using in-situ measurement data. During the solstice seasons, an enhancement of He+ column density in the winter hemisphere is observed. The magnitude of this hemispheric asymmetry shows a longitudinal variability. Around the June solstice, the hemispheric asymmetry was greater in the longitude sector where the geomagnetic declination angle is negative and smaller in the longitude sector where the geomagnetic declination angle is positive. Around the December solstice, on the other hand, this longitudinal variation of the asymmetry magnitude had opposite tendency. The hemispheric asymmetry of the effective neutral wind well explains this behavior of He+. The field-aligned component of neutral wind in the F-region is varied in longitude under the presence of finite geomagnetic declination angle and large zonal wind. In the equinox seasons, two longitudinal maxima were observed at around 140ºE and 30ºE. The longitudinal variation of the effective neutral wind is a candidate of these two maxima of He+ concentration. These results suggest that the transport of ions in the topside ionosphere is strongly affected by the F-region neutral wind.

  13. Particle-in-cell simulations of bounded plasma discharges applied to low pressure high density sources and positive columns

    NASA Astrophysics Data System (ADS)

    Kawamura, Emi

    Particle-in-cell (PIC) simulations of bounded plasma discharges are attractive because the fields and the particle motion can be obtained self-consistently from first principles. Thus, we can accurately model a wide range of nonlocal and kinetic behavior. The only disadvantage is that PIC may be computationally expensive compared to other methods. Fluid codes, for example, may run faster but make assumptions about the bulk plasma velocity distributions and ignore kinetic effects. In Chapter 1, we demonstrate methods of accelerating PIC simulations of bounded plasma discharges. We find that a combination of physical and numerical methods makes run-times for PIC codes much more competitive with other types of codes. In processing plasmas, the ion energy distributions (IEDs) arriving at the wafer target are crucial in determining ion anisotropy and etch rates. The current trend for plasma reactors is towards lower gas pressure and higher plasma density. In Chapter 2, we review and analyze IEDs arriving at the target of low pressure high density rf plasma reactors. In these reactors, the sheath is typically collisionless. We then perform PIC simulations of collisionless rf sheaths and find that the key parameter governing the shape of the TED at the wafer is the ratio of the ion transit time across the sheath over the rf period. Positive columns are the source of illumination in fluorescent mercury-argon lamps. The efficiency of light production increases with decreasing gas pressure and decreasing discharge radius. Most current lamp software is based on the local concept even though low pressure lighting discharges tend to be nonlocal. In Chapter 3, we demonstrate a 1d3v radial PIC model to conduct nonlocal kinetic simulations of low pressure, small radius positive columns. When compared to other available codes, we find that our PIC code makes the least approximations and assumptions and is accurate and stable over a wider parameter range. We analyze the PIC

  14. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    NASA Astrophysics Data System (ADS)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  15. Stochastic Accumulation by Cortical Columns May Explain the Scalar Property of Multistable Perception

    NASA Astrophysics Data System (ADS)

    Cao, Robin; Braun, Jochen; Mattia, Maurizio

    2014-08-01

    The timing of certain mental events is thought to reflect random walks performed by underlying neural dynamics. One class of such events—stochastic reversals of multistable perceptions—exhibits a unique scalar property: even though timing densities vary widely, higher moments stay in particular proportions to the mean. We show that stochastic accumulation of activity in a finite number of idealized cortical columns—realizing a generalized Ehrenfest urn model—may explain these observations. Modeling stochastic reversals as the first-passage time of a threshold number of active columns, we obtain higher moments of the first-passage time density. We derive analytical expressions for noninteracting columns and generalize the results to interacting columns in simulations. The scalar property of multistable perception is reproduced by a dynamic regime with a fixed, low threshold, in which the activation of a few additional columns suffices for a reversal.

  16. Planetesimal formation by an axisymmetric radial bump of the column density of the gas in a protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Onishi, Isamu K.; Sekiya, Minoru

    2017-04-01

    We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.

  17. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  18. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O.

    PubMed

    Tan, S Y; Jiang, J; Ye, Z R; Niu, X H; Song, Y; Zhang, C L; Dai, P C; Xie, B P; Lai, X C; Feng, D L

    2015-04-30

    The electronic structure of Na2Ti2Sb2O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicates that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime.

  19. Thiophenic compounds adsorption on Na(I)Y and rare earth exchanged Y zeolites: a density functional theory study.

    PubMed

    Gao, Xionghou; Geng, Wei; Zhang, Haitao; Zhao, Xuefei; Yao, Xiaojun

    2013-11-01

    We have theoretically investigated the adsorption of thiophene, benzothiophene, dibenzothiophene on Na(I)Y and rare earth exchanged La(III)Y, Ce(III)Y, Pr(III)Y Nd(III)Y zeolites by density functional theory calculations. The calculated results show that except benzothiophene adsorbed on Na(I)Y with a stand configuration, the stable adsorption structures of other thiophenic compounds on zeolites exhibit lying configurations. Adsorption energies of thiophenic compounds on the Na(I)Y are very low, and decrease with the increase of the number of benzene rings in thiophenic compounds. All rare earth exchanged zeolites exhibit strong interaction with thiophene. La(III)Y and Nd(III)Y zeolites are found to show enhanced adsorption energies to benzothiophene and Pr(III)Y zeolites are favorable for dibenzothiophene adsorption. The analysis of the electronic total charge density and electron orbital overlaps show that the thiophenic compounds interact with zeolites by π-electrons of thiophene ring and exchanged metal atom. Mulliken charge populations analysis reveals that adsorption energies are strongly dependent on the charge transfer of thiophenic molecule and exchanged metal atom.

  20. Impact of NO2 horizontal heterogeneity on tropospheric NO2 vertical columns retrieved from satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-01-01

    Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.

  1. The Mass and Absorption Columns of Galactic Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the

  2. A practicable process for phenol removal with liquid surfactant membrane permeation column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Takeshi; Osaki, Katsuhiko; Nishiki, Tadaaki

    1997-05-01

    A practicable liquid surfactant membrane process for phenol removal is proposed with a stirred countercurrent column used as the liquid membrane contact equipment. The constituents of liquid membranes, such as internal aqueous phase and surfactant, the type of column, and the operating conditions for efficient and continuous performance of the liquid surfactant membrane process, have been examined. When NaOH solution was used as the internal aqueous phase and ECA4360J was used as the surfactant, the W/O emulsion was stable for the duration of column operation. More than 97% phenol could be removed from the feed solution. Nearly complete demulsification wasmore » also achieved by gentle agitation with an electrostatic demulsifier.« less

  3. Properties of Two-Variety Natural Luffa Sponge Columns as Potential Mattress Filling Materials

    PubMed Central

    Chen, Yuxia; Zhang, Kaiting; Yuan, Fangcheng; Zhang, Tingting; Weng, Beibei; Wu, Shanshan; Huang, Aiyue; Su, Na; Guo, Yong

    2018-01-01

    Luffa sponge (LS) is a resourceful material with fibro-vascular reticulated structure and extremely high porosity, which make it a potential candidate for manufacturing light mattress. In this study, two types of LS columns, namely high-density (HD) and low-density (LD) columns, were investigated as materials for filling the mattress. The results showed that the compressive strength of HD LS columns was significantly greater than that of LD LS columns. However, the densification strains of the two types of LS column were both in the range of 0.6 to 0.7. Besides, HD LS columns separately pressed to the smooth plateau region and the initial densification region exhibited a partial recovery of instant height when they were unloaded, and then both of them showed no more than 4.2% of height recovery after being allowed to rest at a constant temperature and humidity for 24 h. In contrast, when LD LS columns were compressed to the smooth plateau region, the height recovery was less than 1.62% compared to when they were pressed to the initial densification region, and that was more than 15.62%. Similar to other plant fibers used as mattress fillers, the two types of LS columns also showed good water absorption capacity—both of them could absorb water from as much as 2.07 to 3.45 times their own weight. At the same time, the two types of LS columns also showed good water desorption. The water desorption ratio of HD and LD LS columns separately reached 76.86 and 91.44%, respectively, after being let rest at a constant temperature and humidity for 13 h. PMID:29614744

  4. EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed

    We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less

  5. Induced binding of proteins by ammonium sulfate in affinity and ion-exchange column chromatography.

    PubMed

    Arakawa, Tsutomu; Tsumoto, Kouhei; Ejima, Daisuke; Kita, Yoshiko; Yonezawa, Yasushi; Tokunaga, Masao

    2007-04-10

    In general, proteins bind to affinity or ion-exchange columns at low salt concentrations, and the bound proteins are eluted by raising the salt concentration, changing the solvent pH, or adding competing ligands. Blue-Sepharose is often used to remove bovine serum albumin (BSA) from samples, but when we applied BSA to Blue-Sepharose in 20 mM phosphate, pH 7.0, 50%-60% of the protein flowed through the column; however, complete binding of BSA was achieved by the addition of 2 M ammonium sulfate (AS) to the column equilibration buffer and the sample. The bound protein was eluted by decreasing the AS concentration or by adding 1 M NaCl or arginine. AS at high concentrations resulted in binding of BSA even to an ion-exchange column, Q-Sepharose, at pH 7.0. Thus, although moderate salt concentrations elute proteins from Blue-Sepharose or ion-exchange columns, proteins can be bound to these columns under extreme salting-out conditions. Similar enhanced binding of proteins by AS was observed with an ATP-affinity column.

  6. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-10-01

    Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the

  8. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  9. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel A. Mosher; Xia Tang; Ronald J. Brown

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchangermore » optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.« less

  10. Experimental investigation of cesium mobility in the course of secondary mineral formations in Hanford sediment columns at 50 degrees C.

    PubMed

    Mashal, Kholoud Y; Cetiner, Ziya S

    2010-10-01

    Formation of secondary minerals and Cs mobility in Hanford sediments were investigated under conditions similar to the Hanford tank leak in a dynamic flow system at 50 degrees C. The objectives were to (1) examine the nature and locations of secondary mineral phases precipitated in the sediments and (2) quantify the amount of Cs retained by the sediment matrix at 50 degrees C. To this end, Hanford sediments were packed into 10-cm long columns and leached with simulated tank waste consisting of 1.4 M NaOH, 0.125 M NaAlO(2), 3.7 M NaNO(3), and 1.3 x 10(-4) M Cs at 50 degrees C. Compositions of outflow solution were monitored with time for up to 25 days, and the columns were then segmented into four 2.5-cm long layers. The colloidal fraction in these segments was characterized in terms of mineralogy, particle morphology, Cs content, and short-range Al and Si structure. It was observed that cancrinite and sodalite precipitated at 50 degrees C. Approximately 53% Cs was retained in the column treated by the simulated tank waste at this temperature. Cesium retention in the column was lowered in the high ionic strength solution due to competition from Na for the exchange sites. This can be explained by alteration of distribution and number of sorption sites which reduces the selectivity of Cs for Na, and through the formation of cancrinite and sodalite. The formation of hydroxide complexes in highly alkaline solutions could also contribute to relatively poor retention of Cs by hindering ion exchange mechanism.

  11. Modeling Stone Columns.

    PubMed

    Castro, Jorge

    2017-07-11

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the "unit cell", longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns.

  12. Modeling Stone Columns

    PubMed Central

    2017-01-01

    This paper reviews the main modeling techniques for stone columns, both ordinary stone columns and geosynthetic-encased stone columns. The paper tries to encompass the more recent advances and recommendations in the topic. Regarding the geometrical model, the main options are the “unit cell”, longitudinal gravel trenches in plane strain conditions, cylindrical rings of gravel in axial symmetry conditions, equivalent homogeneous soil with improved properties and three-dimensional models, either a full three-dimensional model or just a three-dimensional row or slice of columns. Some guidelines for obtaining these simplified geometrical models are provided and the particular case of groups of columns under footings is also analyzed. For the latter case, there is a column critical length that is around twice the footing width for non-encased columns in a homogeneous soft soil. In the literature, the column critical length is sometimes given as a function of the column length, which leads to some disparities in its value. Here it is shown that the column critical length mainly depends on the footing dimensions. Some other features related with column modeling are also briefly presented, such as the influence of column installation. Finally, some guidance and recommendations are provided on parameter selection for the study of stone columns. PMID:28773146

  13. Influence of Surface Sorption Processes on Spectral Induced Polarization Evaluated Using in-Situ Monitoring of a Na-22 Tracer

    NASA Astrophysics Data System (ADS)

    Hao, N.; Moysey, S. M.; Powell, B. A.; Ntarlagiannis, D.

    2014-12-01

    Spectral Induced Polarization (SIP) has been used to monitor subsurface biogeochemical processes in a variety of lab and field studies. However, there are several competing mechanisms that have been proposed to explain the SIP effect. This work targets the influence of ion sorption to mineral surfaces as a controlling factor on SIP utilizing a pH dependent surface adsorption experiment. In this experiment we use silica gel as an idealized medium where the number of available sites for cation sorption, which in this case is limited to Na+ and H+ ions, is influenced by changes in pH via protonation/deprotonation of silanol groups. The experiment uses 22Na as an in situ tracer as the radioactive decay of this nuclide can be continuously and non-invasively monitored using sensors placed outside of a column. The experiment was conducted by continuously pumping a 0.01M NaCl solution spiked with of 1μCi/L 22Na in to the column under three pH conditions (pH 5.0, 6.0 and 8.0). In the experiment, we observed an increasing number of gamma counts caused by the accumulation of sorbed 22Na in the column as we increased the pH from 5.0 to 6.5, and finally to 8.0. Simultaneously, we observed a linearly correlated (R2 = 0.99) rise in the imaginary conductivity response of the SIP measurements. Using the triple layer electrochemical polarization model for grain polarization to simulate our experimental SIP responses, we found that the estimated surface site density is within a factor of two of that estimated from the mass accumulation of sodium. Since the accumulation of sodium on the silica gel surface is responsible for both the increase in gamma radiation and the change in the electrical response, these observations support the theory that mobile ions in the Stern layer of mineral surfaces provide the primary control on SIP signals in silicate materials.

  14. Characterisation of RPLC columns packed with porous sub-2 microm particles.

    PubMed

    Petersson, Patrik; Euerby, Melvin R

    2007-08-01

    Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.

  15. Dynamics of a Tapped Granular Column

    NASA Astrophysics Data System (ADS)

    Rosato, Anthony; Blackmore, Denis; Zuo, Luo; Hao, Wu; Horntrop, David

    2015-11-01

    We consider the behavior of a column of spheres subjected to a time-dependent vertical taps. Of interest are various dynamical properties, such as the motion of its mass center, its response to taps of different intensities and forms, and the effect of system size and material properties. The interplay between diverse time and length scales are the key contributors to the column's evolving dynamics. Soft sphere discrete element simulations were conducted over a very wide parameter space to obtain a portrait of column behavior as embodied by the collective dynamics of the mass center motion. Results compared favorably with a derived reduced-order paradigm of the mass center motion (surprisingly analogous to that for a single bouncing ball on an oscillating plate) with respect to dynamical regimes and their transitions. A continuum model obtained from a system of Newtonian equations, as a locally averaged limit in the transport mode along trajectories is described, and a numerical solution protocol for a one-dimensional system is outlined. Typical trajectories and density evolution profiles are shown. We conclude with a discussion of our investigations to relate predictions of the continuum and reduced dynamical systems models with discrete simulations.

  16. Low-density solvent based ultrasound-assisted emulsification microextraction and on-column derivatization combined with gas chromatography-mass spectrometry for the determination of carbamate pesticides in environmental water samples.

    PubMed

    Guo, Liang; Lee, Hian Kee

    2012-04-27

    A fast and efficient method for the determination of trace level of carbamate pesticides using a lower-density-than-water solvent for ultrasound-assisted emulsification microextraction coupled to on-column derivatization and analysis by GC-MS has been developed and studied. In this approach, a soft plastic Pasteur pipette was employed as a convenient extraction device. Fifty microliters of extraction solvent, of lower density than water, was injected into the sample solution held in the pipette. The latter was immediately immersed in an ultrasound water bath to form an emulsion. After 2 min extraction, the emulsion was fractionated into two layers by centrifugation. The upper layer (organic extract) could be collected conveniently by squeezing the bulb of the pipette, now held upside down, to move it into the narrow stem of the device, facilitating its retrieval for analysis. The extract was then combined with trimethylphenylammonium hydroxide and directly injected into a gas chromatography-mass spectrometry (GC-MS) system for on-column derivatization and analysis. The on-column derivatization provided an added convenience (since a separate step was not necessary). Parameters affecting the derivatization and extraction were investigated. Under the most favorable conditions, the method demonstrated high extraction efficiency with low limits of detection of between 0.01 and 0.1 μg/L, good linearity in the range of 0.05-50 μg/L, to 0.5-100 μg/L, and good repeatability (RSD below 9.2%, n=5). The proposed method was evaluated by determining carbamate pesticides in river water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  18. Effects of doping Na and Cl atom on electronic structure of silicene: Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Pamungkas, Mauludi Ariesto; Sobirin, Kafi; Abdurrouf

    2018-04-01

    Silicene is a material in which silicon atoms are packed in two-dimensional hexagonal lattice, similar to that of graphene. Compared to graphene, silicene has promising potential to be applied in microelectronic technology because of its compatibility with silicon comonly used in semiconducting devices. Natrium and chlorine are easy to extract and can be used as dopants in FET (Field Effect Transistor). In this work, the effects of adsorption energy and electronic structure of silicene to both natrium and chlorine atoms are calculated with Density Functional Theory (DFT). The results show that dopings of Na transform silicene which is initially semimetal into a metal. Then dopings of Cl Top-site transform silicene into a semiconducting material and doping of Na and Cl simultaneously transfoms silicene into a conducting material.

  19. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  20. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.

    PubMed

    Clegg, S L; Wexler, A S

    2011-04-21

    Calculations of the size and density of atmospheric aerosols are complicated by the fact that they can exist at concentrations highly supersaturated with respect to dissolved salts and supercooled with respect to ice. Densities and apparent molar volumes of solutes in aqueous solutions containing the solutes H(2)SO(4), HNO(3), HCl, Na(2)SO(4), NaNO(3), NaCl, (NH(4))(2)SO(4), NH(4)NO(3), and NH(4)Cl have been critically evaluated and represented using fitted equations from 0 to 50 °C or greater and from infinite dilution to concentrations saturated or supersaturated with respect to the dissolved salts. Using extrapolated densities of high-temperature solutions and melts, the relationship between density and concentration is extended to the hypothetical pure liquid solutes. Above a given reference concentration of a few mol kg(-1), it is observed that density increases almost linearly with decreasing temperature, and comparisons with available data below 0 °C suggest that the fitted equations for density can be extrapolated to very low temperatures. As concentration is decreased below the reference concentration, the variation of density with temperature tends to that of water (which decreases as temperature is reduced below 3.98 °C). In this region below the reference concentration, and below 0 °C, densities are calculated using extrapolated apparent molar volumes which are constrained to agree at the reference concentrations with an equation for the directly fitted density. Calculated volume properties agree well with available data at low temperatures, for both concentrated and dilute solutions. Comparisons are made with literature data for temperatures of maximum density. Apparent molar volumes at infinite dilution are consistent, on a single ion basis, to better than ±0.1 cm(3) mol(-1) from 0 to 50 °C. Volume properties of aqueous NaHSO(4), NaOH, and NH(3) have also been evaluated, at 25 °C only. In part 2 of this work (ref 1 ) an ion interaction (Pitzer

  1. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  2. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  3. Heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(s)

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Timonen, Raimo S.; Keyser, Leon F.; Yung, Yuk L.

    1995-01-01

    The heterogeneous reactions of HNO3(g) + NaCl(s) yields HCl(g) + NaNO3(s) (eq 1) and N2O5(g) + NaCl(s) yields ClNO2(g) + NaNO3(S) (eq 2) were investigated over the temperature range 223-296 K in a flow-tube reactor coupled to a quadrupole mass spectrometer. Either a chemical ionization mass spectrometer (CIMS) or an electron-impact ionization mass spectrometer (EIMS) was used to provide suitable detection sensitivity and selectivity. In order to mimic atmospheric conditions, partial pressures of HNO3 and N2O5 in the range 6 x 10(exp -8) - 2 x 10(exp -6) Torr were used. Granule sizes and surface roughness of the solid NaCl substrates were determined by using a scanning electron microscope. For dry NaCl substrates, decay rates of HNO3 were used to obtain gamma(1) = 0.013 +/- 0.004 (1sigma) at 296 K and > 0.008 at 223 K, respectively. The error quoted is the statistical error. After all corrections were made, the overall error, including systematic error, was estimated to be about a factor of 2. HCl was found to be the sole gas-phase product of reaction 1. The mechanism changed from heterogeneous reaction to predominantly physical adsorption when the reactor was cooled from 296 to 223 K. For reaction 2 using dry salts, gamma(2) was found to be less than 1.0 x 10(exp -4) at both 223 and 296 K. The gas-phase reaction product was identified as ClNO2 in previous studies using an infrared spectrometer. An enhancement in reaction probability was observed if water was not completely removed from salt surfaces, probably due to the reaction of N2O5(g) + H2O(s) yields 2HNO3(g). Our results are compared with previous literature values obtained using different experimental techniques and conditions. The implications of the present results for the enhancement of the hydrogen chloride column density in the lower stratosphere after the El Chichon volcanic eruption and for the chemistry of HCl and HNO3 in the marine troposphere are discussed.

  4. Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1

    NASA Technical Reports Server (NTRS)

    Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.

    1974-01-01

    Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.

  5. A density functional study of second-row dicarbides C2X (X = Na-Cl) with carbon monosulfide molecule: molecular structure and bonding mechanism

    NASA Astrophysics Data System (ADS)

    Parida, Saroj K.; Sahu, Sridhar

    2018-05-01

    In present work, a systematic study regarding molecular structure, and bonding mechanism of carbon monosulfide (CS) on second-row dicarbides C2X with (X = Na-Cl) has been investigated within the framework of density functional theory (DFT). In presence of carbon monosulfide molecule, the structures of C2Na, C2Mg, C2Al, and C2Si are found be changed from cyclic to linear, whereas geometries of C2P, C2S, and C2Cl clusters are almost remain unchanged. Interestingly, the bare carbon monosulfide molecule is attached with carbon site of bare C2X clusters rather than the second-row elements (X = Na-Cl). Furthermore, the nature of bonding in C2XCS clusters has been studiedthrough Bader's topological analysis of the electron charge density distribution ρ(r), Laplacian ∇2 ρ(r) and total energy density H BCP at the bond critical points (BCPs) of the clusters within the framework of the atoms in molecules theory (AIM). In C2XCS clusters, electron density at the bond critical point ρ(r) > 0.30 a.u. with negative values of Laplacian ∇2 ρ(r) indicates shared-kind of interactions between both the carbon atoms of C2X and CS molecule. In addition, we also analyze IR spectra that could assist for the experimental detection.

  6. High resolution mapping of NO2 column densities along the western shore of Lake Michigan and the Los Angeles Basin during May/June 2017

    NASA Astrophysics Data System (ADS)

    Judd, L. M.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Szykman, J.; Swap, R.; Abuhassan, N.; Cede, A.; Valin, L.; Williams, D.; Stanier, C. O.

    2017-12-01

    The airborne Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) UV/VIS mapping spectrometer was used to make measurements for the Lake Michigan Ozone Study (LMOS) along the western shore of Lake Michigan and for the Student Airborne Research Program (SARP) in the Los Angeles Basin during May and June 2017. This instrument has the capability of retrieving NO2 column densities at sub-urban spatial scales (nominally 250 m x 250 m) and is being used as a testbed for future geostationary air quality retrievals. LMOS was a multi-agency collaborative observational effort to better understand ozone pollution along Lake Michigan's western shore, where coastal monitors exceed current ozone standards. With 21 science flights during the 5-week campaign period, GeoTASO acquired data for constraining emissions along the western coast of Lake Michigan and observed how these emissions dispersed and influenced the local air quality. During SARP flights, GeoTASO was used to map the Los Angeles Basin five times over two days, observing NO2 Differential Slant Column densities (DSCs) ranging from over 50x1015 molecules cm-2 down to GeoTASO's detection limit ( 1.5x1015 molecules cm-2 at 250 m x 250 m). This work presents the spatial distribution of preliminary NO2 DSCs observations over both research areas, and shows how this it changed at hourly to multi-day timescales under varying meteorological conditions. Both LMOS and SARP included coincident column NO2 measurements from networks of ground-based Pandora spectrometers specifically set up for these campaigns, and a comparison of coincident observations will be shown. Consistent features were observed throughout these flights, including continual emission `hot-spots' and the redistribution of NO2 plumes by land-water circulations. One goal of this work is to investigate how the fine spatial features observed (e.g. power plant plumes) will be depicted in satellite observations at coarser spatial resolutions. These

  7. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  8. The densities of halite-saturated WIPP-A and NBT-6 brines and their NaCl contents in weight percent, molal, and molar units from 20 to 100 degrees C

    USGS Publications Warehouse

    Chou, I-Ming; Buizinga, B.; Clynne, M.A.; Potter, R.W.

    1982-01-01

    A series of density measurements has been performed at 30?, 50?, 70?, and 90?C for halite-undersaturated WIPP-A and NBT-6 brines with various NaCl contents approaching saturation. The densities of halite-saturated WIPP-A and NBT-6 brines were obtained by extrapolating these measured densities to halite saturation points. The maximum difference between the densities obtained in this Fashion and those calculated from the model of Potter and Haas is 0.015 g/cm3. The NaCl contents in halite-saturated WIPP-A and NBT-6 brines are reported in wt %, molal, and molar units from 20? to 100?C.

  9. Virus elimination during the purification of monoclonal antibodies by column chromatography and additional steps.

    PubMed

    Roberts, Peter L

    2014-01-01

    The theoretical potential for virus transmission by monoclonal antibody based therapeutic products has led to the inclusion of appropriate virus reduction steps. In this study, virus elimination by the chromatographic steps used during the purification process for two (IgG-1 & -3) monoclonal antibodies (MAbs) have been investigated. Both the Protein G (>7log) and ion-exchange (5 log) chromatography steps were very effective for eliminating both enveloped and non-enveloped viruses over the life-time of the chromatographic gel. However, the contribution made by the final gel filtration step was more limited, i.e., 3 log. Because these chromatographic columns were recycled between uses, the effectiveness of the column sanitization procedures (guanidinium chloride for protein G or NaOH for ion-exchange) were tested. By evaluating standard column runs immediately after each virus spiked run, it was possible to directly confirm that there was no cross contamination with virus between column runs (guanidinium chloride or NaOH). To further ensure the virus safety of the product, two specific virus elimination steps have also been included in the process. A solvent/detergent step based on 1% triton X-100 rapidly inactivating a range of enveloped viruses by >6 log inactivation within 1 min of a 60 min treatment time. Virus removal by virus filtration step was also confirmed to be effective for those viruses of about 50 nm or greater. In conclusion, the combination of these multiple steps ensures a high margin of virus safety for this purification process. © 2014 American Institute of Chemical Engineers.

  10. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning

    PubMed Central

    Walsby, Anthony E; Holland, Daryl P

    2005-01-01

    Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271

  11. THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Lazarian, A.

    2016-08-10

    Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less

  12. JCE Feature Columns

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  13. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  14. Asymmetric supercapacitors with high energy density based on helical hierarchical porous Na x MnO2 and MoO2.

    PubMed

    Lu, Xue-Feng; Huang, Zhi-Xiang; Tong, Ye-Xiang; Li, Gao-Ren

    2016-01-01

    Helical hierarchical porous Na x MnO 2 /CC and MoO 2 /CC, which are assembled from nanosheets and nanoparticles, respectively, are fabricated using a simple electrodeposition method. These unique helical porous structures enable electrodes to have a high capacitance and an outstanding cycling performance. Based on the helical Na x MnO 2 /CC as the positive electrodes and helical MoO 2 /CC as the negative electrodes, high performance Na x MnO 2 /CC//MoO 2 /CC asymmetric supercapacitors (ASCs) are successfully assembled, and they achieve a maximum volume C sp of 2.04 F cm -3 and a maximum energy density of 0.92 mW h cm -3 for the whole device and an excellent cycling stability with 97.22% C sp retention after 6000 cycles.

  15. Radial distribution of the flow velocity, efficiency and concentration in a wide HPLC column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, T.; Sepaniak, M.J.; Guiochon, G.

    1997-08-01

    The use of optical fibers in a fluorescence-detection scheme permits the accurate determination of the radial distribution of the transit time, the column efficiency, and the analyte concentration at the exit of a chromatographic axial-compression column (50 mmID). The results obtained demonstrate that the column is not homogeneous, but suggest a nearly cylindrical distribution of the packing density. The average velocity close to the column wall is 7% lower than along its axis and the HETP 25% higher. The lack of homogeneity of the column packing is another source of band broadening not taken into account in chromatography so far.more » It causes the apparent HETP derived from the conventional elution chromatogram recorded on the bulk eluent to be larger than the local HETP and the band profile to be unsymmetrical with a slight tail reminiscent of kinetic tailing.« less

  16. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...

  17. Density Functional Study for Chemical Reaction between Cr and Fe with Sodium Diethyldithiocarbamate (NaDDC)

    NASA Astrophysics Data System (ADS)

    Setiyanto, Henry; Muhida, Rifki; Kishi, Tomoya; Rahman, Md. Mahmudur; Dipojono, Hermawan K.; Diño, Wilson A.; Matsumoto, Shigeno; Kasai, Hideaki

    Analytical chemistry in the perspective of ab initio molecular orbital calculation is introduced by investigating the chemical reaction between transition metals Cr and Fe with sodium diethyldithiocarbamate (NaDDC), a complexing agent to detect and extract Cr in human blood sample. Using density functional theory—based calculations, we determine the stable structure of the Cr-DDC and Fe-DDC complexes and obtain its dissociation energies. We found dissociation energy values of -3.24 and -2.67 eV for Cr and Fe complexes, respectively; and hence the formation of the former complex is more favorable than the formation of the latter.

  18. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  19. Density functional theory studies on the electronic, structural, phonon dynamical and thermo-stability properties of bicarbonates MHCO3, M = Li, Na, K

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Zhang, Bo; Sorescu, Dan C.; Johnson, J. Karl; Majzoub, Eric H.; Luebke, David R.

    2012-08-01

    The structural, electronic, phonon dispersion and thermodynamic properties of MHCO3 (M = Li, Na, K) solids were investigated using density functional theory. The calculated bulk properties for both their ambient and the high-pressure phases are in good agreement with available experimental measurements. Solid phase LiHCO3 has not yet been observed experimentally. We have predicted several possible crystal structures for LiHCO3 using crystallographic database searching and prototype electrostatic ground state modeling. Our total energy and phonon free energy (FPH) calculations predict that LiHCO3 will be stable under suitable conditions of temperature and partial pressures of CO2 and H2O. Our calculations indicate that the {{HCO}}_{3}^{-} groups in LiHCO3 and NaHCO3 form an infinite chain structure through O⋯H⋯O hydrogen bonds. In contrast, the {{HCO}}_{3}^{-} anions form dimers, ({{HCO}}_{3}^{-})_{2}, connected through double hydrogen bonds in all phases of KHCO3. Based on density functional perturbation theory, the Born effective charge tensor of each atom type was obtained for all phases of the bicarbonates. Their phonon dispersions with the longitudinal optical-transverse optical splitting were also investigated. Based on lattice phonon dynamics study, the infrared spectra and the thermodynamic properties of these bicarbonates were obtained. Over the temperature range 0-900 K, the FPH and the entropies (S) of MHCO3 (M =Li, Na, K) systems vary as FPH(LiHCO3) > FPH(NaHCO3) > FPH(KHCO3) and S(KHCO3) > S(NaHCO3) > S(LiHCO3), respectively, in agreement with the available experimental data. Analysis of the predicted thermodynamics of the CO2 capture reactions indicates that the carbonate/bicarbonate transition reactions for Na and K could be used for CO2 capture technology, in agreement with experiments.

  20. Ion chromatography for determination of nitrite and nitrate in seawater using monolithic ODS columns.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Makabe, Nobuyuki; Mitsui, Ryo; Hirokawa, Takeshi

    2005-08-12

    A fast and highly sensitive ion chromatographic method using monolithic ODS columns was developed for the determination of nitrite (NO2-) and nitrate (NO3-) in seawater. Two monolithic ODS columns (50 mm x 4.6 mm i.d. + 100 mm x 4.6 mm i.d.) connected in series were coated and equilibrated with 5 mM cetyltrimethylammonium chloride (CTAC) aqueous solution. The column efficiency with 0.5 M NaCl as the mobile phase did not decrease in spite of the increase in flow rate of the mobile phase. Thus, good chromatograms were obtained within 3 minutes for NO2- and NO3 in artificial seawater without interferences by coexisting ions. The detection limit (S/N = 3) with UV detection at 225 nm was 0.8 and 1.6 microg/L for NO2- and NO3-, respectively. The characteristics of the monolithic CTA(+)-coated ODS columns were discussed. The present method was successfully applied to the fast and sensitive determination of NO2- and NO3- in real seawater samples.

  1. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  2. Band gap engineering of NaTaO3 using density functional theory: a charge compensated codoping strategy.

    PubMed

    Modak, Brindaban; Srinivasu, K; Ghosh, Swapan K

    2014-08-28

    In this theoretical study, we employ a codoping strategy to reduce the band gap of NaTaO3 aimed at improving the photocatalytic activity under visible light. The systematic study includes the effects of metal (W) and nonmetal (N) codoping on the electronic structure of NaTaO3 in comparison to the effect of individual dopants. The feasibility of the introduction of N into the NaTaO3 crystal structure is found to be enhanced in the presence of W, as indicated by the calculated formation energy. This codoping leads to formation of a charge compensated system, beneficial for the minimization of vacancy related defect formation. The electronic structure calculations have been carried out using a hybrid density functional for an accurate description of the proposed system. The introduction of W in place of Ta leads to the appearance of donor states below the conduction band, while N doping in place of oxygen introduces isolated acceptor states above the valence band. The codoping of N and W also passivates undesirable discrete midgap states. This feature is not observed in the case of (Cr, N) codoped NaTaO3 in spite of its charge compensated nature. We have also studied charge non-compensated codoping using several dopant pairs, including anion-anion and cation-anion pairs. However, this non-compensated codoping introduces localized states in between the valence band and the conduction band, and hence may not be effective in enhancing the photocatalytic properties of NaTaO3. The optical spectrum shows that the absorption curve for the (W, N)-codoped NaTaO3 is extended to the visible region due to narrowing of the band gap to 2.67 eV. Moreover, its activity for the photo decomposition of water to produce both H2 and O2 remains intact. Hence, based on the present investigation we can propose (W, N) codoped NaTaO3 as a promising photocatalyst for visible light driven water splitting.

  3. VizieR Online Data Catalog: EBHIS spectra and HI column density maps (Winkel+, 2016)

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Kerp, J.; Floeer, L.; Kalberla, P. M. W.; Ben Bekhti, N.; Keller, R.; Lenz, D.

    2015-11-01

    The EBHIS 1st data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/scolumn density distribution, both, in a (1) HealPIX-grid binary table (nside=1024, Galactic coordinates, Ring indexing scheme) (2) Standard FITS 2D image in ZEA-projection (zenith equal area). (6 data files).

  4. Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.

    2010-03-26

    The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008more » and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.« less

  5. Systems for column-based separations, methods of forming packed columns, and methods of purifying sample components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2000-01-01

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  6. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2006-02-21

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  7. Systems For Column-Based Separations, Methods Of Forming Packed Columns, And Methods Of Purifying Sample Components.

    DOEpatents

    Egorov, Oleg B.; O'Hara, Matthew J.; Grate, Jay W.; Chandler, Darrell P.; Brockman, Fred J.; Bruckner-Lea, Cynthia J.

    2004-08-24

    The invention encompasses systems for column-based separations, methods of packing and unpacking columns and methods of separating components of samples. In one aspect, the invention includes a method of packing and unpacking a column chamber, comprising: a) packing a matrix material within a column chamber to form a packed column; and b) after the packing, unpacking the matrix material from the column chamber without moving the column chamber. In another aspect, the invention includes a system for column-based separations, comprising: a) a fluid passageway, the fluid passageway comprising a column chamber and a flow path in fluid communication with the column chamber, the flow path being obstructed by a retaining material permeable to a carrier fluid and impermeable to a column matrix material suspended in the carrier fluid, the flow path extending through the column chamber and through the retaining material, the flow path being configured to form a packed column within the column chamber when a suspension of the fluid and the column matrix material is flowed along the flow path; and b) the fluid passageway extending through a valve intermediate the column chamber and the retaining material.

  8. Impacts of Cation Type and Clay on Transport of Surface-modified Nanoparticles through Saturated Sand Columns

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Wan, J.; Tokunaga, T. K.

    2010-12-01

    Transport of three different nanoparticles (NPs) was studied in columns packed with different sands (unwashed Accusand, washed Accusand, and ultrapure quartz) at different ionic strengths (IS) and cation types. The NPs were functionalized (polyacrylic acid) quantum dots (QDs), carboxylic-modified latex, and bare silica. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis showed there were regions on the unwashed Accusand grains covered with clay particles. The SEM images of washed Accusand showed that the sand surfaces contained significantly less clay coatings. The breakthrough curves (BTCs) of QDs and latex NPs from unwashed Accusand columns showed minute deposition at 50 and 100 mM Na+. However, significant NP deposition occurred in unwashed Accusand columns at 0.5, 1, and 2 mM Ca2+. The amount of deposition increased as the Ca2+ concentration was increased. These results suggest that, in contrast to monovalent Na+, divalent Ca2+ enhanced deposition of the NPs. The BTCs of QDs and latex NPs in washed Accusand exhibited a similar trend as those of unwashed Accusand, however, much less deposition occurred at any given IS. The BTCs from the ultrapure quartz sand column showed negligible QD deposition at 2 mM Ca2+. Following completion of column experiments, a few Accusand sand grains were analyzed with SEM and the images showed that most of QDs were deposited on the clay surfaces. In contrast with our results from surface-modified NPs, the column experiments using bare silica NPs at 5 mM Ca2+ in unwashed Accusand showed negligible deposition. The enhanced deposition of surface-modified NPs may be attributed to cation bridging in which Ca2+ cations serve as a bridge between the NP, which contain carboxyl group on its surface, and negatively charged clay surfaces at 7. Because Ca2+ is commonly a major cation in groundwater, our results suggest that transport of carboxylic ligand-modified NPs may be very limited in subsurface environments.

  9. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction

  10. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    USGS Publications Warehouse

    White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-01-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of

  11. Electron solvation by polar molecules: the interaction of Na atoms with solid methanol films studied with MIES and density functional theory calculations.

    PubMed

    Borodin, A; Höfft, O; Kahnert, U; Kempter, V; Ferro, Y; Allouche, A

    2004-05-08

    The interaction of Na atoms with CH(3)OH films was studied with metastable impact electron spectroscopy (MIES) under UHV conditions. The films were grown at 90(+/-10) K on tungsten substrates and exposed to Na. Na-induced formation of methoxy (CH(3)O) species takes place, and Na atoms become ionized. At small Na exposures the outermost solvent layer remains largely intact as concluded from the absence of MIES signals caused by the reaction products. However, emission from CH(3)O, located at the film surface, occurs at larger exposures. In the same exposure range also Na species can be detected at the surface. The spectral feature from 3s Na ionization occurs at an energetic position different from that found for metals or semiconductors. The results are compared with density functional theory calculations [see Y. Ferro, A. Allouche, and V. Kempter, J. Chem. Phys. 120, 8683 (2004), preceding paper]. Experiment and theory agree in the energetic positions of the main spectral features from the methanol and sodium ionization. The calculations suggest that the 3s Na emission observed experimentally originates from solvated 3s electrons which are located far from the Na core and become stabilized by solvent molecules. The simultaneous emergence of emission from CH(3)O and from solvated 3s electrons suggests that the delocalization and, consequently, the solvation play an important role in the Na-induced formation of CH(3)O from CH(3)OH. (c) 2004 American Institute of Physics.

  12. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration

    NASA Astrophysics Data System (ADS)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios

    2016-12-01

    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.

  13. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...

  14. Family of columns isospectral to gravity-loaded columns with tip force: A discrete approach

    NASA Astrophysics Data System (ADS)

    Ramachandran, Nirmal; Ganguli, Ranjan

    2018-06-01

    A discrete model is introduced to analyze transverse vibration of straight, clamped-free (CF) columns of variable cross-sectional geometry under the influence of gravity and a constant axial force at the tip. The discrete model is used to determine critical combinations of loading parameters - a gravity parameter and a tip force parameter - that cause onset of dynamic instability in the CF column. A methodology, based on matrix-factorization, is described to transform the discrete model into a family of models corresponding to weightless and unloaded clamped-free (WUCF) columns, each with a transverse vibration spectrum isospectral to the original model. Characteristics of models in this isospectral family are dependent on three transformation parameters. A procedure is discussed to convert the isospectral discrete model description into geometric description of realistic columns i.e. from the discrete model, we construct isospectral WUCF columns with rectangular cross-sections varying in width and depth. As part of numerical studies to demonstrate efficacy of techniques presented, frequency parameters of a uniform column and three types of tapered CF columns under different combinations of loading parameters are obtained from the discrete model. Critical combinations of these parameters for a typical tapered column are derived. These results match with published results. Example CF columns, under arbitrarily-chosen combinations of loading parameters are considered and for each combination, isospectral WUCF columns are constructed. Role of transformation parameters in determining characteristics of isospectral columns is discussed and optimum values are deduced. Natural frequencies of these WUCF columns computed using Finite Element Method (FEM) match well with those of the given gravity-loaded CF column with tip force, hence confirming isospectrality.

  15. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  16. Volcanoes in the Classroom: Simulating an Eruption Column

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Geist, D. J.; Koleszar, A. M.

    2005-12-01

    Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this

  17. 4. TYPICAL COLUMN BASE (COLUMN #1 ON PHOTO ELEVATION PLAN) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TYPICAL COLUMN BASE (COLUMN #1 ON PHOTO ELEVATION PLAN) FACING SOUTH. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  18. An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density

    NASA Astrophysics Data System (ADS)

    Penn, M. J.

    2000-05-01

    From 15:33-16:02 UT on 13 June 1998 observations of an erupting filament as it crossed solar disk center were obtained with the NSO/KPVT and SoHO/CDS instruments as part of the SoHO Joint Observing Program 70. Context observations show that this event was the eruption of the north-east section of a small active region filament associated with NOAA 8237, that the photospheric magnetic field was changing in this active region from 12 through 14 June 1998, that a coronal Moreton-wave disk event occurred, as well as a white-light CME off the south-west solar limb. The NSO/KPVT imaging spectroscopy sho the He I 1083 nm absorption line blue-shifted to velocities of between 200 and 300 km s-1. The true solar trajectory of the eruption is obtained by using the projected solar coordinates and by integrating the Doppler velocity. The filament travels with a total velocity of about 300 km s-1 along a path inclined roughly 49 degrees to the solar surface and rises to a height of just over 1.5 solar radii. The KPVT data show no Stokes V profiles in the Doppler shifted He I 1083 nm absorption to a limit of roughly 3 x 10-3 times the continuum intensity. The SoHO/CDS data scanned the center of the KPVT FOV using seven EUV lines; Doppler shifted filament emission is seen in six lines from representing temperatures from about 2 x 104K through 1 x 106K. Bound-free continuum absorption from H I, free from confusion from foreground emission and line emission, is seen as the filament obscures underlying chromospheric emission. A fit to the wavelength dependence of the absorption from five lines between 55.5 to 63.0 nm yields a column density ξ HI = 1.7 x 1018cm-2. Spatial maps show that this filament absorption is more confined than the regions which show emission. This work was made possible by 1997 and 1999 SoHO Guest Investigator awards NASA #W-19,142 Basic and NASA NAG5-8004.

  19. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  20. Interaction of 3H+ (as HTO) and 36Cl- (as Na36Cl) with crushed granite and corresponding fracture infill material investigated in column experiments.

    PubMed

    Štamberg, K; Palágyi, Š; Videnská, K; Havlová, V

    The transport of 3 H + (as HTO) and 36 Cl - (as Na 36 Cl) was investigated in the dynamic system, i.e., in the columns filled with crushed pure granite and fracture infill of various grain sizes. The aim of column experiments was to determine important transport parameter, such as the retardation, respectively distribution coefficients, Peclet numbers and hydrodynamic dispersion coefficients. Furthermore, the research was focused to quantification of the effect of grain size on migration of studied radionuclides. The experimental breakthrough curves were fitted by a model based on the erfc-function, assuming a linear reversible equilibrium sorption/desorption isotherm, and the above mentioned transport parameters were determined. The results showed that influence of grain size on sorption of 3 H + and 36 Cl - was negligible. Retardation and distribution coefficients of both tracers converged to one and zero, respectively, in case of all fractions of crushed granite and infill material. Generally, the presumed ion exclusion of 36 Cl in anionic form was proved under given conditions, only very weak one seems to exist in a case of infill material. In principal, both radionuclides behaved as non-sorbing, conservative tracers. On the other hand, the influence of grain size on Peclet numbers value and on dispersion coefficient was observed for both crystalline materials, namely in agreement with theoretical suppositions that the values of Peclet numbers decrease with increasing grain size and values of dispersion coefficient increase.

  1. Programmable selectivity for GC with series-coupled columns using pulsed heating of the second column.

    PubMed

    Whiting, Joshua; Sacks, Richard

    2003-05-15

    A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.

  2. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  3. Stability of column-supported embankments.

    DOT National Transportation Integrated Search

    2006-01-01

    Column-supported embankments have a great potential for application in the coastal regions of Virginia, where highway embankments are often constructed on soft ground. The columns can be driven piles, vibro-concrete columns, deep-mixing-method column...

  4. Removal of phosphorus from water by using volcanic ash soil (VAS): batch and column experiments.

    PubMed

    Nguyen, Huy Van; Maeda, Morihiro

    2016-09-01

    Using low-cost and naturally available materials is considered an optimal adsorbent for removing phosphorus (P) from water due to its simplicity and economic efficiency. This study examined the removal of P from water using volcanic ash soil (VAS) by batch and column experiments. The maximum adsorption capacity of P was 2.94 mg g -1 , estimated from the batch experiment according to a Langmuir isotherm. The column study showed a higher adsorption capacity of 5.57 mg g -1 . The breakthrough curve showed that influent water containing 2 mg L -1 P was completely purified by VAS within 1,230 pore volumes (PV). The breakthrough and saturation points of the curves were 3,100 PV and 14,875 PV, respectively. After an adsorption column was loaded with 20,508 PV, a regeneration procedure was developed to determine whether an ion exchange of P with chloride occurred or adsorbed P in the columns could be eluted. Approximately 20% of P was recovered from columns by desorption tests, regardless of NaCl solution or deionized water. Specific surface area and mineral concentrations are both important characteristics that improve the adsorption capacity of VAS. The present study suggests that VAS is a promising adsorbent to remove P in water.

  5. The Albite Fusion Curve Re-examined: New Experiments and the Density and Compressibility of NaAlSi3O8 Liquid With Pressure

    NASA Astrophysics Data System (ADS)

    Tenner, T. J.; Lange, R. A.

    2005-12-01

    Two half-reversals on the melting temperature of high albite (NaAlSi3O8) were determined at 2.3 GPa (1360-1370 °C) and 2.8 GPa (1383-1389 °C) in a piston-cylinder apparatus with NaAlSi3O8 glass as the starting material. A detailed thermal gradient across the sample capsule was mapped, which showed a 3.5 °C gradient across the upper third of the sample capsule and a 30 °C gradient across the lower two-thirds. A calibration against the melting curve of NaCl showed a -5 % pressure correction for the BaCO3/MgO/graphite pressure medium used in these experiments. In addition to the glass-crystal half-reversals, a crystal-glass half-reversal at 2.73 GPa was obtained (1389-1399 °C) using high albite as the starting material. All run products that quenched to a glass were analyzed by Fourier-transform infrared spectroscopy and were found to contain < 0.045 wt% H2O. Our experimental constraints on the albite fusion curve are in excellent agreement with those of Birch and LeComte (1960) and Boyd and England (1963), but deviate from those of Boettcher et al. (1982). Our new data on the albite fusion curve at high pressure are compared with the calculated melting reaction based on the best available thermodynamic data at one bar (Lange, 2003), and various values for the pressure dependence of liquid compressibility (K' = dKT,0/dP, where KT,0 = 1/βT,0) for NaAlSi3O8 liquid, using the 3rd-order Birch-Murnaghan equation of state. Our phase-equilibrium data match the fusion curve calculated with a liquid value of 10.0 ± 1.0. This allows the density of NaAlSi3O8 liquid to be calculated at 1500 °C and 3.0 GPa (2.551 ± 0.01 g/cm3), with an uncertainty that is ~0.3 %. The results of this study show that the density and compressibility of this viscous and fully polymerized liquid can be calculated to high pressure (~3 GPa) with a remarkably high precision. Owing to the absence of any coordination change in NaAlSi3O8 liquid to ~8 GPa, calculations of its density and

  6. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  7. Hysteresis in column systems

    NASA Astrophysics Data System (ADS)

    Ivanyi, P.; Ivanyi, A.

    2015-02-01

    In this paper one column of a telescopic construction of a bell tower is investigated. The hinges at the support of the column and at the connecting joint between the upper and lower columns are modelled with rotational springs. The characteristics of the springs are assumed to be non-linear and the hysteresis property of them is represented with the Preisach hysteresis model. The mass of the columns and the bell with the fly are concentrated to the top of the column. The tolling process is simulated with a cycling load. The elements of the column are considered completely rigid. The time iteration of the non-linear equations of the motion is evaluated by the Crank-Nicolson schema and the implemented non-linear hysteresis is handled by the fix-point technique. The numerical simulation of the dynamic system is carried out under different combination of soft, medium and hard hysteresis properties of hinges.

  8. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  9. Helical patterns of magnetization and magnetic charge density in iron whiskers

    NASA Astrophysics Data System (ADS)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  10. The timing and intensity of column collapse during explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen

    2015-02-01

    Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.

  11. Temporal Variability of Interstellar Na I Absorption toward the Monoceros Loop

    NASA Astrophysics Data System (ADS)

    Dirks, Cody; Meyer, David M.

    2016-03-01

    We report the first evidence of temporal variability in the interstellar Na I absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coudé feed spectra from this sight line taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the ˜1.3 mas yr-1 proper motion of HD 47240 and an SNR distance of 1.6 kpc, this variation would imply ˜10 au fluctuations within the SNR shell. Similar variations have been previously reported in the Vela SNR, suggesting a connection between the expanding SNR gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient interstellar medium.

  12. Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2-2xCo1+xP2O7 cathode for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan

    2018-02-01

    With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.

  13. 45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MAIN MEETING ROOM COLUMNS. Ends of gallery columns identified at the time of removal for transfer to the George School for re-erection. The stamp reads, 'REMOVED FROM 12th ST. MTG HSE PHILA 1972'. - Twelfth Street Meeting House, 20 South Twelfth Street, Philadelphia, Philadelphia County, PA

  14. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions

  15. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    PubMed

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All

  16. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  17. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

    DOE PAGES

    You, Ya; Yu, Xi -Qian; Yin, Ya -Xia; ...

    2014-10-27

    Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode material is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na ions per formula. However, increasing the Na content in PBAs cathode materials is a big challenge in the current. Here we show that sodium iron hexacyanoferrate with high Na content could be obtained by simply controlling the reducing agent and reaction atmospheremore » during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mA h g -1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism is systematically studied by in situ Raman, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. As a result, the Na-rich sodium iron hexacyanoferrate could function as a plenteous Na reservoir and has great potential as a cathode material toward practical Na-ion batteries.« less

  18. Evaluating the precision of passive sampling methods using PRCs in the water column.

    EPA Science Inventory

    To assess these models, four different thicknesses of low-density polyethylene (LDPE) passive samplers were co-deployed for 28 days in the water column at three sites in New Bedford Harbor, MA, USA. Each sampler was pre-loaded with six PCB performance reference compounds (PRCs) t...

  19. A spin column-free approach to sodium hydroxide-based glycan permethylation.

    PubMed

    Hu, Yueming; Borges, Chad R

    2017-07-24

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues-yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based "glycan node" analysis results. When applied to blood plasma samples from stage III-IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p < 0

  20. A spin column-free approach to sodium hydroxide-based glycan permethylation†

    PubMed Central

    Hu, Yueming; Borges, Chad R.

    2018-01-01

    Glycan permethylation was introduced as a tool to facilitate the study of glycans in 1903. Since that time, permethylation procedures have been continually modified to improve permethylation efficiency and qualitative applicability. Typically, however, either laborious preparation steps or cumbersome and uneconomical spin columns have been needed to obtain decent permethylation yields on small glycan samples. Here we describe a spin column-free (SCF) glycan permethylation procedure that is applicable to both O- and N-linked glycans and can be employed upstream to intact glycan analysis by MALDI-MS, ESI-MS, or glycan linkage analysis by GC-MS. The SCF procedure involves neutralization of NaOH beads by acidified phosphate buffer, which eliminates the risk of glycan oxidative degradation and avoids the use of spin columns. Optimization of the new permethylation procedure provided high permethylation efficiency for both hexose (>98%) and HexNAc (>99%) residues—yields which were comparable to (or better than) those of some widely-used spin column-based procedures. A light vs. heavy labelling approach was employed to compare intact glycan yields from a popular spin-column based approach to the SCF approach. Recovery of intact N-glycans was significantly better with the SCF procedure (p < 0.05), but overall yield of O-glycans was similar or slightly diminished (p < 0.05 for tetrasaccharides or smaller). When the SCF procedure was employed upstream to hydrolysis, reduction and acetylation for glycan linkage analysis of pooled glycans from unfractionated blood plasma, analytical reproducibility was on par with that from previous spin column-based “glycan node” analysis results. When applied to blood plasma samples from stage III–IV breast cancer patients (n = 20) and age-matched controls (n = 20), the SCF procedure facilitated identification of three glycan nodes with significantly different distributions between the cases and controls (ROC c-statistics > 0.75; p

  1. An Erupting Active Region Filament: Three-Dimensional Trajectory and Hydrogen Column Density

    NASA Astrophysics Data System (ADS)

    Penn, M. J.

    2000-12-01

    .0 nm yields a column density ξ_H I =4.8+/-2.5×10^17 cm^-2. Spatial maps show that this filament absorption is more confined than the regions which show emission.

  2. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  3. Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.

    PubMed

    Shimano, H; Yamada, N; Ishibashi, S; Mokuno, H; Mori, N; Gotoda, T; Harada, K; Akanuma, Y; Murase, T; Yazaki, Y

    1991-05-01

    We isolated subfractions of human plasma low density lipoprotein (LDL) using ion-exchange chromatography. Plasma LDL from normolipidemic subjects were applied to a DEAE Sepharose 6B column. After elution of the bulk of LDL at 150 mM NaCl (the major fraction), the residual LDL was eluted at 500 mM NaCl and designated as the minor fraction. The minor fraction, only less than 1% of total LDL, tended to be somewhat similar in certain properties to oxidized LDL, e.g., an increased negative charge, higher protein/cholesterol ratio, and a higher flotation density than native LDL. These results were consistent with data reported by Avogaro et al. (1988. Arteriosclerosis. 8: 79-87). However, assays of 125I-labeled LDL binding activity for LDL receptors equal to that of the major fraction. Incorporation of [14C]oleate into cholesteryl ester [acyl-CoA:cholesterol acyltransferase (ACAT) activity] in mouse peritoneal macrophages incubated with the minor fraction was only slightly greater than that with the major fraction. Incubation of the minor fraction with 0.5 microM Cu2+ caused a remarkable stimulation of ACAT activity, while stimulation by the major fraction required incubation with 5 microM Cu2+, suggesting that the minor fraction was relatively labile to oxidation. The minor but definite presence of a plasma LDL subfraction more negative and susceptible to oxidation implicates the possibility of its association with atherogenesis.

  4. Enhanced upconversion emission in colloidal (NaYF4:Er(3+))/NaYF4 core/shell nanoparticles excited at 1523 nm.

    PubMed

    Shao, Wei; Chen, Guanying; Damasco, Jossana; Wang, Xianliang; Kachynski, Aliaksandr; Ohulchanskyy, Tymish Y; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2014-03-15

    In this work, we report on efficient visible and near-IR upconversion emissions in colloidal hexagonal-phase core/shell NaYF4:Er(3+)/NaYF4 nanoparticles (∼38  nm) under IR laser excitation at 1523 nm. Varying amounts of Er(3+) dopants were introduced into the core NaYF4:Er(3+) nanoparticles, revealing an optimized Er(3+) concentration of 10% for the highest luminescent efficiency. An inert epitaxial shell layer of NaYF4 grown onto the core of the NaYF4:Er(3+) 10% nanoparticle increased its upconversion emission intensity fivefold due to suppression of surface-related quenching mechanisms, yielding the absolute upconversion efficiency to be as high as ∼3.9±0.3% under an excitation density of 18  W/cm(2). The dependence of the intensity of upconversion emission peaks on laser excitation density in the core/shell nanoparticle displayed "saturation effects" at low excitation density in the range of 1.5-18  W/cm(2), which again demonstrates high upconversion efficiency.

  5. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better

  6. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  7. Changes of Dust Opacity with Density in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Roy, Arabindo; Martin, Peter G.; Polychroni, Danae; Bontemps, Sylvain; Abergel, Alain; André, Philippe; Arzoumanian, Doris; Di Francesco, James; Hill, Tracey; Konyves, Vera; Nguyen-Luong, Quang; Pezzuto, Stefano; Schneider, Nicola; Testi, Leonardo; White, Glenn

    2013-01-01

    We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K s). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N H ranging from 1.5 × 1021 cm-2 to 50 × 1021 cm-2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of N H/E(J - Ks ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ~1 × 10-25 cm2 H-1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N 0.28 H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10-31 W H-1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.

  8. Two new hot white dwarfs in a region of exceptionally low hi density

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Wesemael, F.; Holberg, J. B.; Werner, K.; Buckley, D. A. H.; Stobie, R. S.; Fontaine, G.; Rosen, S. R.; Demers, S.; Lamontagne, R.

    1993-01-01

    We report the discovery of two hot white dwarfs which have the lowest line-of-sight neutral hydrogen column densities yet measured. The stars were found independently by the ROSAT EUV, Montreal-Cambridge-Tololo, and Edinburgh-Cape surveys. Follow-up observations made using the Voyager 2 ultraviolet spectrometer reveal strong continua shortward of the 912A Lyman limit from which we deduce that the neutral hydrogen column densities are 1.3 x 10(exp 17) and 2.0 x 10(exp 17) atoms/sq cm.

  9. Buoyant densities of phototrophic sulfur bacteria and cyanobacteria

    NASA Technical Reports Server (NTRS)

    Guerrero, R.

    1985-01-01

    The buoyant densities of bacterial cells are greatly influenced by the accumulation of intracellular reserve material. The buoyant density of phototrophic bacteria that are planktonic is of particular interest, since these organisms must remain in the photic zone of the water column for optimal growth. Separation of cells by their buoyant density may also be of use in separating and identifying organisms from a natural population. The bacteria used were obtained from pure cultures, enrichments, or samples taken directly from the environment.

  10. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  11. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  12. Stress Analysis of Columns and Beam Columns by the Photoelastic Method

    NASA Technical Reports Server (NTRS)

    Ruffner, B F

    1946-01-01

    Principles of similarity and other factors in the design of models for photoelastic testing are discussed. Some approximate theoretical equations, useful in the analysis of results obtained from photoelastic tests are derived. Examples of the use of photoelastic techniques and the analysis of results as applied to uniform and tapered beam columns, circular rings, and statically indeterminate frames, are given. It is concluded that this method is an effective tool for the analysis of structures in which column action is present, particularly in tapered beam columns, and in statically indeterminate structures in which the distribution of loads in the structures is influenced by bending moments due to axial loads in one or more members.

  13. A composite reactor with wetted-wall column for mineral carbonation study in three-phase systems.

    PubMed

    Zhu, Chen; Yao, Xizhi; Zhao, Liang; Teng, H Henry

    2016-11-01

    Despite the availability of various reactors designed to study gas-liquid reactions, no appropriate devices are available to accurately investigate triple-phased mineral carbonation reactions involving CO 2 gas, aqueous solutions (containing divalent cations), and carbonate minerals. This report presents a composite reactor that combines a modified conventional wetted-wall column, a pH control module, and an attachment to monitor precipitation reactions. Our test and calibration experiments show that the absorption column behaved largely in agreement with theoretical predictions and previous observations. Experimental confirmation of CO 2 absorption in NaOH and ethanolamine supported the effectiveness of the column for gas-liquid interaction. A test run in the CO 2 -NH 3 -MgCl 2 system carried out for real time investigation of the relevant carbonation reactions shows that the reactor's performance closely followed the expected reaction path reflected in pH change, the occurrence of precipitation, and the rate of NH 3 addition, indicating the appropriateness of the composite device in studying triple-phase carbonation process.

  14. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE PAGES

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; ...

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl 2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl 2 batteries operated at 280°C, was obtained for planar Na-NiCl 2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl 2more » batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  15. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.

    PubMed

    Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel

    2017-07-01

    Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.

  16. Electronic Structure, Phonon Dynamical Properties, and CO 2 Capture Capability of Na 2 - x M x Zr O 3 ( M = Li ,K): Density-Functional Calculations and Experimental Validations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua; Lekse, Jonathan; Wang, Xianfeng

    2015-04-22

    The electronic structural and phonon properties of Na 2-αM αZrO 3 (M ¼ Li,K, α = ¼ 0.0,0.5,1.0,1.5,2.0) are investigated by first-principles density-functional theory and phonon dynamics. The thermodynamic properties of CO 2 absorption and desorption in these materials are also analyzed. With increasing doping level α, the binding energies of Na 2-αLi αZrO 3 are increased while the binding energies of Na 2-α K αZrO 3 are decreased to destabilize the structures. The calculated band structures and density of states also show that, at the same doping level, the doping sites play a significant role in the electronic properties.more » The phonon dispersion results show that few soft modes are found in several doped configurations, which indicates that these structures are less stable than other configurations with different doping levels. From the calculated relationships among the chemical-potential change, the CO 2 pressure, and the temperature of the CO 2 capture reactions by Na 2-αM αZrO 3, and from thermogravimetric-analysis experimental measurements, the Li- and K-doped mixtures Na 2-αM αZrO 3 have lower turnover temperatures (T t) and higher CO 2 capture capacities, compared to pure Na 2ZrO 3. The Li-doped systems have a larger T t decrease than the K-doped systems. When increasing the Li-doping level α, the T t of the corresponding mixture Na 2-αLi αZrO 3 decreases further to a low-temperature range. However, in the case of K-doped systems Na 2-αK αZrO 3, although doping K into Na 2ZrO 3 initially shifts its T t to lower temperatures, further increases of the K-doping level α causes T t to increase. Therefore, doping Li into Na 2ZrO 3 has a larger influence on its CO 2 capture performance than the K-doped Na 2ZrO 3. Compared with pure solidsM 2ZrO 3, after doping with other elements, these doped systems’ CO 2 capture performances are improved.« less

  17. Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Column

    EPA Science Inventory

    Distinct effects of humic acid (HA, 0 – 10 mg L-1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3 – 200 mM NaCl, pH 5.7 and 9.0). Specifical...

  18. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.

  19. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  20. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns

    NASA Astrophysics Data System (ADS)

    Seiffert, Franz; Bandow, Nicole; Kalbe, Ute; Milke, Ralf; Gorbushina, Anna

    2016-04-01

    Sub-aerial biofilms (SAB) are ubiquitous, self-sufficient microbial ecosystems found on mineral surfaces at all altitudes and latitudes. SABs, which are the principal causes of weathering on exposed terrestrial surfaces, are characterised by patchy growth dominated by associations of algae, cyanobacteria, fungi and heterotrophic bacteria. A recently developed in vitro system to study colonisation of rocks exposed to air included two key SAB participants - the rock-inhabiting ascomycete Knufia petricola (CBS 123872) and the phototrophic cyanobacterium Nostoc punctiforme ATCC29133. Both partners are genetically tractable and we used them here to study weathering of granite, K-feldspar and plagioclase. Small fragments of the various rocks or minerals (1 to 6 mm) were packed into flow-through columns and incubated with 0.1% glucose and 10 µM thiamine-hydrochloride (90 µL.min-1) to compare weathering with and without biofilms. Dissolution of the minerals was followed by: analysing (i) the degradation products in the effluent from the columns via Inductively Coupled Plasma Spectroscopy and (ii) by studying polished sections of the incubated mineral fragment/grains using scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analyses. K. petricola/N. punctiforme stimulated release of Ca, Na, Mg and Mn. Analyses of the polished sections confirmed depletion of Ca, Na and K near the surface of the fragments. The abrupt decrease in Ca concentration observed in peripheral areas of plagioclase fragments favoured a dissolution-reprecipitation mechanism. Percolation columns in combination with a model biofilm can thus be used to study weathering in closed systems. Columns can easily be filled with different minerals and biofilms, the effluent as well as grains can be collected after long-term exposure under axenic conditions and easily analysed.

  1. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors.

    PubMed

    Terán Hilares, Ruly; Kamoei, Douglas Viana; Ahmed, Muhammad Ajaz; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2018-05-01

    Hydrodynamic cavitation (HC) was adopted to assist alkaline-hydrogen peroxide pretreatment of sugarcane bagasse (SCB). In the following condition: 0.29 M of NaOH, 0.78% (v/v) of H 2 O 2 , 9.95 min of process time and 3 bar of inlet pressure, 95.4% of digestibility of cellulosic fraction was achieved. To take the best use of the pretreated biomass, the overall process was intensified by way of employing a packed bed flow-through column reactor and thus enabling to handle a high solid loading of 20%, thereby leading to cellulose and hemicellulose conversions to 74.7% and 75%, respectively. In the fermentation step, a bubble column reactor was introduced to maximize ethanol production from the pretreated SCB by Scheffersomyces stipitis NRRL-Y7124, resulting in 31.50 g/L of ethanol, 0.49 g/g of ethanol yield and 0.68 g/L.h of productivity. All this showed that our HC-assisted NaOH-H 2 O 2 pretreatment strategy along with the process intensification approach might offer an option for SCB-based biorefineries. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Distinct Effects of Humic Acid on Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Sand Columns

    EPA Science Inventory

    The distinct effects of humic acid (HA, 0−10 mg L−1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3−200 mM NaCl, pH 5.7 and 9.0). Specifically, the tra...

  3. Tropospheric Nitrogen Dioxide Column Density Trends Seen from the 10-year Record of OMI Measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.

    2015-12-01

    The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.

  4. Compact electron beam focusing column

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  5. Core-Shell Fe1- xS@Na2.9PS3.95Se0.05 Nanorods for Room Temperature All-Solid-State Sodium Batteries with High Energy Density.

    PubMed

    Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Liu, Xin; Xu, Xiaoxiong; Li, Hong; Hu, Yong-Sheng; Yao, Xiayin

    2018-03-27

    High ionic conductivity electrolyte and intimate interfacial contact are crucial factors to realize high-performance all-solid-state sodium batteries. Na 2.9 PS 3.95 Se 0.05 electrolyte with reduced particle size of 500 nm is first synthesized by a simple liquid-phase method and exhibits a high ionic conductivity of 1.21 × 10 -4 S cm -1 , which is comparable with that synthesized with a solid-state reaction. Meanwhile, a general interfacial architecture, that is, Na 2.9 PS 3.95 Se 0.05 electrolyte uniformly anchored on Fe 1- x S nanorods, is designed and successfully prepared by an in situ liquid-phase coating approach, forming core-shell structured Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 nanorods and thus realizing an intimate contact interface. The Fe 1- x S@Na 2.9 PS 3.95 Se 0.05 /Na 2.9 PS 3.95 Se 0.05 /Na all-solid-state sodium battery demonstrates high specific capacity and excellent rate capability at room temperature, showing reversible discharge capacities of 899.2, 795.5, 655.1, 437.9, and 300.4 mAh g -1 at current densities of 20, 50, 100, 150, and 200 mA g -1 , respectively. The obtained all-solid-state sodium batteries show very high energy and power densities up to 910.6 Wh kg -1 and 201.6 W kg -1 based on the mass of Fe 1- x S at current densities of 20 and 200 mA g -1 , respectively. Moreover, the reaction mechanism of Fe 1- x S is confirmed by means of ex situ X-ray diffraction techniques, showing that partially reversible reaction occurs in the Fe 1- x S electrode after the second cycle, which gives the obtained all-solid-state sodium battery an exceptional cycling stability, exhibiting a high capacity of 494.3 mAh g -1 after cycling at 100 mA g -1 for 100 cycles. This contribution provides a strategy for designing high-performance room temperature all-solid-state sodium battery.

  6. Directed self-assembly into low-density colloidal liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Gao, Yongxiang; Romano, Flavio; Dullens, Roel P. A.; Doye, Jonathan K.; Aarts, Dirk G. A. L.

    2018-01-01

    Alignment of anisometric particles into liquid crystals (LCs) often results from an entropic competition between their rotational and translational degrees of freedom at dense packings. Here we show that by selectively functionalizing the heads of colloidal rods with magnetic nanoparticles this tendency can be broken to direct the particles into novel, low-density LC phases. Under an external magnetic field, the magnetic heads line up in columns whereas the nonmagnetic tails point out randomly in a plane perpendicular to the columns, forming bottle-brush-like objects; laterally, the bottle brushes are entropically stabilized against coalescence. Experiments and simulations show that upon increasing the particle density the system goes from a dilute gas to a dense two-dimensional liquid of bottle brushes with a density well below the zero-field nematic phase. Our findings offer a strategy for self-assembly into three-dimensional open phases that may find applications in switchable photonics, filtration, and light-weight materials.

  7. A method for determining the column curve from tests of columns with equal restraints against rotation on the ends

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Rossman, Carl A; Houbolt, John C

    1943-01-01

    The results are presented of a theoretical study for the determination of the column curve from tests of column specimens having ends equally restrained against rotation. The theory of this problem is studied and a curve is shown relating the fixity coefficient c to the critical load, the length of the column, and the magnitude of the elastic restraint. A method of using this curve for the determination of the column curve for columns with pin ends from tests of columns with elastically restrained ends is presented. The results of the method as applied to a series of tests on thin-strip columns of stainless steel are also given.

  8. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  9. The effects of carbide column to swelling potential and Atterberg limit on expansive soil with column to soil drainage

    NASA Astrophysics Data System (ADS)

    Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho

    2017-12-01

    The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.

  10. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE PAGES

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    2018-05-09

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  11. The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.

    In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less

  12. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  13. DOAS-based total column ozone retrieval from Phaethon system

    NASA Astrophysics Data System (ADS)

    Gkertsi, F.; Bais, A. F.; Kouremeti, N.; Drosoglou, Th; Fountoulakis, I.; Fragkos, K.

    2018-05-01

    This study introduces the measurement of the total ozone column using Differential Optical Absorption Spectroscopy (DOAS) analysis of direct-sun spectra recorded by the Phaethon system. This methodology is based on the analysis of spectra relative to a reference spectrum that has been recorded by the same instrument. The slant column density of ozone associated with the reference spectrum is derived by Langley extrapolation. Total ozone data derived by Phaethon over two years in Thessaloniki are compared with those of a collocated, well-maintained and calibrated, Brewer spectrophotometer. When the retrieval of total ozone is based on the absorption cross sections of (Paur and Bass, 1984) at 228 K, Phaethon shows an average overestimation of 1.85 ± 1.86%. Taking into account the effect of the day-to-day variability of stratospheric temperature on total ozone derived by both systems, the bias is reduced to 0.94 ± 1.26%. The sensitivity of the total ozone retrieval to changes in temperature is larger for Phaethon than for Brewer.

  14. Study of Differential Column Measurements for Urban Greenhouse Gas Emission Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Hedelius, Jacob K.; Viatte, Camille; Jones, Taylor; Franklin, Jonathan E.; Parker, Harrison; Wennberg, Paul O.; Gottlieb, Elaine W.; Dubey, Manvendra K.; Wofsy, Steven C.

    2016-04-01

    Urban areas are home to 54% of the total global population and account for ˜ 70% of total fossil fuel emissions. Accurate methods for measuring urban and regional scale carbon fluxes are required in order to design and implement policies for emissions reduction initiatives. In this paper, we demonstrate novel applications of compact solar-tracking Fourier transform spectrometers (Bruker EM27/SUN) for differential measurements of the column-averaged dry-air mole fractions (DMFs) of CH4 and CO2 within urban areas. Our differential column method uses at least two spectrometers to make simultaneous measurements of CO2, CH4 and O2 column number densities. We then compute the column-averaged DMFs XG for a gas G and the differences ΔXG between downwind and upwind stations. By accurately measuring the small differences in integrated column amounts across local and regional sources, we directly observe the mass loading of the atmosphere due to the influence of emissions in the intervening locale. The inference of the source strength is much more direct than inversion modeling using only surface concentrations, and less subject to errors associated with modeling small-scale transport phenomena. We characterize the differential sensor system using Allan variance analysis and show that the differential column measurement has a precision of 0.01% for XCO2 and XCH4 using an optimum integration time of 10 min, which corresponds to standard deviations of 0.04 ppm, and 0.2 ppb, respectively. The sensor system is very stable over time and after relocation across the contiguous US, i.e. the scaling factors between the two Harvard EM27/SUNs and the measured instrument line function parameters are consistent. We use the differential column measurements to determine the emission of an area source. We measure the downwind minus upwind column gradient ΔXCH4 (˜ 2 ppb, 0.1%) across dairy farms in the Chino California area, and input the data to a simple column model for comparison with

  15. Electromigration induced high fraction of compound formation in SnAgCu flip chip solder joints with copper column

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Han, Jung-Kyu; Liang, Jarrett Jun; Tu, K. N.; Lai, Yi-Shao

    2008-06-01

    To overcome the effect of current crowding on electromigration-induced pancake-type void formation in flip chip solder joints, two types of Cu column in 90μm flip chip SnAgCu solder joints have been studied. They were (1) the solder contacts the Cu column at bottom and side walls and (2) the solder wets only the bottom surface of the copper column. With a current density of 1.6×104A/cm2 at 135°C, no failure was detected after 1290h. However, the resistance increased by about 10% due to the formation of a large fraction of intermetallic compounds. We found that electromigration has accelerated the consumption rate of copper column and converted almost the entire solder joint into intermetallic compound. Mechanically, drop impact test indicates a brittle fracture failure in the intermetallic. The electromigration critical product for the intermetallic is discussed.

  16. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging.

    PubMed

    Montague, James A; Pinder, George F; Gonyea, Jay V; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40cm long, 26cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Adjustable bias column end joint assembly

    NASA Technical Reports Server (NTRS)

    Wallsom, Richard E. (Inventor); Bush, Harold G. (Inventor)

    1994-01-01

    An adjustable mechanical end joint system for connecting structural column elements and eliminating the possibility of free movement between joint halves during loading or vibration has a node joint body having a cylindrical engaging end and a column end body having a cylindrical engaging end. The column end joint body has a compressible preload mechanism and plunger means housed therein. The compressible preload mechanism may be adjusted from the exterior of the column end joint body through a port.

  18. High-Pressure Polymorph of NaBiO3.

    PubMed

    Naa, Octavianti; Kumada, Nobuhiro; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Kusano, Yoshihiro; Oka, Kengo

    2016-06-20

    A new high-pressure polymorph of NaBiO3 (hereafter β-NaBiO3) was synthesized under the conditions of 6 GPa and 600 °C. The powder X-ray diffraction pattern of this new phase was indexed with a hexagonal cell of a = 9.968(1) Å and c = 3.2933(4) Å. Crystal structure refinement using synchrotron powder X-ray diffraction data led to RWP = 8.53% and RP = 5.55%, and the crystal structure was closely related with that of Ba2SrY6O12. No photocatalytic activity for phenol decomposition was observed under visible-light irradiation in spite of a good performance for its mother compound, NaBiO3. The optical band-gap energy of β-NaBiO3 was narrower than that of NaBiO3, which was confirmed with density of states curves simulated by first-principles density functional theory calculation.

  19. Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles.

    PubMed

    Gritti, Fabrice; Bell, David S; Guiochon, Georges

    2014-08-15

    The mass transfer mechanism in four prototype columns (2.1 and 3.0×50mm, 2.1 and 3.0×100mm) packed with 1.9μm fully porous Titan-C18 particles was investigated by using two previously reported home-made protocols. The first one was used to measure the eddy dispersion HETP of these new columns, the second one to estimate their intrinsic (corrected for HPLC system contribution) HETPs. Titan particles are fully porous particles with a narrow particle size distribution (RSD of 9.2%). The mean Sauter diameter (dSauter=2.04μm) was determined from Coulter counter measurements on the raw silica material (before C18 derivatization) and in the absence of a dispersant agent (Triton X-100) in a 2% NaCl electrolyte solution. The results show that these RPLC Titan columns have intrinsic minimum reduced HETPs ranging from 1.7 to 1.9 and generate up to 290,000 plates per meter. The 3.0mm i.d. columns are more efficient than the 2.1mm i.d. ones and short columns are preferred to minimize efficiency losses due to frictional heating at high speeds. This work also revealed that (1) the lowest h values of the Titan columns are observed at low reduced velocities (νopt=5); (2) this is due to the unusually small diffusivity of analytes across the porous Titan-C18 particles; and (3) the Titan columns are not packed more uniformly than conventional columns packed with fully porous particles. Earlier and recent findings showing that the PSD has no direct physical impact on eddy dispersion and column efficiency are confirmed by these results. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Advancement of technology towards developing Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Jamesh, Mohammed Ibrahim; Prakash, A. S.

    2018-02-01

    The Na-ion-batteries are considered much attention for the next-generation power-sources due to the high abundance of Na resources that lower the cost and become the alternative for the state of the art Li-ion batteries in future. In this review, the recently reported potential cathode and anode candidates for Na-ion-batteries are identified in-light-of-their high-performance for the development of Na-ion-full-cells. Further, the recent-progress on the Na-ion full-cells including the strategies used to improve the high cycling-performance (stable even up-to 50000 cycles), operating voltage (even ≥ 3.7 V), capacity (>350 mAhg-1 even at 1000 mAg-1 (based-on-mass-of-the-anode)), and energy density (even up-to 400 Whkg-1) are reviewed. In addition, Na-ion-batteries with the electrodes containing reduced graphene oxide, and the recent developments on symmetric Na-ion-batteries are discussed. Further, this paper identifies the promising Na-ion-batteries including the strategies used to assemble full-cell using hard-carbon-anodes, Na3V2(PO4)3 cathodes, and other-electrode-materials. Then, comparison between aqueous and non-aqueous Na-ion-batteries in terms of voltage and energy density has been given. Later, various types of electrolytes used for Na-ion-batteries including aqueous, non-aqueous, ionic-liquids and solid-state electrolytes are discussed. Finally, commercial and technological-developments on Na-ion-batteries are provided. The scientific and engineering knowledge gained on Na-ion-batteries afford conceivable development for practical application in near future.

  1. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    USGS Publications Warehouse

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures

  2. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  3. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2017-01-01

    Providers of payloads carried aboard the International Space Station must conduct analyses to demonstrate that any planned gaseous venting events generate no more than a certain level of material that may interfere with optical measurements from other experiments or payloads located nearby. This requirement is expressed in terms of a maximum column number density (CND). Depending on the level of rarefaction, such venting may be characterized by effusion for low flow rates, or by a sonic distribution at higher levels. Since the relative locations of other sensitive payloads are often unknown because they may refer to future projects, this requirement becomes a search for the maximum CND along any path.In another application, certain astronomical observations make use of CND to estimate light attenuation from a distant star through gaseous plumes, such as the Fermi Bubbles emanating from the vicinity of the black hole at the center of our Milky Way galaxy, in order to infer the amount of material being expelled via those plumes.This paper presents analytical CND expressions developed for general straight paths based upon a free molecule point source model for steady effusive flow and for a distribution fitted to model flows from a sonic orifice. Among other things, in this Mach number range it is demonstrated that the maximum CND from a distant location occurs along the path parallel to the source plane that intersects the plume axis. For effusive flows this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43.

  4. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes.

    PubMed

    Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo

    2017-02-01

    Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Promising critical current density characteristics of Ag-sheathed (Sr,Na)Fe2As2 tape

    NASA Astrophysics Data System (ADS)

    Suwa, Takahiro; Pyon, Sunseng; Tamegai, Tsuyoshi; Awaji, Satoshi

    2018-06-01

    We report the fabrication of (Sr,Na)Fe2As2 superconducting tapes by the powder-in-tube technique and their characteristics, including the transport critical current density J c at 4.2 K up to 140 kOe, the magnetic J c estimated from magnetic hysteresis curves, magneto-optical (MO) images, and scanning electron microscopy images. In a tape sintered at 875 °C for 1 h, the transport J c reaches 26 kA/cm2 at 4.2 K and 100 kOe for a field perpendicular to the tape surface. When the field is parallel to the tape surface, the magnetic J c exceeds the practical level of 100 kA/cm2 at 4.2 K below 25 kOe. Analysis of the MO images reveals clear current discontinuity lines in the core, indicating that the current flows homogeneously and the connections between grains are strong in the core.

  6. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  7. Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission

    NASA Technical Reports Server (NTRS)

    Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James; hide

    2014-01-01

    To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 < R(sup 2) < 0.64) in the CMAQ data set, and a low degree of correlation (R(sup 2) < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to moderate degree of correlation with surface data in each data set. The results of linear regression analyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.

  8. How to select equivalent and complimentary reversed phase liquid chromatography columns from column characterization databases.

    PubMed

    Borges, Endler M

    2014-01-07

    Three RP-LC column characterization protocols [Tanaka et al. (1989), Snyder et al. (PQRI, 2002), and NIST SRM 870 (2000)] were evaluated using both Euclidian distance and Principal Components Analysis to evaluate effectiveness at identifying equivalent columns. These databases utilize specific chromatographic properties such as hydrophobicity, hydrogen bonding, shape/steric selectivity, and ion exchange capacity of stationary phases. The chromatographic parameters of each test were shown to be uncorrelated. Despite this, the three protocols were equally successful in identifying similar and/or dissimilar stationary phases. The veracity of the results has been supported by some real life pharmaceutical separations. The use of Principal Component Analysis to identify similar/dissimilar phases appears to have some limitations in terms of loss of information. In contrast, the use of Euclidian distances is a much more convenient and reliable approach. The use of auto scaled data is favoured over the use of weighted factors as the former data transformation is less affected by the addition or removal of columns from the database. The use of these free databases and their corresponding software tools shown to be valid for identifying similar columns with equivalent chromatographic selectivity and retention as a "backup column". In addition, dissimilar columns with complimentary chromatographic selectivity can be identified for method development screening strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Design procedures for fiber composite structural components: Rods, columns and beam columns

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.

  10. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  11. The handedness of historiated spiral columns.

    PubMed

    Couzin, Robert

    2017-09-01

    Trajan's Column in Rome (AD 113) was the model for a modest number of other spiral columns decorated with figural, narrative imagery from antiquity to the present day. Most of these wind upwards to the right, often with a congruent spiral staircase within. A brief introductory consideration of antique screw direction in mechanical devices and fluted columns suggests that the former may have been affected by the handedness of designers and the latter by a preference for symmetry. However, for the historiated columns that are the main focus of this article, the determining factor was likely script direction. The manner in which this operated is considered, as well as competing mechanisms that might explain exceptions. A related phenomenon is the reversal of the spiral in a non-trivial number of reproductions of the antique columns, from Roman coinage to Renaissance and baroque drawings and engravings. Finally, the consistent inattention in academic literature to the spiral direction of historiated columns and the repeated publication of erroneous earlier reproductions warrants further consideration.

  12. Measurements of the canonical helicity evolution of a gyrating kinked plasma column

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; Sears, Jason; Intrator, Thomas; You, Setthivoine

    2017-10-01

    Conversions between kinetic and magnetic energy occur over a wide range of plasma scales as exhibited in astrophysical and solar dynamos, and reconnection in the solar corona and laboratory experiments. Canonical flux tubes present the distinct advantage of reconciling all plasma regimes - e.g. kinetic, two-fluid, and MHD - with the topological concept of helicity: twists, writhes, and linkages. This poster presents the first visualization and analysis of the 3D dynamics of canonical flux tubes and their relative helicity evolution from experimental measurements. Ion and electron canonical flux tubes are visualized from Mach, triple, and Ḃ probe measurements at over 10,000 spatial locations of a gyrating kinked plasma column. The flux tubes co-gyrate with the peak density and electron temperature in and out of a measurement volume. The electron and ion canonical flux tubes twist with opposite handedness and the ion flux tube writhes around the electron flux tube. The relative cross helicity between the magnetic and ion flow vorticity flux tubes dominates the relative ion canonical helicity and is anticorrelated with the relative magnetic helicity. The 3D nature of the kink and a reverse eddy current affect the helicity evolution. This work is supported by DOE Grant DE-SC0010340 and the DOE Office of Science Graduate Student Research Program and prepared in part by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-734669.

  13. Mouse Na+/K+-ATPase β1-subunit has a K+-dependent cell adhesion activity for β-GlcNAc-terminating glycans

    PubMed Central

    Kitamura, Noriaki; Ikekita, Masahiko; Sato, Takeshi; Akimoto, Yoshihiro; Hatanaka, Yasumaru; Kawakami, Hayato; Inomata, Mitsushi; Furukawa, Kiyoshi

    2005-01-01

    A 48-kDa β-N-acetylglucosamine (GlcNAc)-binding protein was isolated from mouse brain by GlcNAc-agarose column chromatography. The N-terminal amino acid residues showed the protein to be a mouse Na+/K+-ATPase β1-subunit. When the recombinant FLAG-β1-subunit expressed in Sf-9 cells was applied to a GlcNAc-agarose column, only the glycosylated 38- and 40-kDa proteins bound to the column. In the absence of KCl, little of the proteins bound to a GlcNAc-agarose column, but the 38- and 40-kDa proteins bound in the presence of KCl at concentrations above 1 mM. Immunohistochemical study showed that the β1-subunit and GlcNAc-terminating oligosaccharides are at the cell contact sites. Inclusion of anti-β1-subunit antibody or chitobiose in cell aggregation assays using mouse neural cells resulted in inhibition of cell aggregation. These results indicate that the Na+/K+-ATPase β1-subunit is a potassium-dependent lectin that binds to GlcNAc-terminating oligosaccharides: it may be involved in neural cell interactions. PMID:15705719

  14. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs.

    PubMed

    Zapadlo, Michal; Krupcík, Ján; Májek, Pavel; Armstrong, Daniel W; Sandra, Pat

    2010-09-10

    The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl-95%-methyl)siloxane was used as the first ((1)D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second ((2)D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on (1)D and (2)D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times t(R,i,2D) and t(R,i,1D) of corresponding PCB congeners on both column series. It was demonstrated that the apolar+ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105+127, 81+148 and 118+106). Copyright 2010 Elsevier B.V. All rights reserved.

  15. A computational study of Na behavior on graphene

    NASA Astrophysics Data System (ADS)

    Malyi, Oleksandr I.; Sopiha, Kostiantyn; Kulish, Vadym V.; Tan, Teck L.; Manzhos, Sergei; Persson, Clas

    2015-04-01

    We present the first ab initio and molecular dynamics study of Na adsorption and diffusion on ideal graphene that considers Na-Na interaction and dispersion forces. From density functional theory (DFT) calculations using the generalized gradient approximation (GGA), the binding energy (vs. the vacuum reference state) of -0.75 eV is higher than the cohesive energy of Na metal (ENa metal cohesive energy (EcohDFT - D = - 1.21 eV) when dispersion correction is included (DFT-D), with Eb = -1.14 eV. Both DFT and DFT-D predict that the increase of Na concentration on graphene results in formation of Na complexes. This is evidenced by smaller Bader charge on Na atoms of Na dimer, 0.55e (0.48e for DFT) compared to 0.86e (for both DFT and DFT-D) for the single atom adsorption as well as by the formation of a Nasbnd Na bond identified by analysis of the electron density. These results suggest that ideal graphene is not a promising anode material for Na-ion batteries. Analysis of diffusion pathways for a Na dimer shows that the dimer remains stable during the diffusion, and computed migration barriers are significantly lower for the dimer than that for the single atom diffusion. This indicates that Na-Na interaction should be taken into account during the analysis of Na transport on graphene. Finally, we show that the typical defects (vacancy and divacancy) induce significant strengthening of the Nasbnd C interaction. In particular, the largest change to the interaction is computed for vacancy-defected graphene, where the found lowest binding energy (vs. the metal reference state) is about 1.15 eV (1.21 eV for DFT) lower than that for ideal graphene.

  16. Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    NASA Technical Reports Server (NTRS)

    Cherng, Jing-Yih; Bennion, Douglas N.

    1987-01-01

    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design.

  17. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    PubMed

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Avoid problems during distillation column startups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloley, A.W.

    1996-07-01

    The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less

  19. In-situ polymerized PLOT columns III: divinylbenzene copolymers and dimethacrylate homopolymers

    NASA Technical Reports Server (NTRS)

    Shen, T. C.; Fong, M. M.

    1994-01-01

    Studies of divinylbenzene copolymers and dimethacrylate homopolymers indicate that the polymer pore size controls the separation of water and ammonia on porous-layer-open-tubular (PLOT) columns. To a lesser degree, the polarity of the polymers also affects the separation of a water-ammonia gas mixture. Our results demonstrate that the pore size can be regulated by controlling the cross-linking density or the chain length between the cross-linking functional groups. An optimum pore size will provide the best separation of water and ammonia.

  20. Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column.

    PubMed

    Lv, Lu; Wang, Kean; Zhao, X S

    2007-01-15

    The breakthrough behavior of Pb2+ in an ETS-10 fixed bed was experimentally examined at various operating conditions. Results showed that the adsorption amount of Pb2+ ions per unit mass of ETS-10 particles in a column is about 1.68 mmol/g under the experimental conditions. This amount was not markedly affected by the operating conditions because of the rapid adsorption rate of Pb2+ ions on ETS-10. In the presence of competitive metal ions, the amount of Pb2+ adsorbed on ETS-10 was slightly reduced. An overshoot of the effluent concentrations of competitive metal ions Cu2+ and Cd2+ was observed in the adsorption systems of binary and ternary solutions. This is ascribed to the replacement of pre-adsorbed Cu2+ and Cd2+ ions by Pb2+ ions. The ETS-10 column broken up by Pb2+ ions can be regenerated by using an EDTA-Na2 solution and the regenerated column can be reused.

  1. Discovery of a Dwarf Poststarburst Galaxy near a High Column Density Local Lyα Absorber

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Keeney, Brian A.; McLin, Kevin M.; Rosenberg, Jessica L.; Weymann, R. J.; Giroux, Mark L.

    2004-07-01

    We report the discovery of a dwarf (MB=-13.9) poststarburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (NHI=1015.85 cm-2 at cz=1586 km s- 1) in the 3C 273 sight line. This galaxy is by far the closest galaxy to this absorber, projected just 71h-170 kpc on the sky from the sight line. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ~3.5 Gyr ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond its proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy and the fact that the absorber has an overabundance of Si/C, suggesting recent Type II supernova enrichment. Thus, this galaxy and its ejecta are in the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts. While this one instance of a QSO metal-line absorber and a nearby dwarf galaxy is not proof of a trend, a similar dwarf galaxy would be too faint to be observed by galaxy surveys around more distant metal-line absorbers. Thus, we cannot exclude the possibility that dwarf galaxies are primarily responsible for weak (NHI=1014-1017 cm-2) metal-line absorption systems in general. If a large fraction of the dwarf galaxies expected to exist at high redshift had a similar history (i.e., they had a massive starburst that removed all or most of their gas), these galaxies could account for at least several hundred high-z metal-line absorbers along the line of sight to a high-z QSO. The volume-filling factor for this gas, however, would be less than 1%. ID="FN1"> 1Based on observations made with the Apache Point 3.5 m telescope, operated by the Astronomical Research Consortium, and the 2.6 m du Pont telescope of the

  2. Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Vance, S.

    2011-12-01

    The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"

  3. Settling behavior of unpurified Cryptosporidium oocysts in laboratory settling columns.

    PubMed

    Young, Pamela L; Komisar, Simeon J

    2005-04-15

    The settling behavior of fresh and aged unpurified oocysts was examined in settling column suspensions with varied ionic strengths and concentrations of calcium and magnesium. Independent measurements of the size and density of unpurified oocysts were performed to determine a theoretical settling velocity for the test populations. Viability of the oocysts was assessed using a dye permeability assay. Latex microspheres were included to provide a standard by which to assess the settling conditions in the columns. Mean settling velocities for viable oocysts measured in this work were faster than predicted and faster than measured for purified oocysts in other work: 1.31 (+/-0.21) microm/s for viable oocysts from populations having a low percentage of viable oocysts and 1.05 (+/-0.20) microm/s for viable oocysts from populations with a high percentage of viable oocysts. Results were attributed to the higher than previously reported densities measured for oocysts in this study and the presence of fecal material, which allowed opportunity for particle agglomeration. Settling velocity of oocysts was significantly related to the viability of the population, particle concentration, ionic strength, and presence of calcium and magnesium in the suspending medium. Behavior of the latex microspheres was not entirely predictive of the behavior of the oocysts under the test conditions. Viable oocysts may have a greater probability of settling than previously assumed; however, nonviable, and especially nonintact, oocysts have the potential to be significantly transported in water. This work underscores the importance of assessing the viability of oocysts to predict their response to environmental and experimental conditions.

  4. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270

    PubMed Central

    1985-01-01

    Noise analysis of the Na+ channels of the apical membranes of frog skin bathed symmetrically in a Cl-HCO3 Ringer solution was done with amiloride and CGS 4270. Tissues were studied in their control states and after inhibition of transepithelial Na+ transport (Isc) by addition of quinine or quinidine to the apical solution. A critical examination of the amiloride-induced noise indicated that the single channel Na+ currents (iNa) were decreased by quinine and quinidine, probably because of depolarization of apical membrane voltage. Despite considerable statistical uncertainty in the methods of estimation of the Na+ channel density with amiloride-induced noise (NA, see text), the striking observation was a large increase of NA with amiloride inhibition of the rate of Na+ entry into the cells. NA was increased to 406% of control, whereas Isc was inhibited to 8.6% of control by 6 microM amiloride. Studies were done also with the Na+ channel blocker CGS 4270. Noise analysis with this compound was advantageous, permitting iCGSNa and NCGS to be measured in individual tissues with a relatively small inhibition of Isc. As with amiloride, inhibition of Isc with CGS 4270 caused large increases of the Na+ channel density (approximately 200% at approximately 35% inhibition of the Isc). Quinine and quinidine caused an approximately 50% increase of Na+ channel density while inhibiting iNa by approximately 60-70%. As inhibition of Na+ entry leads to an increase of Na+ channel density, a mechanism of autoregulation appears to be a major factor in adjusting the apical membrane Na+ permeability of the cells. PMID:2409219

  5. Miniature Distillation Column for Producing LOX From Air

    NASA Technical Reports Server (NTRS)

    Rozzi, Jay C.

    2006-01-01

    The figure shows components of a distillation column intended for use as part of a system that produces high-purity liquid oxygen (LOX) from air by distillation. (The column could be easily modified to produce high-purity liquid nitrogen.) Whereas typical industrial distillation columns for producing high-purity liquid oxygen and/or nitrogen are hundreds of feet tall, this distillation column is less than 3 ft (less than about 0.9 m) tall. This column was developed to trickle-charge a LOX-based emergency oxygen system (EOS) for a large commercial aircraft. A description of the industrial production of liquid oxygen and liquid nitrogen by distillation is prerequisite to a meaningful description of the present miniaturized distillation column. Typically, such industrial production takes place in a chemical processing plant in which large quantities of high-pressure air are expanded in a turboexpander to (1) recover a portion of the electrical power required to compress the air and (2) partially liquefy the air. The resulting two-phase flow of air is sent to the middle of a distillation column. The liquid phase is oxygen-rich, and its oxygen purity increases as it flows down the column. The vapor phase is nitrogen-rich and its nitrogen purity increases as it flows up the column. A heater or heat exchanger, commonly denoted a reboiler, is at the bottom of the column. The reboiler is so named because its role is to reboil some of the liquid oxygen collected at the bottom of the column to provide a flow of oxygen-rich vapor. As the oxygen-rich vapor flows up the column, it absorbs the nitrogen in the down-flowing liquid by mass transfer. Once the vapor leaves the lower portion of the column, it interacts with down-flowing nitrogen liquid that has been condensed in a heat exchanger, commonly denoted a condenser, at the top of the column. Liquid oxygen and liquid nitrogen products are obtained by draining some of the purified product at the bottom and top of the column

  6. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  7. Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3PSe 4

    DOE PAGES

    Bo, Shou -Hang; Wang, Yan; Kim, Jae Chul; ...

    2015-11-17

    All-solid-state Na-ion batteries that operate at or close to room temperature are a promising next-generation battery technology with enhanced safety and reduced manufacturing cost. An indispensable component of this technology is the solid-state electrolyte that allows rapid shuttling of the mobile cation (i.e., Na +) between the cathode and anode. However, there are very few fast Na-ion conductors with ionic conductivity approaching that of the liquid counterparts (i.e., 1 mS cm –1). In this work, we present the synthesis and characterization of a fast Na-ion conductor, cubic Na 3PSe 4. This material possesses a room-temperature ionic conductivity exceeding 0.1 mSmore » cm –1 and does not require high-temperature sintering to minimize grain boundary resistance, making it a promising solid-state electrolyte candidate for all-solid-state Na-ion battery applications. On the basis of density functional theory, nudged elastic band, and molecular dynamics investigations, we demonstrate that the framework of cubic Na 3PSe 4 only permits rapid Na + diffusion with the presence of defects, and that the formation of the Na vacancy (charge-balanced by slight Se 2– oxidation) is more energetically favorable among the various defects considered. This finding provides important guidelines to further improve Na-ion conductivity in this class of materials.« less

  8. Chromatographic properties PLOT multicapillary columns.

    PubMed

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Glyoxal Vertical Column Retrievals from the GOME-2/METOP-A European Spaceborne Sensor and Comparisons with the IMAGESv2 CT Model

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.

    2010-12-01

    Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from

  10. Age changes in the bone density and structure of the lumbar vertebral column.

    PubMed Central

    Twomey, L; Taylor, J; Furniss, B

    1983-01-01

    Old age is associated with a decline in bone density in lumbar vertebral bodies in both sexes, although the rate and amount of the decline is greatest in females. The bone translucency index method, described in this study, is a sensitive method of estimating bone density. The primary reason for this decline is the significant decrease in the number of transverse trabeculae of lumbar vertebrae in old age. It is postulated that the increase in vertebral end plate concavity and the increased horizontal dimensions of lumbar vertebral bodies in old age follows as a direct consequence of the selective loss of the transverse trabeculae. Images Fig. 2 PMID:6833115

  11. A dual-stage sodium thermal electrochemical converter (Na-TEC)

    NASA Astrophysics Data System (ADS)

    Limia, Alexander; Ha, Jong Min; Kottke, Peter; Gunawan, Andrey; Fedorov, Andrei G.; Lee, Seung Woo; Yee, Shannon K.

    2017-12-01

    The sodium thermal electrochemical converter (Na-TEC) is a heat engine that generates electricity through the isothermal expansion of sodium ions. The Na-TEC is a closed system that can theoretically achieve conversion efficiencies above 45% when operating between thermal reservoirs at 1150 K and 550 K. However, thermal designs have confined previous single-stage devices to thermal efficiencies below 20%. To mitigate some of these limitations, we consider dividing the isothermal expansion into two stages; one at the evaporator temperature (1150 K) and another at an intermediate temperature (650 K-1050 K). This dual-stage Na-TEC takes advantage of regeneration and reheating, and could be amenable to better thermal management. Herein, we demonstrate how the dual-stage device can improve the efficiency by up to 8% points over the best performing single-stage device. We also establish an application regime map for the single- and dual-stage Na-TEC in terms of the power density and the total thermal parasitic loss. Generally, a single-stage Na-TEC should be used for applications requiring high power densities, whereas a dual-stage Na-TEC should be used for applications requiring high efficiency.

  12. Effect of extra-column volume on practical chromatographic parameters of sub-2-μm particle-packed columns in ultra-high pressure liquid chromatography.

    PubMed

    Wu, Naijun; Bradley, Ashley C; Welch, Christopher J; Zhang, Li

    2012-08-01

    Effects of extra-column volume on apparent separation parameters were studied in ultra-high pressure liquid chromatography with columns and inlet connection tubings of various internal diameters (id) using 50-mm long columns packed with 1.8-μm particles under isocratic conditions. The results showed that apparent retention factors were on average 5, 11, 18, and 41% lower than those corrected with extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns, respectively, when the extra-column volume (11.3 μL) was kept constant. Also, apparent pressures were 31, 16, 12, and 10% higher than those corrected with pressures from extra-column volumes for 4.6-, 3.0-, 2.1-, and 1.0-mm id columns at the respective optimum flow rate for a typical ultra-high pressure liquid chromatography system. The loss in apparent efficiency increased dramatically from 4.6- to 3.0- to 2.1- to 1.0-mm id columns, less significantly as retention factors increased. The column efficiency was significantly improved as the inlet tubing id was decreased for a given column. The results suggest that maximum ratio of extra-column volume to column void volume should be approximately 1:10 for column porosity more than 0.6 and a retention factor more than 5, where 80% or higher of theoretically predicted efficiency could be achieved. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GEOMETRY-INDEPENDENT DETERMINATION OF RADIAL DENSITY DISTRIBUTIONS IN MOLECULAR CLOUD CORES AND OTHER ASTRONOMICAL OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu

    2016-05-01

    We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less

  14. Optical properties from time-dependent current-density-functional theory: the case of the alkali metals Na, K, Rb, and Cs

    NASA Astrophysics Data System (ADS)

    Ferradás, R.; Berger, J. A.; Romaniello, Pina

    2018-06-01

    We present the optical conductivity as well as the electron-energy loss spectra of the alkali metals Na, K, Rb, and Cs calculated within time-dependent current-density functional theory. Our ab initio formulation describes from first principles both the Drude-tail and the interband absorption of these metals as well as the most dominant relativistic effects. We show that by using a recently derived current functional [Berger, Phys. Rev. Lett. 115, 137402 (2015)] we obtain an overall good agreement with experiment at a computational cost that is equivalent to the random-phase approximation. We also highlight the importance of the choice of the exchange-correlation potential of the ground state.

  15. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  16. Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

    PubMed Central

    Murphy, Patrick J. M.; Stone, Orrin J.; Anderson, Michelle E.

    2011-01-01

    In contrast to other chromatographic methods for purifying proteins (e.g. gel filtration, affinity, and ion exchange), hydrophobic interaction chromatography (HIC) commonly requires experimental determination (referred to as screening or "scouting") in order to select the most suitable chromatographic medium for purifying a given protein 1. The method presented here describes an automated approach to scouting for an optimal HIC media to be used in protein purification. HIC separates proteins and other biomolecules from a crude lysate based on differences in hydrophobicity. Similar to affinity chromatography (AC) and ion exchange chromatography (IEX), HIC is capable of concentrating the protein of interest as it progresses through the chromatographic process. Proteins best suited for purification by HIC include those with hydrophobic surface regions and able to withstand exposure to salt concentrations in excess of 2 M ammonium sulfate ((NH4)2SO4). HIC is often chosen as a purification method for proteins lacking an affinity tag, and thus unsuitable for AC, and when IEX fails to provide adequate purification. Hydrophobic moieties on the protein surface temporarily bind to a nonpolar ligand coupled to an inert, immobile matrix. The interaction between protein and ligand are highly dependent on the salt concentration of the buffer flowing through the chromatography column, with high ionic concentrations strengthening the protein-ligand interaction and making the protein immobile (i.e. bound inside the column) 2. As salt concentrations decrease, the protein-ligand interaction dissipates, the protein again becomes mobile and elutes from the column. Several HIC media are commercially available in pre-packed columns, each containing one of several hydrophobic ligands (e.g. S-butyl, butyl, octyl, and phenyl) cross-linked at varying densities to agarose beads of a specific diameter 3. Automated column scouting allows for an efficient approach for determining which HIC media

  17. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  18. Absorption of CO2 from modified flue gases of power generation Tarahan chemically using NaOH and Na2CO3 and biologically using microalgae

    NASA Astrophysics Data System (ADS)

    Purba, Elida; Agustina, Dewi; Putri Pertama, Finka; Senja, Fita

    2018-03-01

    This research was carried out on the absorption of CO2 from the modified flue gases of power generation Tarahan using NaOH (sodium hydroxide) and Na2CO3 (sodium carbonate). The operation was conducted in a packed column absorber and then the output gases from the packed column was fed into photo-bioreactor for biological absorption. In the photo-bioreactor, two species of microalgae, N. occulata and T. chuii, were cultivated to both absorb CO2 gas and to produce biomass for algal oil. The aims of this research were, first, to determine the effect of absorbent flow rate on the reduction of CO2 and on the decrease of output gas temperature, second, to determine the characteristics of methyl ester obtained from biological absorption process. Flow rates of the absorbent were varied as 1, 2, and 3 l/min. The concentrations of NaOH and Na2CO3 were 1 M at a constant gas flow rate of 6 l/min. The output concentrations of CO2 from the absorber was analyzed using Gas Chromatography 2014-AT SHIMADZU Corp 08128. The results show that both of the absorbents give different trends. From the absorption using NaOH, it can be concluded that the higher the flow rate, the higher the absorption rate obtained. The highest flow rate achieved maximum absorption of 100%. On the other hand, absorption with Na2CO3 revealed the opposite trend where the higher the flow rates the lower the absorption rate. The highest absorption using Na2CO3 was obtained with the lowest flow rate, 1 l/min, that was 45,5%. As the effect of flow rate on output gas temperature, the temperature decreased with increasing flow rates for both absorbents. The output gas temperature for NaOH and Na2CO3 were consecutively 35 °C and 31 °C with inlet gas temperature of 50°C. Absorption of CO2 biologically resulted a reduction of CO2 up to 60% from the input gas concentration. Algal oil was extracted with mixed hexane and chloroform to obtain algal oil. Extracted oil was transesterified to methyl ester using sodium

  19. Microengineered open tubular columns for GC analysis

    NASA Astrophysics Data System (ADS)

    Wiranto, Goib; Haskard, Malcolm R.; Mulcahy, Dennis E.; Davey, David E.; Dawes, Ernest F.

    1999-09-01

    Microengineered open tubular (MOT) columns with semi rectangular cross-sections have been designed and fabricated using microengineering techniques. The creation of 100-micrometers wide, 20-micrometers deep, and 125-cm long columns employed isotropic etching on (100) silicon and anodic bonding with a Pyrex 7740 glass cover plate. Column geometry has been optimized to achieve maximum efficiency and allow extreme operating conditions. The walls of the microcolumns were coated with a non-polar liquid stationary phase. Performances of the MOT columns have been demonstrated by their ability to completely separate a series of hydrocarbon mixture in less than 1.25 min under isothermal condition of 150 degrees C. The achievable column efficiencies as measured in terms of theoretical plate height ranged from 0.57 to 1.45 mm, which agreed well with theoretical predictions.

  20. Nonlinear wave interaction in a plasma column

    NASA Technical Reports Server (NTRS)

    Larsen, J.

    1972-01-01

    Two particular cases of nonlinear wave interaction in a plasma column were investigated. The frequencies of the waves were on the order of magnitude of the electron plasma frequency, and ion motion was neglected. The nonlinear coupling of slow waves on a plasma column was studied by means of cold plasma theory, and the case of a plasma column surrounded by an infinite dielectric in the absence of a magnetic field was also examined. Nonlinear scattering from a plasma column in an electromagnetic field having it's magnetic field parallel to the axis of the column was investigated. Some experimental results on mode conversion in the presence of loss are presented along with some observations of nonlinear scattering, The effect of the earth's magnetic field and of discharge symmetry on the radiation pattern are discussed.

  1. Lateral column length in adult flatfoot deformity.

    PubMed

    Kang, Steve; Charlton, Timothy P; Thordarson, David B

    2013-03-01

    In adult acquired flatfoot deformity, it is unclear whether the lateral column length shortens with progression of the deformity, whether it is short to begin with, or whether it is short at all. To our knowledge, no previous study has examined the lateral column length of patients with adult acquired flatfoot deformity compared to a control population. The purpose of our study was to compare the lateral column length in patients with and without adult acquired flatfoot deformity to see if there was a significant difference. The study was a retrospective radiographic review of 2 foot and ankle fellowship-trained orthopaedic surgeons' patients with adult flatfoot deformity. Our study population consisted of 75 patients, 85 feet (28 male, 57 female) with adult flatfoot deformity with a mean age of 64 (range, 23-93). Our control population consisted of 57 patients and 70 feet (23 male, 47 female) without flatfoot deformity with a mean age of 61 (range, 40-86 years). Weightbearing anteroposterior (AP) and lateral foot radiographs were analyzed for each patient, and the following measurements were made: medial and lateral column lengths, talonavicular uncoverage angle, talus-first metatarsal angle, calcaneal pitch angle, and medial and lateral column heights. An unpaired t test was used to analyze the measurements between the groups. Ten patients' radiographs were remeasured, and correlation coefficients were obtained to assess the reliability of the measuring techniques. For the flatfoot group, the mean medial and lateral column lengths on the AP radiograph were 108.6 mm and 95.8 mm, respectively; the mean talo-navicular uncoverage angle was 26.2 degrees; and the mean talus-first metatarsal angle was 20.0 degrees. In the control group, the mean medial and lateral column lengths on the AP radiograph were 108.8 mm and 96.5 mm, respectively; the mean talo-navicular uncoverage angle was 8.2 degrees; and the mean talus-first metatarsal angle was 7.7 degrees. On the lateral

  2. Parallel array of independent thermostats for column separations

    DOEpatents

    Foret, Frantisek; Karger, Barry L.

    2005-08-16

    A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.

  3. The total carbon column observing network.

    PubMed

    Wunch, Debra; Toon, Geoffrey C; Blavier, Jean-François L; Washenfelder, Rebecca A; Notholt, Justus; Connor, Brian J; Griffith, David W T; Sherlock, Vanessa; Wennberg, Paul O

    2011-05-28

    A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO(2), CO, CH(4), N(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO(2)). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network. © 2011 The Royal Society

  4. LIFS atomic hydrogen density measurements at the URAGAN-3M facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, E.D.; Zhmurin, P.N.; Letuchii, A.N.

    1994-12-31

    Molecular and atomic hydrogen behavior within a plasma column of the URAGAN-3M facility was numerically simulated for a low density regime ({bar n}{sub e} {approx_equal} 2 x 10{sup 12} cm{sup {minus}3}). Local density of hydrogen atoms in the axial region was measured by Laser-Induced Fluorescence Spectroscopy technique. A good agreement of the measurements and simulations was observed. In the regime under investigation the results of hydrogen density spectroscopic measurements were found to be greatly affected by dissociative population of hydrogen atom excited states. 2 refs., 3 figs.

  5. Proline-coated column for the capillary electrochromatographic separation of amino acids by in-column derivatization.

    PubMed

    Lin, Chun-Chi; Liu, Chuen-Ying

    2004-10-01

    With 3-trimethoxysilylpropyl chloride as the spacer, a proline-coated capillary column was prepared for the capillary electrochromatographic (CEC) separation of amino acids by in-column derivatization. Nine standard mixtures, including aspartic acid, glutamic acid, valine, phenylalanine, alanine, isoleucine, leucine, tyrosine, and tryptophan, were injected. o-Phthalaldehyde (OPA), OPA/2-mercaptoethanol (2-ME) and OPA/N-acetylcysteine (NAC) in borate buffer were tested as the derivatizing agent. Among them, OPA (50 mM) in borate buffer (pH 9.5, 50 mM) gave the best performance. The formation of isoindole could be detected by UV detection. The sandwich-type injection was carried out in hydrostatic mode (10 cm) with the program R(10 s)S(10 s) R(10 s)W(10 min) with R, S, and W being the reagent, sample, and waiting times. Mesityl oxide, benzyl alcohol, and acetone showed some interaction with the column. A current monitoring method was used instead of the determination of the electroosmotic flow (EOF). The direction of EOF was from anode to cathode even under acidic condition lower than the pI value (6.31) of the bonded group due to some unreacted silanol groups. Some parameters including pH, nature, and concentration of the mobile phase and the effect of organic modifier with regard to the CEC separation were investigated. With the proline-coated column (75 (50) cm x 75 microm ID) the best separation was performed in phosphate buffer (pH 4.00, 100 mM) with an applied voltage of -15 kV. The established method was also compared with those precolumn derivatized prior to the separation with proline-coated column as well as with in-capillary derivatization and separation with a bare fused-silica column. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  6. The influence of salt chaotropicity, column hydrophobicity and analytes' molecular properties on the retention of pramipexole and its impurities.

    PubMed

    Vemić, Ana; Kalinić, Marko; Erić, Slavica; Malenović, Anđelija; Medenica, Mirjana

    2015-03-20

    The aim of this study was to examine the interaction of the chaotropic salts of different position in Hofmeister series (CF3COONa, NaClO4, NaPF6) added to the mobile phase with the stationary phases of different hydrophobicity (C8 and C18 XTerra(®) columns), as well as their common influence on the retention behavior of pramipexole and its structurally related impurities. The extended thermodynamic approach enabled the understanding of the underlying separation mechanism. Comparing six different column-salt systems it was observed that general system hydrophobicity presented by salt chaotropicity and column hydrophobicity favors stationary phase ion-pairing over the ion-pair formation in the eluent. Further, an attempt was made to describe the influence of analytes' nature on their retention behavior in such chromatographic systems. An analysis is performed in order to select and elucidate the molecular descriptors (electrostatical, quantum-chemical, geometrical, topological, and constitutional) that best explain the experimental evidence and findings obtained by the thermodynamic approach. The results of this analysis suggest that analytes' charge distribution and its complementarity to the structure of the electric double layer formed on the surface of the stationary phase upon the addition of chaotropic additives can be useful for understanding the differences in retention of structurally related analytes. These findings provide a novel understanding of the interactions between all the components of the chromatographic system containing chaotropic additive and a good basis for further investigations suggesting the development of generally applicable predictors in structure-retention relationship studies in related chromatographic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Size-density relations in dark clouds: Non-LTE effects

    NASA Technical Reports Server (NTRS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO

  8. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries.

    PubMed

    Kim, Dong-Min; Kim, Youngjin; Arumugam, Durairaj; Woo, Sang Won; Jo, Yong Nam; Park, Min-Sik; Kim, Young-Jun; Choi, Nam-Soon; Lee, Kyu Tae

    2016-04-06

    Thanks to the advantages of low cost and good safety, magnesium metal batteries get the limelight as substituent for lithium ion batteries. However, the energy density of state-of-the-art magnesium batteries is not high enough because of their low operating potential; thus, it is necessary to improve the energy density by developing new high-voltage cathode materials. In this study, nanosized Berlin green Fe2(CN)6 and Prussian blue Na(0.69)Fe2(CN)6 are compared as high-voltage cathode materials for magnesium batteries. Interestingly, while Mg(2+) ions cannot be intercalated in Fe2(CN)6, Na(0.69)Fe2(CN)6 shows reversible intercalation and deintercalation of Mg(2+) ions, although they have the same crystal structure except for the presence of Na(+) ions. This phenomenon is attributed to the fact that Mg(2+) ions are more stable in Na(+)-containing Na(0.69)Fe2(CN)6 than in Na(+)-free Fe2(CN)6, indicating Na(+) ions in Na(0.69)Fe2(CN)6 plays a crucial role in stabilizing Mg(2+) ions. Na(0.69)Fe2(CN)6 delivers reversible capacity of approximately 70 mA h g(-1) at 3.0 V vs Mg/Mg(2+) and shows stable cycle performance over 35 cycles. Therefore, Prussian blue analogues are promising structures for high-voltage cathode materials in Mg batteries. Furthermore, this co-intercalation effect suggests new avenues for the development of cathode materials in hybrid magnesium batteries that use both Mg(2+) and Na(+) ions as charge carriers.

  9. Accurate measurements of the true column efficiency and of the instrument band broadening contributions in the presence of a chromatographic column.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2014-01-31

    A rapid and simple validated experimental protocol is proposed for the accurate determination of the true intrinsic column efficiency and for that of the variance of the extra-column volume of the instrument used, the latter being obtained without requiring the removal of the chromatographic column from the HPLC system. This protocol was applied to 2.1mm×100mm columns packed with sub-3 (2.7μm Halo Peptide ES-C18) and sub-2μm (1.6μm prototype) core-shell particles. It was validated by observing the linear behavior of the plot of the apparent column plate height versus the reciprocal of (1+k')(2) for at least three homologous compounds, with a linear regression coefficient R(2) larger than 0.999. Irrespective of the contribution of the several, different instruments used to the total band broadening, the same column HETP value was obtained within 5%. This new protocol outperform the classical one in which the chromatographic column is replaced with a zero dead volume (ZDV) union connector to measure the extra-column volume variance, which is subtracted from the variance measured with the column to measure the intrinsic HETP. This protocol fails because it significantly underestimates the system volume variance. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Enhanced capabilities of separation in Sequential Injection Chromatography--fused-core particle column and its comparison with narrow-bore monolithic column.

    PubMed

    Chocholouš, Petr; Kosařová, Lucie; Satínský, Dalibor; Sklenářová, Hana; Solich, Petr

    2011-08-15

    In the Sequential Injection Chromatography (SIC) only monolithic columns for chromatographic separations have been used so far. This article presents the first use of fused-core particle packed column in an attempt to extend of the chromatographic capabilities of the SIC system. A new fused-core particle column (2.7 μm) Ascentis(®) Express C18 (Supelco™ Analytical) 30 mm × 4.6 mm brings high separation efficiency within flow rates and pressures comparable to monolithic column Chromolith(®) Performance RP-18e 100-3 (Merck(®)) 100 mm × 3 mm. Both columns matches the conditions of the commercially produced SIC system - SIChrom™ (8-port high-pressure selection valve and medium-pressure Sapphire™ syringe pump with 4 mL reservoir - maximal work pressure 1000 PSI) (FIAlab(®), USA). The system was tested by the separation of four estrogens with similar structure and an internal standard - ethylparaben. The mobile phase composed of acetonitrile/water (40/60 (v/v)) was pumped isocratic at flow rate 0.48 mL min(-1). Spectrophotometric detection was performed at wavelength of 225 nm and injected volume of sample solutions was 10 μL. The chromatographic characteristics of both columns were compared. Obtained results and conclusions have shown that both fused-core particle column and longer narrow shaped monolithic column bring benefits into the SIC method. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Fabrication and investigation of electrochromatographic columns with a simplex configuration.

    PubMed

    Liu, Qing; Yang, Lijun; Wang, Qiuquan; Zhang, Bo

    2014-07-04

    Duplex capillary columns with a packed and an open section are widely used in electrochromatography (CEC). The duplex column configuration leads to non-uniform voltage drop, electrical field distribution and separation performance. It also adds to the complexity in understanding and optimizing electrochromatographic process. In this study, we introduced a simplex column configuration based on single particle fritting technology. The new column configuration has an essentially uniform packed bed through the entire column length, with only 1mm length left unpacked serving as the optical detection window. The study shows that a simplex column has higher separation efficiency than a duplex column, especially at the high voltage range, due to the consistent distribution of electrical field over the column length. In comparison to the duplex column, the simplex column presented a lower flow rate at the same applied voltage, suggesting that an open section may support a higher speed than a packed section. In practice, the long and short ends of the simplex column could be used as independent CEC columns respectively. This "two-in-one" bi-functional column configuration provided extra flexibilities in selecting and optimizing electrochromatographic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Density impact on performance of composite Si/graphite electrodes

    DOE PAGES

    Dufek, Eric J.; Picker, Michael; Petkovic, Lucia M.

    2016-01-27

    The ability of alkali-substituted binders for composite Si and graphite negative electrodes to minimize capacity fade for lithium ion batteries is investigated. Polymer films and electrodes are described and characterized by FTIR following immersion in electrolyte (1:2 EC:DMC) for 24 h. FTIR analysis following electrode formation displayed similar alkali-ion dependent shifts in peak location suggesting that changes in the vibrational structure of the binder are maintained after electrode formation. The Si and graphite composite electrodes prepared using the alkali-substituted polyacrylates were also exposed to electrochemical cycling and it has been found that the performance of the Na-substituted binder is superiormore » to a comparable density K-substituted system. However, in comparing performance across many different electrode densities attention needs to be placed on making comparisons at similar densities, as low density electrodes tend to exhibit lower capacity fade over cycling. This is highlighted by a 6% difference between a low density K-substituted electrode and a high density Na-substituted sample. As a result, this low variance between the two systems makes it difficult to quickly make a direct evaluation of binder performance unless electrode density is tightly controlled.« less

  13. Efficiency for unretained solutes in packed column supercritical fluid chromatography. I. Theory for isothermal conditions and correction factors for carbon dioxide.

    PubMed

    Poe, Donald P

    2005-06-17

    A general theory for efficiency of nonuniform columns with compressible mobile phase fluids is applied to the elution of an unretained solute in packed-column supercritical fluid chromatography (pSFC). The theoretical apparent plate height under isothermal conditions is given by the Knox equation multiplied by a compressibility correction factor f1, which is equal to the ratio of the temporal-to-spatial average densities of the mobile phase. If isothermal conditions are maintained, large pressure drops in pSFC should not result in excessive efficiency losses for elution of unretained solutes.

  14. Rapid repair of severely damaged reinforced concrete columns.

    DOT National Transportation Integrated Search

    2012-11-01

    Research on rapid repair of reinforced concrete (RC) columns has been limited to columns with slight or moderate damage. Moreover, : few studies have been conducted on repair of severely damaged columns, particularly with buckled or fractured reinfor...

  15. Identification and characterization of a newly recognized population of high-Na+, low-K+, low-density sickle and normal red cells.

    PubMed

    Bookchin, R M; Etzion, Z; Sorette, M; Mohandas, N; Skepper, J N; Lew, V L

    2000-07-05

    We describe a population of sickle cell anemia red cells (SS RBCs) ( approximately 4%) and a smaller fraction of normal RBCs (<0.03%) that fail to dehydrate when permeabilized to K(+) with either valinomycin or elevated internal Ca(2+). The nonshrinking, valinomycin-resistant (val-res) fractions, first detected by flow cytometry of density-fractionated SS RBCs, constituted up to 60% of the lightest, reticulocyte-rich (R1) cell fraction, and progressively smaller portions of the slightly denser R2 cells and discocytes. R1 val-res RBCs had a mean cell hemoglobin concentration of approximately 21 g of Hb per dl, and many had an elongated shape like "irreversibly sickled cells," suggesting a dense SS cell origin. Of three possible explanations for val-res cells, failure of valinomycin to K(+)-permeabilize the cells, low co-ion permeability, or reduced driving K(+) gradient, the latter proved responsible: Both SS and normal val-res RBCs were consistently high-Na(+) and low-K(+), even when processed entirely in Na-free media. Ca(2+) + A23187-induced K(+)-permeabilization of SS R1 fractions revealed a similar fraction of cal-res cells, whose (86)Rb uptake showed both high Na/K pump and leak fluxes. val-res/cal-res RBCs might represent either a distinct erythroid genealogy, or an "end-stage" of normal and SS RBCs. This paper focuses on the discovery, basic characterization, and exclusion of artifactual origin of this RBC fraction. Many future studies will be needed to clarify their mechanism of generation and full pathophysiological significance.

  16. Detection of processed genetically modified food using CIM monolithic columns for DNA isolation.

    PubMed

    Jerman, Sergej; Podgornik, Ales; Cankar, Katarina; Cadet, Neza; Skrt, Mihaela; Zel, Jana; Raspor, Peter

    2005-02-11

    The availability of sufficient quantities of DNA of adequate quality is crucial in polymerase chain reaction (PCR)-based methods for genetically modified food detection. In this work, the suitability of anion-exchange CIM (Convective Interaction Media; BIA Separations, Ljubljana, Slovenia) monolithic columns for isolation of DNA from food was studied. Maize and its derivates corn meal and thermally pretreated corn meal were chosen as model food. Two commercially available CIM disk columns were tested: DEAE (diethylaminoethyl) and QA (quaternary amine). Preliminary separations were performed with standard solution of salmon DNA at different pH values and different NaCl concentrations in mobile phase. DEAE groups and pH 8 were chosen for further isolations of DNA from a complex matrix-food extract. The quality and quantity of isolated DNA were tested on agarose gel electrophoresis, with UV-scanning spectrophotometry, and by amplification with real-time PCR. DNA isolated in this way was of suitable quality for further PCR analyses. The described method is also applicable for DNA isolation from processed foods with decreased DNA content. Furthermore, it is more effective and less time-consuming in comparison with the existing proposed methods for isolation of DNA from plant-derived foods.

  17. Interpretation of the lime column penetration test

    NASA Astrophysics Data System (ADS)

    Liyanapathirana, D. S.; Kelly, R. B.

    2010-06-01

    Dry soil mix (DSM) columns are used to reduce the settlement and to improve the stability of embankments constructed on soft clays. During construction the shear strength of the columns needs to be confirmed for compliance with technical assumptions. A specialized blade shaped penetrometer known as the lime column probe, has been developed for testing DSM columns. This test can be carried out as a pull out resistance test (PORT) or a push in resistance test (PIRT). The test is considered to be more representative of average column shear strength than methods that test only a limited area of the column. Both PORT and PIRT tests require empirical correlations of measured resistance to an absolute measure of shear strength, in a similar manner to the cone penetration test. In this paper, finite element method is used to assess the probe factor, N, for the PORT test. Due to the large soil deformations around the probe, an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation has been used. Variation of N with rigidity index and the friction at the probe-soil interface are investigated to establish a range for the probe factor.

  18. Sensitive determination of four tetracycline antibiotics in pig plasma by field-amplified sample stacking open-tubular capillary electrochromatography with dimethylethanolamine aminated polychloromethyl styrene nano-latex coated capillary column.

    PubMed

    Guo, Yaxiao; Meng, Lei; Zhang, Yanhao; Tang, Wei; Zhang, Wenfen; Xia, Yan; Ban, Fuguo; Wu, Ningpeng; Zhang, Shusheng

    2013-12-30

    This paper described the preparation and application of a new dimethylethanolamine aminated polychloromethyl styrene nano-latex (DMEAPL) coated capillary column (ccc-DMEAPL) in the determination of four tetracycline antibiotics (TCA) including tetracycline (TC), oxytetracycline (OTC), doxycycline (DC) and chlorotetracycline (CTC) in pig plasma. The ccc-DMEAPL column was characterized with steady EOF values of ca. 1.5-5.2×10(-5)cm(2)/Vs at pH 1.8-6.3. The optimized conditions for field-amplified sample stacking open-tubular capillary electrochromatography (FASS-OT-CEC) were as following: background electrolyte, 10mmol/L Na2HPO4+15mmol/L citric acid (pH 3.2); ccc-DMEAPL, 50μm i.d.×50cm (effective length 41.5cm), separation voltage, 18kV; column temperature, 25°C; UV detection wavelength, 270nm; water-plug injection: 30mbar×10s; sample electrokinetic injection, 10kV×20s. The four TCA were extracted with the solution of 10mmol/L Na2HPO4+15mmol/L citric acid+4g/L EDTA-2Na (pH 3.2). The FASS-OT-CEC method was validated in terms of linearity, sensitivity, selectivity, precision and accuracy. The LODs ranged from 3 to 7ng/mL, the recoveries for the four TCA were all more than 80%. The developed method was successfully applied for the determination of TCs in the actual pig plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Column strength of magnesium alloy AM-57S

    NASA Technical Reports Server (NTRS)

    Holt, M

    1942-01-01

    Tests were made to determine the column strength of extruded magnesium alloy AM-57S. Column specimens were tested with round ends and with flat ends. It was found that the compressive properties should be used in computations for column strengths rather than the tensile properties because the compressive yield strength was approximately one-half the tensile yield strength. A formula for the column strength of magnesium alloy AM-57S is given.

  20. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    NASA Astrophysics Data System (ADS)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  1. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  2. Modeling Cooling Rates of Martian Flood Basalt Columns

    NASA Astrophysics Data System (ADS)

    Weiss, D. K.; Jackson, B.; Milazzo, M. P.; Barnes, J. W.

    2011-12-01

    Columnar jointing in large basalt flows have been extensively studied and can provide important clues about the emplacement conditions and cooling history of a basalt flow. The recent discovery of basalt columns on Mars in crater walls near Marte Vallis provides an opportunity to infer conditions on early Mars when the Martian basalt flows were laid down. Comparison of the Martian columns to Earth analogs allows us to gain further insight into the early Martian climate, and among the best terrestrial analogs are the basalt columns in the Columbia River Basalt Group (CRBG) in eastern Washington. The CRBG is one of the youngest (< 17 Myrs old) and most extensively studied basalt provinces in the world, extending over 163,700 square km with total thickness exceeding 1 km in some places. The morphologies and textures of CRBG basalt columns suggest that in many places flows ~100 m thick cooled at uniform rates, even deep in the flow interior. Such cooling seems to require the presence of water in the column joints since the flow interiors should have cooled much more slowly than the flow margins if conductive cooling dominated. Secondary features, such pillow basalts, likewise suggest the basalt flows were in direct contact with standing water in many places. At the resolution provided by the orbiting HiRISE camera (0.9 m), the Martian basalt columns resemble the CRBG columns in many respects, and so, subject to important caveats, inferences linking the morphologies of the CRBG columns to their thermal histories can be extended in some respects to the Martian columns. In this presentation, we will describe our analysis of the HiRISE images of the Martian columns and what can be reasonably inferred about their thermal histories and the conditions under which they were emplaced. We will also report on a field expedition to the CRBG in eastern Washington State. During that expedition, we surveyed basalt column outcrops on the ground and from the air using Unmanned Aerial

  3. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  4. The Application of TD/GC/NICI-MS with an Al2O3-PLOT-S Column for the Determination of Perfluoroalkylcycloalkanes in the Atmosphere.

    PubMed

    Ren, Yu; Schlager, Hans; Martin, Damien

    2014-01-01

    A modified method for the quantitative determination of atmospheric perfluoroalkylcycloalkanes (PFCs) using thermal desorption coupled with gas chromatography and detection by negative ion chemical ionization-mass spectrometry was developed. Using an optimized analytical system, a commercially available Al 2 O 3 porous layer open tubular (PLOT) capillary column (30 m × 0.25 mm) deactivated with Na 2 SO 4 was used for separation of PFCs. Improvements in the separation of PFCs, the corresponding identification and the limit of detection of PFCs using this method and column are presented. The method was successfully applied to determine the atmospheric background concentrations of a range of PFCs from a number of samples collected at a rural site in Germany. The results of this study suggest that the method outlined using the Al 2 O 3 -PLOT-S capillary column has good sensitivity and selectivity, and that it can be deployed in a routine laboratory process for the analysis of PFCs in the future research work. In addition, the ability of this column to separate the isomers of one of the lower boiling PFCs (perfluorodimethylcyclobutane) and its ability to resolve perfluoroethylcyclohexane offer the opportunity for single-column analysis for multiple PFCs.

  5. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTx summary from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, James L.

    1991-01-01

    Experimental data for densities of liquids and vapors on the two-phase surface of the system NaCl-H2O were compiled and evaluated to provide a complete summary between 300° and 500°C. The results are added to a previously published PTx summary compiled in the same manner to provide a PVTx summary of the present state of knowledge. Results are in table form of use to the understanding of two-phase behaviour in boiling hydrothermal systems and to theoretical modeling of this important system. 

  6. A design procedure for a tension-wire stiffened truss-column

    NASA Technical Reports Server (NTRS)

    Greene, W. H.

    1980-01-01

    A deployable, tension wire stiffened, truss column configuration was considered for space structure applications. An analytical procedure, developed for design of the truss column and exercised in numerical studies, was based on equivalent beam stiffness coefficients in the classical analysis for an initially imperfect beam column. Failure constraints were formulated to be used in a combined weight/strength and nonlinear mathematical programming automated design procedure to determine the minimum mass column for a particular combination of design load and length. Numerical studies gave the mass characteristics of the truss column for broad ranges of load and length. Comparisons of the truss column with a baseline tubular column used a special structural efficiency parameter for this class of columns.

  7. Telescoping columns. [parabolic antenna support

    NASA Technical Reports Server (NTRS)

    Mazur, J. T. (Inventor)

    1980-01-01

    An extendable column is described which consists of several axially elongated rigid structural sections nested within one another. Each section includes a number of rotatably attached screws running along its length. The next inner section includes threaded lugs oriented to threadingly engage the screws. The column is extended or retracted upon rotation of the screws. The screws of each section are selectively rotated by a motor and an engagement mechanism.

  8. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a...

  9. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a...

  10. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a...

  11. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a...

  12. 29 CFR 1926.755 - Column anchorage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Column anchorage. 1926.755 Section 1926.755 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.755 Column anchorage. (a...

  13. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright

  14. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  15. Continuous automated sensing of streamflow density as a surrogate for suspended-sediment concentration sampling

    USGS Publications Warehouse

    Larsen, Matthew C.; Figueroa Alamo, Carlos; Gray, John R.; Fletcher, William

    2001-01-01

    A newly refined technique for continuously and automatically sensing the density of a water-sediment mixture is being tested at a U.S. Geological Survey streamflow-gaging station in Puerto Rico. Originally developed to measure crude oil density, the double bubbler instrument measures fluid density by means of pressure transducers at two elevations in a vertical water column. By subtracting the density of water from the value measured for the density of the water-sediment mixture, the concentration of suspended sediment can be estimated. Preliminary tests of the double bubbler instrument show promise but are not yet conclusive.

  16. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  17. Nanoscaled Na3PS4 Solid Electrolyte for All-Solid-State FeS2/Na Batteries with Ultrahigh Initial Coulombic Efficiency of 95% and Excellent Cyclic Performances.

    PubMed

    Wan, Hongli; Mwizerwa, Jean Pierre; Qi, Xingguo; Xu, Xiaoxiong; Li, Hong; Zhang, Qiang; Cai, Liangting; Hu, Yong-Sheng; Yao, Xiayin

    2018-04-18

    Nanosized Na 3 PS 4 solid electrolyte with an ionic conductivity of 8.44 × 10 -5 S cm -1 at room temperature is synthesized by a liquid-phase reaction. The resultant all-solid-state FeS 2 /Na 3 PS 4 /Na batteries show an extraordinary high initial Coulombic efficiency of 95% and demonstrate high energy density of 611 Wh kg -1 at current density of 20 mA g -1 at room temperature. The outstanding performances of the battery can be ascribed to good interface compatibility and intimate solid-solid contact at FeS 2 electrode/nanosized Na 3 PS 4 solid electrolytes interface. Meanwhile, excellent cycling stability is achieved for the battery after cycling at 60 mA g -1 for 100 cycles, showing a high capacity of 287 mAh g -1 with the capacity retention of 80%.

  18. Nanostructured magnesium increases bone cell density.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  19. Ionization compression impact on dense gas distribution and star formation. Probability density functions around H II regions as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.

    2014-04-01

    Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach

  20. Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

    2011-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

  1. Sputtering of sodium on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.

    1986-01-01

    It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.

  2. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  3. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for Cmore » IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.« less

  4. A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhua Duan

    2012-01-01

    Alkali metal zirconates could be used as solid sorbents for CO{sub 2} capture. The structural, electronic, and phonon properties of Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{sub 2}CO{sub 3}, and K{sub 2}CO{sub 3} are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO{sub 2} absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{submore » 2}CO{sub 3}, and K{sub 2}CO{sub 3}, respectively.The calculated phonon dispersions and phonon density of states for M{sub 2}ZrO{sub 3} and M{sub 2}CO{sub 3} (M = K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO{sub 2} pressures of the M{sub 2}ZrO{sub 3} (M = K, Na, Li) reacting with CO{sub 2}, we found that the performance of Na{sub 2}ZrO{sub 3} capturing CO{sub 2} is similar to that of Li{sub 2}ZrO{sub 3} and is better than that of K{sub 2}ZrO{sub 3}. Therefore, Na{sub 2}ZrO{sub 3} and Li{sub 2}ZrO{sub 3} are good candidates of high temperature CO{sub 2} sorbents and could be used for post combustion CO{sub 2} capture technologies.« less

  5. A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification.

    PubMed

    Lesellier, Eric; Tchapla, Alain

    2005-12-23

    This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.

  6. BAT AGN Spectroscopic Survey. VIII. Type 1 AGN with Massive Absorbing Columns

    NASA Astrophysics Data System (ADS)

    Shimizu, T. Taro; Davies, Richard I.; Koss, Michael; Ricci, Claudio; Lamperti, Isabella; Oh, Kyuseok; Schawinski, Kevin; Trakhtenbrot, Benny; Burtscher, Leonard; Genzel, Reinhard; Lin, Ming-yi; Lutz, Dieter; Rosario, David; Sturm, Eckhard; Tacconi, Linda

    2018-04-01

    We explore the relationship between X-ray absorption and optical obscuration within the BAT AGN Spectroscopic Survey (BASS), which has been collecting and analyzing the optical and X-ray spectra for 641 hard X-ray selected (E > 14 keV) active galactic nuclei (AGNs). We use the deviation from a linear broad Hα-to-X-ray relationship as an estimate of the maximum optical obscuration toward the broad line region (BLR) and compare the A V to the hydrogen column densities ({N}{{H}}) found through systematic modeling of their X-ray spectra. We find that the inferred columns implied by A V toward the BLR are often orders of magnitude less than the columns measured toward the X-ray emitting region, indicating a small-scale origin for the X-ray absorbing gas. After removing 30% of Sy 1.9s that potentially have been misclassified due to outflows, we find that 86% (164/190) of the Type 1 population (Sy 1–1.9) are X-ray unabsorbed as expected based on a single obscuring structure. However, 14% (26/190), of which 70% (18/26) are classified as Sy 1.9, are X-ray absorbed, suggesting that the BLR itself is providing extra obscuration toward the X-ray corona. The fraction of X-ray absorbed Type 1 AGNs remains relatively constant with AGN luminosity and Eddington ratio, indicating a stable BLR covering fraction.

  7. Shell and small particles; evaluation of new column technology.

    PubMed

    Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin

    2009-01-15

    The performance of 5 cm long columns packed with shell particles was compared to totally porous sub-2 microm particles in gradient and isocratic elution separations of hormones (dienogest, finasteride, gestodene, levonorgestrel, estradiol, ethinylestradiol, noretistherone acetate, bicalutamide and tibolone). Peak capacities around 140-150 could be achieved in 25 min with the 5 cm long columns. The Ascentis Express column (packed with 2.7 microm shell particles) showed similar efficiency to sub-2 microm particles under gradient conditions. Applying isocratic separation, the column of 2.7 microm shell particles had a reduced plate height minimum of approximately h=1.6. It was much smaller than obtained with totally porous particles (h approximately = 2.8). The impedance time also proved more favorable with 2.7 microm shell particles than with totally porous particles. The influence of extra-column volume on column efficiency was investigated. The extra-column dispersion of the chromatographic system may cause a shift of the HETP curves.

  8. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2015-07-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  9. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2016-01-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  10. Density of jadeite melt under upper mantle conditions from in-situ X-ray micro-tomography measurements

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Xu, M.; Jiang, P.; Yu, T.; Wang, Y.

    2017-12-01

    Knowledge of the density of silicate melts under high pressure conditions is important to our understanding of the stability and migration of melt layers in the Earth's deep mantle. A wide range of silicate melts have been studied at high pressures using the sink/float technique (e.g., Agee and Walker, 1988) and the X-ray absorption technique (e.g., Sakamaki et al, 2009). However, the effect of the Na2O component on high-pressure melt density has not been fully quantified, despite its likely presence in mantle melts. This is partly due to the experimental challenges that the Na-bearing melts often have relatively low density but high viscosity, both of which make it difficult to study using the above-mentioned techniques. In this study, we have developed a new technique based on X-ray micro-tomography to determine the density of melts at high pressures. In this technique, the volume of a melt is directly measured from the reconstructed 3-D images of the sample using computed X-ray micro-tomography. If the mass of the sample is measured using a balance or estimated from a reference density, then the density of the melt at high pressures can be calculated. Using this technique, we determined the density of jadeite melt (NaAlSi2O6) at high pressures up to 4 GPa in a Paris-Edinburg cell that can be rotated for 180 degrees under pressure. Results show that the Na2O component significantly decreases both the density and bulk modulus of silicate melts at high pressures. These data can be incorporated into a hard-sphere equation of state (Jing and Karato, 2011) to model the effect of the Na2O component on the potential density crossovers between melts produced in the mantle and the residual solid.

  11. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    PubMed

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  12. Application of a Fast Separation Method for Anti-diabetics in Pharmaceuticals Using Monolithic Column: Comparative Study With Silica Based C-18 Particle Packed Column.

    PubMed

    Hemdan, A; Abdel-Aziz, Omar

    2018-04-01

    Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.

  13. High-Performance Na-O2 Batteries Enabled by Oriented NaO2 Nanowires as Discharge Products.

    PubMed

    Khajehbashi, S Mohammad B; Xu, Lin; Zhang, Guobin; Tan, Shuangshuang; Zhao, Yan; Wang, Lai-Sen; Li, Jiantao; Luo, Wen; Peng, Dong-Liang; Mai, Liqiang

    2018-06-13

    Na-O 2 batteries are emerging rechargeable batteries due to their high theoretical energy density and abundant resources, but they suffer from sluggish kinetics due to the formation of large-size discharge products with cubic or irregular particle shapes. Here, we report the unique growth of discharge products of NaO 2 nanowires inside Na-O 2 batteries that significantly boosts the performance of Na-O 2 batteries. For this purpose, a high-spin Co 3 O 4 electrocatalyst was synthesized via the high-temperature oxidation of pure cobalt nanoparticles in an external magnetic field. The discharge products of NaO 2 nanowires are 10-20 nm in diameter and ∼10 μm in length, characteristics that provide facile pathways for electron and ion transfer. With these nanowires, Na-O 2 batteries have surpassed 400 cycles with a fixed capacity of 1000 mA h g -1 , an ultra-low over-potential of ∼60 mV during charging, and near-zero over-potential during discharging. This strategy not only provides a unique way to control the morphology of discharge products to achieve high-performance Na-O 2 batteries but also opens up the opportunity to explore growing nanowires in novel conditions.

  14. Comparison of GOME tropospheric NO2 columns with NO2 profiles deduced from ground-based in situ measurements

    NASA Astrophysics Data System (ADS)

    Schaub, D.; Boersma, K. F.; Kaiser, J. W.; Weiss, A. K.; Folini, D.; Eskes, H. J.; Buchmann, B.

    2006-08-01

    Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is -7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and

  15. The North American upper mantle: density, composition, and evolution

    USGS Publications Warehouse

    Mooney, Walter D.; Kaban, Mikhail K.

    2010-01-01

    The upper mantle of North America has been well studied using various seismic methods. Here we investigate the density structure of the North American (NA) upper mantle based on the integrative use of the gravity field and seismic data. The basis of our study is the removal of the gravitational effect of the crust to determine the mantle gravity anomalies. The effect of the crust is removed in three steps by subtracting the gravitational contributions of (1) topography and bathymetry, (2) low-density sedimentary accumulations, and (3) the three-dimensional density structure of the crystalline crust as determined by seismic observations. Information regarding sedimentary accumulations, including thickness and density, are taken from published maps and summaries of borehole measurements of densities; the seismic structure of the crust is based on a recent compilation, with layer densities estimated from P-wave velocities. The resultant mantle gravity anomaly map shows a pronounced negative anomaly (−50 to −400 mGal) beneath western North America and the adjacent oceanic region and positive anomalies (+50 to +350 mGal) east of the NA Cordillera. This pattern reflects the well-known division of North America into the stable eastern region and the tectonically active western region. The close correlation of large-scale features of the mantle anomaly map with those of the topographic map indicates that a significant amount of the topographic uplift in western NA is due to buoyancy in the hot upper mantle, a conclusion supported by previous investigations. To separate the contributions of mantle temperature anomalies from mantle compositional anomalies, we apply an additional correction to the mantle anomaly map for the thermal structure of the uppermost mantle. The thermal model is based on the conversion of seismic shear-wave velocities to temperature and is consistent with mantle temperatures that are independently estimated from heat flow and heat production data

  16. The design of a new concept chromatography column.

    PubMed

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2011-12-21

    Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.

  17. Design of bridging layers in geosynthetic-reinforced, column-supported embankments.

    DOT National Transportation Integrated Search

    2006-01-01

    The cost of column-supported embankments depends, in part, on the spacing between the columns and the size of the columns and pile caps. Geosynthetic reinforcement is often employed in bridging layers to enhance load transfer to the columns and to in...

  18. Situated Naïve Physics: Task Constraints Decide what Children Know about Density

    PubMed Central

    Kloos, Heidi; Fisher, Anna; Van Orden, Guy C.

    2013-01-01

    Children’s understanding of density is riddled with misconceptions – or so it seems. Yet even preschoolers at times appear to understand density. This article seeks to reconcile these conflicting outcomes by investigating the nature of constraints available in different experimental protocols. Protocols that report misconceptions about density used stimulus arrangements that make differences in mass and volume more salient than differences in density. In contrast, protocols that report successful performance used stimulus arrangements that might have increased the salience of density. To test this hypothesis, the present experiments manipulate the salience of object density. Children between 2 and 9 years of age and adults responded whether an object would sink or float when placed in water. Results indicated that children’s performance on exactly the same objects differed as a function of the saliency of the dimension of density, relative to the dimensions of mass and volume. These results support the idea that constraints – rather than stable knowledge – drive performance, with implications for teaching children about non-obvious concepts such as density. PMID:20853994

  19. Reduced expression of Na(v)1.6 sodium channels and compensation by Na(v)1.2 channels in mice heterozygous for a null mutation in Scn8a.

    PubMed

    Vega, Ana V; Henry, Diane L; Matthews, Gary

    2008-09-05

    The voltage-gated sodium channel alpha subunit Na(v)1.6, encoded by the Scn8a gene, accumulates at high density at mature nodes of Ranvier of myelinated axons, replacing the Na(v)1.2 channels found at nodes earlier in development. To investigate this preferential expression of Na(v)1.6 at adult nodes, we examined isoform-specific expression of sodium channels in mice heterozygous for a null mutation in Scn8a. Immunoblots from these +/- mice had 50% of the wild-type level of Na(v)1.6 protein, and their optic-nerve nodes of Ranvier had correspondingly less anti-Na(v)1.6 immunofluorescence. Protein level and nodal immunofluorescence of the Na(v)1.2 alpha subunit increased in Scn8a(+/-) mice, keeping total sodium channel expression approximately constant despite partial loss of Na(v)1.6 channels. The results are consistent with a model in which Na(v)1.6 and Na(v)1.2 compete for binding partners at sites of high channel density, such as nodes of Ranvier. We suggest that Na(v)1.6 channels normally occupy most of the molecular machinery responsible for channel clustering because they have higher binding affinity, and not because they are exclusively recognized by mechanisms for transport and insertion of sodium channels in myelinated axons. The reduced amount of Na(v)1.6 protein in Scn8a(+/-) mice is apparently insufficient to saturate the nodal binding sites, allowing Na(v)1.2 channels to compete more successfully.

  20. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  1. Synthesis, Crystal Structure, and Topology-Symmetry Analysis of a New Modification of NaIn[IO3]4

    NASA Astrophysics Data System (ADS)

    Belokoneva, E. L.; Karamysheva, A. S.; Dimitrova, O. V.; Volkov, A. S.

    2018-01-01

    Crystals of new iodate NaIn[IO3]4 were prepared by the hydrothermal synthesis. The unit cell parameters are a = 7.2672(2) Å, b = 15.2572(6) Å, c = 15.0208(6) Å, β = 101.517(3)°, sp. gr. P21/ c. The formula was determined during the structure determination and refinement of a twinned crystal based on a set of reflections from the atomic planes of the major individual. The refinement with anisotropic displacement parameters was performed for both twin components to the final R factor of 0.050. The In and Na atoms are in octahedral coordination formed by oxygen atoms. The oxygen octahedra are arranged into columns by sharing edges, and the columns are connected by isolated umbrella-like [IO3]- groups to form layers. The new structure is most similar to the isoformular iodate NaIn[IO3]4, which crystallizes in the same sp. gr. P21/ c and is structurally similar, but has a twice smaller unit cell and is characterized by another direction of the monoclinic axis. The structural similarity and difference between the two phases were studied by topologysymmetry analysis. The formation of these phases is related to different combinations of identical one-dimensional infinite chains of octahedra.

  2. Controlled irrigation of a structured packing as a method for increasing the efficiency of liquid mixture separation in the distillation column

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.

    2017-09-01

    The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.

  3. Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary

    2015-06-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Anion-exchange behavior of several alkylsilica reversed-phase columns.

    PubMed

    Marchand, D H; Snyder, L R

    2008-10-31

    Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.

  5. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  6. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due

  7. On the buckling of an elastic holey column

    PubMed Central

    Hazel, A. L.; Pihler-Puzović, D.

    2017-01-01

    We report the results of a numerical and theoretical study of buckling in elastic columns containing a line of holes. Buckling is a common failure mode of elastic columns under compression, found over scales ranging from metres in buildings and aircraft to tens of nanometers in DNA. This failure usually occurs through lateral buckling, described for slender columns by Euler’s theory. When the column is perforated with a regular line of holes, a new buckling mode arises, in which adjacent holes collapse in orthogonal directions. In this paper, we firstly elucidate how this alternate hole buckling mode coexists and interacts with classical Euler buckling modes, using finite-element numerical calculations with bifurcation tracking. We show how the preferred buckling mode is selected by the geometry, and discuss the roles of localized (hole-scale) and global (column-scale) buckling. Secondly, we develop a novel predictive model for the buckling of columns perforated with large holes. This model is derived without arbitrary fitting parameters, and quantitatively predicts the critical strain for buckling. We extend the model to sheets perforated with a regular array of circular holes and use it to provide quantitative predictions of their buckling. PMID:29225498

  8. Separation of natural product using columns packed with Fused-Core particles.

    PubMed

    Yang, Peilin; Litwinski, George R; Pursch, Matthias; McCabe, Terry; Kuppannan, Krishna

    2009-06-01

    Three HPLC columns packed with 3 microm, sub-2 microm, and 2.7 microm Fused-Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis Express C18 column packed with Fused-Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3 C18 column packed with 3 microm particles. Column lot-to-lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the Acquity BEH column packed with sub-2 microm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high-efficiency and high-speed separation to be performed using conventional HPLC instrumentation.

  9. Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load

    NASA Astrophysics Data System (ADS)

    Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.

    2017-12-01

    Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.

  10. Impacts of Geomagnetic storms on the mid-latitude mesosphere and lower thermosphere observed by a Na lidar and TIMED/GUVI

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Zhang, Y.

    2015-12-01

    In this paper, we report our findings on the correlation between the neutral temperature (around the mesopause) and thermospheric column density O/N2 ratio, along with their response to geomagnetic storms above mid-latitude of North America. A temperature/wind Doppler Na lidar, operating at Fort Collins, CO (41°N, 105°W) and later at Logan, UT (42°N and 112°W), observed significant temperature increases (temperature anomaly) above 95 km (as much as 55 K at 105 km altitude) during four geomagnetic storms (April 2002, Nov. 2004, May 2005 and Oct. 2012). Coincident TIMED/GUVI observations indicate significant depletion in the thermospheric O/N2 ratio at the lidar locations. These observations suggest that the local mesopause warming seen by the lidar is due to transport of the high-latitude Joule and particle heated neutrals at the E and F layers to the mid-latitude region.

  11. A new high-energy cathode for a Na-ion battery with ultrahigh stability.

    PubMed

    Park, Young-Uk; Seo, Dong-Hwa; Kwon, Hyung-Soon; Kim, Byoungkook; Kim, Jongsoon; Kim, Haegyeom; Kim, Inkyung; Yoo, Han-Ill; Kang, Kisuk

    2013-09-18

    Large-scale electric energy storage is a key enabler for the use of renewable energy. Recently, the room-temperature Na-ion battery has been rehighlighted as an alternative low-cost technology for this application. However, significant challenges such as energy density and long-term stability must be addressed. Herein, we introduce a novel cathode material, Na1.5VPO4.8F0.7, for Na-ion batteries. This new material provides an energy density of ~600 Wh kg(-1), the highest value among cathodes, originating from both the multielectron redox reaction (1.2 e(-) per formula unit) and the high potential (~3.8 V vs Na(+)/Na) of the tailored vanadium redox couple (V(3.8+)/V(5+)). Furthermore, an outstanding cycle life (~95% capacity retention for 100 cycles and ~84% for extended 500 cycles) could be achieved, which we attribute to the small volume change (2.9%) upon cycling, the smallest volume change among known Na intercalation cathodes. The open crystal framework with two-dimensional Na diffusional pathways leads to low activation barriers for Na diffusion, enabling excellent rate capability. We believe that this new material can bring the low-cost room-temperature Na-ion battery a step closer to a sustainable large-scale energy storage system.

  12. Ideal versus real automated twin column recycling chromatography process.

    PubMed

    Gritti, Fabrice; Leal, Mike; McDonald, Thomas; Gilar, Martin

    2017-07-28

    The full baseline separation of two compounds (selectivity factors α<1.03) is either impractical (too long analysis times) or even impossible when using a single column of any length given the pressure limitations of current LC instruments. The maximum efficiency is that of an infinitely long column operated at infinitely small flow rates. It is determined by the maximum allowable system pressure, the column permeability (particle size), the viscosity of the eluent, and the intensity of the effective diffusivity of the analytes along the column. Alternatively, the twin-column recycling separation process (TCRSP) can overcome the efficiency limit of the single-column approach. In the TCRSP, the sample mixture may be transferred from one to a second (twin) column until its band has spread over one column length. Basic theory of chromatography is used to confirm that the speed-resolution performance of the TCRSP is intrinsically superior to that of the single-column process. This advantage is illustrated in this work by developing an automated TCRSP for the challenging separation of two polycyclic aromatic hydrocarbon (PAH) isomers (benzo[a]anthracene and chrysene) in the reversed-phase retention mode at pressure smaller than 5000psi. The columns used are the 3.0mm×150mm column packed with 3.5μm XBridge BEH-C 18 material (α=1.010) and the 3.0mm or 4.6mm×150mm columns packed with the same 3.5μm XSelect HSST 3 material (α=1.025). The isocratic mobile phase is an acetonitrile-water mixture (80/20, v/v). Remarkably, significant differences are observed between the predicted retention times and efficiencies of the ideal TCRSP (given by the number of cycles multiplied by the retention time and efficiency of one column) and those of the real TCRSP. The fundamental explanation lies in the pressure-dependent retention of these PAHs or in the change of their partial molar volume as they are transferred from the mobile to the stationary phase. A revisited retention and

  13. Multi-Column Experimental Test Bed for Xe/Kr Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil

    Previous research studies have shown that INL-developed engineered form sorbents are capable of capturing both Kr and Xe from various composite gas streams. The previous experimental test bed provided single column testing for capacity evaluations over a broad temperature range. To advance research capabilities, the employment of an additional column to study selective capture of target species to provide a defined final gas composition for waste storage was warranted. The second column addition also allows for compositional analyses of the final gas product to provide for final storage determinations. The INL krypton capture system was modified by adding an additionalmore » adsorption column in order to create a multi-column test bed. The purpose of this modification was to investigate the separation of xenon from krypton supplied as a mixed gas feed. The extra column was placed in a Stirling Ultra-low Temperature Cooler, capable of controlling temperatures between 190 and 253K. Additional piping and valves were incorporated into the system to allow for a variety of flow path configurations. The new column was filled with the AgZ-PAN sorbent which was utilized as the capture medium for xenon while allowing the krypton to pass through. The xenon-free gas stream was then routed to the cryostat filled with the HZ-PAN sorbent to capture the krypton at 191K. Selectivities of xenon over krypton were determined using the new column to verify the system performance and to establish the operating conditions required for multi-column testing. Results of these evaluations verified that the system was operating as designed and also demonstrated that AgZ-PAN exhibits excellent selectivity for xenon over krypton in air at or near room temperature. Two separation tests were performed utilizing a feed gas consisting of 1000 ppmv xenon and 150 ppmv krypton with the balance being made up of air. The AgZ-PAN temperature was held at 295 or 253K while the HZ-PAN was held at 191K for

  14. Cyclic performance of concrete-filled steel batten built-up columns

    NASA Astrophysics Data System (ADS)

    Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.

    2016-03-01

    Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.

  15. A Novel High Energy Density Rechargeable Hybrid Sodium-Air Cell with Acidic Electrolyte.

    PubMed

    Kang, Yao; Su, Fengmei; Zhang, Qingkai; Liang, Feng; Adair, Keegan R; Chen, Kunfeng; Xue, Dongfeng; Hayashi, Katsuro; Cao, Shan Cecilia; Yadegari, Hossein; Sun, Xueliang

    2018-06-22

    Low cost, high energy density and highly efficient devices for energy storage have long been desired in our society. Herein, a novel high energy density hybrid sodium-air cell was fabricated successfully based on acidic catholytes. Such a hybrid sodium-air cell possess a high theoretical voltage of 3.94 V, capacity of 1121 mAh g-1, and energy density of 4418 Wh kg-1. Firstly, the buffering effect of an acidic solution was demonstrated, which provides relatively long and stable cell discharge behaviours. Secondly, the catholyte of hybrid sodium-air cells were optimized systematically from the solutions of 0.1 M H3PO4 + 0.1 M Na2SO4 to 0.1 M HAc + 0.1 M NaAc, and it was found that the cells with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed maximum power density of 34.9 mW cm-2. The cell with 0.1 M H3PO4 + 0.1 M Na2SO4 displayed higher discharge capacity of 896 mAh g-1. Moreover, the fabricated acidic hybrid sodium-air cells exhibited stable cycling performance in ambient air, and they delivered a low voltage gap around 0.3 V when the current density is 0.13 mA cm-2, leading to a high energy efficiency up to 90%. Therefore, the present study provides new opportunities to develop highly cost-effective energy storage technologies.

  16. Green bank telescope observations of low column density H I around NGC 2997 and NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, D. J., E-mail: djpisano@mail.wvu.edu

    Observations of ongoing H I accretion in nearby galaxies have only identified about 10% of the fuel necessary to sustain star formation in these galaxies. Most of these observations have been conducted using interferometers and may have missed lower column density, diffuse, H I gas that may trace the missing 90% of gas. Such gas may represent the so-called cold flows predicted by current theories of galaxy formation to have never been heated above the virial temperature of the dark matter halo. As a first attempt to identify such cold flows around nearby galaxies and complete the census of Hmore » I down to N {sub H} {sub I} ∼ 10{sup 18} cm{sup –2}, I used the Robert C. Byrd Green Bank Telescope (GBT) to map the circumgalactic (r ≲ 100-200 kpc) H I environment around NGC 2997 and NGC 6946. The resulting GBT observations cover a 4 deg{sup 2} area around each galaxy with a 5σ detection limit of N{sub H} {sub I} ∼ 10{sup 18} cm{sup –2} over a 20 km s{sup –1} line width. This project complements absorption line studies, which are well-suited to the regime of lower N{sub H} {sub I}. Around NGC 2997, the GBT H I data reveal an extended H I disk and all of its surrounding gas-rich satellite galaxies, but no filamentary features. Furthermore, the H I mass as measured with the GBT is only 7% higher than past interferometric measurements. After correcting for resolution differences, the H I extent of the galaxy is 23% larger at the N{sub H} {sub I} = 1.2 × 10{sup 18} cm{sup –2} level as measured by the GBT. On the other hand, the H I observations of NGC 6946 reveal a filamentary feature apparently connecting NGC 6946 with its nearest companions. This H I filament has N{sub H} {sub I} ∼ 5 × 10{sup 18} cm{sup –2} and an FWHM of 55 ± 5 km s{sup –1} and was invisible in past interferometer observations. The properties of this filament are broadly consistent with being a cold flow or debris from a past tidal interaction between NGC 6946 and its

  17. A fine coal circuitry study using column flotation and gravity separation. Quarterly report, 1 March 1995--31 May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honaker, R.Q.; Reed, S.

    1995-12-31

    Column flotation provides excellent recovery of ultrafine coal while producing low ash content concentrates. However, column flotation is not efficient for treating fine coal containing significant amounts of mixed-phase particles. Fortunately, enhanced gravity separation has proved to have the ability to treat the mixed-phased particles more effectively. A disadvantage of gravity separation is that ultrafine clay particles are not easily rejected. Thus, a combination of these two technologies may provide a circuit that maximizes both the ash and sulfur rejection that can be achieved by physical coal cleaning while maintaining a high energy recovery. This project is studying the potentialmore » of using different combinations of gravity separators, i.e., a Floatex hydrosizer and a Falcon Concentrator, and a proven flotation column, which will be selected based on previous studies by the principle investigator. During this reporting period, an extensive separation performance comparison between a pilot-scale Floatex Density Separator (18{times}18-inch) and an existing spiral circuit has been conducted at Kerf-McGee Coal Preparation plan for the treatment of nominally {minus}16 mesh coal. The results indicate that the Floatex is a more efficient separation device (E{sub p}=0.12) than a conventional coal spiral (E{sub p}=0.18) for Illinois seam coals. In addition, the treatment of {minus}100 mesh Illinois No. 5 fine coal from the same plant using Falcon concentrator, column flotation (Packed-Column) and their different combinations was also evaluated. For a single operation, both Falcon concentrator and column flotation can produce a clean coal product with 90% combustible recovery and 5% ash content. In the case of the combined circuit, column flotation followed by the Falcon achieved a higher combustible recovery value (about 75%) than that obtained by the individual units while maintaining an ash content less than 3%.« less

  18. Column-by-column observation of dislocation motion in CdTe: Dynamic scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zhang, Yu-Yang; Pennycook, Timothy J.; Wu, Yelong; Lupini, Andrew R.; Paudel, Naba; Pantelides, Sokrates T.; Yan, Yanfa; Pennycook, Stephen J.

    2016-10-01

    The dynamics of partial dislocations in CdTe have been observed at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM), allowing the mobility of different dislocations to be directly compared: Cd-core Shockley partial dislocations are more mobile than Te-core partials, and dislocation cores with unpaired columns have higher mobility than those without unpaired columns. The dynamic imaging also provides insight into the process by which the dislocations glide. Dislocations with dangling bonds on unpaired columns are found to be more mobile because the dangling bonds mediate the bond exchanges required for the dislocations to move. Furthermore, a screw dislocation has been resolved to dissociate into a Shockley partial-dislocation pair along two different directions, revealing a way for the screw dislocation to glide in the material. The results show that dynamic STEM imaging has the potential to uncover the details of dislocation motion not easily accessible by other means.

  19. Two-Dimensional Anisotropic Random Walks: Fixed Versus Random Column Configurations for Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál

    2018-04-01

    We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.

  20. Two-Dimensional Anisotropic Random Walks: Fixed Versus Random Column Configurations for Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál

    2018-06-01

    We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.

  1. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; hide

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  2. CELL SEPARATION ON ANTIGEN-COATED COLUMNS

    PubMed Central

    Wigzell, Hans; Andersson, Birger

    1969-01-01

    Glass and plastic bead columns coated with antigenic protein molecules were used as an immunological filter for cell populations containing immune cells of relevant specificity. A selective elimination of these immune cells from the passing cell suspension was regularly noted and it approached, in some experiments, complete abolition of the specific immune reactivity of the filtered cell population. This specific retention of immune cells by antigenic columns could be selectively blocked by the presence of free antigen molecules in the medium during filtration. The results obtained support the concept of a cell-associated antigen-specific receptor being present on the outer surface of immune cells, displaying the same antigen-binding specificity as the potential product of the cell, the humoral antibody. Using the present bead column system, results were obtained indicating that this receptor was an active product of the immune cells and not any passively adsorbed, cytophilic antibody. Antigenic bead columns may very well constitute a tool for the production in vitro of cell populations being specifically deprived of immune reactivity and allow detailed analysis of the characteristics of the cell-associated antibody of immune cells. PMID:5782770

  3. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Simona; Jerby, Eli, E-mail: jerby@eng.tau.ac.il; Meir, Yehuda

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy,more » and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.« less

  4. Density probability distribution functions of diffuse gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Fletcher, A.

    2008-10-01

    In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of at high |b| is twice as wide as that at low |b|. The width of the PDF of the DIG is about 30 per cent smaller than that of the warm HI at the same latitudes. The results reported here provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.

  5. Aspartic acid incorporated monolithic columns for affinity glycoprotein purification.

    PubMed

    Armutcu, Canan; Bereli, Nilay; Bayram, Engin; Uzun, Lokman; Say, Rıdvan; Denizli, Adil

    2014-02-01

    Novel aspartic acid incorporated monolithic columns were prepared to efficiently affinity purify immunoglobulin G (IgG) from human plasma. The monolithic columns were synthesised in a stainless steel HPLC column (20 cm × 5 mm id) by in situ bulk polymerisation of N-methacryloyl-L-aspartic acid (MAAsp), a polymerisable derivative of L-aspartic acid, and 2-hydroxyethyl methacrylate (HEMA). Monolithic columns [poly(2-hydroxyethyl methacrylate-N-methacryloyl-L-aspartic acid) (PHEMAsp)] were characterised by swelling studies, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The monolithic columns were used for IgG adsorption/desorption from aqueous solutions and human plasma. The IgG adsorption depended on the buffer type, and the maximum IgG adsorption from aqueous solution in phosphate buffer was 0.085 mg/g at pH 6.0. The monolithic columns allowed for one-step IgG purification with a negligible capacity decrease after ten adsorption-desorption cycles. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Stability of leaning column at Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Harp, Edwin L.; Lindsay, Charles R.

    2006-01-01

    In response to reports from climbers that an 8-meter section (referred to as the leaning column) of the most popular climbing route on Devils Tower in northeastern Wyoming is now moving when being climbed, scientists from the U.S. Geological Survey inspected the site to determine the stability of the column and the underlying column that serves as a support pedestal. Evidence of a recent tensile spalling failure was observed on the pedestal surface immediately beneath the contact with the overlying leaning column. The spalling of a flake-shaped piece of the pedestal, probably due to the high stress concentration exerted by the weight of the leaning column along a linear contact with the pedestal, is likely causing the present movement of the leaning column. Although it is unlikely that climbers will dislodge the leaning column by their weight alone, the possibility exists that additional spalling failures may occur from the pedestal surface and further reduce the stability of the leaning column and result in its toppling. To facilitate detection of further spalling failures from the pedestal, its surface has been coated with a layer of paint. Any new failures from the pedestal could result in the leaning column toppling onto the climbing route or onto the section of the Tower trail below.

  7. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  8. Influence of weight and body fat distribution on bone density in postmenopausal women.

    PubMed

    Murillo-Uribe, A; Carranza-Lira, S; Martínez-Trejo, N; Santos-González, J

    2000-01-01

    To determine whether obesity or body fat distribution induces a greater modification on bone remodeling biochemistry (BRB) and bone density in postmenopausal women. One hundred and thirteen postmenopausal patients were studied. They were initially divided according to body mass index (BMI), and afterwards by waist-hip ratio (WHR) as well as combinations of the two factors. Hormone measurements and assessments of BRB were also done. Dual-emission X-ray absorptiometry from the lumbar column and hip was performed with Lunar DPXL equipment, and the standard deviation in relation to young adult (T) and age-matched subjects (Z) was calculated. Statistical analysis was done by the Mann-Whitney U test. The relation of BMI and WHR with the variables was calculated by simple regression analysis. When divided according to BMI, there was greater bone density in the femoral neck in those with normal weight. After dividing according to WHR, the Z scores had a trend to a lesser decrease in those with upper level body fat distribution. Divided according to BMI and WHR, obese patients with upper-level body fat distribution had greater bone density in the lumbar column than those with normal weight and lower-level body fat distribution. With the same WHR, those with normal weight had greater bone density than those who were obese. A beneficial effect of upper-level body fat distribution on bone density was found. It is greater than that from obesity alone, and obesity and upper-level body fat distribution have an additive effect on bone density.

  9. Dopamine-imprinted monolithic column for capillary electrochromatography.

    PubMed

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water.

    PubMed

    Gupta, Anjali; Sankararamakrishnan, Nalini

    2010-04-01

    Decontamination of arsenic ions from aqueous media has been investigated using iron chitosan spacer granules (ICS) as an adsorbent. Drying of beads saturated with a spacer sucrose was considered as simple treatment, to prevent the restriction of polymer network and enhance sorption capacity. The novel sorbent was studied in up flow column experiments conducted at different flow rates, pH and bed depth to quantify the treatment performance. It was found that silicate was more inhibitory than phosphate, and the silicate in groundwater controlled the arsenic removal efficiency. The column regeneration studies were carried out for two sorption-desorption cycles using 0.1N NaOH as the eluant. TCLP leaching tests were conducted on the arsenic loaded adsorbent which revealed the containment of arsenic-laden sludge can be managed without adverse environmental impact. The developed procedure was successfully applied for the removal of both As(III) and As(V) from arsenic contaminated drinking water samples. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Combination of prostate imaging reporting and data system (PI-RADS) score and prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy naïve patients.

    PubMed

    Washino, Satoshi; Okochi, Tomohisa; Saito, Kimitoshi; Konishi, Tsuzumi; Hirai, Masaru; Kobayashi, Yutaka; Miyagawa, Tomoaki

    2017-02-01

    To assess the value of the Prostate Imaging Reporting and Data System (PI-RADS) scoring system, for prostate multi-parametric magnetic resonance imaging (mpMRI) to detect prostate cancer, and classical parameters, such as prostate-specific antigen (PSA) level, prostate volume and PSA density, for predicting biopsy outcome in biopsy naïve patients who have suspected prostate cancer. Patients who underwent mpMRI at our hospital, and who had their first prostate biopsy between July 2010 and April 2014, were analysed retrospectively. The prostate biopsies were taken transperineally under transrectal ultrasonography guidance. In all, 14 cores were biopsied as a systematic biopsy in all patients. Two cognitive fusion-targeted biopsy cores were added for each lesion in patients who had suspicious or equivocal lesions on mpMRI. The PI-RADS scoring system version 2.0 (PI-RADS v2) was used to describe the MRI findings. Univariate and multivariate analyses were performed to determine significant predictors of prostate cancer and clinically significant prostate cancer. In all, 288 patients were analysed. The median patient age, PSA level, prostate volume and PSA density were 69 years, 7.5 ng/mL, 28.7 mL, and 0.26 ng/mL/mL, respectively. The biopsy results were benign, clinically insignificant, and clinically significant prostate cancer in 129 (45%), 18 (6%) and 141 (49%) patients, respectively. The multivariate analysis revealed that PI-RADS v2 score and PSA density were independent predictors for prostate cancer and clinically significant prostate cancer. When PI-RADS v2 score and PSA density were combined, a PI-RADS v2 score of ≥4 and PSA density ≥0.15 ng/mL/mL, or PI-RADS v2 score of 3 and PSA density of ≥0.30 ng/mL/mL, was associated with the highest clinically significant prostate cancer detection rates (76-97%) on the first biopsy. Of the patients in this group with negative biopsy results, 22% were subsequently diagnosed as prostate cancer. In contrast, a PI

  12. Ensuring repeatability and robustness of poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id through covalent bonding to the column wall.

    PubMed

    Laaniste, Asko; Kruve, Anneli; Leito, Ivo

    2013-08-01

    Two different methods to reinforce the poly(glycidyl methacrylate-co-ethylene dimethacrylate) HPLC monolithic columns of 3 mm id in a glass column reservoir were studied: composite columns with polymeric particles in the monolith and surface treatment of the reservoir wall. Of the two methods used to counter the mechanical instability and formation of flow channels (composite columns and column wall surface treatment), we demonstrated that proper column wall surface treatment was sufficient to solve both problems. Our study also indicated that no surface treatment is efficient, and of the methods studied silanization in acidified ethanol solution and constant renewal of the reaction mixture (dynamic mode) proved to be the most effective. As a result of this study, we have been able to prepare repeatable and durable methacrylate HPLC columns with good efficiencies. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; Williams, M.; Restivo, M.

    All prior testing with SuperLig® 639 has been done with the aqueous concentration of LAW at ~5 M [Na+], where the resin sinks, and can be used in a conventional down-flow column orientation. However, the aqueous LAW stream from the Waste Treatment Plant is expected to be ~8 M [Na+]. The resin would float in this higher density liquid, potentially disrupting the ability to achieve a good decontamination due to poor packing of the resin that leads to channeling. Testing was completed with a higher salt concentration in the feed simulant (7.8 M [Na+]) in an engineering-scale apparatus with twomore » columns, each containing ~0.9 L of resin. Testing of this system used a simulant of the LAW solution, and substituted ReO4 - as a surrogate for TcO4 -. Results were then compared using computer modeling. Bench-scale testing was also performed, and examined an unconstrained resin bed, while engineering-scale tests used both constrained and unconstrained beds in a two-column, lead and lag sequential arrangement.« less

  14. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  15. The cortical column: a structure without a function

    PubMed Central

    Horton, Jonathan C; Adams, Daniel L

    2005-01-01

    This year, the field of neuroscience celebrates the 50th anniversary of Mountcastle's discovery of the cortical column. In this review, we summarize half a century of research and come to the disappointing realization that the column may have no function. Originally, it was described as a discrete structure, spanning the layers of the somatosensory cortex, which contains cells responsive to only a single modality, such as deep joint receptors or cutaneous receptors. Subsequently, examples of columns have been uncovered in numerous cortical areas, expanding the original concept to embrace a variety of different structures and principles. A ‘column’ now refers to cells in any vertical cluster that share the same tuning for any given receptive field attribute. In striate cortex, for example, cells with the same eye preference are grouped into ocular dominance columns. Unaccountably, ocular dominance columns are present in some species, but not others. In principle, it should be possible to determine their function by searching for species differences in visual performance that correlate with their presence or absence. Unfortunately, this approach has been to no avail; no visual faculty has emerged that appears to require ocular dominance columns. Moreover, recent evidence has shown that the expression of ocular dominance columns can be highly variable among members of the same species, or even in different portions of the visual cortex in the same individual. These observations deal a fatal blow to the idea that ocular dominance columns serve a purpose. More broadly, the term ‘column’ also denotes the periodic termination of anatomical projections within or between cortical areas. In many instances, periodic projections have a consistent relationship with some architectural feature, such as the cytochrome oxidase patches in V1 or the stripes in V2. These tissue compartments appear to divide cells with different receptive field properties into distinct

  16. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns.

    PubMed

    Dousset, S; Thevenot, M; Pot, V; Simunek, J; Andreux, F

    2007-12-07

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  17. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    NASA Astrophysics Data System (ADS)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  18. HPLC column-switching technique for sample preparation and fluorescence determination of propranolol in urine using fused-core columns in both dimensions.

    PubMed

    Satínský, Dalibor; Havlíková, Lucie; Solich, Petr

    2013-08-01

    A new and fast high-performance liquid chromatography (HPLC) column-switching method using fused-core columns in both dimensions for sample preconcentration and determination of propranolol in human urine has been developed. On-line sample pretreatment and propranolol preconcentration were performed on an Ascentis Express RP-C-18 guard column (5 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water (5:95, v/v) at a flow rate of 2.0 mL min(-1) and at a temperature of 50 °C. Valve switch from pretreatment column to analytical column was set at 4.0 min in a back-flush mode. Separation of propranolol from other endogenous urine compounds was achieved on the fused-core column Ascentis Express RP-Amide (100 × 4.6 mm), particle size, 2.7 μm, with mobile phase acetonitrile/water solution of 0.5% triethylamine, pH adjusted to 4.5 by means of glacial acetic acid (25:75, v/v), at a flow rate of 1.0 mL min(-1) and at a temperature of 50 °C. Fluorescence excitation/emission detection wavelengths were set at 229/338 nm. A volume of 1,500 μL of filtered urine sample solution was injected directly into the column-switching HPLC system. The total analysis time including on-line sample pretreatment was less than 8 min. The experimentally determined limit of detection of the method was found to be 0.015 ng mL(-1).

  19. Kinetic description of cyclotron-range oscillations of a non-neutral plasma column

    NASA Astrophysics Data System (ADS)

    Neu, S. C.; Morales, G. J.

    1998-04-01

    The kinetic analysis introduced by Prasad, Morales, and Fried [Prasad et al., Phys. Fluids 30, 3093 (1987)] is used to derive damping conditions and a differential equation for azimuthally propagating waves in a non-neutral plasma column in the limits rl/L≪1 and krl≪1 (where rl is the Larmor radius, k is the wave number, and L is the density scale length). The predictions of the kinetic analysis are verified using a two-dimensional particle-in-cell simulation of Bernstein modes in a thermal rigid-rotor equilibrium. Differences between modes in a strongly magnetized limit and near the Brillouin limit are studied in the simulation.

  20. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  1. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is subdivided...

  2. 46 CFR 174.085 - Flooding on column stabilized units.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Flooding on column stabilized units. 174.085 Section 174... Units § 174.085 Flooding on column stabilized units. (a) Watertight compartments that are outboard of... of the unit, must be assumed to be subject to flooding as follows: (1) When a column is subdivided...

  3. Gas chromatographic column for the storage of sample profiles

    NASA Technical Reports Server (NTRS)

    Dimandja, J. M.; Valentin, J. R.; Phillips, J. B.

    1994-01-01

    The concept of a sample retention column that preserves the true time profile of an analyte of interest is studied. This storage system allows for the detection to be done at convenient times, as opposed to the nearly continuous monitoring that is required by other systems to preserve a sample time profile. The sample storage column is essentially a gas chromatography column, although its use is not the separation of sample components. The functions of the storage column are the selective isolation of the component of interest from the rest of the components present in the sample and the storage of this component as a function of time. Using octane as a test substance, the sample storage system was optimized with respect to such parameters as storage and readout temperature, flow rate through the storage column, column efficiency and storage time. A 3-h sample profile was collected and stored at 30 degrees C for 20 h. The profile was then retrieved, essentially intact, in 5 min at 130 degrees C.

  4. 9. Detail view of columns on first floor. This row ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view of columns on first floor. This row of columns indicates the former location of the exterior mill wall before World War II era expansion. The unusual column and beam connection was a key part of the mill structural system patented by Providence, Rhode Island engineers Charles Praray and Charles Makepeace in 1894. Each column was originally located in the apex of triangular window bay, but not connected to the exterior wall. Modifications on the right side of each column support the beams of the addition. - Dixie Cotton Mill, 710 Greenville Street, La Grange, Troup County, GA

  5. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.

  6. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  7. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  8. Sodium ion transport mechanisms in antiperovskite electrolytes Na 3OBr and Na 4OI 2: An in Situ neutron diffraction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less

  9. Sodium ion transport mechanisms in antiperovskite electrolytes Na 3OBr and Na 4OI 2: An in Situ neutron diffraction study

    DOE PAGES

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...

    2016-06-02

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less

  10. The Litho-Density tool calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, D.; Flaum, C.; Marienbach, E.

    1983-10-01

    The Litho-Density tool (LDT) uses a gamma ray source and two NaI scintillator detectors for borehole measurement of electron density, p/SUB e/, and a quantity, P/SUB e/, which is related to the photoelectric cross section at 60 keV and therefore to the lithology of the formation. An active stabilization system controls the gains of the two detectors which permits selective gamma-ray detection. Spectral analysis is performed in the near detector (2 energy windows) and in the detector farther away from the source (3 energy windows). This paper describes the results of laboratory measurements undertaken to define the basic tool response.more » The tool is shown to provide reliable measurements of formation density and lithology under a variety of environmental conditions.« less

  11. Insight to the Thermal Decomposition and Hydrogen Desorption Behaviors of NaNH2-NaBH4 Hydrogen Storage Composite.

    PubMed

    Pei, Ziwei; Bai, Ying; Wang, Yue; Wu, Feng; Wu, Chuan

    2017-09-20

    The lightweight compound material NaNH 2 -NaBH 4 is regarded as a promising hydrogen storage composite due to the high hydrogen density. Mechanical ball milling was employed to synthesize the composite NaNH 2 -NaBH 4 (2/1 molar ratio), and the samples were investigated utilizing thermogravimetric-differential thermal analysis-mass spectroscopy (TG-DTA-MS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The full-spectrum test (range of the ratio of mass to charge: 0-200) shows that the released gaseous species contain H 2 , NH 3 , B 2 H 6 , and N 2 in the heating process from room temperature to 400 °C, and possibly the impurity gas B 6 H 12 also exists. The TG/DTA analyses show that the composite NaNH 2 -NaBH 4 (2/1 molar ratio) is conductive to generate hydrogen so that the dehydrogenation process can be finished before 400 °C. Moreover, the thermal decomposition process from 200 to 400 °C involves two-step dehydrogenation reactions: (1) Na 3 (NH 2 ) 2 BH 4 hydride decomposes into Na 3 BN 2 and H 2 (200-350 °C); (2) remaining Na 3 (NH 2 ) 2 BH 4 reacts with NaBH 4 and Na 3 BN 2 , generating Na, BN, NH 3 , N 2 , and H 2 (350-400 °C). The better mechanism understanding of the thermal decomposition pathway lays a foundation for tailoring the hydrogen storage performance of the composite complex hydrides system.

  12. On-column reduction of catecholamine quinones in stainless steel columns during liquid chromatography.

    PubMed

    Xu, R; Huang, X; Kramer, K J; Hawley, M D

    1995-10-10

    The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.

  13. Effects of Irregular Bridge Columns and Feasibility of Seismic Regularity

    NASA Astrophysics Data System (ADS)

    Thomas, Abey E.

    2018-05-01

    Bridges with unequal column height is one of the main irregularities in bridge design particularly while negotiating steep valleys, making the bridges vulnerable to seismic action. The desirable behaviour of bridge columns towards seismic loading is that, they should perform in a regular fashion, i.e. the capacity of each column should be utilized evenly. But, this type of behaviour is often missing when the column heights are unequal along the length of the bridge, allowing short columns to bear the maximum lateral load. In the present study, the effects of unequal column height on the global seismic performance of bridges are studied using pushover analysis. Codes such as CalTrans (Engineering service center, earthquake engineering branch, 2013) and EC-8 (EN 1998-2: design of structures for earthquake resistance. Part 2: bridges, European Committee for Standardization, Brussels, 2005) suggests seismic regularity criterion for achieving regular seismic performance level at all the bridge columns. The feasibility of adopting these seismic regularity criterions along with those mentioned in literatures will be assessed for bridges designed as per the Indian Standards in the present study.

  14. Reliability assessment of slender concrete columns at the stability failure

    NASA Astrophysics Data System (ADS)

    Valašík, Adrián; Benko, Vladimír; Strauss, Alfred; Täubling, Benjamin

    2018-01-01

    The European Standard for designing concrete columns within the use of non-linear methods shows deficiencies in terms of global reliability, in case that the concrete columns fail by the loss of stability. The buckling failure is a brittle failure which occurs without warning and the probability of its formation depends on the columns slenderness. Experiments with slender concrete columns were carried out in cooperation with STRABAG Bratislava LTD in Central Laboratory of Faculty of Civil Engineering SUT in Bratislava. The following article aims to compare the global reliability of slender concrete columns with slenderness of 90 and higher. The columns were designed according to methods offered by EN 1992-1-1 [1]. The mentioned experiments were used as basis for deterministic nonlinear modelling of the columns and subsequent the probabilistic evaluation of structural response variability. Final results may be utilized as thresholds for loading of produced structural elements and they aim to present probabilistic design as less conservative compared to classic partial safety factor based design and alternative ECOV method.

  15. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water.

    PubMed

    Guzmán-Duque, Fernando L; Palma-Goyes, Ricardo E; González, Ignacio; Peñuela, Gustavo; Torres-Palma, Ricardo A

    2014-08-15

    Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If idensity (i(lim)), CV is mainly degraded by OH radicals, whereas if i>i(lim), generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl(-) and BDD/SO4(2-) systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO4(2-) and IrO2/Cl(-) systems is favored at low and high current densities, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Trisodium citrate, Na 3 (C 6 H 5 O 7 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rammohan, Alagappa; Kaduk, James A.

    2016-05-10

    The crystal structure of anhydrous trisodium citrate, Na 3(C 6H 5O 7), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory (DFT). There are two independent five-coordinate Na +and one six-coordinate Na +cations in the asymmetric unit. The [NaO 5] and [NaO 6] polyhedra share edges and corners to form a three-dimensional framework. There are channels parallel to theaandbaxes in which the remainder of the citrate anions reside. The only hydrogen bonds are an intramolecular one between the hydroxy group and one of the terminal carboxylate O atoms and an intermolecular onemore » between a methylene group and the hydroxyl O atom.« less

  17. Prediction of axial limit capacity of stone columns using dimensional analysis

    NASA Astrophysics Data System (ADS)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  18. Critical factors in displacement ductility assessment of high-strength concrete columns

    NASA Astrophysics Data System (ADS)

    Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali

    2017-12-01

    Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/ A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.

  19. Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor

    NASA Astrophysics Data System (ADS)

    Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.

    2018-01-01

    Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.

  20. Estimating 40 years of nitrogen deposition in global biomes using the SCIAMACHY NO2 column

    USGS Publications Warehouse

    Lu, Xuehe; Zhang, Xiuying; Liu, Jinxun; Jin, Jiaxin

    2016-01-01

    Owing to human activity, global nitrogen (N) cycles have been altered. In the past 100 years, global N deposition has increased. Currently, the monitoring and estimating of N deposition and the evaluation of its effects on global carbon budgets are the focus of many researchers. NO2 columns retrieved by space-borne sensors provide us with a new way of exploring global N cycles and these have the ability to estimate N deposition. However, the time range limitation of NO2 columns makes the estimation of long timescale N deposition difficult. In this study we used ground-based NOx emission data to expand the density of NO2columns, and 40 years of N deposition (1970–2009) was inverted using the multivariate linear model with expanded NO2 columns. The dynamic of N deposition was examined in both global and biome scales. The results show that the average N deposition was 0.34 g N m–2 year–1 in the 2000s, which was an increase of 38.4% compared with the 1970s’. The total N deposition in different biomes is unbalanced. N deposition is only 38.0% of the global total in forest biomes; this is made up of 25.9%, 11.3, and 0.7% in tropical, temperate, and boreal forests, respectively. As N-limited biomes, there was little increase of N deposition in boreal forests. However, N deposition has increased by a total of 59.6% in tropical forests and croplands, which are N-rich biomes. Such characteristics may influence the effects on global carbon budgets.

  1. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  2. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments.

    PubMed

    Mellage, Adrian; Smeaton, Christina M; Furman, Alex; Atekwana, Estella A; Rezanezhad, Fereidoun; Van Cappellen, Philippe

    2018-02-20

    Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate. A biomass-explicit diffusion-reaction model is fitted to the experimental biogeochemical data. Overall, the results highlight that (1) the temporal response of the measured imaginary conductivity peaks parallels the microbial growth and decay dynamics in the columns, and (2) SIP is sensitive to changes in microbial abundance and cell surface charging properties, even at relatively low cell densities (<10 8 cells mL -1 ). Relaxation times (τ) derived using the Cole-Cole model vary with the dominant electron accepting process, nitrate or ferric iron reduction. The observed range of τ values, 0.012-0.107 s, yields effective polarization diameters in the range 1-3 μm, that is, 2 orders of magnitude smaller than the smallest quartz grains in the columns, suggesting that polarization of the bacterial cells controls the observed chargeability and relaxation dynamics in the experiments.

  3. BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications

    NASA Astrophysics Data System (ADS)

    Won, Sung Sik; Kawahara, Masami; Kuhn, Lindsay; Venugopal, Vineeth; Kwak, Jiyeon; Kim, Ill Won; Kingon, Angus I.; Kim, Seung-Hyun

    2017-04-01

    Environmentally benign lead-free ferroelectric (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 (KNMN) thin film capacitors with a small concentration of a BiFeO3 (BF) dopant were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. 6 mol. % BF-doped KNMN thin films showed very slim hysteresis loops with high maximum and near-zero remanent polarization values due to a phase transition from the orthorhombic structure to the pseudo-cubic structure. Increasing the electric field up to 2 MV/cm, the total energy storage density (Jtotal), the effective recoverable energy density (Jeff), and the energy conversion efficiency (η) of lead-free KNMN-BF thin film capacitors were 31.0 J/cm3, 28.0 J/cm3, and 90.3%, respectively. In addition, these thin film capacitors exhibited a fast discharge time of a few μs and a high temperature stability up to 200 °C, proving their strong potential for high energy density storage and conversion applications.

  4. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...

  5. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...

  6. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...

  7. 29 CFR 1926.756 - Beams and columns.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) General. (1) During the final placing of solid web structural members, the load shall not be released from... bracing. Solid web structural members used as diagonal bracing shall be secured by at least one bolt per... (.46 m) from the extreme outer face of the column in each direction at the top of the column shaft. (e...

  8. Utilization of O4 slant column density to derive aerosol layer height from a spaceborne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.

    2015-03-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.

  9. Cross flow cyclonic flotation column for coal and minerals beneficiation

    DOEpatents

    Lai, Ralph W.; Patton, Robert A.

    2000-01-01

    An apparatus and process for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophillic tailings.

  10. Numerical Simulation using VolcFlow for Pyroclastic Density Currents by Explosive Eruption of Mt. Baekdu, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Chang, C.

    2015-12-01

    It is the numerical simulation using a VolcFlow model to determine the runout range of pyroclastic density currents where an eruption column had been formed by the explosive Plinian eruption and the collapse of the column had caused to occur on Mt. Baekdu. We assumed that the most realistic way for the simulation of a sustained volcanic column is to modify the topography with a cone above the crater to follow expert advice from Dr. Karim Kelfoun, the developer of VolcFlow. Then we set the radius and height of the cone, the volume of pyroclastic flow, and the duration and simulation time accoding to the volcanic explosivity index (VEI). Also we set the yield stress as 5,000 Pa, 10,000 Pa, 15,000 Pa, the basal friction angle as 3°, 5°, 10°, respectively. As the simulation results, the longest runout range was 2.3 km, 9.1 km, 14.4 km, 18.6 km, 23.4 km from VEI 3 to VEI 7, respectively. It can be used as a very important material to predict the impact range of pyroclastic density currents and to minimize human and material damages caused by pyroclastic density currents derived from the future explosive eruption of Mt. Baekdu. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  11. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  12. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  13. 24. DETAIL VIEW OF COLUMN #072 DEVIATING FROM VERTICAL IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW OF COLUMN #072 DEVIATING FROM VERTICAL IN ROW OF INTACT COLUMNS, LOOKING NORTHEAST TO SOUTHWEST. (NOTE BOLTED BLOCK SCABBED TO COLUMN AS JOIST/TRUSS SUPPORT) - Oakland Army Base, Transit Shed, East of Dunkirk Street & South of Burma Road, Oakland, Alameda County, CA

  14. Hemifield columns co-opt ocular dominance column structure in human achiasma.

    PubMed

    Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S

    2018-01-01

    In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Aluminum manganese oxides with mixed crystal structure: high-energy-density cathodes for rechargeable sodium batteries.

    PubMed

    Han, Dong-Wook; Ku, Jun-Hwan; Kim, Ryoung-Hee; Yun, Dong-Jin; Lee, Seok-Soo; Doo, Seok-Gwang

    2014-07-01

    We report a new discovery for enhancing the energy density of manganese oxide (Nax MnO2 ) cathode materials for sodium rechargeable batteries by incorporation of aluminum. The Al incorporation results in NaAl(0.1) Mn(0.9) O2 with a mixture of tunnel and layered crystal structures. NaAl(0.1) Mn(0.9) O2 shows a much higher initial discharge capacity and superior cycling performance compared to pristine Na(0.65) MnO2 . We ascribe this enhancement in performance to the formation of a new orthorhombic layered NaMnO2 phase merged with a small amount of tunnel Na(0.44) MnO2 phase in NaAl(0.1) Mn(0.9) O2 , and to improvements in the surface stability of the NaAl(0.1) Mn(0.9) O2 particles caused by the formation of Al-O bonds on their surfaces. Our findings regarding the phase transformation and structure stabilization induced by incorporation of aluminum, closely related to the structural analogy between orthorhombic Na(0.44) MnO2 and NaAl(0.1) Mn(0.9) O2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-field fMRI unveils orientation columns in humans.

    PubMed

    Yacoub, Essa; Harel, Noam; Ugurbil, Kâmil

    2008-07-29

    Functional (f)MRI has revolutionized the field of human brain research. fMRI can noninvasively map the spatial architecture of brain function via localized increases in blood flow after sensory or cognitive stimulation. Recent advances in fMRI have led to enhanced sensitivity and spatial accuracy of the measured signals, indicating the possibility of detecting small neuronal ensembles that constitute fundamental computational units in the brain, such as cortical columns. Orientation columns in visual cortex are perhaps the best known example of such a functional organization in the brain. They cannot be discerned via anatomical characteristics, as with ocular dominance columns. Instead, the elucidation of their organization requires functional imaging methods. However, because of insufficient sensitivity, spatial accuracy, and image resolution of the available mapping techniques, thus far, they have not been detected in humans. Here, we demonstrate, by using high-field (7-T) fMRI, the existence and spatial features of orientation- selective columns in humans. Striking similarities were found with the known spatial features of these columns in monkeys. In addition, we found that a larger number of orientation columns are devoted to processing orientations around 90 degrees (vertical stimuli with horizontal motion), whereas relatively similar fMRI signal changes were observed across any given active column. With the current proliferation of high-field MRI systems and constant evolution of fMRI techniques, this study heralds the exciting prospect of exploring unmapped and/or unknown columnar level functional organizations in the human brain.

  17. Instrument for the measurement and determination of chemical pulse column parameters

    DOEpatents

    Marchant, Norman J.; Morgan, John P.

    1990-01-01

    An instrument for monitoring and measuring pneumatic driving force pulse parameters applied to chemical separation pulse columns obtains real time pulse frequency and root mean square amplitude values, calculates column inch values and compares these values against preset limits to alert column operators to the variations of pulse column operational parameters beyond desired limits.

  18. A peptide affinity column for the identification of integrin alpha IIb-binding proteins.

    PubMed

    Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh

    2008-03-01

    To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.

  19. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.

    PubMed

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-10

    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6mm C18 bonded silica-based monolithic column, a 150 mm x 4.6mm column packed with 2.7 microm porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6mm column packed with 3 microm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  20. A Dual-Stimuli-Responsive Sodium-Bromine Battery with Ultrahigh Energy Density.

    PubMed

    Wang, Faxing; Yang, Hongliu; Zhang, Jian; Zhang, Panpan; Wang, Gang; Zhuang, Xiaodong; Cuniberti, Gianaurelio; Feng, Xinliang

    2018-06-01

    Stimuli-responsive energy storage devices have emerged for the fast-growing popularity of intelligent electronics. However, all previously reported stimuli-responsive energy storage devices have rather low energy densities (<250 Wh kg -1 ) and single stimuli-response, which seriously limit their application scopes in intelligent electronics. Herein, a dual-stimuli-responsive sodium-bromine (Na//Br 2 ) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br 2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg -1 , which outperforms those for the state-of-the-art stimuli-responsive electrochemical energy storage devices. This work offers a promising approach for designing multi-stimuli-responsive and high-energy rechargeable batteries without sacrificing the electrochemical performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Time-lapse 3D imaging of calcite precipitation in a microporous column

    NASA Astrophysics Data System (ADS)

    Godinho, Jose R. A.; Withers, Philip J.

    2018-02-01

    Time-lapse X-ray computed tomography is used to image the evolution of calcite precipitation during flow through microporous quartz over the course of 400 h. The growth rate decreases by more than seven times, which is linked to the clogging of flow paths that restricts flow to some regions of the column. Fewer precipitates are observed as a function of column depth, which is found to be related to a differential nucleation density along the sample. A higher nucleation density closer to the inlet implies more crystal volume increase per unit of time without affecting the rate if normalized to the surface area of crystals. Our overall growth rates measured in porous media are orders of magnitude slower than growth rates derived from traditional precipitation experiments on free surfaces. Based on our time-lapse results we hypothesize a scenario where the evolving distribution of precipitates within a pore structure during precipitation progressively modifies the local transport through the pores. Within less permeable regions the saturation index may be lower than along the main flow paths. Therefore, the reactive crystal surfaces within those regions grow at a slower rate than that expected from the bulk fluid composition. Since the amount of reactive surface area within these less permeable regions increases over time, the overall growth rate decreases without a necessary significant change of the bulk fluid composition along more permeable flow paths. In conclusion, the overall growth rates in an evolving porous media expected from bulk fluid compositions alone can be overestimated due to the development of stagnant sub-regions where the reactive surface area is bath by a solution with lower saturation index. In this context we highlight the value of time-lapse 3D studies for understanding the dynamics of mineral precipitation in porous media.

  2. Simultaneous lidar observation of peculiar sporadic K and Na layers at São José dos Campos (23.1°S, 45.9°W), Brazil

    NASA Astrophysics Data System (ADS)

    Jiao, Jing; Yang, Guotao; Cheng, Xuewu; Liu, Zhengkuan; Wang, Jihong; Yan, Zhenzhong; Wang, Chi; Batista, Paulo; Pimenta, Alexandre; Andrioli, Vânia; Denardini, C. M.

    2018-04-01

    We present the first simultaneous observation of mesopause sodium (Na) and potassium (K) layer by a lidar which has Na and K channel simultaneously at the South Hemisphere site, São José dos Campos (23.1°S, 45.9°W). Measurements reported here were conducted on two nights with 3.5 and 8 h of observations in November 2016. On 20 November 2016, sporadic layers in both Na and K layer occurred above 100 km, and the higher layers corresponded well with sporadic E (Es) layer. And the density of Na at 100-105 km is higher than that at main layer around 90 km, but K density around 100 km is at least 3 times smaller compared with the K density around 90 km for the similar period. On 21 November 2016, both sporadic layers occurred in main layer height with obvious descending variations with time, which seems like tidal induced. Notably, the peak K/Na ratio slowly increased with time. And Na layer and K layer showed different processes along with time with K density reaching its maximum 1 h later than that of Na. Correlations of Na/K density, Es, and winds were also discussed.

  3. Loading properties of porous layered capillary columns with sorbents of different natures

    NASA Astrophysics Data System (ADS)

    Patrushev, Y. V.; Nikolaeva, O. A.; Sidelnikov, V. N.

    2017-04-01

    Loading properties are studied for the commercial porous layered capillary columns GASPRO, Rt-Q-BOND, and for columns with porous layers based on the divinylbenzene-vinylimidazole copolymer (DVB-VIm), poly(trimethylsilyl)propyn (PTMSP) and ordered silica of the MCM-41 type. It is shown that the loading capacity of a column based on MCM-41 is 5-10 times higher than in the other considered columns. The loading properties of porous layered columns and columns for gas-liquid chromatography are compared.

  4. Cadmium removal in a biosorption column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volesky, B.; Prasetyo, I.

    New biosorbent material derived from a ubiquitous brown marine alga Ascophyllum nodosum has been examined in packed-bed flow-through sorption columns. It effectively removed 10 mg/L of cadmium down to 1.5 ppb levels in the effluent, representing 99.985% removal. The experimental methodology used was based on the early Bohart and Adams sorption model, resulting in quantitative determination of the characteristic process parameters which can be used for performance comparison and process design. An average metal loading of the biosorbent (N[sub 0]) determined was 30 mg Cd/g, corresponding closely to that observed for the batch equilibrium metal concentration of 10 mg Cd/L.more » The critical bed depth (D[sub min]) for the potable water effluent quality standard varied with the column feed flow rate from 20 to 50 cm. The sorption column mass transfer and dispersion coefficients were determined, which are also required for solving the sorption model equations.« less

  5. THE COLUMN DENSITY DISTRIBUTION AND CONTINUUM OPACITY OF THE INTERGALACTIC AND CIRCUMGALACTIC MEDIUM AT REDSHIFT (z) = 2.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at (z) = 2.4. Using Voigt profile fits to the full Ly{alpha} and Ly{beta} forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14{approx}< log (N{sub H{sub I}}/cm{sup -2}){approx}<17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than inmore » the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N{sub H{sub I}} absorbers than low-N{sub H{sub I}} absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N{sub H{sub I}}/cm{sup -2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N{sub H{sub I}}/cm{sup -2})>17.2 requires a broken power law parameterization of the frequency distribution with a break near N{sub H{sub I}} Almost-Equal-To 10{sup 15} cm{sup -2}. We compute new estimates of the mean free path ({lambda}{sub mfp}) to hydrogen-ionizing photons at z{sub em} = 2.4, finding {lambda}{sub mfp} = 147 {+-} 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to {lambda}{sub mfp} = 121 {+-} 15 Mpc. These {lambda}{sub mfp} measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background

  6. VizieR Online Data Catalog: HI4PI spectra and column density maps (HI4PI team+, 2016)

    NASA Astrophysics Data System (ADS)

    Hi4PI Collaboration; Ben Bekhti, N.; Floeer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M. R.; Dedes, L.; Ford, H. A.; Gibson, B. K.; Haud, U.; Janowiecki, S.; Kalberla, P. M. W.; Lockman, F. J.; McClure-Griffiths, N. M.; Murphy, T.; Nakanishi, H.; Pisano, D. J.; Staveley-Smith, L.

    2016-09-01

    The HI4PI data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s0°; -470km/scolumn density distribution, both, in a (1) HealPIX-grid binary table (nside=1024, Galactic coordinates, Ring indexing scheme), and (2) Standard FITS 2D images in four map projections, AIT, CAR, MOL, and SFL. Various velocity intervals were applied to calculate NHI. Equatorial and Galactic coordinate systems are provided. (16 data files).

  7. Characterization of retentivity of reversed phase liquid chromatography columns.

    PubMed

    Ying, P T; Dorsey, J G

    1991-03-01

    There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".

  8. Seismic performance of recycled concrete-filled square steel tube columns

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  9. HPLC separation of triacylglycerol positional isomers on a polymeric ODS column.

    PubMed

    Kuroda, Ikuma; Nagai, Toshiharu; Mizobe, Hoyo; Yoshimura, Nobuhito; Gotoh, Naohiro; Wada, Shun

    2008-07-01

    A polymeric ODS column was applied to the resolution of triacylglycerol positional isomers (TAG-PI), i.e. 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), with a recycle HPLC system. To investigate the ODS column species and the column temperatures for the resolution of a TAG-PI pair, a mixture of OPO and OOP was subjected to an HPLC system equipped with a non-endcapped polymeric, endcapped monomeric, endcapped intermediate, or non-endcapped monomeric ODS column at three different column temperatures (40, 25, or 10 degrees C). Only the non-endcapped polymeric ODS column achieved the separation of OPO and OOP, and the lowest column temperature (10 degrees C) showed the best resolution for them. The other pair of TAG-PI, a mixture of 1,3-dipalmitoyl-2-oleoyl-glycerol (POP) and 1,2-dipalmitoyl-3-oleoyl-rac-glycerol (PPO) was also subjected to the system equipped with a non-endcapped polymeric or monomeric ODS column at five different column temperatures (40, 32, 25, 17, and 10 degrees C). Thus, POP and PPO were also separated on only the non-endcapped polymeric ODS column at 25 degrees C. However, no clear peak appeared at 10 degrees C. These results would indicate that the polymeric ODS stationary phase has an ability to recognize the structural differences between TAG-PI pairs. Also, the column temperature is a very important factor for separating the TAG-PI pair, and the optimal temperature would relate to the solubility of TAG-PI in the mobile phase. Furthermore, the recycle HPLC system provided measurements for the separation and analysis of TAG-PI pairs.

  10. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip.

    PubMed

    Yin, Hongfeng; Killeen, Kevin; Brennen, Reid; Sobek, Dan; Werlich, Mark; van de Goor, Tom

    2005-01-15

    Current nano-LC/MS systems require the use of an enrichment column, a separation column, a nanospray tip, and the fittings needed to connect these parts together. In this paper, we present a microfabricated approach to nano-LC, which integrates these components on a single LC chip, eliminating the need for conventional LC connections. The chip was fabricated by laminating polyimide films with laser-ablated channels, ports, and frit structures. The enrichment and separation columns were packed using conventional reversed-phase chromatography particles. A face-seal rotary valve provided a means for switching between sample loading and separation configurations with minimum dead and delay volumes while allowing high-pressure operation. The LC chip and valve assembly were mounted within a custom electrospray source on an ion-trap mass spectrometer. The overall system performance was demonstrated through reversed-phase gradient separations of tryptic protein digests at flow rates between 100 and 400 nL/min. Microfluidic integration of the nano-LC components enabled separations with subfemtomole detection sensitivity, minimal carryover, and robust and stable electrospray throughout the LC solvent gradient.

  11. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict themore » densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.« less

  12. MgO-templated carbon as a negative electrode material for Na-ion capacitors

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Soneda, Yasushi

    2016-12-01

    In this study, MgO-templated carbon with different pore structures was investigated as a negative electrode material for Na-ion capacitors. With increasing the Brunauer-Emmett-Teller surface area, the irreversible capacity increased, and the coulombic efficiency of the 1st cycle decreased because of the formation of solid electrolyte interface layers. MgO-templated carbon annealed at 1000 °C exhibited the highest capacity and best rate performance, suggesting that an appropriate balance between surface area and crystallinity is imperative for fast Na-ion storage, attributed to the storage mechanism: combination of non-faradaic electric double-layer capacitance and faradaic Na intercalation in the carbon layers. Finally, a Na-ion capacitor cell using MgO-templated carbon and activated carbon as the negative and positive electrodes, respectively, exhibited an energy density at high power density significantly greater than that exhibited by the cell using a commercial hard carbon negative electrode.

  13. A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns

    NASA Astrophysics Data System (ADS)

    Michaud-Dubuy, Audrey; Carazzo, Guillaume; Kaminski, Edouard; Girault, Frédéric

    2018-05-01

    Explosive volcanic eruptions produce high-velocity turbulent jets that can form either a stable buoyant Plinian column or a collapsing fountain producing pyroclastic density currents (PDC). Determining the source conditions leading to these extreme regimes is a major goal in physical volcanology. Classically, the regime boundary is defined as the critical eruptive mass discharge rate (MDR) before collapse for a given amount of free gas in the eruptive mixture (free gas + pyroclasts) at the vent. Previous studies have shown that an agreement between theory and field data can be achieved in two different frameworks: (i) by accounting for the effect of gas entrapment in large pumice fragments, which lowers the effective gas content, depending on the total grain-size distribution (TGSD) of pyroclastic fragments, or (ii) by accounting for the reduction of turbulent entrainment at the base of the volcanic column due to its negative buoyancy. Here, we aim at combining these two using a 1D model of volcanic column that includes sedimentation to follow the evolution of the TGSD. In powerful (≥ 107 kg s-1) Plinian eruptions, the loss of particles by sedimentation acts as to decrease the load of particles during the plume rise, which favors the formation of a stable column. In this case, we obtain that coarse TGSD promote the formation of stable plumes, a result at odds with the predictions of models considering gas entrapment in large pyroclastic fragments. To interpret this conclusion, we reconsider the effect of gas entrapment and show that in general, it has a dominant role on column collapse compared to particle sedimentation, and hinders the formation of buoyant columns. This drastic effect is reduced when incorporating open porosity, e.g. by considering that some bubbles inside a fragment are connected to the exterior. The characteristics of the PDC produced by column collapse are then predicted as a function of the TGSD and MDR at the source. We further test the

  14. Quantitative analysis of cell columns in the cerebral cortex.

    PubMed

    Buxhoeveden, D P; Switala, A E; Roy, E; Casanova, M F

    2000-04-01

    We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.

  15. Progress in Electron Beam Mastering of 100 Gbit/inch2 Density Disc

    NASA Astrophysics Data System (ADS)

    Takeda, Minoru; Furuki, Motohiro; Yamamoto, Masanobu; Shinoda, Masataka; Saito, Kimihiro; Aki, Yuichi; Kawase, Hiroshi; Koizumi, Mitsuru; Miyokawa, Toshiaki; Mutou, Masao; Handa, Nobuo

    2004-07-01

    We developed an electron beam recorder (EBR) capable of recording master discs under atmospheric conditions using a novel differential pumping head. Using the EBR and optimized fabrication process for Si-etched discs with reactive ion etching (RIE), a bottom signal jitter of 9.6% was obtained from a 36 Gbit/inch2 density disc, readout using a near-field optical pickup with an effective numerical aperture (NA) of 1.85 and a wavelength of 405 nm. We also obtained the eye patterns from a 70 Gbit/inch2 density disc readout using an optical pickup with a 2.05 NA and the same wavelength, and showed almost the same modulation ratio as the simulation value. Moreover, the capability of producing pit patterns corresponding to a 104 Gbit/inch2 density is demonstrated.

  16. Buckling analysis of non-prismatic columns based on modified vibration modes

    NASA Astrophysics Data System (ADS)

    Rahai, A. R.; Kazemi, S.

    2008-10-01

    In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.

  17. Demonstration of motionless Knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors.

    PubMed

    Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong

    2011-10-21

    This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.

  18. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, B. H.; Liu, Y.; Chang, Z.; Yang, Y. Q.; Wen, Z. B.; Wu, Y. P.; Holze, R.

    2014-05-01

    Nanowire Na0.35MnO2 was prepared by a simple and low energy consumption hydrothermal method; its electrochemical performance as a cathode material for aqueous asymmetric supercapacitors in Na2SO4 solution was investigated. Due to the nanowire structure its capacitance (157 F g-1) is much higher than that of the rod-like Na0.95MnO2 (92 F g-1) from solid phase reaction although its sodium content is lower. When it is assembled into an asymmetric aqueous supercapacitor using activated carbon as the counter electrode and aqueous 0.5 mol L-1 Na2SO4 electrolyte solution, the nanowire Na0.35MnO2 shows an energy density of 42.6 Wh kg-1 at a power density of 129.8 W kg-1 based on the total weight of the two electrode material, higher than those for the rod-like Na0.95MnO2, with an energy density of 27.3 Wh kg-1 at a power density of 74.8 W kg-1, and that of LiMn2O4. The new material presents excellent cycling behavior even when dissolved oxygen is not removed from the electrolyte solution. The results hold great promise for practical applications of this cathode material since sodium is much cheaper than lithium and its natural resources are rich.

  19. Rapid column heating method for subcritical water chromatography.

    PubMed

    Fogwill, Michael O; Thurbide, Kevin B

    2007-01-19

    A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC. Data from the current study demonstrate that the maximum column heating rate attainable in a typical SWC apparatus (i.e. using a GC convection oven) is around 10 degrees C/min, even at instrument oven settings of over three times this value. Conversely, by wrapping the separation column with ceramic insulation and a resistively heated wire, the column heating rates are increased five-fold. As a result, elution times can be greatly decreased in SWC employing gradients. Separations of standard alcohol test mixtures demonstrate that the retention time of the latest eluting component decreases by 35 to 50% using the prototype method. Additionally, solute retention times in this mode deviate by less than 1% RSD over several trials, which compares very well to those obtained using a conventional GC convection oven. Results suggest that the developed method can be a useful alternative heating technique in SWC.

  20. OMI satellite observed formaldehyde column from 2006 to 2015 over Xishuangbanna, southwest China, and validation using ground based zenith-sky DOAS.

    PubMed

    Liu, Rui; Feng, Tao; Wang, Shanshan; Shi, Chanzhen; Guo, Yanlin; Nan, Jialiang; Deng, Yun; Zhou, Bin

    2018-02-01

    Formaldehyde (HCHO) provides a proxy to reveal the isoprene and biogenic volatile organic compounds emission which plays important roles in atmospheric chemical process and climate change. The ground-based observation with zenith-sky DOAS is carried out in order to validate the HCHO columns from OMI. It has a good correlation of 0.71678 between the HCHO columns from two sources. Then we use the OMI HCHO columns from January 2006 to December 2015 to indicate the interannual variation and spatial distribution in Xishuangbanna. The HCHO concentration peaks appeared in March or April for each year significantly corresponding to the intensive fire counts at the same time, which illustrate that the high HCHO columns are strongly influenced by the biomass burning in spring. Temperature and precipitation are also the important influence factors in the seasonal variation when there is nearly no biomass burning. The spatial patterns over the past ten years strengthen the deduction from the temporal variation and show the relationship with land cover and land use, elevation and population density. It is concluded that the biogenic activity plays a role in controlling the background level of HCHO in Xishuangbanna, while biomass burning is the main driving force of high HCHO concentration. And forests are greater contributor to HCHO rather than rubber trees which cover over 20% of the land in the region. Moreover, uncertainties from HCHO slant column retrieval and AMFs calculation are discussed in detail. Copyright © 2017. Published by Elsevier B.V.

  1. Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions.

    PubMed

    Knepp, T; Pippin, M; Crawford, J; Chen, G; Szykman, J; Long, R; Cowen, L; Cede, A; Abuhassan, N; Herman, J; Delgado, R; Compton, J; Berkoff, T; Fishman, J; Martins, D; Stauffer, R; Thompson, A M; Weinheimer, A; Knapp, D; Montzka, D; Lenschow, D; Neil, D

    Total-column nitrogen dioxide (NO 2 ) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO 2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO 2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO 2 ) is briefly explored. The SO 2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO 2 concentrations are typically much higher.

  2. The Column Strength of Two Extruded Aluminum-Alloy H-Sections

    NASA Technical Reports Server (NTRS)

    Osgood, William R; Holt, Marshall

    1939-01-01

    Extruded aluminum-alloy members of various cross sections are used in aircraft as compression members either singly or as stiffeners for aluminum-alloy sheet. In order to design such members, it is necessary to know their column strength or, in the case of stiffeners, the value of the double modulus, which is best obtained for practical purposes from column tests. Column tests made on two extruded h-sections are described, and column formulas and formulas for the ratio of the double modulus to Young's modulus, based on the tests, are given.

  3. Internet delivered question and answer column for patients with schizophrenia.

    PubMed

    Maijala, Riikka; Anttila, Minna; Koivunen, Marita; Pitkänen, Anneli; Kuosmanen, Lauri; Välimäki, Maritta

    2015-01-01

    The purpose of this study was to describe the use of an Internet delivered question and answer column among patients with schizophrenia. The column was developed for research purposes. The study sample consisted of patients (N = 100) admitted to acute inpatient psychiatric care in two hospital districts. Descriptive data were collected from the column to which a nurse replied within 3 days and analysed using qualitative content analysis. The column had four to five questions weekly. The most common age of users was 18-24 years, and the gender distribution was almost equal. Column use was heaviest among students (44%) and least among unemployed people (19%). Out of 85 questions or comments sent to the column, 25 (29%) were related to program training and the remaining 60 (71%) were related to medication (31%), illness and tests (25%), other questions or comments (9%), daily life and coping with it (4%), and places to receive treatment (2%). An Internet delivered question and answer column can be included in the care of patients with schizophrenia. However, it requires a new type of basic and additional education in the field of mental health care in order for nurses to be able to provide nursing via the Internet forum.

  4. Trend analysis of tropospheric NO2 column density over East Asia during 2000-2010: multi-satellite observations and model simulations with the updated REAS emission inventory

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Irie, H.; Kurokawa, J.; Ohara, T.

    2013-04-01

    Satellite observations of the tropospheric NO2 vertical column density (VCD) are closely correlated to surface NOx emissions and can thus be used to estimate the latter. In this study, the NO2 VCDs simulated by a regional chemical transport model with data from the updated Regional Emission inventory in ASia (REAS) version 2.1 were validated by comparison with multi-satellite observations (GOME, SCIAMACHY, GOME-2, and OMI) between 2000 and 2010. Rapid growth in NO2 VCD driven by expansion of anthropogenic NOx emissions was revealed above the central eastern China region, except during the economic downturn. In contrast, slightly decreasing trends were captured above Japan. The modeled NO2 VCDs using the updated REAS emissions reasonably reproduced the annual trends observed by multi-satellites, suggesting that the NOx emissions growth rate estimated by the updated inventory is robust. On the basis of the close linear relationship of modeled NO2 VCD, observed NO2 VCD, and anthropogenic NOx emissions, the NOx emissions in 2009 and 2010 were estimated. It was estimated that the NOx emissions from anthropogenic sources in China beyond doubled between 2000 and 2010, reflecting the strong growth of anthropogenic emissions in China with the rapid recovery from the economic downturn during late 2008 and mid-2009.

  5. Latching mechanism for deployable/re-stowable columns useful in satellite construction

    NASA Technical Reports Server (NTRS)

    Ahl, E. L., Jr. (Inventor)

    1986-01-01

    A column longeron latch assembly provides the securing mechanism for the deployable, telescoping column of a hoop/column antenna. The column is an open lattice structure with three longerons disposed 120 deg apart as the principle load bearing member. The column is deployed from a pair of eleven nested bays disposed on opposite sides of a center section under the influence of a motor-cable-pulley system. The longeron latch is a four bar linkage mechanism using the over-center principle for automatically locking the longeron sections into position during deployment. The latch is unlocked when the antenna is to be restowed. A spring pack disposed in the end of each longeron serves to absorb stress forces on the deployed column through the cam head piston and abutting latch from an adjacent longeron.

  6. Measurement of the eddy diffusion term in chromatographic columns. I. Application to the first generation of 4.6mm I.D. monolithic columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2011-08-05

    The corrected heights equivalent to a theoretical plate (HETP) of three 4.6mm I.D. monolithic Onyx-C(18) columns (Onyx, Phenomenex, Torrance, CA) of different lengths (2.5, 5, and 10 cm) are reported for retained (toluene, naphthalene) and non-retained (uracil, caffeine) small molecules. The moments of the peak profiles were measured according to the accurate numerical integration method. Correction for the extra-column contributions was systematically applied. The peak parking method was used in order to measure the bulk diffusion coefficients of the sample molecules, their longitudinal diffusion terms, and the eddy diffusion term of the three monolithic columns. The experimental results demonstrate that the maximum efficiency was 60,000 plates/m for retained compounds. The column length has a large impact on the plate height of non-retained species. These observations were unambiguously explained by a large trans-column eddy diffusion term in the van Deemter HETP equation. This large trans-rod eddy diffusion term is due to the combination of a large trans-rod velocity bias (≃3%), a small radial dispersion coefficient in silica monolithic columns, and a poorly designed distribution and collection of the sample streamlets at the inlet and outlet of the monolithic rod. Improving the performance of large I.D. monolithic columns will require (1) a detailed knowledge of the actual flow distribution across and along these monolithic rod and (2) the design of appropriate inlet and outlet distributors designed to minimize the nefarious impact of the radial flow heterogeneity on band broadening. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Reliability of a four-column classification for tibial plateau fractures.

    PubMed

    Martínez-Rondanelli, Alfredo; Escobar-González, Sara Sofía; Henao-Alzate, Alejandro; Martínez-Cano, Juan Pablo

    2017-09-01

    A four-column classification system offers a different way of evaluating tibial plateau fractures. The aim of this study is to compare the intra-observer and inter-observer reliability between four-column and classic classifications. This is a reliability study, which included patients presenting with tibial plateau fractures between January 2013 and September 2015 in a level-1 trauma centre. Four orthopaedic surgeons blindly classified each fracture according to four different classifications: AO, Schatzker, Duparc and four-column. Kappa, intra-observer and inter-observer concordance were calculated for the reliability analysis. Forty-nine patients were included. The mean age was 39 ± 14.2 years, with no gender predominance (men: 51%; women: 49%), and 67% of the fractures included at least one of the posterior columns. The intra-observer and inter-observer concordance were calculated for each classification: four-column (84%/79%), Schatzker (60%/71%), AO (50%/59%) and Duparc (48%/58%), with a statistically significant difference among them (p = 0.001/p = 0.003). Kappa coefficient for intr-aobserver and inter-observer evaluations: Schatzker 0.48/0.39, four-column 0.61/0.34, Duparc 0.37/0.23, and AO 0.34/0.11. The proposed four-column classification showed the highest intra and inter-observer agreement. When taking into account the agreement that occurs by chance, Schatzker classification showed the highest inter-observer kappa, but again the four-column had the highest intra-observer kappa value. The proposed classification is a more inclusive classification for the posteromedial and posterolateral fractures. We suggest, therefore, that it be used in addition to one of the classic classifications in order to better understand the fracture pattern, as it allows more attention to be paid to the posterior columns, it improves the surgical planning and allows the surgical approach to be chosen more accurately.

  8. Tuning a Parallel Segmented Flow Column and Enabling Multiplexed Detection.

    PubMed

    Pravadali-Cekic, Sercan; Kocic, Danijela; Hua, Stanley; Jones, Andrew; Dennis, Gary R; Shalliker, R Andrew

    2015-12-15

    Active flow technology (AFT) is new form of column technology that was designed to overcome flow heterogeneity to increase separation performance in terms of efficiency and sensitivity and to enable multiplexed detection. This form of AFT uses a parallel segmented flow (PSF) column. A PSF column outlet end-fitting consists of 2 or 4 ports, which can be multiplexed to connect up to 4 detectors. The PSF column not only allows a platform for multiplexed detection but also the combination of both destructive and non-destructive detectors, without additional dead volume tubing, simultaneously. The amount of flow through each port can also be adjusted through pressure management to suit the requirements of a specific detector(s). To achieve multiplexed detection using a PSF column there are a number of parameters which can be controlled to ensure optimal separation performance and quality of results; that is tube dimensions for each port, choice of port for each type of detector and flow adjustment. This protocol is intended to show how to use and tune a PSF column functioning in a multiplexed mode of detection.

  9. Satellite-observed NO2, SO2, and HCHO Vertical Column Densities in East Asia: Recent Changes and Comparisons with Regional Model

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Kim, S.; Mok, J.; Yoo, H. L.; Bae, C.; Kim, B. U.; Lim, Y. K.; Woo, J. H.; Park, R.

    2015-12-01

    This study reports the recent changes in tropospheric NO2, SO2, and HCHO vertical column densities (VCD) in East Asia observed from multiple satellites, highlighting especially the annual trend changes of NO2 and SO2 over Beijing-Tianjin-Hebei (BTH) region of China since 2010. Tropospheric VCD data from Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and GOME-2, retrieved from the Royal Netherlands Meteorological Institute (KNMI) and OMI National Aeronautics and Space Administration (NASA) standard products, are utilized to investigate the annual trends of NO2, SO2, and HCHO VCDs from 2001 to 2015. They are also compared with simulations from Community Multi-scale Air Quality Model (CMAQ) based forecast system by the Integrated Multi-scale Air Quality System for Korea (IMAQS-K) of Ajou University. Until 2011, the changes in NO2 VCD over East Asian countries agree well with the findings of previous research, including the impact of the economic downturn during 2008-2009 and the subsequent quick recovery in China. After peaking in 2011, the NO2 VCD observations from active instruments (OMI and GOME-2) over China started to show a slower decreasing trend, mostly led by the rapid changes in the BTH region in northern China. On the other hand, SO2 started to decline earlier, from 2007, but inclined back from 2010 to 2012, and then back to declining trend since 2012. While satellite observations show dramatic recent changes, the model could not reproduce those changes mostly due to its use of fixed emission inventory. We conclude that rapid update of latest emission inventory is necessary for an accurate forecast of regional air quality in east Asia, especially for upcoming international sports events in PyeongChang (Korea), Tokyo (Japan) and Beijing (China) in 2018, 2020 and 2022, respectively.

  10. Ground-penetrating radar evidence of refrozen meltwater in the firn column of Larsen C Ice Shelf

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Booth, A. D.; Sevestre, H.; Kulessa, B.; Bevan, S. L.; Luckman, A. J.; Kuipers Munneke, P.; Buzzard, S. C.; Ashmore, D. W.; O'Leary, M.

    2017-12-01

    Firn densification, which has been strongly implicated in ice shelf collapse, can occur rapidly by the percolation and refreezing of surface meltwater. This process reduces the permeability of the firn column, potentially establishing a positive feedback between densification and the occurrence of surface meltwater ponds, and may ultimately facilitate fracturing associated with shelf collapse. Meltwater ponds on Larsen C's Cabinet (CI) and Whirlwind (WI) inlets form where foehn winds reach and influence the shelf surface. While associated zones of refrozen meltwater are strongly evidenced in borehole optical televiewing (OPTV) and seismic refraction data, the sparsity of these observations limits insight into the dimensions of these zones. Here, we present highlights from an 800-km archive of ground-penetrating radar (GPR) profiles acquired by the MIDAS project on CI and WI during November-December 2015. In the upstream reaches of CI and WI, stratified firn layers are abruptly truncated by zones of diminished GPR reflectivity. These initiate 5 m beneath the surface and extend to a depth of 30 m. Volumes appear to exceed 6 km3 (CI) and 1 km3 (WI); these are underestimates, established only where there is GPR control. The horizontal distribution of these zones correlates with the pattern of reduced backscatter in SAR images, supporting their association with meltwater ponds. GPR reflectivity models, derived from OPTV density trends, suggest reduced GPR wavespeeds (as do GPR velocity analyses) and dielectric contrasts consistent with homogenised and densified firn. A firn density model supports the ability of meltwater ponds to form periodically in Cabinet Inlet and subsequently homogenise the density of the firn column. Our observations suggest that ice shelves affected by surface melt and ponding can contain spatially extensive bodies of ice that are warmer and denser than assumed so far, with significant implications for ice shelf flow and fracturing.

  11. Developmental mechanisms of intervertebral disc and vertebral column formation.

    PubMed

    Lawson, Lisa Y; Harfe, Brian D

    2017-11-01

    The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common malady affecting the vertebral column includes disc degeneration and associated back pain. Indeed, recent reports estimate that low back pain is the number one cause of disability worldwide. Our review provides an overview of the molecular mechanisms underlying vertebral column morphogenesis and intervertebral disc development and maintenance, with an emphasis on what has been gleaned from recent genetic studies in mice. The aim of this review is to provide a developmental framework through which vertebral column formation can be understood so that ultimately, research scientists and clinicians alike can restore disc health with appropriately designed gene and cell-based therapies. WIREs Dev Biol 2017, 6:e283. doi: 10.1002/wdev.283 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  12. Cellular organization of cortical barrel columns is whisker-specific

    PubMed Central

    Meyer, Hanno S.; Egger, Robert; Guest, Jason M.; Foerster, Rita; Reissl, Stefan; Oberlaender, Marcel

    2013-01-01

    The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related “barrel” columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic “barreloid” varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles. PMID:24101458

  13. Method to fabricate silicon chromatographic column comprising fluid ports

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.; Heller, Edwin J.; Adkins, Douglas R.

    2004-03-02

    A new method for fabricating a silicon chromatographic column comprising through-substrate fluid ports has been developed. This new method enables the fabrication of multi-layer interconnected stacks of silicon chromatographic columns.

  14. Fisheries Aspects of Seamounts and Taylor Columns

    DTIC Science & Technology

    1986-09-01

    the armorhead population. Due to a probable combination of overfishing and poor recruitment, the large fishery of the early 1970’s began a rapid...ACCESSION NO T I TLE (include Security Classification) FISHERIES ASPECTS OF SEAMOUNTS AND TAYLOR COLUMNS 2 PERSONAL AUTHOR(S) Brainard, Russell E. 13a...retention Seamount oceanography Taylor column Fisheries Nutrient enrichment 𔄃 3ASTRACT (Continue on reverse of necessary and identify by block number

  15. Commander prepares glass columns for electrophoresis experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Jack Lousma prepares on of the glass columns for the electrophoresis test in the middeck area of the Columbia. The experiment, deployed in an L-shaped mode in upper right corner, consists of the processing unit with glass columns in which the separation takes place; a camera (partially obscurred by Lousma's face) to document the process; and a cryogenic freezer to freeze and store the samples after separation.

  16. Topographic shear and the relation of ocular dominance columns to orientation columns in primate and cat visual cortex.

    PubMed

    Wood, Richard J.; Schwartz, Eric L.

    1999-03-01

    Shear has been known to exist for many years in the topographic structure of the primary visual cortex, but has received little attention in the modeling literature. Although the topographic map of V1 is largely conformal (i.e. zero shear), several groups have observed topographic shear in the region of the V1/V2 border. Furthermore, shear has also been revealed by anisotropy of cortical magnification factor within a single ocular dominance column. In the present paper, we make a functional hypothesis: the major axis of the topographic shear tensor provides cortical neurons with a preferred direction of orientation tuning. We demonstrate that isotropic neuronal summation of a sheared topographic map, in the presence of additional random shear, can provide the major features of cortical functional architecture with the ocular dominance column system acting as the principal source of the shear tensor. The major principal axis of the shear tensor determines the direction and its eigenvalues the relative strength of cortical orientation preference. This hypothesis is then shown to be qualitatively consistent with a variety of experimental results on cat and monkey orientation column properties obtained from optical recording and from other anatomical and physiological techniques. In addition, we show that a recent result of Das and Gilbert (Das, A., & Gilbert, C. D., 1997. Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature, 387, 594-598) is consistent with an infinite set of parameterized solutions for the cortical map. We exploit this freedom to choose a particular instance of the Das-Gilbert solution set which is consistent with the full range of local spatial structure in V1. These results suggest that further relationships between ocular dominance columns, orientation columns, and local topography may be revealed by experimental testing.

  17. Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography.

    PubMed

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-07-22

    A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Impact of different fertilizers on carbonate weathering in a typical karst area, Southwest China: a field column experiment

    NASA Astrophysics Data System (ADS)

    Song, Chao; Liu, Changli; Han, Guilin; Liu, Congqiang

    2017-09-01

    Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, is strongly influenced by agricultural fertilization, since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH. Different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as yet not well-known. In this study, a field column experiment was conducted to explore the response of carbonate weathering to the addition of different fertilizers. We compared 11 different treatments, including a control treatment, using three replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of soil-filled columns. The results show that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased carbonate weathering, which was attributed to the nitrification of NH4+. The addition of Ca3(PO4)2, Ca-Mg-P and K2CO3 induced carbonate precipitation due to the common ion effect. The addition of (NH4)3PO4 and NaNO3 had a relatively small impact on carbonate weathering in comparison to those five NH4-based fertilizers above. The results of NaNO3 treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in an overestimation of the impact of N fertilizer on CO2 consumption by carbonate weathering on the regional/global scale if the effects of NO3 and NH4 are not distinguished.

  19. Magnetism in Na-filled Fe-based skutterudites

    DOE PAGES

    Xing, Guangzong; Fan, Xiaofeng; Zheng, Weitao; ...

    2015-06-01

    The interplay of superconductivity and magnetism is a subject of ongoing interest, stimulated most recently by the discovery of Fe-based superconductivity and the recognition that spin-fluctuations near a magnetic quantum critical point may provide an explanation for the superconductivity and the order parameter. We investigate magnetism in the Na filled Fe-based skutterudites using first principles calculations. NaFe 4Sb 12 is a known ferromagnet near a quantum critical point. We find a ferromagnetic metallic state for this compound driven by a Stoner type instability, consistent with prior work. In accord with prior work, the magnetization is overestimated, as expected for amore » material near an itinerant ferromagnetic quantum critical point. NaFe 4P 12 also shows a ferromagnetic instability at the density functional level, but this instability is much weaker than that of NaFe 4Sb 12, possibly placing it on the paramagnetic side of the quantum critical point. NaFe 4As 12 shows intermediate behavior. We also present results for skutterudite FeSb 3, which is a metastable phase that has been reported in thin film form.« less

  20. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  1. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.

    PubMed

    McCasland, J S; Woolsey, T A

    1988-12-22

    Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization

  2. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  3. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  4. Local buckling of composite channel columns

    NASA Astrophysics Data System (ADS)

    Szymczak, Czesław; Kujawa, Marcin

    2018-05-01

    The investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic material modelling are performed: the homogenization with the aid of theory of mixture and periodicity cell or homogenization upon the Voigt-Reuss hypothesis. The fundamental differential equation of local buckling is derived with the aid of the stationary total potential energy principle. The critical buckling stress corresponding to a number of buckling half-waves is assumed to be a minimum eigenvalue of the equation. Some numerical examples dealing with columns are given here. The analytical results are compared with the finite element stability analysis carried out by means of ABAQUS software. The paper is focused on a close analytical solution of the critical buckling stress and the associated buckling mode while the web-flange cooperation is assumed.

  5. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  6. Acoustic emission of retrofitted fiber-wrapped columns

    NASA Astrophysics Data System (ADS)

    El Echary, Hazem; Mirmiran, Amir

    1998-03-01

    In recent years, fiber-wrapping technique has become increasingly popular for retrofitting of existing bridge pier columns in seismic zones. By the way of confinement, the external jacket enhances strength, ductility and shear performance of the column. However, since state of the concrete core is not visible from outside of the jacket, it is of great necessity to develop proper non-destructive methods to evaluate structural integrity of the column. Extensive research on FRP-confined concrete at the University of Central Florida has shown that failure of such hybrid columns is often accompanied by considerable audible and sub-audible noise, making acoustic emission (AE) a viable NDE technique for retrofitted columns. Acoustic emission from fiber-wrapped concrete specimens were monitored. A total of 24 concrete specimens with two types of construction (bonded and unbonded) and four different number of layers (1, 3, 5 and 7) were tested under uniaxial compression. All specimens were made of S-glass fabric and polyester resin with a core diameter of 6' and a length of 12'. Some of the specimens were subjected to cycles of loading and unloading to examine the presence of the Kaiser and the Felicity effects. A 4-channel AEDSP-32/16 (Mistras-2001) machine from Physical Acoustics Corp. was used for the experiments. Results indicate that AE energy and the number of AE counts can both be good representatives for the response of confined concrete. Further, plots of AE energy versus load follows the same bilinear trend that has been observed in the stress-strain response of such specimens. Finally, Felicity effect was observed in all composite specimens.

  7. Fiber-based monolithic columns for liquid chromatography.

    PubMed

    Ladisch, Michael; Zhang, Leyu

    2016-10-01

    Fiber-based monoliths for use in liquid chromatographic separations are defined by columns packed with aligned fibers, woven matrices, or contiguous fiber structures capable of achieving rapid separations of proteins, macromolecules, and low molecular weight components. A common denominator and motivating driver for this approach, first initiated 25 years ago, was reducing the cost of bioseparations in a manner that also reduced residence time of retained components while achieving a high ratio of mass to momentum transfer. This type of medium, when packed into a liquid chromatography column, minimized the fraction of stagnant liquid and resulted in a constant plate height for non-adsorbing species. The uncoupling of dispersion from eluent flow rate enabled the surface chemistry of the stationary phase to be considered separately from fluid transport phenomena and pointed to new ways to apply chemistry for the engineering of rapid bioseparations. This paper addresses developments and current research on fiber-based monoliths and explains how the various forms of this type of chromatographic stationary phase have potential to provide new tools for analytical and preparative scale separations. The different stationary phases are discussed, and a model that captures the observed constant plate height as a function of mobile phase velocity is reviewed. Methods that enable hydrodynamically stable fiber columns to be packed and operated over a range of mobile phase flow rates, together with the development of new fiber chemistries, are shown to provide columns that extend the versatility of liquid chromatography using monoliths, particularly at the preparative scale. Graphical Abstract Schematic representation of a sample mixture being separated by a rolled-stationary phase column, resulting separated peaks shown in the chromatogram.

  8. 16S rRNA Gene Survey of Microbial Communities in Winogradsky Columns

    PubMed Central

    Rundell, Ethan A.; Banta, Lois M.; Ward, Doyle V.; Watts, Corey D.; Birren, Bruce; Esteban, David J.

    2014-01-01

    A Winogradsky column is a clear glass or plastic column filled with enriched sediment. Over time, microbial communities in the sediment grow in a stratified ecosystem with an oxic top layer and anoxic sub-surface layers. Winogradsky columns have been used extensively to demonstrate microbial nutrient cycling and metabolic diversity in undergraduate microbiology labs. In this study, we used high-throughput 16s rRNA gene sequencing to investigate the microbial diversity of Winogradsky columns. Specifically, we tested the impact of sediment source, supplemental cellulose source, and depth within the column, on microbial community structure. We found that the Winogradsky columns were highly diverse communities but are dominated by three phyla: Proteobacteria, Bacteroidetes, and Firmicutes. The community is structured by a founding population dependent on the source of sediment used to prepare the columns and is differentiated by depth within the column. Numerous biomarkers were identified distinguishing sample depth, including Cyanobacteria, Alphaproteobacteria, and Betaproteobacteria as biomarkers of the soil-water interface, and Clostridia as a biomarker of the deepest depth. Supplemental cellulose source impacted community structure but less strongly than depth and sediment source. In columns dominated by Firmicutes, the family Peptococcaceae was the most abundant sulfate reducer, while in columns abundant in Proteobacteria, several Deltaproteobacteria families, including Desulfobacteraceae, were found, showing that different taxonomic groups carry out sulfur cycling in different columns. This study brings this historical method for enrichment culture of chemolithotrophs and other soil bacteria into the modern era of microbiology and demonstrates the potential of the Winogradsky column as a model system for investigating the effect of environmental variables on soil microbial communities. PMID:25101630

  9. Semi-volatiles at Mercury: Sodium (Na) and potassium (K)

    NASA Technical Reports Server (NTRS)

    Sprague, A.

    1994-01-01

    Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.

  10. A Column Dispersion Experiment.

    ERIC Educational Resources Information Center

    Corapcioglu, M. Y.; Koroglu, F.

    1982-01-01

    Crushed glass and a Rhodamine B solution are used in a one-dimensional optically scanned column experiment to study the dispersion phenomenon in porous media. Results indicate that the described model gave satisfactory results and that the dispersion process in this experiment is basically convective. (DC)

  11. Innovation of Iron Reinforcing Column of Partical From Frame of Light Steel

    NASA Astrophysics Data System (ADS)

    Ramadhan, M. R.; Faslih, A.; Umar, M. Z.

    2018-05-01

    Almost half of houses in Indonesia are using lightweight steel roof truss today. The phenomenon in the field is that lightweight steel roof truss can blend with mortar mixture. Thus this phenomenon is captured for later applied dynamically, creatively, and innovatively with new idioms such as reinforcement for columns. This research aims to investigate the comparison of the way of making and the price of the materials between the column material made of the light steel and the column material made of the iron reinforcement which is the most efficient. Type of research is qualitative with a comparative causal approach. This research is divided into several stages, namely; Literature study, column creation, and validation. This study concluds that the manufacture of column material from reinforcement is more efficient, than the lightweight steel column material. The reinforcement column material is more efficient because of the more effective way of making and the price of the working materials more economical than the lightweight steel column material. Lightweight steel columns can be used for public housing on condition made by experienced craftsmen to make the process faster, and the dimensions of lightweight steel can be scaled down to make it more economical.

  12. Neutron camera employing row and column summations

    DOEpatents

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  13. Seeking New Submissions for the Student Connections Column

    ERIC Educational Resources Information Center

    Klotz, Mary Beth; Frank, Michael; McLendon, Katherine E.

    2017-01-01

    Student Connections is a long-running monthly column in Communiqué that provides a platform for students to share perspectives and experiences from their graduate school training. Many of the columns have had a broader application and are of interest to both seasoned practitioners and graduate educators. Articles for Student Connections are…

  14. Positive column of a glow discharge in neon with charged dust grains (a review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less

  15. Sustainable materials used as stone column filler: A short review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    Stone columns (also known as granular piles) are one of the methods for soft soil stabilization and typically used to increase bearing capacity and stability of slope.; Apart from decreasing the compressibility of loose and fine graded soils, it also accelerates the consolidation effect by improving the drainage path for pore water pressure dissipation and reduces the liquefaction potential of soils during earthquake event. Stone columns are probably the most “natural” ground treatment method or foundation system in existence to date. The benefit of stone columns is owing to the partial replacement of compressible soil by more competent materials such as stone aggregate, sand and other granular materials. These substitutes also act as reinforcement material, hence increasing overall strength and stiffness of the soft soil. Nowadays, a number of research has been conducted on the behaviour and performance of stone columns with various materials utilized as column filler replacing the normal aggregate. This paper will review extensively on previously conducted research on some of the materials used as stone column backfill materials, its suitability and the effectiveness as a substitute for regular aggregates in soft soil improvement works.

  16. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    PubMed

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  17. Comparison of twin-cell centrifugal partition chromatographic columns with different cell volume.

    PubMed

    Goll, Johannes; Audo, Gregoire; Minceva, Mirjana

    2015-08-07

    Two twin-cell centrifugal partition chromatographic columns (SCPC 250 and SCPE-250-BIO, Armen Instrument, France) with the same column volume but different cell size and number were compared in terms of stationary phase retention and column efficiency. The columns were tested with two types of solvent systems: a commonly used organic solvent based biphasic system from the ARIZONA solvent system family and a polymer/salt based aqueous two phase system (ATPS). The efficiency of the columns was evaluated by pulse injection experiments of two benzenediols (pyrocatechol and hydroquinone) in the case of the ARIZONA system and a protein mixture (myoglobin and lysozyme) in the case of the ATPS. As result of high stationary phase retention, the column with the lower number of larger twin-cells (SCPE-250-BIO) is suitable for protein separations using ATPS. On the other hand, due to higher column efficiency, the column with the greater number of smaller cells (SCPC 250) is superior for batch elution separations performed with standard liquid-liquid chromatography organic solvent based biphasic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ˜175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  19. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation.

    PubMed

    Hammoud, S; Liu, L; Carrell, D T

    2009-04-01

    Fertile males express two forms of sperm nuclear proteins, protamine 1 (P1) and protamine 2 (P2), in roughly equal quantities, whereas some infertile men have been shown to have a reduction in protamine content and an increase in the level of histones retained in mature sperm. In this study, we assessed histone and protamine levels in spermatozoa isolated from different layers of a density gradient centrifugation column to evaluate the nuclear protein content of the sperm population selected. Protamine levels were measured using acid gel electrophoresis and immunofluorescence, and the percentage of cells retaining histones was evaluated using aniline staining and immunofluorescence. Our data suggests that there is an inverse correlation between P1/P2 ratio and the level of histone expression in the different layers of the density gradient. Paradoxically, the 90% layer had a lower P1/P2 ratio, which corresponded with an increase in histone expression. It is concluded that although the sperm population selected in the 90% layer of the density gradient columns had a lower P1/P2 ratio, it was yet similar to the P1/P2 ratio observed in previously screened fertile donors.

  20. Some results of hemosorption columns development and usage in Czechoslovakia.

    PubMed

    Kálal, J; Tlustáková, M

    Hemoperfusion columns packed with active charcoal and a synthetic resin have been manufactured in Czechoslovakia since 1983. In both cases the sorption packings are coated with a layer of poly(2-hydroxyethyl methacrylate). The columns are manufactured in two sizes: for adults (800 ml) and for children (400 ml). The manufacturer is OPS Kolín: the number of columns manufactured so far is 3400.

  1. Behavior of chemicals in the seawater column by shadowscopy

    NASA Astrophysics Data System (ADS)

    Fuhrer, Mélanie; Aprin, Laurent; Le Floch, Stéphane; Slangen, Pierre; Dusserre, Gilles

    2012-10-01

    Ninety percent of the Global Movement of Goods transit by ship. The transportation of HNS (Hazardous and Noxious Substances) in bulk highly increases with the tanker traffic. The huge volume capacities induce a major risk of accident involving chemicals. Among the latest accidents, many have led to vessels sinking (Ievoli Sun, 2000 - ECE, 2006). In case of floating substances, liquid release in depth entails an ascending two phase flow. The visualization of that flow is complex. Indeed, liquid chemicals have mostly a refractive index close to water, causing difficulties for the assessment of the two phase medium behavior. Several physics aspects are points of interest: droplets characterization (shape evolution and velocity), dissolution kinetics and hydrodynamic vortices. Previous works, presented in the 2010 Speckle conference in Brazil, employed Dynamic Speckle Interferometry to study Methyl Ethyl Ketone (MEK) dissolution in a 15 cm high and 1 cm thick water column. This paper deals with experiments achieved with the Cedre Experimental Column (CEC - 5 m high and 0.8 m in diameter). As the water thickness has been increased, Dynamic Speckle Interferometry results are improved by shadowscopic measurements. A laser diode is used to generate parallel light while high speed imaging records the products rising. Two measurements systems are placed at the bottom and the top of the CEC. The chemical class of pollutant like floaters, dissolvers (plume, trails or droplets) has been then identified. Physics of the two phase flow is presented and shows up the dependence on chemicals properties such as interfacial tension, viscosity and density. Furthermore, parallel light propagation through this disturbed medium has revealed trailing edges vortices for some substances (e.g. butanol) presenting low refractive index changes.

  2. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  3. Study on Predicting Axial Load Capacity of CFST Columns

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.

    2017-11-01

    This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.

  4. Sperm Na+, K+-ATPase and Ca2+-ATPase activity: A preliminary study of comparison of swim up and density gradient centrifugation methods for sperm preparation

    NASA Astrophysics Data System (ADS)

    Lestari, Silvia W.; Larasati, Manggiasih D.; Asmarinah, Mansur, Indra G.

    2018-02-01

    As one of the treatment for infertility, the success rate of Intrauterine Insemination (IUI) is still relatively low. Several sperm preparation methods, swim-up (SU) and the density-gradient centrifugation (DGC) are frequently used to select for better sperm quality which also contribute to IUI failure. Sperm selection methods mainly separate the motile from the immotile sperm, eliminating the seminal plasma. The sperm motility involves the structure and function of sperm membrane in maintaining the balance of ion transport system which is regulated by the Na+, K+-ATPase, and Ca2+-ATPase enzymes. This study aims to re-evaluate the efficiency of these methods in selecting for sperm before being used for IUI and based the evaluation on sperm Na+,K+-ATPase and Ca2+-ATPase activities. Fourteen infertile men from couples who underwent IUI were involved in this study. The SU and DGC methods were used for the sperm preparation. Semen analysis was performed based on the reference value of World Health Organization (WHO) 2010. After isolating the membrane fraction of sperms, the Na+, K+-ATPase activity was defined as the difference in the released inorganic phosphate (Pi) with and without the existence of 10 mM ouabain in the reaction, while the Ca2+-ATPase was determined as the difference in Pi contents with and without the existence of 55 µm CaCl2. The prepared sperm demonstrated a higher percentage of motile sperm compared to sperm from the whole semen. Additionally, the percentage of motile sperm of post-DGC showed higher result than the sperm from post-SU. The velocity of sperm showed similar pattern with the percentage of motile sperm, in which the velocity of prepared sperm was higher than the sperm from whole semen. Furthermore, the sperm velocity of post-DGC was higher compared to the sperm from post-SU. The Na+, K+-ATPase activity of prepared sperm was higher compared to whole semen, whereas Na+, K+-ATPase activity in the post DGC was higher than post SU. The Ca2

  5. Effects of sodium hydroxide (NaOH) solution concentration on fly ash-based lightweight geopolymer

    NASA Astrophysics Data System (ADS)

    Ibrahim, W. M. W.; Hussin, K.; Abdullah, M. M. A.; Kadir, A. A.; Deraman, L. M.

    2017-09-01

    In this study, the effects of NaOH concentration on properties of fly ash-based lightweight geopolymer were investigated. Lightweight geopolymer was produced using fly ash as source materials and synthetic foaming agents as air entraining agent. The alkaline solutions used in this study are combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solution. Different molarities of NaOH solution (6M, 8M, 10M, 12M, and 14M) are taken for preparation of 50 x 50 x 50 mm cubes of lightweight geopolymer. The ratio of fly ash/alkaline solution, Na2SiO3/NaOH solution, foaming agent/water and foam/geopolymer paste were kept constant at 2.0, 2.5, 1:10 and 1:1 respectively. The samples were cured at 80°C for 24 hours and left at room temperature for tested at 7 days of ageing. Physical and mechanical properties such as density, water absorption, compressive strength and microstructure property were determined from the cube dried samples. The results show that the NaOH molarity had effects on the properties of lightweight geopolymer with the optimum NaOH molarity found is 12M due to the high strength of 15.6 MPa, lower water absorption (7.3%) and low density (1440 kg/m3). Microstructure analysis shows that the lightweight geopolymer contain some porous structure and unreacted fly ash particles remains.

  6. Repair of earthquake damaged bridge columns with fractured bars.

    DOT National Transportation Integrated Search

    2013-07-01

    The objective of this study is to repair three, half-scale RC bridge columns that will be tested to failure under slow cyclic loading. : These columns will have fractured longitudinal and transverse steel. The ultimate goal is to develop repair metho...

  7. COLUMN EXPERIMENTS AND ANOMALOUS CONDUCTIVITY IN HYDROCARBON-IMPACTED SOILS

    EPA Science Inventory

    A laboratory experiment was designed to increase the understanding of the geoelectric effects of microbial " degradation of hydrocarbons. Eight large columns were were paired to provide a replicate of each of four experiments. These large-volume columns contained "sterilized" soi...

  8. Column experiments on organic micropollutants - applications and limitations

    NASA Astrophysics Data System (ADS)

    Banzhaf, Stefan; Hebig, Klaus

    2016-04-01

    As organic micropollutants become more and more ubiquitous in the aquatic environment, a sound understanding of their fate and transport behaviour is needed. This is to assure both safe and clean drinking water supply for mankind in the future and to protect the aquatic environment from pollution and negative consequences caused by manmade contamination. Apart from countless field studies, column experiments were and are frequently used to study transport of organic micropollutants. As the transport of (organic) solutes in groundwater is controlled by the chemical and physical properties of the compounds, the solvent (the groundwater including all solutes), and the substrate (the aquifer material), the adjustment and control of these boundary conditions allow to study a multitude of different experimental setups and to address specific research questions. The main purpose, however, remains to study the transport of a specific compound and its sorption and degradation behaviour in a specific sediment or substrate. Apart from the effective control of the individual boundary conditions, the main advantage of columns studies compared to other experimental setups (such as field studies, batch/microcosm studies), is that conservative and reactive solute breakthrough curves are obtained, which represent the sum of the transport processes. The analysis of these curves is well-developed and established. Additionally, limitations of this experimental method are presented here: the effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) plays a major role in contrast to batch experiments, in which all processes will be observed until equilibrium is reached in the substrate-solution-system. Slightly modifying boundary conditions in different experiments have a strong influence on transport and degradation behaviour of organic micropollutants. This is a significant severe issue when it comes to general findings on the

  9. View of a Water Column on the lead track towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of a Water Column on the lead track towards the Roundhouse. A corner of the Boiler Shop is on the left, and behind the column is the Carpenter Shop. The Water Column could swing over the track 90 degrees to line up with the Tender's Water Hatch - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  10. View of a Water Column on the lead track towards ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of a Water Column on the lead track towards the Roundhouse. A corner of the Boiler Shop is on the left, and behind the Column is the Carpenter Shop. The Water Column could swing over the track 90 degrees to line up with the Tender's Water Hatch - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  11. Survey of simulation methods for modeling pulsed sieve-plate extraction columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, L.

    1979-03-01

    The report first considers briefly the use of liquid-liquid extraction in nuclear fuel reprocessing and then describes the operation of the pulse column. Currently available simulation models of the column are reviewed, and followed by an analysis of the information presently available from which the necessary parameters can be obtained for use in a model of the column. Finally, overall conclusions are given regarding the information needed to develop an accurate model of the column for materials accountability in fuel reprocessing plants. 156 references.

  12. The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum.

    PubMed

    Aparicio, M-Auxiliadora; Saldaña, Enrique

    2014-03-01

    The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108-13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name "tectal longitudinal column" also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the "ventral tectal longitudinal column (TLCv)", and the newly discovered nucleus termed the "dorsal tectal longitudinal column (TLCd)". This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.

  13. Hypotonic stimulation of the Na+ active transport in frog skeletal muscle: role of the cytoskeleton

    PubMed Central

    Venosa, R A

    2003-01-01

    Hypotonicity produces a marked activation of the Na+ pump in frog sartorius muscle. The increase in net Na+ efflux under hypotonic conditions occurs despite the reductions in [Na+]i that are due to fibre swelling and Na+ loss. The pump density (ouabain binding) increases not only upon reduction of the medium osmotic pressure (π) from its normal value (π= 1) to one-half (π= 0.5), but also in muscles that are returned to π= 1 after equilibration in π= 2 medium. The equilibration in π= 2 medium does not affect pump density. Ouabain-binding increments cannot be ascribed to a rise in the Na+–K+ exchange rate of a fixed number of pumps: they also occurred in the continued presence of a saturating concentration of ouabain (50 μm). Under those conditions, the π= 1 →π= 0.5 transfer produced a 43 % increase in pump sites, while the π= 2 →π= 1 transfer induced a rise of 46 %. Actinomycin D did not alter the stimulation of Na+ extrusion elicited by hypotonicity, suggesting that de novo synthesis of pumps was not involved in the increase of the apparent number of pump sites. Disruption of microtubules by colchicine (100 μm) and intermediate filaments by acrylamide (4 mm) did not alter the hypotonic effect. Likewise, genistein (100 μm), a specific inhibitor of tyrosine kinase, did not affect significantly the hypotonic response. Microfilament-disrupting agents like cytochalasin B (5 μm) and latrunculin B (10 μm) reduced the increase in Na+ efflux induced by π= 1 →π= 0.5 transfer by about 35 % and 72 %, respectively. Latrunculin B reduced the increases in pump density generated by π= 1 →π= 0.5 and π= 2 →π= 1 transfers by about 79 % and 91 %, respectively. The results suggest that the membrane stretch due to hypotonic fibre volume increase would promote a microfilament-mediated insertion of submembranous spare Na+ pumps in the sarcolemma and, consequently, the rise in active Na+ transport. PMID:12598593

  14. If You Were a Molecule in a Chromatography Column, What Would You See?

    ERIC Educational Resources Information Center

    Mattice, John

    2008-01-01

    To visualize what takes place in a chromatography column, enlarge the molecules to human size and expand the columns to keep the ratio of size of molecule to size of column the same. If we were molecules, what would the columns be like? A typical gas chromatography (GC) capillary column would be 50 x 10 [superscript 6] 6 km (31 million mi) long,…

  15. Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes.

    PubMed

    Mukherjee, Sankha; Kavalsky, Lance; Singh, Chandra Veer

    2018-03-14

    In the wake of blue phosphorene's (BP) computational discovery and experimental realization, it has emerged as a versatile material with interesting optical, electrical, and mechanical properties. In this study, using first principles density functional theory calculations, we have investigated the adsorption and diffusion of Na and K over monolayer BP to assess its suitability as Na-ion and K-ion battery anodes. The optimized adsorption energies were found to be -0.96 eV for Na and -1.54 eV for K, which are sufficiently large to ensure stability and safety during operation. In addition, BP could adsorb Na and K atoms up to a stoichiometric ratio of 1:1 which yields a high storage capacity of 865 mA h/g for both adatom species. Through examination of the electronic structure and projected density of states of BP as a function of Na/K concentration, we predict that the band gap of the system increasingly shrinks, and in the case of maximum K adsorption, the band gap diminishes completely. Additionally, the diffusion of Na and K over BP is observed to be ultrafast, especially for K, and anisotropic with modest energy barriers of 0.11 and 0.093 eV for Na and K, respectively. Building upon these findings, we employed vibrational analysis techniques with transition state theory to incorporate kinetic effects and predicted a diffusivity of 7.2 × 10 -5 cm 2 /s for Na and 8.58 × 10 -5 cm 2 /s for K on BP. Given these advantages, that is, ultrahigh capacity, electrical conductivity, and high Na/K diffusivity, we conclude that BP can be considered as an excellent candidate for anodes in Na- and K-ion batteries.

  16. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and

  17. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\gt 17.2 requires a broken power law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory

  18. SPEEDUP{trademark} ion exchange column model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process.more » The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.« less

  19. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    PubMed

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-07-01

    The temperature profiles were calculated along and across seven packed columns (lengths 30, 50, 100, and 150 mm, i.d., 1 and 2.1 mm, all packed with Acquity UPLC, BEH-C 18 particles, average d(p) approximately 1.7 microm) and their stainless steel tubes (o.d. 4.53 and 6.35 mm). These columns were kept horizontal and sheltered from forced air convection (i.e., under still air conditions), at room temperature. They were all percolated with pure acetonitrile, either under the maximum pressure drop (1034 bar) or at the maximum flow rate (2 mL/min) permitted by the chromatograph. The heat balance equation of chromatographic columns was discretized and solved numerically with minimum approximation. Both the compressibility and the thermal expansion of the eluent were taken into account. The boundary conditions were determined from the experimental measurements of the column inlet pressure and of the temperature profile along the column wall, which were made with a precision better than +/-0.1 K. These calculation results provide the 3-D temperature profiles along and across the columns. The axial and radial temperature gradients are discussed in relationship with the experimental conditions used. The temperature map obtained permits a prediction of the chromatographic data obtained under a very high pressure gradient.

  1. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  2. Hoop/column and tetrahedral truss electromagnetic tests

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1987-01-01

    The distortion of antennas was measured with a metric camera system at discrete target locations on the surface. Given are surface distortion for hoop column reflector antennas, for tetrahedral truss reflector antennas, and distortion contours for the tetrahedral truss reflector. Radiation patterns at 2.27-GHz, 4.26-GHz, 7.73-GHz and 11.6-GHz are given for the hoop column antenna. Also given are radiation patterns at 4.26-GHz and 7.73-GHz for the tetrahedral truss antenna.

  3. O3-type Na(Mn₀.₂₅Fe₀.₂₅Co₀.₂₅Ni₀.₂₅)O₂: a quaternary layered cathode compound for rechargeable Na ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xi; Zhou, Yong-Ning; Wu, Di

    2014-12-01

    We report a new layered Na(Mn₀.₂₅Fe₀.₂₅Co₀.₂₅Ni₀.₂₅)O₂ compound with O3 oxygen stacking. It delivers 180 mAh/g initial discharge capacity and 578 Wh/kg specific energy density with good cycling capability at high cutoff voltage. In situ X-ray diffraction (XRD) shows a reversible structure evolution of O3-P3-O3'-O3'' upon Na de-intercalation. The excellent capacity and cycling performance at high cutoff voltage make it an important model system for studying the general issue of capacity fading in layered Na cathode compounds.

  4. The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin films

    NASA Astrophysics Data System (ADS)

    Ahn, C. W.; Y Lee, S.; Lee, H. J.; Ullah, A.; Bae, J. S.; Jeong, E. D.; Choi, J. S.; Park, B. H.; Kim, I. W.

    2009-11-01

    We have fabricated K0.5Na0.5NbO3 (KNN) thin films on Pt substrates by a chemical solution deposition method and investigated the effect of K and Na excess (0-30 mol%) on ferroelectric and piezoelectric properties of KNN thin film. It was found that with increasing K and Na excess in a precursor solution from 0 to 30 mol%, the leakage current and ferroelectric properties were strongly affected. KNN thin film synthesized by using 20 mol% K and Na excess precursor solution exhibited a low leakage current density and well saturated ferroelectric P-E hysteresis loops. Moreover, the optimized KNN thin film had good fatigue resistance and a piezoelectric constant of 40 pm V-1, which is comparable to that of polycrystalline PZT thin films.

  5. Influence of the Al wire placed in the anode axis on the transformation of the deuterium plasma column in the plasma focus discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubes, P.; Cikhardtova, B.; Cikhardt, J.

    In this paper, we describe the influence of an Al wire of 270 μm in diameter placed along the anode axis on the transformation of the deuterium pinch column in a megaampere (MA) plasma focus device. The evolution of the pinched column and of the wire corona was investigated by means of the multiframe interferometry, neutron and X-ray diagnostics. The wire corona did not influence considerably on the evolution of dense plasma structures and neutron production, but it increased the plasma density and consequently, the currents around its surface. The distribution of the closed internal currents (ranging hundreds of kA) andmore » associated magnetic fields amounting to 5 T were also estimated in the dense plasma column and in plasmoidal structures at the near-equilibrium state. The description is based on the balance of the plasma pressure and the pressure of the internal poloidal and toroidal current components compressed by the external pinched column. The dominant number of fusion deuterium-deuterium (D-D) neutrons is produced during the evolution of instabilities, when the uninterrupted wire corona (containing deuterium) connects the dense structures of the pinch, and it did not allow the formation of a constriction of the sub-millimeter diameter.« less

  6. Spatial and Temporal Trends in the Density Stratification of Long Island Sound

    NASA Astrophysics Data System (ADS)

    Marchese, P.

    2017-12-01

    The density structure of Long Island Sound (LIS) was studied using historical hydrographic data. Like many estuaries, LIS suffers from hypoxia during the summer months; a result of the density stratification caused by surface warming and weak wind conditions. In summer, the water column is stratified at both ends (east and west) with a vertically well mixed region near the middle. During these months, the western side of LIS experiences low bottom dissolved from the higher nutrient influx and the resulting oxygen demand. Eastern LIS does not experience hypoxia despite sometimes being more highly stratified than the west because these bottom water are regularly ventilated by incoming higher DO water from outside. Topography and density gradients prevent the low DO water from encroaching to the eastern basin. In the fall, changing atmospheric conditions weakens the density stratification throughout LIS, although in some regions the vertical gradient will persist, sometimes until January.

  7. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  8. Active damping of capillary oscillations on liquid columns

    NASA Astrophysics Data System (ADS)

    Thiessen, David B.; Wei, Wei; Marston, Philip L.

    2002-05-01

    Active control of acoustic radiation pressure and of electrostatic stresses on liquid columns has been demonstrated to overcome the Rayleigh-Plateau instability that normally causes long liquid columns to break [M. J. Marr-Lyon et al., J. Fluid Mech. 351, 345 (1997); Phys. Fluids 12, 986-995 (2000)]. Though originally demonstrated for liquid-liquid systems in plateau tanks, the electrostatic method also works on columns in air in reduced gravity [D. B. Thiessen, M. J. Marr-Lyon, and P. L. Marston, ``Active electrostatic stabilization of liquid bridges in low gravity,'' J. Fluid Mech. (in press)]. In new research, the electrostatic stresses are applied in proportion to the velocity of the surface of the column so as to actively dampen capillary oscillations of the surface. The mode amplitude is optically sensed and the rate-of-change is electronically determined. Plateau tank measurements and theory both show that the change in damping rate is proportional to the feedback gain. The results suggest that either active control of electrostatic stresses or of acoustic radiation stresses can be used to suppress the response of interfaces to vibration. [Work supported by NASA.

  9. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  10. Fabrication of Na0.7MnO2/C composite cathode material by simple heat treatment for high-power na-ion batteries

    NASA Astrophysics Data System (ADS)

    Sohn, DongRak; Lim, Sung-Jin; Nam, Do-Hwan; Hong, Kyung-Sik; Kim, Tae-Hee; Oh, SeKwon; Eom, Ji-Yong; Cho, EunAe; Kwon, HyukSang

    2018-01-01

    A Na0.7MnO2/C composite cathode material is synthesized by simple and costeffective two-step heat treatment for an improvement in the rate capability of Na0.7MnO2. The first heat treatment is to synthesize Na0.7MnO2, and the second one is a low temperature annealing at 350 °C for 1 h in air, which is necessary to suppress an interfacial reaction between the Na0.7MnO2 and C in the synthesis process of Na0.7MnO2/C composite. Structural analyses by XRD and XPS reveal that the Na0.7MnO2/C shows the same structural properties as that of the pristine Na0.7MnO2, and hence they exhibit the same initial discharge capacity of 175 mAh g-1 at 20 mA g-1. At a current density of 400 mA g-1, the discharge capacity of Na0.7MnO2 reduces to 50 mAh g-1 (28% of the initial discharge capacity), whereas that of Na0.7MnO2/C reduces to 108 mAh g-1 (61% of the initial discharge capacity). The enhanced rate capability of the Na0.7MnO2/C is attributed to the conductive carbon layer formed on the surface of Na0.7MnO2 particles, enabling the facile transport of electrons from the current collector to the surface of the Na0.7MnO2 particles. [Figure not available: see fulltext.

  11. Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Hu, Yun Hang

    2018-05-01

    Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g-1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g-1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

  12. 29. View of paired concreteencased columns at joint between beams ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. View of paired concrete-encased columns at joint between beams contrasted against wider single columns. Looking east. - Stillwell Avenue Station, Intersection of Stillwell & Surf Avenues, Brooklyn, Kings County, NY

  13. Calcium Isotope Analysis with "Peak Cut" Method on Column Chemistry

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhang, Z.; Liu, F.; Li, X.

    2017-12-01

    To eliminate isobaric interferences from elemental and molecular isobars (e.g., 40K+, 48Ti+, 88Sr2+, 24Mg16O+, 27Al16O+) on Ca isotopes during mass determination, samples should be purified through ion-exchange column chemistry before analysis. However, large Ca isotopic fractionation has been observed during column chemistry (Russell and Papanastassiou, 1978; Zhu et al., 2016). Therefore, full recovery during column chemistry is greatly needed, otherwise uncertainties would be caused by poor recovery (Zhu et al., 2016). Generally, matrix effects could be enhanced by full recovery, as other elements might overlap with Ca cut during column chemistry. Matrix effects and full recovery are difficult to balance and both need to be considered for high-precision analysis of stable Ca isotopes. Here, we investigate the influence of poor recovery on δ44/40Ca using TIMS with the double spike technique. The δ44/40Ca values of IAPSO seawater, ML3B-G and BHVO-2 in different Ca subcats (e.g., 0-20, 20-40, 40-60, 60-80, 80-100%) with 20% Ca recovery on column chemistry display limited variation after correction by the 42Ca-43Ca double spike technique with the exponential law. Notably, δ44/40Ca of each Ca subcut is quite consistent with δ44/40Ca of Ca cut with full recovery within error. Our results indicate that the 42Ca-43Ca double spike technique can simultaneously correct both of the Ca isotopic fractionation that occurred during column chemistry and thermal ionization mass spectrometry (TIMS) determination properly, because both of the isotopic fractionation occurred during analysis follow the exponential law well. Therefore, we propose the "peak cut" method on Ca column chemistry for samples with complex matrix effects. Briefly, for samples with low Ca contents, we can add the double spike before column chemistry, and only collect the middle of the Ca eluate and abandon the both sides of Ca eluate that might overlap with other elements (e.g., K, Sr). This method would

  14. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    PubMed

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  15. Enhanced energy storage density in lead free (Na0.5Bi0.48Eu0.02)Ti1-xNbxO3(x=0.00, 0.01 & 0.02) ceramics

    NASA Astrophysics Data System (ADS)

    Yanamandra, Radha; Kandula, Kumara Raja; Bandi, Posidevi; Reddy, H. Satish Kumar; Asthana, Saket; Patri, Tirupathi

    2018-05-01

    Eco friendly (Na0.5Bi0.48Eu0.02) Ti1-xNbxO3 ceramics were synthesized with help of conventional solid state reaction by using high energy ball milling. The room temperature XRD of Nb5+ substituted NBET ceramics were stabilized in single phase pervoskite structure without any secondary phase. Polarization study reflects long range ferroelectric order for pure NBET ceramics and coercive field enhance with the substitution of Nb5+ ion at Ti site. Further, the substitution of Nb5+ ≥ 0.02 composition induced relaxor future. The energy density calculation shows the maximum energy storage density of 1.02 J/cm3 for x=0.02 ceramics. These results confirms a small fraction of Nb5+ doped NBET ceramics should be good candidates for energy storage applications.

  16. Detection of Oil in Water Column: Sensor Design

    DTIC Science & Technology

    2013-02-01

    rivers , and initiating dispersant application or oil recovery operations. Challenges in detecting oil within the water column include poor...facility and along transects in the Delaware River . However, all readings were at background, even when there was visible oil on the water surface...levels for extremely high CDOM rich rivers . Detection of Oil in Water Column: Sensor Design 14 UNCLAS//Public | CG-926 RDC | Fitzpatrick, et al

  17. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan

    2017-04-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.

  18. Diagnostic considerations of lateral column foot pain in athletes.

    PubMed

    Traister, Eric; Simons, Stephen

    2014-01-01

    Foot maladies are often classified descriptively by general foot locations, i.e., forefoot, midfoot, and rearfoot. However, common vernacular verbiage, implicating a common biomechanical purpose, also applies pathology to the medial or lateral foot column. Although imprecisely defined, lateral column injuries to the foot encompass conditions that affect any of the lateral side of the foot from the calcaneus to the toes. The lateral column of the foot includes the calcaneus, the cuboid, the fourth and fifth metatarsals as well as the calcaneocuboid, cuboido-metatarsal, and intermetatarsal joints. It may be helpful to think in a "lateral column" fashion when evaluating and treating certain lateral foot injuries, load patterns, and biomechanical or anatomical faults. Misdiagnosed injuries in this area of the foot can be a source of great morbidity to the athlete. It is important for the clinician to be aware of common conditions presenting as pain to the lateral side of the foot.

  19. [Column chromatography purification and analysis of biodiesel by transesterification].

    PubMed

    Liu, Yang; Yi, Huai-feng; Chen, Yu; Wu, Yu-long; Yang, Ming-de; Chen, Zeng; Tong, Jun-mao

    2012-02-01

    In the present paper, crude biodiesel prepared with sorbifolia oil as raw material by transesterification was purified by column chromatography, then the composition of biodiesel was analyzed by gas chromatography, FTIR, GC-MS and 1H NMR. Column chromatography can separate the crude biodiesel into two fractions: petroleum ether eluted fraction (A1) and methanol eluted fraction (A2). Petroleum ether eluted fraction was mainly biodiesel fraction, which was produced from sorbifolia oil by transesterification, including methyl linoleate, methyl cis-9-octadecenoate and so on; methanol eluted fraction was mainly glycerol fraction, which came from the side reaction of transesterification. The results show that the purity of refined biodiesel increased from 77.51% to 93.872, and the product recovery rate reached up to 91.04% after the purification by column chromatography. The results obtained by FTIR and 1H NMR further showed that the column chromatography can effectively improve the purity of biodiesel. This paper provides a basis for industrialization of purification of biodiesel.

  20. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  1. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  2. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport

    USGS Publications Warehouse

    Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.

    2009-01-01

    We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.

  3. The Temperature-Density Relation in the Intergalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Pettini, Max

    2012-10-01

    We present new measurements of the temperature-density (T-ρ) relation for neutral hydrogen in the 2.0 < z < 2.8 intergalactic medium (IGM) using a sample of ~6000 individual H I absorbers fitted with Voigt profiles constrained in all cases by multiple Lyman series transitions. We find model-independent evidence for a positive correlation between the column density of H I (N H I ) and the minimum observed velocity width of absorbers (b min). With minimal interpretation, this implies that the T-ρ relation in the IGM is not "inverted," contrary to many recent studies. Fitting b min as a function of N H I results in line-width-column-density dependence of the form b min = b 0(N H I /N H I,0)Γ-1 with a minimum line width at mean density (\\rho /\\bar{\\rho }= 1, N_H\\,\\mathsc{i, 0} = 10^{13.6} cm-2) of b 0 = 17.9 ± 0.2 km s-1 and a power-law index of (Γ - 1) = 0.15 ± 0.02. Using analytic arguments, these measurements imply an "equation of state" for the IGM at langzrang = 2.4 of the form T=T_0 \\left(\\rho /\\bar{\\rho }\\right)^{\\gamma -1} with a temperature at mean density of T 0 = [1.94 ± 0.05] × 104 K and a power-law index (γ - 1) = 0.46 ± 0.05. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Behaviour of axially and eccentrically loaded short columns reinforced with GFRP bars

    NASA Astrophysics Data System (ADS)

    Sreenath, S.; Balaji, S.; Saravana Raja Mohan, K.

    2017-07-01

    The corrosion of steel reinforcing bars is a predominant factor in limiting the life expectancy of Reinforced Cement Concrete (RCC) structures. Corrosion resistant Fibre Reinforced Polymer (FRP) bars can be an effective alternative to steel bars in this context. Recent investigations reported the flexural behaviour of RCC beams reinforced with Glass Fibre Reinforced Polymer (GFRP) bars. This study is meant to investigate the suitability of Sand Coated GFRP reinforcement bars in short square columns which when loaded axially and loaded with a minimum eccentricity. Standard tests to assess mechanical properties of GFRP bars and pullout test to quantify the bond strength between the bars and concrete were conducted. GFRP reinforced column specimens with a cross-sectional dimension of 100mm X 100mm and of length 1000mm were cast and tested under axial and eccentric loading. The assessed load carrying capacity was compared with that of conventional steel reinforced columns of the same size. The yield load and ultimate load at failure withstood by the steel reinforced columns were considerably more than that of GFRP reinforced columns. The energy absorption capacity of GFRP reinforced columns was also poor compared to steel reinforced columns. Both the columns exhibited nearly the same ductile behaviour. Hence GFRP reinforcements are not recommendable for compression members.

  5. Modeling of high-strength concrete-filled FRP tube columns under cyclic load

    NASA Astrophysics Data System (ADS)

    Ong, Kee-Yen; Ma, Chau-Khun; Apandi, Nazirah Mohd; Awang, Abdullah Zawawi; Omar, Wahid

    2018-05-01

    The behavior of high-strength concrete (HSC) - filled fiber-reinforced-polymer (FRP) tubes (HSCFFTs) column subjected to cyclic lateral loading is presented in this paper. As the experimental study is costly and time consuming, a finite element analysis (FEA) is chosen for the study. Most of the previous studies have focused on examining the axial load behavior of HSCFFT column instead of seismic behavior. The seismic behavior of HSCFFT columns has been the main interest in the industry. The key objective of this research is to develop a reliable numerical non-linear FEA model to represent the seismic behavior of such column. A FEA model was developed using the Concrete Damaged Plasticity Model (CDPM) available in the finite element software package (ABAQUS). Comparisons between experimental results from previous research and the predicted results were made based on load versus displacement relationships and ultimate strength of the column. The results showed that the column increased in ductility and able to deform to a greater extent with the increase of the FRP confinement ratio. With the increase of confinement ratio, HSCFFT column achieved a higher moment resistance, thus indicated a higher failure strength in the column under cyclic lateral load. It was found that the proposed FEA model can regenerate the experimental results with adequate accuracy.

  6. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Spaceborne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  7. Towards Reconstructing a Doric Column in a Virtual Construction Site

    NASA Astrophysics Data System (ADS)

    Bartzis, D.

    2017-02-01

    This paper deals with the 3D reconstruction of ancient Greek architectural members, especially with the element of the Doric column. The case study for this project is the Choragic monument of Nicias on the South Slope of the Athenian Acropolis, from which a column drum, two capitals and smaller fragments are preserved. The first goal of this paper is to present some benefits of using 3D reconstruction methods not only in documentation but also in understanding of ancient Greek architectural members. The second goal is to take advantage of the produced point clouds. By using the Cloud Compare software, comparisons are made between the actual architectural members and an "ideal" point cloud of the whole column in its original form. Seeking for probable overlaps between the two point clouds could assist in estimating the original position of each member/fragment on the column. This method is expanded with more comparisons between the reference column model and other members/fragments around the Acropolis, which may have not yet been ascribed to the monument of Nicias.

  8. Direct and indirect effects of biochar on the mobility of metals and nutrients in contaminated soils: a two-column leaching experiment

    NASA Astrophysics Data System (ADS)

    Rees, Frédéric; Simonnot, Marie-Odile; Morel, Jean-Louis

    2014-05-01

    Biochar has been claimed to be not only a promising carbon sequestration or fertilizing agent in soils but also a high capacity sorbent, of particular interest for the management of contaminated soils. Several studies have described its positive effects on the mobility of different potentially toxic elements in soils, but many doubts remain about the underlying mechanisms. In particular, the distinction between the actual adsorption of elements on biochar and their biochar-induced retention on soil particles is often impossible to achieve. We studied here the dynamic interactions between one biochar produced at 450°C from a mix of hard wood and soft wood, and two soils contaminated by Cd, Pb and Zn which were sampled near a smelter and only differed from their pH. In order to distinguish between the actual immobilization of elements on biochar and their modified retention on soil particles, we developed a two-column leaching experiment using calcium nitrate as the initial leaching solution. The first column was filled with one of the two soils, and was linked in a closed loop with the second column containing a mass of pure biochar equivalent to 10% of the soil mass. The leaching solution circulated first in the soil column, then through the biochar column and again in the soil column and so on, so that it became progressively equilibrated with both soil and biochar. Each experiment lasted for 12 days at a flow rate of 1 mL/min. The pH and electrical conductivity of the leaching solution was continuously monitored at the outlet of the biochar column, and samples of the leaching solution were regularly taken for further analysis, both before and after having passed each of the columns. Our results show that the chemical equilibrium between soil and biochar was obtained in a short time for major elements such as Na, K and Mg, whereas for heavy metals and other elements as well as for pH and dissolved carbon, the equilibrium was still not reached at the end of the

  9. Utilization of O4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-02-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  10. Successful nonoperative treatment of a three-column thoracic fracture in a patient with ankylosing spondylitis: existence and clinical significance of the fourth column of the spine.

    PubMed

    Shen, Francis H; Samartzis, Dino

    2007-07-01

    A case report. To report the successful nonoperative management of a patient with progressive ankylosing spondylitis who sustained a three-column flexion-distraction injury of the upper thoracic spine with an intact sternal-rib complex, thereby emphasizing the existence and clinical relevance of the fourth-column concept in such patients. Three-column injuries of the cervical and lumbar spine are typically unstable and require surgical stabilization. Patients with ankylosing spondylitis are at an increase risk to sustain three-column injuries of the spine due to their progressive inflammatory disease, a state that renders the spine brittle and alters its biomechanical function. A fourth-column model of the thoracic spine has been proposed and incorporates the sternal-rib complex; however, such a model has rarely been addressed in the literature and its role regarding three-column upper thoracic spine injury with an intact sternal-rib complex in patients with ankylosing spondylitis is unknown. METHODS.: A 68-year-old white man with ankylosing spondylitis and Pickwickian body habitus sustained a three-column flexion-distraction injury at T5 following a ground-level fall. The patient complained of midthoracic back pain; however, he was neurologically intact and ambulated without aids. Because of the patient's numerous active medical issues that substantially increased his perioperative risks combined with symptomatic improvement of his pain, the patient refused surgical stabilization. In addition, because of the patient's body habitus and pulmonary issues, external brace immobilization was not tolerated. At 17 months of follow-up, the patient remained neurologically intact, ambulated well, his midthoracic back pain had subsided, and no progressive kyphosis was noted. This case confirms the existence and clinical relevance of the fourth column of the thoracic spine and its role in providing added spinal stability in the patient with ankylosing spondylitis. As such, it

  11. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger

    1994-01-01

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  12. Thermal Analysis for Ion-Exchange Column System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less

  13. Application of a simple column-switching ion chromatography technique for removal of matrix interferences and sensitive fluorescence determination of acidic compounds (pharmaceutical drugs) in complex samples.

    PubMed

    Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan

    2017-09-15

    This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.

  14. Enhancing Catalyzed Decomposition of Na2CO3 with Co2MnO x Nanowire-Decorated Carbon Fibers for Advanced Na-CO2 Batteries.

    PubMed

    Fang, Cong; Luo, Jianmin; Jin, Chengbin; Yuan, Huadong; Sheng, Ouwei; Huang, Hui; Gan, Yongping; Xia, Yang; Liang, Chu; Zhang, Jun; Zhang, Wenkui; Tao, Xinyong

    2018-05-23

    The metal-CO 2 batteries, especially Na-CO 2 , batteries come into sight owing to their high energy density, ability for CO 2 capture, and the abundance of sodium resource. Besides the sluggish electrochemical reactions at the gas cathodes and the instability of the electrolyte at a high voltage, the final discharge product Na 2 CO 3 is a solid and poor conductor of electricity, which may cause the high overpotential and poor cycle performance for the Na-CO 2 batteries. The promotion of decomposition of Na 2 CO 3 should be an efficient strategy to enhance the electrochemical performance. Here, we design a facile Na 2 CO 3 activation experiment to screen the efficient cathode catalyst for the Na-CO 2 batteries. It is found that the Co 2 MnO x nanowire-decorated carbon fibers (CMO@CF) can promote the Na 2 CO 3 decomposition at the lowest voltage among all these metal oxide-decorated carbon fiber structures. After assembling the Na-CO 2 batteries, the electrodes based on CMO@CF show lower overpotential and better cycling performance compared with the electrodes based on pristine carbon fibers and other metal oxide-modified carbon fibers. We believe this catalyst screening method and the freestanding structure of the CMO@CF electrode may provide an important reference for the development of advanced Na-CO 2 batteries.

  15. Sol-gel chemistry-based Ucon-coated columns for capillary electrophoresis.

    PubMed

    Hayes, J D; Malik, A

    1997-07-18

    A sol-gel chemistry-based novel approach for the preparation of a Ucon-coated fused-silica capillary column in capillary electrophoresis is presented. In this approach the sol-gel process is carried out inside 25 microm I.D. fused-silica capillaries. The sol solution contained appropriate quantities of an alkoxide-based sol-gel precursor, a polymeric coating material (Ucon), a crosslinking reagent, a surface derivatizing reagent, controlled amounts of water and a catalyst dissolved in a suitable solvent system. The coating procedure involves filling a capillary with the sol solution and allowing the sol-gel process to proceed for an optimum period. Hydrolysis of the alkoxide precursor and polycondensation of the hydrolyzed products with the surface silanol groups and the hydroxy-terminated Ucon molecules lead to the formation of a surface-bonded sol-gel coating on the inner walls of the capillary. The thickness of the coated film can be controlled by varying the reaction time, coating solution composition and experimental conditions. Commercial availability of high purity sol-gel precursors (e.g., TEOS 99.999%), the ease of coating, run-to-run and column-to-column reproducibility, and long column lifetimes make sol-gel coating chemistry very much suitable for being applied in analytical microseparations column technology. Test samples of basic proteins and nucleotides were used to evaluate the column performance. These results show that the sol-gel coating scheme has allowed for the generation of bio-compatible surfaces characterized by high separation efficiencies in CE. For different types of solutes, the sol-gel coated Ucon column consistently provided migration time R.S.D. values of the order of 0.5%.

  16. Evolution of columns, modules, and domains in the neocortex of primates.

    PubMed

    Kaas, Jon H

    2012-06-26

    The specialized regions of neocortex of mammals, called areas, have been divided into smaller functional units called minicolumns, columns, modules, and domains. Here we describe some of these functional subdivisions of areas in primates and suggest when they emerged in mammalian evolution. We distinguish several types of these smaller subdivisions. Minicolumns, vertical arrays of neurons that are more densely interconnected with each other than with laterally neighboring neurons, are present in all cortical areas. Classic columns are defined by a repeating pattern of two or more types of cortex distinguished by having different inputs and neurons with different response properties. Sensory stimuli that continuously vary along a stimulus dimension may activate groups of neurons that vary continuously in location, producing "columns" without specific boundaries. Other groups or columns of cortical neurons are separated by narrow septa of fibers that reflect discontinuities in the receptor sheet. Larger regions of posterior parietal cortex and frontal motor cortex are parts of networks devoted to producing different sequences of movements. We distinguish these larger functionally distinct regions as domains. Columns of several types have evolved independently a number of times. Some of the columns found in primates likely emerged with the first primates, whereas others likely were present in earlier ancestors. The sizes and shapes of columns seem to depend on the balance of neuron activation patterns and molecular signals during development.

  17. Comparison of the release of constituents from granular materials under batch and column testing.

    PubMed

    Lopez Meza, Sarynna; Garrabrants, Andrew C; van der Sloot, Hans; Kosson, David S

    2008-01-01

    Column leaching testing can be considered a better basis for assessing field impact data than any other available batch test method and thus provides a fundamental basis from which to estimate constituent release under a variety of field conditions. However, column testing is time-intensive compared to the more simplified batch testing, and may not always be a viable option when making decisions for material reuse. Batch tests are used most frequently as a simple tool for compliance or quality control reasons. Therefore, it is important to compare the release that occurs under batch and column testing, and establish conservative interpretation protocols for extrapolation from batch data when column data are not available. Five different materials (concrete, construction debris, aluminum recycling residue, coal fly ash and bottom ash) were evaluated via batch and column testing, including different column flow regimes (continuously saturated and intermittent unsaturated flow). Constituent release data from batch and column tests were compared. Results showed no significant difference between the column flow regimes when constituent release data from batch and column tests were compared. In most cases batch and column testing agreed when presented in the form of cumulative release. For arsenic in carbonated materials, however, batch testing underestimates the column constituent release for most LS ratios and also on a cumulative basis. For cases when As is a constituent of concern, column testing may be required.

  18. Reliability of high I/O high density CCGA interconnect electronic packages under extreme thermal environments

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2012-03-01

    Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surfacemount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions.

  19. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Alaina; Scarlata, Claudia; Martin, Crystal L.

    2015-08-10

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed “Green Peas,” make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5–5.6, implying that 5%–60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionizationmore » metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with N{sub H} {sub i} ≳ 10{sup 16} cm{sup −2}. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.« less

  20. SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns

    NASA Astrophysics Data System (ADS)

    Koestel, John

    2016-04-01

    3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected